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Abstract  

Vapor chambers provide highly effective heat spreading to assist in the thermal management 

of electronic devices. Although there is a significant body of literature on vapor chambers, most 

prior research has focused on their steady-state response. In many applications, electronic devices 

generate inherently transient heat loads and, hence, it is critical to understand the transient thermal 

response of vapor chambers. We recently developed a semi-analytical transport model that was 

used to identify the key mechanisms that govern the thermal response of vapor chambers to 

transient heat inputs (Int. J. Heat Mass Trans. 136 (2019) 995–1005). The current study utilizes 

this understanding of the governing mechanisms to develop design guidelines for improving the 

performance of vapor chambers under transient operating conditions. Two key aspects of vapor 

chamber design are addressed in this study: first, a parametric optimization of the wall, wick, and 

vapor-core thicknesses; and second, the selection of the working fluid. A protocol is demonstrated 

for selecting these parameters given the external vapor chamber envelope dimensions and 

boundary conditions. The study helps provide a framework for designing vapor chambers subject 
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to transient heat loads, and to differentiate such design from the practices followed traditionally 

for steady-state operation. 

 

Keywords: transient, vapor chamber, heat pipe, design, working fluid 

 

Nomenclature 

Cp specific heat capacity [J kg-1 K-1] 

Cvol volumetric heat capacity of the liquid phase [J m-3 K-1] 

h convection coefficient [W m-2 K-1] 

hfg specific enthalpy of vaporization [J kg-1] 

K permeability [m2] 

k thermal conductivity [W m-1 K-1] 

Ml liquid-phase figure of merit 

Mv vapor-phase figure of merit 

m  mass flux rate [kg m-2 s-1] 

P pressure [Pa] 

Q input power [W] 

R specific gas constant [J kg-1 K-1] 

T temperature [K] 

Tsat saturation temperature [K] 

T ambient temperature [K] 

t time [s] 

u x-component of velocity [m s-1] 
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V  velocity vector [m s-1] 

v y-component of velocity [m s-1] 

w z-component of velocity [m s-1] 

x x-coordinate (length) direction [m] 

y y-coordinate (width) direction [m] 

z z-coordinate (thickness) direction [m] 

Greek  

vap vapor-core thickness [m] 

wick wick thickness [m] 

wall wall thickness [m] 

 temperature relative to the ambient (T-T) [K] 

µ viscosity [Pa s] 

 density [kg m-3] 

 accommodation coefficient [-] 

 porosity [-] 

Subscript  

eff effective wick property 

int wick–vapor interface 

l liquid phase 

m volume-averaged 

p evaporator maximum 

p-m difference between evaporator maximum and volume-averaged values 
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v vapor phase 
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1. Introduction  

A vapor chamber is a passive heat spreading device driven by the change of phase of an internal 

working fluid. A typical vapor chamber comprises a sealed metal chamber with a porous wick 

lining its inner surface. The chamber is evacuated and charged with a working fluid; the porous 

wick holds the liquid phase of the fluid, while the core is occupied by vapor. The working principle 

of a vapor chamber is illustrated in Figure 1. A localized heat input on the so-called evaporator 

surface leads to evaporation at the adjacent wick-vapor interface, causing vapor to flow away from 

the source and to condense at the opposing colder wick-vapor interface, rejecting heat to the 

condenser surface. The condensed liquid is pulled back towards the heat input region due to the 

capillary action of the porous wick. 

Effective thermal management of electronic devices has enabled their continual advance 

towards higher heat loads and heat densities. The highly effective heat spreading capabilities of 

vapor chambers have resulted in significant research being conducted for their use in a wide range 

of applications, from high heat fluxes (> 500 Wcm-2) such as in radar power amplifiers and high-

performance computing systems, to low-power (< 10 W) mobile electronic devices [1]. Space 

constraints and transient heat loads are common among these applications. For example, mobile 

devices operate at very low power in an idle state but experience pulses of higher power while 

using applications such as video calling. Additionally, the compact shape of these devices means 

that only submillimeter-thick volumes are available for heat spreading. 

Previous work in the literature for the design of vapor chambers has focused on improving 

performance at steady state [2-10]. To inform these design approaches, studies have identified the 

key mechanisms governing the vapor chamber performance at steady-state conditions. Prasher et 

al. [11] developed a resistance-network representation of heat pipes, where the transport processes 
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in the wall, wick, and vapor core are represented by analogous thermal resistances. The model 

revealed that the performance of a vapor chamber for high power applications is limited by the 

resistance across the wick near the evaporator. Significant research has focused on designing the 

evaporator wick for reducing its resistance during evaporation or capillary-fed boiling [5-10, 12-

19]. Recent work by Yadavalli et al. [20]identified that the performance of ultra-thin vapor 

chambers dissipating low powers is limited by the thermal resistance in the vapor core. Based on 

this limiting resistance, our previous studies have developed methods for design of vapor chambers 

[4] and selection of working fluids [21]for ultra-thin form factors and low-power operation. 

The thermal behavior of vapor chambers under transient operation has also been studied. El-

Genk and Lianmin [22] conducted experiments to study the heat-up and cool-down of heat pipes 

for a range of heat inputs and condenser coolant flow rates. They concluded that the transient vapor 

temperature profiles could be locally represented by an exponential function in the cases tested. 

Tournier and El-Genk [23] developed a model that simulated the transient mass, momentum, and 

energy transport in a vapor chamber using the finite-volume method to study the pooling of liquid 

in the condenser. Zhu and Vafai [24] developed an analytical model to solve for heat spreading 

from a centrally located heater in disk- and rectangular-shaped vapor chambers. The model solved 

1D transient conduction in the wall and the wick, while the quasi-steady vapor-core 

hydrodynamics was computed by assuming a spatial velocity profile. The model was then used to 

simulate the startup behavior of the transient vapor chamber temperature and velocity fields. 

Harmand et al. [25] developed a model for transient transport in a vapor chamber using the finite-

volume method. The model was validated against experiments and subsequently the capabilities 

of the model were demonstrated for a range of scenarios with multiple heat sources and sinks. 

However, these and other [2629-30] analyses in the literature did not attempt to extract any 
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guidelines or procedures to design vapor chambers for improved performance during transient 

operation. 

In our recent work [31] , a low-cost, 3D, transient semi-analytical transport model [32]  was 

used to identify the key mechanisms governing the transient thermal behavior of vapor chambers; 

the occurrence of these mechanisms was confirmed with experiments. Knowing these key 

mechanisms, we develop a protocol for the design of vapor chambers under transient heat loading 

in the current work. Two key aspects of the vapor chamber design are considered: (1) optimization 

of the thicknesses of the vapor chamber wall, wick, and vapor core, for a given total available 

thickness; and (2) selection of the working fluid for a given set of boundary conditions. Simulations 

performed with the time-stepping analytical model [32] are used to identify and demonstrate a 

procedure for designing the vapor chamber.  

 

2. Model and simulation case details 

2.1 Time-stepping analytical model for vapor chamber transport 

The time-stepping analytical model [32] is used for simulating the transient response of vapor 

chambers in this work. This transient 3D transport model is applicable for the rectangular 

geometries of the vapor chamber wall, wick, and vapor core, configured such that the wick lines 

the inner surface of the wall and encloses the vapor core as shown in Figure 1. The boundary 

conditions for the model can be arbitrarily shaped and located heat inputs on either of the faces, 

with the remaining face area being insulated or exposed to convection. All of the boundary 

conditions can vary in time, given the transient nature of the model. The mass, momentum, and 

energy transport are solved in the wall, wick, and vapor core of the vapor chamber. The phase 
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change process is simulated at the wick-vapor interface. The model outputs are 3D transient fields 

of temperature, pressure and velocity. 

The governing equations for the mass, momentum, and energy transport, before simplification, 

are given below.  

 0
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 (3) 

In the vapor core, the porosity   is set to 1 and the permeability K is set to ∞, whereas in the wick 

region these values take on the properties of the wick. In the wick region, effk  is the effective 

conductivity, while in the wall and vapor core, effk  is the material thermal conductivity. The fluid 

volumetric heat capacity in the wick and vapor core, ( )P l
C , is set to zero in the wall region. The 

effective volumetric heat capacity of the three regions is given by: 

for the wick, ( ) ( ) ( )( )1P P Peff l s
C C C    = + − , 

for the wall, ( ) ( )P Peff wall
C C = , and 

for the vapor core, ( ) ( )P Peff vap
C C = , 
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The mass flux rate due to phase change at the wick–vapor interface is computed using the 

difference between the local interface temperature and the local vapor-core saturation temperature 

[33] as: 

 ( )
0.5

1.5

2 1

2 2

fg vap

int sat

vap

h
m T T

RT



 

 
 = − 

−  
. (4) 

The saturation temperature in the vapor core is computed using the Clausius-Clapeyron equation 

 
2

vap fg vap

sat sat

dP h P

dT RT
= . (5) 

The model simplifies the governing equations using scaling analysis and assumed temperature 

profiles along the thickness, to allow solution at a low computational cost [32]. The final set of 

differential equations (see [32]) are solved analytically in space and numerically in time. It is 

important to note that using a numerical solution in time allows for the use of temperature-

dependent thermophysical properties for the vapor phase, which can change considerably over the 

typical operating temperatures; the fluid properties are computed at each time step based on the 

volume-averaged temperature. In our recent work [31], the model was validated against 

experiments. 

This time-stepping analytical model allows a large number of cases to be evaluated over a wide 

range of design parameters at a tractable computational cost. Simulations are run using a custom 

script that implements the model in the commercial software MATLAB [34]. 

2.2. Simulation case details 

Details of the vapor chamber simulations used for demonstrating the vapor chamber design 

procedures are described here. The geometry and boundary conditions for the simulations are 

shown in Figure 2. The rectangular vapor chamber has a length of 80 mm, a width of 60 mm, and 

a thickness of 300 µm. The vapor chamber wall is made of copper and the wick of sintered copper. 
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The temperature-dependent properties of the working fluid are obtained from the commercial fluid 

database software REFPROP [35]. The relevant properties of the wick and copper are included in 

Table 1Table 1. 

The vapor chamber is subjected to a heat input of 4 W starting at time t = 0 over an area of 10 

mm × 10 mm at the center of the evaporator-side face. The rest of the evaporator-side face is 

insulated. The opposite face has a convective boundary condition, with heat transfer coefficient h 

= 30 Wm-2K-1 and ambient temperature T = 300 K. At time t = 0, the vapor chamber is initially 

at a temperature of 300 K. Two time-step sizes are used for time-marching, 0.05 s for t < 10 s and 

1 s for t > 10 s. 

 

3. Optimization of the wall and vapor-core thicknesses 

As discussed in Ref. [31], the total thermal capacity of the vapor chamber is effectively the 

sum of the thermal capacities of the wall and the wick, and hence will increase with an increase in 

wall or wick thickness. The effective in-plane vapor-core conductance increases with an increase 

in the vapor-core thickness. The wick has a minimum thickness requirement to satisfy the capillary 

limit; thicknesses below this minimum value would result in higher flow velocities with the 

attendant pressure drop exceeding the capillary pressure. For a fixed overall thickness, and setting 

the wick to its minimum thickness, an increase in the vapor-core thickness will increase the 

effective in-plane conductance of the vapor core, but reduce the wall thickness and hence the total 

thermal capacity. Although both the wick and the wall provide thermal capacity for the vapor 

chamber, it is always favorable to minimize the wick thickness. This is because both the wall and 

wick have similar values of volumetric capacity (3420.6 kJm-3K-1 for copper and 4166.3 kJm-3K-1 

for liquid water), but a copper wall has a much higher conductivity than a porous wick. 
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Based on this tradeoff, an optimization of the vapor-core and wall thicknesses is clearly 

necessary; for a fixed external geometry and set of boundary conditions, vapor chambers with a 

range of wall and vapor-core thicknesses are simulated to identify the optimum allotment between 

these two thicknesses. The factors governing these optimum values are compared under transient 

versus steady-state conditions. 

Water is selected as the working fluid for these simulations. The value for the accommodation 

coefficient  (equation 4) is set to 0.03 [36]. The thickness of the wick layers on either side is set 

to 10 µm, which is the minimum value needed to avoid encountering the capillary limit at the 

selected heat input level. The thickness of the wall on either side is varied from 10 µm to 130 µm; 

within the total available thickness, the vapor-core thickness correspondingly varies from 260 µm 

to 20 µm. Note that a minimum wall thickness is needed to support the pressure difference between 

the internal vapor and the external atmosphere; evaluation of this mechanical limit is beyond the 

scope of this study. 

Figure 3a shows the temporal profile of the temperature, p, at the center of the heat input area 

relative to the ambient temperature, for three values of vapor-core thickness. The value of p for 

each of the three cases increases from 0 at t = 0 toward a steady-state value. At steady state (t = 

200 s), the peak temperature p is highest for the smallest vapor-core thickness, and the value 

monotonically decreases as the vapor-core thickness is increased from 20 µm to 100 µm to 260 

µm. The highest temperature in the vapor chamber is at the evaporator, and this value is typically 

used for characterizing vapor chamber performance. Under transient conditions, given that this 

temperature is time-varying, multiple methods can be used to characterize performance (e.g., the 

time for p to reach a set maximum limit, the value of p at a particular time, or an average value 

of p over a range of time). In this study, the transient performance of the vapor chamber is 
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characterized by the peak temperature p at time t = 50 s (marked by the vertical dashed line in 

Figure 3a). At time t = 50 s, p reduces from 31 K to 26.1 K when the vapor-core thickness is 

increased from 20 µm to 100 µm but then increases to 28.6 K when the vapor-core thickness is 

further increased to 260 µm. Thus, we observe that the relation between the vapor-core thickness 

(and by extension the wall thickness) and the transient performance is nonmonotonic, unlike the 

monotonic relationship at steady state. 

To understand this relationship between the transient performance and the vapor-core 

thickness, the peak temperature p is decomposed into two components, the mean (volume-

averaged) temperature m, shown in Figure 3b, and the difference between the peak and mean 

temperatures, Δθp-m = θp - θm (i.e., the peak-to-mean difference), shown in Figure 3c. As identified 

in our previous work [31], three mechanisms govern the transient thermal behavior of vapor 

chambers: 1) the total thermal capacity of the vapor chamber governs the rate of increase of the 

volume-averaged mean temperature, θm; 2) the effective in-plane conductance of the vapor core 

governs the magnitude of the peak-to-mean temperature difference, Δθp-m; 3) the effective in-plane 

diffusivity governs the time required for the initial rise in the peak-to-mean temperature difference 

Δθp-m. The third mechanism is only relevant for a brief initial period (t < 10 s, as seen in Figure 

3c), and thus, is not relevant for this specific investigation of performance at 50 s. For the fixed 

wick thickness considered, the total thermal capacity of the vapor chamber decreases with 

increasing vapor-core thickness (and corresponding reduction in wall thickness). Thus, in Figure 

3b, the vapor chamber heats up faster with increasing vapor-core thickness and the value of θm at 

time t = 50 s monotonically increases. As discussed in Ref. [31], the effective in-plane conductance 

of the vapor core increases polynomially with increasing vapor-core thickness. As seen in Figure 

3c, the peak-to-mean temperature difference Δθp-m is smaller at all times for the larger vapor-core 
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thicknesses. Thus, the two mechanisms governing the transient vapor chamber performance (at t 

= 50 s) have opposite trends with vapor-core thickness, leading to the net nonmonotonic 

relationship observed in Figure 3a. Note that at steady state, the total thermal capacity of the vapor 

chamber is irrelevant, and the performance is only governed by the effective in-plane conductance 

of the vapor core, which explains the monotonic improvement in vapor chamber performance at 

steady state (at t = 200 s) with increasing vapor-core thickness. 

Figure 4a and Figure 4b respectively show the vapor chamber steady-state (at t = 200 s) and 

transient (at t = 50 s) evaporator temperature θp as a function of the vapor-core thickness. At steady 

state (Figure 4a), the performance monotonically improves (i.e., the temperature decreases) with 

increasing vapor-core thickness. To design a vapor chamber for improved steady-state 

performance, the vapor-core thickness should generally be maximized, as proposed in our previous 

work [4]. However, under transient conditions, due to the nonmonotonic dependence of 

performance on the vapor-core thickness, an optimum value of the vapor-core thickness exists that 

minimizes θp, at 90 µm in this case. Thus, when designing a vapor chamber for improved transient 

performance, the optimal ratio between the vapor-core thickness and wall thickness must be 

evaluated for the specific case and operating time of interest. Traditional vapor chamber design 

practices developed in the past based on the steady-state performance metrics cannot be directly 

adopted for design under transient conditions. 

 

4. Selection of working fluid 

4.1 Selection procedure 

The performance of a vapor chamber is sensitive to the thermophysical properties of both the 

liquid and vapor phases of the working fluid. Therefore, selecting a working fluid is critical to the 
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design of a vapor chamber. In our previous work [21], the relationship between the properties of 

the working fluid and the steady-state performance of a vapor chamber was identified, and a 

procedure developed that allows selection of the working fluid that provides the best steady-state 

performance among available options. Two fluid property groups govern the performance of a 

vapor chamber at steady state, the liquid-phase figure of merit Ml and the vapor-phase figure of 

merit Mv, defined as  

 

2

2
   and    .

 

 
= =

l fg v v fg

l v

l v v

h P h
M M

RT
 (6) 

The liquid figure of merit lM  has been commonly used for the selection of working fluids that 

maximize the capillary limit in conventional vapor chambers having a relatively thick vapor core 

[37]. At the capillary limit, the pressure drop in the liquid matches the capillary pressure provided 

by the porous wick; any increase in the liquid pressure drop beyond this value would result in 

dryout of the wick near the evaporator. The properties included in the liquid-phase figure of merit 

thereby govern the required wick thickness to avoid the capillary limit, at a given operating power. 

The vapor figure of merit, introduced by Yadavalli et al. [20], governs the effective in-plane 

conductance of the vapor core. 

A procedure for the selection of working fluids to minimize the evaporator peak temperature 

at steady state was defined in Ref. [21]. As discussed in Section 3, the steady-state performance of 

a vapor chamber is maximized by maximizing the vapor-core thickness. Thus, for a fixed total 

thickness of the vapor chamber, minimizing the wick and wall thicknesses maximizes the vapor-

core thickness. The minimum required thickness of the wick to avoid the capillary limit is 

computed as a function of Ml (wick  Ml
 -0.5). The maximized vapor-core thickness and Mv 



15 

 

determine the effective in-plane conductance of the vapor core. The fluid that yields the highest 

effective in-plane conductance of the vapor core is selected as the working fluid. 

The performance of a vapor chamber under transient conditions, on the other hand, is governed 

by both the total thermal capacity of the vapor chamber, including the thermal capacities of the 

wick and the wall, and the effective in-plane conductance of the vapor core. The thermal capacities 

of the wall and wick are governed by their thicknesses and material specific heat capacities; in the 

case of the wick, the heat capacity is directly related to the volumetric capacity of the liquid phase 

of the working fluid, Cvol. The effective in-plane conductance of the vapor core is governed by the 

vapor-core thickness and Mv. The following procedure is proposed for selection of the working 

fluid that maximizes performance under transient conditions (i.e., minimizes the evaporator 

temperature at a given time) for a given case. For each candidate working fluid: 1) minimize the 

thickness of the wick to satisfy the capillary limit based on the Ml value for the fluid; 2) optimize 

the thicknesses of the wall and vapor core as discussed in Section 3; this fluid-specific optimization 

is governed by the tradeoff between increasing the total thermal capacity of the wall and decreasing 

the effective in-plane conductivity of the vapor core. This procedure can be repeated for all fluids 

of interest to identify the one that yields the best performance.  

4.2 Demonstration of the procedure 

The procedure for the selection of the working fluid is demonstrated in this section for the case 

described in Section 2.2. This demonstration is conducted to choose between two working fluids, 

water and methanol. The thermophysical properties of the fluids are obtained from the commercial 

fluid database software REFPROP [35] and the values of the relevant property groups are shown 

in Table 2Table 2, computed at a temperature of 300 K. The value for the accommodation 

coefficient  (equation 4) is set to 0.03 for water [36] and 0.056 for methanol [38]. 
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The first step in the working fluid selection procedure is to minimize the wick thickness for 

the given operating power. The minimum wick thickness is found to be 10 µm for water and 23 

µm for methanol, which follows an inverse proportionality with the square root of Ml, as noted in 

Section 4.1. The second step is to optimize between the wall and the vapor-core thicknesses. For 

methanol, the thickness of the wall is varied from 10 µm to 120 µm. The vapor-core thickness 

correspondingly varies from 234 µm to 14 µm. The variations explored for water are the same 

cases as those described above in Section 3. 

Figure 5 shows the evaporator temperature p as a function of vapor-core thickness for the two 

fluids. The plot shows that the optimum vapor-core thickness for the two fluids is different, being 

90 µm (95 µm wall thickness) for water compared to 52 µm (101 µm wall thickness) for methanol. 

More importantly, at these optimum dimensions, the value of p for methanol (24.1 K) is lower 

than that for water (26.1 K). This can be attributed to the improved total thermal capacity and 

effective in-plane conductance for the optimal design with methanol as the working fluid. The wall 

and wick thicknesses are both larger with methanol, leading to a higher total thermal capacity, 

despite the lower volumetric capacity of methanol compared to water. This is indicated by the 

lower value of m (23.3 K) as compared to that for the case with water (24.1 K). The effective in-

plane conductance is governed by the vapor-core thickness and Mv. For the case with methanol, 

despite a much smaller vapor-core thickness, the significantly higher value of Mv leads to a smaller 

value of Δθp-m (0.8 K) than with water (2.0 K). 

The relationships between the design parameters and the vapor chamber performance are 

complex and nonintuitive. The procedural approach developed here allows for rational design of 

vapor chambers for transient conditions. Although the procedure is demonstrated here for specific 

cases, it is based on an understanding of the mechanisms governing the general transient thermal 
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behavior of vapor chambers.  The procedure can therefore generally be applied for a broad range 

of operating conditions, including different geometries, boundary conditions, and transient 

metrics. 

 

5. Conclusions 

In this work, guidelines are developed for the design of vapor chambers to improve their 

performance under transient conditions, which include an optimization of the thicknesses of the 

wall, the wick, and the vapor core, and the selection of a working fluid. A procedural approach is 

developed for the design of these parameters, followed by a demonstration using simulations of 

representative cases. The procedures are informed by the key mechanisms governing the 

nonintuitive transient thermal behavior of vapor chambers. It was concluded that the traditional 

practices for optimization of the vapor chamber wall, wick, and vapor-core thicknesses under 

steady-state conditions, cannot be directly used under transient conditions. Due to the existence of 

multiple governing mechanisms, with sometimes competing effects, the design of vapor chambers 

under transient conditions must be evaluated for the specific case and operating time of interest. 

The procedural approach developed here can be generally applied to user-specific cases of interest, 

as it accounts for the multiple governing mechanisms that determine vapor chamber transient 

performance. 
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Table 1. Copper and wick properties. 

 

Property Value 

Wick effective thermal conductivity (keff) 40 Wm-1K-1 

Copper volumetric thermal capacity ( )P s
C  3.42×106 Jm-3K-1 

Wick porosity ( ) 0.6 

Copper thermal conductivity (k) 387.6 Wm-1K-1 
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Table 2. Fluid property figures of merit for water and methanol. 

 

Property Water Methanol 

Ml (/1010) (Wm-2) 20.4 3.8 

Mv (/1012) (Wm-3K-1) 1.3 27.7 

Cvol (/106) (Jm-3K-1) 4.2 2.0 
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Figure 1. Illustration of the typical internal layout and operation of a vapor chamber. 
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Figure 2. Geometry (not to scale) and boundary conditions for the transient vapor chamber 

simulations showing (a) a section view, and (b) a bottom view of the evaporator side. 
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Figure 3. Transient response of a vapor chamber for multiple values of vapor-core thickness, 

showing the temporal variation of the (a) peak temperature θp, (b) volume-averaged mean 

temperature θm, and (c) difference between the peak and mean temperatures Δθp-m = θp - θm. 
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Figure 4. Vapor chamber peak temperature θp as a function of vapor-core thickness vap (a) at 

steady state (t = 200 s), and (b) at t = 50 s. 
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Figure 5. Selection of working fluid by comparing the vapor chamber peak temperature θp as a 

function of vapor-core thickness vap for water and methanol as working fluids, under transient 

conditions (t = 50 s). 
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