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Abstract—A novel dynamic surrogate model based optimization (DSMO) for centralized thermoelectric generation (TEG) system 

affected by heterogeneous temperature difference (HeTD) is designed to achieve maximum power point tracking (MPPT) in this paper. 

Since HeTD usually results in multiple local maximum power points (LMPPs), DSMO needs to rapidly approximate the global 

maximum power point (GMPP) instead of being trapped at a low quality LMPP. To avoid a blind search, a radial basis function network 

is adopted to construct the dynamic surrogate model of input/output feature according to the real-time data of centralized TEG system. 

Furthermore, a greedy search is adopted to accelerate the convergence based on dynamic surrogate model. Four case studies are 

undertaken to evaluate the practicability and superiority of the proposed method compared with that of a single LMPP based MPPT 

method and three common meta-heuristic algorithms. In addition, the implementation feasibility of DSMO is demonstrated by the 

hardware-in-the-loop (HIL) experiment based on dSpace platform 

 

Index Terms—thermoelectric generation system, maximum power point tracking, heterogeneous temperature difference, dynamic 

surrogate model, greedy search 

I. INTRODUCTION 

HERMOELECTRIC generation (TEG) system has become a promising generation technology for energy saving and 

sustainability, which is a device that is capable of producing electricity from wasted heat [1]. The merits of TEG system are 

simple structure, high reliability, low weight, long lifetime, as well as eco-friendliness [2]. Hence, TEG system is promising 

for various practical applications, e.g., automotive waste heat recovery [3], combined heat and power system [4], energy efficient 

buildings [5], natural gas boiler [6], etc.  

Due to its inherent low efficiency, maximum power point tracking (MPPT) is a crucial task for the optimal operation of TEG 

system [7]. The idea of MPPT is originated from solar energy where PV panels are exposed at various solar irradiations thus many 

MPPT techniques are developed to seek the maximum power point (MPP) affected different operation conditions. In particular, 

MPPT strategies can be categorized into traditional and intelligent approaches [8].  

Perturb and observe (P&O) [9] and incremental conductance (INC) [10] are two common MPPT strategies for TEG systems 

which have low-cost and high stability. Moreover, an open-circuit voltage (OCV) approach was proposed to improve power 

generation efficiency because the voltage on the load is half of the open-circuit voltage [11]. And reference [12] employed 

fractional short-circuit current (SCC) to realize MPPT which needs to regular measure the short-circuit current. Furthermore, work 

[13] designed a linear extrapolation-based MPPT strategy to obtain MPP which only requires three sampling cycles. Furthermore, 

literature [14] developed an extreme seeking control (SEC) approach which can successfully seek the extremum of steady-state 

online optimization under the unknown circumstance. 

Nevertheless, the aforementioned MPPT techniques are merely available for the scenario with only single local maximum 

power point (LMPP) under homogeneous temperature difference (HoTD). In practice, centralized TEG configuration is a very 

cost-effective choice in industry which combines all TEG modules together and connected with just one converter [15]. In fact, 

each parallel series of TEG modules will generate a single power output peak under different temperature inputs, in which the peak 

value and corresponding control solution will vary as the temperature inputs change. Hence, the centralized TEG system with 

multiple parallel series of TEG modules will result in multiple power output peaks in the presence of heterogeneous temperature 

difference (HeTD), like the PV systems when influenced by partial shading condition (PSC) [16,17]. Under such condition, the 

single LMPP based MPPT algorithms may have a high probability to be trapped at one low-quality LMPP with a bad initial control 

solution, such that the overall generation efficiency becomes very low.  

To approximate the global maximum power point (GMPP) from the multiple LMPPs, the meta-heuristic algorithms [18] are the 

better solutions due to their high application flexibility and strong global search ability. For example, genetic algorithm (GA) [19] 

and particle swarm optimization (PSO) [20], while various meta-heuristic algorithms are successfully utilized to realize MPPT for 

PV systems affected PSC. Hence, they are also suitable to approximate the GMPP  for centralized TEG system affected HeTD 

considering their similarities in essence. However, they generally employ a population with multiple individuals to implement the 

global exploration and local exploitation to approximate GMPP, in which a part of individuals is usually adopted for a random 

search. Consequently, they often consume a long computation time for MPPT and easily results in a large power fluctuation due to 

the random search. To handle these issues, the surrogate model based optimization [21] is a frequently-used method which can 
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construct a computationally cheap model for acquiring an approximate fitness value instead of an exact value obtained from the 

real system associated with relatively large computational burden. Hence, based on such advantage, a new dynamic surrogate 

model based optimization (DSMO) is proposed for MPPT of centralized TEG system under HeTD. And the main advantages of 

DSMO are given as follows: 

 Compared with the conventional approaches based on single LMPP, DSMO is able to seek the GMPP more effectively 

instead of being trapped into a low-quality LMPP via constructing a radial basis function meshwork based dynamic surrogate 

model for the input/output (I/O) relation of centralized TEG system. 

 DSMO can implement a more efficient guided search instead of a blind search by the greedy search based on the dynamic 

surrogate model compared to meta-heuristic methods. Besides, DSMO only employs a single individual instead of a population 

with multiple individuals for MPPT, which can dramatically reduce the computation time with much less global exploration and 

local exploitation.  

II. TEG SYSTEM MODELLING 

A. TEG Module Modelling 

The equivalent circuit of a TEG module is demonstrated in Fig. 1. The open-circuit voltage Voc produced by TEG module is 

described by [22] 

            oc pn h c pnV T T T                          (1) 

where αpn represent the Seebeck coefficient; Th is the temperature of hot side; Tc is the temperature of cold side; and ΔT means the 

temperature diversity between the Th and Tc. 
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Fig. 1. Circuit diagram of a TEG module. 
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Fig. 2. Three TEG system structures. (a) centralized, (b) string-type, and (c) modularized. 

Normally, Seebeck effect and Thomson effect have important influence on TEG system. And the Thomson coefficient τ is 

described by [10] 
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Hence, the more accurate Seebeck coefficient can be obtained with the change of mean temperature T, which is expressed as 

[23]: 

   pn 0 1 0lnT T T                          (3) 

where α0 is the fundamental character  of αpn; α1 is the variation rate of τ; and T0 is the temperature reference. 

Based on the circuit theory, the output power generated by TEG module is illustrated by 
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where PTEG denotes the power output of TEG module; RTEG and RL are the internal resistance and load resistance of TEG module, 

respectively. 

B. Structure of TEG System 

In order to produce sufficient power output to satisfy specific practical applications, several TEG modules are usually connected 

in different configurations to establish an whole TEG system. Due to the increased size and scale of such integrated TEG system, it 



 

is often exposed at HeTD which results in noticeable mismatched power losses [14]. Figure 2 illustrates three common TEG system 
structures [15], as (a) centralized TEG structure which is consisted of several TEG modules in series and parallel with a MPPT 

converter; (b) string-type TEG structure which lets TEG string along isothermal line of heat source and each string has a MPPT 

converter; (c) modularized TEG structure which provides each TEG module with an independent MPPT converter so as to track its 

own MPP. 

And this paper aims to design DSMO based MPPT approach for centralized TEG structure as its simple construction and 

satisfactory hardware cost. 
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Fig. 3. Power-voltage characteristics of centralized TEG system affected by HoTD and HeTD. (a) HoTD and (b) HeTD. 
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Fig. 4. Control framework of DSMO based MPPT of centralized TEG system. 

 
Fig. 5. Illustration of mapping relationship by surrogate model. 
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Fig. 6. Illustration of RBF network based surrogate model for MPPT. 



 

C. TEG System Modelling Affected by HeTD 

TEG modules often connected in series and/or parallel to obtain the desired power. And the output current of the ith TEG 

module can be calculated by [31] 
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where Voc
i
 and Isc

i
 are the open-circuit voltage and short-circuit current of the ith TEG module, respectively; VL

i
 and RTEG

i
 are the 

terminal voltage and internal resistance of the ith TEG module, respectively. The output power generated by the ith TEG module is 
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Then, all the output power of the centralized TEG system can be obtained as 
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It is very crucial to analyse the relationship between PTEG and terminal voltage VL of converter of centralized TEG system, as 

shown in Fig. 3. Here, multiple LMPPs and only one GMPP appear under HeTD, while MPPT controller attempts to effectively 

seek GMPP. 

III. MPPT BASED ON DSMO FOR CENTRALIZED TEG SYSTEM 

A. Control Framework 

In general, the energy of load is provided by TEG system via a DC-DC converter [10], as illustrated in Fig. 4. Consequently, the 

VL can be updated by change the duty cycle [22] of pulse-width modulation (PWM) signal to the DC-DC converter. This means 

that DSMO needs to search an optimal duty cycle to obtain the GMPP. In this paper, DSMO mainly contains two operations. 

Firstly, a surrogate model will be dynamically updated according to the real-time implemented duty cycle and the corresponding 

steady power output. Then, a greed search will be implemented to rapidly acquire a high-quality duty cycle for the next control 

interval according to the current surrogate model. Finally, DSMO based MPPT can gradually approximate GMPP through 

repeating the above two operations. 

B. Radial Basis Function Network based Surrogate Model 

The proposed surrogate model aims to discover the mapping relationship between the power output and the duty cycle according 

to the real-time collected operation data of centralized TEG system, as illustrated in Fig. 5. In fact, various methods can construct 

such surrogate model. Since it is a single input single output mapping, a radial basis function (RBF) meshwork [24] is adopted 

because its excellent nonlinear mapping ability and fast convergence. In essence, a RBF meshwork is a three-layer feed-forward 

meshwork [25] (See Fig. 6), including an input layer, an output layer, and a hidden layer, upon which the desired power output can 

be calculated by  
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where f 
SM

 denotes the mapping function of the surrogate model; x is the input of RBF, i.e., the duty cycle; hi means the primary 

function of the ith hidden neuron; m represents the hidden neurons number; and ωi means the coefficient between the ith hidden 

neuron and the output. 

C. Greedy Search 

Based on the dynamic surrogate model (8), DSMO can approximate GMPP under desired control accuracy. To further 

accelerate the convergence, the searching range is designed to be gradually shrinked as the iteration number increases, as follows: 
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where k denotes the kth iteration; xk+1 is the duty cycle at the (k+1)th iteration; xk
best

 represents the current best solution at the kth 

iteration so far; lbk and ubk denote the lower and upper limitations of the searching range, respectively; and kmax denote the 

scheduled maximum iteration number. 

TABLE I 

THE EXECUTION PROCEDURE OF DSMO BASED MPPT OF TEG SYSTEM. 

1: Initialize the algorithm parameters and the inputs of training samples by Eq. (11); 



 

2: Set k:=1; 

3: FOR i:=1 to n 

4:          Implement the duty cycle of the ith training sample in the DC-DC converter; 

5:          Collect the real-time voltage and current outputs of centralized TEG system; 

6:          Calculate the desired output of the ith training sample by Eq. (12); 

7: END FOR 

8: WHILE k≤kmax 

9:           Construct the surrogate model via training RBF network; 

10:           Update the lower and upper bounds of the searching range by Eq. (10); 

11:           Determine the minimum number of discrete searching points by Eq. (14); 

12:           Implement the greedy search by Eq. (8)-(9); 

13:           Implement the new duty cycle of PWM signal ; 

14:           Collect the real-time voltage and current outputs of centralized TEG system; 

15:           Calculate the actual power output corresponding to the current duty cycle by Eq. (12); 

16:           Add the new training sample to the surrogate model; 

17:           Set k:=k+1; 

18: END WHILE 

19: 20: Output the best duty cycle of the PWM signal; 

20: Repeat step 1 to step 19 if the input temperatures vary. 

TABLE II 
THE EXECUTION PROCEDURE OF GENERAL META-HEURISTIC ALGORITHMS BASED MPPT OF TEG SYSTEM. 

1: Initialize the algorithm parameters and population; 

2: Set k:=1; 

3: WHILE k≤kmax 

4:      FOR j:=1 to J  

5:           Implement the new duty cycle of the jth individual to the DC-DC converter; 

6:           Collect the real-time voltage and current outputs of centralized TEG system; 

7:           Calculate the fitness value of the jth individual according to the actual power output; 

8:      END FOR 

9:      Determine the roles for all the individuals according to their fitness values; 

10:      FOR j:=1 to J  

11:           Update the solution of the jth individual according to its searching operation; 

12:      END FOR 

13:      Set k:=k+1; 

14: END WHILE 

15: Output the optimal duty cycle of the PWM signal to the DC-DC converter; 

16: Re-execute the optimization from step 1 to step 15 when the input temperatures change. 

D. Specific Design for MPPT 

a) Design of dynamic surrogate model 

The property of surrogate model is primary depend on the training data and the design of RBF network. In fact, there are infinite 

possible distribution of temperature for the system, such that the number of LMPPs and their corresponding duty cycles cannot be 

known in advance. Under this situation, if the training data is designed to be intensive within a small range, then the surrogate 

model cannot provide a highly accurate output mapping for other ranges of duty cycles. As a result, it easily traps into an LMPP 

near the initial range and is difficult to approximate the GMPP. Therefore, the initial training data should be designed to be spread 

from its lower to upper limits, thereby the surrogate model can closely approximate the curve between the power output and duty 

cycle over the whole range. Hence, all the potential LMPPs can be discovered as much as possible based on the surrogate model. 

Consequently, the duty cycles of the training data are selected uniformly within its lower and upper limits, as follows: 
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where xi
0
 denote the duty cycle of the ith initial training sample; and n is training samples number, in which the initial number of 

training samples is represented by n0. In general, a larger n0 will lead to a high mapping accuracy and a high generalization for the 

surrogate model. However, it will consume more computation time to acquire and accomplish the training of RBF network, which 

also easily result in a large energy loss and a large power fluctuation for centralized TEG system during acquiring the training data. 

Hence, n0 should be set to be a proper value for the specific centralized TEG system. 

After accomplishing different duty cycles to the DC-DC converter, the outputs of training data can be obtained via the stable 

voltage and current outputs, as follows: 
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where ˆ
iy  is the actual power output of the ith training sample, i.e., the desired output of RBF network;  out

TEG iV x  and  out

TEG iI x  are 

the steady voltage and current outputs of the centralized TEG system after implementing the duty cycle xi, respectively. 

Note that the training data of building the surrogate model is acquired from the online operating results of centralized TEG 

system. In order to make DMSO continuously approximate the GMPP under various operating points, the surrogate model will be 

rebuilt with the new training data in each MPPT task with the fixed temperature inputs. As the temperature inputs change, the 

previous training data will be cleaned up, while DSMO will be re-executed to approximate the new GMPP with the updated 

training data.  

Here, a frequently-used Gaussian function [25] has been utilized as the fundamental function of RBF network, which can be 

written as 
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where ci is the middle of ith hidden neuron and σi denotes the breadth of Gaussian function for the ith hidden neuron. 

To accomplish the training of RBF network, this paper adopts an exact design [26] to determine the centers, weights, and the 

number of hidden neurons based on the training samples and the given width. 

b) Design of greedy search 

Note that xk+1 in Eq. (9) can be determined via exploring a finite number of uniform discrete points between the lower and upper 

bounds, which completely depends on the desired control accuracy. Hence, the number of discrete searching points should satisfy 

the following condition, as 
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where δ is the desired control accuracy and nd represents the number of discrete searching points in greedy search. 

c) Implementation process 

To sum up, Table I presents the entire MPPT implementation process of DSMO for the centralized TEG system affected HeTD. 

In the initial phase, DSMO only requires a small number (i.e., initial number of training samples n0) of global exploration. Then it 

can implement the deep local exploitation with greedy search based on the dynamic surrogate model, which also requires a smaller 

number of local exploitation (i.e., kmax). Hence, it only requires (n0+kmax) control time cycles to finish the optimization for each 

MPPT task with the fixed temperature inputs. In contrast, the meta-heuristic algorithms generally employ a population with 

multiple individuals for MPPT, in which each individual needs to occupy a control time cycle to acquire the power output from the 

centralized TEG system in each iteration. According to the updated fitness values of all the individuals, each meta-heuristic 

algorithm can determine their roles and update their solutions according to their searching operations, as illustrated in Table II. 

Therefore, each meta-heuristic algorithm requires (J×kmax) control time cycles to finish the optimization, in which J is the 

population size. As a result, DSMO will consume less computation time than the general meta-heuristic algorithms to search a 

high-quality optimum for MPPT. Furthermore, it also causes a slight impact on the memory and processing as the number of 

training data increases from n0 to (n0+kmax). 

Note that DSMO needs to continuously update the dynamic surrogate model, as shown in Step 9 of Table I. Under an MPPT task, 

the dynamic surrogate model of DSMO needs to reconstruct itself every control time cycle within the maximum iterations number 

kmax, i.e., it requires kmax reconstructions in each MPPT task. On the other hand, as the input temperatures change, it needs to 

re-execute the optimization process with kmax reconstructions of dynamic surrogate model, as illustrated in Table I. Finally, this 

work assumes that the input temperatures of centralized TEG system can be collected with the specific temperature sensor, thus the 

temperature changes can be identified. 

IV. CASE STUDIES 

For the purpose of testing the MPPT performance of DSMO for centralized TEG system affected HeTD, four cases are 

undertaken in this section. The TEG model is the centralized TEG configuration (See Fig. 2(a)), while each string can be modelled 

as a voltage source with an internal resistance, as shown in Fig. 1. Table III gives the main parameters of centralized TEG system 

and the connected DC-DC converter, where the main parameters of each TEG module are referred from the practical parameters in 

[22, 23]. Besides, the comparison algorithm includes P&O [9], PSO [20], whale optimization algorithm (WOA) [27], and grey wolf 

optimizer (GWO) [28]. In order to fairly compare all the meta-heuristic approaches, the size of population and the maximum 

number of iterations they utilize are totally same, which are designed as 5 and 6, respectively. Hence, each meta-heuristic algorithm 

requires 30 (5×6) control time cycles to finish the optimization. Besides, the fixed step size of P&O is set as 0.005, while the main 

parameters of DSMO is provided in Table IV via trial-and-error. As shown in Table III, the testing centralized TEG system only 

contains four parallel strings, such that the number of LMPPs is up to four. Hence, ten initial training samples is enough to 

effectively generalize many possible operating points for each MPPT task in case studies. What’s more, the control period of all 

approaches is set as 0.01s, such that a new duty cycle will be updated by each approach and the voltage and current will be 

produced of centralized TEG system in every 0.01s. All the simulations are implemented on Matlab/Simulink 2017b through a 

personal computer with an Intel
R
 CoreTMi7 CPU at 1.8 GHz and 16 GB of RAM. 

TABLE III 

PARAMETERS OF CENTRALIZED TEG SYSTEM AND DC-DC CONVERTER. 

Centralized TEG system DC-DC converter 

String number 4 Transfer function Vout=Vin/(1-DC) 

Module number of each string 200 Switching frequency 20 kHz 

Basic part of Seebeck coefficient 210 μV/K Load 3 Ω 

Variation rate of Seebeck coefficient 120 μV/K Inductance 250 mH 

Reference temperature 300 /K Capacitance 66/200 μF 

TABLE IV 
PARAMETERS OF DSMO 



 

n0 δ kmax σ 
10 0.0001 10 1 

Besides, two variables are introduced to achieve a quantitative power oscillation evaluation of centralized TEG system, as 

follows [16,17]: 
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where avgv  and maxv  are the mean and the maximum variability of the output power, respectively; t represents the time period 

indicatrix; T denotes the number of the entire time period; and avg

outP  represents the average output power of centralized TEG system 

during all the time period. 

A. Output Characteristics of Centralized TEG System 

To analyze the influence of temperature difference on the open circuit voltage and internal resistance of TEG string, the hot side 

temperature of string #1 is designed to vary from 50 ℃ to 250 ℃, while the cold side temperature is set to be constant (40 ℃). As 

shown in Fig. 7, it is clear that a larger temperature difference can lead to a larger open circuit voltage and internal resistance. As a 

result, it will cause different output characteristics between different strings with different input temperatures, thus the multiple 

peaks of power output will be occurred. To verify this feature, the hot side temperatures of four TEG strings (#1 to #4) are designed 

as 247 ℃, 123 ℃, 76 ℃, and 41 ℃, respectively; and the cold side temperatures are set to be 47 ℃, 31 ℃, 18 ℃, and 13 ℃, 

respectively. Fig. 8 provides the I-V and P-V curves of all the strings. Firstly, it shows that the output current decreases as the output 

voltage increases, in which the descent rate of string #4 is the highest due to its smallest temperature difference input. Secondly, it 

can be found that the P-V curves of all the strings are the downward parabolas with single peak, where the peak value and the 

corresponding voltage increase as the temperature difference input increase. Consequently, the curve of total power output easily 

leads to multiple peaks, as the four peaks shown in Fig. 8(b). 

  
(a)                                                           (b) 

Fig. 7. Influence of temperature difference on the generation parameters of TEG string #1. (a) Open circuit voltage and (b) Internal resistance. 

 
(a) 

 
(b) 

Fig. 8. Output characteristic of centralized TEG system. (a) I-V curves and (d) P-V curves. 



 

B. Start-Up Test 

The purpose of this section is to validate the MPPT performance of DSMO at start-up (from zero point) affected HeTD, where 

the hot side temperatures of four TEG strings are designed as 247 ℃, 123 ℃, 76 ℃, and 41 ℃, respectively; and the cold side 

temperatures are designed to be 47 ℃, 31 ℃, 18 ℃, and 13 ℃, respectively. The equivalent parameters of each string are provided 

in Table VI. 

The simulation results achieved by five methods for the centralized TEG system as shown in Fig. 9. One can easily found that 

the energy output obtained by P&O is much smaller than that obtained by other methods since it is designed for approximating the 

single LMPP under HoTD in Fig. 9(d). Meanwhile, since all the three meta-heuristic algorithms possess strong global search 

ability, thus they can finally converge to the MPPs with high quality. Moreover, the proposed DSMO is able to make the TEG 

system to produce the largest output energy under HeTD among all the methods. Besides, all the meta-heuristic approaches can 

easily result in a obvious power fluctuation for the reason of their random operation based global search. In contrast, P&O can 

result in a much smaller power oscillation because of its simple and fixed control strategy. Besides, DSMO also can seek an 

excellent MPP with inconspicuous power fluctuation, which results from the surrogate model based greedy search that can 

implement a guided efficient search instead of a blind random search. 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

Fig. 9. MPPT results acquired by five methods in the start-up test. (a) Voltage, (b) Current, (c) Power, and (d) Energy. 

  
(a)                                                           (b) 

Fig. 10. Step varayion of temperature inputs. (a) Cold side and (b) Hot side. 
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(c)                                                           (d) 

Fig. 11. MPPT results acquired by five methods in the step test. (a) Voltage, (b) Current, (c) Power, and (d) Energy. 

C. Step Variation of Temperature 

This test applies a set of temperature steps (see Fig. 10) to verify the MPPT performance of DSMO. And as shown in Fig. 10(a), 

the temperature inputs of the cold side are set to be the identical change curves for the whole strings. Like a typical TEG waste heat 

recovery system, the cold side temperature can be maintained constant by cooling water in practice [29], while the heat side 

temperature is determined by the exhaust energy. The accurate values of temperature inputs for each string are given in Table VII. 

Figure 11 provides the MPPT results of five approaches under above environment. Significantly, P&O owns the smallest power 

oscillations while DSMO generates the largest energy outputs. This also demonstrates that conventional MPPT methods based on 

single LMPP affected HeTD cannot distinguish LMPPs and GMPP, while the RBF network based surrogate model can achieve a 

highly accurate mapping between the power output and the duty cycle for the centralized TEG system. Moreover, the 

meta-heuristic algorithms still cause a large power fluctuation since they easily find an inferior solution with a random operation. In 

contrast, P&O also make the TEG system operate at a steady MPP with a faster speed. Meanwhile, DSMO leads to a much smaller 

power fluctuation during the searching process, which verifies that the dynamic surrogate model based greedy search can 

effectively avoid an inferior solution and significantly accelerate the convergence. 

  
Fig. 12. Random variation of temperature inputs. (a) Cold side and (b) Hot side. 
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Fig. 13. MPPT results of TEG system obtained by five methods in the random test. (a) Voltage, (b) Current, (c) Power, and (d) Energy. 
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Fig. 14. Dynamic process of power outputs obtained by five methods for two scenarios in random temperature variation. (a) 8th scenario and (b) 60th scenario. 

TABLE V 

STATISTICAL RESULTS ACQUIRED BY FIVE APPROACHES  

Scenarios Indices P&O PSO WOA GWO DSMO 

Start-up 

Energy (W·s) 237.02  304.47  306.97  312.28  323.94  

Δvmax (%) 0.50  102.44  106.99  69.63  10.26  

Δvavg (%) 0.01  1.07  1.45  0.80  0.09  

Step 

variation  

Energy (W·s) 706.26  666.39  685.26  712.97  727.80  

Δvmax (%) 13.62  106.67  76.54  90.34  55.06  

Δvavg (%) 0.01  1.55  1.06  0.67  0.22  

Random 

change 

Energy (kW·h) 3.45  11.66  12.16  12.33  13.55  

Δvmax (%) 1.33  144.36  130.47  139.62  16.57  

Δvavg (%) 0.06  3.37  2.74  3.42  0.46  

Computation time (s) 0.01 0.30 0.30 0.30 0.20 

D. Random Temperature Change 

In this test, each string of the centralized TEG system will undergo random temperature change during one day, and the time 

change period is set as 15 minutes (see Fig. 12). Hence, it consists of 96 scenarios with different temperature inputs in 24 hours, in 

which the temperature inputs of each string in some scenarios are given in Table VIII. 

Figure 13 illustrates the MPPT results acquired by five approaches under acquired. In most of time, Fig. 13(a) can effectively 

demonstrate that DSMO can obtain a larger output power compared with that of other methods. However, DSMO also traps into a 

low-quality LMPP in some scenarios, e.g., the 8
th

 and 60
th

 scenarios. Fig. 14 gives the dynamic process of power outputs obtained 

by five methods for these two scenarios. It can be clearly found that each meta-heuristic algorithm can converge to a high-quality 

LMPP although they cause a large power fluctuation. In contrast, DSMO rapidly converge to a low-quality LMPP due to the over 

fitting with a small number of training samples. The power output obtained by P&O is the smallest among all the methods for each 

time cycle because the effect of HeTD. Again, DSMO can geenrate the largest energy output among all the methods, as shown in 

Fig. 13(b). In terms of average variability and maximum variability, P&O with simple and fixed control strategy can result in the 

smallest power fluctuation for centralized TEG system under HeTD, as illustrated in Fig. 13(c)-(d). Similarly, DSMO owns a quite 

small average and maximum variability than that of three meta-heuristic algorithms, which effectively validates its high 

optimization stability with the dynamic surrogate model based greedy search. 

E. Discussion of Statistical Results 

Table V illustrates the statistical outcomes acquired by five approaches under above tests, in which the optimal values of various 

indices are highlighted in bold; and the computation time is the time to converge to a stable operation point for each MPPT task 

with fixed temperature inputs. From the comparison of energy outputs of all approaches, DSMO can get the largest energy outputs 

under above scenarios for centralized TEG system. For instance, in the random temperature change, which is 393.10%, 116.24%, 

111.42%, and 109.93% to that of P&O, PSO, WOA, and GWO, respectively. Moreover, both the average and maximum change of 

P&O are the smallest among all the methods under all the scenarios although it merely obtains the smallest energy outputs, while its 

computation time is the shortest due to its simple control rule. With the less computation time, DSMO is able to considerably 

reduce the power fluctuations from the comparisons of average and maximum variabilities compared with meta-heuristic 

algorithms, while its average variability is only 6.09% of that obtained by WOA in the start-up test. Hence, GSDD can 



 

simultaneously approximate the GMPP and guarantee a small power fluctuation via a guided efficient search. 

F. Sensitivity Analysis 

The temperature ratios from 0% to 100% (5% change separation) are adopted to study the sensitivity [30-34] between 

temperature inputs and power outputs for centralized TEG system affected HeTD. And the 100% reference temperature of the hot 

side and cold side is same as start-up test. Figure 15 gives the sensitivity results of average power output, average variability, and 

maximum variability under different temperature ratios obtained by five methods. Figure 15(a) illustrates a positive relationship 

between the temperature inputs and the power outputs, i.e., as temperature proportion raising, the generated power increases 

correspondingly. For the meta-heuristic algorithms, both the average variability and maximum variability randomly change as the 

temperature ratio increases, which mainly results from their random operation based global search. In contrast, both of them 

obtained by P&O are basically constant under different temperature ratios. Compared with other methods, the average variability 

and maximum variability acquired by DSMO decrease when the temperature ratio is smaller than 30%, while they are basically 

unchanged when the temperature ratio is larger than 30%, which also verifies the high convergence stability of DSMO. 

V. HIL EXPERIMENT 

An HIL experiment based on dSpace platform can effectively validate the practicability of different MPPT approaches while the 

configuration and experiment platform are demonstrated in Fig. 16. Moreover, the centralized TEG system (1)-(7) is embedded on 

DS1006 platform while the sampling frequency is designed to be fs=100 kHz. Moreover, MPPT based on DSMO (8)-(14) is carried 

out on DS1104 platform while the sampling frequency is designed to be fc=1 kHz. 

 
(a) 

  
(b)                                                           (c)                            

Fig. 15. Sensitivity results of temperature inputs obtained by five methods. (a) Average power output, (b) Average variability, and (c) Maximum variability. 

A. HIL Experiment Results of Start-Up Test 

Figure 17 makes a comparison between the simulation and HIL experiment outcomes acquired by start-up test. It can be easily 

found that the similarity of their results is very high. 
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Fig. 16. The structure and hardware platform of HIL experiment. (a) configuration and (b) platform. 
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Fig. 17. MPPT performance comparison between simulation and HIL under the start-up test. (a) Voltage, (b) Current, (c) Power, and (d) Energy. 
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Fig. 18. MPPT performance comparison between simulation and HIL under the step change of temperature. (a) Voltage, (b) Current, (c) Power, and (d) Energy. 

B. HIL Experiment Results of Step Variation of Temperature 

Fig. 18 depicts the outcomes of simulation and HIL experiment acquired under step variation of temperature. Clearly, their 

responses are quite close. 

VI. CONCLUSION 

A new MPPT strategy based on DSMO for centralized TEG system under HeTD is proposed in this paper while the major 

contributions are summarized as follows: 

(1) The MPPT strategy based on DSMO is designed for centralized TEG system with satisfactory hardware cost, such that the 

dissipative energy during the industrial/domestic process is able to effectively reuse and recycle. 

(2) In contrast with single LMPP based MPPT methods, e.g., P&O, DSMO can distinguish LMPPs and GMPP for centralized 

TEG system under HeTD. And DSMO can noticeably reduce the power fluctuations via implementing an efficient guided search 

instead of a random search compared to meta-heuristic methods. 

(3) A series of comprehensive experiments, such as case studies and a dSpace based HIL experiment are carried out to prove the 

validity of DSMO. Simulation results clearly demonstrate that DSMO can effectively produce the highest output energy under 

various scenarios among all the methods, e.g., 393.10%, 116.24%, 111.42%, and 109.93% to that of P&O, PSO, WOA, and GWO 

in the test of random temperature change. In addition, it can also lead to a much slighter power fluctuation than that of the 

meta-heuristic approaches.  

Although DSMO can rapidly converge to an optimum with a small power fluctuation, it is also easy to trap into a low-quality 

LMPP in some operating scenarios. To address this limitation, one of our future works will focus on another efficient mapping 

technique to construct the dynamic surrogate model, which can not only require a small number of training samples, but also 

effectively avoid the over fitting. 

APPENDIX 

TABLE VI 

EQUIVALENT PARAMETERS OF EACH STRING IN START-UP TEST  

Parameter String #1 String #2 String #3 String #4 

Voc (V) 24.04 10.05  6.03 2.80 

RTEG (Ω) 0.50  0.16 0.10  0.015  

TABLE VII 

TEMPERATURE INPUTS OF EACH STRING IN STEP CHANGE TEST  

Temperature Time (s) String #1 String #2 String #3 String #4 

Hot side (℃) 

0 to 1 180 50 50 45 

1 to 2 190 55 60 50 

2 to 3 210 70 80 75 

3 to 4 200 65 75 70 

4 to 5 205 67.5 80 75 

Cold side (℃) 

0 to 1 20 20 20 20 

1 to 2 40 40 40 40 

2 to 3 50 50 50 50 

3 to 4 45 45 45 45 

4 to 5 50  50  50  50  

TABLE VIII 

TEMPERATURE INPUTS OF EACH STRING IN SOME SCENARIOS OF RANDOM TEMPERATURE VARIATION  

Temperature No. of scenario String #1 String #2 String #3 String #4 

Hot side (℃) 

4 205 136 81 91 

8 221 119 110 98 

12 247 125 89 62 

16 171 123 119 57 

20 212 147 114 95 

24 181 127 94 92 

28 205 117 114 78 

32 201 150 95 53 

36 171 142 108 63 

40 194 140 86 81 

44 250 121 107 96 



 

48 195 138 105 90 

52 184 103 110 76 

56 205 136 119 73 

60 195 123 99 64 

64 164 117 116 75 

68 236 135 110 83 

72 180 130 89 82 

76 210 115 87 51 

80 224 127 113 91 

84 195 108 94 66 

88 169 143 104 69 

92 169 137 108 89 

96 164 126 115 70 

Cold side (℃) 

4 33 30 19 16 

8 41 31 20 12 

12 41 36 21 17 

16 40 38 16 21 

20 42 32 28 11 

24 47 32 19 21 

28 50 38 21 19 

32 35 28 21 14 

36 40 28 24 23 

40 36 29 28 13 

44 50 34 17 11 

48 33 40 28 11 

52 34 29 18 22 

56 32 22 25 22 

60 44 39 29 22 

64 43 32 26 11 

68 41 27 25 12 

72 46 31 25 22 

76 36 32 29 11 

80 34 23 28 20 

84 48 25 20 17 

88 35 25 23 17 

92 41 29 25 23 

96 44 33 22 18 
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