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Abstract

Probabilistic principal component analysis
(PPCA) seeks a low dimensional representa-
tion of a data set in the presence of inde-
pendent spherical Gaussian noise. The max-
imum likelihood solution for the model is an
eigenvalue problem on the sample covariance
matrix. In this paper we consider the situa-
tion where the data variance is already par-
tially explained by other factors, for example
sparse conditional dependencies between the
covariates, or temporal correlations leaving
some residual variance. We decompose the
residual variance into its components through
a generalised eigenvalue problem, which we
call residual component analysis (RCA). We
explore a range of new algorithms that arise
from the framework, including one that fac-
torises the covariance of a Gaussian density
into a low-rank and a sparse-inverse compo-
nent. We illustrate the ideas on the recovery
of a protein-signaling network, a gene expres-
sion time-series data set and the recovery of
the human skeleton from motion capture 3-D
cloud data.

1. Introduction

Probabilistic principal component analysis (PPCA)
decomposes the covariance of a data vector y in Rp,
into a low-rank term and a spherical noise term. The
underlying probabilistic model assumes that each da-
tum is Gaussian distributed,

y ∼ N (0,WW> + σ2I),

where we assume the data is centred such that their
mean is zero and W ∈ Rp×q, such that q < p − 1,
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imposes a reduced rank structure on the covariance.
The log-likelihood of the centered data set Y in Rn×p

with n data points and p features,

ln p(Y) =

n∑
i=1

lnN
(
yi,: | 0, WW> + σ2I

)
,

can be maximized (Tipping & Bishop, 1999) with the
result that WML = UqLqR

>, where Uq are the q

principal eigenvectors of the sample covariance, S̃ =
n−1Y>Y, and Lq is a diagonal matrix with elements

`i,i = (λi − σ2)
1
2 , where λi is the ith eigenvalue of

the sample covariance and σ2 is the noise variance.
This maximum-likelihood solution is rotation invari-
ant; that is, R is an arbitrary rotation matrix. As a
result, the matrix W spans the principal subspace of
the data and the model is known as probabilistic-PCA
(PPCA). Underlying this model is an assumption that
the data set is represented by Y = XW>+E, where X
in Rn×q is the matrix of q-dimensional latent variables
and E is a matrix of noise variables ei,j ∼ N (0, σ2).
The marginal log-likelihood above is obtained by plac-
ing an isotropic prior independently on the elements
of X, xi,j ∼ N (0, 1).

Lawrence (2005) showed that the PCA solution is also
obtained for log-likelihoods of the form

ln p(Y) =

p∑
j=1

lnN (y:,j | 0, XX> + σ2I)

which is recovered when we marginalize the loadings
W, instead of latent variables X, with a Gaussian
isotropic prior. This is the dual form of probabilis-
tic PCA, also termed as probabilistic principal coor-
dinate analysis, as this maximum likelihood solution
solves for the latent coordinates XML = U′qLqR

>, in-
stead of the principal subspace basis. Here, U′q are
the first q principal eigenvectors of the inner product
matrix p−1YY> with Lq defined as before. Note that
this Gaussian density is independent across data fea-
tures rather than data points. So the correlation is
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expressed between data points. The underlying model
is in fact a product of independent Gaussian processes
(Rasmussen & Williams, 2006) with linear covariance
functions.

Both primal and dual scenarios involve maximizing
likelihoods of a similar covariance structure, namely
when the covariance of the Gaussians is given by a
low-rank term plus a spherical term, XX>+σ2I (dual
case). In this paper we consider a more general form
of the covariance, given by XX> + Σ, where Σ is a
general positive definite matrix. We are motivated by
scenarios where our data has already been partly ex-
plained by the covariance matrix Σ and we wish to
study the components of the residual variance. Our
ideas can be applied in both primal and dual repre-
sentations: the form to be used depends on what in-
formation we wish to encode in Σ.

1.1. Motivating examples

Consider the general functional form of a linear mixed-
effects model with two factors and noise, that will serve
as a conceptual reference point for the rest of the paper
(see Figure 1(a)):

Y = XW> + ZV> + E, (1)

where Z is a matrix of known covariates (fixed effects)
with some predictive power for Y, and X is a matrix
of latent variables (random effects). The loadings W
and V can be marginalised with Gaussian isotropic
priors, to recover the log-likelihood

ln p(Y) =

p∑
j=1

lnN (y:,j |0,XX> + Σ), (2)

where Σ = ZZ> + σ2I is positive-definite.

Specifically, one might have Y in eq. (1) manifested
as:
(a) a set of protein activation signals under various ex-
ternal stimuli (heterogeneous data), with V = I and Z
as a set of covariates (equidimensional to Y) sharing
sparse conditional dependencies. Sparse dependencies
are valuable for parsimonious modelling but might be
confounded by latent effects X induced by the hetero-
geneous experimental conditions on the measurements
Y. This alludes to the instantiation ΣGL = Λ−1 for
sparse Λ, which recovers a low-rank plus sparse-inverse
parameterisation of the covariance in eq. (2). A sparse
precision amounts to a sparsely connected Gaussian
Markov random field (GMRF) as the graphical model
of Z; that is, each zi,: is distributed from N (0,Λ−1),
where the precision matrix Λ is sparse (Lauritzen,
1996).

(b) a set of n gene expression profiles, where each pro-
file is a concatenated time-series of p1 +p2 timepoints,
with p1 timepoints sampled under control conditions
and p2 timepoints sampled under test conditions. In
this scenario, the instantiation ΣGram = K+σ2I, with
Kij = k(zi, zj) as a general Gram matrix defined by
some covariance function k : RD×RD → R, could help
express temporal correlations in a time-series dataset.
This gets close to the common practice of explicitly
subtracting the result of a simpler model from the data
and then analyzing the residual separately.
(c) Y as a set of n patients’ gene expression mea-
surements (p genes), with Z as the genotype of each
patient and X as the unobserved environmental effects
(confounders), see Fusi et al. (2012).

In all of these cases, one useful task would be to analyse
the components of the residual XX> for the dual case
(or WW> for the primal case; for brevity we refer
mostly to the dual case), given Σ or some estimate
thereof. This begs the question: Given Σ, how can we
solve for X (respectively W)? And more importantly,
for what instantiations of Σ can we formulate useful
new algorithms for machine learning?.

1.2. Proposed approach

The key theoretical result of this paper in Section 2, eq.
(3) shows that the maximum-likelihood solution for X
is simply based on a generalised eigenvalue problem
(GEP) on the sample-covariance matrix. Hence, the
low-rank term XX> can be optimized for general Σ,
with the only constraint being the positive-definiteness
of Σ. We call this data analysis approach residual
component analysis (RCA).

Secondly, the RCA approach gives rise to a range of
new algorithms suited for the aforementioned scenar-
ios. For instance, for scenario (a) we propose an
EM/RCA hybrid algorithm for estimating both the
low-rank and sparse-inverse factors, see section 3. For
scenario (b) we present a pure RCA treatment: the
residual basis of interest is explored with a single ex-
act estimate via the RCA GEP. We demonstrate the
efficacy of the algorithms on biological and motion cap-
ture datasets in Section 4.

1.3. Related work and connection to CCA

The low-rank plus sparse-inverse parameterisation ex-
tends the Graphical Lasso algorithm (GLASSO, Fried-
man et al., 2008), which finds a MAP estimate of the
covariance with an L1 regularization term on the pre-
cision. Sparse-inverse structures capture relations be-
tween variables that are not well characterized by low-
rank forms. As such, the combination of sparse in-
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(a) (b)

Figure 1. (a) A linear mixed-effects model. Fixed effects
Z partially explain the variation in observations Y. The
residual covariance is spanned by W up to noise variance
ε. (b) Linear multi-view learning model where Y1,Y2 have
shared (Z) and private (X1, X2) latent components.

verse and low-rank can be a powerful one with appli-
cations in computational biology and visualisation, as
we demonstrate in Section 4. We also point to the work
of Stegle et al. (2011) for a different approach based
on a multiplicative (Kronecker product) structure in
the covariance.

In addition, we note a few more connections to well-
studied algorithms for linear dimensionality reduc-
tion: The obvious connection to PPCA is recovered
by Σpca = σ2I. Furthermore, a sparse1 Σ relates to
the robust-PCA framework of Candes et al. (2009).
Probabilistic CCA (Bach & Jordan, 2005) is recovered

with Σcca =

[
Y1Y

>
1 0

0 Y2Y
>
2

]
+σ2I for Y =

[
Y1

Y2

]
(for a proof, see supp. material). Furthermore, if

Y =

[
X1W

>
1 + ZV>1 + E1

X2W
>
2 + ZV>2 + E2

]
, then in addition to the

standard shared latent space of Z found in CCA, the
partitions of Y have their own associated private latent
spaces of X1 and X2, see Figure 1(b). This is in fact
an instantiation of a general multi-view learning model
(Ek et al., 2008), the linear case of which was more
closely studied by Klami & Kaski (2008) who termed it
extended probabilistic-CCA. To optimise this model, an
iterative treatment of RCA can be used: solve for V on

one step by setting Σcca+ =

[
W1W

>
1 0

0 W2W
>
2

]
+ σ2I

in the GEP of the full data sample covariance; on the
other step solve for each of Wk, k ∈ {1, 2}, by set-
ting Σcca+ = VkV>k + σ2I in the GEP of the sample
covariance associated with Yk. This iterative-RCA al-
gorithm is reminiscent of the expectation maximiza-
tion (EM) algorithm for optimising extended PCCA,
as both approaches maximize the likelihood by fitting
components into the residual. More details on the
CCA connection and iterative-RCA can be found in
the supplementary material.

1As opposed to being an inverse-sparse matrix.

2. Maximum-Likelihood RCA

We show the main results on the dual case, with no
loss of generalisation on the primal case.

Theorem. The maximum likelihood estimate of the
parameter X in the likelihood model in eq. (2), for
positive-definite and invertible Σ, is

XML = ΣS(D− I)
1
2 , (3)

where S is the solution to the GEP

1
pYY>S = ΣSD, (4)

with its columns as the generalised eigenvectors and D
is diagonal with the corresponding generalised eigen-
values.

Proof. The RCA log-likelihood is given by

L(X,Σ) = −p
2 ln |K| − 1

2 tr(YY>K−1)− np
2 ln(2π),

where K = XX>+ Σ. Since Σ is positive-definite, we

consider its eigen-decomposition Σ = UΛU>, (5)

where U>U = I and Λ is diagonal. The projection
of the covariance onto this eigen-basis, scaled by the
eigenvalues, is

K̂ = Λ−
1
2 U>KUΛ−

1
2

= Λ−
1
2 U>XX>UΛ−

1
2 + I.

(6)

Letting X̂ = Λ−
1
2 U>X and Ŷ = Λ−

1
2 U>Y,

allows us to define K̂ = X̂X̂> + I and its inverse

K̂−1 = Λ
1
2 U>K−1UΛ

1
2 . (7)

Therefore from (7), we have |K| = ˆ|K| |Λ| and

tr(YY>K−1) = tr(Λ−
1
2 U>YY>UΛ−

1
2 K̂−1).

Now we can rewrite the entire RCA log-likelihood in
terms of the transformed variables X̂ and Ŷ,

L(X̂) = −p
2 ln( ˆ|K| |Λ|)− 1

2 tr(ŶŶ>K̂−1)− np
2 ln(2π).

We know how to maximize this new form of the log-
likelihood with respect to X̂. Following a similar route
to the maximum likelihood solution proof in Tipping
& Bishop (1999), the gradient

∂L

∂X̂
= K̂−1ŶŶ>K̂−1X̂− pK̂−1X̂, (8)

gives the stationary point 1
pŶŶ>K̂−1X̂ = X̂. (9)

By substituting the singular value decomposition

X̂ = V̂LR>, for X̂ in (8), gives (10)
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V̂LR> = 1
pŶŶ>(V̂L2V̂> + I)−1V̂LR>. By the

Woodbury matrix identity, we can see that maximi-
sation relies on the regular eigenvalue problem

1
pŶŶ>V̂ = V̂D, where D = (L2 + I). (11)

Next we focus on relating the stationary point of X̂
to the solution for X and then we proceed by express-
ing this eigenvalue problem in terms of YY>: By the
definition of X̂, we obtain the factorisation

X = UΛ
1
2 V̂LR> = TLR>, (12)

where we have defined T = UΛ
1
2 V̂. Since Σ is in-

vertible, we substitute for Ŷ and V̂ in (11) and use
the inverse of (5) to recover the equivalent eigenvalue
problem in the original dual-space

1
pYY>Σ−1T = TD.

To conclude the proof, we define S = Σ−1T to recover
the desired symmetric form of the GEP

1
pYY>S = ΣSD.

Based on the factorisation of X in (12), now we can
recover X up to an arbitrary rotation (R, which for
convenience is normally set to I), via the first q gener-
alised eigenvectors of p−1YY>,

X = TL = ΣSL = ΣS(D− I)
1
2 . �

Commentary. Due to the algebraic symmetry be-
tween the dual and primal formulations of the log-
marginal likelihood in (2), one can easily extend the
proof to the primal case. Specifically, the maximum
likelihood solution of W in (1) has the same form

W = ΣS(D− I)
1
2 , where now 1

nY>YS = ΣSD and
Σ = VV> + σ2I.

Aside from Σ, we note a subtle difference from the
PPCA solution for W: Whereas PPCA explicitly sub-
tracts the noise variance from the q retained principal
eigenvalues, RCA in (6) implicitly incorporates any
noise terms into Σ and standardises them when it
projects the total covariance onto the eigen-basis of
Σ. Thus we get a reduction of unity from the retained
generalised eigenvalues in (3). Again, for Σ = I the
two solutions are identical.

Finally, we state the posterior density for the RCA
probabilistic model (primal case) and µy = 0,

x|y ∼ N (Σx|yW>
MLΣ−1y , Σx|y),

where Σx|y = (W>
MLΣ−1WML + I)−1.

(13)

Figure 2. Graphical model optimised by the EM/RCA hy-
brid algorithm.

3. Low Rank Plus Sparse Inverse

In this section we show how to optimise the following
generative model, summarised in Figure 2,

y|x, z ∼ N (Wx + z, σ2I),

x ∼ N (0, I), z ∼ N (0,Λ−1),
(14)

where Λ is sampled from a Laplace prior density,

p(Λ) ∝ exp(−λ‖Λ‖1).

Marginalising X, yields
log p(Y,Λ) =

∑n
i=1 log{N (yi,:|0,WW>+ΣGL)p(Λ)}

≥
∫
q(Z) log

p(Y,Z,Λ)

q(Z)
dZ (15)

where q(Z) is the variational distribution and Σ =
Λ−1 +σ2I, which we wish to optimise for some known
W. This is an intractable problem, so instead we op-
timise the lower bound (15) in an EM fashion.

E-step Replacing q(Z) with the posterior p(Z|Y,Λ′)
for a current estimate Λ′, amounts to the E-step for
updating the posterior density of zn|yn with

cov[z|y] = ((WW> + σ2I)−1 + Λ′)−1 (16)

〈zn|yn〉 = cov[zn|yn](WW> + σ2)−1yn (17)

and
〈
znz>n

〉
= cov[z|y] + 〈zn〉〈zn〉> . (18)

M-step Then for fixed Z′, the only free parame-
ter in the expected complete-data log-likelihood Q =
EZ|Y(log p(Z′,Λ)) is Λ. Therefore, argmax

Λ
Q =

argmax
Λ

(
n
2 ln |Λ|− 1

2

n∑
i=1

tr(
〈
znz>n

〉
Λ))− n

2λ‖Λ‖1

)
,

(19)

which amounts to standard GLASSO optimisation
with the covariance matrix from (18).

RCA-step After one iteration of EM, we update W
via RCA based on the newly estimated Λ,

W = ΣS(D− I)
1
2 , for the GEP

1
nY>YS = ΣSD and Σ = Λ−1 + σ2I.

(20)
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Algorithm (1) summarises the EM and RCA steps
which is collectively one iteration of EM/RCA:

Algorithm 1 EM/RCA

Initialise σ2, W and Λ.
repeat

E-step: Update posterior density of Z|Y with
(16) and (17).
M-step: Update Λ with (19).
RCA-step: Update W with (20).

until the lower-bound (15) converges

4. Experiments

We describe three experiments with EM/RCA and one
purely with RCA analysing the residual left from a
Gaussian process (GP) in a time-series. For all the ex-
periments that involve EM/RCA, the following apply:

Initialisations are σ2 = 1
2p tr(Cy), where Cy is the sam-

ple covariance of the analysed data; W = Uq(Lq −
σ2I)

1
2 as the q principal eigenvectors whose eigenval-

ues are larger than σ2, and Λ = I. Note that since
σ2 is fixed to its initialized value, this implicitly fixes
the number of latent variables. A more systematic
approach would be a line search on σ2 during the M-
step or using the BIC criterion over a small range of q
(number of latent variables).

Each dataset was analysed with `1-regularisation pa-
rameters λ = 5x for x linearly interpolated in the in-
terval [−8, 3], thus creating a solution path as λ in-
creases exponentially. For lasso-based algorithms, in
general, the solution paths tend to be unstable, so
to smoothen the solution paths we applied stability
selection (Meinshausen & Bühlmann, 2010), i.e. for
each dataset and for each λ, results of all methods
(GLASSO, Kronecker-GLASSO, EM/RCA) are stabi-
lized by taking 100 repeats using 90% of the data-
points for each repeat. Edges (corresponding to con-
nections in the figure) are assumed to be present if
they are called more than 50% of the time.

4.1. Simulation

First we consider an artificial dataset sampled from
the generative model in (equation 14, Figure 2) to il-
lustrate the effects of confounders on the estimation of
the sparse-inverse covariance. Specifically,
Y = XW> + Z + E, where Y ∈ R100×50; W ∈
R50×3; X ∈ R100×3, for each xi,:

iid∼ N (0, I3); zi,:
iid∼

N (0,Λ−1); Λ was generated with a sparsity level of
1% over all possible edges in the GRF and its non-zero
entries were iid-sampled from a Gaussian with mean
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Figure 3. (a) Recall-precision curves of EM/RCA and
GLASSO on simulated confounded data (solid line), and
GLASSO on simulated non-confounded data (dashed line).
(b) Similarly on Sachs data. Kronecker-GLASSO and
GLASSO curves are identical to the ones reported in (Ste-
gle et al., 2011).

1 and variance 2; z:,j
iid∼ N (0, γI50); Finally for the

noise, ei,:
iid∼ N (0, σ2I). The variance γ was set such

that Λ−1 and WW> explained equal variance and σ2

was set such that the signal-to-noise ratio was 10.

Figure 3(a) shows the precision-recall curve for
GLASSO and EM/RCA. The EM/RCA curve shows
significantly better performance than GLASSO on the
confounded data, while the dashed line shows the
performance of GLASSO on similarly generated data
without the confounding effects (W = 0). We note
that EM/RCA performs better on confounded data
than GLASSO on non-confounded data, because of the
lower signal-to-noise ratio in the non-confounded data.

4.2. Reconstruction of a biological network

Next we applied EM/RCA on the protein-signaling
data of Sachs et al. (2008). In this case, we also com-
pare against the results reported by Stegle et al. (2011)
on the same data, with the Kronecker-GLASSO algo-
rithm. These data provide signal measurements from
11 proteins under various external stimuli. We com-
bined measurement from the first 3 experiments, re-
sulting in a heterogeneous dataset of 2,666 samples.
The different conditions of these experiments induce
the confounding effects in the data. For the sake of
comparison, we also run the analysis on a random 10%
subset of the 2,666 samples. All algorithm were com-
pared based on the moralised-version of the ground
truth directed network which was biologically vali-
dated in the related study.

In Figure 3(b), EM/RCA performs slightly better than
all other methods. Figure 4 shows the reconstructed
networks for recall 0.4. We note that EM/RCA is more
conservative in calling edges.
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True Network EM/RCA

GLASSO KroneckerGlasso

Figure 4. Networks reconstructed (recall 0.4) via
EM/RCA, Kronecker-GLASSO and GLASSO on Sachs
data. Red edges signify false positives.

4.3. Reconstruction of the human form

These data come from the CMU motion-capture
database (http://mocap.cs.cmu.edu). The objective
here is to reconstruct the underlying connectivity of a
human being, given only the 3 dimensional locations
of 31 sensors placed about the figures body. Each
captured motion in the database involves the skele-
ton (or stickman) data specific to the person under
the trial (different heights, builds, etc.) and the 3-D
sensor cloud data. Each trial involves 31 sensors, so
the dataset for each trial is 93 × the number of frames
captured in the trial.

Our aim is to construct a model which recovers connec-
tivity between these points. This should be possible
because we expect sensors that are connected in the
underlying figure to be conditionally independent of
other sensors in the figure. This motivates the under-
lying sparse structure. Conversely, different motions
exhibit much broader correlations across the figure. In
particular walking exhibits anti-correlations between
sensors on different legs and across the arms. These
types of motion should be far better recovered through
a low rank representation of the covariance.

If, as expected, the raw data is confounded by low-
rank properties associated with particular structured
motions (as opposed to random poses, as might be
adopted by a wooden artist’s doll) then our combina-
tion of low-rank with sparse connectivity should out-
perform a model based purely on sparse connectivity.
We therefore compare EM/RCA and GLASSO on tri-
als involving walking, running, jumping and dancing.
The local connectivity between the sensors, i.e. the

(a) (b)

Figure 5. (a) Recall-precision curves of EM/RCA and
GLASSO on the CMU motion-capture data. (b) Hinton
diagram of X capturing the confounding effects in the mo-
tions. Each column of X is visualised by rearranging its
elements to the corresponding sensors on the ground truth
stickman. The colour of a dot indicates the sign and the
size is proportional to the magnitude of the corresponding
element in X.
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Figure 6. Network reconstructions via EM/RCA (left) and
GLASSO (right) for recall 0.77 (top) and 1 (bottom). In-
ferred edges are superimposed on the characteristic poses
extracted from the 3 principal eigenvectors of the estimated
sparse Λ (or Laplacian of the spring system). Edge color
indicates the negative stiffness intensity (red is large) and
the black lines are shadows for aiding the perspective.

human skeleton, should be represented in the sparse
matrix Λ (proscribing a Gaussian random field). To
further motivate this idea we note that Λ can also be
seen as the stiffness (or Laplacian) matrix of a physical
system of a spring network, where the off-diagonal en-
tries represent the negative stiffness of the spring. To
detect a connection between two sensors we are only
looking for negative entries in the estimated Λ.

Figure 5 shows the results in the form of re-
call/precision curves for both GLASSO and our

http://mocap.cs.cmu.edu
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EM/RCA implementation of a sparse-inverse plus low-
rank model. The EM/RCA algorithm consistently
outperforms standard GLASSO. Figure 6 illustrates
the recovered stickmen of EM/RCA and GLASSO.
We note that the connectivities and eigenposes are
more faithful to the true human form, in comparison
to GLASSO. For a small λ setting (recall 1) the pre-
cisions are similar; nonetheless the human form is ro-
bust, with very weak (yellow) edges wherever they do
not apply (e.g. elbow-waist, elbow-head). This signi-
fies that the precision measure might be ill-suited for
evaluating a stickman, where the network configura-
tion has a spatial interpretation. The ground truth is
also “noisy” in the sense that a shoulder-chest edge,
for instance, must be called as the torso is a rigid part
of the human body (high stiffness). Figure 5(b) illus-
trates the confounding effects that X is supposed to
capture. Specifically, in the first component, the legs
are anti-correlated to the upper-half of the body, which
can be attributed to jumping motions. The second and
forth components capture anti-correlations across the
different legs and arms, exhibited by walking and run-
ning, as discussed earlier. The third component shows
strong anti-correlation between the hands and the rest
of the upper-body, which is more open to interpreta-
tion.

4.4. Differences in gene-expression profiles

A common challenge in data analysis is to summarize
the difference between treatment and control samples.
To illustrate how RCA can help, we consider two gene
expression time-series of cell lines. The treatment cells
are targeted by TP63 introduced into the nucleus by
tamoxifen. The control cells are simply subject to
tamoxifen alone. The data used for this case study
come from Della Gatta et al. (2008, GEO accession
GSE10562) The treatment group Y1 ∈ Rn1×p con-
tains n=13 time-points of p = 22, 690 gene expression
measurements, whilst the control group Y2 ∈ Rn2×p

contains only n2 = 7 time-points. This complexity of
data (with different numbers of time-points and non-
uniform sampling) is typical of many bio-medical data
sets. The challenge is to represent the differences be-
tween the gene expression profiles for these two data
sets. CCA could be applied but this would represent
the similarities between the data, not the differences.

Assuming that both time-series are identical, implies
y> = (y>1 y>2 ) can be modeled by a Gaussian pro-
cess (GP) with a temporal covariance function, y ∼
N (0,K), where K ∈ Rn×n for n=n1+n2 is structured
such that both y1 and y2 are generated from the same
function, Ki,j = k(ti, tj) = exp(− 1

2`
−2(ti − tj)

2), a
squared-exponential covariance function (or RBF ker-
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Figure 7. (a) RBF kernel computed on augmented time-
input vectors of gene-expression. The kernel is com-
puted across times (0 : 20 : 240, 0, 20, 40, 60, 120, 180, 240),
jointly for control and treatment. (b) ROC curves of RCA
and BATS variants with different noise models (G: Gaus-
sian, T: t-distribution, DE: double-exponential). See also
(Kalaitzis & Lawrence, 2011; Stegle et al., 2010) GP-based
approaches.

nel, Figure 7(a)). Other kernels can be used and
their hyperparameters can be optimized, but for this
demonstration we simply set ` = 20 which provides
a bandwidth roughly in line with the time-point sam-
pling intervals. We also add a small noise term along
the diagonal of K which was set to 1% of the data
variance.

A more general model (dual paradigm) of the form
y ∼ N (0,XX> + K), should explain no variance in
the low-rank component XX>, as all the signal in the
time-series is assumed to be explained by the underly-
ing function sampled from the GP. If we solve for the
residual components X via RCA, they will be forced to
explain how the two time-series are actually different.

We project the profiles onto the eigenbasis of the first
q generalised eigenvectors Ỹ = S>q Y and obtain a
score of differential expression based on the norms of
their projections. The number q of retained principal
eigenvectors is decided on the number of correspond-
ing eigenvalues di being larger than one. Recall from
PPCA, that as we increase the assumed noise variance
σ2, more eigenvalues become negative and less eigen-
vectors are retained in WML (cf. page 1). Similarly,
RCA standardises any noise (6), so we only have to
retain for eigenvalues larger than 1. In this case, the
assumed noise variance embedded in the kernel drives
the effective number of eigenvectors in the projection
basis. Ranking the scores and comparing to the noisy
ground-truth list of binding targets2 of TP63 from
(Della Gatta et al., 2008), gives the ROC performance
curve in Figure 7(b). We compare against BATS as a

2A gene with a large number of binding sites for TP63
is a strong candidate for being one of its direct targets, and
thus associated with TP63-related diseases.
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baseline method (Angelini et al., 2007). We note that
RCA outperforms BATS in terms the area under the
ROC curve for all of its noise models.

5. Discussion

We are often faced with data that can be partially ex-
plained by a set of covariates and may wish to analyse
the residual components of these data. This motivated
the construction of RCA: an algorithm for describ-
ing a low-dimensional representation of the residuals
of a data set, given partial explanation by a covari-
ance matrix Σ. The low-rank component of the model
can be determined through a generalized eigenvalue
problem. The special case of PCA being recovered for
Σ = σ2I. Our algorithm also generalizes CCA, but
with further imaginative application we can develop
new approaches to data analysis.

We illustrated how a treatment and a control time-
series could have their differences highlighted through
appropriate selection of Σ (in this case we used an
RBF kernel). We also introduced an algorithm for
fitting a variant of CCA where the private spaces are
explained through low dimensional latent variables.

Our final, and perhaps most important, new data
analysis technique combined sparse-inverse covariance
with low-rank. Full covariance matrix models of data
are often problematic as their parameterization scales
with D2. Two separate approaches to a reduced pa-
rameterization of these matrices are to base them on
low-rank matrices (as in probabilistic PCA) or on a
sparse-inverse structure (as in GLASSO). These two
approaches have very different characteristics: one in-
volves specifying sparse conditional dependencies in
the data, the other assumes that a reduced set of la-
tent variables governs the data. Clearly, in any data
set, both of these characteristics may be present. Our
sparse-inverse plus low-rank approach is the first ap-
proach to deal with both of these cases in the same
model. It was demonstrated to good effect in a mo-
tion capture and protein network example.
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