Summary of the Research data supporting:

Retrieving the co-assembly pathway of composite cellulose nanocrystal photonic films from their angular optical response

Bruno Frka-Petesic,* Joel A. Kelly, Gianni Jacucci, Giulia Guidetti, Gen Kamita, Nathan P. Crossette, Wadood Y. Hamad, Mark J. MacLachlan and Silvia Vignolini*

Article published in *Advanced Materials*, DOI: 10.1002/adma.201906889 Research data accessible here: DOI: 10.17863/CAM.48013

Note: While some files are specific to MATLAB® (.fig, .mat) or MS Excel® (.xls, .xlsx), we made available exported dataset in tab delimited text files (.txt) for all of them.

Figure 1.

```
Figure 1a
      Figure_1a_0-100: Images LCP and RCP (.png)
                    JK266-1-20xepiapo-pos4-lcp.png
                    JK266-1-20xepiapo-pos4-rcp.png
      Figure 1a 49-51: Images LCP and RCP (.png)
                    JK266-2C-20xepiapo-pos4-lcp.png
                    JK266-2C-20xepiapo-pos4-rcp.png
      Figure_1a_60-40: Images LCP and RCP (.png)
                    JK266-4C-20xepiapo-pos4-lcp.png
                    JK266-4C-20xepiapo-pos4-rcp.png
      Figure_1a_71-29: Images LCP and RCP (.png)
                    JK266-5C-20xepiapo-pos3-lcp.png
                    JK266-5C-20xepiapo-pos3-rcp.png
      Figure 1a 76 24: Images LCP and RCP (.png)
                    JK266-6C-20xepiapo-pos2-lcp.png
                    JK266-6C-20xepiapo-pos2-rcp.png
      Scalebar (.png)
                    scalebar-ECEPIAPOCRHOMAT20x smallgap=10µm.png
Figure_1b_spectra: raw and smoothed curve datapoints (.txt)
        Sample 1:
                    Figure_1b_spectrum1.txt
        Sample 2:
                    Figure 1b spectrum2.txt
        Sample 3:
                    Figure 1b spectrum3.txt
        Sample 4:
                    Figure 1b spectrum4.txt
```

Figure 2.

Figure 2a

Sample 5:

Figures images for all the 5 samples in Matlab (.fig)

Figure_1b_spectrum5.txt

Sample 1: Fig2_log_fit.fig
Sample 2: Fig3_log_fit.fig
Sample 3: Fig5_log_fit.fig
Sample 4: Fig6_log_fit.fig
Sample 5: Fig7_log_fit.fig

All samples: spectra smoothed.txt

Dataset for all samples, including the 5 discussed in the article in Matlab *structure* format (.mat)

scan.mat

READ_ME file explaining which of the spectra correspond to the 5 samples of the article (.txt)

scan.mat_in_txt_format:

Exported dataset in a matrix form for the 5 samples (.txt)

Sample 1: smat_2.txt Sample 2: smat_3.txt Sample 3: smat_5.txt Sample 4: smat_6.txt Sample 5: smat 7.txt

Wavelength as axis values (.txt)

Sample 1: wavelength_2.txt
Sample 2: wavelength_3.txt
Sample 3: wavelength_5.txt
Sample 4: wavelength_6.txt
Sample 5: wavelength_7.txt

Angle theta_out as axis values (.txt)

Sample 1: theta-out_2.txt Sample 2: theta-out_3.txt Sample 3: theta-out_5.txt Sample 4: theta-out_6.txt Sample 5: theta-out_7.txt

Figure 2c

Figure image in Matlab (.fig)

fig_out2.fig

Data for all 5 samples (c1 to c5) exported with columns defined as:

 $(c1_{\lambda}, c1_{\theta_{out}}, c2_{\lambda}, c2_{\theta_{out}}, c3_{\lambda}, c3_{\theta_{out}}, c4_{\lambda}, c4_{\theta_{out}}, c5_{\lambda}, c5_{\theta_{out}}),$

goni data: Fig2c_data_xy(x5).txt goni fit: Fig2c_fit_xy(x5).txt

Figure S1.

Uncropped SEM image:

 $JL2664C_ii30.tif$

Figure S2.

Excel sheet joined for Figures S2-3 (.xls, .xlsx):

Figure_S3_fit_tilt_vs_pitch.xls Figure_S3_fit_tilt_vs_pitch.xlsx

Same data in (tab delimited text):

Figure_S2a_region1.txt Figure_S2b_region2.txt Figure_S2c_region3.txt Figure_S2d_region4.txt Figure_S2e_region5.txt Figure_S2f_region6.txt

Figure S3.

Excel sheet joined for Figures S2-3: (see above in **Figure S2**) Data points (.txt):

data: Figure_S3_data_tilt_vs_pitch.txt fit: Figure_S3_fit_tilt_vs_pitch.txt