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Abstract 21 

Sensations experienced in the mouth influence food choices, both immediately and in the long 22 

term. Such sensations are themselves influenced by experience with flavors, the chemical 23 

environment of the mouth, genetics of receptors for flavors, and individual behavior in the 24 

chewing of food. Gustation, the sense of taste, yields information about nutrients, influences 25 

palatability, and feeds into the human body’s preparation to receive those nutrients. Olfaction, 26 

the sense of smell, contributes enormously to defining and identifying food flavors (and is 27 

experienced even after placing food inside the mouth). Another vital component of food flavor is 28 

texture, which contributes to palatability, especially if a food’s texture violates a person’s 29 

expectations. Next, chemesthesis is the sense of chemically induced irritancy and temperature, 30 

for example spiciness and stinging. All of these sensations are potentially modified by saliva, the 31 

chemical and physical media of the mouth. As a person experiences the culmination of these 32 

oral sensations, modified through an individual’s own unique saliva, the flavors in turn influence 33 

both what and how a person eats.  34 

 35 

 36 

 37 

 38 
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1. Introduction 41 

Food must be eaten in order to be nutritious (or deleterious). This fundamental fact may be 42 

obvious, but it is also the crux of the dilemmas regarding feeding behavior and health. In the 43 

end, all the healthy food in the world will have absolutely no effect on a person who does not 44 

make the choice to ingest that food. As the most dominant driver of food choice is flavor, e 45 

(IFICF, 2016), the mouth therefore plays a large role in a person’s decision to ingest something. 46 

In general, “flavor” is experienced by the brain combining sensory experiences including aroma, 47 

tastes, textures, and perhaps even visual and audible cues from a food (Small, 2012). Not all 48 

fields and researchers agree on how many of these sensory attributes should be included in 49 

strict definitions of “flavor,” but for this review the term will be used inclusively of the combination 50 

of sensations that may contribute to an individual’s experiences and expectations of a food. 51 

Notably, a number of these potential “flavor” components can be obtained from sensory input 52 

before putting a food in the mouth. For example, expectations about a food may be derived from 53 

appearance, odors are perceived from a distance, and perception of thickness from stirring or 54 

swirling a beverage tracks strongly with in-mouth texture (Christensen & Casper, 1987). 55 

However, the full experience of flavor comes together as the food enters the mouth. 56 

Additionally, the properties (both physical and chemical) of the foods themselves will dictate the 57 

way the food is manipulated by the teeth and tongue. The combination of food sensation and 58 

oral manipulations can also influence the pace of feeding. Some foods take longer to chew than 59 

others. Some foods have dynamic textures which might influence the pace of consumption. But 60 

beyond even those fundamental differences, humans themselves differ in their own personal 61 

oral environments and chewing behaviors, which in turn will influence what they are willing to 62 

eat. 63 

 64 



The purpose of this review is to briefly cover the sensations (gustation, retronasal olfaction, 65 

texture, and chemesthesis/trigeminal sensations) and secretions (saliva) of the oral cavity, and 66 

discuss how these factors may interact with food choice. 67 

 68 

2. Gustation and olfaction 69 

Gustation is the sense of taste, and will be used in this article to avoid confusion with the verb 70 

“to taste” (i.e., putting something in the mouth to experience/ingest it) or the more common 71 

vernacular meaning of the noun “taste” (referring to flavor in general). While colloquially “taste” 72 

often refers to many aspects of flavor, scientifically the sense of gustation is more limited. In 73 

general, gustation occurs by tastants first dissolving or suspending into saliva. The saliva 74 

passes over taste receptors, which are present on taste cells. The taste cells are organized into 75 

taste buds, which are present throughout much of the oral epithelium including the soft palate 76 

and the esophagus. However, most of the taste buds are found in the fungiform, foliate, and 77 

circumvallate papillae of the tongue (Miller & Bartoshuk, 1991). Tastants bind to the taste 78 

receptors, activating taste cells (either directly or through interaction with neighboring taste 79 

cells) to send a signal through nerves to the brain.  80 

 81 

While scientists tend to agree gustation is limited to only a few qualities, there is little consensus 82 

on the total number of these “primary” gustatory qualities. Sweet, sour, salty, and bitter are 83 

widely accepted as gustatory percepts, but umami/savoriness, oleogustus (fatty acid taste), 84 

starchy taste, and several mineral tastes have also been proposed, with much ambiguity on why 85 

the first four are definitely gustatory sensations while the latter might or might not be. Some 86 

criteria for defining gustatory sensations have, however, been proposed (Mattes, 2011). They 87 

include: the sensation should offer an evolutionary advantage; ligands and receptors should 88 

have been identified; the receptors should activate gustatory specific cells and send signals 89 

along gustatory specific nerves; the sensation should be unique from other gustatory 90 



sensations; and the sensation should evoke some kind of physiological or behavioral response. 91 

Still, even among widely accepted tastes, not all fit this list of criteria equally. For example, a 92 

wide variety of chemical structures are all detected as bitter, and the receptors for saltiness and 93 

sourness are still not firmly established. This ambiguity over defining gustation is a critical 94 

reason why the number of gustatory sensations remains debated. For example, the concept of a 95 

gustatory component for fat is not new, dating back at least to the 1500s (Fernel, 1581). Yet, 96 

separating the textural from the gustatory sensation of fat is challenging, not only due to the 97 

physical differences in texture from fat compared to water but also due to the challenges in 98 

distributing fatty molecules in an emulsion with water (Running & Mattes, 2014a, 2014b). The 99 

issue of a “taste” for fat is then further complicated by the apparent unpleasantness of the fatty 100 

acids when used as gustatory stimuli (Running, Craig, & Mattes, 2015; Running, Hayes, & 101 

Ziegler, 2017) compared to the assumed pleasantness of high-fat foods. This observed negative 102 

hedonic experience of fatty acid taste compared to fattiness in general is precisely why a new 103 

term, “oleogustus,” has been proposed to isolate the gustatory experience of fatty acids 104 

(Running et al., 2015). In any case, this particular gustatory sensation is a prime example of 105 

how strict definitions elude us for what is gustation and what is some other oral sensation.  106 

 107 

Despite the colloquial meaning of the word “taste,” much of a food’s overall flavor actually 108 

comes from odor: specifically, retronasal olfaction. These are the odors that pass through the 109 

back of the mouth into the airway and up into the nasal passages. When nasal passages are 110 

inflamed or otherwise blocked, this movement of air is restricted and results in lack of sensation. 111 

This is why when a person develops a respiratory infection, they can no longer “taste” 112 

anything—in reality, the sense of gustation is intact, but the sense of olfaction is limited. Loss of 113 

the retronasal olfaction reduces the sensation of the food to gustation, texture, and 114 

chemesthesis, and as a result the ability to identify flavors is severely limited. 115 

 116 



The importance of odor on flavor identification is likely because the olfactory system can detect 117 

multitudes of distinct odors, especially compared to the very restricted list of gustatory 118 

sensations described above. To date, over 400 olfactory receptors have been identified, each of 119 

which is expressed on its very own set of individual olfactory neurons (Chess, Simon, Cedar, & 120 

Axel, 1994; Mainland et al., 2014; Zhang & Firestein, 2009). These neurons extend from the 121 

olfactory epithelium, and small piece of tissue in the uppermost part of the nasal passages, 122 

directly into the brain’s olfactory bulb, where the signals are processed. When odorants dissolve 123 

into the mucus coating the olfactory epithelium, they stimulate the odor neurons by interacting 124 

with the receptors. The brain interprets the pattern of which neurons were activated, and the 125 

aroma is perceived (Buck & Axel, 1991; Hasin-Brumshtein, Lancet, & Olender, 2009). With the 126 

hundreds of olfactory receptors, and the subsequent plethora of activation combinations, 127 

humans can detect thousands of unique odors. 128 

 129 

3. Texture and chemesthesis 130 

Texture of foods is derived from physical structure, including the dynamic structural changes 131 

that occur as food interacts with oral surfaces and saliva (Koç, Vinyard, Essick, & Foegeding, 132 

2013). The physical nature of the food stimulates the sense of touch in the mouth, and the 133 

mouth is relatively sensitive to these sensations. Mechanoreceptors on the tongue can have 134 

small receptive fields (around 2.4 mm2) and respond to low levels of force (0.15 mN, which is 135 

similar the force exerted by gravity on half a grain of rice) (Trulsson & Essick, 1997). The texture 136 

of foods also directly influences the processes of chewing and swallowing, thus influencing the 137 

time food spends in the mouth as well as overall eating rate. Understanding the dynamics of 138 

food texture in the mouth require consideration of the food’s original structure. While gustation 139 

and olfaction often emphasize biochemical reactions, such as receptor-ligand pairs and 140 

inter/intra-cellular trafficking of signaling molecules, the study of food texture requires some 141 

mechanical and engineering perspective in order to model and interpret breakdown of food’s 142 



physical structures. Inevitably, this physical breakdown of the food in turn influences the other 143 

senses in the mouth, as taste, odor, and chemesthetic compounds are released or re-adhere to 144 

the structures altered by chewing (Dijksterhuis & Piggott, 2000). Importantly, human mouth 145 

behavior may also have a role in the perception of food texture. Recently categories of mouth 146 

behavior have been proposed, which include chewers, crunchers, smooshers, and suckers 147 

(Jeltema, Beckley, & Vahalik, 2015), based on the preferred mouth movements of an individual 148 

and/or the foods that best allow those movements. For examples, “smooshers” seem to prefer 149 

to squeeze their food between the tongue of palate, and this behavior correlates with preference 150 

for more semi-solid foods such as yogurts or oatmeal. However, whether these food 151 

preferences drive the mouth behavior or the mouth behavior drives the food preferences is 152 

unclear. Nevertheless, numerous studies have confirmed that individuals certainly do differ in 153 

their mouth behaviors, including number of chews, shape of the chewing movement, amount of 154 

muscle effort in chewing, chewing rhythm, and more (Brown, Langley, Martin, & MacFie, 1994; 155 

Devezeaux de Lavergne, van de Velde, & Stieger, 2017). Furthermore, many of these 156 

parameters are more consistent within-subject than would be expected for wide differences in 157 

food properties such as hardness or fracturability. For example, individuals who used fewer 158 

chews before swallowing a carrot also tended to have fewer chews before swallowing apples, 159 

pork, salami, shortcake, and toast (Brown et al., 1994). Thus, the chewing behavior appears to 160 

be entrenched or innate in some way that is determined by the individual rather than the food.  161 

 162 

Related to texture perception is chemesthesis. Chemesthesis is the chemical stimulation of 163 

temperature, touch, and irritation, and is also often referred to as “trigeminal” sensation due to 164 

the activity of the trigeminal nerve in carrying these signals from the mouth to the brain. In the 165 

oral cavity, this includes sensations like the spiciness of chilis, cooling of mint, and sting of 166 

carbonation. The trigeminal nerve informs the brain of these chemesthetic signals as well as 167 

physical touch and actual thermal changes. Just as this nerve is shared among these different 168 



sensory stimuli, several receptors are also shared. For example, the TRPM8 protein in humans 169 

responds to both cool temperatures and menthol, and TRPV1 response to both capsaicin and 170 

heat (Roper, 2014). Thus, the overlap in words used to describe the sensations, whether 171 

chemical or physical/thermal in nature, makes sense (e.g., coffee and chili peppers can both be 172 

“hot”). Perception of intensity from chemesthesis can vary widely among individuals, but this 173 

variability is best documented for spiciness. Consistently, those who eat more spicy foods and 174 

like spicy foods rate the intensity of spiciness as lower than those who do not eat and do not like 175 

spicy foods (Cowart, 1987; Nolden & Hayes, 2017; Prescott & Stevenson, 1996; Tornwall, 176 

Silventoinen, Kaprio, & Tuorila, 2012). Likely, this association of eating/liking with intensity is a 177 

combination of innate and learned influences (Allen, McGeary, & Hayes, 2014; Byrnes & Hayes, 178 

2013, 2015, 2016; Guimaraes & Jordt, 2007; Tornwall et al., 2012). 179 

 180 

4. Saliva 181 

Saliva is the biochemical media of the mouth, as well as a physical lubricant for oral surfaces. 182 

When salivation is impaired, gustation, olfaction, oral touch, chemesthesis, chewing, and 183 

swallowing are also impaired (Mese & Matsuo, 2007; Satoh-Kuriwada et al., 2009). In a single 184 

day, humans may swallow around 0.6-1.5 L of their own saliva (Aliko et al., 2015; Humphrey & 185 

Williamson, 2001), yet only about 0.7-1 mL of saliva is present in the mouth at any given time 186 

(Lagerlof & Dawes, 1984). The amount of saliva in the mouth is increased by stimulation with 187 

tastes and textures, with the strongest stimulations coming from sour taste and chewing (Dawes 188 

& Jenkins, 1964; Proctor & Carpenter, 2014; Watanabe & Dawes, 1988a, 1988b). Odor can also 189 

stimulate saliva, but the effect is generally weaker than taste and texture (Engelen et al., 2003). 190 

 191 

Saliva is not just one fluid. Instead, it is a mixture from several functionally different salivary 192 

glands. “Major” salivary glands include the parotid, submandibular, and sublingual glands and 193 

contribute the larger volume of saliva to the mouth, whereas “minor” glands are distributed as 194 



lingual, buccal, palatine, and labial glands and secrete a relatively small volume of saliva 195 

(Humphrey & Williamson, 2001). Importantly, the terms “major” and “minor” refer to the 196 

anatomical size of the glands and thus their volume of secretions, rather than the functional 197 

importance of those secretions. Indeed, many minor glands are crucial to maintaining adequate 198 

protection of oral surfaces (Eliasson & Carlen, 2010; Humphrey & Williamson, 2001). Further, 199 

minor glands in the posterior of the tongue (von Ebner’s glands) secrete directly into the clefts of 200 

the circumvallate and foliate papillae, where the densest population of taste buds in the mouth 201 

are located. Beyond the major and minor glandular distinction, saliva can also be categorized as 202 

serous, mucous, or mixed saliva. Serous saliva is thinner and more watery, while mucous saliva 203 

is thicker and has more gel-like properties. In general, serous saliva appears to be more 204 

involved in solubilizing and processing foods, which mucous saliva is designed more to protect 205 

the oral surfaces (Carpenter, 2013; Eliasson & Carlen, 2010; Humphrey & Williamson, 2001). 206 

The parotid glands (major) and von Ebner’s glands (minor) secrete serous saliva. The other 207 

major glands secrete mucous or mixed saliva, and the other minor glands secrete mucous 208 

saliva.  209 

 210 

While saliva is over 99% water, the proteins and smaller molecules present in saliva significantly 211 

influence the behavior of foods in the mouth. Enzymes like salivary α-amylase can break down 212 

starch in a matter of seconds, substantially altering texture of food and presumably changing the 213 

time it takes before an individual decides to swallow (Bridges, Smythe, & Reddrick, 2017; 214 

Mandel, Peyrot des Gachons, Plank, Alarcon, & Breslin, 2010). Small molecules in saliva are 215 

released to control ion concentrations in the mouth, such as bicarbonate to neutralize acids 216 

which in turn influences sour taste (Helm et al., 1982; Norris, Noble, & Pangborn, 1984). Beyond 217 

that, proteins in saliva have been proposed to modify astringency (Dinnella, Recchia, Fia, 218 

Bertuccioli, & Monteleone, 2009; Dinnella, Recchia, Vincenzi, Tuorila, & Monteleone, 2010), 219 

saltiness (Stolle et al., 2017), bitterness (Dsamou et al., 2012; Morzel et al., 2014), and 220 



fattiness/oleogustus perception (Mounayar, Septier, Chabanet, Feron, & Neyraud, 2013; 221 

Neyraud, Palicki, Schwartz, Nicklaus, & Feron, 2012; Poette et al., 2014; Schmale, Ahlers, 222 

Blaker, Kock, & Spielman, 1993; Schmale, Holtgrevegrez, & Christiansen, 1990; Spielman, 223 

D'Abundo, Field, & Schmale, 1993). Additionally, composition of saliva can cause instability in 224 

emulsions (mixtures of oil and water) leading to different sensory perceptions of those 225 

emulsions among individuals (Dresselhuis, de Hoog, Stuart, Vingerhoeds, & van Aken, 2008; 226 

Vingerhoeds, Blijdenstein, Zoet, & van Aken, 2005). Furthermore, work in rats even indicates 227 

that exposure to bitterness and astringency can change saliva in ways that subsequently alter 228 

the acceptability or intensity of those bitter/astringent compounds (Martin et al., 2018; 229 

Torregrossa et al., 2014). In future years more research will hopefully confirm or clarify these 230 

linkages between diet, flavor, and saliva, and perhaps yield ways in which we could monitor or 231 

alter saliva to improve healthy dietary behaviors.   232 

 233 

5. Eating behavior 234 

All of these oral factors can, in isolation or combination, influence food choices and eating 235 

behavior. For gustation, sweetness, umami, and saltiness are often thought to enhance the 236 

palatability of food while bitterness, sourness, and oleogustus (the rancid, unpleasant taste of 237 

fatty acids, particularly polyunsaturated fatty acids, not the delicious fatty texture) seem to 238 

reduce palatability. However, these outcomes are not assured. Certainly, sweetness by itself is 239 

accepted even in infants, while sourness and bitterness are rejected (Maone, Mattes, 240 

Bernbaum, & Beauchamp, 1990; Tatzer, Schubert, Timischl, & Simbruner, 1985). Excess 241 

consumption of salt among many cultures would seem to indicate that it is palatable, and the 242 

positive effect of adding monosodium glutamate (prototypical stimulus for umami) to items such 243 

as soups imply this sensation is liked. However, people do not generally drink sugar water, or 244 

salt water, or umami water—instead, we consume foods as mixtures of flavors. Thus, the 245 

context of the food itself is critical for understanding the role of flavor in palatability. While fatty 246 



foods are often well-liked, when fat breaks from an emulsion and pools on the top of the food, 247 

the food can be rejected. Further, our own work on oleogustus indicates that the gustatory 248 

sensation from fatty acids is unpalatable. (Running et al., 2015; Running et al., 2017). Similarly, 249 

bitterness in isolation is rated as unpleasant, yet bitter foods such as coffee, chocolate, and tea 250 

have become firmly embedded in many diets. Some of this may be due to post-ingestive 251 

feedback, as these products may have psychoactive (i.e., stimulatory caffeine) or energy 252 

contributions that make them appealing. Associations of these eating consequences with the 253 

flavor of the food can be learned, thus contributing to the wide array of responses of humans to 254 

the sensations experienced in the mouth. Overall, the combination of sensation, saliva, and 255 

experience with flavors influences human food choices.  256 

 257 

In researching these phenomena, the goal is to identify which of these factors are modifiable, 258 

and how, in order to lead to improvements in human diets. With so many potential factors 259 

influencing food choices, there is clearly much room for new work. Combining data and 260 

approaches across these research fields, such as how mouth behavior or movements might 261 

influence dissolution of tastants, or how salivary composition might change over time to alter 262 

chemesthetic ligand activity, will hopefully lead to more targeted understanding of these 263 

phenomena at the individual level. Moreover, a better grasp of which factors are changeable, 264 

and how difficult changes would be to induce, is critical. For example, if a “smooshing” mouth 265 

behavior leads to preference for softer foods, does this in turn lead to excess energy intake 266 

because soft foods are quickly processed in the mouth? More importantly, can we change that 267 

mouth behavior to reduce the excess intake? Is there an ideal life stage to make such 268 

interventions? Could the flavor of the food be modified to help alter the mouth behavior? Will 269 

alterations in the mouth behavior change the secretion of saliva, and will that in turn alter the 270 

flavor experienced? Answers to such questions will be integral as we explore how the oral 271 

environment is more than just the gateway that accepts or rejects food. After all, many of the 272 



compounds that are active from an oral sensory perspective, such as sweet sugars, slimy 273 

soluble dietary fiber, or bitter polyphenols, also influence human health. Presumably, our ability 274 

to detect many of these sensations is evolutionarily linked to those health outcomes. As modern 275 

technologies evolve our diets more quickly than we as humans can evolve, understanding the 276 

role of the oral environment in feeding will be paramount to maintaining healthy eating behaviors 277 

and food supplies.    278 

 279 
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