Superconducting Zirconium Polyhydrides at Moderate Pressures

Hui Xie^{1,#}, Wenting Zhang^{1,#}, Defang Duan^{1,2,*}, Xiaoli Huang^{1,*}, Yanping Huang¹, Hao Song¹, Xiaolei Feng^{3,4}, Yansun Yao⁵, Chris J. Pickard^{2,6}, Tian Cui^{1,*}

¹State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

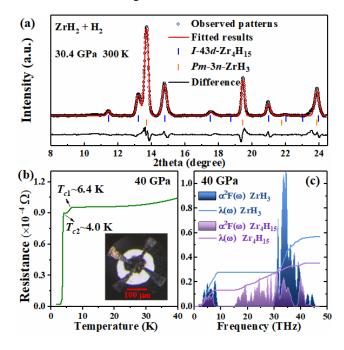
²Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

³Center for High Pressure Science and Technology Advanced Research (HPSTAR) 10 Xibeiwang East Road, Beijing, 100094, China

⁴Department of Earth Science, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom

⁵Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada

⁶Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan


^{*}Corresponding authors: duandf@jlu.edu.cn, huangxiaoli@jlu.edu.cn, cuitian@jlu.edu.cn

^{*}These authors contributed equally.

ABSTRACT


Highly compressed hydrides have been at the forefront of the search for high- T_c superconductivity. Especially, recent discovery of record-high T_c 's in H₃S and LaH_{10±x} under high pressure fuels the enthusiasm finding good superconductors in similar hydride groups. Guided by first principles structure prediction, we successfully synthesized ZrH₃ and Zr₄H₁₅ at modest pressures (30-50 GPa) in diamond anvil cells by two different reaction routes: ZrH₂ + H₂ at room temperature and Zr + H₂ at ~ 1500 K by laser heating. From the synchrotron X-ray diffraction patterns, ZrH₃ is found to have a $Pm\bar{3}n$ structure corresponding to the familiar A15 structure, and Zr₄H₁₅ has a $I\bar{4}$ 3d structure isostructural to Th₄H₁₅. Electrical resistance measurement and the dependence of T_c on applied magnetic field of the sample showed the emergence of two superconducting transitions at 6.4 and 4.0 K at 40 GPa, which correspond to the two T_c 's for ZrH₃ and Zr₄H₁₅.

Table of Contents Graphic:

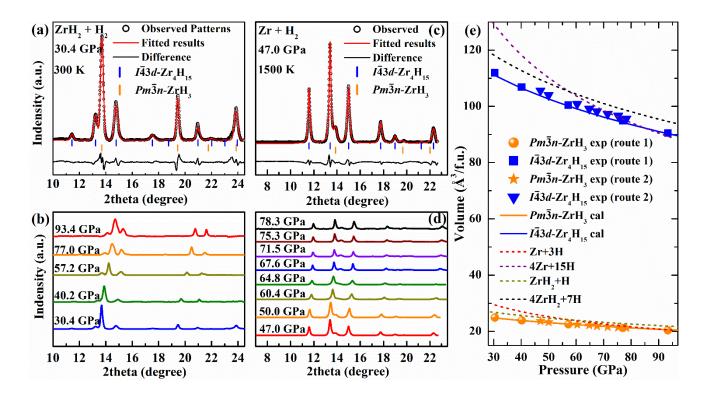
Theoretical studies suggest that highly compressed hydrogen-rich materials hold the promise as high-temperature (T_c) superconductors¹⁻³. Recent discovery of superconductivity above 203 K and 250-260 K in compressed H_3S^{4-5} and $LaH_{10\pm x}^{6-7}$ mark a milestone in superconductivity research. This discovery is groundbreaking, not only for the highest T_c 's ever observed in all materials since the discovery of superconductivity, but also for the first time that previously unknown high- T_c superconductors are predicted by theory⁸⁻¹⁰ and afterwards verified by experiment. Even before H₃S and LaH_{10±x}, theoretical prediction has had notable success in searching for superconducting polyhydrides. SiH₄ and AlH₃ were first considered due to their high contents of hydrogen among naturally-existing hydrides¹¹⁻¹⁴. Experiments observed that compressed SiH₄ is superconducting with maximum T_c of 17.5 K at 96 GPa¹³. The experimental study confirmed the predicted structure of AlH₃ but could not detect the superconductivity down to 4 K¹⁴. It was then understood that the superconductivity in AlH₃ is suppressed by strong anharmonicity¹⁵. In recent years, the search for high- T_c hydrides has expanded substantially, from Group-IV to other main group hydrides $^{16-17}$, and to transition metal hydrides. Many new polyhydrides have been predicted theoretically¹⁸⁻²¹, and some have already made their real-world appearance, including bulk RhH₂²², CoH₂²³, FeH₅²⁴, nanocrystals RhH²⁵, etc.

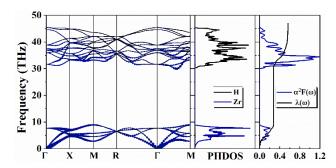
Zirconium hydrides have been studied primarily for applications in hydrogen storage and nuclear technology, but not so much as potential superconductors. For example, zirconium and its alloys are widely used as protective casings for nuclear reactor cores²⁶. In this case, zirconium alloy operates at high temperature and forms hydride upon combination with hydrogen produced by nuclear reactions. However, we expect to find good superconducting materials in Zr-H hydrides due to the rich structure diversity in this group. The stunning success in LaH_{10±x} also fuels the enthusiasm finding high T_c in similar hydride groups. Experimentally, stable ZrH and ZrH₂, and metastable δ -ZrH_{1.5} have been successfully synthesized at ambient pressure, while ZrH₂ is the limit for hydrogen storage²⁷⁻²⁸. New stoichiometric ZrH_n (n > 2) hydrides with higher hydrogen concentration have been explored theoretically. First-principles studies up to 400 GPa suggest ZrH₃ to be stable at ambient pressure, and ZrH₄ and ZrH₆ to be stable above 100 GPa²⁹⁻³⁰. These hydrides are calculated to be superconducting under high pressure³⁰, which encourages the experimental realization.

Figure 1. (a) Calculated formation enthalpies of zirconium hydrides with respect to decomposition into Zr and H₂ under pressure, including zero-point energies. Open symbols represent unstable configurations with respect to mixing lines on the convex hull, while solid symbols on the convex hull represent stable configurations. (b) Crystal structure of $Pm\bar{3}n$ -ZrH₃. (c) Conventional unit cell of $I\bar{4}3d$ -Zr₄H₁₅.

Before conducting the experiment, we performed variable-composition searches for stable Zr-H compounds at 1 atm, 50 and 100 GPa using the CALYPSO³¹ and AIRSS codes³². We compared our findings with previous calculations²⁹ and found a new stable compound Zr₄H₁₅ [see Figure S1]. The formation enthalpies (ΔH) of predicted Zr-H hydrides with zero-point energy (ZPE) were calculated with respect to the two sets of starting materials, Zr + H₂ [Figure 1(a)] and ZrH₂ + H₂ [Figure S2] at different pressures, from which global stability tie lines (convex hull) are constructed. Calculated ΔH shows that at ambient pressure ZrH (*P*4₂/*mmc*) and ZrH₂ (*I*4/*mmm*) are the only two stable stoichiometries, in agreement with experimental results²⁷⁻²⁸. At 50 GPa, *Pm*3̄*n*-ZrH₃ and *I*4̄3*d*-Zr₄H₁₅ enter the convex hull, indicating that they are likely synthesizable at this pressure. Meanwhile, the stable structure of ZrH changes to *I*4/*mmm*. At 100 GPa, the available stoichiometries stay the same, but ZrH₃ becomes the most stable stoichiometry. In this pressure range, all hydrides with the H/Zr ratio higher than 15:4 are metastable. All obtained stable structures were examined by phonon calculations, which show no imaginary modes and therefore establish their dynamic stability [see Figure S3]. ZrH₃

has A15 structure with $Pm \, \bar{3} \, n$ symmetry [Figure 1(b)], in agreement with previous theoretical predictions²⁹⁻³⁰. Zr₄H₁₅ has a cubic structure with $I\bar{4}3d$ symmetry [Figure 1(c)], which is isostructural to Th₄H₁₅³³. In this structure, Zr atoms occupy the 16c sites, while H atoms occupy 48e (H1 in blue) and 12a (H2 in gray) sites. As shown in Figure 1(c), each Zr atom is bonded to 12 H atoms, among which 3 are at 12a and 9 are at 48e. The H atoms at 48e and 12a are bonded to 3 and 4 Zr atoms, respectively. To our best knowledge, this is the first time such structure being found in Group IVB hydrides.




Figure 2. (a) Le Bail refinement plot of powder XRD data ($\lambda = 0.6199$ Å) obtained in ZrH₂+H₂ reaction route at 30.4 GPa. Open circles: experimental data; red curve: model fit for the structures; blue and orange ticks: Bragg diffraction positions for $I\overline{4}3d$ -Zr₄H₁₅ and $Pm\overline{3}n$ -ZrH₃; black curve: residues. The reliability factors are $R_p = 9.05\%$, $R_{wp} = 18.38\%$. (b) Evolution of the XRD pattern of (a) with increasing pressure. (c) Refinement of the experimental XRD patterns obtained in Zr +H₂ reaction route at 47.0 GPa. Reliability parameters are as $R_p = 7.44\%$, $R_{wp} = 12.68\%$. (d) Evolution of the XRD pattern of (c) with increasing pressure. (e) Experimentally obtained volume per formula unit for ZrH₃ and Zr₄H₁₅ in comparison to theoretical calculations as a function of pressure. Volumes for ideal mixtures of ZrH₂ + H, 4ZrH₂ + 7H, Zr + 3H and 4Zr + 15H are also plotted.

With the predicted structures at hand, we performed the synthesis *via* two reaction routes. The first

was to react ZrH₂ with H₂ at room temperature in the DAC. After the target sample was loaded into DAC, the sealed pressure was maintained at around 30.4 GPa. Figure 2(a) shows the XRD pattern collected at 30.4 GPa, in which all Bragg peaks can be indexed to either Pm3n-ZrH₃ or I43d -Zr₄H₁₅ structure. The occurrence of a physical mixture of ZrH₃ and Zr₄H₁₅ at this pressure is consistent to the energetic analysis [Figure 1(a)]. A Le Bail refinement of the diffraction pattern recorded at 30.4 GPa yielded the lattice parameters for the two cubic unit cells, e.g., a = 3.676 Å for ZrH₃ and a = 7.636 Åfor Zr₄H₁₅. During pressurization to 93.4 GPa [Figure 2 (b)], the diffraction peaks shift toward higher angles due to the reduction of lattice spacing but the overall pattern remains largely unchanged, indicating no other phases presenting in this pressure range. The second approach was to react Zr directly with H₂ in a laser-heated DAC. Initially, Zr and H₂ samples were loaded into the sample chamber of the DAC at lab conditions. The sample was then compressed to 47.0 GPa and laser-heated to 1500 K, from which in situ synchrotron XRD pattern was measured. As shown in Figure 2(c), the refined results show that all the observed peaks can be well indexed to Pm-3n-ZrH₃ and I-43d-Zr₄H₁₅ structures. Thus, the reaction products are the same as in the first reaction pathway, but the ratio of the two components seems different, as seen from the relative changes in the peak intensities. Upon further compression up to 78.3 GPa, no further transformation to any other phases was observed [Figure 2(d)].

Experimentally obtained volumes per formula unit (f. u.) for ZrH₃ and Zr₄H₁₅, in comparison to the calculated values as functions of pressure, are plotted in Figure 2(e). Clearly, experimental equation of state (EOS) for both ZrH₃ and Zr₄H₁₅ are in very good agreement with theory. To ascertain the identified high-pressure phases, we compare the EOS's of the two compounds to the volumes of physical mixtures representative of decomposition products at the same pressure³⁴⁻³⁵. As seen in Figure 2(e), all physical mixtures have large volumes than the ZrH₃ and Zr₄H₁₅ compounds in the pressure range of interest, suggesting that the formation of these two compounds are thermodynamically allowed. The P-V data fitted with a third-order Birch–Murnaghan (BM) equation of state³⁶ give V_0 = 31.0 (5) Å³, B_0 = 97 (7) GPa, B_0 ' = 4 (fixed) for ZrH₃ and V_0 = 140 (3) Å³, B_0 = 92 (9) GPa, B_0 ' = 4 (fixed) for Zr₄H₁₅. The synthesis of ZrH₃ and Zr₄H₁₅ represents the debut of the first Group IVB hydrides with the hydrogen-to-metal ratio greater than 2^{27, 37-39}. Zirconium is in the same group in the periodic table as rhodium, but has a smaller mass than the latter. As a result, ZrH₃ and Zr₄H₁₅ have higher gravimetric hydrogen contents of 3.2 wt.% and 4.0 wt. %, respectively, as compared to 1.9 wt.% for RhH₂²². Extrapolation from the fitted unit cell volumes for ZrH₃ and Zr₄H₁₅ at ambient pressure

gives two high volumetric hydrogen densities of 166.6 and 180.8 g/L, larger than that of RhH₂ (163.7 g/L). Therefore, ZrH₃ and Zr₄H₁₅ may have the potential for hydrogen storage applications if they are recoverable to ambient conditions.

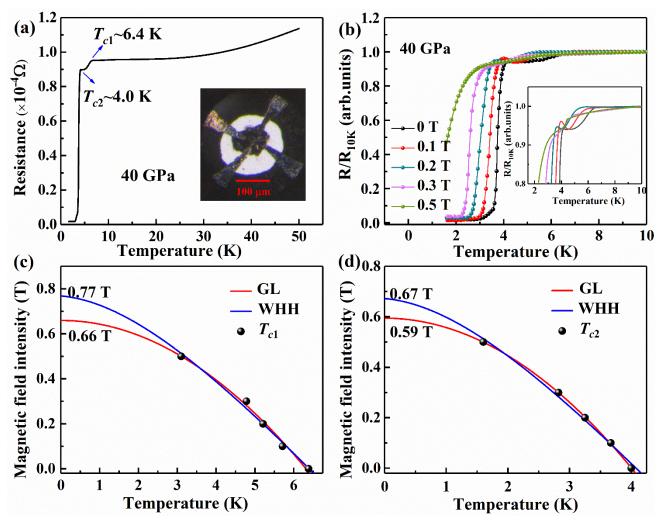


Figure 3. Phonon band structure, density of states, Eliashberg spectral function $\alpha^2 F(\omega)$ and the EPC integral $\lambda(\omega)$ of ZrH₃ at 40 GPa. Size of the circle on the phonon band structure correspond to the contribution to the EPC.

Calculated band structures and projected density of states (PDOS) of ZrH₃ and Zr₄H₁₅ at 40 GPa (Figure S6) show that both compounds are metallic with significant contributions of the Zr-d states to the DOS at the Fermi level. To investigate the phonon-mediated superconductivity, the EPC strength λ and logarithmic average frequency ω_{log} are calculated. The T_c is then estimated using the Allen-Dynes modified McMillan equation⁴⁰ with a Coulomb pseudopotential μ^* ,

$$T_c = \frac{\omega_{\log}}{1.2} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right].$$
 (1)

The calculated λ for Zr₄H₁₅ is 0.33 at 40 GPa, and the ω_{log} is 792 K. Using a nominal value 0.13 for μ^* , the estimated T_c at 40 GPa are 0.2 K [see Table 1]. Likewise, the calculated λ for ZrH₃ are 0.68, 0.61, and 0.57 at 10, 20 and 40 GPa, and the ω_{log} are 518, 571, and 646 K, respectively. Using μ^* = 0.13 the estimated T_c for ZrH₃ at 10, 20, and 40 GPa are 12.5, 9.8, and 8.4 K, respectively. ZrH₃ is therefore predicted to have a higher T_c than Zr₄H₁₅. To elucidate the mechanism, phonon dispersion curves and density of states (PHDOS), Eliashberg spectral function α^2 F(ω) and EPC integral $\lambda(\omega)$ are calculated for ZrH₃ at 40 GPa [Figure. 3]. For the calculated λ of 0.57, the high-frequency H vibrational modes contribute about 51 %. To identify the contributions of various phonon modes along different vibrational directions, solid circles with the radius proportional to the EPC strength are plotted on the phonon dispersion curves. Interestingly, the projected EPC along different directions are almost equal.

Figure 4. (a) Electrical resistance R (T) curve of Zr-H sample at 40 GPa. Inset shows the photo of the sample after laser heating. (b) The superconducting transition of the sample with different applied magnetic field at 40 GPa. (c) and (d) The dependence of T_{c1} and T_{c2} on the external magnetic field H_c . The solid lines in blue and red represent fittings by WHH and GL equation, respectively.

To investigate the predicted superconductivity in ZrH₃ and Zr₄H₁₅, we carried out high-pressure variable-temperature electrical resistance measurements. To make the sample, we used NH₃BH₃ as the hydrogen source. The sample containing ZrH₂ and NH₃BH₃ was initially compressed to 30 GPa in the DAC and then laser-heated to 1600 K. After the reaction, the sample was compressed to 40 GPa, at where two superconducting transitions were detected with pronounced zero resistance [Figure 4(a)]. We proposed that these correspond to two T_c 's for the two phases, one at 6.4 K (T_{c1}) and the other at 4.0 K (T_{c2}). We first ruled out the possibility that these two superconducting transitions belong to BN, NH₃BH₃ or ZrH₂ [Figure S6]. From the XRD pattern of the prepared sample deposited with four electrodes, the sample contains both ZrH₃ and Zr₄H₁₅ [Figure S7]. Based on our calculation [Table 1],

we tentatively interpret that the higher T_c is likely to be that of ZrH₃, and the lower one is for Zr₄H₁₅. The superconducting resistance drop R(T) is also dependent on the applied magnetic field, further proving these two superconducting transitions. As demonstrated in Figure 4(b), the two superconducting transition temperatures T_{c1} and T_{c2} shift to lower temperatures upon increasing the magnetic field (H_c) to 0.5 T. To determine the upper critical magnetic field $H_c(0)$, the extrapolation methods combined with the Ginzburg-Landau (GL) equation⁴¹ and Werthdamer-Helfand-Hohenberg (WHH) equation⁴² are shown in Figures. 4(c) and 4(d), respectively.

Table 1. Calculated superconducting transition temperatures T_c (K), EPC constant λ , logarithmic average phonon frequency ω_{log} (K), electronic DOS at the Fermi level N(ε_f) (states/eV/f.u.), average of squared phonon frequency $<\omega^2>$ (THz²) and average electron-phonon matrix element <I²> (eV³/states). Percentages in parentheses represent the contribution of H atoms to the total λ and N(ε_f).

Hydrides (Pressure)	$T_c(K)$	λ	ω_{log}	$N(\epsilon_{\rm f})$	<w<sup>2></w<sup>	<i<sup>2></i<sup>
	$(\mu^*=0.1-0.13)$					
Zr ₄ H ₁₅ (40 GPa)	0.2-0.8	0.33	792	3.55	/	/
ZrH ₃ (10 GPa)	12.5-16.6	0.68	518	0.88	/	/
ZrH ₃ (20 GPa)	9.8-13.8	0.61	571	0.85	/	/
ZrH ₃ (40 GPa)	8.4-12.4	0.57 (51 %)	646	0.81 (10%)	650.6	0.74
H ₃ S (200 GPa)	211.6-230.2	1.88 (> 80 %)	1266	0.6 (43 %)	962.2	1.81

It is generally accepted that anharmonicity can have noticeable influence on phonon-mediated superconductivity^{15, 43}, especially in structures with softened phonon modes. For example, in $Pm\overline{3}n$ -AlH₃, anharmonicity can suppress the EPC and reduces the T_c from 24 K to 2 K, giving the explanation for the discrepancy between experimental and theoretical results¹⁵. Although ZrH₃ has the same structure as AlH₃, its flat phonon spectrum implies that anharmonic effects on EPC is small. For ZrH₃, experimentally determined T_c of 6.4 K is slight lower than the theoretical value of \sim 8.4 K. A possible reason for this discrepancy is that the actual Coulomb pseudopotential μ^* in ZrH₃ is greater than 1.3, approximately equal to 1.5. As pointed out previously⁴⁴, the effects of Coulomb repulsion can be very large in low-density metals and it would be substantially underestimated if the nominal value is used in the McMillan equation, and this may be the case for zirconium hydrides. Also of interest is the

puzzle why ZrH₃ has same stoichiometry and similar structure as H₃S but does not have a T_c as nearly close to the latter. The H₃S under the pressure of 153 GPa shows both a Meissner effect and zero electrical resistivity with a high T_c of 203 K. To probe the relative superconductivity of ZrH₃ and H₃S, we compared their T_c 's and associated parameters in Table 1. We note that the λ and ω_{log} in ZrH₃ are significantly smaller than those for H₃S, which explains the fairly low T_c in ZrH₃. According to the Eq. 1, the T_c is linearly proportional to ω_{log} Numerically, ω_{log} of H₃S is about twice that of ZrH₃, but T_c of H₃S is 19-25 times larger than ZrH₃, indicating that the EPC strength λ dominates the estimated T_c [Table I]. As mentioned above, the electron-phonon interaction of hydrogen contributes 51 % to the total λ in ZrH₃, much lower than that over 80 % in H₃S. To further explore the electron-phonon coupling, we note that ⁴⁵:

$$\lambda = \frac{N(\varepsilon_f)\langle I^2 \rangle}{M(\omega^2)}, \ \langle \omega^2 \rangle = \frac{2}{\lambda} \int \alpha^2 F(\omega) \omega d\omega \tag{2}$$

where $\langle I^2 \rangle$ is the average over the Fermi surface of the electron-phonon matrix element and M is the atomic mass. Given that M is a constant, we present the other three parameters in Table I. As is shown, although ZrH₃ has a larger DOS at the Fermi level N(ε_f) than H₃S, the H states contribute much less, which is not favorable to EPC. In addition, a larger mass for metal element and smaller electron-phonon matrix element also result in a weaker λ of ZrH₃, giving a much lower T_c than that of H₃S.

In summary, a mixture phase of ZrH₃ and Zr₄H₁₅ was obtained by direct reaction of Zr+H₂ at 47.0 GPa, and by reacting ZrH₂ + H₂ at 30.4 GPa. Upon increasing the pressure, the two phases persist to 93.4 GPa without any phase transition or decomposition. ZrH₃ and Zr₄H₁₅ are isostructural to A15 and Th₄H₁₅ structures, respectively. This is the first time that stoichiometry like ZrH₃ and Zr₄H₁₅ is realized for Group IVB hydrides. Theoretical prediction, electrical resistance and external magnetic experiments reveal that both ZrH₃ and Zr₄H₁₅ are conventional superconducting materials, with the measured superconducting transition temperatures of 6.4 K and 4.0 K at 40 GPa, respectively. Our results provide a reference for the synthesis of new hydrogen-rich materials under high pressures and the exploration of metal hydrides. Polyhydrides of zirconium with higher hydrogen content may exist at even higher pressures suggesting the need for further experiments to explore these systems.

AUTHOR INFORMATION

Author Contributions: D. D. and T. C. designed research; H. X. D. D and C. P performed theoretical calculation; W. Z. X. H and Y. H. performed the experiment; H. X., D. D., X. H., Y. H., H. S., Y. Y., C.

P. and T. C. analyzed data; H. X., X. F., D. D., X. H., Y. Y., C. P. and T. C. wrote the paper.

Corresponding Authors:

*E-mail: duandf@jlu.edu.cn (D. D.)

*E-mail: huangxiaoli@jlu.edu.cn (X. H.)

*E-mail: cuitian@jlu.edu.cn (T. C.)

Notes

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by the National Key R&D Program of China (No. 2018YFA0305900), National Natural Science Foundation of China (Nos. 51632002, 11674122, 51572108, 11504127), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R23), the 111 Project (No. B12011), and the Natural Sciences and Engineering Research Council of Canada (NSERC). CJP acknowledges financial support from the Engineering and Physical Sciences Research Council [Grant EP/P022596/1] and a Royal Society Wolfson Research Merit award. Parts of calculations were performed in the High Performance Computing Center (HPCC) of Jilin University and TianHe-1(A) at the National Supercomputer Center in Tianjin.

REFERENCES

- (1) Duan, D.; Liu, Y.; Ma, Y.; Shao, Z.; Liu, B.; Cui, T. Structure and superconductivity of hydrides at high pressures. *Natl. Sci. Rev.* **2016**, *4*, 121-135.
- (2) Gor'kov, L. P.; Kresin, V. Z. Colloquium: High pressure and road to room temperature superconductivity. *Rev. Mod. Phys.* **2018**, *90*, 011001.
- (3) Zurek, E.; Bi, T. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. *J. Chem. Phys.* **2019**, *150*, 050901.
- (4) Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature* **2015**, *525*, 73.
- (5) Einaga, M.; Sakata, M.; Ishikawa, T.; Shimizu, K.; Eremets, M. I.; Drozdov, A. P.; Troyan, I. A.; Hirao, N.; Ohishi, Y. Crystal structure of the superconducting phase of sulfur hydride. *Nat. Phys.* **2016**, *12*, 835.
- (6) Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B., et al. Superconductivity at 250 K in lanthanum hydride under high pressures. *Nature* **2019**, *569*, 528-531.
- (7) Somayazulu, M.; Ahart, M.; Mishra, A. K.; Geballe, Z. M.; Baldini, M.; Meng, Y.; Struzhkin, V. V.; Hemley, R. J. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. *Phys. Rev. Lett.* **2019**, *122*, 027001.
- (8) Duan, D.; Liu, Y.; Tian, F.; Li, D.; Huang, X.; Zhao, Z.; Yu, H.; Liu, B.; Tian, W.; Cui, T. Pressure-induced metallization of dense (H₂S)₂H₂ with high-Tc superconductivity. *Sci. Rep.* **2014**, *4*, 6968.
- (9) Liu, H.; Naumov, I. I.; Hoffmann, R.; Ashcroft, N. W.; Hemley, R. J. Potential high-*T_c* superconducting lanthanum and yttrium hydrides at high pressure. *Proc. Natl. Acad. Sci. U. S. A.* **2017**, *114*, 6990-6995.
- (10) Peng, F.; Sun, Y.; Pickard, C. J.; Needs, R. J.; Wu, Q.; Ma, Y. Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. *Phys. Rev. Lett.* **2017**, *119*, 107001.
- (11) Pickard, C. J.; Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 2006, 97, 045504.
- (12) Pickard, C. J.; Needs, R. J. Metallization of aluminum hydride at high pressures: A first-principles study. *Phys. Rev. B* **2007**, *76*, 144114.
- (13) Eremets, M. I.; Trojan, I. A.; Medvedev, S. A.; Tse, J. S.; Yao, Y. Superconductivity in Hydrogen Dominant Materials: Silane. *Science* **2008**, *319*, 1506.
- (14) Goncharenko, I.; Eremets, M. I.; Hanfland, M.; Tse, J. S.; Amboage, M.; Yao, Y.; Trojan, I. A. Pressure-induced hydrogen-dominant metallic state in aluminum hydride. *Phys. Rev. Lett.* **2008**, *100*, 045504.
- (15) Rousseau, B.; Bergara, A. Giant anharmonicity suppresses superconductivity in AlH₃ under pressure. *Phys. Rev. B* **2010**, *82*, 104504.
- (16) Shamp, A.; Zurek, E. Superconducting High-Pressure Phases Composed of Hydrogen and Iodine. *J. Phys. Chem. Lett.* **2015**, *6*, 4067-4072.
- (17) Shamp, A.; Terpstra, T.; Bi, T.; Falls, Z.; Avery, P.; Zurek, E. Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting? *J. Am. Chem. Soc.* **2016**, *138*, 1884-1892.
- (18) Wang, L.; Duan, D.; Yu, H.; Xie, H.; Huang, X.; Ma, Y.; Tian, F.; Li, D.; Liu, B.; Cui, T. High-Pressure Formation of Cobalt Polyhydrides: A First-Principle Study. *Inorg. Chem.* **2018**, *57*, 181-186.
- (19) Gao, G.; Wang, H.; Zhu, L.; Ma, Y. Pressure-Induced Formation of Noble Metal Hydrides. *J. Phys. Chem. C* **2012**, *116*, 1995-2000.
- (20) Kvashnin, A. G.; Semenok, D. V.; Kruglov, I. A.; Wrona, I. A.; Oganov, A. R. High-Temperature Superconductivity in a Th–H System under Pressure Conditions. *ACS Appl. Mater. Inter.* **2018**, *10*, 43809-43816.
- (21) Semenok, D. V.; Kvashnin, A. G.; Kruglov, I. A.; Oganov, A. R. Actinium Hydrides AcH₁₀, AcH₁₂, and

- AcH₁₆ as High-Temperature Conventional Superconductors. J. Phys. Chem. Lett. 2018, 9, 1920-1926.
- (22) Li, B.; Ding, Y.; Kim, D. Y.; Ahuja, R.; Zou, G.; Mao, H. K. Rhodium dihydride (RhH₂) with high volumetric hydrogen density. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 18618-21.
- (23) Wang, M.; Binns, J.; Donnelly, M.-E.; Peña-Alvarez, M.; Dalladay-Simpson, P.; Howie, R. T. High pressure synthesis and stability of cobalt hydrides. *J. Chem. Phys.* **2018**, *148*, 144310.
- (24) Pépin, C. M.; Geneste, G.; Dewaele, A.; Mezouar, M.; Loubeyre, P. Synthesis of FeH₅: A layered structure with atomic hydrogen slabs. *Science* **2017**, *357*, 382.
- (25) Liu, C.; Jiang, S.; Sui, Y.; Chen, Y.; Xiao, G.; Chen, X.-J.; Shu, H.; Duan, D.; Li, X.; Liu, H., et al. Effect of the Inherent Structure of Rh Nanocrystals on the Hydriding Behavior under Pressure. *J. Phys. Chem. Lett.* **2019**, *10*, 774-779.
- (26) Singh, R. N.; Bind, A. K.; Srinivasan, N. S.; Ståhle, P. Influence of hydrogen content on fracture toughness of CWSR Zr–2.5Nb pressure tube alloy. *J. Nucl. Mater.* **2013**, *432*, 87-93.
- (27) Zuzek, E.; Abriata, J. P.; San-Martin, A.; Manchester, F. D. The H-Zr (hydrogen-zirconium) system. *Bull. Alloy Phase Diagrams* **1990**, *11*, 385-395.
- (28) Root, J. H.; Small, W. M.; Khatamian, D.; Woo, O. T. Kinetics of the δ to γ zirconium hydride transformation in Zr-2.5Nb. *Acta Mater.* **2003**, *51*, 2041-2053.
- (29) Li, X. F.; Hu, Z. Y.; Huang, B. Phase diagram and superconductivity of compressed zirconium hydrides. *Phys. Chem. Chem. Phys.* **2017**, *19*, 3538-3543.
- (30) Abe, K. High-pressure properties of dense metallic zirconium hydrides studied by ab initio calculations. *Phys. Rev. B* **2018**, *98*, 134103.
- (31) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal structure prediction via particle-swarm optimization. *Phys. Rev. B* **2010**, *82*, 094116.
- (32) Pickard, C. J.; Needs, R. J. Ab initiorandom structure searching. *J. Phys.: Condens. Matter* **2011**, *23*, 053201.
- (33) Zachariasen, W. Crystal chemical studies of the 5f-series of elements. XIX. The crystal structure of the higher thorium hydride, Th₄H₁₅. *Acta Crystallogr.* **1953**, *6*, 393-395.
- (34) Loubeyre, P.; LeToullec, R.; Hausermann, D.; Hanfland, M.; Hemley, R. J.; Mao, H. K.; Finger, L. W. X-ray diffraction and equation of state of hydrogen at megabar pressures. *Nature* **1996**, *383*, 702-704.
- (35) Stavrou, E.; Yang, L. H.; Söderlind, P.; Aberg, D.; Radousky, H. B.; Armstrong, M. R.; Belof, J. L.; Kunz, M.; Greenberg, E.; Prakapenka, V. B., et al. Anharmonicity-induced first-order isostructural phase transition of zirconium under pressure. *Phys. Rev. B* **2018**, *98*, 220101.
- (36) Birch, F. The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain. *J. Appl. Phys* **1938**, *9*, 279-288.
- (37) Sidhu, S. S.; McGuire, J. C. An X Ray Diffraction Study of the Hafnium Hydrogen System. *J. Appl. Phys* **1952**, *23*, 1257-1261.
- (38) Sidhu, S. S. The effect on metal–metal bonds of increased concentration of hydrogen in hafnium dihydride. *Acta Crystallogr.* **1954**, *7*, 447-449.
- (39) Kalita, P. E.; Sinogeikin, S. V.; Lipinska-Kalita, K.; Hartmann, T.; Ke, X.; Chen, C.; Cornelius, A. Equation of state of TiH₂ up to 90 GPa: A synchrotron x-ray diffraction study and ab initio calculations. *J. Appl. Phys* **2010**, *108*, 043511.
- (40) Allen, P. B.; Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. *Phys. Rev.* B 1975, 12, 905-922.
- (41) Woollam, J. A.; Somoano, R. B.; O'Connor, P. Positive Curvature of the H_{c2} -versus- T_c Boundaries in Layered Superconductors. *Phys. Rev. Lett.* **1974**, *32*, 712-714.

- (42) Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L. Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb₃Sn wires. *Supercond. Sci. Technol.* **2014**, *27*, 015005.
- (43) Errea, I.; Calandra, M.; Pickard, C. J.; Nelson, J.; Needs, R. J.; Li, Y.; Liu, H.; Zhang, Y.; Ma, Y.; Mauri, F. High-Pressure Hydrogen Sulfide from First Principles: A Strongly Anharmonic Phonon-Mediated Superconductor. *Phys. Rev. Lett.* **2015**, *114*, 157004.
- (44) Richardson, C. F.; Ashcroft, N. W. High Temperature Superconductivity in Metallic Hydrogen: Electron Enhancements. *Phys. Rev. Lett.* **1997**, *78*, 118-121.
- (45) McMillan, W. L. Transition Temperature of Strong-Coupled Superconductors. *Phys. Rev.* **1968**, *167*, 331-344.