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Introduction

❖ Microperforated material

❖Dissipation

❖ In hole

❖ Along outer surface

❖Within shearing fluid

❖ Analytical models

❖ Maa (1975) and Guo et al. (2008) account for first two
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Introduction
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Real materials do not have regular hole shapes and 
so are not suitable for analytical treatment

Microperforated panel



Introduction

Objective

By using computational fluid dynamics approach, 
calculate dynamic flow resistance for 
microperforated panel considering flow through 
one hole and compare with existing formulation

vin

P1 P2

1 2
f

in

P P
R

v

−
=

4



Guo’s Model
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Guo Model

α = 2      when smooth end

α = 4      when sharp end

Dynamic flow resistance (R) is function of t, d, σ

Note that Rs → 0 as ω → 0 

Cylinder Surface



Geometry

Geometry of CFD model

Mesh Interval : 0.005 mm, pressure-based, implicit formulation 
the Green-Gauss node-based method
SIMPLE for the pressure-velocity coupling method
STANDARD for pressure
SECOND-ORDER UPWIND for momentum
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CFD parameters
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Set 1. Thickness Set 2. Diameter Set 3. Porosity

t (mm) d (mm) σ t (mm) d (mm) σ t (mm) d (mm) σ

0.1016 0.4064 0.02 0.4064 0.1016 0.02 0.4064 0.2032 0.005

0.2032 0.4064 0.02 0.4064 0.2032 0.02 0.4064 0.2032 0.01

0.3048 0.4064 0.02 0.4064 0.3048 0.02 0.4064 0.2032 0.015

0.4064 0.4064 0.02 0.4064 0.4064 0.02 0.4064 0.2032 0.02

0.508 0.4064 0.02 0.4064 0.508 0.02 0.4064 0.2032 0.025

0.6096 0.4064 0.02 0.4064 0.6096 0.02 0.4064 0.2032 0.03

0.7112 0.4064 0.02 0.4064 0.2032 0.035

0.8128 0.4064 0.02 0.4064 0.2032 0.04

0.9144 0.4064 0.02

❖ Three different sets

◼ Panel thickness (t)

◼ Hole diameter (d)

◼ Porosity (σ)



Inlet Velocity and Pressure
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Inlet velocity was chosen to be a Hann windowed, 5 kHz half-
sine wave having a maximum value of 1 mm/s in order to cover 
the frequency range up to 10 kHz



Pressure and Velocity distribution in simulation
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t = 0.4064 mm, d = 0.2032 mm, σ = 0.02  
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Dynamic flow resistance and reactance
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Set 1. (different thicknesses)



Dynamic flow resistance and reactance
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Set 2. (different hole diameters)



Dynamic flow resistance and reactance

12

Set 3. (different porosities)



Comparison of CFD Result with Guo Model
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Dynamic flow resistance and flow reactance 
(d=0.4064 mm, t=0.4064 mm, σ=0.02)

Large difference in flow Resistance in low frequency range

Make α, which is defined by Guo et al., a function of 

frequency to fit with CFD results



The value of α vs. Frequency
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In these graphs, it is shown that α is a function of 

frequency, thickness, hole diameter, and porosity

Especially all plot lines are almost parallel below 2 kHz, so 
we can say that α is approximately proportional to f -0.5



Revised formulation

❖ Express α as
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as 
before

but

α should be a function of ω, t, d, and σ
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So that



β vs. thickness, diameter, and porosity
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In these graphs, β is proportional to thickness and 
porosity, and inverse proportional to hole diameter.



Define the new parameter β
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❖Define new parameter β

Using least square method to calculate the constants, 
a, b, and c

σ < 1, 0.059σ << 14.1, so we can ignore σ terms



The value of α
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Set 1. (different thicknesses)



The value of α
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Set 2. (different hole diameter)



The value of α
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Set 3. (different porosity)



Flow resistance computed by Fluent Vs. β
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Dynamic flow resistance (d=0.2032 mm, t=0.4064 mm, σ=0.02)

When using the new parameter β, the accuracy is 
improved compared to the Guo model. 



Conclusions
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❖ Classic theoretical model of microperforated panel 
differs significantly from CFD result especially in the 
low frequency range.

❖ By changing the definition of α, as defined by Guo et 

al., accuracy can be improved in low frequencies.

❖ Define                                            where t is 

thickness, d is hole diameter, and f is frequency

❖ Future  :  Determine α when the flow is compressible 

and explore effect of hole shape
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