
HALO: Post-Link Heap-Layout Optimisation
Joe Savage

University of Cambridge, UK
joe@reinterpretcast.com

Timothy M. Jones
University of Cambridge, UK
timothy.jones@cl.cam.ac.uk

Abstract
Today, general-purpose memory allocators dominate the
landscape of dynamic memory management. While these so-
lutions can provide reasonably good behaviour across a wide
range of workloads, it is an unfortunate reality that their
behaviour for any particular workload can be highly subop-
timal. By catering primarily to average and worst-case usage
patterns, these allocators deny programs the advantages of
domain-specific optimisations, and thus may inadvertently
place data in a manner that hinders performance, generating
unnecessary cache misses and load stalls.
To help alleviate these issues, we propose HALO: a post-

link profile-guided optimisation tool that can improve the
layout of heap data to reduce cache misses automatically.
Profiling the target binary to understand how allocations
made in different contexts are related, we specialise memory-
management routines to allocate groups of related objects
from separate pools to increase their spatial locality. Un-
like other solutions of its kind, HALO employs novel group-
ing and identification algorithms which allow it to create
tight-knit allocation groups using the entire call stack and to
identify these efficiently at runtime. Evaluation of HALO on
contemporary out-of-order hardware demonstrates speedups
of up to 28% over jemalloc, out-performing a state-of-the-
art data placement technique from the literature.

CCS Concepts • Software and its engineering→ Allo-
cation / deallocation strategies.

Keywords Memorymanagement, dynamic allocation, cache
locality, profile-guided optimisation, binary rewriting

ACM Reference Format:
Joe Savage and Timothy M. Jones. 2020. HALO: Post-Link Heap-
Layout Optimisation. In Proceedings of the 18th ACM/IEEE Interna-
tional Symposium on Code Generation and Optimization (CGO ’20),
February 22–26, 2020, San Diego, CA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3368826.3377914

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CGO ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the authors. Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00
https://doi.org/10.1145/3368826.3377914

1 Introduction
As the gap between memory and processor speeds continues
to widen, efficient cache utilisation is more important than
ever. While compilers have long employed techniques like
basic-block reordering, loop fission and tiling, and intelligent
register allocation to improve the cache behaviour of pro-
grams, the layout of dynamically allocated memory remains
largely beyond the reach of static tools.
Today, when a C++ program calls new, or a C program

malloc, its request is satisfied by a general-purpose allocator
with no intimate knowledge of what the program does or
how its data objects are used. Allocations are made through
fixed, lifeless interfaces, and fulfilled by inflexible, relatively
conservative back-end allocators [13]. Naturally, this cre-
ates inefficiency, and can produce programs whose perfor-
mance is beholden to the whims of a generic data-layout
algorithm, generating unnecessary cache misses, TLBmisses,
and prefetching failures [11, 35].While custom allocators and
diligent programming practices can resolve these issues with
startling efficiency [4], outside of high-performance niches
like games programming these solutions can be complex,
time consuming, and, on the whole, easy to get wrong [5, 15].

To address these issues, this paper proposes HALO (Heap
Allocation Layout Optimiser): an automatic post-link profile-
guided optimisation tool and runtime memory allocator that
intelligently lays out heap data to reduce cache misses. While
other solutions of this kind exist, prior work suffers from
a range of issues including poorly fitting models, expen-
sive runtime identification techniques, and complications
surrounding fragmentation behaviour. HALO differentiates
itself from existing solutions through a number of novel
features.

First, it performs intelligent affinity grouping of memory
allocations, deriving robust placement information from an
affinity graph using a clustering algorithm based onweighted
graph density, and filtering edges based on practical runtime
constraints like co-allocatability. Second, it employs an adap-
tive full-context identificationmechanism, using information
from the entire call stack to accurately characterise heap al-
locations during profiling, and distilling this information to
only a small handful of call sites that it must monitor to
efficiently identify co-allocation opportunities at runtime.
Third, it operates at the binary level without any need for
high-level source code, and after all other optimisations have
been performed, allowing it to be applied retroactively and
for profile data to be used at the highest level of accuracy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/286369103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3368826.3377914
https://doi.org/10.1145/3368826.3377914

CGO ’20, February 22–26, 2020, San Diego, CA, USA Joe Savage and Timothy M. Jones

At a high level, HALO first profiles the target program
to build a model of how the allocations it makes in differ-
ent contexts are related. Clustering these relationships into
groups, it then applies binary rewriting to instrument key
points of interest within the program, and synthesises a spe-
cialised allocator that uses these instrumentation points to
guide allocation decisions – satisfying requests from groups
of related allocations from separate pools in order to reduce
cache misses. Using these techniques, HALO can reduce L1
data-cache misses by up to 23%, and total execution time by
up to 28%, against jemalloc on contemporary out-of-order
hardware, significantly improving performance on a range
of programs where a previous approach [11] fails.

2 Background and Related Work
2.1 Memory Allocation
Most applicationsmanage dynamicmemory through a general-
purpose memory allocator like ptmalloc2 (glibc), tcmalloc
[14], or jemalloc [12]. While these allocators can provide
reasonably good behaviour across a wide range of workloads,
their behaviour for any particular workload can be highly
suboptimal. By catering primarily to average and worst-case
usage patterns, these allocators fail to accommodate the spe-
cific behaviours of individual programs, and thus deny them
the advantages of domain-specific optimisations [13].
One such missed opportunity, of particular importance,

concerns the placement of data objects with strong temporal
locality. Since general-purpose allocators are traditionally
not provided with any intimate knowledge of how values
are used in a given program, they can rely only on simple
heuristics to place data, and thus may inadvertently scatter
highly related data throughout the heap.

In particular, to satisfy allocation requests with reasonable
time and space overheads, almost all contemporary general-
purpose allocators — including ptmalloc2, jemalloc, and
tcmalloc — are based on size-segregated allocation schemes.
That is, they organise free blocks and housekeeping infor-
mation around a fixed number of size classes. As a result,
allocations are co-located based primarily on their size and
the order in which they’re made, as depicted in Figure 1.
While a placement strategy of this sort is a reasonable

approach in the absence of any additional information, any
program in which strongly related and heavily accessed data
objects are allocated non-consecutively or belong to differ-
ent size classes is likely to perform relatively poorly under
this model. In such cases, the related objects are unlikely to
be placed within the same cache line, or perhaps even the
same page, by a size-segregated allocator, and as such may
generate unnecessary cache and TLB misses [35], as well as
prefetching failures [11]. This can be especially problematic
for programs written in languages like C++ that encourage
the allocation of many, relatively small objects, the place-
ment of which can be critical to overall performance [6].

a b

2

4

8

16

32 d

c

int *a = malloc(sizeof(int));
int *b = malloc(sizeof(int));
int *c = calloc(4, sizeof(int));
int *d = calloc(8, sizeof(int));

Figure 1.An illustration of a simple size-segregated allocator
with power-of-two size classes.

2.2 Related Work
In light of these inefficiencies, we propose specialising al-
location routines with the goal of making more informed
data-layout decisions. While this research area has received
relatively little attention, similar ideas have been proposed
in the past and can be roughly divided into three categories:
runtime, compile-time, and profile-guided solutions.

2.2.1 Runtime Techniques
MO [36] applies an extremely simple form of analysis based
on allocation call sites, co-locating objects allocated from
each unique malloc caller after a certain number of allo-
cations have been made from the call site, all of which are
identical with respect to size. When these conditions are
met, objects allocated from the site are laid out contiguously
in a custom pool, and thus are placed with strong spatial
locality. Wang et al. [35] improve on this scheme through the
use of static analysis to identify wrapper functions around
malloc calls and to co-locate related data objects originat-
ing from different allocation sites. The authors construct a
storage-shape graph based on static points-to analysis, al-
lowing them to merge related call sites into groups in order
to co-locate allocations from multiple sources. The benefit of
these approaches is their ability to adapt to real events occur-
ring at runtime. As a result, however, these solutions must
make difficult decisions about which analyses they can afford
to run – ensuring that their placement decisions can offset
their analysis costs to provide a net benefit to execution time.
In the case of Wang et al. [35], only the simplest types of
wrapper functions can be accounted for, and the quality of
allocation groups is bounded by the limitations of the static
analysis applied and its related simplifying assumptions.

2.2.2 Compile-Time Approaches
Chilimbi et al. [10] describe ccmorph, a memory reorgani-
sation tool that utilises topology information provided by
the programmer to both cluster and colour tree-like data
structures. Similar topology-based layout decisions can even
be carried out without programmer intervention in some
cases, purely at compile-time, with the aid of static points-to
analysis, as has been demonstrated by Lattner and Adve [22].
Techniques of this sort can yield good results, though are
ultimately limited by the capabilities of static analysis.
Chilimbi et al. [10] also describe a more general method

that relies on hint-based allocation. They provide a custom

HALO: Post-Link Heap-Layout Optimisation CGO ’20, February 22–26, 2020, San Diego, CA, USA

allocation function which accepts a size and pointer to an ob-
ject with which to attempt to co-locate. A similar technique
is employed by Jula and Rauchwerger [18] in the design of
their TP and Medius allocators. While solutions of this kind
can achieve good results, they often require significant pro-
grammer effort — particularly in cases where hints must be
plumbed through existing infrastructure — and must trade
off costs borne by the runtime allocator against data locality.

2.2.3 Profile-Guided Solutions
The latency overheads of runtime solutions and limitations of
compile-time solutions have led some authors to consider a
third class of solution that uses profile information in making
placement decisions. Such strategies have been successfully
employed in the cache-conscious reordering and splitting of
structure members [9, 19, 34], for instance, and have even
proven effective in generating specialised allocators that seg-
regate objects based on their predicted lifetimes to improve
page locality and reduce fragmentation [3, 31].
Particularly relevant to the goals of HALO, however, are

approaches which carry out object-level co-allocation based
on predicted temporal locality. One such scheme, fromCalder
et al. [7], describes a profile-guided technique by which
global variables, stack data, and heap objects can be laid
out harmoniously in memory to reduce cache misses. At its
core, this identifies heap allocations by XORing the last four
return addresses on the stack at any given allocation site
to derive a unique ‘name’ around which heap objects are
analysed. Placement decisions are then made on the basis
of these names using a temporal relationship graph, and
are enforced at runtime using a specialised allocator. While
the solution as a whole performs well, only a fraction of its
observed speedups are a result of improved heap data place-
ment, leading the authors to conclude that their approach is
“not as effective for heap objects”.

Another approach is described by Chilimbi and Shaham
[11], who employ a co-allocation strategy based on the ‘hot
data streams’ representation of data reference locality [8]. In
this scheme, a global data reference trace is constructed from
heap allocations during a profiling run, and is compressed
using the SEQUITUR algorithm [25] to find minimal ‘hot’
sequences (streams) that make up more than a certain per-
centage of the trace. Viewing each of these sequences as a
set of allocation contexts which the heap allocator might
use to place objects together at runtime, an analysis pass
then evaluates the projected cache miss reduction from the
various object groupings suggested by each stream, and se-
lects a profitable placement policy using an approximation
algorithm to the weighted set packing problem [16]. A spe-
cialised allocator then enforces this policy at runtime. While
performance improvements of up to 20% are observed, in
considering only those placement opportunities that arise
in perfectly repeated strings of accesses this approach can

miss important relationships between streams, and may per-
form especially poorly when its stream formation threshold
artificially separates otherwise related objects (see Section 5).

2.3 Summary
Existing solutions to improving heap-object locality show
significant promise, but suffer from a wide range of issues in-
cluding poorly fittingmodels, expensive runtime-identification
techniques, and complications surrounding fragmentation
behaviour. To better illustrate one such class of issues, we
next consider how existing schemes perform on a real-world
benchmark, motivating the need for a new type of profile-
guided allocator, which we then proceed to develop.

3 Motivation
Figure 2 shows a heavily simplified version of a pattern
arising in povray from SPEC CPU2017 [32]. The code reads
tokens from an input stream, allocating a heap object for
each through a procedure specific to the token type. When
the entire input is consumed, the program then traverses
some subset of these objects, in this case accessing objects
of types A and B while leaving aside those of type C.

A typical allocator might place these objects as shown in
Figure 3(a). However, this lays out objects purely according
to the order in which they were allocated, when the way in
which they are actually accessed is heavily dependent on
their type. This detail, to which traditional allocators are
oblivious, means the allocator unwittingly produces a layout
with poor spatial locality, scattering unrelated objects of type
C between those of types A and B, reducing the effectiveness
of the cache and resulting in suboptimal performance.
Locality-improving allocators, in contrast, seek to utilise

exactly these kind of out-of-band regularities to make im-
proved data layout decisions. In this case, such an allocator
could notice that since each of the three types of allocations
arises from a separate invocation of malloc (within each of
the create_* procedures), each is likely to have different
access characteristics. Analysing the nature of these charac-
teristics using a profiling run, the allocator could then divert
allocations of types A and B to a separate memory pool from
those of type C, as illustrated in Figure 3(b). In theory, this
ought to allow the access loop in Figure 2 to operate without
bringing any objects of type C into the cache, improving
cache efficiency and thus performance.
Unfortunately, while existing solutions can tackle ineffi-

ciencies in simple examples like this with ease, real programs
can introduce additional complexities that can ultimately re-
sult in their failure. If we examine the example from Figure 2
in its original context in povray, for instance, where types
A and B correspond to geometry objects such as planes and
CSG composites, we see that almost all heap data is allocated
through a wrapper function, pov::pov_malloc, thwarting
approaches that look to characterise allocations using only

CGO ’20, February 22–26, 2020, San Diego, CA, USA Joe Savage and Timothy M. Jones

// Allocate
Object *list = NULL;
while (!eof) {

Token token = get_token();
if (token.type == A) {

Object *obj = create_a();
obj->sibling = list;
list = obj;

} else if (token.type == B) {
Object *obj = create_b();
obj->sibling = list;
list = obj;

} else {
Object *obj = create_c();
do_something(obj);

}
}

// Access
Object *obj = list;
while (obj) {

process(obj);
obj = obj->sibling;

}

Figure 2. A simple C program based on code from povray
which allocates three different types of objects on the heap.

BBA C A …

C

AB

C

A

C

B

C

A

C

…
…

(a)

(b)

Figure 3. Two possible heap layouts for the data in Figure 2.

the call site to malloc. Further, even if these wrapper func-
tions are stripped, geometry objects allocated from different
places in the program are used in different ways, with some
types accessed far less heavily than others. As such, detailed
context information is required in order to segregate ob-
jects most efficiently, beyond that which can be reasonably
extracted by walking the dynamic call stack at runtime.
This motivates the design of a new solution that can re-

solve some of the issues described with prior work and can
more accurately characterise different types of allocations in
large, complex programs. To this end, we propose the Heap
Allocation Layout Optimiser (HALO). Profiling the target
binary to understand how allocations made in different con-
texts are related, HALO specialises memory-management
routines to allocate groups of related objects from separate
pools in order to increase their spatial locality. Unlike other
solutions of its kind, HALO employs novel grouping and
identification algorithms which allow it to create tight-knit
allocation groups using the entire call stack and to identify
these at runtime with extremely low overhead.

Grouping

Identification

Allocator
Synthesis

Affinity Graph

Allocation Contexts

Groups

Specialised
Allocator

BOLT

Profiling

Optimised
Executable

Executable

Figure 4. A high-level overview of the HALO optimisation
pipeline.

4 Design and Implementation
A high-level overview of HALO’s design is presented in Fig-
ure 4. Broadly, the target program is first profiled to construct
a representation of how the allocations it makes in differ-
ent contexts are related. It then has its allocation contexts
grouped into tight-knit clusters that might benefit from im-
proved spatial locality, undergoes identification and is rewrit-
ten using BOLT [27] to allow these groups to be efficiently
identified at runtime, and has a specialised allocator gener-
ated that it should be linked against at runtime to allow a
new group-centred layout policy to be enforced.

4.1 Profiling
To begin, the target program is run under a custom instru-
mentation tool written using Intel’s Pin framework [24] to
generate a model of how it accesses heap data. To determine
how allocations are related, this tool instruments calls to all
POSIX.1 memory-management functions, tracking live data
at an object-level granularity. While the overhead of this can
be considerable, slowing execution by up to 500×, we do not
apply any optimisations to this process, such as sampling,
to trade off accuracy against a faster profiling stage.
For each allocation, the tool keeps track of the context

in which the allocation was made by way of the call stack.
To do this, it maintains a shadow stack that differs from
the true call stack by design. For each call instruction (or
other cross-function control transfer), we add an entry to
this stack only if the target of the call is statically linked
into the main binary, or is one of a handful of externally
traceable routines like malloc or free. Within the shadow
stack, the tool then tracks the exact call sites from which
each function was invoked. In order to prevent these from
referring to undesirable locations such as linker stubs and
library procedures, however, call sites may be indirect, and
are traced back to their nearest points of origin in the main
executable. In addition, stacks containing recursive calls are
transformed into a canonical ‘reduced’ form in which only
the most recent of any (function, call site) pair is retained to
avoid overfitting without imposing any fixed size constraints.

Having established which allocations are being made and
in what context, our instrumentation tool then looks to

HALO: Post-Link Heap-Layout Optimisation CGO ’20, February 22–26, 2020, San Diego, CA, USA

96 7 8 9 0 1 2 3 40 1 2 3 4 5 5 6 7 8

Figure 5. A visual depiction of the affinity queue. In this
example, a program iterates over 10 objects making 4-byte
accesses, each depicted as a box. With A = 32, the newest
element (orange) would be considered affinitive to the seven
others to its left (black).

model the relationships between contexts by analysing the
target program’s access patterns. To this end, we generate a
pairwise affinity graph, the nodes of which are ‘reduced’ con-
texts as described above, and the edges of which are weighted
according to the number of contemporaneous accesses to
objects allocated from these within some fixed window.

As the target program executes, its loads and stores are in-
strumented. When an access is made to a heap object tracked
by the tool, this access is added to the affinity queue. Depicted
in Figure 5, this holds the IDs of the most recently accessed
data objects. We describe any pair of elements for which
the sizes of the entries between them in the affinity queue
sums to less than A bytes as being affinitive, where A is a
parameter which we call the affinity distance by which the
queue is implicitly sized. When an access a to a heap object
u allocated from context x is added to the affinity queue as a
result of a load or store, the queue is traversed to identify all
affinitive relationships with this new access. As a result, the
weight on the edge (x , y) is incremented for each object v
allocated from context y in the lastA bytes worth of accesses
in the queue, subject to the following four constraints:

Deduplication: consecutive machine-level accesses to a
single object are considered to be part of the same macro-
level access, and thus do not re-trigger queue traversal.

No self-affinity: objects cannot be affinitive to themselves
(u , v), as they occupy only a single memory location.

No double counting: each unique objectv can be affinitive
with u at most once within a single queue traversal.

Co-allocatability: no allocations made between u and v
chronologically can originate from either x or y.

Of these, co-allocatability is perhaps the least intuitive. In-
spired by the ‘co-allocation sets’ employed by Chilimbi and
Shaham [11], this ensures it would be possible to actually
co-locate u and v at runtime if all objects originating from x
and y were allocated contiguously from a shared pool.

Once the target program has finished executing, the nodes
of its affinity graph are iterated through from most to least
accessed. In doing so, their access counts are added to a
running total, and after 90% of all observed accesses have
been accounted for, any remaining nodes are discarded and
do not contribute to the generated graph. This helps to reduce
noise by eliminating extraneous contexts from the graph.

def group(graph, args):
groups← �
graph.edges← { (u,v) | (u,v) ∈ graph.edges,

w(u,v) ≥ args.min_weight }

avail← graph.nodes

while avail , �:
Form a group around the hottest node

in the strongest available edge

edge← argmax(u,v) ∈ graph[avail].edges(w(u,v))
group← { argmaxu ∈ edge(u .accesses) }
avail← avail \ group

Grow the group

while |group| < args.max_group_members:
best_score← 0.0
best_match← None

for stranger ∈ avail:
benefit← merge_benefit(graph, group,
stranger, args.merge_tol)

if benefit > best_score:
best_score← benefit

best_match← stranger

if best_match is None:
break

group← group ∪ best_match

avail← avail \ group

Add the group to the list if it

exceeds the minimum group weight

weight←
∑
(u,v) ∈ group.edgesw(u,v)

if weight ≥ graph.accesses × args.gthresh:
groups← groups ∪ group

return groups

Figure 6. Pseudocode for our context grouping algorithm,
in whichw is the affinity graph’s edge weight function and
merge_benefit is calculated using the formula in Figure 8.

4.2 Grouping
Having generated a representation of the actionable tempo-
ral relationships in the target program, we must now devise
some scheme by which these relationships can be exploited
to yield improved performance. For this purpose, we par-
tition the set of allocation contexts into groups, such that
members of each group can be allocated from a common
memory region to improve cache locality. In order to estab-
lish such groups of related allocations, we describe a simple
greedy algorithm that generates clusters we find to be more
amenable to region-based co-allocation than standard mod-
ularity [26], HCS [17], or cut-based clustering techniques.
The pseudocode for this algorithm is presented in Figure 6.

At a high level, the algorithm operates by repeatedly grow-
ing tight-knit clusters around the most promising oppor-
tunities in the graph. Starting with one of the two nodes
that participate in the strongest ungrouped edge, a singleton
group is formed. This group is then cultivated by considering

CGO ’20, February 22–26, 2020, San Diego, CA, USA Joe Savage and Timothy M. Jones

s(G) =

∑
(u,v)∈E w(u,v)

|L| + |V |(|V | − 1)/2
where L = { (u,v) | (u,v) ∈ E,u = v,w(u,v) > 0 }

Figure 7. The score function s by which we evaluate group
quality, where G = (V ,E) is the input graph, for whichw is
the associated weight function.

m(A,B) = Sc − (1 −T)max(Sa , Sb)
where Sa = s(G[A]), Sb = s(G[B]), Sc = s(G[A ∪ B]))

Figure 8. The merge-benefit functionm by which we evalu-
ate whether a candidate node should be merged into a group,
where G is the input graph and the square bracket operator
yields the subgraph containing only the specified nodes.

each remaining ungrouped node in turn and calculating the
‘merge benefit’ of adding this candidate to the group. The
node with the largest merge benefit is selected for addition,
and this process continues until the merge benefit is less
than or equal to zero, after which the group is considered
complete and another group is formed starting from the next
ungrouped node with the strongest edge. While the asymp-
totic complexity of this process is quadratic in the number
of nodes in the graph, this value is unlikely to grow large
and can be made arbitrarily small through filtering.

In order to generate high-quality groups, themerge-benefit
metric is carefully designed such that if a candidate node is
not well-connected enough to other nodes in the group, or is
better off in a group of its own, the merge operation will not
take place. To this end, merge benefit quantifies the quality
of a given group via its score (Figure 7). This is a variant of
weighted graph density, and thus encourages the formation
of tight-knit groups with strong inter-member connections.
As the standard formulation of weighted density does not
account for loop edges, however, our score metric is a varia-
tion on this that distributes weight among loops only when
they are present in the graph. In combination with the edge
thresholding that we apply to reduce noise, we find this
provides an effective objective function by which to guide
grouping decisions.

With this score, merge benefit is calculated as in Figure 8
to give a positive value only if merging is beneficial to both
parties. In order for a candidate node B to be considered ben-
eficial, the graph formed by its addition to an existing group
Amust produce a higher score than either the group or the
candidate node in isolation. The only exception to this rule is
if the score of the combined graph is only fractionally lower
than that of the separated graphs, in which case merging is
permitted to encourage group formation. Without this pro-
viso, merging behaviour would be too strict, and the majority
of groups would consist only of one or two nodes around the

Figure 9. Allocation groups generated by instrumenting the
povray testworkload from SPEC CPU2017 [33]. Edges with
weight less than 200,000 are hidden to reduce visual noise.

strongest edges. This slack in the merge-benefit calculation
can be controlled through the tolerance parameter T , which
we find performs well at around 5%.

Figure 9 shows the groups formed by applying this pro-
cess to the povray test workload from SPEC CPU2017. In
this, each node corresponds to a single allocation context,
coloured according to its group, with the thickness of the
edges between nodes denoting weight. Nodes marked in grey
are ungrouped due to insufficient merge benefit. In spite of
the complexity of the access patterns in this case, our algo-
rithm produces groups with high semantic value — grouping,
for example, highly related allocations from Copy_CSG and
Copy_Plane, as was observed to be beneficial in Section 3.

4.3 Identification
Having established a number of groups around which data
placement decisions can be made, we now devise a scheme
by which these groups can be identified at runtime. While
much of the existing work in this area relies on the dynamic
call stack for this purpose, our solution employs a different
approach, utilising binary rewriting to identify group mem-
bership based on control-flow behaviour around a handful of
salient locations in the target program.
More specifically, our solution determines group mem-

bership on the basis of selectors: logical expressions which
determine whether or not a particular allocation belongs
to a particular group based on whether the flow of control
has passed through a certain set of call sites. To generate
these, we define a simple greedy algorithm, the pseudocode
for which is listed in Figure 10. At its core, this builds up
selectors in disjunctive normal form by combining conjunc-
tive expressions to distinguish each of a group’s members
from unrelated contexts. In spite of its simplicity, and the

HALO: Post-Link Heap-Layout Optimisation CGO ’20, February 22–26, 2020, San Diego, CA, USA

def identify(groups, contexts):
ignore← �

for group ∈ sort_by_popularity_desc(groups):
ignore← ignore ∪ group.id

Construct a selector to identify

members of this group

selector← λx. False

for member ∈ group.members:
Build an expression to identify

this group member

expr← λx. True

conflicts←∞

while conflicts:
chains← { c .chain | c ∈ contexts,

expr(c .chain),
c .group < ignore }

opts← { (addr,
∑
c ∈ chains [addr ∈ c]) |

addr ∈ member }
opts← { (a,m) | (a,m) ∈ opts,∃ (b,n) ∈ opts, n =m =⇒

a is lower in the stack than b }
(site, m) ← argmin(a,m) ∈ opts(m)

Add the new constraint only if

it reduces conflicts

if m = conflicts:
break

expr← λx. (expr(x) ∧ (site ∈ x))

conflicts← m

selector← λx. (selector(x) ∨ expr(x))

selectors← selectors ∪ selector

return selectors

Figure 10. Pseudocode for our group-identification algo-
rithm.

sub-optimality that can result from considering the conjunc-
tive expressions for each group member independently, we
find its results to be more than sufficient for our prototype.

To capture and act upon the control-flow behaviour around
these call sites, we then rewrite the target binary using the
BOLT post-link optimisation framework [27]. Constructing
a custom pass specifically for heap-layout optimisation, we
insert instructions around every point of interest in the tar-
get binary, setting and then unsetting a single bit in a shared
‘group state’ bit vector to indicate whether the flow of control
has passed through this point.

4.4 Allocation
Finally, having established several groups of related alloca-
tion contexts and a state vector through which these can
be identified, we generate a specialised allocator that can
act upon this information to co-locate data at runtime. The
high-level design of this allocator is depicted in Figure 11.

group_malloc(3, 0x04)

Chunk (Group 1) Chunk (Group 2) Chunk (Group 3) Chunk (Group 2)

Slab

Group, Size

Figure 11. A visual depiction of the allocation strategy em-
ployed in HALO’s specialised group allocator, which com-
bines the efficiency and contiguity guarantees of bump allo-
cation with a chunk-based reuse model.

After the allocator is loaded into memory, its first task is
to locate the address of the group state vector described in
the previous section. When an allocation request is made,
this state is used to determine whether or not the allocation
belongs to a group. To do this, the allocator compares the
size of the allocation with the maximum grouped object size,
and checks the contents of the group state vector against
the set of selectors obtained in group identification. If the
allocation does not belong to a group, and thus should not
be satisfied by our specialised allocator, it is forwarded to
the next available allocator through dlsym. If, however, the
allocation size is less than the page size and the group state
vector matches a group selector, the allocation is satisfied
using our group_malloc and group_free procedures.

Memory is reserved from the OS in large, demand-paged
slabs to amortise mmap costs, and ismanaged in smaller group-
specific chunks from which regions can be allocated. When-
ever a grouped allocation is made, the allocator first attempts
to reserve a region of the requested size and alignment from
the ‘current’ chunk associated with the group. This occurs
through straightforward bump allocation with no per-object
headers, and thus guarantees contiguity between the vast
majority of consecutive grouped allocations. If the chunk
has insufficient remaining space or if this is the first alloca-
tion from a given group, a new chunk is carved out from
the current slab and is assigned as the ‘current’ chunk for
the target group. In turn, if the current slab has insufficient
remaining space, a new slab is reserved from the OS and
assigned as the current slab. All allocations are made with a
minimum alignment of 8 bytes [20].
Whenever a region is freed or reallocated, the allocator

must determine whether this region was originally group
allocated, or whether the free request should be forwarded to
the default allocator. In the case that a region being freed was
group allocated, its reservation is released from its respective
chunk by way of the chunk’s header. As chunks are always
aligned to their size in memory, the header of any particular
chunk can be trivially located from a region pointer by way
of simple bitwise operations. In the case of a free operation,
the live_regions field of the header, which is incremented

CGO ’20, February 22–26, 2020, San Diego, CA, USA Joe Savage and Timothy M. Jones

after every allocation from a given chunk, is decremented.
If, after doing so, its value is zero, the chunk is empty, and
thus can be reused or freed.

As regions are always reserved from chunks using bump
allocation, encouraging contiguity over compaction, frag-
mentation behaviour in our allocator is dependent solely on
the chunk size and the degree to which consecutive grouped
allocations have similar lifetimes. In theworst case, if a chunk
is put into a state where it is empty aside from a single re-
gion, almost the entirety of the chunk will be kept unused as
external fragmentation. This could prove to be problematic
in some use cases. We do not believe, however, that this is a
fundamental limitation of this kind of approach. There are
many areas in which our prototype could be more sophisti-
cated, and fragmentation behaviour is just one of these. One
could equally imagine extending the model described here to
support multi-threaded allocations [14], to reduce allocator-
induced conflict misses [1], or to employ more sophisticated
dirty-page purging techniques [13].

5 Evaluation
Having described the design of a new tool to improve the
cache locality of heap data, we now set out to evaluate how
well this tool works. To this end, this section describes a
series of experiments to evaluate the practical performance
of HALO and compares the results to those from a replication
of a high-performing approach from the literature.

5.1 Experimental Setup and Methodology
Benchmarks Focusing particularly on the SPECrate CPU
2017 benchmark suite [33], we examined the behaviour of
a number of candidate programs to select a small subset
by which our prototype should be measured. From this
investigation, we produced a list of 11 programs around
which the performance of our solution is evaluated. The
first five, povray, omnetpp, xalanc, leela, and roms, are
the SPECrate CPU2017 benchmarks that made, on average,
more than one heap allocation per million instructions in
their train workloads. Due to lack of space, this excludes a
handful of benchmarks that were unaffected by either of the
optimisations we examine. Following this, the remaining six
workloads are programs that showed stand-out opportunities
for layout improvement in prior work [22, 36]. These include
health, ft, and analyzer from the Olden [29], Ptrdist [2],
and FreeBench [30] suites, as well as ammp, art, and equake
from the SPEC CPU2000 suite [32].
All workloads are compiled with the -g -O3 -fno-tree-

loop-vectorize -fno-unsafe-math-optimizations com-
piler flags.We also utilise the -no-pie -falign-functions=
512 flags in accordance with current limitations of our BOLT
pass, and omit the -march=native flag to avoid generating
code which BOLT cannot disassemble. Workloads that make

23 25 27 29 211 213 215 217

Affinity Distance (bytes)

265

270

275

280

285

290

295

300

305

Ti
m

e
El

ap
se

d
(s

)

Figure 12. Time taken by omnetpp at various affinity dis-
tances. The dashed line indicates the median execution time
of the original unmodified program under jemalloc.

use of custom allocators are compiled without modification,
and as such have many of their regularities obscured.
All workloads are compiled with gcc 7.3.0, rewritten us-

ing our custom variant of BOLT (based on e37d18e, with
all other optimisations disabled), and run in single-threaded
configurations on a 64-bit Xeon® W-2195 running Ubuntu
18.04.2 LTS with 32KiB per-core L1 data caches, 1,024KiB
per-core L2 caches, and a 25,344KiB shared L3 cache. Work-
loads are profiled on small test inputs and measured using
larger ref inputs, mirroring the methodology employed by
Chilimbi and Shaham [11] and preventing profiling runs
from consuming excessive compute resources.

HALO Configuration To configure HALO for evaluation,
we set the parameters empirically as described in Section 4.
Binaries are profiled with a maximum grouped-object size of
4KiB, undergo allocation context grouping with a merge tol-
erance of 5%, and have their grouped allocations reserved at
runtime from 1MiB chunks. With the exception of omnetpp
and xalanc, for which group chunks are always reused due
to a limitation of our current implementation, all benchmarks
have their specialised allocators configured to keep a single
spare chunk for reuse when purging dirty pages, as early
versions of jemalloc did [13]. In order to establish a reason-
able value for the affinity distance parameter, we examined
the performance of omnetpp at various power-of-two pa-
rameter values. The results of this experiment are shown in
Figure 12. In light of this, we select an affinity distance of 128
for use in our evaluation, as this appears to yield reasonable
performance gains at a relatively low profiling overhead.

Comparison Technique To establish how our solution
performs in comparison to other similar techniques, we
also examine the performance of each benchmark under
the hot-data-stream-based co-allocation technique described
by Chilimbi and Shaham [11]. To this end, we utilise the
same specialised allocator as HALO, but with groups that
are generated through hot-data-stream analysis and identi-
fied at runtime using the immediate call site of the allocation
procedure. In replicating this technique, we attempt to mir-
ror the approach described in the original paper as much

HALO: Post-Link Heap-Layout Optimisation CGO ’20, February 22–26, 2020, San Diego, CA, USA

as possible. As such, we configure our analysis to detect
minimal hot data streams that contain between 2 and 20
elements, with the stream threshold set to account for 90%
of all heap accesses. Hot data streams are extracted using a
modified SEQUITUR implementation [25], and are converted
into allocation groups using our own implementations of
the algorithms described in the original paper and its related
work [8, 16, 21]. This process has been validated against the
examples in the original paper, as well as a small test suite,
on which we find it performs as expected.

Measurement For each unique configuration of our bench-
marks, we run 11 trials, discarding the results of the first to
ensure that the system is in a steady state prior to measure-
ment. Measured characteristics include time taken, L1 data-
cache misses, and fragmentation behaviour. All reported
figures represent the median of the 10 recorded trials, with
error bars calculated using the 25th and 75th percentiles. We
do not present geometric or arithmetic averages across our
results, as we believe that these would provide little informa-
tional value in light of our rather eclectic mix of workloads.
Performance characteristics are measured for our proto-

type system, our hot-data-stream-based system, and a base-
line configuration using the unmodified binary. Unlike much
existing work in this area, all configurations use jemalloc
5.1.0 as the default allocator. Initial experiments show that
this universally outperforms ptmalloc2 from glibc 2.27, re-
ducing L1 data-cache misses by as much as 32%, and thus
provides a more aggressive baseline against which to mea-
sure the benefits of cache-conscious heap-data placement.

5.2 Results
Figures 13 and 14 show the high level results of our per-
formance evaluation, showing that HALO consistently out-
performs our comparison technique, especially for more
modern workloads. To explain these results in detail, we first
focus on the hot-data-stream-based approach described by
Chilimbi and Shaham [11].

Hot Data Streams Under this scheme, the six benchmarks
from prior work see a sizeable reduction to both cache misses
and execution time, while the five more recent benchmarks
see little improvement, or in some cases slight degradation.
As such, while some benchmarks yield performance improve-
ments in line with those reported in the original work, others
yield results that are at best somewhat disappointing.
The reason for this, it seems, largely comes down to the

fixed-sized contexts through which this solution charac-
terises heap allocations. In most cases, the six benchmarks
from the existing literature invoke malloc directly from
domain-specific code, and do so in relatively distinct loca-
tions with minimal surrounding abstractions. As such, they
represent relatively easy targets around which semantically
valuable allocation groups can be formed. In contrast, the

0%

5%

10%

15%

20%

L1
D

 C
ac

he
 M

is
s

Re
du

ct
io

n

health ft analyzer ammp art equake povray omnetpp xalanc leela

roms

Chilimbi et al. HALO

Figure 13. The percentage by which both HALO and hot-
data-stream-based co-allocation [11] reduce L1 data-cache
misses across a range of 11 programs.

0%

5%

10%

15%

20%

25%

30%

Sp
ee

du
p

health ft analyzer ammp art equake povray omnetpp xalanc leela roms

Chilimbi et al. HALO

Figure 14. The percentage by which both HALO and hot-
data-stream-based co-allocation [11] improve execution time
across a range of 11 programs.

benchmarks from the CPU2017 suite are typically more com-
plex. xalanc, for instance, displays significant indirection
its call chains, requiring the traversal of tens of stack frames
to properly appreciate the context in which allocations have
been made. povray, meanwhile, allocates a significant por-
tion of its heap data through wrapper functions, while leela
allocates memory exclusively through C++’s new operator.
These complexities impede the naïve identification mecha-
nisms employed by the hot-data-stream-based solution, pre-
venting it from achieving any meaningful improvement on
these benchmarks.

The exception to this rule is roms, which we find tends to
call malloc directly, and thus lends itself much better to char-
acterisation by this solution. In this benchmark, however, we
actually uncover a more significant problem. While HALO’s
affinity graph can represent over 90% of all salient accesses in
this program using only 31 nodes, the hot-data-stream-based
approach requires over 150,000 streams.

This suggests a significant downside in the methodology
described by Chilimbi and Shaham [11] in which even highly
regular programs may require many streams to represent
their behaviour. By capturing access patterns at an object
level granularity, this approach can inadvertently scatter reg-
ularities at the allocation context level across many hot data

CGO ’20, February 22–26, 2020, San Diego, CA, USA Joe Savage and Timothy M. Jones

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

Sp
ee
du
p

health

ft analyzer

ammp art

equake povray omnetpp xalanc

leela roms

Figure 15. The percentage by which an allocator that ran-
domly assigns small objects to one of four bump allocated
pools improves execution time across a range of 11 programs.

streams. If any patterns of this kind make up a large pro-
portion of a program’s access trace, the stream formation
threshold must be significantly reduced in order to capture
the many streams amongst which the pattern is distributed.
As a direct result, the hot data streams for other areas of
the program’s behaviour may be cut short, and their corre-
sponding co-allocation sets rendered near-useless. A similar
problem arises in programs with large, widely accessed ob-
jects, in which such objects cause almost any access pattern
in which they are present to exceed the stream formation
threshold, and thus to immediately terminate. This behaviour
may explain why the hot-data-stream-based solution actu-
ally increases L1 data-cache misses for roms in Figure 13. The
truncated co-allocation sets that it produces as a result of a
deflated stream threshold may separate data that would oth-
erwise naturally be co-located by a size-segregated allocator.

HALO HALO, in contrast, utilises a more robust represen-
tation of reference locality and more sophisticated strategies
to cut through deep abstractions. As such, it performs well
not only on the six programs from the existing literature,
but also on the large, complex programs from the CPU2017
suite — producing a roughly 4% speedup in omnetpp and
16% speedup in xalanc. This all despite the fact that some
benchmarks, like xalanc, already utilise custom allocators,
and as such prevent HALO from exploiting many of their
regularities. Even for the benchmarks on which the hot-data-
stream-based approach performs best, we find that HALO
can achieve better results. In health, for example, extracting
an additional seven percentage points of improvement in
execution time, bringing total speedup to around 28%. This
additional improvement is a product of HALO’s full-context
identificationmechanism, which can extract better allocation
groups from more specific context information.
In other cases still, HALO is able to achieve a sizeable

reduction in L1 data-cache misses even when these do not
result in significant reductions to execution time. povray
and leela, for example, display roughly 5–15% fewer misses
under HALO, compared with only around 2% using hot data
streams, even though their overall execution times remain

Table 1. Fragmentation behaviour of grouped objects at peak
memory usage across nine benchmarks.

Benchmark Frag. (%) Frag. (bytes)
health 0.01% 31.98KiB
equake 0.05% 12.08KiB
analyzer 0.13% 4.31KiB
ammp 0.20% 40.97KiB
art 0.62% 11.70KiB
ft 2.06% 4.05KiB
povray 26.47% 37.06KiB
roms 93.60% 29.95KiB
leela 99.99% 2.05MiB

largely unchanged by the optimisation. While we have not
examined the source of this behaviour in detail, we suspect
that these benchmarksmay be primarily compute rather than
memory bound. In more realistic environments with greater
external cache pressure, or on less sophisticated machines,
the observed speedups may be significantly larger.
For other benchmarks, meanwhile, such as roms, and for

almost all of the SPEC CPU2017 benchmarks we examined
outside of those shown in Figure 13, we find that HALO has
essentially no effect. Critically, however, its optimisations do
not degrade performance in these cases, but rather simply
fail at improving it. In examining the performance of a con-
figuration in which each BOLT-instrumented binary is run
without its specialised allocator, we find that noise from the
surrounding system is far greater than the effects of HALO’s
instrumentation. Instrumentation overhead, then, appears
not to be responsible for the failure to improve performance.
Instead, it seems HALO performs poorly in these cases

simply because these programs are not terribly sensitive
to the placement of small heap objects. To illustrate this,
Figure 15 shows the results of running each benchmark under
an allocator that randomly allocates objects smaller than the
page size from four ‘groups’, much in the same way that a
variant of HALOwith an extremely poor grouping algorithm
might. The benchmarks with the largest change in behaviour
in response to this rather extreme allocation policy align
well with the benchmarks for which our technique proves
most effective. The benchmarks unfazed by it, meanwhile,
are generally those for which the placement of small heap
objects appears not to be terribly important, and thus for
which our layout decisions are of little consequence.

Fragmentation Behaviour Table 1 shows the relation-
ship between live and resident data at peak memory usage in
our specialised allocator, listed for each of the benchmarks
where it could be easily examined. While the percentage of
unused resident memory in our allocator can far exceed what
is typically considered reasonable — averaging at above 30%
— the absolute number of bytes wasted in each case is actu-
ally relatively small. As grouped data objects typically make
up a small fraction of all allocations, overall fragmentation

HALO: Post-Link Heap-Layout Optimisation CGO ’20, February 22–26, 2020, San Diego, CA, USA

behaviour in each case should see only a marginal decline.
Nonetheless, behaviour in this area is not ideal, and this
potential shortcoming provides fruitful ground for future
work.

6 Conclusion
General-purpose memory allocators provide a convenient,
one-size-fits-all solution to the problem of dynamic memory
management. However, without intimate knowledge of how
values are used in a program, they can rely only on simple
heuristics to place data, and may inadvertently scatter highly
related data throughout the heap, generating unnecessary
cache misses and load stalls. To help alleviate these issues,
we developed HALO: a post-link profile-guided optimisation
tool and runtime memory allocator that can intelligently
rearrange heap data to reduce cache misses. Unlike other
solutions of its kind, HALO employs novel grouping and
identification algorithms which allow it to create tight-knit
allocation groups using the entire call stack, and to identify
these groups at runtime with extremely low overhead.

Evaluation of HALO on contemporary out-of-order hard-
ware demonstrates speedups of up to 28% over jemalloc,
out-performing a state-of-the-art placement technique from
the literature. In many cases HALO’s layout optimisations
combat inefficiencies that would be difficult to find manually,
such as those shrouded in abstraction, that arise from the
interactions between components that the programmer may
not directly control, or that occur due to common charac-
teristics of typical inputs. Future work could explore how
additional program state could contribute to allocation char-
acterisation decisions, how the grouping and allocation al-
gorithms could be improved to more accurately model and
exploit the expected cache behaviour of generated groups, or
how techniques such as free list sharding [23] and meshing
[28] could be used in place of bump allocation to improve
practical fragmentation behaviour.

Acknowledgments
This work was supported by the Engineering and Physi-
cal Sciences Research Council (EPSRC), through grant ref-
erences EP/K026399/1 and EP/P020011/1. Additional data
related to this publication is available in the data repository
at https://doi.org/10.17863/CAM.46071.

References
[1] YehudaAfek, DaveDice, andAdamMorrison. 2011. Cache Index-aware

Memory Allocation. In Proceedings of the International Symposium on
Memory Management (ISMM ’11). ACM, New York, NY, USA, 55–64.

[2] Todd Austin. 1995. The Pointer-intensive Benchmark Suite. http:
//pages.cs.wisc.edu/~austin/ptr-dist.html

[3] David A. Barrett and BenjaminG. Zorn. 1993. Using Lifetime Predictors
to Improve Memory Allocation Performance. In Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design and
Implementation (PLDI ’93). ACM, New York, NY, USA, 187–196.

[4] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2001.
Composing High-performance Memory Allocators. In Proceedings of
the ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation (PLDI ’01). ACM, New York, NY, USA, 114–124.

[5] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2002.
Reconsidering Custom Memory Allocation. In Proceedings of the 17th
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’02). ACM, New York, NY, USA,
1–12.

[6] Brad Calder, Dirk Grunwald, and Benjamin Zorn. 1994. Quantify-
ing behavioral differences between C and C++ programs. Journal of
Programming Languages 2, 4 (1994), 313–351.

[7] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998.
Cache-conscious Data Placement. In Proceedings of the Eighth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VIII). ACM, New York, NY, USA, 139–
149.

[8] Trishul M. Chilimbi. 2001. Efficient Representations and Abstractions
for Quantifying and Exploiting Data Reference Locality. In Proceedings
of the ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation (PLDI ’01). ACM, New York, NY, USA, 191–202.

[9] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. 1999. Cache-
conscious Structure Definition. In Proceedings of the ACM SIGPLAN
1999 Conference on Programming Language Design and Implementation
(PLDI ’99). ACM, New York, NY, USA, 13–24.

[10] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. 1999. Cache-
conscious Structure Layout. In Proceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementation
(PLDI ’99). ACM, New York, NY, USA, 1–12.

[11] Trishul M. Chilimbi and Ran Shaham. 2006. Cache-conscious Coalloca-
tion of Hot Data Streams. In Proceedings of the 27th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’06). ACM, New York, NY, USA, 252–262.

[12] Jason Evans. 2006. A scalable concurrent malloc(3) implementation
for FreeBSD. In Proceedings of BSDCan 2006.

[13] Jason Evans. 2015. Tick Tock, Malloc Needs a Clock. In Applicative
2015 (Applicative 2015). ACM, New York, NY, USA.

[14] Sanjay Ghemawat. 2007. TCMalloc: Thread-Caching Malloc. https:
//gperftools.github.io/gperftools/tcmalloc.html

[15] Jason Gregory. 2009. Game Engine Architecture. A K Peters.
[16] Magnús M. Halldórsson. 1999. Approximations of Weighted Indepen-

dent Set and Hereditary Subset Problems. In Computing and Combina-
torics, Takano Asano, Hideki Imai, D. T. Lee, Shin-ichi Nakano, and
Takeshi Tokuyama (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 261–270.

[17] Erez Hartuv and Ron Shamir. 2000. A clustering algorithm based on
graph connectivity. Inform. Process. Lett. 76, 4 (2000), 175–181.

[18] Alin Jula and Lawrence Rauchwerger. 2009. Two Memory Allocators
That Use Hints to Improve Locality. In Proceedings of the 2009 Inter-
national Symposium on Memory Management (ISMM ’09). ACM, New
York, NY, USA, 109–118.

[19] Thomas Kistler and Michael Franz. 2000. Automated Data-member
Layout of Heap Objects to Improve Memory-hierarchy Performance.
ACM Trans. Program. Lang. Syst. 22, 3 (May 2000), 490–505.

[20] Bradley C. Kuszmaul. 2015. SuperMalloc: A Super Fast Multithreaded
Malloc for 64-bit Machines. In Proceedings of the 2015 International
Symposium on Memory Management (ISMM ’15). ACM, New York, NY,
USA, 41–55.

[21] James R. Larus. 1999. Whole Program Paths. In Proceedings of the
ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation (PLDI ’99). ACM, New York, NY, USA, 259–269.

[22] Chris Lattner and Vikram Adve. 2005. Automatic Pool Allocation:
Improving Performance by Controlling Data Structure Layout in the

https://doi.org/10.17863/CAM.46071
http://pages.cs.wisc.edu/~austin/ptr-dist.html
http://pages.cs.wisc.edu/~austin/ptr-dist.html
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html

CGO ’20, February 22–26, 2020, San Diego, CA, USA Joe Savage and Timothy M. Jones

Heap. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 129–142.

[23] Daan Leijen, Ben Zorn, and Leonardo de Moura. 2019. Mimalloc:
Free List Sharding in Action. Technical Report MSR-TR-2019-18.
Microsoft. https://www.microsoft.com/en-us/research/publication/
mimalloc-free-list-sharding-in-action/

[24] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: Building Customized ProgramAnalysis Tools withDy-
namic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’05). ACM, New York, NY, USA, 190–200.

[25] C. G. Nevill-Manning and I. H. Witten. 1997. Linear-time, incremental
hierarchy inference for compression. In Proceedings of the 1997 Data
Compression Conference (DDC ’97). 3–11.

[26] M. E. J. Newman and M. Girvan. 2004. Finding and evaluating commu-
nity structure in networks. Phys. Rev. E 69 (Feb 2004), 026113. Issue
2.

[27] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019.
BOLT: A Practical Binary Optimizer for Data Centers and Beyond. In
Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2019). IEEE Press, Piscataway, NJ,
USA, 2–14.

[28] Bobby Powers, David Tench, Emery D. Berger, and Andrew Mc-
Gregor. 2019. Mesh: Compacting Memory Management for C/C++
Applications. CoRR abs/1902.04738 (2019). arXiv:1902.04738 http:
//arxiv.org/abs/1902.04738

[29] Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren.
1995. Supporting Dynamic Data Structures on Distributed-memory
Machines. ACM Trans. Program. Lang. Syst. 17, 2 (March 1995), 233–
263.

[30] Peter Rundberg and Fredrik Warg. 1995. The FreeBench v1.03 Bench-
mark Suite. https://web.archive.org/web/20020601092519/http://www.
freebench.org/

[31] Matthew L. Seidl and Benjamin G. Zorn. 1998. Segregating Heap Ob-
jects by Reference Behavior and Lifetime. In Proceedings of the Eighth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VIII). ACM, New York, NY,
USA, 12–23.

[32] Standard Performance Evaluation Corporation. 2000. SPEC CPU2000.
https://www.spec.org/cpu2000

[33] Standard Performance Evaluation Corporation. 2017. SPEC CPU2017.
https://www.spec.org/cpu2017

[34] D. N. Truong, F. Bodin, and A. Seznec. 1998. Improving cache be-
havior of dynamically allocated data structures. In Proceedings of the
1998 International Conference on Parallel Architectures and Compilation
Techniques. 322–329.

[35] Zhenjiang Wang, Chenggang Wu, and Pen-Chung Yew. 2010. On
Improving Heap Memory Layout by Dynamic Pool Allocation. In
Proceedings of the 8th Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO ’10). ACM, New York, NY,
USA, 92–100.

[36] Qin Zhao, Rodric Rabbah, and Weng-Fai Wong. 2005. Dynamic Mem-
ory Optimization Using Pool Allocation and Prefetching. SIGARCH
Comput. Archit. News 33, 5 (Dec. 2005), 27–32.

https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
http://arxiv.org/abs/1902.04738
http://arxiv.org/abs/1902.04738
http://arxiv.org/abs/1902.04738
https://web.archive.org/web/20020601092519/http://www.freebench.org/
https://web.archive.org/web/20020601092519/http://www.freebench.org/
https://www.spec.org/cpu2000
https://www.spec.org/cpu2017

HALO: Post-Link Heap-Layout Optimisation CGO ’20, February 22–26, 2020, San Diego, CA, USA

A Artefact Appendix
A.1 Abstract
The artefact submitted in association with this report is com-
posed primarily of three elements: the source code for the
HALO optimisation pipeline, a small test program on which
its functionality can be validated, and scripts to assist in ap-
plying our optimisations and extracting performance results.
With these, we allow for the reproduction of the primary
performance results presented in Figures 13 and 14, as well
the execution of custom experiments, including those that
build on or modify our technique.

A.2 Artefact check-list (meta-information)
• Algorithm: HALO profile-guided heap-layout optimisation.
• Program: Benchmarks from SPEC 2000, SPEC 2017, Olden,
Ptrdist, and FreeBench (not provided).
• Transformations: BOLT binary rewriting.
• Run-time environment: The only supported environment
is x86-64 Linux. Dependencies include perf, patchelf, and
Python 2.7.
• Hardware: Reported results were obtained using an Intel
Xeon® W-2195 with 32KiB per-core L1 data caches, 1024KiB
per-core unified L2 caches, and a 25344KiB shared L3 cache.
Similar systems should yield comparable results.
• Output: Provided scripts can generate speedup and L1 data
cache miss reduction graphs against a jemalloc baseline,
corresponding to the light blue bars in Figures 13 and 14.
• Experiments: Python scripts are provided to automate the
process of applying the entire optimisation pipeline, taking
performance measurements, and plotting results. Some vari-
ation from the reported results is expected according to the
cache parameters of the system.
• Disk space: 10GB should be more than sufficient.
• Expected preparation time: Around an hour, excluding
any time required to prepare benchmarks and their inputs.
• Expected run time: To obtain all results, around a day. Pro-
filing should take less than 20 minutes per benchmark. Most
time is consumed by repeated reference runs for performance
measurement.
• Publicly available: Yes.
• License: BSD 3-clause.

A.3 Description
A.3.1 How delivered
The artefact can be downloaded as a tarball from the following URL:
https://doi.org/10.17863/CAM.46071

A.3.2 Hardware dependencies
We recommend testing on an x86-64 platform with similar cache
parameters to the Intel Xeon® W-2195. Due to a quirk of the cur-
rent implementation, running programs must be able to map at
least 16GiB of virtual memory, overcommited or otherwise. As all
evaluated benchmarks are single-threaded, a large number of cores
is not necessary.

A.3.3 Software dependencies
Reported results were obtained on Ubuntu 18.04 with glibc 2.27,
but any x86-64 Linux system should suffice. We recommend run-
ning on a platform of this type, having installed cmake, ninja,
perf, patchelf, and Python 2.7, in addition to the numpy, pandas,
networkx, and matplotlib Python packages.

A.4 Installation
As the HALO pipeline involves a number of components developed
across separate codebases, including LLVM, BOLT, and Pin, its
setup is not completely trivial. To avoid distributing an opaque
binary blob to carry out our optimisations, which may not execute
the procedure as claimed, we allow the transparent patching and
setup of each component to be carried out manually. To make this
process as straightforward as possible, a README.md file in the root
directory of our artefact lists a full set of suggested commands to
set up a working HALO environment.

A.5 Experiment workflow
Unlike the version of the artefact presented to the evaluation com-
mittee, this publicly-available version does not include binaries or
command lines to aid in replicating the exact set of performance
results presented in the paper, primarily due to licensing issues.
As a result, users are expected to run their own experiments from
scratch, following the instructions provided in README.md. This
describes the usage of the halo baseline, halo run, and halo
plot commands, which can be used to carry out the baseline and
HALO-optimised runs for each workload and to plot results.

A.6 Evaluation and expected result
Using the procedure described above, JSON files should be gener-
ated in the output directory containing the specific data points for
each run, and graphs of these generated in PDF format. These can
be compared with the corresponding figures in the paper to evalu-
ate the reproducibility of our results. Depending on the parameters
of the memory subsystem used for evaluation, improvements of
comparable magnitude to those reported should be observed.

A.7 Experiment customisation
In addition to the experiment workflows described in Section 5,
different programs and parameters can be tested by varying the flags
passed to each halo command. For more details, see README.md
and the full parameter list in the halo source file.

A.8 Notes
In order to accommodate quirks in our current implementation,
some benchmarks require additional flags to be passed to halo run
in order to be processed without encountering errors. These in-
clude --chunk-size 131072 --max-spare-chunks 0 for omnetpp,
--max-spare-chunks 0 for xalanc, and --max-groups 4 for roms.

A.9 Methodology
Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-
review-badging

https://doi.org/10.17863/CAM.46071
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Memory Allocation
	2.2 Related Work
	2.3 Summary

	3 Motivation
	4 Design and Implementation
	4.1 Profiling
	4.2 Grouping
	4.3 Identification
	4.4 Allocation

	5 Evaluation
	5.1 Experimental Setup and Methodology
	5.2 Results

	6 Conclusion
	Acknowledgments
	References
	A Artefact Appendix
	A.1 Abstract
	A.2 Artefact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customisation
	A.8 Notes
	A.9 Methodology

