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From neuroscience, brain imaging and the psychology of memory, we are

beginning to assemble an integrated theory of the brain subsystems and

pathways that allow the compression, storage and reconstruction of mem-

ories for past events and their use in contextualizing the present and

reasoning about the future—mental time travel (MTT). Using computational

models, embedded in humanoid robots, we are seeking to test the suffi-

ciency of this theoretical account and to evaluate the usefulness of brain-

inspired memory systems for social robots. In this contribution, we describe

the use of machine learning techniques—Gaussian process latent variable

models—to build a multimodal memory system for the iCub humanoid

robot and summarize results of the deployment of this system for human–

robot interaction. We also outline the further steps required to create a more

complete robotic implementation of human-like autobiographical memory

and MTT. We propose that generative memory models, such as those that

form the core of our robot memory system, can provide a solution to the

symbol grounding problem in embodied artificial intelligence.

This article is part of the theme issue ‘From social brains to social robots:

applying neurocognitive insights to human–robot interaction’.

provided
1. Introduction
Mental time travel (MTT) describes the capacity to project the mind back in time

to recover memories of past events, and forward in time to imagine possible

future events [1]. Neuropsychological studies of amnesia, together with func-

tional brain imaging studies, have demonstrated that MTT, to either the past

or future, involves a similar set of brain subsystems and pathways [2]. Given

the starting point of a cue corresponding to a past event, this system can fill

out the wider context and retrieve what happened next; or, in the case of the

imagined future, the same system can construct how a scenario could unfold

in the light of past experience.

To disconnect from the present, in order to contemplate the past or future,

allows the mind to reflect on its own existence in space and time. MTT, and the

memory systems underlying it, thus make an important contribution to human

self-awareness [1] and to the temporally extended sense of self [3]. These same

systems also support our capacity for episodic/autobiographical memory—the

ability to recall and relive episodes from our own life history [4]. Autobiographi-

cal memory, in turn, provides the material from which we construct a life story

that we then use to communicate to others about who we believe we are [5].

The research described in this article follows an ‘understanding through

building’ approach that seeks to advance the theoretical understanding of the

mind and brain by testing computational models in embodied systems

(robots) [6,7]. This approach thus combines the analysis of biological systems

with the synthesis of models that embed key biological principles. Models
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Figure 1. A model of human event memory proposed by Rubin [4,16] adapted from Rubin [4]. See text for further details.
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can be built at different levels of abstraction, allowing, for

instance, models of spiking neural networks of specific

neural circuits to be compared with functional models of

brain systems specified in more algorithmic terms. A physical

model in the form of a robot can stand as an existence proof

that the theoretical model that this embodies can generate the

animal or human behaviour we wish to capture; in other

words, it provides evidence for the sufficiency of the model

and theory [8].

An added benefit of this approach is that an embodied

model can also act as a prototype for a useful technology—

in our case as a demonstration of the possibility of autobio-

graphical memory and MTT for robots. The current

generation of intelligent devices—from phones, to personal

computers, to robots—have an increasingly impressive

capacity for gathering and storing information in a range of

useful modalities (sound, vision, even touch and smell); how-

ever, they remain surprisingly poor at retrieving relevant

information when it is needed [9]. Indeed, the capacity to

archive more and more information, facilitated by the avail-

ability of cheap and compact memory hardware, is pushing

us towards a situation where we can record everything—

so-called life-logging in the case of wearable computers

[10]—but where, in reality, we will never have the time to

filter, retrieve or evaluate even a small fraction of the infor-

mation that has been stored. In the area of robotics, we are

also beginning to see the development of social robots that

can interact with people on a daily basis, assisting in dom-

estic tasks, providing support for people with disabilities,

even providing some capacity for social companionship

[11–14]. Nevertheless, despite having the possibility to

store virtually everything that happens to them, such

machines are poor at knowing what aspects of their own his-

tory are relevant to making decisions, performing actions or

engaging with people in the here and now. This is partly

the well-known ‘frame problem’ in artificial intelligence (AI),

and the solution, at least in part, to this problem of knowing

what is important, is to be able to relate past experience to

identity and purpose [15]. The ability to recall past interactions

with others, to share memories and to swap ideas about the
future is also central to human relationships; that today’s

robots are ‘marooned in the present’ therefore limits their

capacity to be useful or engaging as social partners.

Based on these considerations, we have sought to create a

biomimetic memory system that can help address the chal-

lenge of improving the social capabilities of robots. We next

outline our general approach to creating this system by

describing its genesis from psychology, brain theory and

machine learning. We then summarize how we have

implemented a form of synthetic multimodal memory for

the iCub humanoid robot and provide results from its

deployment in human–robot interaction. We conclude by

considering how such a system could be extended towards

a more complete model of human-like autobiographical

memory and MTT, and how that might be used within the

control systems of next-generation social robots.
2. From brain theory to synthetic memory
Autobiographical memory and MTT are holistic capabilities

of the human mind/brain that depend on multiple neural

substrates, bodily and sensory systems, and their interaction

within different environmental and social contexts. In this

section, we briefly summarize a theoretical framework for

understanding human memory and outline some of its

modes of operation, we then introduce a general approach

to memory modelling that will allow us to emulate aspects

of this framework within a control system for the iCub

humanoid robot.

(a) A framework for understanding human memory
Figure 1 illustrates a theoretical framework proposed by

Rubin [4,16] and grounded on data from experimental

psychology concerning the properties and capabilities of

human autobiographical memory, and from neuropsycho-

logy and neuroimaging concerning its likely neural

substrates. These findings include differences in recollection

and ratings of memory vividness [17–19], under varying

conditions of visual and auditory imagery and emotional
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significance, and evidence of the localization of different

aspects of memory processing in multiple brain regions

during recollection episodes, as indicated by studies of

people with amnesia [20] and by patterns in fMRI activity

[21,22]. Collectively, these findings indicate that a broad

and distributed brain network underlies our ability to store

and recall life experience. More specifically, this model pro-

poses that autobiographical memory is generated by the

interaction of (i) multiple within-modality stimulus-encoding

subsystems; (ii) multisensory integration subsystems includ-

ing those that integrate (a) visual, tactile and auditory

inputs to provide a unified representation of local space,

and (b) visual, olfactory, gustatory, tactile and emotional sig-

nals to encode reward value; (iii) a narrative reasoning

subsystem that can prime search; and (iv) an event memory

subsystem that binds multisensory information to encode

traces of specific experienced events. The different elements

of this system can be mapped to distinct brain areas, the sen-

sory areas to the relevant cortical (and subcortical) sensory

regions, the multisensory areas to some of the integrative

capabilities of the sensory [23] and orbitofrontal [24] cortices,

emotional areas to the limbic system and event memory to

the extended hippocampal system (e.g. [25,26] and below).

In the model, multiple subsystems are involved in encoding

and retrieving memories, with the event memory subsystem

serving specifically to bind together the multiple elements,

contemporaneous or sequential, of an event.

Rubin’s framework was primarily conceived of as a

model of autobiographical memory; however, the same net-

work could also support imagination if primed with a cue

corresponding to an imagined future event rather than an

actual past event. This proposal is supported by evidence

that the ‘default network’, a system of interlinked areas of

the temporal, frontal, parietal, cingulate and retrosplenial

cortices, shows increased activity when people are awake

but, at rest, has been found to be active during both

memory and imagining (see [2] for review and [27] for a

detailed discussion of this close relationship between episodic

memory and MTT).

Studies of human autobiographical memory further indi-

cate that while memories are recovered via the loop through

the hippocampal system, the outputs of that system generate

activity within sensory, parietal and prefrontal areas that

reconstruct the recollected event [28]. As described by Dase-

laar et al. [21], recall follows a clearly defined temporal

trajectory—early activity in the hippocampus, and in related

structures such as retrosplenial cortex, is thought to corre-

spond with accessing the memory trace, while later activity

in the visual, left prefrontal and parietal cortices appears to

be involved in its reconstruction. This interpretation is sup-

ported by evidence that the reported ‘vividness’ of recalled

memories is correlated with the strength of activity in

visual and prefrontal areas. Activity in the amygdala, corre-

lated with emotional intensity of the recalled event, and

occurring during the early access phase, suggests a role for

emotion in cueing recall [4].
(b) Latent variable models of memory
It is a widely held tenet of associative and connectionist the-

ories of memory that we can think of the instantaneous

pattern of neural firing across a distributed neural network

as a point in high-dimensional space, and of the temporal
dynamics of activity changes in such a network as a trajectory

through such a space (e.g. [29,30]). A second starting point for

the current model is therefore the hypothesis that the differ-

ent subsystems that comprise figure 1 can be considered as

latent variable (LV) spaces whose dimensions encode salient

characteristics of the physical and social world. The dimen-

sions of each variable space are latent because they are

inferred by the brain rather than given in the sensory data;

this makes the nature of memory encoding modality-specific

(different LV representations for different stimulus types)

while relying on universal principles for encoding/decoding.

To efficiently encode rich data streams, a key property of

these subsystems must be the capacity to reduce the band-

width of incoming signals; however, memory must also be

a generative process if it is to rekindle patterns of brain activity

that are similar to those induced by the original event. In

other words, the different memory subsystems must support

both pattern compression—the encoding of an event in a

compact and efficient way, and pattern generation—the recon-

struction of the event given a cue. Pattern generation must

allow both pattern completion—the filling out of a memory

based on a fragment or a partial cue, and pattern separation—

the ability to recall, as distinct patterns, events that share

some of the same sensory properties. More specifically, and

as described next, in implementing a version of the model

shown in figure 1, we will view the operation of the sensory

and multisensory memory systems as being analogous to

learning processes that discover useful low-dimensional LV

descriptions of high-dimensional data, and that operate

bi-directionally both to encode high-dimensional stimulus

patterns and to reconstruct such patterns from their

low-dimensional description.

Many computational models have been proposed that

capture interesting properties of human memory at different

levels of abstraction and biological detail. Our interest is in

matching the functional properties of human autobiographi-

cal memory and MTT and in creating a system that can

operate in real time during human–robot interaction. We

have therefore selected a modelling approach that is compu-

tationally efficient that can support the requirements for

pattern compression/reconstruction discussed above, and

that is relatively easy to interrogate and understand. Specifi-

cally, we employ an abstraction of biological memory

processes that directly implements the notion of LV space

called Gaussian process latent variable models (GP-LVMs) [31].

GP-LVMs are probabilistic, non-parametric equivalents of

neural networks that have many useful properties including

the ability to discover highly compressed LV spaces and

to act as content-addressable memories and generative

models. Statistically, GP-LVMs can be considered as a form

of factor analysis and related to classical approaches such

as principal component analysis while adding the capability

for nonlinear dimensionality reduction. A GP-LVM is

described by a set of Gaussian kernels that jointly define an

LV space and a set of anchor points that encode a represen-

tation of a subset of the data (or interpolations thereof)

within that space. The particular variant of GP-LVM that

we used in this article employs a Bayesian method to extract

LVs and to optimize the set of anchor points [32,33]. An

important extension of the GP-LVM approach is manifold
relevance determination (MRD), which allows the joint optimiz-

ation of two or more LV models each derived from different

modalities or views [33–35]. MRD is predicated on the idea
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Figure 2. A two-dimensional SSM for faces. (a) The two-dimensional LV space obtained from the high-dimensional face image data; coloured points represent saved
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of an imagined face that merges features from two different people. & 2016 IEEE. Reprinted, with permission, from Martinez-Hernandez et al. [38].
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that each view contains information that is private or exclu-

sive to that view, together with information that is shared

across the views. The multiview learning capability enabled

by the MRD algorithm allows the different views to decide

the importance (if any) of each latent dimension to that

view, while the shared view extracts LV dimensions that cap-

ture the variance that is common across views. Further

extensions of the GP-LVM approach that could be useful

for modelling human memory include the ability to stack

LVMs in hierarchies [36] or as ‘deep’ models [37].

We will hereafter refer to the use of a single GP-LVM

within our robot memory system as a simple synthetic memory
(SSM). As described below, we have primarily applied SSMs

to encode memories within a single sensory modality/

stimulus type; however, SSMs can also be trained to efficiently

encode memories across heterogeneous sensory modalities,

using the multiview approach, or within a broader framework,

to combine memories across modalities or within an event

(see §4). We next describe the operation of an SSM for face

recognition as an illustration of this approach.

Figure 2 shows a two-dimensional LV space generated

using stimuli extracted from the visual feed provided by

the cameras on our iCub robot and consisting of multiple

images of the faces of three individuals. These faces were

detected using a standard template-based face-detection

approach but then extracted as rectangular 200 � 200 grey-

scale pixel patterns (see [35] for details). An SSM model

was generated, as shown in the figure, where the two-

dimensional LV space encodes patterns in the 40 000-

dimensional space of face image data. In the figure, the

coloured points show the locations in LV space of the

observed faces and the images on the right show recon-

structed faces corresponding to three locations within the

space. The background grey-level pattern across the space

indicates the system’s estimate of how certain it is of its ability

to reconstruct the sensory stimulus—dark areas indicate low

certainty, and light areas high certainty. In an interaction

scenario, uncertainty could be used to trigger certain types

of social interaction, for instance, requesting confirmation of

identity (e.g. in figure 3), or could be used to decide how
much weight is given to evidence from different sensory mod-

alities. In the model shown, the system is confident in

reconstructing faces in areas near to the observed data, indi-

cated here by the two faces labelled with the solid red and

blue arrows. It is less certain in unsampled areas, such as

that labelled by the dotted orange arrow, where it nevertheless

reconstructs a plausible face that merges the appearance of the

two nearest individuals.

Note that chunking and pattern separation are naturally

manifested within the SSM formulation. For instance, when

a set of faces is presented to the model, the low-dimensional

encoding naturally clusters similar patterns within the latent

space that typically correspond to different individuals. In the

robot implementation described in §3, we represent the class

labels (people’s names) as a second latent space and use the

multiview approach to optimize the global separability of

both latent spaces.
3. A multimodal memory system for
the iCub robot

To validate our approach, we have implemented a multimodal

memory system for the iCub humanoid robot and have

demonstrated its ability to learn and recognize faces, voices,

actions and touch gestures through interaction with people.

Further details and pointers to code and data files are provided

in the electronic supplementary material; in this section, we

describe the different modes of memory retrieval available in

this system and explain how we have implemented SSMs for

a number of different modalities/stimulus types.

(a) System implementation
Our implementation of a multimodal memory system, as

illustrated in figure 4, includes the set of LV models together

with the supervisory computational processes needed to

query the system (classify incoming sensory data and/or to

generate sensory reconstructions), and to control data

acquisition, training and model optimization.
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Taking the example of face recognition, the process starts

with the collection of a small labelled dataset of approxi-

mately 400 images per person (this constitutes 2–3 s of

interaction with the iCub with the template extraction

running). In the current implementation, the supervisor

recognizes the addition of a new dataset and allows the

user to train relevant SSM models. Work is in progress to

implement online learning/updating of the SSM models

using graphical models (see §4) to obviate the need for any

human intervention in the training process.

During human–robot interaction, different modes of

memory retrieval are available to control processes external

to the multimodal memory system that can initiate memory

retrieval and potentially trigger an associated response from
the robot such as an action or a verbal report. Our current

implementation uses three different sampling modes—

continuous, past_buffered and future_buffered—as described

next. Each mode specifies how the incoming sensory data

are collected, classified and used by the memory system, but

all sampling modes operate using the same core SSM models.

Psychologists have distinguished two kinds of memory

retrieval—voluntary and involuntary [39]. Involuntary memory

is the spontaneous recovery of a memory triggered by a stimulus

or context. The sensory cues that trigger involuntary memory

are typically central features of the remembered event—you

see a face and you are reminded of who it is and the last

time you met—this helps you frame the interaction you are

about to have. The first mode of operation of our system,

http://dx.doi.org/10.14419/jacst.v4i2.4749
http://dx.doi.org/10.14419/jacst.v4i2.4749
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continuous, constantly monitors the incoming data stream and

a classification happens as soon as a previously trained per-

cept is recognized. When this happens, the classification is

stored in a buffer and a trigger event is broadcast that

could be used by external processes (e.g. to greet the user).

The continuous mode of operation is similar to the notion

of human involuntary memory, because memory retrieval

happens automatically whenever an appropriate stimulus is

received.

Human voluntary memory, by contrast, is the active recall

of a specific memory. In the laboratory, you might be pre-

sented with a sensory cue, such as a picture of a friend,

and be asked to generate related memories. In everyday

life, you might try to remember the last time you saw your

friend, and this might invoke the memory of a visit to a

coffee shop last Thursday and of the conversation that you

had there. In the case of both past_buffered and future_buffered
sampling, the robot explicitly triggers a request for a classifi-

cation within an SSM. The difference between these two

modes depends on whether the stimulus pattern that is

used to cue recall is already held within a sensory buffer

( past_buffered), or the robot actively seeks for a relevant

stimulus in its environment ( future_buffered); an example of

the latter would be to search for a face to classify at the

start of a human–robot interaction episode. The past_buffered
version of recall can be used to explicitly interrogate the

system for specific memories and therefore has similarities

to human voluntary memory.

The pattern completion capabilities of SSMs mean that

memories are content addressable; for instance, part of a

face can be used to retrieve a whole face, or a feature such

as long hair or glasses could be used to retrieve plausible

matches. Note that SSMs also allow for the construction of

fantasy events or patterns that are possible but have never

been observed (e.g. [35]); in other words, they can implement

a form of imagination. In this case, a label is sent to the system

to identify which class of sensory data is to be generated and

the supervisor samples the relevant SSM to generate an

exemplar.

(b) Simple synthetic memories for different modalities
Figure 5 presents results obtained from the current

implementation of iCub’s multimodal memory showing

five different SSM modules and confusion matrices indicating

their accuracy for exemplar training/test datasets. The figure

also shows acquired LV spaces for the SSMs supporting

person recognition from audio and visual data streams.

Figure 6 illustrates the face and action recognition SSMs

operating in real time during a human–robot interaction.

We have already described some of the capabilities of our

system for storing and recalling faces, next we summarize

memory formation and retrieval of human voices, haptic

interactions and actions performed on objects.

(i) Audition
Our auditory models have so far focused on human speech as

a key element of human social interaction. We focus on social

cues available from speech rather than on spoken word rec-

ognition; for instance, speech can be used to identify a

speaker and his/her emotional state. To encode auditory

memories, we use Mel-frequency cepstrum coefficients
(MFCCs) [41] to construct data vectors for training an SSM.
MFCCs are a standard approach in speech processing that

characterizes the speech signal in terms of the power present

in several frequency bands (and as such approximate the

Fourier transform of the power spectrum of an audio

frame). In the first stage of feature extraction, an utterance

is extracted by segmenting the audio based on periods of

silence. Subsequently, this utterance is divided into frames

of equal temporal length and MFCC features are extracted

from each frame.

A dataset for auditory speaker recognition was collected

by asking participants to read a collection of sentences;

these recordings were then segmented into utterances and

the SSM trained/tested on an 80/20 split. The speaker recog-

nition SSM, illustrated in figure 5a, demonstrates good

clustering and separation of the different participants and

also shows clustering of similar voices close to each other

when taking into consideration the nationality/accents of

the different participants. Specifically, C, D and G are

French and thus clustered close to each other. Conversely,

T is German, D is Maltese, while H is Korean and M is Italian.

The emotion recognition SSM shown in figure 5b was trained

on data from the Berlin Database of Emotional Speech [42],

achieving an overall accuracy of 78% on an 80/20 split of

the dataset. The confusion matrix indicates good separation

of the classes other than ‘boredom’ and ‘neutral’ which are,

perhaps unsurprisingly, hard to distinguish. Work is in

progress to validate emotion recognition using data from

real-time interactions in our own laboratory.
(ii) Haptic interactions
In the case of haptic interactions, we wanted to be able to

identify different classes of user physical interaction with

iCub’s ‘skin’ during social touch. We defined a set of haptic

interactions, such as hard touch, soft touch, caress and

poke, and formed a dataset by asking participants to interact

with the tactile surfaces on iCub’s arms in these different

ways. The touch SSM was able to recognize the different

stimulus classes with an overall accuracy of 95% [38]. We

have shown elsewhere that a tactile memory of this kind

can be used to close the loop between social touch and the

robot’s expressed response [43,44].
(iii) Actions
To identify actions performed on specific objects, we com-

bined stereo vision and depth tracking of objects using

iCub’s cameras with the mapping and depth tracking of a

stick figure frame of the user using a Microsoft Kinect
TM

sensor (see [45] for details). A particular challenge here was

the integration of different sensory sources with different

time lags and sampling frequencies as well as the inherent

temporal structure of the task. As detailed in Camilleri and

Prescott [40], our approach used a temporal to spatial conver-

sion that mapped periods of action into labelled intervals. We

used the object location from iCub’s cameras together with

the hand location of the agent interacting with iCub to clas-

sify a set of four actions, performed on graspable objects

within iCub’s field of view. The action recognition confusion

matrix, shown in figure 5e, demonstrates that this model is

capable of correctly classifying an action 75% of the time

with the remaining 25% being false negatives with no false

positives.
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(iv) Face recognition
The results for the face recognition SSM, which used a multi-

view approach to associate names with faces, are shown in

figure 5f. The figure shows a well-clustered latent space that

distinctly encodes three faces in two dimensions as expected

from the pilot study data shown in figure 2.
(v) Reconstructing the sensory scene
As previously noted, recall and imagination are generative

processes that involve the rekindling of activity in primary

sensory areas including visual cortex. To express this, we

have developed the visual memory inspector (VMI), illustrated

in figure 7, to provide a window into the ‘first person’ world



Figure 6. Real-time operation of iCub SSM models for faces and actions. The
inset shows a side on view of the scene that includes the human interlocutor.
The large video screen behind iCub shows the real-time view from iCub’s
right-eye camera with the face and arm/hand areas segmented, the LV
spaces for faces (top left) and actions (bottom left), and the face extracted
from the current scene (bottom centre) and its reconstruction (from the face
SSM).

current mode: past

Figure 7. Generation of objects of interest and agents from a textual descrip-
tion of past memory within the VMI; recalling the scene within the context of
a three-dimensional simulator that includes simulated physics could allow
iCub to imagine and rehearse possible actions within the scene.
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of the iCub [46]. The VMI builds on a physics-based, three-

dimensional simulation engine which is integrated with the

multimodal memory to visually display how the current

scene, or a restored memory, is represented by the iCub.

This is done by taking the current classification labels for all

SSM models, if we are visualizing the present, or the parsed

textual description of a past memory, then using the generative

capability of the memory system to re-imagine different

elements of the scene. These generated recollections are then

formatted into a visual description and displayed within the

VMI. So far, the VMI has only been demonstrated for face rec-

ognition, but future work will extend this to actions, speech

and haptic interactions. Owing to its integration with a full

physics engine, the VMI can also be used to simulate/visualize

actions and to plan action sequences before carrying them

out in the physical world. Analogous internal simulation pro-

cesses have been proposed to underlie human common-sense

reasoning and action planning (e.g. [47]).
4. Discussion and ongoing work
The above results demonstrate that we are already making

progress in our effort to provide iCub with some of the
components of the memory system illustrated in figure 1;

we conclude by briefly discussing how this system could be

extended towards a more complete model of human autobio-

graphical memory and MTT, and how such a system might

be deployed in future social robots.
(a) Multisensory integration and scene understanding
The Rubin model includes multisensory integration subsys-

tems concerned with spatial and value learning. These are

certainly only a subset of the multisensory representations

involving human memory; indeed, purely unisensory rep-

resentations in the human neocortex may be rare, even in

the primary sensory areas [48]. Multisensory data can be rep-

resented in two different ways within the SSM approach.

First, we can choose to consolidate multiple sensory streams

within one multisensory LV space, which is the approach we

took for action learning. Alternatively, and more flexibly, we

can maintain different LV representations for different mod-

alities and separately represent their shared properties; this

is the multiview learning approach introduced in §2. Using

this approach, the latent space of one view is mapped on to

the latent space of the other and the training objective is to

maximize the separation of clusters in both views while keep-

ing an accurate, continuous and bidirectional mapping

between both spaces. In the context of human memory, the

multiview approach could provide a new way of thinking

about multisensory activity in the cortex. For instance, studies

of multisensory responses in primary sensory cortices

suggest possible roles for cross-modal interactions in atten-

tion regulation, stimulus enhancement and in reducing

trial-to-trial variability [49]. Thus, rather than directly repre-

senting the stimulus properties of the other modality, the

coordination across two modalities could be concerned with

enhancing the representation of unimodal information

within each separate modality as suggested by the multiview

approach.

For our robot memory system, we are interested in using

multiview learning to compactly represent what is shared by

sequences of camera frames while also encoding information

about what is unique in each different frame. This can pro-

vide an efficient way to encode temporal sequences (see

below for discussion and additional approaches). We are

also developing multisensory SSMs that combine vision,

touch and proprioception to create a robot self-model and

to represent the peripersonal space around the robot (see

[50–52] for related work in this direction). Such models

could provide the basis for safer human–robot interaction,

and could support the development of a robot self-other

distinction [3].

Deep learning approaches have been shown to be power-

ful methods for recognizing complex, high-level features

in sensory scenes; moreover, the different feature-types

abstracted in successive layers of such networks can show

interesting similarities to the gradient of complexity in the

human ventral visual pathway [53]. Deep GP-LVMs could

show a similar capacity to extract useful representations

while learning from much smaller datasets [37], thus

coming closer to our human ability to learn from a small

number of examples [54]. Hierarchical GP-LVM models also

show promise for efficiently encoding temporal sequences

and for constructing structured representations of complex

scenes [36].
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(b) The event memory subsystem
In the theoretical framework, we are investigating whether a

key role is served by the event memory subsystem that

binds together the different components of an event, both syn-

chronously and sequentially, and does so in a way that allows

similar but distinct events to be maintained as separate

memory traces. Hasselmo [26] has provided a detailed descrip-

tion and review of the extended hippocampal system (EHS)

consistent with the proposal, originally made by Marr [25],

and further developed through a large number of models

and studies, that the EHS provides the brain substrate for an

event memory subsystem. Here, we briefly discuss the differ-

ent elements of the EHS and consider how our robotic

memory system could be extended to support their function.

On the input side of the EHS, the entorhinal cortex (EC)

acts as the convergence zone, via parahippocampal and peri-

rhinal cortices, for information from different sensory

modalities. Investigations of EC indicate a ‘what versus

where’ distinction in the types of information encoded by

its antero-lateral and posterior-medial areas [55]. Responses

in antero-lateral EC, to stimuli such as physical objects and

human faces [56], are consistent with a low-dimensional

encoding of non-spatial features of the physical and social

world, and their emotional value, as might be delivered by

our SSM models. The discovery of grid cells in the medial

EC in rats [57], and evidence of the role of human and rat

EC in temporal coding [58], implies a parallel encoding of

the spatio-temporal features of events. The dentate gyrus

(DG) receives divergent input from EC and provides a sub-

strate that could support sparse encoding, thereby

increasing dimensionality and improving pattern separation;

this interpretation is supported by imaging data showing

better separation of activity patterns generated by similar

events in DG compared to either EC or CA3 [59]. The attrac-

tor dynamics of the hippocampal circuits in CA3, which

receive inputs from EC and DG, is thought to support an

associative memory that provides rapid binding of the differ-

ent elements of an event (as discussed further below). Finally,

CA1, and pathways back to EC via the subiculum, could pro-

vide decoding of CA3 patterns into stimulus representations

that could be matched against incoming data to validate

predictions (e.g. [60]) or reconstructed elsewhere in the

brain as patterns of remembered/imagined experience.

Various mechanisms have been proposed that could

underlie the storage/retrieval of sequential memories in the

EHS (see [26] for review). These include recurrent connectivity

in CA3, the grid cell representation in EC [57,58], ‘time’ cells in

CA3 [61] and the overall attractor dynamics of the EHS (e.g.

[62]). Neuronal activity could specifically encode timing

within an event or could participate in generating a temporal

sequence through mechanisms such as theta phase precession

(e.g. [63]). Various approaches to sequence encoding have

been investigated with GP-LVM models. These include convert-

ing temporal patterns into structural ones, as in our models of

voices and actions discussed above, and using multiview learn-

ing to optimize storage across and within frames [33,34].

Dynamical models have also been developed that introduce

prior information about the temporal nature of the encoded

information (such as smoothness and periodicity) into the

Gaussian kernels. This method has been successfully used to

capture temporal patterns from motion capture data of people

walking or running [33].
It is a basic requirement of episodic/autobiographical

memory to be able to store and retrieve an event that only

happens once; however, this is a major challenge for

models of the EHS based on associative memory (see [26]).

The SSM approach faces the same difficulty which is the

requirement to have a dataset containing multiple instances

in order to configure an LV space. It is worth noting that

the data requirements for an SSM are relatively low when

compared with approaches such as deep neural networks;

however, we still require multiple data points that are homo-

geneous to a given sensory modality/stimulus type. To

address this challenge of rapid, one-shot learning, we are

investigating the use of hybrid multilayer models that mix

probabilistic graphs with SSM models to implement a form

of fast associative memory (see figure 8 for an example illus-

tration). The graphical part of the model allows for the

encoding of events as they transpire (for an example of unsu-

pervised graphical modelling of everyday human activity, see

[64]); this resembles CA3 as it should be capable of rapidly

encoding event information across multiple modalities. After

the graphical encoding is carried out, these nodes can be clus-

tered with respect to the information they contain and the data

attached to groups of homogeneous nodes then used to train

SSM models. This process, which can occur offline, would

allow for the generalization of events that occur frequently,

while reducing the overall size of the graph.

(c) Memory as symbol grounding for robot
social cognition

Together with colleagues, we have also been incorporating

SSM memory models into a brain-inspired control architec-

ture for the iCub robot called distributed adaptive control
(DAC) [65,66]. This system is being advanced towards an

integrated model of social cognition for human–robot

interaction (see [45,52]) that includes a reactive interaction

engine, goal-directed behaviour based on a simulated

motivation/drive system, and state-of-the art subsystems

for perception, motor control and planning. The DAC frame-

work provides a high-level conceptual scheme that seeks to

capture the cognitive architecture of the human mind and

that consists of four tightly coupled control layers. Whereas

the lower three layers, which provide somatic, reactive and

adaptive capabilities, operate largely in the here and now,

the fourth ‘contextual’ layer adds the ability to store and

retrieve event memories, linked to goal achievement, that

can also act as action plans. The SSM modules described

here can be conceived of as belonging to the DAC adaptive

layer but contributing to the construction of episodic and

declarative memories at the contextual level. The contextual

layer also includes the ability to form symbolic representations

of events in narrative (linguistic) form that allow the robot to

summarize and communicate about its past experiences.

Using this narrative system, iCub can recall and discuss past

events, including some of its past interactions with people,

from a first-person perspective. In other words, this architec-

ture is able to support some of the functions of the

‘narrative’ and ‘search’ subsystems in figure 1 (see [67] for

further details). One longer-term goal is to integrate this narra-

tive construction process with an SSM-based memory system

such that narrative descriptions can be abstracted from rep-

resentations of events as patterns in LV space via the
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capacity, using multiview learning, to acquire linguistic labels

for people, objects and actions. Using the generative capabili-

ties of SSMs, retrieved narratives could also be played out as

simulated sensory scenes through the VMI.

We consider that linking narrative, and symbolic/linguistic

processes more generally, with sensory memory via SSMs can

provide a solution to the problem of ‘symbol grounding’ in

artificial intelligence [68] and thus play a role in generating

intentionality—the capacity of mental states to be about

something. Specifically, we propose that the kinds of represen-

tations provide by SSMs match the requirements suggested by

Harnad [68] for grounded representations in two ways. First,

by employing learning to form non-symbolic low-dimensional

encodings of the invariant features of salient perceptual

categories—such as objects, people and events in the robot’s

environment—SSMs encode internal representations that

have a non-arbitrary mapping to properties of the external

world. Second, by allowing, through the generative capabili-

ties of SSMs, the reconstruction from linguistic tokens of

sensory patterns that are similar to those impinging on the

robot’s sensory transducers, we demonstrate that those

tokens, and any symbolic manipulation that employs them,

can be grounded in patterns of activity that are similar to

the ‘proximal sensory projections of distal objects and

events’ [68, p. 335]. In other words, via a loop through the

robot’s memory system, sensory experience can be encoded

into a linguistic form that can support forms of symbolic/

narrative reasoning then decoded back into patterns of sensor

activity that resemble those generated by direct experience.

(d) Using brain-inspired memory systems in
social robots

While this work is still at an early stage, we are already seeing

some potential benefits of deploying memory systems
modelled on those found in the human brain in social

robots. For instance, integrating SSM models in the DAC

architecture for iCub has enhanced the robot’s capability

for recognizing social actors and actions [45,52]. We foresee

the following benefits from the further development of the

systems we have described here towards a more complete

model of human autobiographical memory and MTT:

(i) The involuntary mode of memory retrieval should assist a

robot to fill out its current understanding of a social setting

both by recognizing actors and their actions and by

recalling aspects of past interactions with those actors,

including their emotional associations. Pattern completion

triggered by social cues should help the robot to retrieve

information that is relevant (thus helping to circumvent

the AI frame problem) and should assist the robot to

select behaviour that is more appropriate to the current

setting and better matched to user needs.

(ii) The voluntary mode of retrieval could be used to retrieve

specific memories of past interactions on request and could

serve as a reminding function. For instance, the robot could

recall a past interaction and describe it to, or recreate

it for (via the virtual memory inspector), the human

interlocutor.

(iii) The capacity to reconstruct past episodes could serve as

the basis for planning future behaviours, using memory

for outcomes to decide if sequences of action are applicable

and worth repeating. This is already happening in the

DAC architecture where action plans, represented as

graphical models, can be accessed based on goal cues

extracted from human speech. The memory models we

are developing should allow new plans to be abstracted

from experience.

(iv) The virtual memory inspector could also be used as an

action planning system to rehearse behaviours before
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performing them in the real world, and to internally

observe whether they achieve their intended consequences.

Beyond these specific uses, we see a role for biomimetic

memory systems, alongside systems for narrative construc-

tion and internal simulation, in providing robots with the

ability to represent themselves as entities that exist, persist

and act in time. Adding the ability to model the same

capacity in others (e.g. [69]), within a broader human-like

cognitive architecture [52], will lead to artificial others that

are able to better comprehend, and participate in, our

human social world.
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2008 Internally generated cell assembly sequences
in the rat hippocampus. Science 321, 1322 – 1327.
(doi:10.1126/science.1159775)

63. Yamaguchi Y. 2003 A theory of hippocampal
memory based on theta phase precession. Biol.
Cybern. 89, 1 – 9.

64. Wu C, Zhang J, Sener O, Selman B, Savarese S,
Saxena A. 2018 Watch-n-Patch: unsupervised
learning of actions and relations. IEEE Trans. Pattern
Anal. Mach. Intell. 40, 467 – 481. (doi:10.1109/
TPAMI.2017.2679054)

65. Verschure PFMJ. 2012 The distributed adaptive
control architecture of the mind, brain, body nexus.
Biol. Insp. Cogn. Arch. 1, 55 – 72.

66. Verschure PFMJ, Pennartz CMA, Pezzulo G. 2014 The
why, what, where, when and how of goal-directed
choice: neuronal and computational principles. Phil.
Trans. R. Soc. B 369, 20130483. (doi:10.1098/rstb.
2013.0483)

67. Pointeau G, Dominey PF. 2017 The role of
autobiographical memory in the development of a
robot self. Front. Neurorobot. 11, 27. (doi:10.3389/
fnbot.2017.00027)

68. Harnad S. 1990 The symbol grounding problem.
Physica 42, 335 – 346.

69. Breazeal C, Gray J, Berlin M. 2009 An embodied
cognition approach to mindreading skills for socially
intelligent robots. Int. J. Robot. Res. 28, 656 – 680.
(doi:10.1177/0278364909102796)

http://dx.doi.org/10.1126/science.1164685
http://dx.doi.org/10.1126/science.1164685
http://dx.doi.org/10.1037/0033-295X.84.5.413
http://dx.doi.org/10.1037/0033-295X.84.5.413
http://proceedings.mlr.press/v9/titsias10a.html
http://proceedings.mlr.press/v9/titsias10a.html
http://www.cs.utexas.edu/~aistats/
https://ieeexplore.ieee.org/document/7866589
https://ieeexplore.ieee.org/document/7866589
http://dx.doi.org/10.1080/741942071
http://dx.doi.org/10.1007/BF02943243
http://www.isca-speech.org/archive/interspeech_2005
http://www.isca-speech.org/archive/interspeech_2005
http://dx.doi.org/10.1109/IJCNN.2016.7727848
http://dx.doi.org/10.3389/frobt.2018.00022
http://dx.doi.org/10.1073/pnas.1306572110
http://dx.doi.org/10.1016/j.tics.2006.04.008
http://dx.doi.org/10.1016/j.neuron.2010.07.012
http://dx.doi.org/10.1109/TCDS.2017.2649225
http://dx.doi.org/10.1371/journal.pone.0163713
http://dx.doi.org/10.1371/journal.pone.0163713
http://dx.doi.org/10.1109/TCDS.2017.2754143
http://dx.doi.org/10.1109/TCDS.2017.2754143
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
http://dx.doi.org/10.1016/j.tics.2006.05.009
http://dx.doi.org/10.1016/j.tics.2006.05.009
http://dx.doi.org/10.3389/fnhum.2015.00628
http://dx.doi.org/10.1073/pnas.1411250111
http://dx.doi.org/10.1073/pnas.1411250111
http://dx.doi.org/10.1038/nrn3766
http://dx.doi.org/10.1016/j.neuron.2017.04.003
http://dx.doi.org/10.1523/JNEUROSCI.0518-16.2016
http://dx.doi.org/10.1523/JNEUROSCI.0518-16.2016
http://dx.doi.org/10.1109/IJCNN.2010.5596681
http://dx.doi.org/10.1109/IJCNN.2010.5596681
http://dx.doi.org/10.1038/nrn3827
http://dx.doi.org/10.1126/science.1159775
http://dx.doi.org/10.1109/TPAMI.2017.2679054
http://dx.doi.org/10.1109/TPAMI.2017.2679054
http://dx.doi.org/10.1098/rstb.2013.0483
http://dx.doi.org/10.1098/rstb.2013.0483
http://dx.doi.org/10.3389/fnbot.2017.00027
http://dx.doi.org/10.3389/fnbot.2017.00027
http://dx.doi.org/10.1177/0278364909102796

	Memory and mental time travel in humans and social robots
	Introduction
	From brain theory to synthetic memory
	A framework for understanding human memory
	Latent variable models of memory

	A multimodal memory system for  the iCub robot
	System implementation
	Simple synthetic memories for different modalities
	Audition
	Haptic interactions
	Actions
	Face recognition
	Reconstructing the sensory scene


	Discussion and ongoing work
	Multisensory integration and scene understanding
	The event memory subsystem
	Memory as symbol grounding for robot  social cognition
	Using brain-inspired memory systems in  social robots
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding

	Acknowledgements
	References


