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Abstract. Tissues of the upper airways of critically ill patients are
particularly vulnerable to mechanical damage associated with the use
of ventilators. Ventilation is known to disrupt the structural integrity
of respiratory tissues and their function. This damage contributes to
the vulnerability of these tissues to infection. We are currently devel-
oping tissue models of damage and infection to the upper airways.
As part of our studies, we have compared how tissue storage condi-
tions affect mechanical properties of excised respiratory tissues using
a quasi-static platform. Data presented here show considerable differ-
ences in mechanical responses of stored specimens compared to freshly
excised specimens. These data indicate that implementation of storage
and maintenance procedures that minimize rapid degradation of tissue
structure are essential for retaining the material properties in our tissue
trauma models.

1 Introduction

The most common life-threatening hospital-acquired infection is pneumonia, pri-
marily associated with mechanical ventilation and known as ventilator-associated
pneumonia (VAP) [1]. The processes that result in these deep lung infections are
thought to involve the transfer of bacteria from the oral cavity into upper respiratory
tracheal and bronchial tissues, which may have been mechanically damaged from
the insertion of a ventilator tube [2]. This damage may contribute to the occurrence
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of localized infections in these tissues known as ventilator-associated tracheobron-
chitis (VAT) [3]. Understanding the relationship between damage and infection of
upper respiratory tract tissues has considerable potential to inform and stimulate
new therapies aimed at mitigating VAT and VAP.

The trachea is a multi-layered, fiber-oriented composite of soft tissues with vis-
coelastic material properties [4]. The structural stability of the trachea arises from
its fibrous, collagen-rich hyaline cartilage. The non-linear and anisotropic material
behaviors of the trachea are attributed to the extensive meshwork of fibers in its soft
connective tissues [5]. The mechanical properties of trachea and its subcomponent tis-
sues have been studied in a wide variety of mammalian species including specimens
sourced from human cadavers. Samples have been studied under both compression
and tension. For these specimens, the moduli ranges from the order of 10 kPA to the
order of 100 MPa [6–10]. These variations in modulus values have been attributed to
species-specific differences in the tissues and to sample orientation [6]. These varia-
tions have not been widely considered to be due to differences in sample preparation
and storage.

As part of our aim to develop respiratory tissue-based models of damage and infec-
tion, we have undertaken comparative studies of trachea tissue specimens, stored
under different conditions reported in the literature. In this paper, specimens of
porcine tracheal tissues were excised and used immediately, stored in buffer, or frozen
under conditions described in published studies that reported mechanical properties
under compressive forces. Compression studies have been commonly used to assess
the mechanical properties of fresh and stored tissues in a number of systems. For
example, reports have recently been published on brain tissues [11], and interver-
tebral and temporomandibular joint discs [12,13]. In our studies, rapid preparation
of samples enabled collection of compression data from very fresh tissues using an
Instron platform. The main thrust of this work is to demonstrate the importance of
sample storage as it relates to the interpretation of published mechanical properties
of this tissue class, and as a driver for the development of realistic tissue models of
mechanical injury to the trachea that can lead to complications such as VAT.

2 Materials and methods

2.1 Tissue preparation

Isogenic trachea tissues were obtained from a single six-week old piglet, sourced from
a specific pathogen free (SPF) closed herd. The piglet was sacrificed by intravenous
administration of sodium pentobarbitone at a dosage of 0.8 mg per kg body mass. The
bronchi were excised and opened with a scalpel to reveal the inner epithelial surface.
Full thickness tissue samples from the trachea, containing all tissue components, were
taken as circular discs using an 8-mm diameter biopsy punch.

Appropriately handled explants are extracted from host tissue and then kept at
an air–liquid interface at room temperature. Samples sit on a 2% agarose plug held
in a plastic well containing phosphate buffered saline (PBS) solution, at the interface
between the solution and water. All samples are tested within 12 h of extraction.
As a point of comparison, two other storage protocols were examined. In the first,
samples were completely submerged in PBS for 48 h and stored at 4 ◦C (fridge). In
the second, dehydrated samples were stored at −20 ◦C for two weeks prior to testing
(freezer).

Prior to testing, the discs were removed from PBS solution, if necessary, lightly
dried, and relevant dimensions (diameter, thickness and weight) were measured
(Tab. 1). The sample surfaces were often not precisely circular and, therefore, three
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Table 1. Details of porcine trachea biopsy punches.

Diameter ± 0.005/mm1 Thickness Weight Density
1 2 3 ± 0.005/mm ± 0.0005/g ± 0.05/g/mL

Fresh 1 6.77 8.35 6.36 3.16 0.051 0.40
Fresh 2 7.59 8.07 7.36 4.73 0.058 0.26
Fresh 3 6.96 7.11 7.96 3.87 0.058 0.36
Fresh 4 6.89 8.96 10.25 3.10 0.098 0.53

Fridge 1 8.11 9.16 9.47 3.41 0.083 0.39
Fridge 2 11.95 8.15 10.60 4.08 0.119 0.36

Frozen 1 6.88 7.07 10.60 3.60 0.071 0.38
Frozen 2 7.68 7.04 8.70 3.28 0.062 0.40
Frozen 3 7.28 9.94 7.17 3.67 0.081 0.43

1 The column labels 1, 2 and 3 are diameters of each sample, each made at 60◦.
Please see text for additional explanation.

measurements of the diameter (labelled 1, 2 and 3) were made at 60◦ relative to one
another and the resulting lengths averaged in the estimation of the samples’ surface
area for the purposes of calculating engineering stress. Although the samples were
obtained using a circular biopsy punch, it is possible that pre-stress of the tracheal
tissue may have contributed to the resulting elliptical shapes. The strain rate of all
the experiments shown is 100 s−1.

2.2 Quasi-static measurements

All data shown were collected with an Instron Model-6655 screw-driven press (Fig. 1).
The samples were set between the lubricated faces of the anvil and the load cell.
BlueHill software running on an integrated PC was used to input sample dimensions,
testing parameters and to record the resulting data.

The faces of the anvil and load cell both had an approximate diameter of ∅30 mm
and were sterilized with ethanol prior to the experiment. For the experiments shown,
a ±50 N load cell was used. This load cell has a published linearity and repeatability
of <0.25%. With each load cell used, an initial test was conducted in the absence
of any sample up to a safe load threshold to ascertain the load-dependent error in
the measurement of sample height, due to the yield of the apparatus. This error
correction factor was subtracted from all subsequent measurements.

Both Microsoft Excel and Matlab software was used to analyze the collected data.
The data was plotted and viewed at a fixed magnification and the point at which
the detected load deviated from 0 N was taken to be the full height of the sample.
Engineering strain was back-calculated utilising this new figure for 0% strain.

3 Results and discussion

The averaged engineering stress–strain curves calculated for unconstrained trachea
samples, collected as duplicates or triplicates from the same animal, is shown in
Figure 2. The studies that we conducted into preferable storage and preparation pro-
tocols were based on published conditions used for studying the mechanical properties
of trachea (e.g., [6,9,10]), namely, dry storage at −20 ◦C and buffered storage at 4 ◦C.
The results shown indicate both methods, but certainly the latter, have deleterious
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Fig. 1. Three-dimensional schematic image of the key components of the Instron screw-
driven press. Biological samples were placed on the lightly-lubricated top surface of the
stationary anvil. A load cell, certified to 50 N in the case of these experiments, attached
to a movable cross frame is used to compress the sample at a pre-selected strain rate. The
apparatus is controlled and data is extracted using BlueHill software running on a Windows
PC.

Fig. 2. Stress–strain data of porcine trachea samples. See text for details on sample size
and measurements.

effects on the structure and, consequently, the material properties of biological sam-
ples. This conclusion appears to hold for samples obtained from different animals of
the sample species. The less physiological the conditions in which the sample is kept,
the greater the effect on it mechanical properties. Specifically, the act of freezing
appears to greatly reduce the material stiffness of these biological samples.

Alterations in cell and tissue properties associated with freezing are generally
associated with the physical processes involving water such as ice formation or dehy-
dration that can affect cellular integrity and structures such as the extracellular
matrix and its associated proteins [13–15]. Similar observations were made in a study
by Ternifi et al. [16] that reported a large drop in the elastic modulus of kidney tis-
sues that were subjected to freezing. These authors cited cellular crystallization, cell
bursting and small vessel damage as possible causes. It is also probable that freez-
ing has adverse affects on integrity of its collagen-rich structure that would in turn
affect its biomechanical properties. In a related example, porcine growth explants of
highly cartilaginous tissues associated with bone were stored in various conditions
and studied under compression [17]. Interestingly, freezing of these explants resulted
in a reduction of the collagen fibril modulus. This result suggested that the structural
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organization and/or composition associated with collagen in those samples had been
disturbed.

The majority of the studies into the effects of long-term storage on tissue are
restricted to the field of bioengineering. This is because it is of paramount importance
that both decellularised scaffolds and recellularised, bioengineered replacements can
be stored for prolonged periods of time prior to clinical use. For example, Baiguera
et al. [18] studied the effects of long-term (1 year) storage on both the microstructure
and mechanical properties of human decellularised tracheas. To investigate the impact
of storing the samples at 4 ◦C in phosphate buffered saline on tissue structure required
the use of histological techniques. A combination of ultrastructural and connective
tissue staining highlighted the formation of pores and large interfibrillar spaces [7].
As could be hypothesised, this structural change had a detrimental effect upon the
mechanical behaviours of stored tissues in comparison to fresh. The group conducted
tensile experiments on samples utilising a universal testing machine. Tissues stored in
this way exhibited a lower tensile modulus at both low and high strain (as determined
by the knee of the curve on a stress–strain plot), lower tensile strength and a lower
strain at the point of breakage. All of these parameters were reduced by approximately
half as compared to fresh tissue.

Other studies have attempted to isolate the effect of hydration on tissue mechan-
ical properties. Shahmirzadi and colleagues [19,20] found that decreased hydration
not only made the tissue stiffer but also slowed stress relaxation. Those results were
obtained using aortic tissue submerged in liquids and required maintaining the sam-
ples at a hydration equilibrium. However, the utility of undertaking similar studies
on tissues located air–liquid interfaces is questionable. For example, although respi-
ratory mucosal tissues including trachea are coated in mucus and other surfactant
molecules, full immersion and of these tissues into liquids does not represent a nor-
mal physiological environment and results in submersion stress that can alter tissue
structure and function [21].

In summary, the studies presented here provide a clear indication that the
mechanical properties of soft biological tissues alter significantly with short-term
and long-term storage. Storing tissues in buffer at non-physiological temperatures
degrades the integrity of the tissue and this effect is further exacerbated by stor-
ing the samples in even colder environments, over longer times, whilst dehydrated.
These storage conditions (e.g., in buffer and frozen) are typical of conditions found
throughout the literature of material studies of soft tissues. Our data suggest that
past published studies may require re-interpretation, especially in cases where the
information is used to understand tissue function under physiological conditions.
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