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Real Smart Home Data-Assisted Statistical Traffic
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Abstract—The majority of practical studies and analyses in
the context of the Internet of Things (IoT) have been carried out
assuming that data packet generation follows theoretical models
(typically a Poisson process with exponentially distributed packet
inter-arrival times) without previous experimental validation and
supporting evidence. In contrast to this approach, this work
proposes a novel experimental and mathematical framework
to determine statistical models for IoT data traffic. Based on
empirical data generated by common smart home devices (e.g.,
ambient temperature, luminous intensity, atmospheric pressure
and motion sensors) recorded over a full year using an ex-
perimental IoT subsystem, this work first shows that real IoT
traffic does not follow the Poisson process model conventionally
assumed in the literature, but rather depends on the type of
application. Consequently, we estimate the empirical statistical
distribution of the inter-arrival between data packets for several
smart home applications. The empirical distribution of the packet
inter-arrival times is fitted with some well-established classical
statistical distributions using the method of moments as well
as maximum likelihood estimation techniques, and the goodness
of fit is quantified using the Kolmogorov-Smirnov (KS) test.
Moreover, we also carry out a regression analysis to provide
mathematical relations between the distribution parameters and
the considered physical input parameters (ambient temperature,
luminous intensity and atmospheric pressure), which is particu-
larly useful in practical scenarios. Furthermore, an exhaustive
analysis of the variation of parameters over different time
scales and the autocorrelation characteristics of the data packet
generation are included as well. In summary, this work provides
accurate traffic models suitable for real-life IoT scenarios that
can be used for an adequate design and optimisation of future
communication networks to efficiently support IoT services.

Index Terms—Internet of Things, device-to-device, traffic mod-
elling, smart homes, Poisson process.
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C. Majumdar is with the Department of Electrical Engineering and Elec-
tronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom, and
also with Samsung R&D Institute India-Bangalore, Karnataka 560037, India
(email: chitradeep.majumdar@liverpool.ac.uk).
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I. INTRODUCTION

COMMUNICATION networks at present and in future
will not be just about connecting people, but are instead

evolving into billions of interconnected smart machine-type
devices that enable automatic data collection with minimal or
no human intervention. This concept, known as the Internet
of Things (IoT) [1], [2], is seen as the next stage of the
Information Revolution. The IoT paradigm used in conjunction
with social networking concepts treating physical parameters
as social objects [3] is another upcoming area that incorporates
the physical world with virtual cyber space. In order to realise
the vision to make the concept of IoT all-pervasive, researchers
have come up with several real-time IoT subsystems which
are highly efficient, robust, scalable and reliable. Different
designing and implementation challenges of one such efficient
IoT prototypes are discussed in [4]. End-user test cases such
as smart home applications, industrial equipment monitoring
and healthcare are some of the classical examples where
the IoT paradigm is used extensively. In [5], the acceptance
towards IoT by the end-users for smart home applications is
investigated and analysed mathematically based on structural
equation modelling. In [6], the authors blended an interesting
concept of physical IoT and cognition factor leading to a
cognitive dynamic system within smart home IoT space. A
smart home test case with a novel concept of mobile edge
computing providing autonomous, distributed, low latency and
efficient back-end computing infrastructure to support IoT for
next generation wireless standards is proposed in [7].

While mobile communication networks are expected to
become a key connectivity technology for IoT and will cer-
tainly support many of the anticipated new smart IoT services,
they have historically been designed to support human-related
services and as such are not perfectly suited to support the
new machine-based IoT services, which have a different set
of features and requirements [8], [9]. The work reported in
[10] presents an extensive survey of the issues associated with
Machine-to-Machine (M2M) applications in LTE, including
the challenges posed by the traffic issues of M2M communi-
cations both at the access and data channels and congestion
problems at the core network. The integration of IoT machine-
type traffic in mobile communication networks along with
human-driven traffic may have a significant impact on the
overall network performance [11], [12]. As a result, significant
thrust has been laid to come up with novel and efficient
protocols to integrate the IoT paradigm with current as well
as next generation mobile communication standards such as
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LTE-A Pro and the future 5G New Radio (NR) [13]–[16].
The next generation of cellular communication networks

will depend significantly on IoT data traffic. Therefore, it is es-
sential to accurately and realistically model the data traffic for
IoT-based applications. To this end, several models have been
proposed in the context of mobile communication networks,
typically based on different theoretical modelling approaches
such as the Source Semi-Markov Model (SSMM) [17], the
Coupled Markov Modulated Poisson Process (CMMPP) [18]
and the Coupled Markovian Arrival Process (CMAP) [19]
models. All of them make use of Markov chains with varying
numbers of states to model the state flow of machine-type
devices in a stochastic manner [20]. While aggregated traffic
models allow for relatively simpler and computationally ef-
ficient models [21], [22], source traffic models allow precise
traffic modelling at the expense of higher computational com-
plexity; however the independence of sources from each other
results in extra effort to model spatial or temporal correlations,
for example by means of spatial Point processes [23] or
spatially interacting Discrete-Time Markov Chains (DTMC)
[24]. The CMMPP model introduced in [18] allows capturing
spatial as well as temporal correlations with Poisson processes
as source traffic models and is effectively a compromise be-
tween source and aggregated models. Different statistical traf-
fic models generated from single source, aggregated sources
and hybrid models are elaborately illustrated in [25]. The
3GPP have also suggested some simple traffic models. Some
models are proposed in 3GPP TR 37.868 [26] for both unco-
ordinated/asynchronous and coordinated/synchronous traffic,
where packet arrival times are modelled as uniform and Beta
distributions, respectively. Other models are proposed in 3GPP
TR 36.888 [27] for two traffic categories, namely regular
reporting (described in terms of uplink interval time, packet
size and mobility features) and triggered reporting (where
traffic volume sizes are defined and packet inter-arrival times
are exponentially distributed) – a combined analytical traffic
model that takes into account the different characteristics
of both periodic fixed-scheduling and random event-driven
traffic is presented in [28]. Traffic models for IoT have also
been proposed in the context of other cellular scenarios such
as femtocells [29] and other technologies such as satellite
communication systems [30] and LoRaWaN [31] (a low power,
long range communication protocol developed exclusively to
support IoT-based applications).

In terms of statistical traffic modelling, all previous work
described above is primarily theoretical in nature. Most ex-
isting work assumes some form of (fixed or modulated)
Poisson process, which is a well-known model suitable for
mathematical analysis but lacks of supporting experimental
evidence in the context of IoT. As a matter of fact, the majority
of the existing work does not take into account any empirical
data for specific applications obtained with experimental IoT
platforms for a considerable duration of time. Therefore, to the
best of our knowledge there are no or too few works in the
available literature that have addressed the problem of traffic
modelling in the context of IoT from an empirical and more
realistic point of view. In our recent work in [32], [33] we
presented few of our preliminary results on IoT data traffic

modelling based on 10 weeks of real data. In this context,
this work presents a novel statistical modelling approach to
realistically model IoT traffic in a more exhaustive way, based
on one full year of recorded data, with detailed description of
the framework adopted. The main contributions, novelties and
distinguishing features of this work are summarised below:

• As opposed to previous work, which is primarily theo-
retical in nature, we propose a novel methodology for
traffic modelling in IoT based on a rigorous analysis of
empirical data generated by real IoT sensor devices. The
presented models are developed based on empirical data
captured using our in-house developed experimental IoT
subsystem [4], which implements real sensors typically
found in indoor smart home scenarios such as ambient
temperature, luminous intensity, atmospheric pressure
and motion detection. This approach ensures that the
obtained models are realistic and accurate.

• The period over which data are captured is one complete
calendar year, from 9am on 25 September 2017 to 9am on
25 September 2018, without any gaps (complete dataset
available at [34]). This long measurement period enables
not only the development of highly reliable models (as
opposed to models based on empirical data sets collected
over much shorter time periods) but also the study of
seasonal effects on the generation of data traffic related
with physical parameters. To the best of our knowledge,
this is the first modelling study for IoT traffic based on
an extensive measurement campaign of empirical data
collection for an interval as long as a complete year.

• Based on the captured empirical data, we show that
the widely employed Poisson process model with expo-
nentially distributed packet inter-arrival times is highly
inaccurate at the source level and therefore an unrealistic
and invalid model for IoT traffic sources in real scenarios.

• Consequently, we determine the statistical traffic models
for the packet inter-arrival times in a realistic indoor smart
home end-user test case, which is not available in the
literature. Exhaustive numerical analysis and analytical
tools are used to determine the statistical distributions that
could best fit different application types for a single multi-
sensor node with a differential data reporting scheme.
Moreover, the parameters of the best fitted distributions
are characterised as a function of the sensed physical
parameters. The developed traffic models can be used to
emulate realistic IoT-driven scenarios, which in turn could
be used to investigate, analyse and optimise different
design-related parameters of emerging mobile commu-
nication standards where IoT is an integral part.

• Finally, seasonal effects are investigated by analysing how
the traffic patterns associated with physical parameters
such as temperature, light and pressure are affected by
the different seasons of the year at different time scales.

The rest of this work is organised as follows. First, Section
II presents the employed experimental IoT platform and the
relevant methodological aspects. Section III then describes the
techniques used towards statistical fitting of the packet inter-
arrival times, while Section IV analyses the empirical data and
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Fig. 1. Experimental IoT subsystem considered in this work [4].

characterises the proposed traffic models in the context of the
considered scenario. Section V explores how several features
of the empirical data (concretely, correlations and seasonal
variations along the year at different time scales) affect the
traffic models. Finally, Section VI concludes this work.

II. EXPERIMENTAL PLATFORM AND METHODOLOGY

A. Experimental Setup

Experimental data were collected for a full year using our
in-house developed experimental IoT subsystem composed of
several IoT nodes as the one shown in Fig. 1 [4] and a
data collection node, powered from an uninterrupted power
supply to guarantee continuous operation for one complete
year without gaps. Each IoT sensor node comprises six sensor
modules typically found in an indoor smart home scenario
(elements 1 to 6), which are connected to a Raspberry Pi
minicomputer (element 7) in charge of collecting the sensor
data and facilitating the connection to the central processing
unit through a USB WiFi adapter (element 8). The sensor set
includes capacitive touch sensors (elements 1 and 2), a motion
sensor (element 3), a light sensor (element 4), a pressure
and temperature sensor (element 5), and an image sensor
module (element 6). However, in this work we focus on the
temperature, light, pressure and motion sensor data, which
are typically found in smart home environments. A detailed
description of each sensor and the complete IoT platform can
be found in [4]. A brief description of the sensors relevant to
this work is provided below:

• Passive Infra-Red (PIR) motion sensor (HC-SR501): This
sensor provides a logical high output when motion is
detected within a range of 7 metres and a 120-degree
angle. Once triggered the output remains high for an
adjustable interval, which is set to 5 seconds.

Physical
param.
value

Recorded but unreported sensed data
Recorded and reported sensed data

x1 x2 x3 x4 x5 x6 ···

Time

Sampling interval
(Ts = 200 ms)

D

D

D

D

Fig. 2. Differential data reporting strategy.

• Light sensor module based on TSL2591 sensor (Adafruit
1980): This high-range luminosity sensor contains infra-
red and full-spectrum diodes that can provide luminance
measurements of the infra-red and full-spectrum light.
Both values can be used to compute the luminance in
the human-visible spectrum and the corresponding lumi-
nosity perceived by the human eye (using an empirical
formula). In practice, this physical sensor integrates four
logical sensors (infra-red, human-visible/full-spectrum lu-
minance and human eye perceived luminosity).

• Pressure, altitude and temperature sensor module based
on MPL3115A2 sensor (Adafruit 1893): This module
consists of barometric pressure and temperature sensors.
Altitude can be obtained from pressure measurements.

The detailed sensor specifications along with the embedded
system block diagram and software implementation can be
referred from [4].

B. Data Reporting Scheme

An IoT based smart home system is usually designed to
sense and record raw data which are usually ambient physi-
cal parameters like ambient temperature, luminous intensity,
atmospheric pressure, motion detectors, surveillance images,
etc. However, more sophisticated IoT systems are envisaged
to be integrated with next generation mobile standards that
often requires to report the recorded data to a local gateway
in real-time for post-processing. This reporting of the data is
presumed to be carried out over the wireless medium through
various short and/or long range communication protocols
which is the main source of IoT traffic over the wireless chan-
nels. Therefore, the amount of IoT traffic generated strongly
depends on the reporting strategy.

The reporting strategy can be periodic or differential [4]. In
periodic reporting, the sensor data is periodically transmitted to
the gateway. In differential reporting, as shown in Fig. 2, a data
packet transmission is assumed when the absolute difference in
the physical parameter for temperature, atmospheric pressure
or luminous intensity with respect to the last report (shown
as blue arrows) is greater than a predetermined threshold ∆D
(shown in red colour) as per the system design requirement.
The analysis of the periodic reporting strategy is relatively
trivial as compared to differential reporting strategy since the
packet inter-arrival time is deterministic. In the differential
reporting scheme the inter-arrival time between data packets
will be a random variable as it is unknown when ∆D will
be satisfied, thus making it non-deterministic. For slowly
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Algorithm 1 Estimation of packet inter-arrival times
(based on emulation of differential reporting scheme)
Require: data, ∆D
Ensure: INTARRtime

1: Initialise: COUNTind = ∅, INTdeg = data(1), i = 1
2: while i < length(data) do
3: if |INTdeg − data(i+ 1)| ≥ ∆D then
4: COUNTind = COUNTind ∪ {i+ 1}
5: INTdeg = data(i+ 1)
6: end if
7: i = i+ 1
8: end while
9: if COUNTind = ∅ then

10: INTARRtime = ∅
11: else
12: INTARRtime = 200 ms×

×
(
COUNTind(2 : end)− COUNTind(1 : end− 1)

)
13: end if

changing physical parameters as the ones considered in this
work, the periodic reporting scheme will in general produce
a higher volume of data; therefore the differential reporting
scheme is a more convenient approach in the considered
scenario. Our motivation is to model the IoT traffic for the
differential reporting scheme by estimating the distribution of
the packet inter-arrival times. Even though under a differential
reporting scheme the packet inter-arrival times are related to
the variation patterns of the physical parameters, it can be
shown that both are governed by different processes and are
not related in a straightforward manner, which complicates the
analytical treatment of the problem and motivates the empirical
modelling approach considered in this work.

C. Estimation of Empirical Inter-Arrival Times

The experimental IoT subsystem was used to periodically
collect sensor data every 200 ms for a total interval of one
year. Data were transferred and stored at the CPU back-end.
A differential reporting mechanism was mimicked based on an
offline processing of the recorded data as shown in Algorithm
1, which takes the absolute difference ∆D as an input param-
eter along with the data and provides a set of packet inter-
arrival times (denoted as INTARRtime) estimated based on
the indices of the sensed data. Starting form the initial point
INTdeg , which is the first value of the sensed parameter,
data(1), the algorithm subsequently computes the index of
the next point at which the measured parameter (temperature,
atmospheric pressure or luminous intensity) increases or de-
creases by at least the specified differential threshold ∆D. The
indices of the points where such condition is met (i.e., the
points where a report, and therefore a packet, would be sent)
are added to the set COUNTind. Once the whole data set is
processed in the while loop, and assuming that some reports
have actually been sent (i.e., the set COUNTind is not empty,
denoted by ∅), then the inter-arrival times can be obtained
as the differences between consecutive elements of the set
COUNTind (which represents the number of data samples

between differential reports) multiplied by 200 ms (i.e., the
time interval between successive data samples).

The proposed algorithm can be used to mimic a differential
reporting scheme with an arbitrary threshold ∆D on any
data set collected periodically. This approach separates the
considered reporting mechanism from the actual physical
data collection process and provides a convenient way to
simplify both the implementation of the IoT subsystem and
the processing of the collected data since a single data set
can be exploited to mimic several reporting schemes and/or
configurations (periodic reporting with different periods as
well as differential reporting with different thresholds).

III. MODELLING OF THE INTER-ARRIVAL TIMES

As discussed in the previous section, the packet inter-arrival
time is a critical factor towards the characterisation of the
traffic patterns in the IoT network. The frequency of the
data packet generation at individual sensor nodes strongly
contributes towards the resulting overall traffic generation
supported by the network. Therefore, an adequate modelling
of the packet inter-arrival times at the sensor node level is
essential for a complete understanding of the traffic volumes
that future networks will need to support and their statistical
patterns. Most existing work assumes some form of (fixed
or modulated) Poisson process. The theoretical basis for this
model is the Palm-Khintchine theorem [35], which demon-
strates that the superposition of several independent processes
converges to a Poisson process as the number of superimposed
processes tends to infinity, irrespective of the statistics of
the individual component processes. The Poisson process,
which implies exponentially distributed inter-arrival times, is
a suitable model for aggregated IoT traffic (e.g., in the main
arteries of communication networks) and has been widely used
by researchers, engineers and standardisation bodies such as
the 3GPP [36], [37]. However, its popularity has sometimes
led to questionable applications of the model, including the
characterisation of the traffic generated by individual sources
or a reduced number thereof. This work demonstrates the inac-
curacy of this modelling approach and proposes more accurate
models by fitting the distribution of packet inter-arrival times
observed in the empirical data to several distribution models.

The packet inter-arrival times obtained from the empirical
data as detailed in Section II-C (which can be thought of
as samples of a random process X since the parameter
fluctuations are non-deterministic) are processed to calculate
their corresponding Empirical Cumulative Distribution Func-
tion (ECDF), FECDFX (x), which is the empirical probability
that the observed packet inter-arrival time is no greater than
the specified value, i.e., FECDFX (x) = Pr(X ≤ x).

Upon estimation of the ECDF of the empirical inter-arrival
times, the next step is to determine the distribution that would
provide the best fit to the ECDF. Seven classical distribution
models are considered, namely exponential (E), generalised
exponential (GE), Pareto (P), generalised Pareto (GP), log-
normal (LN), gamma (G) and Weibull (WB). The mathe-
matical expression for the CDF of these models, parameter
constraints as well as first and second order moments are
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TABLE I. Considered distributions: exponential (E), generalised exponential (GE), Pareto (P), generalised Pareto (GP), log-normal (LN),
gamma (G) and Weibull (WB). Parameters: µ (location), λ (scale) and α (shape). x represents the packet inter-arrival time. E {·} and V {·}
are the mean and variance of the distribution, respectively. ψ(·) is the digamma function [39, eq. (6.3.1)], ψ′(·) is its derivative. γ(·, ·) is
the lower incomplete gamma function [39, eq. (6.5.2)], Γ(·) is the (complete) gamma function [39, eq. (6.1.1)]. Reproduced from [40].

Distribution function Parameters Moments

FE(x;µ, λ) = 1− e−λ(x−µ) x ≥ µ > 0
λ > 0

E{x} = µ+ 1
λ

V{x} = 1
λ2

FGE(x;µ, λ, α) =
[
1− e−λ(x−µ)

]α x ≥ µ > 0
λ > 0
α > 0

E{x} = µ+
ψ(α+1)−ψ(1)

λ

V{x} =
ψ′(1)−ψ′(α+1)

λ2

FP (x;λ, α) = 1−
(
λ
x

)α x ≥ λ
λ > 0
α > 2

E{x} = αλ
α−1

V{x} = αλ2

(α−1)2(α−2)

FGP (x;µ, λ, α) = 1−
[
1 +

α(x−µ)
λ

]−1/α x ≥ µ (α ≥ 0)
x ∈ [µ, µ− λ

α
] (α < 0)

µ, λ > 0, α < 1/2

E{x} = µ+ λ
1−α

V{x} = λ2

(1−α)2(1−2α)

FLN (x;µ, λ) = 1
2

[
1 + erf

(
ln x−µ√

2λ2

)] x ≥ 0
µ ∈ R
λ > 0

E{x} = eµ+λ2/2

V{x} =
(
eλ

2 − 1
)
e2µ+λ2

FG(x;µ, λ, α) =
γ
(
α, x−µ

λ

)
Γ(α)

x ≥ µ > 0
λ > 0
α > 0

E{x} = µ+ λα

V{x} = λ2α

FWB(x;µ, λ, α) = 1− exp
[
−
(
x−µ
λ

)α] x ≥ µ > 0
λ > 0
α > 0

E{x} = µ+ λΓ
(
1 + 1

α

)
V{x} = λ2

[
Γ
(
1 + 2

α

)
− Γ2

(
1 + 1

α

)]

provided in Table I. Numerical fitting of these models to
empirical data is based on the Method-of-Moments (MoM)
and Maximum Likelihood (ML) [38]. The location parameter
(µ) is always estimated as the minimum inter-arrival time
observed in the empirical data, while the scale (λ) and shape
(α) parameters are estimated based on the MoM and ML
methods. In the MoM technique, the expressions for the
population mean and population variance shown in Table
I are equated to the sample mean and sample variance of
the empirical inter-arrival times, respectively, and then solved
for the desired distribution parameters. In the ML estimation
method, the log-likelihood function is first obtained as:

L(X;λ, α) = log

N∏
n=1

fX (xn;λ, α)

=

N∑
n=1

log fX(xn;λ, α) (1)

where fX(xn;λ, α) is the Probability Density Function (PDF)
of the considered distribution (which can be obtained by differ-
entiating the CDFs shown in Table I) and X = {xn}Nn=1 is the
set of N empirically-observed packet inter-arrival times, xn,
estimated as discussed in Section II-C and illustrated in Fig.
2. The distribution parameters are then estimated as the values
that maximise the log-likelihood function in (1). In the case of
the exponential and generalised exponential models, (1) leads
to analytically tractable expressions and, as a result, estimates
of the scale (λ) and shape (α) parameters are obtained by
solving ∂L(X;λ, α)/∂λ for λ and ∂L(X;λ, α)/∂α for α,
respectively. For the rest of considered distribution models, the
maximisation of the expression obtained from (1) is non-trivial
from an analytical point of view but can be accomplished with
numerical optimisation techniques such as gradient descent or
interior region methods. This provides an estimation of the

desired scale and shape parameters for the fitted distributions.
It is worth noting that in some cases none of the candidate

distributions shown in Table I may provide a satisfactory fit
to the ECDF. While new candidate distributions could be
introduced in the set shown in Table I, this would increase the
number of distribution models to be evaluated and therefore
complicate the analysis of the empirical data. An alternative
is to consider a weighted sum of distributions as follows:

F fittedX (x) = γFX(x;µ1, λ1, α1)

+ (1− γ)FX(x;µ2, λ2, α2) (2)

where two distributions of the same type but with different sets
of parameter values are weighted by the weighting parameter
0 < γ < 1. As shown in our previous work reported in
[33], this approach can provide significantly more accurate fits
to empirical data in those cases where a single distribution
function fails. Similar to the single distribution case, the
parameters of the model in (2) can be estimated based on
the MoM approach by equating the population moments of
the model in (2) to the sample moments of the empirical
inter-arrival times in order to produce a system with as many
equations as unknown parameters; this approach, however, will
not be used in this work as it will be discussed later on.
Alternatively, the parameters of the model in (2) can also
be estimated based on the ML approach as shown in (1)
after replacing the PDF with the equivalent weighted version
resulting from (2); a detailed description of this approach for
the relevant cases of interest will provided where required
(please refer to the Appendix for more details).

The fitting accuracy of the models in Table I (or a weighted
version thereof) to the empirical data is quantified in terms of
the Kolmogorov-Smirnov (KS) distance, which is defined as
the maximum absolute difference between the empirical dis-
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tribution, FECDFX (x), and the fitted distribution, F fittedX (x):

DKS = sup
x

∣∣∣FECDFX (x)− F fittedX (x)
∣∣∣ (3)

Since different parameter estimation methods may provide
different levels of accuracy for different distributions, the
models shown in Table I are fitted to the empirical data using
both fitting methods (MoM and ML) and the distribution
that provides the lowest KS distance (obtained with either
fitting method, MoM or ML) is selected as the best model. In
many practical scenarios, values of DKS ≈ 0.05 are typically
considered as a reasonable/good fitting accuracy [41].

The steps described so far in this section can be followed
to identify a distribution that provides a good fit for the inter-
arrival times of the packets that would be generated when each
of the considered physical parameters (ambient temperature,
luminous intensity and atmospheric pressure) are monitored
with a differential reporting method based on a certain varia-
tion threshold, ∆D. Moreover, the process would also provide
a set of sample values for the parameters of the distribution
(µ, λ, α), which would be useful in practical applications
of the models such as simulations or numerical evaluation
of analytical results obtained from these models. However,
from a practical point of view, it would be convenient to
express the distribution parameters (µ, λ, α) as a function
of the variation threshold considered by the periodic reporting
mechanism (∆D), which reduces the total number of variables
involved in the model to just one (i.e., ∆D), which in turn has
a clear relation with the monitored physical parameters.

This observation motivates the introduction of a second
level of modelling aimed at describing the relation between
the selected variation threshold ∆D and the corresponding
values of µ, λ and/or α in the resulting best-fitting distribution.
To this end, the fit provided by each candidate distribution
was evaluated for various values of ∆D within a predefined
interval and the distribution providing the lowest average KS
distance across such interval was selected as the best fitting
distribution for the physical parameter under study (in cases
with very similar average KS distances, the decision was made
based on the lowest variance of the KS distance). The values
of µ, λ and/or α that provided the best fit for each evaluated
value of ∆D were then used to find an appropriate model for
the distribution parameters (µ, λ and/or α) as a function of
∆D. A broad range of mathematically tractable functions were
explored to this end, including linear, polynomial, exponential,
Gaussian, sum of sines, Fourier and power series, and in all
cases it was found out that the most accurate fit was obtained
with the following generalised Gaussian model:

µ (∆D) =

K∑
k=1

ak e
−
(

∆D−bk
ck

)2

λ (∆D) =

K∑
k=1

ak e
−
(

∆D−bk
ck

)2

α (∆D) =

K∑
k=1

ak e
−
(

∆D−bk
ck

)2

(4)

(5)

(6)

where {ak}Kk=1, {bk}Kk=1 and {ck}Kk=1 are fitting coefficients1.
Note that with the proposed modelling approach, the end-

user of the model only needs to select a valid value of the
variation threshold parameter ∆D used by the differential
reporting mechanism, which represents the relative difference
in the observed physical magnitude (i.e., ambient temperature,
luminous intensity or atmospheric pressure) between two
consecutive data packets. Based on the selected ∆D, (4)–
(6) are then used to determine the value of the parameters
that need to be introduced in the best-fitting distribution from
Table I. The introduction of the second level of modelling
shown in (4)–(6) greatly simplifies the use of the models as the
only variable to be selected by the end-user is the differential
increment ∆D in the monitored physical parameter.

IV. ANALYSIS AND MODELLING OF THE EMPIRICAL DATA

The characterisation of the modelling approach proposed
in Section III requires the determination of two aspects, first
the distribution from Table I that provides the best fit to the
observed packet inter-arrival times, then the values of the
fitting coefficients for the expressions in (4)–(6), which are
both obtained based on the captured empirical data for each
physical magnitude as discussed in this section. For the first
aspect of the proposed modelling framework, the accuracy of
the distributions shown in Table I was assessed based on the
captured empirical data. The obtained results indicated that
the best-fitting distribution depends on the considered physi-
cal magnitude (i.e., ambient temperature, luminous intensity,
atmospheric pressure and motion detection). For this aspect,
detailed numerical results are presented, showing the accuracy
attained by each distribution in Table I and discussing how the
best-fitting model was selected in each case. For the second
aspect, the accuracy of several models was investigated and, as
pointed out in Section III, in all cases the generalised Gaussian
model presented in (4)–(6) provided the best fit. Consequently,
in order to avoid an excessive amount of results in this section,
a comparison of the accuracy of the model presented in (4)–(6)
with other considered models (linear, polynomial, exponential,
Gaussian, sum of sines, Fourier and power series) is omitted
and only the values for the fitting coefficients of (4)–(6) will
be provided in order to enable the use of the proposed models
by other researchers. Nevertheless, the validity and accuracy
of this model will be evident from the presented results. In the
remainder of this work, the general notation for the threshold
parameter ∆D will be replaced, where appropriate, with the
equivalent notation for the physical magnitude considered
in each case, namely ambient temperature (∆T ), luminous
intensity (∆L) and atmospheric pressure (∆P ).

A. Ambient Temperature

The distribution models in Table I were fitted (using both
estimation methods, i.e., MoM and ML) to the empirically
observed inter-arrival times of the data packets generated
when the ambient temperature is reported for differential

1Coefficients are in general different for each distribution parameter (µ, λ,
α), however the same notation (ak , bk , ck) is used in all cases for simplicity.
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Fig. 3. Accuracy of the considered distributions in fitting the inter-
arrival time of temperature-related data packets as a function of the
considered temperature difference ∆T .

TABLE II. Mean and variance of the KS distances shown in Fig. 3
for temperature data across the interval ∆T ∈ [1◦C, 6◦C].

Distribution Mean of DKS Var. of DKS
E 0.1937 0.0020

GE 0.1186 0.0017
P 0.3209 0.0010

GP 0.0808 0.0015
LN 0.0681 0.0006
G 0.0966 0.0008

WB 0.0758 0.0005

variations ∆T ranging from 1 to 6 ◦C (degrees Celsius) in
increments of 0.1 ◦C. This range of values here considered
for the ∆T parameter is consistent with the maximum range
of variation that was observed in the empirical temperature
data that was recorded in the considered smart home (indoor)
scenario. The KS distance obtained for the best fit of each
distribution (provided by either MoM or ML) as a function of
the considered ∆T is shown in Fig. 3. The mean and variance
of the KS distances shown in Fig. 3 are provided in Table II.

As it can be appreciated in the obtained results, different dis-
tributions provide different fitting accuracies to the empirical
data. It is worth noting that the exponential model provides in
general a poor fit to the observed inter-arrival times, showing
not only a high mean value of the KS distance across the
considered interval (0.1937), thus indicating a poor fit, but also
a high variance, which indicates high fluctuations in the fitting
accuracy for different values of ∆T . This result indicates that
the Poisson model, which assumes exponentially distributed
inter-arrival times, is highly inaccurate as a source traffic
model in the case of a temperature sensor with differential
reporting. On the other hand, other models can provide a
significantly better accuracy. While Fig. 3 shows that there
is no single distribution that provides the best fit across the
whole range of ∆T , Table II shows that the log-normal and
Weibull models (shown in boldface in Table II) provide, in
average, the best fit, with a KS distance close to the target
accuracy of 0.05 for all the considered ∆T values. In both
cases, the variance is also quite low, meaning that the observed
fitting accuracy is preserved across different values of the ∆T

TABLE III. Coefficients of the model in (4)–(5) for the parameters
of the log-normal fit to temperature data.

Location, µ Scale, λ
k ak bk ck ak bk ck
1 13.01 6.19 1.597 2.829 0.9817 0.08471
2 0.6961 4.751 0.3582 0.4132 5.232 0.146
3 9.335 3.884 1.28 0.1441 4.075 0.3095
4 0.281 4.339 0.1527 0.1062 4.631 0.1564
5 5.128 2.638 0.8697 1.654 55.72 153.2
6 0.01908 3.182 0.1052 0.0989 2.606 0.2737
7 –0.1552 2.968 0.1084 0.03817 3.146 0.155
8 8.002 1.438 0.9688 2.885·10 10 -13.83 2.941

parameter. While both distributions can be equally considered
as suitable models, the log-normal distribution (underlined
in Table II) provides a slightly better fit to the ECDF and
therefore is selected as the best-fitting model in this case.

Figs. 4(a)–(b) show the parameters of the log-normal dis-
tribution for temperature data as a function of the temperature
difference ∆T . The figure shows the values obtained from the
direct fit of the distribution to the empirical data (“Empiri-
cal”) along with the corresponding fit obtained with (4)–(5)
(“Model”), whose coefficients were calculated by regression
with the Matlab curve-fitting toolbox and are shown in Table
III. As it can be observed, the model in (4)–(5) with K = 8
fitting coefficients provides an excellent characterisation of the
relation between the parameters of the log-normal distribution
and the differential reporting threshold ∆T for temperature
data. If the distribution parameters obtained by fitting the log-
normal model to the temperature data are replaced with their
equivalent values from (4)–(5), the resulting fitting accuracy
is not affected in a noticeable manner as shown in Fig. 4(c),
which corroborates the validity of the proposed modelling
framework for temperature sensors with differential reporting.

B. Luminous Intensity
The accuracy of the distribution models in Table I in fitting

the luminosity data is illustrated in Fig. 5 in terms of the KS
distance as a function of the differential reporting threshold for
the luminous intensity ∆L, which was increased from 10 to
200 lux in steps of 1 lux. This range of ∆L values is consistent
with the maximum range of variation that was observed in the
empirical luminosity data recorded in the considered smart
home (indoor) scenario. The mean and variance of the KS
distances shown in Fig. 5 are provided in Table IV.

Similar observations as for the temperature data can be
made here. The exponential distribution also provides a poor
fit in this case, showing an inconsistent fitting accuracy across
different values of ∆L. Therefore, the Poisson model, which
assumes exponentially distributed inter-arrival times, is also an
inappropriate source traffic model in the case of a luminosity
sensor with differential reporting. Moreover, the log-normal
and Weibull models (shown in boldface in Table IV) also
provide overall the most accurate fit (lowest mean and variance
of the observed KS distances) across the whole range of ∆L
values. Again, while both models are equally suitable, the log-
normal distribution provides a slightly better fit and is therefore
selected as the best-fitting model (underlined in Table IV).
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(a) Location parameter, µ.
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(b) Scale parameter, λ.
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Fig. 4. (a)–(b) Value of the parameters of the log-normal fit to temperature data as a function of the temperature difference ∆T ; (c) KS
distance of the log-normal fit to temperature data as a function of the temperature difference ∆T .
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Fig. 5. Accuracy of the considered distributions in fitting the inter-
arrival time of luminosity-related data packets as a function of the
considered luminosity difference ∆L.

TABLE IV. Mean and variance of the KS distances shown in Fig. 5
for luminosity data across the interval ∆L ∈ [10 lux, 200 lux].

Distribution Mean of DKS Var. of DKS
E 0.4956 0.0121

GE 0.2841 0.0069
P 0.2492 0.0100

GP 0.0596 0.0015
LN 0.0453 0.0003
G 0.1537 0.0040

WB 0.0591 0.0003

Fig. 6 shows the parameters of the log-normal fit to luminos-
ity data as a function of the luminosity difference parameter
∆L along with their counterparts obtained with the models
in (4)–(5) based on the coefficients (obtained by regression)
shown in Table V. As observed, there is an excellent agreement
between the accuracy obtained when the models in (4)–(5) are
used and that obtained from the direct fit of the log-normal
distribution to the empirical data, which again corroborates the
validity of the proposed modelling framework, in this case for
luminosity sensors with differential data reporting.

TABLE V. Coefficients of the model in (4)–(5) for the parameters of
the log-normal fit to luminosity data.

Location, µ Scale, λ
k ak bk ck ak bk ck
1 0.6164 202.6 8.931 0.08232 147.9 8.903
2 0.4146 178 4.014 0.1387 126.4 10.68
3 0 330.6 19.62 2.801 158.8 155.5
4 4.086 89.28 58.76 0.1088 112.4 6.918
5 –0.5952 154.5 15.31 0.1972 97.73 15.51
6 1.196 37.15 36.57 0.151 68.85 19.33
7 –0.8704 175.5 9.707 –0.04312 61.97 9.236
8 8.442 183.5 66.08 0.9236 17.08 53.33

C. Atmospheric Pressure

Fig. 7 shows the accuracy of the distribution models in Table
I in fitting the pressure data in terms of the KS distance as a
function of the differential threshold for the atmospheric pres-
sure ∆P , which was increased from 100 to 600 Pa (Pascals) in
steps of 5 Pa. This range of ∆P values is consistent with the
maximum range of variation that was observed in the empirical
pressure data recorded in the considered smart home (indoor)
scenario. The mean and variance of the KS distances shown
in Fig. 7 across this interval are provided in Table VI.

As it was observed for the temperature and luminosity data,
the exponential distribution also fails to provide a reasonable
fit to the empirical pressure data, which confirms once again,
also in the case of pressure sensors with differential reporting,
that the Possion model cannot be considered as an adequate
source traffic model. The best fits in this case are provided
by the gamma and the generalised exponential distributions
(shown in boldface in Table VI), which provide the lowest
values for the average KS distance and its variance across
the considered ∆P range, thus offering the best overall fit to
the empirical pressure data out of all the considered candidate
distributions. However, as it can be observed in Table VI, the
average KS distance for these two distributions, despite being
the lowest one out of all the considered models, is greater
than the reference threshold DKS ≈ 0.05 typically considered
in practical scenarios as an indication of an acceptable fitting
accuracy. In fact, the results shown in Fig. 7 indicate that the
KS distance for these two distributions (and indeed for all the
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(a) Location parameter, µ.
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(b) Scale parameter, λ.
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Fig. 6. (a)–(b) Value of the parameters of the log-normal fit to luminosity data as a function of the luminosity difference ∆L; (c) KS distance
of the log-normal fit to luminosity data as a function of the luminosity difference ∆L.
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Fig. 7. Accuracy of the considered distributions in fitting the inter-
arrival time of pressure-related data packets as a function of the
considered pressure difference ∆P .

TABLE VI. Mean and variance of the KS distances shown in Fig. 7
for pressure data across the interval ∆P ∈ [100 Pa, 600 Pa].

Distribution Mean of DKS Var. of DKS
E 0.2418 0.0119

GE 0.1369 0.0008
P 0.3598 0.0049

GP 0.2302 0.0108
LN 0.2043 0.0032
G 0.1323 0.0004

WB 0.1654 0.0013

considered distributions) is greater than 0.10 for all the con-
sidered ∆P values. Consequently, none of these distributions
can be considered as a good fit to the empirical pressure data.

To overcome this problem, a weighted sum of distributions
as shown in (2) can be considered. The distributions resulting
from the application of the weighting in (2) have in general
more complex algebraic forms, which complicates the task
of estimating the distribution parameters based on the MoM
and ML methods. To facilitate the analysis, the weighting in
(2) is initially considered only for the two distributions that
provide the best accuracy in Table VI, namely the gamma and
generalised exponential distributions. As observed in Table I,
the mean and variance of the gamma distribution have simple
algebraic forms and therefore the application of the MoM

technique in this case would be straightforward; however,
the expression for its CDF involves several types of gamma
functions, which would complicate the application of the
ML method. On the other hand, the mean and variance of
the generalised exponential distribution involve the digamma
function and its derivative, which would make it difficult the
application of the MoM method; however, the relatively simple
expression of its CDF would enable the analytical calculation
of the expressions required for the application of the ML
method. The ML method is known to provide, in general,
more accurate fits than MoM, which indeed was observed in
the analysis of the empirical data obtained in this work. This
motivates the consideration of a model based on a weighted
sum of generalised exponential distributions and the estimation
of its parameters based on the ML method. While the literature
on MoM- and ML-based estimation techniques for simple
distributions such as those shown in Table I is abundant, the
estimation of the specific form of weighted sum of generalised
exponential distributions considered in this section, to the best
of the authors’ knowledge, has not been investigated before.
The analytical expressions required for the ML estimation of
such distribution are presented in the Appendix.

As shown in Table I, the generalised exponential distribution
has three parameters, therefore a weighted sum of two such
distributions has (including the weighting parameter) a total of
seven parameters (γ, µ1, λ1, α1, µ2, λ2, α2), which need to be
estimated based on the empirical data. In the particular case
considered in this section, the number of parameters can be
reduced to five by setting µ1 = µ2 = µ. This simplification is
possible due to the fact that the location parameter µ, which
is the minimum value of the packet inter-arrival time, was
observed to be the same for all the values of ∆P and equal
to the data sampling interval (i.e., µ = 200 ms). The analysis
of the empirical pressure data showed that this was caused by
the presence of abrupt variations of around 1000 Pa on the
instantaneously reported pressure, which affected only some
particular time instants. Further investigation demonstrated
that this was caused by the interaction of the pressure sensor
with elements of the indoor environment. Wind gusts caused
by open doors/windows and people moving in the close
vicinity of the sensor (which in the experimental location
considered in this work could be as close as a few tens
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(a) 1st scale parameter, λ1.
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(b) 1st shape parameter, α1.
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(c) Weighting parameter, γ.
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(d) 2nd scale parameter, λ2.
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(e) 2nd shape parameter, α2.
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(f) KS distance, DKS .

Fig. 8. (a)–(e) Value of the parameters of the weighted sum of generalised exponential distributions for pressure data as a function of the
pressure difference ∆P ; (c) KS distance of the weighted sum of generalised exponential distributions for pressure data as a function of ∆P .

TABLE VII. Coefficients of (4)–(6) for the parameters of the weighted sum of generalised exponential distributions fit to pressure data. Note:
Once λ1 and λ2 are obtained using these fitting coefficients in (5), the obtained values need to be multiplied by 10−5 and 10−6, respectively.

Weighting parameter, γ 1st scale, λ1 1st shape, α1 2nd scale, λ2 2nd shape, α2

k ak bk ck ak bk ck ak bk ck ak bk ck ak bk ck
1 0.04628 106.3 56.52 15.99 13.07 112.5 0.6955 570.5 6.167 7.667 86.01 67.38 0.0853 60.67 263.5
2 0.02028 159.2 14.75 1.308 157.1 6.564 1.348 535.9 45.64 0.8702 147 9.03 0.006081 194 29.56
3 0.01345 199.2 20.7 –1.335 157.8 9.694 0.4673 270.5 17.58 1.542 200.2 14.72 0.02721 506.9 40.45
4 0.02527 236.1 13.04 1.223 185 23.04 1.426 596.7 20.48 1.743 168.2 20.11 0.03634 300.3 85.42
5 0.004197 265.3 2.142 1.011 219.5 10.57 1.591 91.4 132.6 1.744 237.2 31.99 0.01775 350.5 36
6 0.001769 321.1 2.946 1.131 279.5 33.16 0.5496 217.2 55.28 0.718 343.9 16.18 0.01391 391.7 29.6
7 0.009741 359.7 4.661 7.766·10 11 –2.12·10 4 4226 1.456 404.4 153.1 0.1724 289.9 9.102 0.07133 596.7 106.5
8 1.758 –1127 1386 0.002402 248.9 3.528 0.4941 302 21.02 5.278 311.1 414.2 0.04843 438.3 55.51

of centimetres) can all cause momentary large variations on
the instantaneous reported pressure (around 1000 Pa between
consecutive pressure samples in our experiments). The conse-
quence of these events on the empirical data is the presence
of two consecutive data samples with a pressure difference of
around 1000 Pa, which is greater than all the considered ∆P
values and explains the observation of a fixed minimum packet
inter-arrival time of µ = 200 ms for all ∆P values. Notice
that this short minimum packet inter-arrival time is due to
the occasional events mentioned above, which are infrequent,
and therefore the generation of pressure-related data packets
typically occurs at a much slower rate (around one packet
every few tens of seconds), following the actual variations of
the real atmospheric pressure. This also explains the inability
of the distributions shown in Table I to provide an accurate fit
to the empirical pressure data since the packets generated by
these occasional events create outliers (i.e., a few inter-arrival

times that are significantly shorter than the rest of observed
inter-arrival times). As the purpose of this work is to model
the actual data traffic that would be generated by sensors
deployed in realistic operational environments (rather than the
true values of the considered physical parameters), these short
inter-arrival times were left and the raw empirical data were
modelled without alterations (i.e., removal of outliers).

Fig. 8 shows the parameters of the weighted sum of gener-
alised exponential distributions estimated with the ML method
as detailed in the Appendix along with the counterparts based
on (4)–(6) and the fitting coefficients (obtained by regression)
shown in Table VII (the same model was also applied to the
weighting parameter, γ). As it can be appreciated, there is an
excellent agreement in all cases and, more importantly, the
overall fitting accuracy provided by this model is significantly
better than that attained by any of the models shown in Table
I (the final KS distance is DKS ≈ 0.05 or lower across the
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TABLE VIII. Accuracy (KS distance) of the considered distributions in fitting relevant aspects of the motion detection data traffic.

(a) Interval between two ON states.

Distribution MoM ML
E 0.7071 0.6532

GE 0.9811 0.0955
P 0.2128 0.0168

GP 0.6255 0.0154
LN 0.3811 0.0337
G 0.9817 0.3095

WB 0.6405 0.1209

(b) Duration of ON states.

Distribution MoM ML
E 0.1534 0.1525

GE 0.1682 0.1672
P 0.4844 0.3128

GP 0.1577 0.1554
LN 0.1193 0.0937
G 0.1671 0.0865

WB 0.1638 0.2234

(c) Duration of OFF states.

Distribution MoM ML
E 0.7156 0.6517

GE 0.9678 0.0919
P 0.0868 0.0294

GP 0.6440 0.0168
LN 0.3266 0.0354
G 0.9689 0.2532

WB 0.5134 0.0816
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Fig. 9. Empirical and fitted CDF for: (a) interval between two successive ON states, (b) duration of ON states, (c) duration of OFF states.

TABLE IX. Parameters of best-fitting distributions for motion traffic.

Time duration Best fit µ λ α

Between two ON GP 7.60 15.76 0.93
ON state G 1.40 4.11 1.43
OFF state GP 5.99 3.90 1.76

considered ∆P range). The improved fitting accuracy of the
proposed weighted model can be ascribed to the flexibility
offered by the two weighted distributions: one distribution can
be fitted to reproduce the packet inter-arrival times resulting
from the actual variations of the real atmospheric pressure
(which are in the order of few tens of seconds), while the other
distribution can be fitted to reproduce the packet inter-arrival
times caused by the infrequent events mentioned above (which
are in the order of the instantaneous data sampling rate, i.e.,
200 ms in this work). The overall result is a significantly more
accurate fit to the empirical pressure data, which corroborates
the validity of the proposed modelling framework for pressure
sensors with differential data reporting.

D. Motion Detection

As opposed to the physical parameters considered in Sec-
tions IV-A, IV-B and IV-C, which have a continuous domain,
the detection of motion generates a discrete binary output
based on two instantaneous states, namely an ON state (i.e.,
motion is being detected) and an OFF state (i.e., motion is not
being detected). As a result, the modelling of the data traffic
generated by a motion sensor requires a different modelling
approach. In this section, three relevant aspects of the motion
detection data traffic are modelled, namely the time interval

between the arrival (beginning) of two successive ON states,
the duration of the ON states, and the duration of the OFF
states. The specific way a sensor reports motion depends on
the particular implementation but will in most cases be based
on a combination of one or more of these three aspects.

Table VIII shows the accuracy (in terms of the KS distance)
of the distributions shown in Table I in fitting the three
considered aspects of the motion detection data traffic. The
two-best fitting distributions are shown in boldface and the
single best-fitting model (i.e., the one providing the lowest KS
distance) is underlined as well. Fig. 9 compares the ECDF
with these best-fitting models, whose estimated parameters
(based on the ML method) are provided in Table IX. The
inspection of the values shown in Table VIII(a) reveals that
the time between the arrival of two successive ON states
is poorly fitted by the exponential distribution. As a result,
the data traffic generated by a motion sensor that reports the
triggering of ON states would not follow a Poisson process
and therefore the Poisson model would not be suitable in
this case either, similar to the case for the rest of considered
physical parameters (ambient temperature, luminous intensity
and atmospheric pressure). Table VIII indicates that other
distributions constitute more accurate models, not only for the
inter-arrival of ON states (generalised Pareto), but also for the
duration of the ON (gamma) and OFF (generalised Pareto)
states. In indoor environments such as smart homes, where the
overall level of motion is in general limited, the durations of
the OFF states will be significantly (even orders of magnitude)
longer than the ON states, which in fact can be appreciated
in the axes of abscissas of Figs. 9(b)–(c). In such a case,
the interval between two successive ON states will be highly
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similar to the duration of the OFF states, which explains the
similarities observed between Figs. 9(a) and 9(c), not only in
terms of time scales but also best-fitting distributions. Overall,
the selected distribution models can provide a highly accurate
(nearly perfect) fit to the empirical motion data and therefore
constitute adequate traffic models for this type of data traffic.

V. ANALYSIS OF THE IMPACT OF SEASONAL VARIATIONS
AND CORRELATIONS OF THE PHYSICAL PARAMETERS

The models presented in Section IV were fitted based on the
complete data set obtained over the course of one full calendar
year. Some of the considered physical parameters may exhibit
variations on their statistical properties when analysed over
shorter specific time intervals such as months, days or hours.
In particular, this affects the ambient temperature, luminous
intensity and atmospheric pressure. For example, temperature
and luminosity tend to be higher during daytime and during
the warm months of the year, while pressure may experience
similar seasonal variations. Moreover, these physical parame-
ters typically show periodic patterns over different time scales
(e.g., days, months, etc.) and can therefore be expected to
show certain correlations, which may also induce correlations
in the associated data traffic generated by the monitoring
IoT sensors. This section investigates how several features
of the considered physical parameters, such as correlations
and seasonal variations along the year at different time scales,
affect the statistics of the associated data traffic and its models.

A. Analysis of Seasonal Variations

As mentioned above, certain physical parameters may ex-
hibit specific variation patterns at different time scales. As
a result, the measurements reported by IoT sensors for the
considered physical parameters (ambient temperature, lumi-
nous intensity and atmospheric pressure) might also vary
at different rates depending on the considered time scale,
which would also result in different packet generation rates
in sensors that employ a differential reporting mechanism as
the one considered in this work. If the packet generation rate
varies substantially, the underlying statistics of the data traffic
might be affected, which could thus affect the validity of
the models developed in this work (based on one full-year
data) when applied over shorter time scales. The purpose of
this section is to explore whether the models presented in
Section IV are valid when time scales shorter than a year
are considered. To this end, the packet inter-arrival rate can
be employed as a metric to quantify the extent to which the
packet generation process is affected when the monitoring of
the physical parameters is analysed over shorter time intervals.

The full-year data set was divided into subsets correspond-
ing to shorter time periods (months, days and hours) and
the packet inter-arrival time observed in each subset was
calculated. The results are shown in Figs. 10, 11 and 12
for the monthly, daily and hourly packet inter-arrival times,
respectively, for different traffic types (physical parameters)
and values of the differential reporting threshold, ∆D (∆T
for temperature, ∆L for luminosity, and ∆P for pressure). As
one may expect, an increase in ∆D leads to longer packet

inter-arrival times. However, for a given ∆D, the observed
packet inter-arrival times remain fairly constant over the dif-
ferent considered periods and time scales, without significant
variations (with the exception of some maximum inter-arrival
times, which might be due to infrequent or exceptional events).

It is worth noting that Fig. 12(b) shows some missing
points, which can be explained by the lack of any luminosity
variations from approximately 9pm (when lights are switched
off in the room where the sensor was placed) to 9am (when
lights are switched on again and human activity resumes).
Since the room remained in darkness overnight, no luminosity
variations were observed during this time (despite the low ∆L
threshold considered in this case), which explains the lack
of points in this region of the figure (i.e., there are some 1-
hour slots during the night where no packets are generated).
Moreover, the average inter-arrival time observed in Fig. 12(b)
shows a slight decrease during daytime, which might be due
to more frequent variations of luminosity as a result of human
activity (e.g., opening/closing of window blinds or movement
of people blocking/unblocking light paths). This particular
case may require some specific modelling, which is beyond
the scope of this study and is suggested as future work.

Despite the particular trend observed in Fig. 12(b), which
seems to disappear when longer time scales are considered
(i.e., daily or monthly), the results shown in Figs. 10, 11 and
12 indicate that, overall, the data packet generation process of
a sensor with differential reporting remains fairly constant over
periods and time scales shorter than a year, which is in general
true for the different physical parameters considered in this
work. This suggests that the models presented in Section IV
are valid when time scales shorter than a year are considered.

B. Analysis of Correlations

As mentioned above, certain physical parameters typically
show periodic patterns over different time scales (e.g., days,
months, etc.) that may result in underlying correlations in the
observed values and this might also induce correlations in the
data traffic that would be generated by a sensor monitoring the
variations of these physical magnitudes. The purpose of this
section is to determine the potential existence of correlations
in the considered physical parameters (ambient temperature,
luminous intensity and atmospheric pressure) and determine
whether this results in correlations on the resulting packet
inter-arrival times. It is worth noting that the models presented
in Section IV are designed to capture the statistical distribution
of the packet inter-arrival times but are unable to reproduce
correlation properties. Therefore, the existence of correlations,
if needed, would require specific additional modelling.

Fig. 13 shows the autocorrelation function of the physical
parameters considered in this work (up to a maximum of 4
weeks lag) along with the autocorrelation of the resulting
packet inter-arrival times (up to a maximum of 3 weeks
lag). In most practical scenarios, an absolute value of the
correlation coefficient greater than 0.5 is in general considered
as an indication of strong correlation; this threshold can be
used to determine whether certain data are autocorrelated.
As observed in Fig. 13(a), the observed temperature values
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Fig. 10. Monthly packet inter-arrival times for different traffic types.
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Fig. 11. Daily packet inter-arrival times for different traffic types.
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Fig. 12. Hourly packet inter-arrival times for different traffic types.

show a decaying autocorrelation as the lag increases, with all
correlation values greater than 0.6, which indicates a strong
correlation between temperature samples even over periods
as long as around one month. This observation is consistent
with the notion that significant temperature variations will in
general occur between seasons (i.e., over periods longer than
one month). Fig. 13(b) shows that luminosity samples also
exhibit a relatively strong correlation, with periodic peaks at
0.6. In this case the autocorrelation function is periodic, which
is the result of daily repetitive patterns (i.e., the separation
between successive peaks is equal to one day). In the case
of atmospheric pressure, Fig. 13(c) shows a looser correlation
of the observed samples for this physical parameter, which

is in general weak (except for a lag of very few days).
Despite the existence of different levels of correlation in the
physical parameters as shown in Figs. 13(a)–(c), the results
shown in Figs. 13(d)–(f) indicate that the inter-arrival times
of the data packets generated by a sensor with differential
reporting are essentially uncorrelated. The variation of the ∆D
parameter results in some minor fluctuations that do not affect
significantly the overall autocorrelation function. As matter of
fact, the autocorrelation is greater than the suggested threshold
of 0.5 only for a lag equal to zero and lower otherwise,
meaning that the time intervals elapsed between the generation
of two consecutive data packets are mutually independent.
This observation has important implications in some practical



14

-30 -20 -10 0 10 20 30

Lag (days)

0.6

0.7

0.8

0.9

1

A
u

to
c
o

rr
e
la

ti
o

n

4 weeks lag

(a) Temperature (physical parameter)

-30 -20 -10 0 10 20 30

Lag (days)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
u

to
c
o

rr
e

la
ti

o
n

4 weeks lag

(b) Luminosity (physical parameter)

-30 -20 -10 0 10 20 30

Lag (days)

-0.2

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e

la
ti

o
n

4 weeks lag

(c) Pressure (physical parameter)

-20 -10 0 10 20

 Lag (days)

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e
la

ti
o

n

3 weeks lag

T = 1
°
 C

T = 3
°
 C

(d) Temperature (packet inter-arrival times)

-20 -10 0 10 20

 Lag (days)

0

0.2

0.4

0.6

0.8

1
A

u
to

c
o

rr
e
la

ti
o

n
3 weeks lag

L = 50 lux

L = 100 lux

(e) Luminosity (packet inter-arrival times)

-20 -10 0 10 20

 Lag (days)

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e
la

ti
o

n

3 weeks lag

P = 100 Pa

P = 300 Pa

(f) Pressure (packet inter-arrival times)

Fig. 13. Autocorrelation function of the considered physical parameters (top row) and the corresponding packet inter-arrival times (bottom
row) for the observed temperature (left column), luminosity (middle column) and pressure (right column).

applications of the models presented in Section IV as it is the
case, for example, of software simulations, where the packet
inter-arrival times could be generated as a set of independent
and identically distributed random numbers drawn from the
appropriate distribution model, which can be determined from
the exhaustive analysis presented in Section IV.

VI. CONCLUSION

Current communication networks have historically been
designed and optimised to support human-related services
and as such are not perfectly suited to support the incoming
myriad of new machine-type IoT devices, which have different
requirements, features and traffic patterns. This claims for
novel and realistic models that can accurately capture the
relevant statistical properties of the data traffic generated by
IoT devices. In this context, this work has presented a set of
models that can accurately capture the statistical properties
of the traffic generated by common smart home devices (e.g.,
ambient temperature, luminous intensity, atmospheric pressure
and motion sensors). A differential data reporting mechanism
has been considered in this work, which produces a signif-
icantly lower volume of data for slowly changing physical
parameters such as those analysed in this study. The obtained
results have demonstrated that the packet generation process
cannot be modelled as a Poisson process (an aggregated traffic
model frequently used in the literature also as a source traffic
model). Consequently, the best-fitting distributions for each
type of traffic have been determined based on the analysis
of empirical data recorded over one complete calendar year.

The accuracy analysis carried out in this work has shown
that the proposed models can reproduce, with a high level of
accuracy, the statistical distribution of the packet inter-arrival
times. Moreover, these models are applicable over shorter time
scales (months, days, and in most cases hours as well) and are
not affected by the correlations commonly observed in slowly
changing physical parameters. In summary, this work provides
a set of accurate traffic models suitable for real-life IoT smart
home scenarios that can be used for an adequate design and
optimisation of future communication networks in order to
efficiently support these and other common IoT services.

APPENDIX
MAXIMUM LIKELIHOOD ESTIMATION OF WEIGHTED SUM

OF GENERALISED EXPONENTIAL DISTRIBUTIONS

The weighted sum of generalised exponential distributions
proposed in Section IV-C to fit the empirical pressure data has
a CDF given by:

FWGE(x) = γ
[
1− e−λ1(x−µ1)

]α1

+ (1− γ)
[
1− e−λ2(x−µ2)

]α2

(7)
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where 0 < γ < 1 is the weighting parameter. The correspond-
ing PDF can be obtained as the derivative of (7), which yields:

fWGE(x) = γα1λ1e
−λ1(x−µ1)

[
1− e−λ1(x−µ1)

]α1−1

+ (1− γ)α2λ2e
−λ2(x−µ2)

[
1− e−λ2(x−µ2)

]α2−1

(8)

By setting µ1 = µ2 = µ as discussed in Section IV-C,
which can be estimated as the minimum packet inter-arrival
time observed in the empirical data, the number of variables
in the model of (7)–(8) reduces to five (γ, λ1, α1, λ2, α2) and
its log-likelihood function, L(X; γ, λ1, α1, λ2, α2), which for
simplicity will be denoted as L(X), is then given by:

L(X) =

N∑
n=1

log

{
γα1λ1e

−λ1(xn−µ)
[
1− e−λ1(xn−µ)

]α1−1

+(1− γ)α2λ2e
−λ2(xn−µ)

[
1− e−λ2(xn−µ)

]α2−1
}

where X = {xn}Nn=1 is the set of N empirically-observed
packet inter-arrival times, xn, and µ = minn{xn}Nn=1. The
five parameters of interest (γ, λ1, α1, λ2, α2) can be estimated
as the values that maximise this log-likelihood function, which
requires the calculation of the partial derivatives.

The partial derivative with respect to γ is given by:

∂L(X)

∂γ
=

N∑
n=1

1

Dn

(
κ(1)n − κ(2)n

)
(9)

where

κ(1)n = α1λ1e
−λ1(xn−µ)

[
1− e−λ1(xn−µ)

]α1−1

κ(2)n = α2λ2e
−λ2(xn−µ)

[
1− e−λ2(xn−µ)

]α2−1

Dn = γκ(1)n + (1− γ)κ(2)n

(10)

(11)

(12)

The partial derivative with respect to λ1 is given by:

∂L(X)

∂λ1
=

N∑
n=1

γα1

Dn

(
ζ(1)n + ζ(2)n

)
(13)

where Dn is given by (12) and

ζ(1)n = [1− λ1(xn − µ)]×

× e−λ1(xn−µ)
[
1− e−λ1(xn−µ)

]α1−1

ζ(2)n = λ1(xn − µ)(α1 − 1)×

× e−2λ1(xn−µ)
[
1− e−λ1(xn−µ)

]α1−2

(14)

(15)

The partial derivative with respect to α1 is given by:

∂L(X)

∂α1
=

N∑
n=1

γλ1e
−λ1(xn−µ)

Dn
ε(1)n

(
1 + ε(2)n

)
(16)

where Dn is given by (12) and

ε(1)n =
[
1− e−λ1(xn−µ)

]α1−1

ε(2)n = α1 log
{

1− e−λ1(xn−µ)
} (17)

(18)

The partial derivatives of L(X) with respect to λ2 and α2

can be obtained based on those for λ1 and α1, respectively,
by replacing γ with 1 − γ, λ1 with λ2, and α1 with α2. By
equating all partial derivatives to zero and solving the resulting
system of equations numerically, the set of values of γ, λ1, α1,
λ2 and α2 that maximises the log-likelihood function L(X)
is obtained, which constitutes the set of parameter estimates.
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