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The Linear Algebra Mapping Problem

In the domain of numerical linear algebra, significant effort is put into optimizing low-level libraries such as BLAS
and LAPACK. However, we observe a decrease in the number of users that actually go through the tedious, error-
prone and time consuming process of using directly said libraries by writing their code in C or Fortran; instead,
languages and libraries such as Matlab, Julia, Eigen and Armadillo, which offer a higher level of abstraction, are
becoming more and more popular. These languages and libraries allow users to input a linear algebra problem as
an expression which closely resembles the mathematical description, for example:

Stochastic Newton [2] Bk :=
k

k−1Bk−1(In − ATWk((k − 1)Il + W T
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−1W T
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Signal Processing [3] x :=
(
A−TBTBA−1 + RTLR

)−1 A−TBTBA−1y

These expressions are then internally mapped to lower level building blocks such as BLAS and LAPACK. Unfortu-
nately, our experience suggests that this translation frequently results in suboptimal code. We investigate how
well popular high-level languages and libraries translate expressions to code [5].

Example of a LAMP

Least Squares b := (XTX )−1XTy , where X ∈ Rn×m, y ∈ Rn×1, n = 2500, m = 500

Given the Least Squares expression, what sequence of BLAS/LAPACK calls would one use to compute it?

Solution 1

1. K := GEMM(XT, X)
2. K := GETRF(K)
3. K := GETRI(K)
4. C := GEMM(K, XT)
5. b := GEMV(C, y)

Solution 2

1. K := SYRK(XT)
2. b := GEMV(XT, y)
3. K := POTRF(K)
4. b := POTRS(K, b)

Solution 3

1. Q, R := GEQRF(K)
2. b := ORMQR(Q, y)
3. b := TRSM(R, b)
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Kernel Invocation

We investigate the ability of modern linear algebra languages and
libraries to identify and make proper use of BLAS kernels.
The use of the appropriate BLAS kernel for an operation can
• Significantly reduce number of FLOPS
• Reduce total amount of memory
• Increase efficiency on target machine
• Make use of matrix properties

Name Expression C Armadillo Eigen Julia Matlab Numpy R

GEMM C = AB 0.27 0.29 0.29 0.30 0.29 0.29 0.31
! ! ! ! ! !

SYRK C = AAT 0.14 0.17 0.29 0.21 0.18 0.18 0.32
! − ! ! ! −

SYR2K C = ABT + BAT 0.28 0.57 0.58 0.69 0.57 0.58 0.59
− − − − − −

Matrix Properties

Operation Property C Arma Eigen Julia Matlab NumPy R

Linear System Symmetric 0.463 − n.a. − − − −

SPD 0.316 ! n.a. − ! − −

Triangular 0.031 − n.a. ! ! − −

Diagonal 0.001 ♣ n.a. ! ♣ − −

Multiplication General 1.461
Triangular 0.748 − − ♦ − − −

Diagonal 0.064 − − ♦ − − −

Depending on the domain, expressions might contain operands with spe-
cific shapes (ex. triangular, diagonal) or properties (ex. positive, sym-
metric). These properties are particularly important during the evaluation
of said expressions, as they enable techniques that often yield better per-
formance and numerical accuracy.
Solution 2 of the LAMP example takes advantage of the Symmetric Pos-
itive Definite (SPD) property of the intermediate matrix K and uses the
Cholesky factorization, which is twice as fast as a general case LU factor-
ization.

Matrix Chain [1]
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(a) Right to left (b) Left to right

(c) mixed

Computation Armadillo Eigen Julia Matlab Numpy R

Right-to-Left ! − − − − −

Left-to-Right ! ! ! ! ! !

Mixed − − − − − −

Common Subexpression Elimination

b := A−TBTBA−1y , where A,B ∈ Rn×n, y ∈ Rn×1, n = 2000

Given the expression above, what sequence of BLAS/LAPACK calls would one use to compute it?

Solution 1

1. K := GESV(AT, BT)
2. C := SYRK(K)
3. b := GEMV(C, y)

Solution 2

1. K := GESV(AT, BT)
2. b := GEMV(K, y)
3. b := GEMV(KT, b)

Solution 3

1. b := GESV(A, y)
2. b := GEMV(B, b)
3. b := GEMV(BT, b)
4. b := GESV(AT, b)

Cost: 11

3
n3 + n2 Cost: 8

3
n3 + 4n2 Cost: 4

3
n3 + 8n2

b := ATBTBAy , where A,B ∈ Rn×n, y ∈ Rn×1, n = 2000

Given the expression above, what sequence of BLAS/LAPACK calls would one use to compute it?

Solution 1

1. K := GEMM(AT, BT)
2. C := SYRK(K)
3. b := GEMV(C, y)

Solution 2

1. K := GEMM(AT, BT)
2. b := GEMV(KT, y)
3. b := GEMV(K, b)

Solution 3

1. b := GEMV(A, y)
2. b := GEMV(B, b)
3. b := GEMV(BT, b)
4. b := GEMV(AT, b)

Cost: 3n3 + 2n2 Cost: 2n3 + 4n2 Cost: 8n2

Matrix Inversion

Should languages substitute inversion with solving a linear system?

inv(A) * b vs A \ b

Explicitly inverting a matrix is slow and unstable [4, p. 260].

Armadillo Eigen Julia Matlab Numpy R

Inversion Substitution ! − − − − −

Blocked Matrices

[
A1 0

0 A2

]−1

B =

[
A1 0

0 A2

]−1 [BT
BB

]
=

[
A−1
1 BT

A−1
2 BB

]

While all languages support methods for instantiating such operands, they
don’t take advantage of the structure when it comes to computation,
yielding poor performance.

Armadillo Eigen Julia Matlab Numpy R

Blocked Operands − − − − − −
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