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Abstract 

 

THE ROLES OF MAB21L2 IN DEVELOPMENT OF THE EYE 

 

Natalie Nicole Gath, PhD 

The University of Texas at Austin, 2019 

 

Supervisor:  Steven Vokes 

Co-Supervisor: Jeffrey Gross 

 
Mutations in MAB21L2 result in severe ocular defects including microphthalmia, 

anophthalmia, coloboma, microcornea, and cataracts. The molecular and cellular 

underpinnings of these defects are unknown, as is the normal cellular function of 

MAB21L2. Zebrafish mab21l2au10 mutants possess ocular defects resembling those in 

humans with MAB21L2 mutations, providing an excellent model to characterize mab21l2 

functions during eye development. mab21l2 -/- mutants possessed a host of ocular defects 

including microphthalmia and colobomas as well as small, disorganized lenses and 

cornea dysgenesis. Decreased proliferation, increased cell death, and defects in marker 

gene expression were detected in the lens. Cell death in the optic stalk was elevated in 

mab21l2 -/- mutants and the basement membrane between the edges of the choroid fissure 

failed to break down. Neuronal differentiation in the retina was normal, however. 

mab21l2 -/- mutant corneas were disorganized, possessed an increased number of cells, 

some of which proliferated ectopically, and failed to differentiate the corneal stroma. 

Human mutant MAB21L2R51C and MAB21L2R51H mRNAs possessed dominant negative 

function, inducing colobomas in wild type fish. Yeast-2-hybrid assays provided potential 

binding partners for the function of mab21l2, including transcription factors and 

actin/myosin related proteins. mab21l2 function is required for morphogenesis and cell 
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survival in the lens and optic cup, and basement membrane breakdown in the choroid 

fissure. mab21l2 function also regulates proliferation in the lens and cornea; in its 

absence, the lens is small and mispatterned, and corneal morphogenesis and patterning 

are also disrupted. mab21l2 protein function may involve transcriptional regulation or 

control of cell shape and movement. 



 viii 

Table of Contents 

List of Tables ..................................................................................................................... xi 
List of Figures ................................................................................................................... xii 
 
Chapter 1: Introduction to development of the eye and the gene mab21l2 .........................1 

1.1 Development of the optic cup and the neural retina .............................................1 

1.1.1 Structure and development of the early optic cup .................................1 
1.1.2 Differentiation of retinal cell types and growth of the eye ....................3 

1.2 Development and differentiation of the lens.........................................................3 

1.2.1 Specification and morphogenesis of the early lens ................................3 
1.2.2 Differentiation and gene expression in the lens .....................................6 

1.3 Development of the cornea ...................................................................................7 

1.3.1 Specification, morphogenesis and structure of the cornea ....................7 
1.3.2 The role of BMP signaling in cornea/lens fate choice ...........................8 

1.4 Closure of the choroid fissure ...............................................................................9 

1.4.1 Growth and morphogenesis of the eye and apposition of the 
choroid fissure.........................................................................................11 

1.4.2 Basement membrane breakdown in the choroid fissure ......................11 
1.4.3 Tissue fusion at the choroid fissure .....................................................12 
1.4.4 Signaling pathways in choroid fissure closure ....................................13 
1.4.5 Defects in choroid fissure closure: colobomas ....................................14 

1.5 mab21l2 in the eye ..............................................................................................14 

1.5.1 Expression and localization of mab21l2 ..............................................16 
1.5.2 Developmental roles of mab21l2 in knockout and knockdown 

models .....................................................................................................17 
1.5.3 Molecular and functional roles of mab21l2 .........................................20 

Chapter 2: Zebrafish mab21l2 mutants possess severe defects in optic cup 
morphogenesis, lens and cornea development .............................................................24 

2.1 Introduction .........................................................................................................24 
2.2 Results:................................................................................................................27 



 ix 

2.2.1 mab21l2 -/- mutants possess severe malformations of multiple 
ocular tissues. ..........................................................................................27 

2.2.2 mab21l2 -/- mutants possess defects at several stages of lens 
development. ...........................................................................................31 

2.2.3 Lens cells require mab21l2 function to maintain proliferation and 
survival....................................................................................................33 

2.2.4 Colobomas in mab21l2 -/- mutants are associated with failure of 
basement membrane breakdown in the choroid fissure. .........................36 

2.2.5 Cell death in the optic stalk is increased in mab21l2 -/- mutants. ........38 
2.2.6 Neuronal differentiation in the retina of mab21l2 -/- mutants is 

normal .....................................................................................................41 
2.2.7 mab21l2 -/- mutants possess disorganized corneas...............................43 
2.2.8 Cell proliferation is normal in the mab21l2 -/- cornea. .........................46 
2.2.9 mab21l2 is required for patterning of the corneal stroma ....................47 

2.3 Discussion: ..........................................................................................................47 

Chapter 3: Molecular roles of mab21l2 and the effects of mutations from human 
patients .........................................................................................................................54 

3.1 Introduction:........................................................................................................54 
3.2 Results:................................................................................................................55 

3.2.1 mab21l2 may bind to transport proteins and regulators of the 
cytoskeleton, transcriptional regulators, and proteins related to 
ribosomal function ..................................................................................55 

3.2.2 Human mutant versions of mab21l2 have dominant negative or 
gain of function properties ......................................................................60 

3.3 Discussion: ..........................................................................................................64 

3.3.1 Potential binding partners for mab21l2 ...............................................64 
3.3.2 The effects of human mutations in mab21l2 .......................................68 

Chapter 4: Future directions: .............................................................................................70 

4.1 Investigation of origin for corneal defects: .........................................................70 

4.1.1 Contribution of the neural crest-derived periocular mesenchyme to 
the mab21l2 -/- cornea ..............................................................................70 

4.1.2 Determining the contribution of failure of programmed cell death 
to corneal cell number increase in mab21l2 -/- ........................................70 

4.1.3 Elucidating the identity of additional cells found in the mab21l2 -/- 
cornea ......................................................................................................71 



 x 

4.1.4 Investigating possible defects in the anterior chamber and aqueous 
humor dynamics in mab21l2 -/-mutants ..................................................72 

4.2 Investigation of eye morphogenesis and choroid fissure closure .......................73 

4.2.1 Using in vivo time-lapse imaging to identify defects in early 
mab21l2-/- eye morphogenesis ................................................................73 

4.2.2 Examination of tissue dynamics during choroid fissure closure in 
mab21l2 -/- ...............................................................................................74 

4.3 Investigation of functional domains of MAB21L2.............................................76 
4.4 Creation of human mutant MAB21L2 alleles in zebrafish .................................77 
4.5 RNA-sequencing experiments to determine pathways affected by loss of 

mab21l2 ..............................................................................................................79 
Concluding Remarks: ...............................................................................................81 

Appendix: Materials and Methods .....................................................................................82 

Zebrafish husbandry: ................................................................................................82 
Embryo Microinjection .............................................................................................82 
BrdU incorporation assays: .......................................................................................82 
Tissue preparation and cryosectioning: ....................................................................83 
Immunohistochemistry: ............................................................................................83 
TUNEL assay:...........................................................................................................84 
Imaging: ....................................................................................................................84 
In situ hybridization: .................................................................................................84 
Cell counting: ............................................................................................................85 
Yeast-2-Hybrid: ........................................................................................................85 
Cell Culture: ..............................................................................................................86 
Western Blotting: ......................................................................................................86 
Graphing and statistics: .............................................................................................87 

Works Cited .......................................................................................................................88 



 xi 

List of Tables 

Table 3.1 Candidate mab21l2 interacting proteins from yeast-2-hybrid screen ................56 



 xii 

List of Figures 

Figure 1.1: Optic cup morphogenesis during early development of the eye .......................2 

Figure 1.2: Development of the zebrafish lens ....................................................................5 

Figure 1.3: Formation and closure of the choroid fissure ..................................................10 

Figure 1.4: Crystal structure of mab21l1 overlaid with known mab21l2 mutations .........15 

Figure 2.1: mab21l2 mutants possess complex eye defects that include small lenses, 

microphthalmia, coloboma, and corneal malformations. ..............................29 

Figure 2.2: mab21l2 -/- mutants possess delays in lens morphogenesis and lens growth, 

and do not properly express markers of mature lens cell types ....................32 

Figure 2.3: mab21l2 -/- embryos display transient increase in cell death, decreased 

proliferation in the developing lens ..............................................................35 

Figure 2.4: mab21l2 -/- mutants possess colobomas of varying severity, and retain 

basement membrane markers in the choroid fissure .....................................37 

Figure 2.5: mab21l2 -/- possess elevated cell death in their optic stalk ..............................40 

Figure 2.6: mab21l2 -/- mutants do not possess defects in retinal neuron differentiation ..42 

Figure 2.7: mab21l2 -/- mutants display corneal dysgenesis and failure of stromal 

patterning ......................................................................................................44 

Figure 3.1 Embryos injected with human mab21l2R51C  and mab21l2R51H display 

colobomas .....................................................................................................61 

Figure 3.2 Human mutant versions of mab21l2 still localize properly to the nucleus ......63 



 1 

Chapter 1: Introduction to development of the eye and the gene 

mab21l2 

1.1 DEVELOPMENT OF THE OPTIC CUP AND THE NEURAL RETINA 

1.1.1 Structure and development of the early optic cup 

During embryonic development, the formation of the eye is a complex process 

involving many different morphogenetic, patterning, and differentiation events. Despite 

the relative differences in model organisms from mice to zebrafish, the process of eye 

formation is remarkably conserved. The first step is the evagination of two subfields of 

the forebrain, called the optic vesicles (Wall, 1942). These vesicles undergo complex 

morphogenic movements, elongating to form wing-like structures connected to the brain 

via the optic stalk (Fig. 1.1A) (Wall, 1942). The center of the optic vesicle will then begin 

to invaginate, as the surface ectoderm with which it is in contact begins to proliferate and 

undergo its own morphogenesis to produce the primordial lens (Fig 1.1B) (reviewed in 

Cavodeassi 2018; Fuhrmann 2010). These complementary processes will form the 

bilayered optic cup, comprised of the lateral and medial layers, and the lens vesicle which 

it surrounds (Fig. 1.1B). The medial and lateral layers of the optic cup will undergo a 

series of complex morphogenetic cell movements (Kwan et al., 2012), eventually 

producing a presumptive neural retina at the lateral layer, and the immature retinal 

pigmented epithelium (RPE) from the medial layer (Fig. 1.1C) (Li et al. 2000; reviewed 

in Fuhrmann 2010). This process is controlled by intrinsic factors, like the transcription 

factors rx/RAX, vsx2, lhx2, pax6 and mitf, among many others, and extrinsic factors, 

including signaling from the BMP, and, particularly, FGF pathways (reviewed in 

Fuhrmann 2010). 
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Figure 1.1: Optic cup morphogenesis during early development of the eye 
A: Evagination of the early optic vesicle from the forebrain. 
B: Formation of the eye cup, invagination of the optic cup and beginnings of lens 
morphogenesis from the surface ectoderm 
C: Refinement of the optic cup, progression of lens separation from the surface ectoderm 
ML = medial layer. LL = lateral layer. RPE = Retinal pigmented epithelium. NR = neural 
retina. Le = lens. SE = Surface Ectoderm. 
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1.1.2 Differentiation of retinal cell types and growth of the eye 

In the early stages of retinal development, the retina is made up of largely 

indistinguishable progenitors called retinal progenitor cells. Over time, these progenitor 

cells will undergo stereotyped, sequential differentiation processes to produce the seven 

retinal cell types that make up the mature retina (reviewed in Bassett & Wallace 2012). 

These include 6 neural cell types: retinal ganglion cells, amacrine cells, horizontal cells, 

bipolar cells, cone photoreceptors, and rod photoreceptors; as well as the sole glial cell of 

the retina, the Müller glia. Together, these cells make up the mature retina, and allow for 

the transduction of light into neural signals. 

In the zebrafish, the retina will continue to grow throughout the life of the animal. 

This is accomplished by the persistent production of retinal cells from a resident stem cell 

population at the distal edges of the retina, known as the ciliary marginal zone, or CMZ. 

The CMZ will remain proliferative and is the major source of new retinal cells after 

embryonic development in the zebrafish (Raymond et al., 2006). 

1.2 DEVELOPMENT AND DIFFERENTIATION OF THE LENS 

1.2.1 Specification and morphogenesis of the early lens 

The retina is not the only tissue undergoing movements, differentiation, and 

maturation. The lens is also a complex tissue, with its own developmental processes.  

The lens is formed from the embryonic surface ectoderm that overlies the 

developing optic cup (Fig. 1.2A). This ectoderm will be induced to undergo 

morphogenesis and differentiation by signals from and interaction with the underlying 

retina, including BMP-related signals (Furuta and Hogan, 1998; Wawersik et al., 1999; 

Morcillo et al., 2006; Rajagopal et al., 2008, 2009), retinoic acid signaling (reviewed in 

Cvekl & Wang 2009), and inhibition of WNT (Smith et al., 2005; Kreslova et al., 2007; 

Song et al., 2007; Grocott et al., 2011) and Shh activity (Kerr et al. 2012; reviewed in 

Gunhaga 2011, Cvekl & Zhang 2017) in the prospective placode. In addition, a pax6/six3 

dependent gene regulatory cascade will induce the cells of the surface ectoderm to 
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become the lens placode. In response to these paracrine and autocrine signals, the surface 

ectoderm will begin to proliferate. In zebrafish, unlike in mammalian systems, the lens 

will not invaginate to form a lens pit, but the proliferative cells will pile up on one 

another, moving into the space left behind as the presumptive neural retina invaginates 

(Fig. 1.1B, Fig 1.2B) (Schmitt and Dowling, 1994; Easter, Jr. and Nicola, 1996). These 

cells will form a semi-spherical structure called the lens mass, made up of seemingly 

indistinguishable lens progenitor cells (Fig. 1.2C). As development and proliferation 

continues, these cells will take on different morphologies, corresponding with their later 

fates in the mature lens (Greiling and Clark, 2009). As the lens continues to round up, 

apoptosis and delamination events at the distal edge will separate the lens mass from the 

remaining surface ectoderm (Zhao et al., 2006; Greiling et al., 2010). By about 24hpf, the 

lens is completely detached from the surface ectoderm, and is wrapped at the distal edge 

by a single layer of cuboidal cells, which will become the lens epithelium (Fig. 1.2D). 

The core is made up of teardrop shaped cells, wrapped by rings of elongated cells which 

comprise the primary lens fibers (Greiling and Clark, 2009).  

In the mature lens, epithelial cells form a single layer of cuboidal cells that wrap 

the anterior 2/3 of the lens. These cells retain their organelles, and remain proliferative 

throughout the life of the animal, continuing to add cells to the lens. At the approximate 

equator of the lens, newborn lens cells produced from the proliferation of lens epithelia 

pass through the transition zone, where they will elongate and differentiate into lens 

fibers (Fig 1.2E). These new fibers must undergo many drastic changes, including turning 

on lens-fiber-specific genes and factors, degrading their nuclei and other organelles, and 

becoming filled with crystallin proteins, in order to allow them to perform their primary 

function of refracting light onto the neural retina.  
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Figure 1.2: Development of the zebrafish lens 
A: Lens placode (gray), approximately 16 hours post fertilization 
B: Lens, approximately 18 hours post fertilization 
C: Lens beginning to separate from overlying surface ectoderm, approximately 20 hpf 
D: Lens at approximately 28hpf, showing fully separated, spherical lens with early lens 
epithelial and fiber cells. Remaining overlying surface ectoderm will become the corneal 
epithelium. 
E: Schematic of lens epithelial cells proceeding through the transition zone to elongate, 
lose nuclei, and become fibers wrapped around the lens core 
LP = lens placode. LE = lens epithelial. LF = lens fibers. TZ = transition zone. Black 
circles represent cell nuclei. 
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1.2.2 Differentiation and gene expression in the lens 
During the differentiation process, lens epithelial and fiber cells express a host of 

genes that enable them to take on their lineage-specific characteristics (summarized in 

Cvekl & Zhang 2017). The lens epithelial cells express multiple factors, but one of the 

most vital is a gene belonging to the forkhead-box family of transcription factors, foxe3. 

This epithelial-expressed gene is critical for the separation of the lens from the surface 

ectoderm through controlled apoptosis of cells in the area of contact between these two 

tissues, and is required for epithelial cells to retain their proliferative state and continue 

contributing to the formation of new lens fibers (Blixt et al., 2000; Cvekl and Zhang, 

2017a). In the absence of foxe3 expression, lenses remain adhered to the cornea, do not 

produce secondary lens fibers, and are dysplastic and cataractous (Blixt et al., 2000). 

At the transition zone, lens epithelial cells express prox1, a key FGF-responsive 

transcription factor that regulates the downstream expression of a host of genes that are 

critical to the maturation and function of newly born lens fiber cells.  Most critically, 

prox1 is responsible for the activation of crystallin genes, including beta and gamma 

crystallins (Cui et al., 2004), while alpha crystallins are activated in parallel in a pax6-

dependent manner (Cvekl et al., 1995; Ashery-Padan et al., 2000; Yang and Cvekl, 

2005). 

Other factors involved in terminal differentiation of lens fibers include: gata3, 

responsible for upregulating expression of gamma-crystallins and required for nuclear 

degradation (Maeda et al., 2009); celf1, a post-transcriptional regulator responsible for 

control of cell cycle exit and DNase activity in the new fiber cell (Siddam et al., 2018); 

maf-family transcription factors, involved in upregulation of all four types of lens 

crystallins as well as differentiation of fibers (Reza and Yasuda, 2004); sox1, a direct 

regulator of gamma crystallin expression also involved in lens fiber elongation and shape 

changes (Nishiguchi et al., 1998); and many more (reviewed in Cvekl & Zhang 2017). 
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1.3 DEVELOPMENT OF THE CORNEA 

1.3.1 Specification, morphogenesis and structure of the cornea 

The surface ectodermal cells that directly overlay the developing lens will become 

the cornea. These two tissues are separated during early development of the eye by 

programmed delamination and apoptotic events in the connecting cells (Zhao et al., 2006; 

Greiling et al., 2010). The mature human cornea is made up of 5 layers. From the 

distalmost in, these layers include the corneal epithelium, Bowman’s layer, the stroma, 

Descemet’s membrane, and the corneal endothelium. Most organisms, including 

zebrafish, share this overall organization, although in some lower mammals such as mice 

and rats, the presence of a distinct Bowman’s layer (as opposed to an amorphous 

subregion of the stroma) is controversial (Haustein, 1983; Hayashi et al., 2002; Song and 

Joo, 2004; Zhao et al., 2006; Henriksson et al., 2009). In zebrafish, by contrast, 

Bowman’s layer is clearly present as a distinct layer separate from the stroma, similar to 

humans, suggesting that zebrafish may be a better model of the human cornea in that 

respect (Soules and Link, 2005; Zhao et al., 2006).  

During zebrafish corneal development, which is highly similar to that in other 

vertebrates, those surface ectodermal cells overlying the optic cup that do not become 

part of the lens will form a monolayer, the presumptive corneal epithelium, which is the 

first layer to be produced (Soules and Link, 2005). The corneal endothelium will then be 

produced from neural crest-derived periocular mesenchymal cells, which migrate into the 

eye, accumulating at the peripheral angles of the anterior chamber, and crawl over the 

lens to form the corneal endothelial monolayer (Soules and Link, 2005). Concurrently, 

the epithelium will assume cornea-like characteristics, proliferate to form additional cell 

layers, and begin to lay down components of the extracellular matrix that comprises the 

stroma, although the stroma will require the formation of the corneal endothelium before 

it acquires its proper organization (Zhao et al., 2006). In zebrafish, the corneal epithelium 

will proliferate and become two cell layers thick, remaining at this thickness for four 

weeks of development, after which it will gradually increase to its final thickness of 4-5 
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cell layers (Zhao et al., 2006). The stroma will gradually increase in thickness, 

comprising layers of collagenous fibers, but will remain acellular until between 14 and 28 

days post fertilization (dpf), at which time the first keratocytes will begin to populate the 

stroma. These keratocytes will increase in number as the stroma continues to thicken, 

until it reaches its mature size of 36-40 collagen layers thick at approximately 60 dpf. 

Bowman’s layer appears formed at approximately 5dpf, while Descemet’s membrane is 

found to be fully mature by approximately 60dpf (Soules and Link, 2005; Zhao et al., 

2006).  

1.3.2 The role of BMP signaling in cornea/lens fate choice 

The fating of the surface ectodermal cells into lens and corneal compartments is 

controlled in part by BMP signaling. In chick and mouse, BMP signaling induces the lens 

fate (Furuta and Hogan, 1998; Wawersik et al., 1999), while a lack of BMP signaling will 

lead the surface ectoderm to default into a corneal epithelial state; when BMP signaling is 

blocked in chick, the lens fails to form, but the cornea forms normally (Collomb et al., 

2013). Further evidence that these tissues are produced from a common pool of cells 

comes from the fact that when the lens is removed during early development, a 

replacement lens can be produced by the cell cycle re-entry and differentiation of 

partially-committed corneal cells into lens cells (Collomb et al., 2013).  However, this 

cross-differentiation is only possible before the committed corneal epithelium loses the 

capacity to rapidly downregulate pax6, which is ordinarily accomplished through several 

mechanisms, including an EGF-dependent transcriptional repressive response at the pax6 

promoter (Li and Lu, 2005; Collomb et al., 2013). This suppression of pax6 is required 

for the production of cells in the lens lineage, but cannot occur in the cornea once it has 

become fully committed to the corneal fate, therefore preventing future production of 

lens cells from the cornea (Li and Lu, 2005; Collomb et al., 2013). The permanent 

stabilization of pax6 in the corneal epithelium and thus, commitment into the corneal 

fate, appears to be dependent on the formation of the corneal stroma (Collomb et al., 

2013). It has been shown that cells exposed to a corneal stromal environment undergo a 
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host of changes, including downregulation of microRNAs known to repress the 

expression of pax6, which could contribute to the stabilization of pax6 and the 

commitment of corneal fate once the stroma has begun to be laid down by early epithelial 

cells (Shalom-Feuerstein et al., 2012). 

1.4 CLOSURE OF THE CHOROID FISSURE 

As the retina develops, it produces a transient opening at the ventral side of the eye 

called the choroid fissure (Fig. 1.3A-C). The choroid fissure is an opening between the 

two edges of the neural retina/RPE which is produced as a result of the complex 

morphogenetic movements that the eye undergoes during development (Fig. 1.3C). The 

choroid fissure is the entry site for the vasculature that nourishes the developing eye. The 

developing optic nerve also exits the eye through the choroid fissure and is routed toward 

the brain (Mann, 1921; Nickla and Wallman, 2010). However, for the eye to mature fully, 

the choroid fissure must close, creating a complete, spherical eye with no gaps in the 

retina.  

The process of choroid fissure closure is relatively poorly understood, but it is 

proposed to proceed in three main phases (Fig. 1.3D-F). In the first phase, tissue growth 

and morphogenesis bring the two sides of the retina/RPE into the correct orientation at 

the correct time to allow fusion to proceed (Fig. 1.3D). In the second phase, the basement 

membrane, which surrounds the two lips of the fissure, must break down to allow the 

retina/RPE to contact one another and eventually fuse (Fig. 1.3E). In the third phase, the 

sides of the fissure come together and undergo cellular rearrangement and formation of 

junctions to create one complete, fused tissue (Fig 1.3F) (James et al., 2016).  
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Figure 1.3: Formation and closure of the choroid fissure 
A-C: Schematic of optic cup morphogenesis and formation of the choroid fissure 
(indicated by arrow in C) 
D-F: Diagrams representing the three main stages of choroid fissure closure: tissue 
growth and morphogenesis (D), breakdown of the basement membrane (E), and tissue 
fusion (F). Black line represents basement membrane wrapping the retina/RPE. 
Blue = optic cup. Red = periocular mesenchyme.  
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1.4.1 Growth and morphogenesis of the eye and apposition of the choroid fissure 

During morphogenesis, the eye undergoes rapid shape changes that contribute to 

the production of the choroid fissure. As the eye grows and the edges of the fissure 

approach one another, the fissure is not of uniform width throughout the proximal-distal 

axis; at the distal edge, the two sides of the optic cup are widely separated, while at the 

proximal-medial region, the edges are much more closely apposed (Bernstein et al., 

2018). In addition, the leading edges are initially oriented ventrally, only later pivoting to 

face one another (Bernstein et al., 2018). During the growth and orientation phase of 

choroid fissure closure, the edges of the retina are dynamic, with the basement membrane 

extending processes to the opposite side of the fissure and the intervening periocular 

mesenchyme (POM), though the function of this activity is unknown (Williams, 2016; 

Bernstein et al., 2018). It is proposed that this dynamic activity may act to assist 

alignment of the fissure edges (Bernstein et al., 2018), but this is yet to be proven. 

1.4.2 Basement membrane breakdown in the choroid fissure 

The process of basement membrane breakdown is incompletely understood. It is 

thought that the retinal cells, at the sides of the choroid fissure, extend small cellular 

processes to contact the basement membrane (Geeraets, 1976; Hero, 1990), and that these 

processes help to degrade the basement membrane. It has been proposed that these retinal 

cell extensions may comprise podosomes, which are small, actin-rich cell adhesions 

known to facilitate basement membrane breakdown in other contexts (reviewed in Linder 

2007) through the action of actin-linked complexes, including matrix metalloproteases 

(Gawden-Bone et al., 2010; Xiao et al., 2010) but attempts to confirm the involvement of 

podosomes in the closure of the choroid fissure have thus far been inconclusive 

(Williams, 2016; Gestri et al., 2018). However, recent research has shown that actin-rich 

bridges and extensions of the basement membrane dynamically contact the opposing side 

of the fissure, which may contribute to membrane breakdown (Bernstein et al., 2018). 

Research involving the POM, also found within the choroid fissure, suggests that these 
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cells may also play an important role in degradation of the basement membrane at the 

fissure (James et al., 2016). POM cells are found tightly associated with the fissure 

during the fusion process, lining the choroid space as the fissure closes (Hero, 1990; Hero 

et al., 1991). In particular, the POM- derived hyaloid vasculature is closely linked with 

the closing fissure (James et al., 2016; Bernstein et al., 2018; Gestri et al., 2018). Hyaloid 

vasculature cells have been observed to accumulate F-actin in foci that contact the 

basement membrane at sites of breakdown, suggesting a possible role in assisting 

basement membrane breakdown (James et al., 2016). In addition, talin mutants, which 

lack a key component of the actin cytoskeleton that allows integrins to be linked to actin 

fibers, had both a morphologically affected hyaloid vasculature, and displayed failure of 

basement membrane breakdown and choroid fissure closure (James et al., 2016; 

Williams, 2016). Further supporting a role for the hyaloid vasculature in breakdown of 

the basement membrane at the fissure, cloche mutants, which lack all vasculature, 

displayed a delay in membrane breakdown and fissure closure, although the process was 

eventually completed (James et al., 2016). This suggests an actin-dependent role for the 

POM-derived hyaloid vasculature in the process of basement membrane breakdown 

during closure of the choroid fissure.  

1.4.3 Tissue fusion at the choroid fissure 

The tissue fusion phase of choroid fissure closure is rather poorly understood. 

However, research indicates that the fusion process is not identical or simultaneous along 

the entire proximal-distal axis of the choroid fissure. Fusion in the zebrafish happens 

along a wave-like front, beginning in the central-proximal portion of the fissure and 

proceeding outward in both directions, first to the proximal edge of the fissure, and then 

to the distal edge (James et al., 2016). However, a small section of the proximal fissure, 

near the optic disk, is not closed by tissue fusion, and is instead closed via intercalation of 

the optic nerve, hyaloid artery, and edges of the retina (Bernstein et al., 2018). 

Additionally, it appears that the cells at areas of the choroid fissure where fusion occurs 
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must reorient their apico-basal axes and repolarize to form one coherent tissue, which 

may be dependent on contributions from the POM (Gestri et al., 2018) 

Little is known about the molecular regulation and control of the fusion process. 

Cadherin complexes and adherens junctions have a known role; zebrafish N-cadherin  

mutants display defects in choroid fissure closure called colobomas (Masai et al., 2003) 

and the fusion site is marked by co-localization of beta-catenin and F-actin, which 

indicates the formation of adherens junctions, once tissue fusion has begun (Halbleib and 

Nelson, 2006; Hartsock and Nelson, 2008; James et al., 2016). α-catenin performs a 

critical role in mediating adhesion and organization of the retinal cells during fissure 

closure (Chen et al., 2012) In addition, during the process of choroid fissure closure, N-

cadherin is downregulated in the fusing tissues, possibly allowing for the delamination of 

sox2+ retinal cells which move toward the fissure space and facilitate the fusion event 

(Bernstein et al., 2018). Other molecular mechanisms are likely involved, but have yet to 

be investigated.   

1.4.4 Signaling pathways in choroid fissure closure 

Choroid fissure closure is known to involve signaling from many of the major 

developmental pathways, which when disrupted, often lead to closure failures. These 

include Wnt (Liu et al., 2016), retinoic acid (Matt et al., 2008; See and Clagett-Dame, 

2009; Lupo et al., 2011), FGF (Cai et al., 2013; Chen et al., 2013; Atkinson-Leadbeater 

et al., 2014), Hedgehog (Schimmenti et al., 2003; Koudijs et al., 2008; Lee et al., 2008), 

and BMP signaling pathways (Morcillo et al., 2006; Patel and Sowden, 2017). BMP 

signaling has at least two roles in closure of the choroid fissure (reviewed in Patel & 

Sowden 2017). BMP4 signaling is antagonistic to SHH signaling at the choroid fissure, 

keeping SHH ventrally restricted while BMP4 remains primarily dorsal (Zhao et al., 

2010). BMP4 also maintains ventral restriction of key transcription factors such as vax2 

by upregulating dorsal-specific antagonistic transcription factors in its expression domain 

(Behesti et al., 2006). However, BMP7 is a ventrally localized molecule, being found at 

the ventral midline near the site of the choroid fissure, and is additionally associated with 
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the POM that forms the hyaloid vasculature (Dudley and Robertson, 1997), which as 

noted above, is involved in fissure closure (James et al., 2016). Interestingly, evidence 

from BMP7 null mice suggests that BMP7 may also have a role in formation of the 

choroid fissure as well as its closure (Morcillo et al., 2006).  

1.4.5 Defects in choroid fissure closure: colobomas 

When the process of choroid fissure closure goes wrong, a structural defect 

known as a coloboma is produced. Colobomas are persistent openings in the eye that can 

vary in severity, loosely correlated with their relative position along the proximal-distal 

axis (reviewed in Pagon, 1981). Distal colobomas are visible as a “keyhole” like opening 

below the pupil, where the distal retina has not properly fused. Distal-only colobomas 

have relatively mild effects on sight, mostly causing extra light sensitivity. However, 

colobomas can also occur in a more proximal location along the choroid fissure. In this 

case, a hole will be produced in the retina, and depending on the extent of the gap, can 

lead to loss of sight in large parts of the visual field, or complete blindness in the affected 

eye(s) (Nakamura et al., 2011). Approximately 10% of childhood blindness is associated 

with colobomas (Onwochei et al., 2000). 

Colobomas often present in patients as part of syndromes or spectrum disorders 

(Onwochei et al., 2000; Nakamura et al., 2011). One of these spectrums is a disorder 

known as MAC (microphthalmia, anophthalmia, and coloboma) spectrum (Bardakjian et 

al., 2015). This disorder is produced by many independent mutations within the genomes 

of affected patients (reviewed in Bardakjian et al. 2015), including mutations in the gene 

MAB21L2 (Rainger et al., 2014; Deml et al., 2015; Horn et al., 2015). 

1.5 MAB21L2 IN THE EYE 

Human patients with five different point mutations in the MAB21L2 gene have been 

identified. These mutations include E49K, R51C, R51H, R51G, and R247Q (Fig. 1.4) 

(Rainger et al., 2014; Deml et al., 2015; Horn et al., 2015).  
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Figure 1.4: Crystal structure of mab21l1 overlaid with known mab21l2 mutations 
A: Crystal structure of mab21l1 as crystallized by de Oliveira Mann et al (2016) showing 
amino acids mutated in MAB21L2 in human patients highlighted in red. Note positioning 
of these amino acids allowing formation of salt bridges with adjacent protein loops. 
Additionally note nucleotidyl transferase-like domain contained within the protein’s core. 
B: Crystal structure of mab21l1 with all amino acids beyond K101 removed, showing the 
theoretical remaining portion of the protein expressed in mab21l2au10 fish. Amino acids 
mutated in full length MAB21L2 in human patients are shown in red.  

A 

B 
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All mutations are dominant, with the exception of R247Q (Rainger et al., 2014; Deml 

et al., 2015). The primary phenotypes noted in these patients include microphthalmia or 

anophthalmia, coloboma, and (in the case of R51G) microcornea (Rainger et al., 2014; 

Deml et al., 2015; Horn et al., 2015). Additional clinical observations include intellectual 

disability and skeletal rhizomelic dysplasia, which comprises a shortening of the bones of 

the proximal limbs (Rainger et al., 2014; Horn et al., 2015). 

While mutations in MAB21L2 in human patients have been identified, the 

developmental and cell biological role for this protein is still largely unknown.  

1.5.1 Expression and localization of mab21l2 

MAB21L2, or mab-21 like 2, is one of two vertebrate paralogs of the C. elegans 

gene mab-21, short for “male-abnormal” due to its observed role in the proper formation 

of tail rays in the male C. elegans animal (Chow et al., 1995; Ho et al., 2001). It is a 

highly conserved gene, with >97% amino acid identity shared between humans, mice, 

and zebrafish (Rainger et al., 2014). MAB21L2 was first discovered in 1999 as one of 

two murine and human homologs of mab-21 (Mariani et al., 1999). However, due to the 

obvious differences between C. elegans and vertebrate models and the relatively lower 

protein identity between mab-21 and MAB21L2, it was unclear what role, if any, 

MAB21L2 served in vertebrates. 

MAB21L2 is expressed in slightly different domains in mouse, chick, and 

zebrafish, but some similarities exist. In mouse, at E9.5, Mab21l2 is found in the brain 

and throughout the retinal layer of the optic cup, as well as in the forelimb bud and 

brachial arches, with a lower expression level detected in the surface ectoderm that will 

become the lens (Wong et al., 1999; Yamada et al., 2004). Later, at E12, Mab21l2 

expression persists in the brain and throughout the entire retina, and is found in the 

somites, developing limbs, and jaw, though expression in the lens is no longer present 

(Wong et al., 1999; Yamada et al., 2004).  By E14, Mab21l2 expression is largely 

undetectable in most areas, except for the brain (Wong et al., 1999).  
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In chick, Mab21l2 is seen in the optic vesicle and surface ectoderm at HH9, and 

persists in both layers of the optic cup as well as the lens vesicle through HH13-14 

(Sghari and Gunhaga, 2018). By HH18, Mab21l2 remains in the RPE, but is restricted to 

the vitreal edge of the retina, and is largely absent from the developing lens (Sghari and 

Gunhaga, 2018). At E6, Mab21l2 in the retina is found only in the ganglion cell layer, but 

by E8 it is detected in the ganglion cell layer (GCL), inner nuclear layer (INL), and outer 

nuclear layer (ONL), where expression is sustained (Sghari and Gunhaga, 2018). 

In zebrafish, mab21l2 is expressed in the entire presumptive optic field as early as 

bud stage, with a midbrain expression domain becoming apparent by 5 somite stage 

(Kudoh and Dawid, 2001). It persists in both the midbrain and throughout the developing 

optic cups through 24hpf, at which point it is additionally found in the lens, the 

pharyngeal arches, and the spinal cord (Deml et al., 2015). Just after 24hpf, the retinal 

expression becomes restricted to the vitreal edge of the retina, adjacent to the lens 

(Cederlund et al., 2011; Deml et al., 2015). By 48hpf, mab21l2 is found in the GCL and 

INL, with a region of higher expression in the ventral part of the eye, near the closing 

choroid fissure; mab21l2 is also found in the CMZ, but is absent from the lens (Deml et 

al., 2015). By 72hpf, most retinal expression of mab21l2 is gone, except for expression in 

the CMZ and in a small ventral patch at the site of the closed choroid fissure (Deml et al., 

2015). By 5dpf, the CMZ expression has disappeared, but the ventral patch, now highly 

restricted to a line marking the previous site of choroid fissure fusion, persists (Cederlund 

et al., 2011). 

1.5.2 Developmental roles of mab21l2 in knockout and knockdown models 

Although the expression domains have been relatively well characterized, much 

less is known about the function of mab21l2 in these regions.  Many previous studies 

seeking to elucidate the function of mab21l2 used knockout or knockdown approaches to 

determine its function in particular tissues and processes in the animal. Much like the 

expression patterns of the mab21l2 gene, putative roles in each model organism are 

similar in some ways, and different in others.  
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In mouse, Mab21l2 knockouts have severe retinal and lens developmental defects. 

The retina is produced in only a rudimentary fashion, arresting at the optic vesicle stage, 

and does not correctly remain in contact with the surface ectoderm nor differentiate into 

its mature, laminated form (Yamada et al., 2004). The lens also never forms, and the 

surface ectoderm does not appear to undergo any of the proliferative or morphogenic 

changes required for lens formation (Yamada et al., 2004). This suggests that in mouse, 

mab21l2 has a critical role in growth and differentiation of the retina, and in induction of 

the lens. In addition, in the optic vesicle of Mab21l2 knockout mice, proliferation is 

significantly decreased, suggesting a possible role for Mab21l2 in maintenance of 

proliferative cell populations; however, no increase in cell death is observed, suggesting 

no direct role in cell survival (Yamada et al., 2004). Mab21l2 knockout mice also display 

defects in the ventral body wall leading to extrusion of organs and death in utero, 

consistent with the mouse-specific expression of Mab21l2 in the ventral body wall. 

Mab21l2R51C/+ mice have also been produced, and have been shown to possess only 

rudimentary retinas, lack lenses, and display defects in skeletal structures including 

abnormal fusion of joints and growth plates (Tsang et al., 2018). 

In zebrafish, morphant knockdowns for mab21l2 show microphthalmia and 

discontinuities in the inner plexiform layer (IPL) and outer plexiform layer (OPL) as well 

as “holes” in the periphery of the lens, but no other defects (Kennedy et al., 2004). This 

evidence suggests a role for mab21l2 in the production or maintenance of the retinal 

plexiform layers, and in the proper growth of the zebrafish eye. Further supporting this, 

CRISPR mutant lines mab21l2Q48Sfs*5 and mab21l2R51_F52del  also display defects in the 

plexiform layers, although they are confined only to the IPL, which displays foldings and 

discontinuities (Deml et al., 2015). Interestingly, only the frameshift mab21l2Q48Sfs*5 line 

displays microphthalmia and lens defects (comprising a small, degenerate lens) (Deml et 

al., 2015), suggesting that the amino acids R51 and F52 are dispensable for mab21l2’s 

apparent role in the lens, and in controlling the size of the eye. Unlike in mutant mice, 

there are no known defects in mutant or morphant zebrafish affecting parts of the 
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zebrafish body outside of the eye, consistent with the exclusive expression of zebrafish 

mab21l2 in the eye and related neural tissues (Kennedy et al., 2004; Deml et al., 2015). 

In both morphant and mutant zebrafish, cell death is elevated in the lens and 

retina at 24hpf, particularly in the ventral side of the eye, which is not observed in the 

mouse (Kennedy et al., 2004; Yamada et al., 2004; Deml et al., 2015), suggesting 

mab21l2 might have an additional role for lens and retinal cell survival in the zebrafish. 

Similar to the knockout mouse, mutant zebrafish show decreased proliferation in the eye, 

although this proliferative defect was only noted at 48hpf (Deml et al., 2015), by which 

point the zebrafish eye is largely finished forming, and much later than the corresponding 

defect in knockout mice (Yamada et al., 2004). Still, these data suggest that mab21l2 has 

a role in maintenance of proliferation in both mice and zebrafish.  

Both mutant zebrafish lines display severe colobomas (Deml et al., 2015), much 

like the human patients with mutations in MAB21L2 (Rainger et al., 2014; Deml et al., 

2015; Horn et al., 2015), which correlates with a wider expression domain of pax2 at the 

ventral side of the mutant eye (Deml, Kariminejad, R. Borujerdi, et al., 2015). This could 

suggest that mab21l2 plays a role in closure of the choroid fissure, or in proper ventral 

patterning of the eye. 

In chicks electroporated with a dsDNA construct against Mab21l2 at an early time 

point (HH8-10), the formation of the retina fails (Sghari and Gunhaga, 2018), much like 

in knockout mice (Yamada et al., 2004), though interestingly, the lens seems largely 

unaffected (Sghari and Gunhaga, 2018). These differences may be organism specific, or 

have to do with the fact that the dsDNA knockdown primarily targets the developing 

optic vesicle, leaving expression of Mab21l2 in the surface ectoderm relatively intact, 

while the mouse knockout removes Mab21l2 from all tissues. In these knockdown chicks, 

the retina displays decreased proliferation at E2, but cell death is not increased (Sghari 

and Gunhaga, 2018), similar to the mouse data (Yamada et al., 2004). 

When Mab21l2 is knocked down in chick at a later time point (HH11-12), 

microphthalmia and colobomas are produced, again with no lens involvement (Sghari and 

Gunhaga, 2018), suggesting a common role for mab21l2 in growth of the retina across 
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mouse, zebrafish, and chick, and a common role in closure of the choroid fissure in 

zebrafish and chick. 

However, retinal defects in Mab21l2 knockdown chick are markedly different 

from those in mutant zebrafish. Chick knockdowns display failure of the cells of the GCL 

and INL to separate and differentiate, as well as hypoplasia of the optic nerve, but the 

plexiform layers are unaffected (Sghari and Gunhaga, 2018) Therefore, it seems that in 

chick, mab21l2 is involved in retinal differentiation but not in formation of the plexiform 

layers (Sghari and Gunhaga, 2018), while in zebrafish, mab21l2 may be required for 

proper formation of the plexiform layers, but retinal differentiation has never been 

investigated (Deml et al., 2015). This apparent discrepancy could indicate organismal 

differences, or differences inherent in the knockdown versus mutation-based paradigms.  

In summary, knockdown and knockout experiments across three animal models 

show possible roles for mab21l2 in closure of the choroid fissure, growth of the retina 

and lens, induction of the lens, and proper differentiation and patterning of the retina. In 

addition, mab21l2 appears to have a role in maintenance of cell proliferation and cell 

survival in the optic tissues, though the tissues affected and the timings of these roles 

varies and was incompletely studied (Kennedy et al., 2004; Yamada et al., 2004; Deml et 

al., 2015; Sghari and Gunhaga, 2018). 

1.5.3 Molecular and functional roles of mab21l2 

The molecular role of mab21l2 has been of interest to the research community as 

well. This protein is extremely highly conserved, but its role and functional domains have 

been remarkably resistant to prediction. mab-21, the C. elegans ortholog to Mab21l2, has 

some association with the TGFβ pathway in C. elegans. Through epistasis, mab-21 

appears to be downstream of and antagonistic to TGFβ signaling, and furthermore, to be 

post-transcriptionally regulated by this pathway (Morita et al., 1999). Along similar lines, 

in Xenopus laevis, xmab21l2 was shown to be antagonistic to BMP signaling, able to 

rescue dorsalization of ventralized BMP4 overexpression embryos (Baldessari et al., 

2004). In addition, tagged xmab21l2 coimmunoprecipitates with BMP signaling effector 
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SMAD1, suggesting that xmab21l2 may be able to modulate BMP signaling through 

direct binding to and control of its downstream effectors (Baldessari et al., 2004). Later 

work supports this, showing that the level of p-SMAD1/5/8 is not increased directly upon 

overexpression of MAB21L2, but downstream pERK signaling is increased (Rainger et 

al., 2014). Furthermore, in an in vitro assay, GAL4-fused xmab21l2 strongly represses 

the activity of 5XUAS-luciferase constructs (Baldessari et al., 2004), suggesting 

xmab21l2 might be able to act (alongside SMAD1) directly on expression of mRNAs as a 

repressive transcription factor. 

Whether endogenous mab21l2 is a transcription factor, or if not, what function it 

might possess, is controversial. In concordance with the above evidence, MAB21L2 and 

its paralog MAB21L1 are both nuclear localized (Yamada et al., 2003; Kennedy et al., 

2004; Deml et al., 2015), which could allow for a transcriptional role, but experiments to 

prove this have not yet been published.  

In fact, other roles have also been proposed for MAB21L2. The family of 12 

human mab-21 paralogs, of which MAB21L2 is a member, are predicted to adopt a 

nucleotidyl transferase fold (Fig. 1.4A) (Rainger et al., 2014). One member of this 

family, cyclic GMP-AMP synthase (cGAS) is known to bind cytoplasmic DNA and 

create cyclic GMP-AMP (Sun et al., 2013). Overlay of MAB21L2 on the cGAS structure 

appears to indicate conservation of the DNA binding groove and active site, but in vitro 

assays of nucleotidyl transferase activity show no apparent ability of MAB21L2 to 

perform nucleotidyl transferase function (Rainger et al., 2014). Crystal structures of 

closely-related paralog MAB21L1, which shares 94% amino acid identity with 

MAB21L2, show that compared to the cGAS NTase site, MAB21L1 lacks several key 

residues and the active site is conformationally inaccessible (Fig. 1.4A) (de Oliveira 

Mann et al., 2016). These key residues are also absent in MAB21L2 (de Oliveira Mann et 

al., 2016), which could explain the apparent lack of NTase function in vitro. In addition, 

MAB21L2 appears to be unable to bind to ssDNA in vitro, instead binding only to 

ssRNA (Rainger et al., 2014). An ability to bind only to RNA would suggest that 
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endogenous MAB21L2 is not likely a direct transcription factor, although post 

transcriptional control of newly made mRNAs is still a possible function.  

 

 Without knowledge of the function of wild type MAB21L2, or a definitive 

structure, it is difficult to predict the mechanism by which mutations can destroy this 

function. However, attempts have been made to determine the effects of mutations on the 

protein stability and RNA binding activity of MAB21L2. Rainger et al. found that the 

MAB21L2 mutations E49K, R51C, and R51H (dominant mutations) are stabilizing, 

while R247Q (recessive mutation) has no effect on protein stability (Rainger et al., 2014). 

This is inconsistent with evidence from the structure of MAB21L1, which suggests that 

all four mutations affect residues that would form salt bridges critical for the stabilization 

of MAB21L1 and L2 (Fig. 1.4A) (de Oliveira Mann et al., 2016). It is unclear why 

stabilization is observed for 3 of 4 mutations in these in vitro assays, against structural 

predictions. Interestingly, almost the opposite is shown in another assay for protein 

stability of the mutated versions of MAB21L2. R51G, a mutation affecting the same 

arginine residue as two of the above assays, is shown by Deml et al. to destabilize 

MAB21L2, as does a deletion of amino acids 51 and 52 (Deml et al., 2015), more 

consistent with predictions from structural evidence. All four mutations tested (E49K, 

R51C, R51H, R247Q) completely abolish the observed ssRNA binding activity of 

MAB21L2, consistent with their predicted locations along the DNA-binding groove of 

cGAS which likely becomes the RNA binding site of MAB21L2 (Rainger et al., 2014). 

 

The goals of my thesis work were to further characterize the role of mab21l2 in 

the development of the vertebrate eye using a mutant zebrafish, particularly focusing on 

the development of the lens and cornea, which have not previously been studied in detail. 

I used imaging and immunohistochemistry-based techniques to provide evidence for 

mab21l2’s role in maintenance of cell survival in various tissues including the optic stalk, 

its role in growth and differentiation of the lens, and its involvement in controlling 

growth and patterning of the cornea. In addition, I used embryo microinjection of human 
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variants and yeast-2-hybrid assay to attempt to elucidate the role of this protein in the 

biology of the cell, and how mutations could affect its function.  

  



 24 

Chapter 2: Zebrafish mab21l2 mutants possess severe defects in optic 

cup morphogenesis, lens and cornea development 

 

This chapter is modified from the following publication, with permission from the 

authors: 

Gath, N. and Gross, J. M. (2019)  Zebrafish mab21l2 mutants possess severe defects in 
optic cup morphogenesis, lens and cornea development . Dev. Dyn., 248(7), pp. 514-529. 
NG and JMG conceived the experiments and concepts for the work, and interpreted data. 

NG performed experiments, collected and analyzed data. 

 

2.1 INTRODUCTION 

MAB21L2 (male-abnormal 21-like-2) is a highly conserved, yet poorly 

understood protein that has been shown to be involved in lens and retina development in 

vertebrate models (Yamada et al., 2004; Rainger et al., 2014; Deml et al., 2015; Sghari 

and Gunhaga, 2018). Mouse Mab21l2 knockouts display major eye defects, including a 

complete failure of lens formation and severe defects in retinal development (Yamada et 

al., 2004). Zebrafish mab21l2 mutants also possess lens and retina defects, as well as 

colobomas (Hartsock et al., 2014; Deml et al., 2015), and Mab21l2 knockdown in chick 

embryos results in defects in retinal neuron differentiation (Sghari and Gunhaga, 2018), 

suggesting diverse roles for the protein during eye development. Expression of Mab21l2 

in mice and chick is similar to that of zebrafish in that broad, eye-wide expression is 

common early on in development, and expression becomes restricted to a few tissues or 

domains later on. However, there are also organism-specific differences, such as the fact 

that, in chick, Mab21l2 remains evenly expressed along the dorsoventral axis of the 

retina, though it is restricted to the ganglion cell and inner/outer nuclear layers, while in 

zebrafish, the expression of mab21l2 becomes ventrally restricted, but is found 

throughout all retinal layers (Cederlund et al., 2011; Deml et al., 2015; Sghari and 
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Gunhaga, 2018). Which model organism’s expression pattern most closely recapitulates 

that found in humans is unknown. 

Highlighting the clinical importance of these studies and the utility of animal 

models, mutations in MAB21L2 are associated with Microphthalmia, Anophthalmia, 

Coloboma (MAC) Syndrome in which affected patients display a range of severe ocular 

malformations (Rainger et al., 2014; Deml et al., 2015; Horn et al., 2015). The 

function(s) of the Mab21l2 protein are largely unknown, making it difficult to understand 

the molecular and cellular underpinnings of ocular defects in these patients. Results from 

several studies have proposed possible functions as a transcriptional repressor (Baldessari 

et al., 2004), the ability to bind single-stranded RNA in vitro (Rainger et al., 2014), and 

structural similarity to nucleotidyl transferases (Kuchta et al., 2009; de Oliveira Mann et 

al., 2016). Despite these studies, however, definitive roles for mab21l2 are currently 

unclear.  

  Eye development is a complex process involving intrinsic and extrinsic factors 

and precise interactions between a number of ocular and non-ocular tissues. Defects in 

any of these processes during development can lead to severe congenital ocular disorders, 

and animal model systems have been critical in providing mechanistic insight into the 

nature of these disorders (Bibliowicz et al., 2011; Gestri et al., 2012). Amongst these 

models, zebrafish have emerged as a highly useful system given the ability to perform 

forward and reverse genetic screens to generate disease alleles, and combine these with 

state of the art molecular, behavioral and imaging assays (Dooley and Zon, 2000; 

Adamson et al., 2018). While numerous specification and tissue segregation events 

precede overt eye development in zebrafish, the prospective optic cup emerges from the 

diencephalon at approximately the 5 somite stage (SS), and eye development proceeds 

rapidly thereafter. Lens development begins at approximately the 16-18SS, when cells of 

the surface ectoderm begin to columnarize, divide and thicken to form the lens placode 

(Schmitt and Dowling, 1994; Greiling and Clark, 2009). Unlike in other vertebrates, 

where the developing lens pinches off from the surface ectoderm to form a hollow lens 

vesicle, the zebrafish lens develops as a mass of cells which remains attached to the 
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surface ectoderm through much of its early development, until approximately 24 hours 

post fertilization (hpf) when it separates from the overlying surface ectoderm (Schmitt 

and Dowling, 1994; Greiling and Clark, 2009). This mass forms a solid spherical 

structure composed of cells which are becoming specified to either lens epithelial or lens 

fiber fates via the combined action of several signaling pathways (reviewed in Cvekl & 

Zhang 2017).  

Between 28 and 36hpf, the lens epithelium and lens fiber cells are organized in 

their mature locations: the epithelium wraps the front, outermost layer of the lens, while 

differentiating and elongating fibers proceed from the transition zone at the lens equator 

to wrap the lens core (Greiling and Clark, 2009). At ~30hpf, the surface ectoderm that did 

not become part of the lens begins to adopt corneal epithelial identity, and will soon 

begin to lay down an acellular corneal stroma (Zhao et al., 2006). At ~36hpf, corneal 

endothelial cells, derived from the neural crest (Johnston et al., 1979), migrate into the 

eye and move between the lens and corneal epithelium to form the corneal endothelial 

monolayer (Hay, 1980; Zhao et al., 2006). Between 30hpf and 14dpf, the corneal stroma 

will thicken and mature, and between 14 and 28dpf, resident stromal cells known as 

keratocytes will invade the stromal layer (Zhao et al., 2006). Between 36hpf and 5dpf, 

markers of corneal epithelial, endothelial, and stromal identity will be expressed and laid 

down in the corresponding tissue (Zhao et al., 2006). 

 Concomitant with lens and cornea development, the optic cup is also undergoing 

specification into retina and RPE domains and significant morphogenesis to form the 

three-dimensional architecture of the mature eye. As a consequence of the invagination 

and morphogenesis of the early eye field into a bilayered optic cup, a transient opening 

known as the choroid fissure forms in the ventral optic cup (Schmitt and Dowling, 1994) 

which enables the hyaloid vasculature to enter the eye (Hartsock et al., 2014), and the 

optic nerve to exit (Schmitt and Dowling, 1994). The choroid fissure must close such that 

retina and RPE tissue are properly contained within the eye, and failure of this process 

results in colobomas (reviewed in Gregory-Evans et al. 2004; Williamson & FitzPatrick 

2014; Patel & Sowden 2017). 
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As mentioned above, previous studies have identified or generated mab21l2 

mutant zebrafish (Hartsock et al., 2014; Deml et al., 2015) which display ocular 

phenotypes. However, these ocular defects have not been fully documented and 

characterized, which is necessary for these zebrafish models to be useful in providing 

mechanistic insight into ocular defects in human patients with MAB21L2 mutations, as 

well as to begin to unravel the functions of the mab21l2 protein during ocular 

development. Here, we characterize the zebrafish mab21l2au10 allele, which was 

identified in a forward genetic screen (Lee et al., 2012) and shown to possess a nonsense 

mutation (K101Stop) that truncates the mab21l2 protein to ~1/3 of its total size (Fig. 

1.4B) (Hartsock et al., 2014). Our results demonstrate that mab21l2 -/- mutants possess 

defects in lens morphogenesis, lens epithelial cell proliferation and survival, and lens 

patterning. mab21l2 -/- embryos display variable colobomas which are associated with 

elevated cell death in the early optic stalk and a failure to break down the basement 

membrane separating the two sides of the choroid fissure. Finally, we identify corneal 

defects in mab21l2 -/- mutants which manifest as a cornea that contains multiple extra 

layers of cells, is swollen, and lacks differentiation of the corneal stroma. 

2.2 RESULTS: 

2.2.1 mab21l2 -/- mutants possess severe malformations of multiple ocular tissues. 

mab21l2 -/- mutants were identified in a previous forward genetic screen 

conducted in our laboratory (Lee et al., 2012), and were identified based on defects that 

included either small lenses or a complete lack of lenses, as well as a misshapen optic cup 

(Hartsock et al., 2014). In working further with mab21l2 -/- mutants, we noted additional 

and complex ocular defects and sought to characterize them in detail. We first examined 

mab21l2 -/- ocular phenotypes in whole mount embryos throughout the first five days of 

development (Fig. 2.1). Prior to 24 hours post fertilization (hpf), ocular development 

appears largely normal in mab21l2 -/- mutants when compared to wild type siblings, with 

ocular defects becoming apparent at approximately 24hpf (Fig. 2.1A, F). At 24hpf, 
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mutant eyes are microphthalmic, lenses appear smaller, eyecups are misshapen, and 

pigmentation is delayed (Fig. 2.1A, F). These differences persist through 36hpf (Fig. 

2.1B, C, G, H). 
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Figure 2.1: mab21l2 mutants possess complex eye defects that include small lenses, 
microphthalmia, coloboma, and corneal malformations. 

A-L, N, O: Whole mount images of wild type (A-E, K, L) and mab21l2 -/- (F-J, N, O) 
mutant embryos. Compared to wild type embryos, mab21l2 -/-mutants display lens 
defects, microphthalmia and misshapen eyes beginning at 24hpf (compare A-E, K,L to F-
J, N, O). Arrowheads in I, J indicate colobomas present in mab21l2 -/- mutants. 
M, P, Q-U: Ventral whole mount images of wild type (G, J) and mab21l2 -/- (H, I, K) 
embryos at time points indicated. Note corneal malformations and lens displacement in 
mab21l2 -/- mutants (arrows in P, R, S, U). 
Scale bars = 100µm. 
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In addition to abnormalities in the shape of the optic cup, the choroid fissure 

remains open in mab21l2 -/- mutants at 48hpf and they display prominent colobomas (Fig. 

2.1D, I, arrowhead). At 72hpf, mutants remain microphthalmic and colobomas persist. 

Differences in lens size are also obvious at this time (Fig. 2.1E, J). Interestingly, 

subsequent to our initial identification of the mab21l2 -/- line and after several generations 

of outcrosses, we rarely identify homozygous mutants that completely lack a lens, 

although the penetrance of the small lens phenotype remains close to 100% in 

homozygous embryos (data not shown). By 4 and 5dpf, the severity of colobomas varies 

in mab21l2 -/- mutants, with some showing severe retinal blowout in which the proximal 

retina and RPE are extruded into the brain, while others (Fig. 2.1K, L, N, O) have subtle 

colobomas largely visible only through histology. 

mab21l2 -/- mutants also possess corneal defects. During early development, the 

lens and cornea are specified from a common population of surface ectodermal cells 

(Collomb et al., 2013). Many mutations that disrupt development of the lens also disrupt 

formation of the cornea, and vice versa (Lwigale and Bronner-Fraser, 2009; Choi et al., 

2014; Silla et al., 2014). As we had noted lens defects in mab21l2 -/- mutants, we were 

curious whether corneal defects were also present in these mutants, which may suggest 

defects in a common pathway involved in development of both structures. mab21l2 -/- 

corneas appear overtly normal until 48hpf, when obvious morphological defects emerge. 

In ventral views of 48hpf mab21l2 -/- mutants, corneal thickening and bulging are 

obvious, and in many mutant embryos there is an outward displacement of the lens (Fig. 

2.1M, P, arrow). Corneal defects become more pronounced at 3dpf (Fig. 2.1 Q-S, 

arrows). At this time, mab21l2 -/- mutant corneas remain thickened and many bulge 

outwards over a displaced lens (Fig. 2.1R). In rare cases (≈ 5-10% of mutants), the cornea 

appears to be fluid filled and the lens is dysplastic, floating within an enclosed corneal 

“pouch” (Fig. 2.1S). Corneal thickening and bulging with displaced lenses persists 

through 5dpf (Fig. 2.1T, U).  

Collectively, these data indicate that mab21l2 -/- mutants display complex, multi-

tissue ocular defects that include small lenses, microphthalmia, colobomas, and corneal 
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malformations. Several of these phenotypes overlap with those observed in human 

patients with MAB21L2 mutations (Rainger et al., 2014; Deml et al., 2015; Horn et al., 

2015); however, the etiology of these defects is unknown. Thus, we next focused on each 

phenotype/tissue malformation to begin to determine its ontogeny during development 

and potential molecular underpinnings. 

2.2.2 mab21l2 -/- mutants possess defects at several stages of lens development. 

To assess defects in lens formation in mab21l2 -/- mutants, we first examined early 

lens morphogenesis to determine when lens malformations manifest. Sections of 18SS 

embryos revealed that the initiation of lens morphogenesis was impaired in mab21l2 -/- 

mutants (Fig. 2.2H) when compared to wild type siblings (Fig. 2.2A). Lens defects 

manifest at these early stages as a lack of columnar cells that invaginate inward from the 

lens placode toward the retina to generate the primary lens. The delay is transient, 

however, as mab21l2 -/- embryos reach an equivalent level of invagination approximately 

two hours later, at about 22SS (Fig. 2.2I). Defects in lens formation in mab21l2 -/- 

mutants continue to worsen at 26SS (compare Fig. 2.2C, J), a time at which pyknotic 

nuclei appear in the mutant lens (Fig. 2.2J). By 28hpf, phenotypically wild type sibling 

lenses have separated from the surface ectoderm and become spherical, while many 

mab21l2 -/- mutant lenses appear to remain attached to the overlying surface ectoderm 

(Fig. 2.2D, K), and mutant lenses contain a number of pyknotic nuclei (Fig. 2.2K, 

arrowhead) compared to wild type. At 36hpf, wild type sibling lenses are well organized, 

with distinct lens epithelium and early lens fibers present (Fig. 2.2E). However, the lens 

epithelium and primary fibers are not distinguishable in mab21l2 -/- lenses; mutant lenses 

remain as a mass of cells that appear to still be connected to the surface 

ectoderm/developing cornea (Fig. 2.2L). At 48hpf, mab21l2 -/- mutant lenses are smaller, 

and lens fibers are not as well organized into concentric rings (Fig. 2.2M) when 

compared to wild type siblings (Fig. 2.2F). Lens defects persist through 5dpf (Fig. 2.2G, 

N). 
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Figure 2.2: mab21l2 -/- mutants possess delays in lens morphogenesis and lens 
growth, and do not properly express markers of mature lens cell types 

A-G: Transverse sections of wild type (A-G) and mab21l2 -/- mutant (H-N) embryos 
showing lens development over time. Compared to wild type, mab21l2 -/- mutants do not 
show induction of lens morphogenesis at 18SS (H); instead, comparable development 
isn’t detected until 22SS (I). Lenses remain smaller at 28hpf (K), 36hpf (L), 48hpf (M), 
and 5dpf (N). Note pyknotic nuclei in 28hpf mutant (K, arrowhead). 
O-Z: Whole mount in situ hybridizations of 48hpf wild type (O-T) and mab21l2 -/- (U-Z) 
embryos. Note apparently reduced tgfβ3 (U), prox1 (X), and celf1 (Y) in mab21l2 -/- 

mutants, compared to wild type (O, R, S respectively). Note also that mab21l2 -/- mutants 
lack detectable pitx3 (V), foxe3 (w), and cryaa (Z) expression. 
Dorsal is up in all panels. Scale bars = 50µm. 
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 Given the apparent disorganization of the lens in mab21l2 -/- mutants, we next 

determined whether the mutant lens expressed markers of lens epithelial cells and fiber 

cells, or if lens patterning and differentiation were also disrupted. To assess lens 

epithelial and fiber specification, we performed in situ hybridizations for several well-

established markers of lens epithelial fates: tgfb3 (Gordon-Thomson et al., 1998; Cheah 

et al., 2005), pitx3 (Semina et al., 1997), and foxe3 (Blixt et al., 2000), and of lens fiber 

fates: prox1 (Wigle et al., 1999), celf1 (Blech-Hermoni et al., 2013), and cryaa 

(Robinson and Overbeek, 1996) (Fig. 2.2O-Z). At 48hpf, mab21l2 -/- embryos display an 

apparent reduction in lens epithelial marker tgfb3 (Fig. 2.2O, U), while the expression of 

other lens epithelial markers pitx3 and foxe3 was not detected in mab21l2 -/- mutants (Fig. 

2.2V and W respectively) when compared to wild type controls (Fig. 2.2P, Q 

respectively).  prox1, a marker of the lens epithelium to fiber transition zone, also 

appeared to be reduced in mutants (Fig. 2.2X) when compared to wild type siblings (Fig. 

2.2R). Of the markers of lens fiber cell identity, celf1 also appeared to be reduced in 

mab21l2 -/- mutants (Fig. 2.2Y) compared to wild type controls (Fig. 2.2S), and mab21l2 -

/- mutants showed no visible cryaa expression (Fig. 2.2T, Z).  Collectively, these data 

support a model in which lens morphogenesis is delayed in mab21l2 -/- mutants, and their 

lenses are smaller and not properly patterned. 

2.2.3 Lens cells require mab21l2 function to maintain proliferation and survival. 

Having established that there may be both developmental and patterning defects 

in mab21l2 -/- lenses, we sought to determine the cellular underpinnings of the reduced 

lens size mab21l2 -/- mutants. Previous studies of Mab21l2 knockout mice showed that 

proliferation in the developing optic vesicle and overlying surface ectoderm was 

decreased upon loss of Mab21l2, and that these defects correlated with microphthalmia 

and absence of lenses (Yamada et al., 2004). We therefore hypothesized that increased 

cell death and/or reduced cellular proliferation could explain the relatively fewer cells 

found in the lens of mab21l2 -/- mutants. To test this hypothesis, we performed TUNEL 

assays to quantify cell death in the developing lens, and we performed BrdU 
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incorporation assays and quantification of the proportion of proliferative cells within the 

lens at several times points in early lens development when the wild type lens epithelium 

is actively proliferating (Fig. 2.3). At 22SS, mab21l2 -/- mutants have a significantly 

increased proportion of TUNEL+ cells in their lenses when compared to their wild type 

siblings, with a mean of 6.0% of lens cells TUNEL+ in mutants, compared to 2.1% in 

wild type siblings (Fig. 2.3A, F, K; p = 0.027). Similarly, at 26SS, there is a significant 

increase in the number of TUNEL+ cells per total cell number in the mab21l2 -/- lens, with 

a mean of 8.9% of lens cells being TUNEL+ in mutants, compared to 1.7% in wild type 

siblings (Fig. 2.3B, G, L; p = 0.0010). Interestingly, this increase in cell death appears to 

be transient, as by 48hpf, there is no longer a significant increase in TUNEL+ lens cells in 

mab21l2 -/- mutants when compared to wild type siblings (Fig. 2.3C, H, M; p = 0.63). 

Together, the TUNEL assays suggest increased cell death during the early stages of lens 

development in mab21l2 -/- mutants likely contributes to the decreased lens size observed 

at 5dpf.  
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Figure 2.3: mab21l2 -/- embryos display transient increase in cell death, decreased 
proliferation in the developing lens 

A-C, F-H: TUNEL stain of wild type (A-C) and mab21l2 -/- mutant (F-H) embryos. 
Compared to wild type, mab21l2 -/- mutants possess a transient increase in cell death at 
22SS (F) and 26SS (G) while 48hpf (H) embryos have equivalent proportions of dying 
cells to their wild type siblings (B, A and C respectively).  
K-M: Quantification of TUNEL+ cells in images A-C, F-H. Note significant differences 
in proportion of TUNEL+ cells in 22SS (K, p < 0.0001) and 26SS (L, p = 0.001) but not 
48hpf (M, p = 0.63) samples.  
D,E,I,J: BrdU incorporation assay in wild type (D,E) and mab21l2 -/- mutant (I,J) 
embryos. Compared to wild type (D), mab21l2 -/- (I) mutants possess a decrease in 
proliferative cells in the lens at 26SS.  
N,O: Quantification of BrdU+ cells in images D,E,I,J. Note significant differences in the 
proportion of BrdU+ lens cells in 26SS (N) samples. 
Dorsal is up in all panels. Scale bars = 50µm. 
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To assess the contribution of altered cell proliferation to the small lens phenotype 

observed in mab21l2 -/- mutants, we next performed BrdU incorporation assays. Analyses 

at 26SS revealed a significantly reduced proportion of BrdU+ cells in the lens of mab21l2 
-/- embryos when compared to wild type siblings; only 4.6% of mab21l2 -/- lens cells were 

BrdU+, compared to 30.0% of wild type lens cells (Fig. 2.3D, I, N; p <0.0001).  This 

reduction in the proportion of proliferating cells in mab21l2 -/- embryos persists through 

48hpf, at which time 10.1% of the anterior outermost layer of lens cells (presumptive lens 

epithelial cells) are BrdU+ in mab21l2-/- embryos compared to 18.0% in wild type siblings 

(Fig. 2.3E, J, O; p = 0.024). These data support decreased proliferation within the 

mab21l2 -/- lens as also likely contributing to the small lens phenotype detected in these 

embryos. 

2.2.4 Colobomas in mab21l2 -/- mutants are associated with failure of basement 

membrane breakdown in the choroid fissure. 

 As discussed above, mab21l2 -/- mutants possess colobomas of varying severity, 

with some mutant embryos possessing severe closure defects along the proximal-distal 

axis of the fissure and retinal blowout (Fig. 2.4A, D), while others display relatively 

normal closure of the fissure proximally, with colobomas only detected at more distal 

regions. To more directly assess choroid fissure closure and colobomas, we sectioned 

severe and mild mab21l2 -/- mutants and wild type siblings at 5dpf. mab21l2 -/- mutants 

with severe colobomas showed extrusion of retinal and RPE tissue out of the eye (Fig. 

2.4E, arrow). In milder mab21l2 -/- mutants, sagittal sections revealed modest colobomas, 

detected by the misalignment of the retinal layers in the ventral portion of the eyecup 

where the two sides of the fissure have not fused (Fig. 2.4F, arrowhead).  
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Figure 2.4: mab21l2 -/- mutants possess colobomas of varying severity, and retain 
basement membrane markers in the choroid fissure 

A,D: Whole mount images of wild type (A) and mab21l2 -/- mutant (D) embryos 
highlighting colobomas. Compared to wild type, mab21l2 -/- embryos show colobomas of 
varying severities at 5dpf (D). 
B,C,E,F: Transverse (B,E) and sagittal (C,F) sections of wild type (B,C) and mab21l2 -/- 
mutant (E,F) embryos at 5dpf. Note the severe coloboma in proximal eye cup of the 
mab21l2 -/- mutant (E, arrow) compared to wild type (B). In sagittal section view, (C,F), 
the mab21l2 -/- retina (F) displays discontinuity of retinal lamina and failure of choroid 
fissure fusion (arrowhead) when compared to wild type (C). 
G-J’: Laminin α1 localization in wild type (G-H’) and mab21l2 -/- (I-J’) eyes. 
Magenta=laminin, cyan=DAPI. Le= lens. Arrowhead marks the site of the choroid 
fissure. Note that wild type embryos (G, G’, H, H’) do not display laminin α1 at the site 
of the closed choroid fissure, while mab21l2 -/- mutants (I, I’, J, J’) retain laminin α1 
localization at the open choroid fissure (arrowheads). 
Scale bars = 50µm.  
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 It is known that breakdown of the basement membrane that lines the two edges of 

the retina/RPE within the choroid fissure correlates with choroid fissure closure, and that 

failure of this process can lead to colobomas (Torres et al., 1996; Barbieri et al., 2002; 

See and Clagett-Dame, 2009; Tsuji et al., 2012; James et al., 2016). We investigated 

whether basement membrane breakdown proceeded correctly in mab21l2 -/- mutants via 

immunohistochemical staining for laminin α1, a component of laminin-111, which is a 

constituent of the basement membrane lining the edges of the choroid fissure (Smyth et 

al., 1999; Lee and Gross, 2007), comparing wild type to mutant eyes at 2dpf, when most 

wild type fish have completed choroid fissure closure. In wild type embryos, the laminin 

α1 distribution around the outside of the fused eyecup is continuous, which indicates 

successful closure and fusion of the choroid fissure (Bernstein et al., 2018) and no 

laminin α1 is detected at the site of the now fused choroid fissure (Fig. 2.4G and 2.4G’, 

arrowheads). In 2dpf mab21l2 -/- mutants, however, laminin α1 persists between the two 

edges of the retina/RPE, and the fissure is not fused (Fig. 2.4I and 2.4I’, arrowheads). At 

3dpf, this laminin α1 layer persists in the fissure of mutant eyes (Fig. 2.4J and 2.4J’, 

arrowheads), while it remains undetectable at the site of the former choroid fissure in 

wild type siblings (Fig. 2.4H and 2.4H’, arrowheads). These results suggest that mab21l2 
-/- mutants possess defects in basement membrane breakdown and that this could 

contribute to colobomas in the mutant eye.   

2.2.5 Cell death in the optic stalk is increased in mab21l2 -/- mutants. 

In addition to defects in basement membrane breakdown, defects in patterning 

and growth of the optic stalk can also lead to colobomas (Schwarz et al., 2000; Mui et al., 

2005; Morcillo et al., 2006; Lee et al., 2008, 2012). We hypothesized that optic stalk 

defects could contribute to colobomas in mab21l2 -/- mutants, given that the mutant eye 

cup is misshapen at early developmental stages (see Fig. 2.1, Fig. 2.2A-B, H-I). To assess 

this possibility, we examined the segregation of the early optic vesicle into proximal 

(stalk) and distal (retina/RPE) domains using pax2 and pax6 as markers. At 18SS, a time 

at which changes in the distribution of these markers correlates with colobomas in several 
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models (Schwarz et al., 2000; Lee et al., 2008), no differences in the distribution of these 

markers was detected between mab21l2 -/- mutants and siblings, indicating that 

segregation of the early optic vesicle is not disrupted in mab21l2 -/- mutants (data not 

shown).  

Elevated cell death in the optic stalk is also known to contribute to colobomas 

(Viringipurampeer et al., 2012; Lee et al., 2013). Thus, we next used TUNEL staining to 

assess the presence of dying cells in the optic stalk of mab21l2 -/- mutants at 22SS and 

26SS (Fig. 2.5). In wild type siblings, few to no TUNEL+ cells are present in the optic 

stalk at either time point (Fig. 2.5A-C). However, in mab21l2 -/- embryos, an increase in 

TUNEL+ cells in the optic stalk was detected at both 22SS and 26SS (Fig. 2.5E-G). To 

verify that dying cells were localized to optic stalk tissue, we performed an 

immunohistochemical stain for pax2, a marker of the optic stalk (Nornes et al., 1990; 

Torres et al., 1996), in conjunction with TUNEL staining at 26SS (Fig. 2.5D, H). In wild 

type siblings, few pax2+ cells were also TUNEL+ (Fig. 2.5D). In contrast, in mab21l2 -/- 

mutants, significantly more pax2+/TUNEL+ cells were detected (Fig. 2.5H, I; p = 0.014), 

suggesting that loss of mab21l2 function affects cell survival within the optic stalk. 
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Figure 2.5: mab21l2 -/- possess elevated cell death in their optic stalk 
A-C, E-G: TUNEL stain of wild type (A-C) and mab21l2 -/- mutant (E-G) embryos. 
Compared to wild type, 22SS mutant embryos (E,F) possess an increase in cell death in 
the optic stalk region of the eye. This difference persists through 26SS (G). 
D and H: Pax2 and TUNEL co-stain of 26SS wild type (D) and mab21l2 -/-(H) embryos. 
Compared to wild type (D), mab21l2 -/-embryos possess increased dying cells in the 
pax2+ optic stalk region. 
I: Quantification of the proportion of pax2+ and TUNEL+ cells in D and H. Note a 
significantly higher (p = 0.014) proportion of pax2+ cells are TUNEL+ in mab21l2 -/- 
mutants when compared to wild type embryos. 
Dorsal is up in all panels. Scale bars = 50µm. 
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2.2.6 Neuronal differentiation in the retina of mab21l2 -/- mutants is normal 

 Although the gross anatomy of the retina appeared normal in mab21l2 -/- mutants, 

previous studies showed a range of defects in retinas where mab21l2 was disrupted. In 

Mab21l2 mouse knockouts, the retina was severely malformed, becoming arrested at the 

optic vesicle stage (Yamada et al., 2004). In chick, while retinal anatomy was not 

obviously disrupted, Mab21l2 knockdowns showed failure of horizontal and amacrine 

cell differentiation, and defects in separation of amacrine and ganglion cells into the inner 

nuclear layer and ganglion cell layer respectively (Sghari and Gunhaga, 2018). In 

zebrafish mab21l2Q48Sfs*5 and mab21l2R51_F52del mutants, the retina was disorganized with 

folding and bulging of the inner plexiform layer, but whether specific cell types were 

affected is unknown (Deml et al., 2015). We therefore sought to determine if our 

mab21l2 -/- mutants possessed any defects in retinal neuron differentiation. Using 

immunohistochemical markers for amacrine and retinal ganglion cells (HuC/D), 

red/green cones (zpr-1), and retinal ganglion cells and their axons (zn-8), we examined 

the patterning of the mab21l2 -/- mutant retina (Fig. 2.6). In wild type siblings, HuC/D is 

expressed throughout the inner nuclear and ganglion cell layers (Fig. 2.6B). mab21l2 -/- 

mutants also expressed HuC/D in this region (Fig. 2.6H), in a pattern indistinguishable 

from wild type siblings. Along the same lines, the retinal ganglion cell marker zn-8 is 

expressed in the axons of ganglion cells in the ganglion cell layer in both wild type (Fig. 

2.6D) and mab21l2 -/- mutant embryos (Fig. 2.6J). Both wild type (Fig. 2.6F) and 

mab21l2 -/- mutants (Fig. 2.6L) show normal zpr-1 staining in the photoreceptor layer. 

Taken together, these data indicate that mab21l2 -/- mutant zebrafish do not have defects 

in retinal patterning or differentiation. 
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Figure 2.6: mab21l2 -/- mutants do not possess defects in retinal neuron 
differentiation 

A-L: Wild type (A-F) and mab21l2 -/- mutant (G-L) 3dpf sections stained for markers of 
various retinal cell types. Amacrine cell/retinal ganglion cell marker HuC/D staining is 
similar in wild type (B) and mab21l2 -/- mutant (H). Retinal ganglion cell marker zn-8 
staining is similar in wild type (D) and mab21l2 -/- mutant (J). Cone marker zpr-1 staining 
is similar in wild type (F) and mab21l2 -/- mutant (L). 
Dorsal is up in all panels. Scale bars = 100µm. 
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2.2.7 mab21l2 -/- mutants possess disorganized corneas. 

We next sought to analyze the corneal phenotype in mab21l2 -/- embryos. Corneal 

defects were not detected in mouse Mab21l2 knockouts (Yamada et al., 2004), but 

abnormalities were noted from histology of mab21l2Q48Sfs*5 and mab21l2R51_F52del  

zebrafish mutants, but not characterized in detail (Deml et al., 2015). mab21l2 is 

expressed in the early surface ectoderm that will give rise to the cornea in zebrafish 

(Deml et al., 2015) and mouse (Yamada et al., 2004), and is expressed in the maturing 

cornea in chicken (Sghari and Gunhaga, 2018). We investigated the progression of 

corneal defects between 30 and 48hpf, a time window during which the cornea is 

undergoing substantial morphogenesis and maturation (Fig. 2.7; Zhao et al. 2006). At 

30hpf, wild type embryos possess a well-organized single epithelial layer overlying the 

lens (Fig. 2.7A). In contrast, mab21l2 -/- mutants possess a dysmorphic anterior segment 

region consisting of multiple layers of cells overlying the lens, and an unclear delineation 

between lens and cornea (Fig. 2.7G). At 36hpf, wild type siblings possess a single corneal 

epithelial layer overlying the lens, with corneal endothelial cells beginning to migrate 

into the eye near the area where the ciliary margin meets the lens (Fig. 2.7B, C, arrows). 

In mab21l2 -/- mutants, a mass of cells is detected over the lens, with aggregations present 

between the lens and the peripheral retina (Fig. 2.7H, I). These cells displayed 

disorganized F-actin when compared those in the cornea of wild type siblings. At 48hpf, 

the cornea in wild type siblings was well organized, consisting of two layers of evenly 

spaced cells overlying the lens (Fig. 2.7D). In mab21l2 -/- mutants, by contrast, multiple 

cell layers were present, and the cells were not evenly spaced (Fig. 2.7J). 
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Figure 2.7: mab21l2 -/- mutants display corneal dysgenesis and failure of stromal 
patterning 
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(Figure 2.7 continued) 
A-D, G-J: Wild type (A-D) and mab21l2 -/- mutant (G-J) sections demonstrating corneal 
phenotypes. At 30 and 36hpf, when compared to wild type eyes (A-C), mab21l2 -/- lenses 
(G-I) appear continuous with the overlying surface ectoderm. At 48hpf, mab21l2 -/- 
mutants (J) possess a multilayered mass of cells (arrowhead) at the ocular surface when 
compared to wild type (D). 
E,F,K,L: Laminin α1 distribution in 36hpf wild type (E,F) and mab21l2 -/- mutant (K,L) 
embryos demonstrating the presence of ectopic, non-lens, non-retinal cells in mab21l2 -/- 

mutants (K, arrowheads). 
M-N’: BrdU incorporation assays of 36hpf wild type (M) and mab21l2 -/- mutant (N) 
embryos. At 36hpf, mab21l2 -/- mutants (N) possess more corneal cells, but these cells are 
not ectopically proliferative relative to wild type (M). Zooms in M’ and N’; dotted lines 
show area counted for quantification. 
O-Q: Quantification of total and BrdU+ corneal cells in M and N. (p <0.0001, p <0.0001, 
p= 0.27 respectively)  
R,S: Corneal keratan sulfate (CKS) stain of 5dpf wild type (R) and mab21l2 -/- mutant (S) 
embryos. Mutants do not properly express CKS in the stroma.  
Scale bars = 50µm. 
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We hypothesized that the extra cells present in the anterior segment could be part 

of a disorganized lens or a lens that had not separated properly from the surface 

ectoderm, or that they could be corneal in origin. To distinguish between these two 

possibilities, we stained for laminin α1, a known marker of the lens capsule (Parmigiani 

and McAvoy, 1984), to demarcate lens vs non-lens cells (Fig. 2.7E-F, K-L). At 36hpf, in 

wild type siblings, the lens capsule is clearly visible and separates the lens from the 

cornea (Fig. 2.7E, F). In mab21l2 -/- mutants, the lens capsule also encloses the lens 

normally. Interestingly, the extra cells lie outside of this compartment as well as outside 

the laminin α1 distribution that defines the retina/RPE (arrowheads), suggesting that 

these cells have neither lens nor retinal/RPE identity and are likely corneal in origin. 

 

2.2.8 Cell proliferation is normal in the mab21l2 -/- cornea. 

We hypothesized that the cells outside of the lens and retina/RPE in mab21l2 -/- 

embryos may have been produced as a result of increased proliferation of corneal cells. 

To investigate this possibility, we performed a BrdU incorporation assay and compared 

the proportion of BrdU+ corneal cells in mab21l2 -/- and wild type embryos, using a co-

stain with laminin α1 to define the presumptive corneal cells as the cells that are not part 

of either the lens or retina/RPE compartments (Fig. 2.7M-N). BrdU incorporation assays 

revealed that there were significantly more total corneal cells in mab21l2 -/- mutants as 

compared to siblings (Fig. 2.7O, p < 0.0001), but the proportion of these cells that were 

BrdU+ was not significantly different between the two populations of embryos (Fig. 2.7P, 

p = 0.27). However, the overall total number of BrdU+ cells was in fact increased in 

mab21l2 -/- embryos, from an average of 13.8 BrdU+ cells per section in wild type to an 

average of 24.7 BrdU+ cells per section in mab21l2 -/- (Fig. 2.7Q, p < 0.0001). This 

difference in total BrdU+ cell number raises the possibility that while the proportion of 

proliferating cells is not increased upon loss of mab21l2, the total proliferative population 

may be larger, commensurate with the larger overall corneal population.  
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2.2.9 mab21l2 is required for patterning of the corneal stroma 

Since corneal morphology was severely disrupted in mab21l2 -/- mutants, we 

hypothesized that the cornea may not be patterned correctly. To assess this possibility, we 

performed immunohistochemical stains for markers of various layers of the cornea at 

5dpf (Fig. 2.7R-S), a time point at which the cornea is maturing and beginning to express 

markers differentiated cell identities (Zhao et al., 2006). Experiments to test for the 

presence of markers of the corneal endothelium and corneal epithelium were inconclusive 

due to lack of antibody cross-reactivity in zebrafish. However, we were able to 

investigate differentiation of the corneal stroma, which is at this time point an acellular 

layer between the epithelium and endothelium that is marked by high levels of the 

glycosaminoglycan corneal keratan sulfate (CKS) (Zhao et al., 2006). In wild type 

siblings, CKS staining was highly specific and localized as a discrete layer in the area 

between the corneal endothelium and corneal epithelium (Fig. 2.7R). However, in 

mab21l2 -/- embryos, CKS staining was detected in only a few, amorphous, bleb-like 

deposits both within and outside the corneal region (Fig. 2.7S, arrowhead). These bleb-

like structures did not appear to contain nuclei, but their cellular origin is unclear.  

2.3 DISCUSSION: 

 MAB21l2 is a gene of growing interest in the ophthalmic community. Its 

association with human disease (Rainger et al., 2014; Deml et al., 2015; Horn et al., 

2015) as well as its high degree of genetic (Tsang et al., 2009) and functional 

conservation across animal species (Mariani et al., 1999; Hartsock et al., 2014; Deml et 

al., 2015) and enigmatic function have made it the focus of a number of recent studies. 

Here we present a detailed characterization of ocular defects in zebrafish mab21l2 

mutants, identifying functional requirements during a variety of developmental processes 

including optic fissure closure and lens and cornea development. 

mab21l2 -/- mutant zebrafish possess ocular defects that are similar to those in 

human patients with point mutations in the MAB21L2 gene; these include 
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microphthalmia, coloboma, and microcornea (Rainger et al., 2014; Deml et al., 2015; 

Horn et al., 2015). Interestingly, unlike in human patients, mab21l2 -/- zebrafish mutants 

also displayed lens defects: the mutant lens was substantially smaller than that in wild 

type siblings, and often, the lens was dysplastic and eventually extruded from the eye. 

Lens defects are also noted in chick Mab21l2 knockdown (Sghari and Gunhaga, 2018) 

and mouse knockout models (Yamada et al., 2004). Zebrafish mab21l2 -/- mutants also 

possessed severe corneal defects in which the mutant cornea was thickened and bulged 

from the eye. In contrast, some of the human mutations result in anopthalmia (Rainger et 

al., 2014; Horn et al., 2015), which was not detected in our zebrafish mab21l2 -/- mutants. 

The differences between the human patients and animal models could reflect that the 

human patients all carry point mutations that result in single amino acid replacements and 

are heterozygous, while the animal models either truncate the proteins (Hartsock et al., 

2014; Deml et al., 2015), decrease overall transcript levels (Sghari and Gunhaga, 2018), 

or remove large regions of the coding sequence (Yamada et al., 2004). Indeed, our 

mab21l2au10 mutant line is a nonsense allele (K101Stop) that truncates the protein to ≈1/3 

of its normal length. While the molecular function of mab21l2 is unknown, it is possible 

that a functional domain remains intact in the human patients which is absent or non-

functional in our zebrafish model, and that this manifests as more severe defects in the 

anterior segment. Further studies to identify the molecular and cellular function of the 

protein, as well as structure-function relationships, are required to test this possibility. 

The reduction or absence of expression of markers associated with lens epithelial 

and lens fiber cell types, as well as the apparent disorganization of the lens in mab21l2 -/- 

mutants, could indicate that the lens is failing to progress from its earliest developmental 

stage, remaining as an immature lens nucleus/mass of primary fibers. The maturation of 

the lens and generation of distinct epithelial and secondary fiber zones is controlled by a 

host of signals from the surrounding ocular tissues. These signals include members of the 

BMP, Wnt, and FGF pathways (Boswell et al. 2008; reviewed in Cvekl & Zhang 2017). 

In this model, mab21l2 -/- lens cells may not properly initiate patterning, remaining in an 

undifferentiated, disorganized state and therefore failing to express markers like celf1, 
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cryaa, or foxe3, which are characteristic of mature lens cell types. It is also possible that 

mab21l2 -/- lenses do have lens epithelial-like and fiber-like cells, which have begun to 

differentiate, but that these cells’ ability to turn on their key markers such as cryaa or 

foxe3 is disrupted by loss of mab21l2 function, resulting in aberrant lens development. 

Indeed, given that nuclei in the center of mab21l2 -/- lenses appear to have been degraded, 

it is likely that lens epithelial and fiber cells are present, but not patterned properly. 

 mab21l2 -/- mutants possessed colobomas of varying severity, ranging from very 

severe retinal blowouts, where retinal and RPE tissue extruded out the back of the eye, to 

mild discontinuities of the retinal lamina visible only in sectioned tissue. Choroid fissure 

closure is a precisely orchestrated process, and critical events include specification of the 

optic stalk/optic cup boundary, tissue growth and morphogenesis, and basement 

membrane breakdown (Hero, 1989; Hero et al., 1991; Schwarz et al., 2000; Mui et al., 

2005; Morcillo et al., 2006; Lee et al., 2008; Tsuji et al., 2012; James et al., 2016; 

Bernstein et al., 2018). The optic stalk/optic cup markers pax6 and pax2 were correctly 

distributed in mab21l2 -/- embryos, leading us to conclude that early tissue patterning 

defects are unlikely to be responsible for colobomas. However, we did detect 

significantly elevated levels of cell death in the mab21l2 -/- optic stalk. Cell death in this 

region of the developing eye is well known to be associated with colobomas 

(Viringipurampeer et al., 2012; Lee et al., 2013). Elevated cell death in the optic stalk 

could prevent the opposing sides of the choroid fissure from coming into correct 

orientation and/or contact and thereby prevent closure. Moreover, cell death in the optic 

stalk in conjunction with microphthalmia and abnormalities in eye shape in mab21l2 -/- 

embryos could also collectively lead to colobomas.  

Alternatively, it is known that choroid fissure closure requires contributions from 

the hyaloid vasculature (James et al., 2016), neural-crest derived periocular mesenchyme 

(McMahon et al., 2009; Gestri et al., 2018), and the retina itself (Barbieri et al., 2002; 

Morcillo et al., 2006). Of these tissues, mab21l2 is known to be highly expressed in the 

retina, in a domain that gradually restricts to a small region of cells that comprise the 

lateral edges of the choroid fissure (Cederlund et al., 2011; Deml et al., 2015). Thus, it is 



 50 

also possible that mab21l2 functions directly in mediating the closure process within 

these cells; for example, it could facilitate the formation of junctional processes or 

cellular rearrangements necessary for fusion in the fissure.  It is also possible that 

mab21l2 function is associated with cell non-autonomous signals that modulate the 

activities of other cells types at or near the choroid fissure that are required for proper 

closure. With respect to cell non-autonomous functions, it is interesting that the laminin 

α1-containing basement membrane was not properly degraded in the mab21l2 -/- choroid 

fissure, given that previous studies have shown that the hyaloid vasculature contributes to 

the breakdown process, but is not the sole requirement (James et al., 2016). Indeed, 

retinal cells themselves extend protrusions into the site of membrane breakdown (Hero, 

1990), although it is not known whether these are functionally relevant. That mab21l2 is 

expressed in cells at the choroid fissure, and expression has not been reported in the 

periocular mesenchyme, again suggests two possible models for mab21l2 in this process: 

a direct role within the fissure in mediating basement membrane breakdown, or a cell 

non-autonomous role in recruiting cells that migrate into the fissure to degrade the 

membrane. Targeted experiments are needed to test these possibilities. 

Interestingly, despite previous reports of retinal defects in other mab21l2 

knockdown and knockout models (Yamada et al., 2004; Deml et al., 2015; Sghari and 

Gunhaga, 2018), we do not observe any effects on retinal differentiation or lamination in 

our mab21l2 -/- embryos. This difference could be partially attributed to differences 

between the model organisms and methods of knockdown/knockout used in each study. 

While some human patients with MAB21L2 mutations are anophthalmic, is not known 

whether retinal development or function are affected in the subset of patients that possess 

eyes (Rainger et al., 2014; Deml et al., 2015; Horn et al., 2015). These phenotypic 

differences highlight the need for diverse animal models to investigate mutations which 

are of interest in human disease, and also the strength in examining phenotypes resulting 

from different mutant alleles or loss of function approaches. 

 We identified corneal defects in mab21l2 -/- mutants, which have not been 

described previously in mouse knockouts, other zebrafish mab21l2 mutant alleles, or 
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knockdown assays in chick embryos (Yamada et al., 2004; Deml et al., 2015; Sghari and 

Gunhaga, 2018). We observed an increase in presumptive corneal cells at 30hpf in 

mab21l2 -/- mutants; however, this increase was not correlated with an increase in the 

proportion of proliferative cells in the cornea. Rather, the total number of proliferative 

cells was increased in the mab21l2 -/- cornea, suggesting that altered cell proliferation 

likely contributes to the defects, but not simply from normally non-proliferative cells 

ectopically proliferating. It is possible that at an earlier developmental stage, more cells 

could be fated to the cornea, where they then proliferate normally and the resultant 

increase in total cell number disrupts overall morphogenesis of the tissue. It is also 

possible that the proliferative population proceeds more rapidly through the cell cycle, 

leading to increased production of new cells. Defects in optic cup morphogenesis could 

create a smaller overall space within the anterior segment, leading these cells to 

accumulate and not differentiate properly. Importantly, corneal defects in mab21l2 -/-
 

mutants were not limited to the presence of extra corneal cells. Corneal cell layers were 

not properly organized, actin and laminin α1 deposits appeared improperly localized, and 

the cornea was thickened and bulged distally in conjunction with retinal collapse and lens 

dysplasia. The mutant cornea also did not properly deposit keratan sulfate in the corneal 

stroma, indicating additional patterning defects. Unfortunately, due to the absence of 

cross-reactive antibodies in zebrafish, we were unable to determine whether 

differentiated endothelial and epithelial cells were present in mab21l2 -/- mutants. 

Corneal malformations in mab21l2 -/- mutants are interesting given the 

microcornea phenotype reported in human patients with MAB21L2 mutations (Deml et 

al., 2015; Horn et al., 2015). Microcornea is thought to result from either an early arrest 

in corneal growth after differentiation is complete (Kenyon et al., 2008), or from an 

overgrowth of the anterior edges of the optic cup (Sugar, 1978), although the specific 

developmental origins of the defect are still unknown. Lens and corneal cells come from 

a common pool of surface ectodermal precursors, and mab21l2 is expressed in this region 

in chick and zebrafish (Cederlund et al., 2011; Deml et al., 2015; Sghari and Gunhaga, 

2018). Specification of these cells as lens or cornea is determined in part by BMP 
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signaling, and it is known that manipulations of BMP signaling can affect corneal and 

lens development (Furuta and Hogan, 1998; Wawersik et al., 1999; Collomb et al., 2013; 

Huang et al., 2015). mab-21, the C. elegans mab21l2 ortholog and founding member of 

this gene family, has been shown to act antagonistically with members of the TGFβ 

signaling cascade in regulation of male tail morphology (Morita et al., 1999). In addition, 

the Xenopus ortholog, xmab21l2, antagonizes overexpression of BMP4, and 

coimmunoprecipitates with SMAD1 (Baldessari et al., 2004), providing some support for 

a model in which mab21l2 is involved in the regulation of BMP signaling. Disruption of 

BMP signaling can lead to lens and choroid fissure closure defects (Morcillo et al., 2006; 

Huang et al., 2015), like those observed in mab21l2 -/- mutants, suggesting a potential 

unifying theme underlying each of these ocular defects. Combined with the observation 

that mab21l2 -/- mutants have smaller lenses, it is possible that the cornea and lens 

phenotypes are linked via abnormal BMP signaling; in this model, more surface 

ectodermal cells would be specified to a corneal fate over a lens fate, and these cells are 

also space-limited by concomitant defects in optic cup morphology and size, which 

together result in the severe anterior segment defects detected in mab21l2 -/- mutants. 

 Taken together, we present a thorough characterization of ocular defects in 

mab21l2 -/- mutants, thereby providing a tractable model system through which the 

molecular underpinnings of these defects can be determined, and a platform through 

which one can determine how the human mutations lead to ocular malformations. 

mab21l2 is quite an enigmatic protein, as to date, its function within the cell is unknown. 

Our preliminary data show that mab21l2 is chromatin associated and almost completely 

contained within the cell nucleus (unpublished observations). In mouse, Mab21l1 is also 

largely nuclear localized (Yamada et al., 2003). Published data indicate that MAB21L2 

binds ssRNA (Rainger et al., 2014), that it could have  transcriptional repressive 

functions (Baldessari et al., 2004), and that members of the mab21l2 protein family may 

have structural similarities with the nucleotidyl transferase c-GAS (Kuchta et al., 2009; 

de Oliveira Mann et al., 2016), collectively supporting a model in which mab21l2 might 

possess transcriptional or nuclear regulatory functions. Experimental data confirming 
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these proposed functions have been largely inconclusive, however. In the age of 

numerous -omic technologies, it is surprising that the function of mab21l2 has not yet 

been identified, and future studies will undoubtedly shed light on this protein and in 

doing so, elucidate how it contributes to normal eye development, function, and 

congenital ocular pathologies. 
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Chapter 3: Molecular roles of mab21l2 and the effects of mutations 

from human patients 

3.1 INTRODUCTION: 

The molecular and cell biological roles of mab21l2 have been elusive. The 

pathways with which mab21l2 is associated and the processes that are disrupted upon 

loss of mab21l2 have not been determined. The mab21l2 protein has been proposed to be 

able to bind DNA, ssRNA, and perform nucleotidyl transferase activities, but only the 

ssRNA binding has been validated, and the function of this ability is unknown (Rainger 

et al., 2014; de Oliveira Mann et al., 2016). The only proposed binding partner for 

mab21l2 is SMAD1, though this binding has only been investigated in a single paper 

(Baldessari et al., 2004). Apart from this connection, circumstantial evidence, such as the 

similarity of BMP mutant phenotypes to those seen in mab21l2 mutants (Furuta and 

Hogan, 1998; Wawersik et al., 1999; Morcillo et al., 2006; Huang et al., 2015), offers a 

weak connection of mab21l2 to the BMP signaling pathway.  

Due to the number of diverse pathways involved in development, and the 

crosstalk between them, it is likely that the BMP signaling pathway is not the only 

pathway perturbed upon mutation of mab21l2, but little evidence exists to suggest what 

other defects may arise on a gene expression or cell biological level. Thus, we took a 

hypothesis-generating approach to determine pathways that may be involved in the 

functional role of mab21l2 and performed yeast-2-hybrid assays to identify possible 

binding partners for mab21l2.  

Despite robust protein structure and domain prediction tools, the activity of the 

mab21l2 protein is unknown. However, 5 different human mutations in three locations 

along the protein length are known (Rainger et al., 2014; Deml et al., 2015; Horn et al., 

2015) and closely related protein mab21l1 has been crystallized (Fig. 1.4A) (de Oliveira 

Mann et al., 2016). Therefore, it is possible to investigate the consequences of these 

mutations and the function of these locations on the mab21l2 protein. We used 
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microinjection of human mutation versions of MAB21L2 into zebrafish embryos to 

investigate the consequences of each mutation. 

3.2 RESULTS:  

3.2.1 mab21l2 may bind to transport proteins and regulators of the cytoskeleton, 

transcriptional regulators, and proteins related to ribosomal function 

As noted above, while mab21l2 has been previously noted to bind to smad1 in 

vitro, no other binding partners have been identified. In addition, the biological relevance 

of the binding to smad1 in an in vivo system has never been tested. 

Two parallel yeast-2-hybrid assays using zebrafish-derived mab21l2 as bait were 

performed. These assays were performed against a 20hpf zebrafish protein library 

consisting of protein fragments representing the entire proteome. The first assay used a 

traditional GAL4 based approach, while the second used a LexA base. Together, 132.6 

million potential interactions were screened. 320 positive interactions were identified, 

representing 84 different preys. Seven of these were identified as highly likely to be 

experimental artifacts, leaving 77 preys suspected to bind to mab21l2.  

Of the 77 preys pulled from this screen, 15 were at the highest confidence levels, 

and considered most likely to represent real, biologically relevant interactions. The other 

62 preys were identified by only one or two protein fragments binding to mab21l2 in the 

screen, which could indicate weak binding not likely to be real in a living cell context, or 

represent a rare protein not well represented in the prey library. As such, these results 

could be relevant, or could be artifacts of the technique used. Of these likely preys, only 

11 were identified proteins, while 4 were derived from recently mapped but unnamed and 

uncharacterized genes, often known to exist only from gene prediction. As such, only the 

11 known proteins were carried forward in this study, and are listed in order of their 

confidence levels in Table 3.1.  
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Rank Protein Gene Name 

1 tnpo2 transportin 2 

2 klc2 kinesin light chain 2 

3 klhl31 kelch-like 31 

4 tnpo1 transportin 1 

5 nop56 nucleolar protein 56 

6 hnf4a hepatocyte nuclear factor 4 alpha 

7 ldb2a LIM domain binding 2a 

8 kdm3b lysine demethylase 3b 

9 etf1 eukaryotic translation termination factor 1 

10 filip1 filamin a interacting protein 1 

11 
si:dkey-
28e7.3 

(orthologous to) huntingtin associated 
protein 

 

Table 3.1 Candidate mab21l2 interacting proteins from yeast-2-hybrid screen 
Preys pulled from the yeast-2-hybrid screen as possible binding partners for mab21l2 are 
listed in order of confidence level. 
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In order to validate the interaction of mab21l2 with these top 11 preys, the full-

length sequence of mab21l2 was cloned into 6xHIS-tagged mammalian cell culture 

expression vectors from a human gene library purchased from the Harvard gene 

repository. These genes were then co-transfected into HEK-293 cells alongside a GFP-

tagged version of human mab21l2. The intention was to reciprocally co-

immunoprecipitate both bait and prey using anti-HIS and anti-GFP antibodies, 

respectively, which would, if successful, indicate true binding of bait and prey in a cell 

culture context.  

Unfortunately, due to difficulties getting HEK-293 cells to express the 6xHIS-

tagged preys at a sufficiently high level, we were unable to co-immunoprecipitate any of 

the preys with mab21l2, and as such, were unable to validate any of these potential 

bindings. Without validation, these bindings could be yeast-specific, technical artifacts, 

or otherwise not biologically relevant. In addition, many candidates are not expressed in 

the eye, or are localized to parts of the cell other than the nucleus, which is where 

mab21l2 is found, making true binding unlikely. Still, the potential preys identified in our 

screen can lend some support to future experiments seeking to place the role of mab21l2 

in the developmental and regulatory networks in the eye.  

 

The candidates identified in the yeast-2-hybrid screens can be broadly separated 

into several categories: actin/myosin binders, kinesin associated proteins, transcriptional 

regulators, and proteins related to ribosomal function.  

Actin/myosin binders found in the screen include klhl31 (kelch-like 31) and filip1 

(filamin a interacting protein 1). Kelch family proteins are known in several contexts; 

some members of the family are known to act as post-translational regulators, via acting 

as substrate-ligase complex adaptors of E3 ubiquitin ligase complexes (Boyden et al., 

2012; Canning et al., 2013; Shibata et al., 2013). However, not all kelch-like proteins 

perform this role. Other kelch family members, including klhl31, are involved in the 

regulation of actin distribution in the cell, particularly in a skeletal muscle context 

(Papizan et al., 2017). It is thought that klhl31 may act through filamin C to regulate the 
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formation of actin networks such as that at the muscle cell z-disc (Papizan et al., 2017). 

Filip1a interacts with filamin A in the formation of actin branches (Nagano et al., 2002; 

Popowicz et al., 2006). It is also known to be involved in cellular migration; particularly, 

in migration of cells in the neocortex (Nagano et al., 2002), and is highly expressed in 

neural and brain tissues (Nagase et al., 1999). 

Kinesin associated proteins identified in the yeast-2-hybrid screen include 

si:dkey-28e7.3 and klc2 (kinesin light chain 2). Si:dkey-28e7.3 is a relatively recently 

discovered protein from the zebrafish genome sequencing and annotation project; as 

such, very little is known about it. However, it is orthologous to the human protein HAP1 

(huntingtin associated protein) and its family, the Milton protein family. HAP1 is 

involved in scaffolding cargo to microtubules during intracellular transport, binding to 

dynein subunit p150glued as well as to kinesin light chains (Wu and Zhou, 2009). Other 

Milton proteins are also associated with kinesin binding, and are involved in transport of 

mitochondria to nerve terminals in drosophila (van Spronsen et al., 2013). klc2 is a 

component of the kinesin motor; knockdowns in zebrafish have shown defects in the tail 

and in swimming behavior, but no defects in the eye were detected (Melo et al., 2015). 

Transcription regulator candidate preys included hnf4a (hepatocyte nuclear factor 

4a), ldb2a (lim domain binding factor 2a), and kdm3b (lysine demethylase 3b). hnf4a is 

most well known in the liver and kidney, where it regulates gene expression through 

direct binding to hormone response elements (Sladek et al., 1990). hnf4a expression is 

restricted to the gut, liver, kidney, and pancreas, and it is not known to be expressed in 

the eye (Costa et al., 1990; Sladek et al., 1990; Bertrand et al., 2007).  ldb2a is a 

transcription factor known to be expressed in the central nervous system and vasculature 

(Toyama et al., 1998; Gomez et al., 2009). It is involved in fine control of TGFβ 

signaling through modulation of I-SMAD and R-SMAD activity, colocalizing with other 

transcription factors at transcriptional regulatory sites including the promoter of SMAD7 

(Gu et al., 2015). kdm3b is a histone modifying protein that preferentially demethylates 

the H3K9 repressive histone mark, allowing for activation of chromatin (Kim et al., 

2012). It is ubiquitously expressed, particularly in the brain and head (Thisse and Thisse, 
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2004) and is involved in maintenance of proliferative states while antagonizing 

differentiation (Kim et al., 2012). 

 

Candidates from the yeast-2-hybrid screen which are related to ribosomal function 

include etf1 (eukaryotic transcription termination factor 1) and nop56 (nucleolar protein 

56). etf1 is a ubiquitously expressed (Thisse and Thisse, 2004) polypeptide release factor, 

involved in removal of new polypeptide chains from their associated ribosomes to allow 

for ribosomal recycling (reviewed in Inge-Vechtomov, Zhouravleva and Philippe, 2003). 

It is known that efficient termination of translation is associated with higher rates of cell 

proliferation- mutant yeast strains lacking the ability to properly terminate polypeptide 

chains display slower growth and division rates (Beznosková et al., 2013). nop56 is a 

nucleolar protein that helps produce the 60s ribosomal subunit by complexing with and 

forming a bridge between pre-rRNA and the enzyme fibrillarin, which allows fibrillarin 

to methylate the rRNA, required for ribosomal assembly and function (Tollervey et al., 

1993; Gagnon et al., 2012). High levels of nop56 are found in proliferative cells in the 

zebrafish midbrain, and nop56 is also highly expressed in the developing eye (Recher et 

al., 2013). In addition, nop56 is a known marker of proliferative cell populations in the 

developing Xenopus eye (Parain et al., 2012). 

The last pair of yeast-2-hybrid candidates are the nuclear transportins tnpo1 and 

tnpo2, of which tnpo2 was the top hit in the screen. tnpo1 and 2 are two of the 

approximately 20 importins involved in the recognition of nuclear localization signals 

and transportation of newly synthesized proteins to the nucleus (Twyffels et al., 2014). 

Proteins known to be imported into the nucleus via tnpo1 and 2 are involved in many 

pathways in the cell, including the cell cycle pathway, Hedgehog signaling, and many 

more; some are exclusively transported via tnpo1 and 2, while others can use many 

importins in their route to the nucleus (reviewed in Twyffels, Gueydan and Kruys, 2014). 
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3.2.2 Human mutant versions of mab21l2 have dominant negative or gain of 

function properties 

Because some of the human variants of mab21l2 associated with disease appeared 

to be dominant in human families, while others were recessive (Rainger et al., 2014; 

Deml et al., 2015; Horn et al., 2015), we sought to determine if the dominant variants 

could be explained via a gain of function mechanism. mRNA corresponding to the human 

mutant versions found in human patients was transcribed and injected into 1-cell wild 

type zebrafish embryos, and these embryos were assessed for any eye phenotypes (Fig. 

3.1). 

Injection of human wild type mRNA had no effect on the wild type fish, 

indicating that any effect caused by injection of mutant versions is specifically related to 

the mutations, and not an interaction between human mRNA and zebrafish, or a 

consequence of overexpression (Fig. 3.1 A). Human dominant variants mab21l2R51C and 

mab21l2R51H, when injected into wild type zebrafish, produced colobomas (Fig. 3.1 D,E). 

These colobomas were of varying severities, but approximately 80% of all injected fish 

displayed this phenotype. Unlike in the mab21l2au10 mutant, there was no apparent effect 

on lens or eye size. In section, colobomas appeared to be of the retinal blowout type, with 

retinal cells encroaching into the space behind the eye (Fig. 3.1 G) through a large gap in 

the retinal pigmented epithelium (Fig. 3.1 I) compared to wild type (Fig. 3.1 F and H). 

However, human dominant variant E49K, when injected into wild type zebrafish, had no 

effect - the fish did not display colobomas (Fig. 3.1 B). Human recessive mutation 

R247Q also had no phenotypic effect when injected into wild type fish (Fig. 3.1 C), as 

expected. Thus, it appears that a dominant negative/gain of function explanation for the 

dominant segregation in human families may apply to only mutations at amino acid 51 

(R51C and R51H), while the human dominant E49K does not appear to act through a 

gain of function mechanism. 

Because mab21l2 is well known to be localized to the nucleus (Mariani et al., 

1999; Deml et al., 2015), it seemed possible that the defects observed in human patients 

with mutated versions could be due to the inability of the mutant versions of mab21l2 to  



 61 

 

Figure 3.1 Embryos injected with human mab21l2R51C  and mab21l2R51H display 
colobomas 

A-E: Whole mount images of 5dpf wild type embryos injected with mRNA carrying 
various mutations derived from human patients. Wild type mab21l2 injected (A), 
mab21l2E49K injected (B), and mab21l2R247Q injected (C) embryos show normal eyes, 
while mab21l2R51C  and mab21l2R51H injected embryos display colobomas (D, E 
respectively). Scale bars = 100µm 
F-H: Transverse sections of 5dpf embryos injected with human mutant mRNA and wild 
type mRNA, showing representative wild type/mab21l2E49K/mab21l2R247Q sections (F, H) 
versus representative mab21l2R51C/mab21l2R51H sections (G, I). Note retinal blowout type 
colobomas in G and I, with a large gap in the retinal pigmented epithelium visible in I. 
Cyan=DAPI, magenta=F-actin. Scale bars = 50µm 
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 62 

properly localize to the nucleus. Using GFP-tagged wild type and mutant versions of 

mab21l2, mRNA was injected into one-cell zebrafish embryos and subcellular 

localization was assessed at the beginning of epiboly (Fig. 3.2). All mutated versions of 

mab21l2 (Fig. 3.2 B-E) correctly localized to the nucleus, and were indistinguishable 

from wild type localization (Fig. 3.2 A). This evidence suggests that the mechanism by 

which mutations in mab21l2 cause defects is not simply through disruption of the ability 

of mab21l2 to enter the nucleus. 
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Figure 3.2 Human mutant versions of mab21l2 still localize properly to the nucleus 
A-E: Confocal images of approximately 5hpf embryos injected with GFP-tagged human 
mutant and wild type mab21l2 mRNA. Note nuclear localization in the cells of mab21l2 
injected (A), mab21l2E49K injected (B), mab21l2R247Q injected (C), mab21l2R51C injected 
(D), and mab21l2R51H injected (E) embryos. 
  

wild type E49K 

R247Q R51C 

R51H 
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3.3 DISCUSSION: 

3.3.1 Potential binding partners for mab21l2 
While mab21l2 is a critical and highly conserved gene, the cell biological role it 

plays is not known. Some evidence suggests a possible role in regulation of BMP 

signaling; C. elegans ortholog mab-21 is known to antagonize members of the TGFβ 

signaling cascade in regulation of male tail morphology (Morita et al., 1999), and 

Xenopus ortholog xmab21l2 antagonizes overexpression of BMP4 while 

coimmunoprecipitating with BMP effector SMAD1 (Baldessari et al., 2004). However, 

the role of mab21l2 in any other developmental pathways or in the regulation of other 

genes that could contribute to the phenotypes seen in mab21l2 mutants is still unknown. 

In addition, the mechanisms by which specific mutations in mab21l2 produce these 

phenotypes is unclear. Here we present the results of a yeast-2-hybrid screen to identify 

possible candidate interactors for mab21l2, and thus possible cell biological roles for this 

protein. We additionally present evidence that a subset of known mab21l2 human 

mutations confer gain of function activity on this protein, possibly explaining some of the 

known defects in human patients.  

In the yeast-2-hybrid screen, mab21l2 was shown to interact with 2 proteins, 

klhl31 and filip1, known to be involved with the cytoskeleton and regulation thereof. 

klhl31 is unlike other members of the kelch family in that it does not appear to function 

in a E3 ubiquitin ligase context as do proteins like klhl3 and klhl7 (Ohta et al., 2013; 

Shibata et al., 2013). Instead, klhl31 is shown to be able to bind to actin regulatory 

protein filamin C, and to be critical to proper formation of skeletal muscles, particularly 

the formation of z-discs (Papizan et al., 2017). Any function for klhl31 in actin regulation 

in other contexts has yet to be investigated, nor is klhl31 expressed outside of the skeletal 

and cardiac muscles (Wu and Gong, 2004), so this is likely not the direct mechanistic 

cause of eye defects in mab21l2 mutants. 

filip1 binds to and promotes degradation of critical actin organizational protein 

filamin a (Nagano et al., 2002). Filamin A is known to be involved in crosslinking of 
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actin filaments into branched networks that promote cell stability and allow for cell 

migration (reviewed in Stossel et al., 2001); when filamin A is excessively degraded 

upon overexpression of filip1, cell migration fails (Nagano et al., 2002). Some of the 

processes that fail upon mutation of mab21l2, such as choroid fissure closure (Bernstein 

et al., 2018; Gestri et al., 2018) and proper formation of the cornea (Johnston et al., 1979; 

Hay, 1980; Zhao et al., 2006), are known or suspected to be dependent on migratory cells 

and migratory behavior. Thus, it is possible that loss of mab21l2 could lead to 

upregulation of filip1, through loss of a repressive effect, followed by defective migratory 

cells in and around the eye that could contribute to the observed phenotypes.  

As noted above, both klc2, one of the kinesin light chains, and si:dkey-28e7.3, 

orthologous to a human kinesin light chain binding protein, HAP1, were also identified as 

possible mab21l2 interacting proteins. These proteins are critical to microtubule-related 

transport of cargo across the cell. HAP1 is known to be involved in recycling of 

membrane receptors and maintaining consistent transduction of extracellular signals from 

the environment, particularly in the context of neurotransmitters (reviewed in Wu and 

Zhou, 2009). HAP1 is also known to have some limited ability to interact with and 

enhance the activity of certain transcription factors, such as NeuroD (Marcora et al., 

2003) and TATA-box binding protein (Prigge and Schmidt, 2007). It is possible, and 

even likely, that extracellular signaling and defects therein are involved in the production 

of the large-scale eye defects seen in mab21l2 mutants. It is well known that myriad 

extracellular signaling pathways are involved in development of the eye, so an inability to 

properly transduce these signals due to mab21l2-related defects in HAP1 function could 

explain some of the phenotypes seen in mab21l2 mutants, but further work to confirm the 

role of extracellular signals in mab21l2, and specifically, the role of HAP1-related 

transduction, would be required.  

klc2 has vital roles not only in general microtubule-related transport, but also in 

maintenance of the optic nerve; human patients with mutations in KLC2 display optic 

atrophy (Macedo-Souza et al., 2005). However, the relation of this protein to the function 

of mab21l2 and the phenotypic defects seen in mab21l2 mutants is unclear. No mab21l2 
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mutants to date, in humans (Rainger et al., 2014; Horn et al., 2015), zebrafish (Deml et 

al., 2015; this study), mice (Yamada et al., 2004), or other organisms (Sghari and 

Gunhaga, 2018), have ever been noted to display defects of the optic nerve or optic 

atrophy. Therefore, no clear evidence for the involvement of klc2 in the production of 

defects observed in mab21l2 mutants has yet been presented. Further research into the 

eye-specific roles of klc2 or the importance of microtubule-related transport in the 

development of the eye would be needed to draw a clear connection between mab21l2 

and klc2 function.  

Of the transcriptional regulators identified from the yeast-2-hybrid screen, hnf4a 

would seem most promising. hnf4a is known to bind to smad proteins and act as an 

adaptor for the recruitment of these proteins to DNA, where they can upregulate gene 

expression required for differentiation of hepatocytes and other cell types (J. Li et al., 

2000; Kardassis et al., 2000; Chou et al., 2003). Furthermore, mab21l2 is also suspected 

to bind to smad1 (Baldessari et al., 2004) and have some effects on differentiation of 

retinal and lens cell types (Sghari and Gunhaga, 2018, this work). In addition, hnf4a may 

be regulated by the action of prox1, a key regulator of some elements of eye development 

(Seth et al., 2014; Armour et al., 2017). However, due to the fact that it is not expressed 

anywhere near the eye (Bertrand et al., 2007), nor are there known gut, kidney, or liver 

defects in mab21l2 mutants, it seems that hnf4a is likely not involved in the functions 

disrupted in mab21l2 mutants.  

kdm3b, a histone modifying protein, could in principle be responsible for the 

kinds of wide-ranging changes in gene expression that would be likely to produce such 

diverse eye defects as seen in mab21l2 mutants. However, there is no known evidence 

linking mab21l2 to chromatin structure-level changes, as most current thought suggests 

mab21l2 acts either at the transcriptional or post transcriptional level (Baldessari et al., 

2004; Rainger et al., 2014; de Oliveira Mann et al., 2016), so further investigation of any 

connection would be required. 

ldb2 is the sole transcription factor pulled from the yeast-2-hybrid screen which 

can be tangentially connected to what little is already known about mab21l2. It is 
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expressed in the eye and other neural tissues, allowing for colocalization in vivo with 

mab21l2. As mentioned above, ldb2 is associated with control of TGFβ signaling, and 

additionally, ldb2 assembles with a complex that includes smad1 and is known to occupy 

BMP response elements in the genome (Gu et al., 2015). The suspected association of 

mab21l2 with smad1 could provide a link between these two proteins at a common BMP-

responsive regulatory complex, where perhaps mab21l2 could act in its hypothesized 

transcriptional repressive manner, or bind nascent mRNAs using its ssRNA binding 

activity. As such, ldb2 is one of the most promising candidates pulled from this screen for 

future investigation.  

 Ribosomal function related genes nop56 and etf1 seem less likely to be relevant to 

the cell biological role of mab21l2, as mab21l2 is not known to be related in any way to 

translation or ribosomes. Although these two candidates are known to be related to 

maintenance of proliferation in the cell, and mab21l2 mutants do show disruptions of 

proliferation in the lens epithelium and CMZ (Deml et al., 2015, this work), there is no 

other evidence linking them to mab21l2. Further, no eye related phenotypes have been 

reported in mutants for nop56 or etf, making them unlikely candidates for future 

investigation. 

 It is likely that the tnpo1 and tnpo2 binding reported in this screen is indicative of 

the use of these importins by mab21l2 for its entry into the nucleus. tnpo1 and 2 were 

some of the strongest binders found in the screen, but mab21l2 is known to be localized 

to the interior of the nucleus and chromatin rather than the nuclear envelope (unpublished 

observations, NG). In addition, mab21l2 is not predicted to have domains consistent with 

membrane association or channel protein function (de Oliveira Mann et al., 2016). 

Therefore, it is unlikely that mab21l2 is directly acting in complex with tnpo1 and 2 for 

its cell biological function. 

 It is important to note that none of the above described potential binding partners 

have been validated. As such, these results may be real, biologically relevant bindings 

important for the function of mab21l2, or they may be false positives due to technical 

problems with the screen or yeast-specific binding. As mentioned above, some candidates 
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identified in the yeast-2-hybrid screen are very likely to fall into these categories, due to 

localization to tissues where mab21l2 is not expressed, localization to cellular 

compartments other than the nucleus, and more. However, it is still possible that one or 

more of the potential binding partners may be biologically relevant. Future work would 

be required to confirm this. 

3.3.2 The effects of human mutations in mab21l2 
The observation that some human mutations in mab21l2 are dominant and others 

are recessive has proven an interesting topic of study. The fact that mutations R51C and 

R51H cause colobomas even when injected into wild type fish (who therefore have two 

normal copies of non-mutated mab21l2), while mutation E49K, only two amino acids 

away, does not, is intriguing. This is especially interesting given that all three mutations 

are dominant and cause disease in human patients (Rainger et al., 2014), suggests that 

there is something unique about amino acid 51 (or the domain which contains this amino 

acid) that, when mutated, confers gain of function or dominant negative effects. This is 

especially unexpected given the fact that, from the crystal structure of paralog 

MAB21L1, both amino acid 51 and 49 act to form a salt bridge with acid 115, and are 

located on the same loop of the MAB21L2 protein (Fig. 1.4A) (de Oliveira Mann et al., 

2016). The reason for gain of function in amino acid 51 mutations and not in amino acid 

49 mutations is therefore unclear, and an interesting open question which would require 

further information on the specific differences in function between the two amino acids. 

 In addition, the fact that mutation R247Q, recessive in human patients (Rainger et 

al., 2014), appears to perform much the same function at a structural level- stabilizing a 

loop via formation of a salt bridge with another amino acid – yet does not display gain of 

function effects either, is quite interesting. All four mutations were predicted to 

destabilize the protein due to destruction of salt bridges (de Oliveira Mann et al., 2016), 

but the fact that the bridge disruption caused by mutation in amino acid 247 is recessive 

and the disruptions of amino acids 51 and 49 are dominant indicates that not all salt 

bridges in the protein structure may have the same consequences when disrupted. 
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However, the meaning of this observation is unclear, without further information on the 

role and domain functions of the MAB21L2 protein. 

These data together provide a starting point for future investigation into the role 

of the mab21l2 protein. We have provided a list of candidate proteins which may interact 

with mab21l2 to allow it to perform its function, some of which are more likely involved 

in an in vitro context and some of which may either be experimental artifacts, or clues 

toward novel roles of mab21l2 that could not otherwise be predicted from current 

experimental evidence. In addition, we provide the first evidence that human mutations 

R51C and R51H may cause dominant phenotypic defects in human patients through a 

gain of function or dominant negative mechanism, while mutation E49K does not likely 

have the same effect, despite its closely related predicted role in the structure of 

MAB21L2.  
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Chapter 4: Future directions: 

4.1 INVESTIGATION OF ORIGIN FOR CORNEAL DEFECTS: 

4.1.1 Contribution of the neural crest-derived periocular mesenchyme to the 

mab21l2 -/- cornea 

Although work presented here shows that there is an increase in the number of 

corneal cells in mab21l2 -/-  embryos, it remains unclear where these cells originate. 

Future work to examine the corneal phenotype should investigate the origin of the extra 

cells, as well as their identity. Corneal endothelial cells are normally produced from 

mesenchymal cells derived from the neural crest, which migrate in around the eye and 

over the lens to form the endothelial layer. This normally takes place between 30 and 

36hpf. It is possible that the extra cells seen in the mab21l2-/- cornea could be produced 

from extra migratory neural crest cells that enter the eye. Neural crest cells that enter the 

eye can be visualized with a sox9 (Spokony et al., 2002) or sox10 (Dutton et al., 2001; 

Kwak et al., 2013) transgenic line. By crossing the mab21l2 -/- line into a sox10:GFP 

transgenic, we can track the entry of neural-crest derived cells and count the number of 

these cells localizing to the cornea in mab21l2 -/- mutant versus wild type embryos at the 

36 hour timepoint.  

4.1.2 Determining the contribution of failure of programmed cell death to corneal 

cell number increase in mab21l2 -/- 

In addition, a second possible origin for the extra cells could be a deficiency in the 

programmed cell death at the lens/corneal connection. In the course of zebrafish lens 

development, the spherical lens is separated from the overlying surface ectoderm by 

apoptosis events in the cells located at the interface between these tissues, occurring at 24 

and 25hpf (Dahm et al., 2007). The lens never appears to separate from the ectoderm in 

mab21l2 -/- embryos, and the cornea and lens cells seem indistinguishable even at 28 hpf, 

long after the lens should be a freestanding sphere (Dahm et al., 2007; Greiling and 
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Clark, 2009). Therefore, it is possible that some of the extra cells in the corneal area in 

mab21l2 -/- embryos could be leftover cells which were part of the lens-cornea 

connection, and failed to undergo apoptosis. Using TUNEL assays at the specific 24hpf 

and 25hpf time points, when this very transient cell death occurs in zebrafish, could allow 

us to determine if failure of extra cells to die off contributes to the increased cell number 

seen in the cornea of mab21l2 -/- fish.  

4.1.3 Elucidating the identity of additional cells found in the mab21l2 -/- cornea 

Corneal keratan sulfate stains showed that the corneal stroma is not properly 

patterned in mab21l2 -/- embryos (Fig. 2.7 R,S). However, there is still investigation to be 

done to determine whether or not the other layers of the cornea are patterned correctly, 

and the identity of the extra cells, if any. The corneal stroma is, at the time points tested, 

an acellular tissue; keratocytes do not occupy the corneal stroma before 14-28dpf in 

zebrafish (Zhao et al., 2006). Therefore, if the extra cells have taken on a differentiated 

corneal identity, they must be part of either the corneal endothelium or corneal 

epithelium. Antibody stains for these cell types in Chapter 2 of this dissertation failed due 

to lack of antibody cross-reactivity with the single antibody tested for each cell type (data 

not shown). However, there are multiple other markers for the corneal endothelium and 

corneal epithelium which can be tested and may show reactivity in zebrafish. For 

endothelium, these include clrn1, grip1, or zp4, among others (Yamaguchi et al., 2015; 

Yoshihara et al., 2015). For epithelium, many corneal keratins such as ck3, ck12, and 

others can be used as markers (Chen et al., 1994; Auw-Haedrich et al., 2011). In 

addition, if no antibodies currently available that have cross reactivity with zebrafish may 

be found, we could perform an in situ hybridization for the transcripts of these markers to 

determine if the corneal epithelium and endothelium are expressing genes consistent with 

their differentiated identities. Antibody stains or in situ hybridizations would also provide 

evidence for the identity of the extra cells at the cornea - the cells may express markers of 

endothelial or epithelial identity, or neither. Counting the cells expressing markers of 
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each identity would allow us to determine which cell type, if any, shows an increase in 

cell count or proportion.  

4.1.4 Investigating possible defects in the anterior chamber and aqueous humor 

dynamics in mab21l2 -/-mutants 

An additional observation not further addressed in this work was that mab21l2-/- 

embryos appeared to have swelling or an excess of fluid trapped underneath the cornea 

surrounding the lens (Fig. 2.1 Q-S). It is possible that this fluid is an abnormally 

increased volume of aqueous humor, normally a small amount of fluid overlying the lens 

underneath the cornea. The mutant fish may accumulate an abnormally large amount of 

fluid in their anterior chamber, causing the observed “blister like” phenotype.  

The dynamics and production of aqueous humor in zebrafish are somewhat 

different from those in mammals. In zebrafish, the aqueous humor is produced from a 

structure called the dorsal ciliary epithelium (Gray et al., 2009). It then flows through the 

anterior chamber to the ventral canalicular network, where it is filtered into the choroid 

(Gray et al., 2009). This is in contrast to the flow path in mammals, where the humor is 

produced at both the dorsal and ventral ciliary bodies, then flows out through Schlemm’s 

canal and the trabecular meshwork into the choroid (reviewed in Goel et al., 2010).   

In zebrafish, the dorsal ciliary epithelium and the ventral canalicular network, and 

therefore the prerequisites for flow of the aqueous humor, are formed by 3dpf (Soules 

and Link, 2005). This is around the time that I first observe the apparent abnormal 

accumulation of fluid in the area of the anterior chamber of mab21l2 mutants. Due to 

observed defects in other tissues in the anterior chamber, such as the lens and the cornea, 

I hypothesize that there could also be defects in the formation of the structures required 

for aqueous humor flow. Therefore, it would be informative to investigate these 

structures and their morphology and differentiation. Sectioning both mutant and wild type 

fish at key points of formation for the dorsal ciliary epithelium and ventral canalicular 

network, such as 2.5, 3 and 5dpf, with both histology and TEM, would allow us to 

determine if there are any defects in these structures upon loss of mab21l2.  
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Ideally, measurement of intraocular pressure and outflow of the aqueous humor 

directly would be performed to identify any defects in the flow of aqueous humor in 

mab21l2 -/- fish. Unfortunately, due to the aquatic nature of zebrafish, directly measuring 

intraocular pressure is possible, but difficult and requires highly specialized equipment 

compared to mammals (Link et al., 2004). Thus far, methods of directly measuring rate 

of outflow have not been developed in zebrafish at all. Still, if there is reason to believe 

that there might be defects in humor flow, such as anatomical differences or 

developmental delays in formation or function of the ciliary epithelium or ventral 

canalicular network, measurements of intraocular pressure would theoretically be 

informative in determining if there truly is an abnormal accumulation of fluid in the eye.  

 

4.2 INVESTIGATION OF EYE MORPHOGENESIS AND CHOROID FISSURE CLOSURE 

4.2.1 Using in vivo time-lapse imaging to identify defects in early mab21l2-/- eye 

morphogenesis 

 The formation of the eye is a complex process, entailing three-dimensional tissue 

and cellular movements that bring each component into the proper orientation for the 

production of a mature eye. It is clear from the data and observations presented in this 

work that the loss of mab21l2 has dramatic effects on the overall shape of the eye, and 

the proper formation of a round eye of normal size. mab21l2-/- mutants show a “bean 

shaped” eye as early as 24hpf, with defects or delays in invagination and formation of the 

bilayered optic cup visible even earlier, at 18SS. The mab21l2 -/- mutant eye remains 

abnormally oval in shape through 5dpf. In addition, the mutant eye appears to “collapse” 

around the lens, pushing it outwards by 3-5dpf, and in some mab21l2 mutants, 

particularly those with the most severe colobomas, the ventral portion of the eye is 

shallower, with a shorter proximal-distal axis than the dorsal portion of the eye, while in 

wild type these axes are almost identical.  
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 Due to the early onset and severe presentation of eye defects, it would be logical 

that early morphogenetic processes may be disrupted upon loss of mab21l2. The cell and 

tissue movements which take place from approximately 12-24hpf are precisely ordered, 

and controlled by the interplay of multiple signaling pathways in multiple tissues 

(Fuhrmann, 2010; Kwan et al., 2012; Cavodeassi, 2018; Gordon et al., 2018); therefore, 

the loss of mab21l2 could conceivably disrupt one or more of these functions and lead to 

morphogenetic defects. Zebrafish are highly amenable to in vivo time-lapse imaging of 

developmental processes (Meyers, 2018). In vivo time-lapse imaging has been used to 

great effect to explore the early morphogenesis of the eye and how it may be disrupted 

(Kwan et al., 2012; Gordon et al., 2018). Time-lapse imaging of mab21l2 -/- and wild type 

embryos injected with a membrane and nuclear tag can allow for visualization of the 

tissue movements involved in events from evagination of the eye stalks to formation of 

the bilayered optic cup around 24hpf. Any differences in large-scale movements involved 

in the formation of the eye in mab21l2 -/- should be visible. If smaller-scale changes in 

cell movements are suspected, cell tracking of individual or small groups of cells in the 

fashion of Kwan et al. could be performed (Kwan et al., 2012) to determine if there are 

differences upon loss of mab21l2. 

4.2.2 Examination of tissue dynamics during choroid fissure closure in mab21l2 -/- 

 The critical role of mab21l2 for morphogenetic events in the eye is evident from 

the colobomas present when mab21l2 function is lost. Evidence presented in this work 

shows that failure of basement membrane breakdown and abnormal cell death in the 

ventral optic stalk may contribute to the production of colobomas, but the process of 

choroid fissure closure is much more complex than that. Although not much is 

specifically known about the genes, mechanisms, and pathways that contribute to choroid 

fissure closure, closure is known to involve a series of tightly controlled tissue 

movements which are required to allow for fusion at the fissure (Bernstein et al., 2018). 

The edges of the retina must orient themselves properly, move into close proximity with 
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the proper timing, and undergo tissue movements and cellular changes to allow for fusion 

(James et al., 2016; Bernstein et al., 2018; Gestri et al., 2018).  

 Data presented in this work show that closure of the choroid fissure is disrupted in 

mab21l2 -/- embryos, but the morphogenetic movements that lead to the formation of the 

fissure, and the tissue dynamics that occur during closure, were not investigated. Due to 

the importance of these events, and the fact that disruptions can lead to colobomas, it 

would be informative to perform a more thorough examination of the eye at time points 

corresponding to formation of the choroid fissure and events such as the change in 

orientation of the leading edges of the retina. Since mab21l2 -/- embryos have smaller 

eyes, it is possible that, for example, fissure apposition may not occur at the correct time 

point, when conditions in the eye are conducive to the onset of choroid fissure closure, 

and as a result, fissure closure may then become impossible, even if apposition is 

achieved later on. mab21l2 -/- embryos could be sectioned at time points such as 31hpf, 

when the sides of the fissure become apposed, or at 34-36hpf, when the basement 

membrane is being broken down and there are dynamic changes at the site of contact 

between the two sides (Bernstein et al., 2018), and any differences between mab21l2 -/- 

mutant and wild type embryos could be determined.  

 In addition, it is known that smaller-scale, more transient changes in the 

morphology and behavior of the cells and basement membrane at the choroid fissure site 

occur during the process of closure (James et al., 2016; Williams, 2016; Bernstein et al., 

2018; Gestri et al., 2018). As such, it may be informative to take advantage of the ability 

to perform in vivo time-lapse imaging of the choroid fissure process in zebrafish to 

observe in vivo the dynamics at the fissure site in wild type and mab21l2 -/- embryos. This 

experiment would allow us to observe any differences in cell morphology, in the contacts 

extended by the basement membrane across the fissure, and in the localization and 

behavior of periocular mesenchymal cells at the fissure site in wild type versus mutant 

embryos, all of which could contribute to the colobomas observed in mab21l2 -/- embryos.  
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4.3 INVESTIGATION OF FUNCTIONAL DOMAINS OF MAB21L2  

Due to the relatively less severe phenotype in mab21l2au10 compared to full gene 

knockouts produced in mice (Yamada et al., 2004), and the fact that the au10 allele is a 

truncation of the protein that leaves approximately 1/3 of the protein’s length intact (Fig. 

1.4B), it is possible that this fragment is able to partially perform some of the functions of 

mab21l2 if it is not removed via nonsense mediated decay. Therefore, it is important to 

determine if the au10 allele acts as a null allele, or if the first 1/3 of the mab21l2 protein 

still produced in au10 fish is retained. Determining if au10 undergoes nonsense-mediated 

decay would provide one piece of evidence to answer this question. This could be 

accomplished by examining mab21l2au10 zebrafish for the amount of mab21l2 mRNA and 

protein that are present when the gene is mutated. In addition, production of a true null 

mab21l2 knockout zebrafish line, for example by complete excision of the gene via dual 

Crisprs targeted to both ends of the gene, would be useful in investigating this question. 

Comparing the phenotypes of the au10 allele and gene excision lines would allow us to 

determine if au10 is likely a null allele. We could additionally inject mRNA 

corresponding to the au10 allele into the gene excision line and determine if there is 

partial rescue of the observed phenotypes, which would suggest that mab21l2au10 is likely 

to retain some function. 

In addition, once a complete knockout of the mab21l2 gene has been produced, 

structure-function experiments could be performed to determine what domains of the 

mab21l2 protein are likely vital to its biological function. Microinjection of mRNA 

representing the mab21l2 gene with various segments deleted can be used to determine 

which sections of the protein are critical for its function. If the mab21l2 knockout 

zebrafish are rescued and no longer display phenotypes consistent with the loss of 

mab21l2 function, then the segment deleted from the gene is dispensable for the role of 

mab21l2. If the zebrafish still display phenotypes consistent with mab21l2 knockout, then 

the deleted segment is required for full function of mab21l2. Some preliminary segments 

of the mab21l2 protein which may be informative to delete would be the RNA binding 

segment, the putative nucleotidyl transferase domain or parts thereof, and the potential 
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CTP binding domain as determined in closely related protein mab21l1 (de Oliveira Mann 

et al., 2016). This could allow for determination of the functional relevance of these 

segments and proposed activities of the mab21l2 protein, which thus far may or may not 

be related to the observed phenotypes upon loss of mab21l2 function. 

 

4.4 CREATION OF HUMAN MUTANT MAB21L2 ALLELES IN ZEBRAFISH 
 While zebrafish are a good model for defects and diseases of the eye, and have 

been useful in modeling the effects of mutations in mab21l2, the zebrafish mutant alleles 

in this study and in that performed by Deml et al. do not directly recapitulate the 

mutations found in human patients (Rainger et al., 2014; Deml et al., 2015; Horn et al., 

2015). In this study, the allele used is a truncation of the mab21l2 protein to 1/3 of its 

normal length, with the N-terminus remaining intact (Fig. 1.4B). Deml et al. used two 

TALEN lines, a deletion of amino acids 51 and 52, and a frameshift mutant leading to 

early truncation of the protein (Deml et al., 2015). However, all human mutations 

described have been point mutations that alter only one amino acid (Rainger et al., 2014; 

Deml et al., 2015; Horn et al., 2015). Therefore, the best model for these mutations 

would be to create zebrafish lines that contain the same amino acid substitutions, and 

characterize the effects on cell biology, gene expression, and more in these lines.   

 Due to the recent explosion in genome editing technology, it is possible to create 

point-specific and other targeted mutations in the genome using a combination of Crispr-

Cas9 technology and directed genome repair. In mice, a commonly used technique is 

homologous recombination-based repair from a coinjected DNA template that contains 

the mutations or other genomic changes desired. This technique has also been used for 

precise genome editing in zebrafish. Future work could use homologous recombination-

based repair with a template containing the human point mutations to create zebrafish 

lines that carry these precise mutations. 

 



 78 

However, due to the fact that homologous recombination based repair occurs at a 

very low rate compared to repair via other mechanisms such as non-homologous end 

joining (Auer et al., 2014; Horii and Hatada, 2016), with approximate success rates in 

zebrafish being reported in the 1-2% range (Zu et al., 2013), it may be worthwhile to 

consider other methods of knock-in of the point mutations of interest. One such 

technique, recently applied to zebrafish, is the use of a cytidine deaminase fused to a 

Cas9 nickase to create non-double strand break-dependent conversions of cytidines to 

thymines (Komor et al., 2016; Zhang et al., 2017). Through targeting of this construct to 

the reverse strand, conversion of guanines to adenines in the gene of interest can also be 

achieved (Komor et al., 2016). Conveniently, one of the human mutations in MAB21L2 

described in the literature entails a C to T point mutation, while the other three are 

produced by the mutation of a G to an A (Rainger et al., 2014). Therefore, it is possible to 

replicate all four currently identified human mutations in the zebrafish model using 

cytidine deaminase dependent base editing.  

Through establishment of lines carrying the published human mutations, whether 

through homologous repair or cytidine deaminase base editing, we can use zebrafish as a 

more precise model for the eye defects observed in human patients. Many interesting 

observations could be tested - for example, zebrafish mutants display lens defects (Deml 

et al., 2015; Gath and Gross, 2019 (Chapter 2 of this dissertation)), while human patients 

apparently do not (Rainger et al., 2014; Deml et al., 2015; Horn et al., 2015), but it is 

unclear if this is due to organismal differences, or the different natures of the mutation in 

each system. By using knock-in zebrafish containing the exact mutations found in human 

patients, we could determine the precise effect of each mutation, and therefore 

extrapolate some information about the function of each amino acid that is mutated. For 

example, perhaps the mutation of amino acid 51 causes lens defects, but the mutation of 

acid 247 does not, which would provide evidence for which areas of the protein are 

required for the various functions of mab21l2 identified in previous research.  
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4.5 RNA-SEQUENCING EXPERIMENTS TO DETERMINE PATHWAYS AFFECTED BY LOSS OF 

MAB21L2 

One of the most interesting facts about mab21l2 is that, despite its extremely high 

protein conservation and critical function in eye development, its exact role at the 

molecular and cellular level is almost completely unknown. DNA binding was predicted 

but could not be proven in an in vitro setting, while ssRNA binding appears to occur in 

vitro but has never been tested in vivo. Some evidence has suggested mab21l2 could have 

a transcriptional regulatory function, perhaps acting as a repressor of gene expression 

(Baldessari et al., 2004). A few experiments suggest that mab21l2 might bind to SMAD1 

and be involved in regulation of TGFβ/BMP signaling pathways. Otherwise, however, 

the pathways and genes that may be misregulated upon loss of mab21l2 are completely 

unknown. 

As detailed in Chapter 3, I attempted to investigate the role of mab21l2 by 

seeking to identify its binding partners via a yeast-2-hybrid screen. However, I was 

unable to validate the binding of mab21l2 and any of the identified potential binding 

partners. Another approach toward defining the role of an unknown protein, especially 

one thought to be a transcriptional regulator, is to perform RNA-sequencing experiments. 

Future work on mab21l2 should perform an RNA-seq on wild type and mab21l2 -/- eyes 

and compare the two samples to determine what genes and pathways are up- and down-

regulated upon loss of mab21l2. Time points of interest may include the onset of lens 

morphogenesis, at approximately 16hpf (Greiling and Clark, 2009), or the beginning of 

choroid fissure closure as marked by basement membrane breakdown, at approximately 

34 to 36hpf (Bernstein et al., 2018), which coincides with development of the cornea 

(Zhao et al., 2006). 

Mining of the data gathered from this experiment could be used to determine 

which genes are differentially expressed in wild type versus mab21l2-/- samples. A list of 

genes up- and down-regulated in mab21l2-/- could then be analyzed for genes and 

pathways which seem likely to be or are known to be involved in developmental 

processes of the eye. While verification of these data would be required, it could provide 
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evidence as to with which previously researched pathways mab21l2 may be involved- for 

example, this experiment could support the potential involvement of mab21l2 in 

TGFβ/BMP signaling, and/or link mab21l2 to other pathways which have not yet been 

suggested to have a connection to this enigmatic protein. This would provide directions 

for future work, for example to place mab21l2 more precisely in these pathways, to use 

inhibitors or activators of these pathways (or mutant/overexpression lines, if available) to 

attempt to rescue or phenocopy mab21l2-/- mutants, and more.  

The differentially upregulated genes in mab21l2 -/- embryos may also provide 

some surprising results of genes not otherwise known to be involved in development of 

the eye. Determining if these are true results or artifactual through in situ hybridization, 

qRT-PCR, or other methods would be required before any conclusions could be made, 

but could provide interesting and unexpected insight into the role of mab21l2 in the 

formation of the eye.  
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CONCLUDING REMARKS: 
The work presented in this dissertation represents the most thorough 

characterization to date of ocular defects in a mab21l2 deficient system. This is 

particularly useful given the MAB21L2 mutations associated with human disease 

identified over the past several years, providing a tractable animal model to further 

investigate the underpinnings of the observed clinical phenotypes. These results show 

that mab21l2 -/- zebrafish display defects in the lens, closure of the choroid fissure, and 

cornea, the latter of which had not previously been described. In the lens, mab21l2 is 

required for lens morphogenesis, lens epithelial cell proliferation and survival, and proper 

patterning/expression of markers of mature lens cell types. mab21l2 is also required for 

choroid fissure closure, and its loss results in elevated cell death in the optic stalk as well 

as failure to break down the basement membrane at the fissure site. Interestingly, despite 

the smaller eye in mab21l2 -/- embryos, the retina is fully patterned and forms mature 

retinal cell types. The results presented in this dissertation also show that corneal defects 

are present upon loss of mab21l2, including multiple extra layers of cells, swelling, and 

lack of a properly differentiated corneal stroma. Additionally, this dissertation presents 

several potential binding partners for mab21l2 which could point to a function in 

transcriptional regulation and/or regulation of the shape and migration of cells. Lastly, we 

present evidence showing that the dominant human mutations MAB21L2R51C and 

MAB21L2R51H serve as gain-of-function mutations which induce colobomas even in the 

presence of normal levels of wild type mab21l2 protein. Future studies should further 

investigate the molecular and cell biological underpinnings of the observed phenotypes 

and defects upon loss of mab21l2.  
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Appendix: Materials and Methods 

ZEBRAFISH HUSBANDRY: 

Zebrafish were maintained at 28.5°C on a 14hr/10hr light-dark cycle. Embryos 

were obtained from natural pairwise spawns from heterozygous mutant crosses. Embryos 

were collected and maintained at 28.5°C in Danieu’s medium in the dark. The mab21l2 -/- 

line used in this study has line identifier au10 and is being submitted to ZIRC for 

maintenance. The au10 line was created in our lab using an ENU based mutagenesis 

protocol, previously published (Lee et al., 2012). The au10 line was propagated by 

outcrosses to wild type AB animals. All animals were treated in accordance with 

provisions established by the University of Texas at Austin and University of Pittsburgh 

School of Medicine Institutional Animal Care and Use Committees.  

EMBRYO MICROINJECTION 

mRNA for injections was transcribed in vitro using mMessage mMachine 

transcription kits for capped RNA (Roche) according to manufacturer instructions. After 

transcription, the RNA reaction was treated with Turbo DNAse (Roche) for 20 minutes. 

Finished mRNA was purified using a Qiagen RNeasy Plus mini kit.  

Embryos were injected at the one-cell stage, into the yolk. 250pg of mRNA was 

injected into each embryo. 

BRDU INCORPORATION ASSAYS: 

50-60 dechorionated zebrafish embryos were placed in a small dish of 10mL of 

10mM BrdU (Sigma-Aldrich) in Danieu’s medium. They were incubated at 28.5°C for 
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20 minutes (36 and 48hpf samples) or one hour (22SS and 26SS samples). Embryos were 

immediately sacrificed using Tricaine (Spectrum Chemical) and fixed for analysis.  

TISSUE PREPARATION AND CRYOSECTIONING: 

Embryos were collected and fixed overnight in 4% PFA in PBS at 4°C. Embryos 

were then washed 3x with PBS and placed into two successive 25% and 35% 

sucrose/PBS washes for at least one hour. Embryos were then embedded in Tissue 

Freezing Medium (Electron Microscopy) and placed at -80°C until solidified, then stored 

at -20°C. Cryosections were made at 12µm thickness on polylysine coated FrostPlus 

slides (Fisher). These slides were dried at RT for 1 to 2 days and stored at -20°C.  

IMMUNOHISTOCHEMISTRY: 

Slides were rehydrated in PBS. Prior to blocking, antigen retrieval of a 30 minute 

incubation in 0.5% SDS at 37°C was used for laminin α1 staining. An 8 minute 

incubation in 4N HCl at 37°C was used for antigen retrieval prior to BrdU staining. 

Blocking followed in 5% normal goat serum solution in PBS for at least one hour. 

Antibody incubation took place overnight at 4°C in block solution. The following 

antibodies and dilutions were used: BrdU (Abcam) 1:250, CKS (Millipore Sigma) 1:500, 

HuC/HuD (Invitrogen) 1:200, laminin α1 (Sigma-Aldrich) 1:100, pax2 (Abcam) 1:500, 

zn-8 (ZIRC) 1:200, zpr-1 (ZIRC) 1:200. Slides were washed 3x in PBS for 10 minutes 

each. Incubation with the corresponding Cy3 or Cy5 conjugated secondary antibody 

(Jackson Immunoresearch, 1:250) and/or phalloidin (Fisher, 1:50) in block followed for 2 

to 3 hours. Slides were washed 3x in PBS for 10 minutes each followed by 

counterstaining with DAPI (Life Technologies) 1:300 or Sytox-orange (Molecular 

Probes) 1:4000 for 15 minutes. Slides were quickly rinsed 3 times in PBS and blotted 
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dry, then covered with Vectashield mounting medium (Vector Laboratories) and 

coverslipped.   

TUNEL ASSAY: 

TUNEL assay was performed using a TMR Red in situ cell death detection kit 

(Roche) according to manufacturer instructions, except that all reagents were diluted 1:2 

using PBS. 

IMAGING: 

Confocal section imaging was performed on an Olympus FV1200 confocal 

microscope using Olympus software. 3-7 1µm optical sections were acquired of each 

image using 2x Kahlman filtering. Sections were stacked using a maximum-intensity 

projection in ImageJ (imagej.nih.gov). Whole mount imaging was performed on a Zeiss 

Axio Zoom.V16 microscope dissecting scope using Z3 Zeiss software. Living embryos 

were anesthetized with Tricaine (Spectrum Chemical) and immobilized in 3% 

methylcellulose solution (Fisher) for imaging. For all assays, n>6 individual eyes.  

IN SITU HYBRIDIZATION: 

In situ hybridization was performed essentially as described (Jowett and Lettice, 

1994), using DIG-labeled antisense riboprobes. Probes were synthesized from clones 

maintained in pGEM-T-Easy (Promega) using Sp6 or T7 polymerase and DIG RNA 

labeling mix (Roche). Post in situ hybridization, embryos were fixed for 1hr at room 

temperature, washed 3x with PBS, and imaged in whole mount. n>30 embryos for each 

hybridization. 
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CELL COUNTING: 

Cells were counted in ImageJ (imagej.nih.gov) using the Cell Counter plugin. For 

corneal cell counts, the cornea was defined as the outermost cellular surface of the eye 

visible in each section, until the surface cells were no longer directly adjacent to the 

retinal/RPE cells. For all assays, n>6 individual eyes, >3 sections per eye. 

YEAST-2-HYBRID: 

 The yeast-2-hybrid described in this dissertation was performed by Hybrigenics 

company. Briefly, bait used in the screen was wild type zebrafish mab21l2. Preys were 

members of a fragment-based library representing the proteome of a 20hpf zebrafish. 

Two separate screens were performed, one using a traditional GAL4-based approach, and 

one using a LexA-based method. 3-amino trizol was used in the LexA screen to decrease 

nonspecific binding. 132.6 million potential interactions were screened. 320 positive 

interactions were identified, representing 84 different preys. Seven of these were 

identified as highly likely to be experimental artifacts, leaving 77 likely preys, with 15 at 

high confidence levels. 11 of these were identified and named proteins, while 4 were 

uncharacterized, unnamed proteins derived from gene prediction. 

 Results were ranked and assigned confidence levels based on Hybrigenics criteria 

as described in Formstecher et al. (Formstecher et al., 2005). Briefly, some of the factors 

taken into account were the proportion of overlapping prey fragments that bound to the 

bait, the frame of the identified prey, whether the prey was sense or antisense, whether or 

not the prey was identified in both independent screens, and whether the prey was known 

from previous studies to be likely to bind nonspecifically.  
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CELL CULTURE:  

  HEK293t cells were used for expression of yeast-2-hybrid preys for co-

immunoprecipitation-based verification of binding. Preys were cloned into pDEST26 6x-

His tagged mammalian expression vector (ThermoFisher). mab21l2 bait was tagged with 

GFP at the N-terminus and expressed from a pCS107 vector. All plasmids for cellular 

transfection were purified with a Qiagen Midiprep kit. Cells were maintained at 37ºC 

with 5% carbon dioxide content in 10cm coated dishes. Media used was DMEM (Gibco) 

with 10% FBS (Gibco). 106 cells were plated from frozen stocks. For transfection, cells 

were seeded at 5x105 per well in 6 well coated plates. Transfection was performed 24hrs 

after seeding using Roche Xtremegene 9. 180µL of Optimem medium (Gibco), 6µL of 

Xtremegene, and 2µg of plasmid were combined for 20 minutes at room temperature and 

added dropwise to wells containing 1mL of fresh DMEM/FBS, then swirled to mix. Cells 

were maintained in transfection medium for 24 hours, then media was replaced with fresh 

DMEM/FBS. No antibiotics were used. Cells were harvested via scraping 48 hours after 

transfection and processed for western blot. 

WESTERN BLOTTING: 

Cells were lysed in 75µL of Lemeer’s lysis buffer on ice for 1-2 hours. Lysate 

was spun down at 4ºC for 10 minutes at 13.2 RCF, and the supernatant was collected. 

15µL of lysate was combined with 5µL of 4x NuPage LDS Sample Buffer (Invitrogen) 

and heated at 70ºC for 10 minutes. The resulting 20µL of sample was run on a 4% Bis-

Tris NuPage mini gel (Invitrogen) using NuPage SDS-MOPS buffer (Invitrogen) at 125 

volts for 1.5 hours. 
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Wet transfer was used to transfer the gel bands onto 0.2µm PVDF membrane 

(ThermoFisher). Transfer was accomplished under NuPage transfer buffer (Invitrogen) 

containing 10% methanol. Transfer was run at 35V for 4 hours at room temperature. 

The membrane was washed in PBS, then blocked in 5% milk, 1% BSA 

(ThermoFisher) in PBS for 1.5 hours. 1:1000 primary antibody in block (αGFP, Abcam 

and/or α6xHIs, Abcam) was incubated on the membrane overnight at 4ºC. Membrane 

was washed in PBS with 0.1% tween (PBST) 3x for 5 minutes each. 1:2500 goat-α-

mouse HRP-conjugated secondary antibody (Jackson Immunoresearch) in block was 

added to the membrane for 1.5 hours. Membrane was washed 3x in PBST for 5 minutes. 

1mL total volume of binary developing fluid from a SuperSignal West Femto kit 

(ThermoFisher) was mixed and incubated in the dark for 3 minutes before being added to 

the membrane and incubated in the dark for 3 minutes, then poured off. Membrane was 

imaged using a ChemiDoc XRS+ (BioRad). 

GRAPHING AND STATISTICS: 

All graphs were prepared and statistical analyses performed in GraphPad Prism 

v8.0 (GraphPad Software). For all graphs, the line indicates mean, box encompasses 25th 

to 75th percentile, and whiskers encompass the entire range of the data. Circles and 

triangles each represent one counted section of an individual eye. *=p<0.05, **=p<0.01, 

***= p<0.001, ****=p<0.0001. P values were computed using unpaired t-test with 

Welch’s correction. 
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