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The conserved transmembrane proteoglycan Perdido/Kon-tiki is
essential for myofibrillogenesis and sarcomeric structure
in Drosophila
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ABSTRACT

Muscle differentiation requires the assembly of high-order structures

calledmyofibrils, composed of sarcomeres. Even though themolecular

organization of sarcomeres is well known, the mechanisms underlying

myofibrillogenesis are poorly understood. It has been proposed that

integrin-dependent adhesion nucleates myofibrils at the periphery of

the muscle cell to sustain sarcomere assembly. Here, we report a role

for the gene perdido (perd, also known as kon-tiki, a transmembrane

chondroitin proteoglycan) in myofibrillogenesis. Expression of perd

RNAi in muscles, prior to adult myogenesis, can induce misorientation

and detachment of Drosophila adult abdominal muscles. In

comparison to controls, perd-depleted muscles contain fewer

myofibrils, which are localized at the cell periphery. These myofibrils

are detached from each other and display a defective sarcomeric

structure. Our results demonstrate that the extracellular matrix receptor

Perd has a specific role in the assembly of myofibrils and in sarcomeric

organization. We suggest that Perd acts downstream or in parallel to

integrins to enable the connection of nascent myofibrils to the Z-bands.

Our work identifies theDrosophila adult abdominal muscles as amodel

to investigate in vivo the mechanisms behind myofibrillogenesis.
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INTRODUCTION
The study of muscle development and maintenance is crucial for

better understanding the basis of myopathies. Muscle development

is a multistep process that is conserved across the animal kingdom.

It starts with the specification of muscle precursor cells, the

myoblasts, which either fuse to each other to form the

multinucleated muscles or differentiate into cardiomyocytes.

While fusion is taking place, muscles migrate and attach to

tendon cells. Then, at late stages during muscle morphogenesis,

final differentiation of the muscles takes place by the assembly of

myofibrils (Schejter and Baylies, 2010; Schweitzer et al., 2010).

Muscles contain dozens of myofibrils, which are rod-like
structures composed of the repetition of the basic functional
unit of the muscle: the sarcomere. Sarcomeres are contractile

units composed of interconnected thin (actin) and thick
(myosin) filaments and several associated proteins, including
Tropomyosin, Troponin, Titin, Zasp, CAPZ and a-actinin, among
others. Myofibrillogenesis is initiated by the formation of a

regular array of sarcomeres, which later on grow in width and, in
some cases, in length. Contiguous sarcomeres attach to each other
by the crosslinking of their thin filaments to actin-binding a-

actinin at the so-called Z-disc. Thus, the Z-discs hold the
sarcomeres in register as the muscles contract and prevent them
from coming out of alignment when muscles stretch (Katzemich

et al., 2012). Thick filaments are also crosslinked to each other
in the middle of the sarcomere at the M-line. Myofibrils are
connected to other components of the cell cytoskeleton and

internal organelles, such as the transverse tubules, sarcoplasmic
reticulum and microtubules, as well as to each other. Peripheral
myofibrils are also connected to the sarcolemma (cell membrane)
and to the extracellular matrix (ECM) at specialized integrin

adhesion sites called costameres (Ervasti, 2003). In addition,
myofibrils termini also attach to the skeleton through integrins at
the so-called myotendinous junction (Sanger et al., 2005; Sparrow

and Schöck, 2009).

Studies in tissue culture and genetic model organisms have

shed light onto the genetic, cellular and molecular basis of
myofibril assembly (Sanger et al., 2005; Sparrow and Schöck,
2009; Rui et al., 2010). There are two prominent models
for myofibrillogenesis. In the ‘independent assembly model’,

proposed by Holtzer and colleagues, microfilament bundles act as
a scaffold during sarcomere assembly (Holtzer et al., 1997). I-Z-I
complexes containing actin filaments, a-actinin and Titin are

organized in register on these filamentous structures. Full-length
myosin thick filaments assemble independently and incorporate
in these preformed structures (Schultheiss et al., 1990). In

the ‘premyofibril model’, proposed by Sanger and co-workers,
premyofibrils, which contain transitory arrays of I-Z-I complexes
consisting of nonmuscle myosin II and sarcomeric actin attached

to precursors of Z-discs (Z-bodies) rich in a-actinin, form at
the periphery. Premyofibrils develop into mature myofibrils
concurrent with a replacement of non-muscle myosin II by
muscle myosin II. Then, Z-bodies grow and align longitudinally

in the future Z-disc through a contractility-dependent maturation.
As maturation proceeds, many myofibrils are displaced to the
interior while being connected to each other by the inter-Z-disk

bridges (Rhee et al., 1994). In an extension of the premyofibril
model, integrin adhesion sites (IAS) are proposed to be key
in nucleating the first components of myofibrils (Sparrow and

Schöck, 2009). In this scenario, IAS, also called protocostameres,
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act as nucleation sites for a-actinin recruitment, which then
causes the assembly of premyofibril-associated Z-bodies.

This model is based on genetic evidence from several model
organisms including mice, Drosophila and C. elegans (reviewed
in Sparrow and Schock, 2009). In all of them, integrins
are required for sarcomere assembly and Z-disc formation.

Furthermore, in Drosophila and C. elegans, integrins are the
most upstream components in myofibril assembly. However,
despite this crucial role for integrins in myofibrillogenesis,

the mechanisms by which integrins get localized and act
in coordination with other important proteins during
myofibrillogenesis remains unclear.

The Drosophila adult muscles have proven to be an excellent
model system to study the genetic, cellular and molecular basis
of myogenesis (Chen and Olson, 2004; Beckett and Baylies,

2006). Morphologically, there are two major muscle types in the
Drosophila adult: fibrillar muscles, which are present exclusively
as indirect flight muscles, and tubular muscles, which include
the jump, leg and abdominal muscles (Peckham et al., 1990;

Schönbauer et al., 2011). In this work, we used the adult
abdominal muscles as our model system to study adult
myogenesis in vivo. The abdominal muscles are located just

beneath the epidermis, so they are accessible to microscopic
visualization, and are amenable to genetic analysis. Adult
abdominal muscles develop de novo during metamorphosis

from pools of myoblasts present in the larva. Proliferating
myoblasts are in close contact with abdominal nerves and migrate
out across the developing abdominal epidermis. This migration is

followed by myoblast fusion and segregation into cell groups
to form multinucleated muscle precursors. Muscle precursors
migrate at both ends to find and attach to their tendon cells
located in the overlying ectoderm (Currie and Bate, 1991; Dutta

et al., 2005; Krzemien et al., 2012). At this point, muscle
differentiation starts with the newly developed myofibers
entering in the hypertrophic phase of growth, where the muscle

volume increases owing to massive expression of structural genes
and the assembly of the contractile apparatus.

The gene perdido/Kon-tiki (perd) is expressed in muscles and it

is required for the development of the embryonic myotendinous
junction. perd encodes a conserved single-pass transmembrane
chondroitin sulfate proteoglycan, an adhesion protein ortholog of
the mammalian receptor CSPG4. Perd contains laminin globular

extracellular domains and a small intracellular domain with a C-
terminal PDZ-binding consensus sequence (Estrada et al., 2007;
Schnorrer et al., 2007). In addition, perd genetically interacts with

integrins during embryonic myogenesis (Estrada et al., 2007).
Interestingly, perd mutants are embryonic lethal, even though the
muscle detachment phenotype affects only a subset of the

embryonic muscles. In order to investigate possible additional
functions of perd during myogenesis, we have studied its function
in the context of adult fly muscles.

Here, we have identified Perd as a key regulator of
myofibrillogenesis in the Drosophila adult abdominal muscles.
We show that the expression of perd-specific RNA interference
(RNAi) constructs in the muscles before adult myogenesis starts

can induce misorientation and detachment of Drosophila adult
abdominal muscles, a phenotype similar to the one described in
the muscles of perd mutant embryos. In addition, perd-depleted

muscles contain fewer myofibrils than control muscles. The few
remaining myofibrils found in perd-depleted muscles localize at
the periphery of the cell, are detached from each other and present

a defective sarcomeric structure. We propose that the ECM

receptor Perd has a specific role in the assembly of myofibrils and
in sarcomeric organization. In our model, Perd acts downstream

or in parallel to integrins to enable the connection of nascent
myofibrils to the Z-bands. In addition, our work presents the
Drosophila adult abdominal muscles as a new genetically
tractable model to investigate in vivo the cellular and molecular

mechanisms of myofibrillogenesis.

RESULTS
Perd is required for the development of adult muscle fibers
Given the role of Perd during embryonic muscle morphogenesis
(Estrada et al., 2007; Schnorrer et al., 2007), we decided to

analyze Perd function in adult myogenesis. To this end, we
used the GAL4/UAS system to express perd-specific RNAi
lines starting from the larval period, prior to adult abdominal

myogenesis, in larval myoblasts (Bate et al., 1991; Brand and
Perrimon, 1993; Dietzl et al., 2007). We utilized the Mef2-GAL4
driver to express two UAS-perd RNAi lines, JF01159 and
106680, which target exons present in all known perd isoforms

(Fig. 1A; Flybase). Quantification of perd mRNA levels showed
that, although expression of the 106680 line reduced the mRNA
levels by 80.4% relative to the controls, line JF01159 was less

efficient, as it decreased perd mRNA levels by only 17%
(Fig. 1B).

Knocking down perd by expressing the 106680 line in the

thoracic indirect flight muscles causes a strong muscle
detachment phenotype and the rounding of the muscles (data
not shown), similar to the phenotype in perd mutant embryos.

The rounded shape of these muscles obstructs the study of muscle
morphogenesis and subsequent differentiation, as sarcomeric
proteins collapse at the center of the muscle (Rui et al., 2010).
Thus, we turned to the analysis of abdominal muscles, which

are less affected by perd knockdown and can maintain some
morphological features. The dorsal abdominal musculature
contains two types of muscles, the dorsal abdominal adult

muscles and a set of persistent larval muscles (PLMs). Both types
of muscles are oriented along the anterior–posterior axis and
attach to tendon cells in the overlying epidermis (Bate et al.,

1991; Krzemien et al., 2012) (Fig. 1D). We found that the
expression of either of the perd RNAi lines in myoblasts from the
larval period onwards prevented the eclosion of young adults
from the pupal cage. This process requires muscle contraction,

including that of the PLMs. Consistent with this, PLMs from
Mef2-GAL4.UAS-perd RNAi abdomens (hereafter referred
to as perd-depleted abdomens) were always detached and

formed myospheres (Fig. 1E,F). This mutant phenotype was
less conspicuous in the dorsal abdominal muscles, which required
the co-expression of perd RNAi lines with Dicer to induce muscle

detachment (supplementary material Fig. S1A). Thus, consistent
with its role in the embryo, Perd is also required for muscle
attachment in the adult. In addition to the above phenotypes,

perd-depleted abdomens always displayed an abnormal uneven
distribution of muscles, rendering abdomen areas devoid of
muscles (Fig. 1F, see below). Interestingly, the adult abdominal
muscles were often misoriented and thinner (Fig. 1C,E,F;

supplementary material Fig. S1A). As expected, the phenotypes
due to expression of line 106680 were stronger than those
obtained with line JF01159 (Fig. 1E,F). Thus, from now on, we

will refer only to the results obtained with line 106680. In order to
validate these results we expressed the line 106680 under
the adult-muscle-specific 1151-GAL4 line. These abdomens

presented misoriented dorsal abdominal muscles, which were
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thinner than the controls and formed muscle bundles
(supplementary material Fig. S1B), similar to those in Mef2-
GAL4.UAS-106680 abdomens (Fig. 1F).

Perd is required for proper adult muscle targeting and
segregation
To study the muscle phenotypes of perd-depleted abdomens in

more detail, we analyzed in vivo muscle migration. In control
abdominal muscles, unfused adult myoblasts start migrating at
13 hours after puparium formation (APF) from lateral positions

of the pupal abdomen along the dorsal nerve towards the
midline (supplementary material Movie 1). This movement
takes place underneath the overlying migrating epidermis.
Later, myoblast fusion occurs at 20 to 26 hours APF, while

migration continues. Myoblasts then coalesce into small groups
that form the anlagen of individual muscle fibers and align
parallel to one another in an anterior-posterior direction. At

33 hours APF most muscles are already properly segregated and
oriented (Bate et al., 1991) (Fig. 2A; supplementary material
Movie 1). In vivo analysis of myoblast migration in perd-

depleted abdomens showed that, by 26 hours APF, some
muscles failed to arrange along the anterior–posterior axis, so
that by the end of myogenesis more than 50% of the muscles

were abnormally oriented (Fig. 1F, Fig. 2B; supplementary
material Movie 2). In addition, perd-depleted muscles failed to
segregate from each other and arrange into muscle bundles,

suggesting that the grouping of myoblast into discrete pools to
individualize the different muscles is affected upon perd

depletion (Fig. 1F; Fig. 2B; supplementary material Movie 2).
Taken together, these results show that perd is also required in

the adult to control myogenesis, including muscle attachment,
orientation and segregation.

Founder myoblast number and myoblast fusion are normal in
perd-depleted muscles
As mentioned above, perd-depleted abdomens showed gaps in

their muscle distribution (Fig. 1F). In order to test whether this
was due to a role for perd in muscle specification, we quantified
the number of muscles per hemi-segment in control and
experimental abdomens (n59). We found that silencing perd

in myoblasts did not affect muscle number (Fig. 3A).
Furthermore, given that, like in the embryo, the number of
adult abdominal muscles is directly related to the number of

founder myoblasts (Dutta et al., 2005), our results suggest that
perd is not required to specify the correct number of muscles
founder cells in the adult abdomen. This is in agreement with

results obtained in the embryo where perd is not required for
founder cell specification (Artero et al., 2003; Estrada et al.,
2006; Estrada et al., 2007).

Perd-depleted adult abdominal muscles were thinner than
wild-type muscles (Figs 1, 3). In the adult fly, as it is the case
during embryogenesis, muscles form by myoblast fusion. In this

Fig. 1. perd RNAi expression causes
defective adult muscle development.
(A) Schematic representation of the perd

genomic region. The sequences targeted by
the two RNAi constructs used are indicated.
UTR sequences are represented in red, and
the exons in green. Black lines represent the
introns. (B) Quantitative PCR data shows that
expression of either of the two RNAi
constructs results in a reduction in perd

mRNA levels, with the 106680 construct
being more efficient (means6s.d., n52).
(C) Quantification of the percentage of
misoriented dorsal abdominal muscles per
hemisegment (means6s.d., n59). Bars
labeled with different letters indicate
statistically significant differences.
(D–F9) Confocal micrographs of control
muscles (D,D9), and muscles expressing
RNAi against perd (E–F9) labeled with
Rhodamine–Phalloidin (red). D9, E9 and F9

are magnifications of the white boxes in D, E
and F, respectively. (D,D9) At 80–100 hours
APF, control dorsal abdominal muscles orient
parallel to the anterior–posterior axis and are
homogenously distributed along the
abdominal segment. (E–F9) Expression of
either of the perd RNAi constructs results in
misoriented dorsal abdominal muscles
(arrows) and complete detachment of the
PLM. (F,F9) In addition, expression of the
RNAi 106680 construct causes abnormal
distribution of the dorsal abdominal muscles
with regions devoid of muscles (double arrow)
and muscle bundles (asterisk). These
muscles are thinner than the controls. A3, A4
and A5 indicate the corresponding abdominal
segments. H, heart. Scale bars: 20 mm.
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process, new myoblasts incorporate into growing muscles
allowing them to reach their final size. Thus, the reduced
muscle width observed in perd-depleted muscles could be due to

defective myoblast fusion. To test this possibility, we quantified
the number of nuclei per muscle in both wild-type and perd-depleted

abdomens. We found that wild-type and perd-depleted adult
abdominal muscles contained the same number of nuclei, which
on average was between eight and eleven (Fig. 3B–D) (Mukherjee

et al., 2011). These results show that the abnormal size of perd-
depleted muscles is not due to fusion defects. However, it is worth

Fig. 2. In vivo analysis of control
and perd-depleted adult muscles.
Stills taken from live imaging of
control adult myoblasts (A) and
myoblasts expressing perd RNAi
106680 (B) (n57). Larval, adult
abdominal muscles, and hemocytes
are labeled with mCD8–GFP.
Muscles of the second abdominal
segment are shown. See cartoon at
the right of the panel for illustration.
(A) From 20 to 33 hours APF, control
pupae adult myoblasts migrate,
orientate along the anterior–posterior
axis and separate into individual
muscle fibers. (B) perd-depleted adult
myoblasts are sometimes
misoriented (arrowhead) and fail to
separate properly. Red-hatched lines
indicate the adult myoblasts and the
forming muscle fibers. ML, midline;
HC, hemocytes. Scale bars: 50 mm.

Fig. 3. Reduction of perd function does not affect muscle number
or number of nuclei per muscle. Quantification of the number of
muscles per hemisegment (means6s.d., n59) (A) and nuclei per
muscle (means6s.d., n59) (B) in wild-type and perd-depleted
abdomens. ns, not significant. (C,D) Maximum intensity projection of
muscles labeled with Rhodamine–Phalloidin (red) and the nuclear
marker TO-PRO 3 (green). Non-muscle nuclei are also labeled with
TO-PRO 3 but are located outside the muscle lumen. (D) Two perd-
depleted muscles are shown but only the delineated one is complete
and shows all its nuclei. (C) In wild-type muscles, nuclei are evenly
distributed along the muscle length. This distribution is affected in
perd-depleted muscles (arrowhead in D9). Scale bars: 20 mm.
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mentioning here that, although in wild-type abdominal muscles the
nuclei were evenly distributed along the muscle length, this was not

the case in perd-depleted muscles (Fig. 3D). This could reflect an
abnormal organization of the muscle cytoskeleton and/or organelles
(see below).

Perd is required for myofibril assembly
To identify the cause for the thinner appearance of perd-depleted
muscles, we measured muscle width at two time points of their

development, 50 and 100 hours APF. To this end, we stained
abdomens with Phalloidin to visualize filamentous actin, and
analyzed orthogonal optical sections of abdominal muscles. We

found that the width of wild-type abdominal muscles at 50 hours
APF was on average 7.8 mm, whereas at 100 hours APF it was
12.8 mm (Fig. 4A,B,E), demonstrating that, even though the

abdominal muscle pattern at 50 hours APF was completed (Bate
et al., 1991), muscles sustain significant growth during late
pupal development. Tubular muscles contain an internal lumen
devoid of actin where nuclei are found (Peckham et al., 1990;

Schönbauer et al., 2011). Our studies showed that the lumen was
maintained constant in size along development (supplementary
material Fig. S2), suggesting that the increase in width found in

wild-type muscles was due to an increment in myofibrils and
not in lumen diameter (Fig. 4A9,B9). Quantification of perd-
depleted muscles showed that they were thinner than wild-type

muscles, as their width at 50 and 100 hours APF was 5.5 and
7.9 mm, respectively (Fig. 4C–E). Interestingly, perd-depleted
muscles increased their diameter at a much lower rate than the

control ones, as the width of control muscles grows from
50 hours APF to 100 hours APF by 5 mm, whereas that of perd-

depleted muscles only grew by 2.4 mm. In addition, the lumen
perimeter of perd-depleted muscles was slightly but significantly
larger than the controls at 100 hours APF (supplementary
material Fig. S2). Our results strongly suggest that perd-

depleted muscles are thinner because they contain fewer
myofibrils than controls, pointing towards a role for perd in
adult myofibrillogenesis. To further test the role of Perd in

myofibrillogenesis, we looked at the pattern of expression of
Zasp–GFP (a protein-trap inserted in the genomic locus of the Z-
disc-associated protein Zasp66), which has been extensively

used to visualize muscle structure (Jani and Schöck, 2007).
In wild-type dorsal abdominal muscles, Zasp–GFP showed
a transversal banding distribution, reflecting the perfect

alignment of sarcomeres from different myofibrils (Fig. 4F).
Each band spanned the entire fiber width, from the sarcolemma
to the muscle lumen, which was devoid of Zasp–GFP expression
(Fig. 4F). Analysis of Zasp–GFP expression in perd-depleted

muscles showed that, even though the transverse banding pattern
was preserved, the bands were thicker and shorter, and were
confined to the periphery of the fiber (Fig. 4G). This suggests

that the only differentiated myofibrils with a sarcomeric
organization present in these muscles were positioned at the
periphery of the muscle, close to the sarcolemma. In addition,

we observed that Zasp–GFP was present not only in the Z-bands
of perd-depleted muscles but also in the cytoplasm surrounding
their nuclei. This could represent a pool of excess protein owing

Fig. 4. Myofibril assembly is disrupted in perd-depleted muscles. (A–D9) Confocal micrographs of muscles at 50 and 100 hours APF stained with
Rhodamine–Phalloidin (red). A9–D9 show orthogonal confocal cross sections of the muscles in A–D, respectively. The asterisk marks the muscle lumen.
(A–B9) From 50 to 100 hours APF, control muscles widen by increasing the amount of myofibrils. (C–D9) perd-depleted muscles are thinner than control at both
50 and 100 hours APF. (E) Quantification of the muscle width of both control and perd-depleted muscles at 50 and 100 hours APF (means6s.d., n527). Note
the perd-depleted muscles grow very little compared to control muscles. (F,G) Longitudinal confocal cross sections of the muscles, at 100 hours APF,
expressing Zasp–GFP (green) to label the Z-bands (Z). (F) In control muscles, Zasp–GFP is found in bands spanning the fiber width from the sarcolemma to the
muscle lumen. (G) These bands are thicker and shorter in perd-depleted muscles. In addition, some Zasp–GFP can be seen in the cytoplasm surrounding the
nuclei (N). (H) Quantification of the muscle length reveals that perd-depleted muscles are as long as controls (means6s.d., n527). ns, not significant;
***P,0.001. Scale bars: 5 mm.
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to a reduced number of assembled myofibrils (Fig. 4G). Finally,
despite the width differences, the length of perd-depleted

muscles was similar to controls (Fig. 4H), showing that perd

is not required for myofibril elongation. In summary, our results
show that Perd is required for myofibril organization and
differentiation, and thus it is essential for the proper growth of

adult abdominal muscles.

Perd is required for sarcomeric organization
The banding distribution of Zasp–GFP in perd-depleted
abdominal muscles might suggest that perd is not absolutely
required for sarcomeric organization. To further test this, we

analyzed in more detail the distribution of other structures and
proteins present in mature sarcomeres in the few myofibrils
present in perd-depleted muscles. We examined the expression of

the Z-disc proteins Zormin and Kettin, and the disposition of the
thin and thick filaments. In wild-type abdominal muscles, Zormin
and Kettin formed straight lines, owing to the proper alignment
and attachment of myofibrils at the Z-bands (Fig. 5B,D) (Bullard

et al., 2005; Hudson et al., 2008). In contrast, the Zormin- and
Kettin-positive lines in perd-depleted muscles were irregular

and discontinued (Fig. 5C,E), reflecting a role for Perd in the
alignment and attachment between myofibrils. In addition,

although Kettin expression extended at both sides of the Z-
bands in wild-type muscles, this did not occur in perd-depleted
muscles (Fig. 5D,E). To visualize the thin and thick filaments,
we used Phalloidin and antibodies against myosin heavy chain

(MHC), respectively. In wild-type muscles, Phalloidin labeled the
sarcomeric actin of the thin filaments, thus highlighting the H-
zone that appeared as a region devoid of Phalloidin (Fig. 5A,B).

Phalloidin staining of perd-depleted muscles showed that the H-zone
was absent or very much reduced in these muscles compared to
control (Fig. 5C). This was supported by the results obtained from

the analysis of MHC distribution in wild-type and perd-depleted
muscles. In wild-type sarcomeres, there were two bands devoid of
MHC staining, a narrow one corresponding to the Z-band and a

wider one, known as the bare zone (Tskhovrebova and Trinick,
2003) located within the H-zone (Fig. 5D). In agreement with the
results from the Phalloidin staining, we found that the bare zone was
absent in perd-depleted muscles (Fig. 5E). Overall, the analysis of

different sarcomeric proteins shows that Perd is required for the
proper organization of the sarcomeric structure.

Fig. 5. Sarcomeric structure is affected in perd-
depleted muscles. (A) Schematic diagram of the
sarcomeric structure. (B–E) Confocal micrographs
of control (B,D) and perd-depleted muscles (C,E).
(B,C) Rhodamine–Phalloidin (red) and anti-Zormin
antibody (green). In control muscles, the Z-band
protein Zormin forms straight lines (B); these are
discontinuous and irregular in perd-depleted
muscles (C). In addition, the H-zone (H), labeled by
the absence of Phalloidin in controls (B), is missing
in perd-depleted muscles (white asterisk in C),
Phalloidin staining also shows gaps between
myofibrils (arrowhead in C). (D) In control muscles,
Kettin is found at the Z-bands and extends towards
the central part of the sarcomere (arrow).
(E) However, in perd-depleted muscles, Kettin is
restricted at the Z-bands. In addition, MHC staining
(red) reveals that the bare zone (b), contained within
the H-zone, is also missing in perd-depleted
muscles (yellow asterisk). To facilitate sarcomere
visualization, the magnified regions are single
slices. Z, Z-band. Scale bars: 5 mm.
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Perd function in myofibrillogenesis is independent of its
function in myotendinous junction development
Myogenesis is a multistep process where muscle attachment
occurs prior to myofibrillogenesis (Sparrow and Schöck, 2009).
As many perd-depleted muscles showed a reduced attachment
area (Fig. 1D9,F9; Fig. 3C,D), it is possible that the defects found

in myofibrillogenesis were a consequence of aberrant muscle
attachment. To test this, we reduced the levels of Perd after
muscle attachment was established and analyzed myofibril

content in perd-depleted muscles that had normal attachment
sites. To test this, we expressed perd RNAi starting at 30 to
40 hours APF, by which time muscle targeting and attachment

have already occurred (Bate et al., 1991). Indeed, this treatment
resulted in perd-depleted muscles in which the length of the
attachment surface was similar to that in control muscles (Fig. 6).

Interestingly, we found that the myofibril content, as measured
by muscle width, was still compromised in these muscles
(Fig. 6B9,C). This result suggests that the role of Perd in
myofibrillogenesis is independent of its role in muscle

attachment sites.

Perd localizes to the muscle tendon attachment and the
costameres in adult abdominal muscles
To help us to understand the role of Perd in myofibrillogenesis
and sarcomeric organization during adult myogenesis, we studied

its expression pattern in adult abdominal muscles. Antibodies
against the Perd protein have revealed that Perd localizes at the
myotendinous junction in embryonic muscles (Schnorrer et al.,

2007). Unfortunately, our attempts to examine the expression of
Perd in adult muscles using these antibodies proved inconclusive

owing to inconsistent results and to the weakness of the signal. To
circumvent this problem, we used a Perd–HA fusion construct

that has been shown to rescue Perd embryonic function (UAS-
kon-HA) (Schnorrer et al., 2007). When we expressed Perd–HA
in adult muscles with the Mef2-Gal4 driver, we found that, in
addition to its localization to the myotendinous junction

(Fig. 7A), it localized in the sarcolemma in discrete
circumferential bands distributed along the muscle length
(Fig. 7A). This banding expression in the sarcolemma is in

register with the Zormin Z-bands from the underlying myofibrils
(Fig. 7A).

Costameres have been suggested to function in the lateral

transmission of contractile forces from sarcomeres across the
sarcolemma to the ECM (Ervasti, 2003). For this reason, and
taking into account the fact that many canonical focal adhesion

proteins, such as integrins, Talin, a-actinin and Vinculin, are
found in costameres, it has been proposed that costameres are
analogous to the focal adhesions found in non-muscle cells
(Sparrow and Schöck, 2009). In Drosophila, integrins localize to

costameres in the adult ventral abdominal muscles (Ribeiro et al.,
2011). In order to determine whether Perd–HA localizes to the
costameres, we have performed colocalization studies with

Perd–HA and integrins. We found that the circumferential
expression of Perd–HA indeed colocalized with the costameric
marker bPS integrin (also known as Myospheroid) (Fig. 7B).

Furthermore, genetic studies in Drosophila and in C. elegans

have highlighted a key role for integrins in myofibril assembly
(Volk et al., 1990; Hresko et al., 1994; Bloor and Brown, 1998).

Thus, we next decided to test possible interactions between perd

and integrins.

Fig. 6. An independent role for Perd function in myofibrillogenesis. (A–B9) Confocal micrographs of muscles stained with Rhodamine–Phalloidin (red) at
the end of pupal development. Dotted lines and white brackets indicate muscle width and attachment surface, respectively. (A) Control dorsal abdominal
muscles. (A9) Magnification of a control muscle showing its muscle attachment surface and its width, which can also be seen in the cross section in A9. (B) perd-
depleted abdomens, where RNAi was induced starting at 30–40 hours APF, once the muscle migration has finished and the muscle attachments have
been established. (B9) Magnification of a perd-depleted muscle. Note that this muscle is thinner even though it has an attachment surface similar to the control. A
cross-section of this muscle shows that it contains less myofibrils than the control. (C) Scatter plot of muscle widths (y-axis) in relation to their attachment
surface (x-axis) in control muscles, in muscles where perd-RNAi was expressed starting from larval (L) period 1 to 2, and in muscles where perd-RNAi was
expressed starting from 30 to 40 h APF. A3, A4 and A5 indicate the corresponding abdominal segments. Scale bars: 5 mm.
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Perd can function independently of integrins
A series of experiments have highlighted a role for integrins in
myofibrillogenesis in Drosophila. Cell culture experiments using
myotubes derived from Drosophila embryonic gastrula cells have

shown that bPS integrin localizes to the Z-bands. In addition,
myotubes derived from bPS mutant embryos undergo fusion but
fail to form stable Z-bands (Volk et al., 1990). Furthermore,

ultrastructural analysis of somatic and hindgut muscles has
revealed that bPS mutant muscles lack defined Z-bands (Volk
et al., 1990). Finally, muscles from embryos carrying an

amorphic mutation in the aPS2 integrin (also known as
Inflated) do not contain intervening H-zones (Bloor and Brown,
1998). Thus, as some of the integrin phenotypes resembled those
here described for perd, one possible mechanism by which

Perd could regulate proper myofibrillogenesis and sarcomeric
organization is through the regulation of integrin localization. To
test this hypothesis, we analyzed whether integrins were properly

localized in perd-depleted muscles. As was the case for the
abdominal PLMs, bPS localized at the muscle-attachment sites
and at costameres in wild-type adult dorsal abdominal muscles

(Fig. 8A) (Ribeiro et al., 2011). This localization was not affected
in perd-depleted muscles (Fig. 8B). Furthermore, Talin, a core
component of integrin adhesion sites, which is also found at

muscle attachment sites and Z-bands, localized normally in perd-
depleted muscles (supplementary material Fig. S3). These results
showed that Perd was not required for proper localization of focal

adhesion proteins at muscle attachment sites and costameres, and
suggests that Perd might function independently of integrins
during adult myofibrillogenesis.

DISCUSSION
The universal nature of myogenesis suggests that common
molecular mechanisms underlie this biological process.

Myogenesis leading to the formation of the Drosophila adult
muscles provides a promising, yet still quite unexplored, system
in which conserved molecules regulating this process can be

identified and characterized. Here, we present the adult
abdominal muscles as an ideal model system to unravel new
mechanisms underlying muscle morphogenesis in general, and
myofibrillogenesis in particular. Using this system, we have

studied the role of Perd, a conserved ECM receptor, in adult
muscles. We show that, as it is the case in the embryo, Perd is
required for muscle guidance and attachment in adult abdominal

muscles. In addition, our results uncover a new function for Perd
in myofibrillogenesis and sarcomeric organization.

A major finding of our study is that Perd performs an essential

role during adult fly myogenesis, which is crucial for the growth
of muscle fibers through myofibril assembly. This requirement is
highly specific to the myobrillogenesis process, as other features

in adult myoblast development, such as myoblast fusion or
specification of founder cells, appear unaffected when the levels
of perd are reduced. In addition, although Perd is required

Fig. 7. Perd localizes at muscle attachment sites and
costameres. (A) Confocal micrographs of muscles
expressing an HA-tagged Perd protein (tub-GAL80ts/+;
Mef2-GAL4/UAS-perd-HA) stained for HA (red) and Zormin
(green). Inner slice: an internal cross-section of these
muscles reveals that, although Zormin localizes to Z-
bands, HA-tagged Perd is mainly found at muscle
attachment sites (orange arrowhead). Outer slice: an
external cross-section showing that HA-tagged Perd also
localizes in discrete circumferential bands that juxtapose
the Zormin Z-bands (white dotted rectangle). Orthogonal
cross section of this region (white dotted rectangle)
showing that Perd surrounds the myofibrils. Perd is also
found in perpendicular stripes to the Z-bands, parallel to the
longitudinal axis of the muscle (orange arrow). (B) Confocal
micrographs of muscles expressing HA-tagged Perd
protein stained for HA (red) and bPS integrin (green). HA-
tagged Perd colocalizes with bPS at both the attachment
site (orange arrowhead) and the costameres (white arrow).
Scale bars: 5 mm.
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for muscles to properly attach to tendon cells, another key
step during myogenesis, we show here that the role of Perd

in myofibrillogenesis is independent of its role in muscle
attachment. It is interesting to note that Perd muscle
detachment can affect all dorsal adult muscles and only affects
a subset of the embryonic muscles (Estrada et al., 2007; Schnorrer

et al., 2007). We hypothesize that this could be owing to the
fact that all dorsal abdominal muscles from a segment are
morphologically and functionally similar. In contrast, each

embryonic muscle is unique in its morphology, size, attachment
sites and innervation, and might have different requirements for
the gene perd.

Studies in mice, Drosophila and C. elegans have highlighted
an essential role for integrins in myofibril assembly in vivo

by regulating sarcomeric assembly and Z-disc formation.

Furthermore, integrins have been proposed to act as starting
points for sarcomere assembly by initiating the assembly of actin
filaments at the muscle membrane (Sparrow and Schöck, 2009).
However, analysis of sarcomere organization in Drosophila

embryos lacking integrins, have shown that the association of
actin and a-actinin can occur in the absence of integrins. This
has led to the proposal of a new model for integrin function in

myofibrillogenesis in which integrins and other protein
complexes, such as Zipper, Zasp, a-actinin, the I-Z-I complex,
troponin–tropomyosin and MHC, assemble independently prior to

sarcomere formation. Subsequently, integrins act as anchor points
for the floating I-Z-I complex and provide tension that allows the
interdigitation of thin and thick filaments for de novo sarcomere

assembly. This, in turn, might facilitate the localization of

integrins on the cell membrane with a given periodicity (Rui
et al., 2010). We show here that Perd localizes at the sarcolemma

at the level of the Z-bands and that integrins and associated
proteins, such as Talin, localized correctly in perd-depleted
muscles. In addition, we show that initial myofibrillogenesis
takes place in these muscles. From these results, we propose that

Perd acts once integrins have anchored the initial sarcomeric
protein complexes to the surface of the muscles. In this scenario,
Perd could be required, downstream or in parallel to integrins, for

either the correct assembly of the sarcomeric complex or/and for
proper interactions between the recruited sarcomeric proteins (see
below). This, in turn, would be necessary for the incorporation

and assembly of newly formed myofibrils at the Z-discs, and for
subsequent growth of the muscle fiber. This is consistent with our
data showing that perd-depleted muscles are thinner than wild-

type muscles, appear frayed and present gaps between myofibrils.
In addition, we propose that Perd function in the assembly of a
functional sarcomeric complex at Z-discs might also be required
for correct sarcomeric organization. This is supported by our data

demonstrating that diminished Perd levels results in sarcomere
disorganization, as it is the case when different sarcomeric
components, such as Zasp, a-actinin or Zipper, are reduced.

Furthermore, reduction of integrin levels, while mantaining
muscle attachment, causes the absence of H-zone similar to
perd-depleted muscles (Bloor and Brown, 1998; Perkins et al.,

2010; Rui et al., 2010). The interaction of Perd with the ECM at
the Z-discs could enhance the tension transmitted through
integrins that is necessary for subsequent interdigitation of thin

and thick filaments. This could explain why lack of Perd results
in abnormal sarcomeric banding and absence of the H-zone.
Taken together, our results suggest a key role for Perd,
after the initial steps mediated by integrins, which is essential

for correct myofibrillogenesis and sarcomeric organization.
However, we cannot completely rule out the fact that the initial
myofibrillogenesis that takes place in perd-depleted muscles

could be due to residual levels of Perd, and not just to the function
of other important nucleating molecules, such as integrins. Thus,
it remains possible that the role of Perd during adult myogenesis

could be even more crucial and Perd, as is the case for integrins,
might also be required for the initial steps of myofibril assembly.

Interestingly, we have found a genetic interaction between perd

and integrins when simultaneously expressing the perd and mys

RNAis. We found that both muscle orientation and attachment
phenotypes were considerably increased when expressing
simultaneously both RNAis compared to the expression of each

RNAi alone. Although, the strong detachment phenotype due to
the expression of both RNAis did not allow us to assess the
sarcomeric structure, these results show that there is a genetic

interaction between perd and integrins during the process of adult
muscle myogenesis (supplementary material Fig. S4).

How could Perd regulate myofibrillogenesis and sarcomeric

organization at the molecular level? Perd is a conserved
chondroitin sulfate transmembrane proteoglycan that contains
two extracellular laminin G domains and a small intracellular
domain with a PDZ-binding consensus sequence, which serves

as a linkage to PDZ protein networks. Interestingly, some of
the proteins present at the Z-discs that are essential for Z-disc
formation and myofibril assembly, such as Zasp52, Zasp66 and

Zasp67 proteins, also contain a PDZ domain (Katzemich et al.,
2011; Katzemich et al., 2013). Thus, Perd might function by
regulating the localization of these PDZ-containing proteins.

Here, we have tested the localization of Zasp66 in perd-depleted

Fig. 8. Integrins localize properly in perd-depleted muscles.
(A,B) Confocal micrographs of control (A) and perd-depleted muscles
(B) stained for Rhodamine–Phalloidin (red) and bPS integrin (green). (A) In
control muscles, the bPS integrin localizes at the costameres (arrowhead)
and at muscle attachment sites (arrow). (B) This localization is not affected in
perd-depleted muscles. Scale bars: 5 mm.
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muscles. We found that even though it localizes to the Z-bands
of the few remaining myofibrils, there is a pool of cytoplasmic

Zasp66 that is not observed in wild-type muscles. Thus,
Perd could be required for proper recruitment of Zasp66 to
the Z-discs, which in turn might regulate the assembly of new
forming myofibrils and sarcomeric organization. Yet, we cannot

differentiate whether the abnormal cytoplasmic levels of Zasp66
observed upon reduction of perd levels are a cause or an effect of
defective myofibril assembly. In an alternative scenario, the

interaction of Perd with sarcomeric PDZ containing proteins
might not regulate directly their localization but it could interfere
with their ability to interact with other sarcomeric proteins, thus

compromising their function. Our results also show that Kettin, a
Drosophila isoform of Titin, is not properly localized in perd-
depleted muscles. As it is the case for vertebrate Titin isoforms,

Kettin binds to a-actinin, actin and other proteins at the Z-disc
through its N-terminus domain, while its long polypeptide chain
exits the Z-disc and transverse the I-band to bind to the distal part
of the thick filament (Machado and Andrew, 2000; Linke, 2008;

Sparrow and Schöck, 2009). Here, we show that in perd-
depleted muscles the H-zone seems to be absent. In addition,
we find that while Kettin localizes properly at the Z-band it

fails to extend toward the middle of the sarcomere. Thus, one
way to explain the absence of the H-zone in perd-depleted
muscles is that Perd could be required for the proper

localization of Kettin along the thick filament, which in turn
is required for proper filament interdigitation, and therefore the
formation of the H-zone. However, it is difficult to elucidate

whether the abnormal distribution of Kettin observed after the
reduction of perd levels is an effect of defective sarcomeric
architecture. In the future, it will be interesting to test, at both
biochemical and genetic levels, the putative interactions

between Perd and other proteins localized at the Z-discs. This
will allow us to establish functional relationships and
hierarchies between Perd and other sarcomeric proteins during

myofibrillogenesis.
The identification and functional characterization of genes

required for myofibril development and maintenance is key not

only for our understanding of the myogenesis process but also for
the diagnosis and treatment of some muscle diseases. Here, we
have identified a new specific function for the gene perd in the
assembly of myofibrils. We propose that Perd mediates the

connection between the ECM and the structural myofibril
components enabling the assembly of myofibrils. The function
of Perd orthologs in rats, mice and humans (CSPG4, also known

as NG2, AN2 and MCSP) has been mainly studied in glia and
melanocytes, where they are required for cell proliferation,
migration and adhesion. Interestingly, however, CSPG4 expression

has also been observed in the sarcolemma and in the neuromuscular
junction of human postnatal skeletal muscle, as well as in
regenerating myofibers (Petrini et al., 2003). Moreover, CSPG4

is a marker of human pericytes, a type of myogenic precursors
(Dellavalle et al., 2007; Meng et al., 2011). The expression of
CSPG4 in muscle cells together with the fact that it is upregulated
in Duchenne muscular dystrophy, and downregulated in merosin-

deficient congenital muscular dystrophy (MDC1A) muscles,
respectively (Petrini et al., 2003), suggest that Perd function in
myofibrillogenesis might be conserved. The myriads of tools

available to reduce the levels of a particular gene in a specific
moment of development in other organisms, such as mice, C.

elegans or zebrafish, will allow us to test this hypothesis in the near

future.

MATERIALS AND METHODS
Drosophila strains and genetics
Strain y1w118 was used as control. The following stocks were used: tub-

GAL80ts (7108), UAS-Dicer (24651) and UAS-perd RNAi JF01159

(31584) from Bloomington Drosophila Stock Center (http://flystocks.bio.

indiana.edu/). Kettin-GFP (ZCL2144) from FlyTrap (http://flytrap.med.

yale.edu/). UAS-perd RNAi (106680) and UAS-mys RNAi (29619) from

Vienna Drosophila RNAi Center (http://stockcenter.vdrc.at). Zasp-GFP

(110740) from Drosophila Genetic Resource Center (http://www.dgrc.

kit.ac.jp/). Mef2-GAL4 (Ranganayakulu et al., 1996). UAS-mCD8-GFP

(Lee and Luo, 1999). UAS-rhea-mCherry (Venken et al., 2011). UAS-

kon-HA (Schnorrer et al., 2007). 1151-GAL4 was a gift from Lingadahalli

S. Shashidhara (Centre for Celular and Molecular Biology, Hyderabad,

India). For transient expression assays, the different UAS lines were

crossed with tub-GAL80ts; Mef2-GAL4 at 18 C̊, and the UAS expression

was induced switching to 29 C̊. The temperature shift was made when

larvae were between the first and the second larval stage, unless otherwise

specified.

In vivo imaging of abdominal muscles
Pupae were staged as previously described (Bainbridge and Bownes,

1981). Pupae were filmed through a window in the pupal case as

previously described (Bischoff and Cseresnyés, 2009). We focused our

analysis on the dorsal side (tergite) of abdominal segment A2. All wild-

type imaged flies developed into pharate adults and hatched. Z-stacks of

around 70 mm with a step size of 2.5 or 3.0 mm were recorded every 150

or 180 s at 2362 C̊ using a Leica SP5 confocal microscope. Figures and

videos were made using Adobe Illustrator and ImageJ (NIH, Bethesda).

Immunohistochemistry and microscopy
Pupae were cut longitudinally at 80–100 hours APF, unless otherwise

specified. The dorsal parts of the abdomen were dissected in PBS, where

the internal organs were gently removed. The dissected tissues were fixed

in 4% paraformaldehyde in PBT (PBS containing 0.2% Triton X-100) for

20 minutes, washed in PBT for 30 minutes, and incubated with primary

antibodies overnight at 4 C̊. Subsequently, the dorsal parts of the

abdomen were washed, incubated with secondary antibodies for 1 hour

at room temperature, washed again for 30 minutes, and mounted in

Vectashield (Vector Laboratories). The primary antibodies used were:

rabbit anti-Zormin, 1:200 (gift from Belinda Bullard, University of York,

UK); rabbit anti-GFP, 1:400 (Life Technologies); rat anti-RFP, 1:200

(Chromotek); rat anti-HA High Affinity, 1:400 (Roche); rabbit anti-HA,

1:1000 (Abcam); mouse anti-bPS, 1:100 (DSHB); and rat anti-MHC

1:400 (Babraham Bioscience Technologies). The secondary antibodies

used were: goat anti-rabbit conjugated to Alexa Fluor 488, 1:200, goat

anti-rat conjugated to Cy3 and goat anti-rat conjugated to Cy5, 1:200

(Life Technologies). Stainings with Rhodamine–Phalloidin, 1:1000

(Biotium) or Alexa-Fluor-488–Phalloidin, 1:1000 (Life Technologies)

were made by incubating abdomens for 30 minutes at room temperature

after secondary antibody incubation. The DNA dye TO-PRO 3 1:1000

(Molecular Probes, Life Technologies) was incubated for 10 minutes and

washed just before mounting the samples. Confocal images were

obtained using a Leica SP2 microscope and processed with ImageJ

(NIH, Bethesda) and Adobe Photoshop. All the images shown are

maximum instensity projections, unless otherwise specified.

Data analysis
In order to quantify the experimental phenotypes, we considered muscles

to be misoriented when they showed a 45 -̊angle or greater with respect to

the anterior–posterior axis of the abdominal segment. Moreover, we

considered muscles as being detached when they presented a spindle or

myospheroid shape. We obtained width measurements in the central

region of each muscle.

We statistically compared differences in the variables of interest

among the different genotypes. Because variables often did not meet

parametric assumptions (i.e. did not show an underlying Gaussian error

distribution or presented heteroscedasticity), we used non-parametric

Mann–Whitney–Wilcoxon tests where only two genotypes were
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compared. Data on proportion of misoriented or detached muscles were

compared across genotypes fitting a generalized linear model with an

underlying binomial error distribution and a logit link function. Statistical

analyses were conducted using the R package (http://www.r-project.org/).

Results from quantification of muscle phenotypes are shown on the

figures so that bars indicate means and error bars indicate standard

deviation. Different letters indicate statistical differences among

genotypes so that bars marked with different letters are statistically

different whereas bars marked with the same letter are not.

Quantitative PCR
y1w118 (control), perd RNAi JF01159 and perd RNAi 106680 males were

crossed with Mef2-GAL4 females at 18 C̊ and switched to 29 C̊

when larvae were between the first and the second larval stage. TRIzol

reagent (Invitrogen) was used to isolate total RNA from late pupae.

Subsequently, the total RNA was treated with RQ1 RNase-Free DNase

(Promega). The DNA-free RNA was used to synthesize cDNA using

SuperScript III First-Strand Synthesis Supermix (Invitrogen). qPCR was

performed in a Mx3000P thermocycler (Stratagene) using Power SYBR

Green Master Mix (Applied Biosystems). Changes of the relative

expression levels were determined by using the 22DDCT method (Livak

and Schmittgen, 2001). Levels of Perd mRNA were normalized to RPL32

mRNA. Primer pairs: 59-CCGCCAACAAATCCACTACT-39 and 59-

ATCGAATTGGAAACGCTTGT-39 for Perd; 59-GCAAGCCCAAG-

GGTATCGA-39 and 59-CGATGTTGGGCATCAGATACTG-39 for

RPL32.
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Schönbauer, C., Distler, J., Jährling, N., Radolf, M., Dodt, H. U., Frasch, M.
and Schnorrer, F. (2011). Spalt mediates an evolutionarily conserved switch to
fibrillar muscle fate in insects. Nature 479, 406-409.

Schultheiss, T., Lin, Z. X., Lu, M. H., Murray, J., Fischman, D. A., Weber, K.,
Masaki, T., Imamura, M. and Holtzer, H. (1990). Differential distribution of
subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils.
J. Cell Biol. 110, 1159-1172.

Schweitzer, R., Zelzer, E. and Volk, T. (2010). Connecting muscles to tendons:
tendons and musculoskeletal development in flies and vertebrates.
Development 137, 2807-2817.
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