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A Deep Neural Network Application for Improved
Prediction of HbA1c in Type 1 Diabetes

Aleksandr Zaitcev, Mohammad R. Eissa, Zheng Hui, Tim Good, Jackie Elliott

and Mohammed Benaissa, Senior Member, IEEE

Abstract— HbA1c is a primary marker of long-term av-
erage blood glucose, which is an essential measure of
successful control in type 1 diabetes. Previous studies
have shown that HbA1c estimates can be obtained from 5-
12 weeks of daily blood glucose measurements. However,
these methods suffer from accuracy limitations when ap-
plied to incomplete data with missing periods of measure-
ments. The aim of this work is to overcome these limitations
improving the accuracy and robustness of HbA1c prediction
from time series of blood glucose. A novel data-driven
HbA1c prediction model based on deep learning and convo-
lutional neural networks is presented. The model focuses
on the extraction of behavioral patterns from sequences of
self-monitored blood glucose readings on various temporal
scales. Assuming that subjects who share behavioral pat-
terns have also similar capabilities for diabetes control and
resulting HbA1c , it becomes possible to infer the HbA1c of
subjects with incomplete data from multiple observations
of similar behaviors. Trained and validated on a dataset,
containing 1543 real world observation epochs from 759
subjects, the model has achieved the mean absolute error
of 4.80±0.62 mmol/mol, median absolute error of 3.81±0.58
mmol/mol and R2 of 0.71 ± 0.09 on average during the
10 fold cross validation. Automatic behavioral characteriza-
tion via extraction of sequential features by the proposed
convolutional neural network structure has significantly
improved the accuracy of HbA1c prediction compared to the
existing methods.

Index Terms— Convolutional neural networks, diabetes,
feature extraction, machine learning, regression analysis

I. INTRODUCTION

D IABETES mellitus represents a group of chronic

metabolic disorders affecting more than 451 million peo-

ple worldwide and costing more than 850 billion USD in total

healthcare expenditure in 2017 [1]. Diabetes is associated with

increased levels of blood glucose (BG) and in type 1 diabetes

(T1D) there is an absolute deficiency in insulin production,

which has to be substituted by multiple daily injections of

insulin accompanied by regular Self-Monitored Blood Glucose
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(SMBG) measurements or alternatively Continuous Glucose

Monitoring (CGM). The goal of such a regimen is to keep

BG levels within a near normal range (usually between 4

and 10 mmol/L), therefore avoiding both the consequences

of high glucose levels (hyperglycaemia) and the dangers of

low BG (hypoglycemia). Since the early 1980s the general

success of glycaemic control has been clinically assessed using

a laboratory measure of glycosylated hemoglobin (HbA1c ),

which reflects the long-term average blood glucose levels [2].

It has been clinically shown that lower HbA1c levels (below

59 mmol/mol) are associated with significantly smaller risks

of serious diabetes-related complications such as retinopathy

(eye damage) nephropathy (kidney damage) and nerve damage

(neuropathy) [3]. Considering that HbA1c measurement is

usually carried out once every three to six months, there is

a clinically justified motivation to provide diabetes patients

and their clinicians with an ongoing HbA1c estimate in order

to reflect the quality of their glycaemic control and reduce the

associated risks by facilitating prompt behavioral interventions

if needed.

SMBG measurements, typically taken 3-8 times a day,

provide an insight into the quality of patient glycaemic control,

which indicates the resulting HbA1c . A number of studies

have identified the links between BG measurements over a

period of 5-12 weeks and a subject’s resulting HbA1c [4]–[8].

Analysis of data from the Diabetes Control and Complications

Trial [6] allowed identification of a strong linear relationship

between the average measured blood glucose and HbA1c . The

work of D.M. Nathan, et al. [7] has confirmed these findings

and defined a mathematical relationship between the mean

average of SMBG readings and glycosylated hemoglobin,

which allows for a simple prediction of HbA1c given sufficient

amount of BG measurements per day. More recently B.P.

Kovachev, et al. [8], [9] proposed a more sophisticated non-

linear HbA1c prediction model based on the dynamic track-

ing of daily SMBG profiles. However, the aforementioned

prediction methods have been developed and validated on

a highly selective sample of patients, excluding those with

poor glycaemic control and complications, while also often

requiring the subjects to conform to restrictive measurement

and calibration protocols. Besides, biological variations may

also undermine the HbA1c estimation [10]. As a result, these

models suffer from significant prediction inaccuracy when

applied to imperfect SMBG data which can be often observed

in patients outside experimental settings.

This work presents a novel HbA1c estimation model in T1D
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Fig. 1. Top level architecture diagram of the model.

with a particular focus on practical applicability and robustness

in the presence of realistically imperfect data and outliers.

This approach is based on the assumption that a subject’s

physiological specificities, behavior and various aspects of

glycaemic control are holistic in nature, i.e, can be viewed as

an interconnected system. The times of day and week when

SMBG measurements are taken, specific sequences of BG

levels, and regularities of such sequences provide an insight

into the subject’s habits, life schedule and the overall behavior.

By also assuming that patients who share common behavioral

patterns are likely to have similar quality of glycaemic control

and perhaps even physiological features, the comprehensive

characterization of behaviors observable in data may provide

factors supplementary to the average BG that help regularizing

the HbA1c prediction and thus achieve better precision.

Such complex analyses have become feasible with the recent

advances in artificial neural networks and deep learning, which

has provided research communities with new tools for reliable

data-driven modelling of non-linear predictor relationships and

their automatic extraction from the available observations [11].

Our proposed model is a feed-forward network which utilizes

novel architectures of convolutional neural networks (CNNs)

and fully connected (FC) layers to perform a combined analy-

sis on SMBG time series alongside the conventional manually

derived metrics of glycaemic control.

II. THE MODEL

The proposed approach treats the T1D HbA1c prediction

task as a data-driven regression problem that is solved using

a hybrid model that takes input in the form of SMBG epochs

with an addition of relevant patient demographics data such as

age, gender and the duration of diabetes (Figure 1). The model

was implemented as a Tensorflow [12], [13] computational

graph consisting of two major branches: one being a CNN

implementing behavioral feature extraction from time series

and one for extraction of known correlates of HbA1c . The

outputs from these two branches are concatenated together

with demographics features and passed to the output structure

consisting of fully connected (FC) layers, which perform

feature fusion and produce the regression output. The follow-

ing sections provide details about the dataset, preprocessing

procedures, and discuss the manual feature selection and

neural network architectures employed in the proposed model.

A. Time series preprocessing

For people with T1D it is recommended to test blood

glucose levels at least 4 times per day - before each meal

and once before bed. Besides that, they are encouraged to

take additional blood tests before, during and after exercise,

before driving, when symptoms of hypoglycaemia are present,

before high-risk activities and during periods of illness [14].

In practice people with T1D do not always follow such

recommendations and as a result the sampling rate of SMBG

series ranges from 2 to 8 measurements per day on average.

The proposed time series preprocessing aims to highlight the

timing structure of data, convey semantics of individual read-

ings, while also preserving its sequential nature and allowing

for cross-subject training. This was achieved by transforming

the original irregular time series into an interpolated fuzzy

sparse format.

In order to align the training epochs and standardize their

lengths, SMBG data was first interpolated onto a regular time

grid with 30 minute resolution using the piecewise cubic

Hermite interpolating polynomial (PCHIP) [15]. Individual

time series were cut and zero-padded in such a way so that all

epochs ended at 3:00 am on Monday nearest to the HbA1c test

and started exactly 84 days before that. An epoch length

of 12 weeks was chosen based on the previous studies on

HbA1c prognosis [7].

Next, a certainty mask was calculated as 1D time series with

a value of 1 at times of BG measurements and a value of 0

for samples further than 1.5 hours from measurements (Figure

2-A). Certainty levels below 0.90 were set to zero to produce a

sparse mask that was piecewise multiplied with the smoothed

SMBG to obtain an interpolated sparse SMBG representation

(Figure 2-B).

The measured blood glucose levels that constitute these time

series typically range between 1.5 to 30 mmol/L, with values
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Fig. 2. Schematic diagram of time series preprocessing stages.

below 4.0 mmol/L meaning hypoglycemia and values above

10.0 mmol/L meaning increased glucose toxicity or hyper-

glycemia. Different levels of blood glucose result in different

perceived symptoms and hence, when measured by subjects,

induce dissimilar reactions. In order to accentuate this, the

interpolated sparse SMBG series were allocated to different

classes according to their values, or in other words converted

to fuzzy variables. The ranges for fuzzy classes were selected

according to the thresholds used in clinical practice with

BG values below 3.0 mmol/L meaning clinically significant

hypoglycemia, below 4.0 mmol/L - an alert for hypoglycemia,

4.0-10.0 mmol/L - target range, above 10.0 mmol/L - general

hyperglycemia and above 15.0 mmol/L - severe hyperglycemia

(Figure 2-C). As a result, the time series were transformed

into the desired ANN input format with: values normalized

to [0, 1]; preserved timing and sequential structure; time grid

aligned between observations; and highlighted semantics of

various BG ranges (Figure 2-D). Thus, the input for the CNN

branch was represented by a 3D tensor D ∈ R
Ne×T×Nf ,

where Ne is the number of available epochs, T is their length

and Nf is the number of fuzzy classes employed. In our

settings D ∈ R
1543×4032×5.

B. Network architecture elements

The following sections give a brief overview of the proposed

architecture’s elements.

1) Feed-forward neural network: Feed-forward neural net-

works (FNNs), an example of which is the proposed model, are

essential types of structures in deep learning. For a regression

problem with input x and a regression target y the aim

is to find a mapping function f∗, so that y = f∗(x). A

feed-forward network defines an approximation ŷ = f(x,θ),

where parameters θ are learned from the available observations

of x and y [16]. The mapping f is generally non-linear

and is implemented by series of many various functions

f (1), f (2), ..., f (M). The structure of FNN can be described

as an acyclic computational graph, where information flows

in one direction from input x through a network of nodes

implementing mapping f to the output ŷ, hence the term feed-

forward in FNN.

2) Fully connected layer: Fully connected (FC) or Dense

layers [16] multiply the input vector with a weight matrix

or kernel W and add a bias term b, which is often followed

by the application of a non-linear activation function. Both W

and b are learned from data during the neural network training.

In our setting the output at layer l is defined by:

xl = ReLU(Wxl−1 + b) , (1)

where ReLU is the Rectified Linear Unit activation which in

effect cuts off negative elements of the input [17]:

ReLU(x) = max(0,x) . (2)

3) Convolution layer: Convolutional layers extract local in-

formation from the regularly sampled data such as time

series, images or video samples [16]. Each convolutional layer

consists of a number of filters which are convolved with the

input to produce activation maps describing the extent of

features’ presence in data. The convolution is usually followed

by the application of bias and non-linear activation. The filter

size, also called receptive field, is usually small compared to

the size of the input and fixed, defining the scale of features

extracted. In general terms the output of the j -th filter at 1D

convolutional (Conv1D) layer l is obtained as:

xl
j = ReLU(

∑

i∈D

xl−1
i ∗wl

ij + blj) , (3)

where D is the depth of input (number of channels), wl
ij

is the j-th filter kernel for i-th input dimension and blj is

the corresponding bias term. Similarly this definition can

be extended to higher dimensional input to implement 2D

convolutional (Conv2D) or 3D convolutional (Conv3D) layers.

Convolutional filter kernels encode the types of features

being extracted. By stacking multiple convolutional layers it

is possible to learn features at various levels of abstraction.

In order to support that, convolutional nodes are commonly

alternated with pooling layers, which downsample the data

thus increasing the next convolution’s receptive field [16].

Pooling operations subsample input and reduce the extracted

subsets. For example, with a 1D input of length T d ∈ R
T
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a 1D max pooling operation with stride s, pool size p and

zero-padding to length T̂ can be defined as follows:

y = maxpool(d) ∈ R
T̂
s

yi = max(di) ,di ∈ R
p ,

(4)

where di is the i-th slice of size p.

Features extracted by 1D CNN at various scales are still rep-

resented by time series, meaning that data is high dimensional,

sequential and features from different epochs may often have

different offsets. The fully connected layers that process CNN

features and produce the regression output are highly suscep-

tible to such effects making the direct analysis of temporal

data problematic. This issue can be resolved by introducing

a global average pooling operation at the interface between

CNN and FC layers which quantifies the average extent of

feature’s presence over time. In order to improve robustness

in the presence of missing data the proposed model employs a

variation of this operation: a weighted global average pooling

(WGAP), which uses the certainty mask from interpolation as

weights for averaging. With 1D input of length T d ∈ R
T ,

and w holding values of the corresponding certainty mask, the

scalar representing the weighted average is given as:

y = WGAP(d) =

∑
t∈T

dtwt

∑
t∈T

wt

. (5)

4) Regularization: In machine learning regularization is

applied in order to prevent overfitting, which occurs when

a model becomes highly specialized to training observations

instead of learning the generative model of data. A common

Fig. 3. Architecture of behavioral pattern extraction network.

way to regularize a neural network is to apply a Gaussian (L2),

Laplacian (L1) or their combined penalty (Elastic Net [18])

to the learned kernels at different layers. For a cost function

J(θ;X,y) with network parameters θ, training set X and

targets y the application of Elastic Net regularization to the

j-th layer updates the cost function into:

Ĵ(θ;X,y) = J(θ;X,y) + λ1‖w‖1 + λ2‖w‖2 , (6)

where λ1 and λ2 are the hyperparameters defining the extent

of regularization. With λ1 being large enough the regularized

kernels become sparse, which is useful for dimensionality

reduction and feature selection tasks [16].

Besides the norm penalties, another common regulariza-

tion mechanism applied in deep neural networks is dropout.

Dropout is a technique recently proposed by Srivastava, et al.

[19], where a number of neurons are randomly ignored during

training temporarily removing their contribution to information

flow and weight updates. This reduces the extent of neuron

co-adaptation enforcing the learning of data generative model

rather than specialization to specific values, which in effect

leads to a better model generalization.

C. Behavioral feature extraction

The times of BG measurements, the bands of values, their

specific sequences and recurrence patterns may carry informa-

tion about the various problems with BG regulation while also

characterizing lifestyles and schedules of subjects. In practice

clinicians often visually analyze such patterns in patients’

SMBG diaries in order to identify certain difficulties with

BG control and provide advice or behavioral intervention [20].

For instance, a high BG reading followed by a hypoglycemic

event within 4 hours generally means incorrectly selected

bolus (quick acting) insulin dosage in an attempt to correct

hyperglycemia; low BG level in the morning followed by in-

target glucose before bed can often mean a mistake in basal

(long acting) insulin dose selection; recurring hypoglycemia

on Saturday mornings may often point out a BG regulation

problem associated with alcohol intake, etc. The hypothesis in

this paper, is that the rates of such sequential event occurrences

and their recurrence patterns characterize certain problems

with BG control and when combined represent the overall

quality of a subject’s glycaemic control and their behavior.

In this approach, behaviors are quantified using the rates of

SMBG events that can be either separate BG tests or their short

sequences. Besides the basic rates of occurrence, specific times

of day and days of week when certain sequences take place

must also be highlighted if such notions are significant for the

resulting HbA1c value. Such feature extraction is supported by

a set of multiscale convolutional layers and also daily and

weekly average BG profiles. The diagram in Figure 3 shows

the architecture of the proposed behavioral feature extraction

network that will be discussed in the following subsections.

1) Short sequence extraction: One dimensional convolu-

tional layers (Conv1D) have the capability to extract local

features from time series at a single time scale determined

by the fixed filter size. By manually setting the convolutional
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Fig. 4. Architectures of inception module and event extraction sequence.

kernel dimensions it is possible to explicitly define the time

scales of locally extracted features. Such quality of temporal

convolutional layers is the key reason why they were chosen

as a basis for multiscale feature extraction instead of recurrent

neural network layers [21], that are also commonly used for

time series modelling, but lack the flexibility in time scale

configuration.

The characteristic short sequences of SMBG readings gener-

ally take place within 0.5 to 6 hours. Considering such varying

time scales, extraction of these sequences by the means of

a single Conv1D layer is problematic. To address this issue,

we have utilized an architecture similar to the GoogLeNet

Inception module [22] that included a number of parallel

Conv1D filters of different scales. Figure 4 shows the diagram

of our proposed variation of Inception module (A) and how

it was employed in the event extraction sequence (B). Here

notation [Conv1D, L, N, /S] represents a 1D convolutional

layer with filter size L, filter number N applied with strides

(time shift step) S, and [MaxPool /S] stands for a Max Pooling

operation with pool size S, which in effect downsamples the

input by the factor of S. The outputs of parallel operations are

concatenated across the depth dimension, which is followed by

batch normalization [23] and the application of a non-linear

Rectified Linear Unit [17].

Our variant of Inception module consists of four parallel

logarithmically scaled Conv1D filters and a MaxPool/3 op-

eration (Figure 4-A). Here, Conv1D layer with filter size 1

represents a trainable set of linear combinations between the

input channels. Considering the input sampling rate of 30 min,

a sequence of two Inception modules with a downsampling

operation between them creates a set of pathways, where

local features of time scales between 0.5 and 8 hours can

be extracted. In order to control dimensionality after the

multi-scale convolutional blocks, an additional Conv1D layer

with ReLU activation was employed to cut out the unwanted

components and reduce the depth to 48 channels. Finally

53 types of SMBG events were formed by combining the

extracted multi-scale sequences with the original fuzzy sparse

time series that were downsampled in order to conform with

the resulting epoch lengths. Following this processing stage

each SMBG epoch is represented by a matrix of 2016 × 53

elements.

2) Day scale feature extraction: The time of day when an

SMBG point was taken attaches additional context to the

reading or sequence in which it was involved. In order to

include such notion of data in the analysis, a daily BG profile

estimator was used alongside a set of convolutional filters

that produce features separable by time of day (Figure 5).

The time block analysis pipeline starts from a downsampling

operation which results in each out of 84 days of epoch being

represented by 8 time blocks. This operation is necessary

in order to reduce the offset between different patients’ day

schedules and thus allow for a cross-subject analysis. The

resulting 672 × 53 matrices representing epochs were then

reshaped into 84 × 8 × 53 tensors and passed to the three

different branches of time block feature extraction (Figure 5

A,B,C).

A number of studies have identified a strong relationship

between the subject’s hourly BG profiles and their HbA1c [8],

[24]. The 8-point average day profiles were obtained by aver-

aging the aligned tensors along the days axis as given in Figure

5-A. A Conv2D layer with 16 filters of size 1×1 was used here

to control the dimensionality of extracted profiles. Besides, in

order to reduce the effects of days with low number or no

measurements, the BG profiles were obtained as a weighted

average with weights being the average certainty from each

individual day of epoch (Figure 2-A). As a result, days with

skipped readings and lower average of certainty mask had

contributed less to the estimated BG profiles. Following the

weighted averaging each profile of size 8 × 16 was flattened

yielding 128 features.

Time block specific features such as a rate of under-

corrected hypers after breakfast or a rate of nighttime hy-

poglycemic events may often be indicative of certain BG

regulation problems. In our model such features were extracted

using a 2D convolutional layer with a receptive field spanning

the whole day duration (Figure 5-B). Thus 48 Conv2D filters

of size 8×1 were applied to the input tensor with stride 1, i.e.,

to each separate day, producing output in the form of 1D time-

series of time-allocated events. Same as with the BG profile

calculation, the rates of these events were then obtained by

weighted averaging along days of epoch yielding 48 additional



6

Fig. 5. Architecture and visualization of pattern extraction on a scale of days.

predictors.

Besides the global rates of time-specific events over 12

weeks of SMBG data, recurrent patterns of event occurrences

are often used to characterize certain problems in patient’s

BG control, as for example, described in [25]. In the proposed

processing pipeline such features were extracted using another

Conv2D layer the receptive field of which spanned over 5 days

and 2 adjacent time-blocks. As shown in the Figure 5-C, 48

filters of size 2×5 were applied to the input tensor with stride 1

along both dimensions. The time dimension of the output was

then once again reduced by weighted average pooling along

the day axis resulting in additional 371 features describing

repetitions of time specific events in each processed SMBG

epoch.

3) Week scale feature extraction: The daily life schedule

of people with T1DM may also vary with respect to the

days of week, e.g., weekend BG profiles may often differ

from those recorded on weekdays. In the proposed model

such specificities were captured using an additional network

operating on the scales of weeks. As shown in Figure 6 the

network extracts weekly SMBG profiles and weekday-time

specific event rates similarly to the aforementioned day scale

feature extraction block.

Same as before, the input of 2016 × 53 event time series

was downsampled in a way that each day was represented by

8 time blocks. Next, event sequences were reshaped into series

of weekly tensors shaped 12×7×8×53, meaning that each of

the 12 weeks was represented by a 7× 8× 53 tensor. Similar

to day profiles, the average week profiles were extracted

by the sequence of a convolutional layer for dimensionality

reduction followed by the global average pooling along the

week dimension, which resulted in 448 new features appended

to the output vector (Figure 6-A). SMBG events allocated to

both weekdays and time blocks were extracted using a Conv3D

layer with 48 filters of size 8× 7× 1 applied with a step time

of 1 week (Figure 6-B). In the same way as before, rates of

such events were obtained by global average pooling along

the week dimension producing 48 additional variables.

D. Manual feature extraction

The CNN captures the underlying patterns of the time-series

SMBG data. The clinical practice utilizes metrics that provide

evaluation means for patients daily regulation of BG levels.

These features were extracted from 12 long week epochs and

analyzed to determine their effect on HbA1c levels. The metrics

manually derived from data included: average BG, median BG,

inter-quartile BG, the standard deviation of BG, the standard

deviation of the mean of the BG, percentages of hypoglycemia

(clinically significant and alert), and hyperglycemia (signifi-

cant and general) [26]. Considering a patient could contribute

to more than one HbA1c result and our interest is to capture the

behavior of each individual, a generalized estimating equation

(GEE) was used to account for the correlation in the data by

the subjects of the study. We ran a hierarchical analysis of

the covariates and used the p-value of 0.05 to determine the

significant predictors of the outcome (based on the statistics on

α error). While controlling for the individuals characteristics

(i.e. age, sex and diabetes duration), the average BG, the

standard deviation of the mean of BG, and alert hypoglycemia

and general hyperglycemia were the most significant predictors

of the HbA1c level. Therefore, these features were the input to

a branch of the neural network.

E. Network output

The output network of the proposed model consists of

multiple FC layers and regularization operations that support

dimensionality reduction and calculation of regression out-

put (Figure 1). Its structure was selected heuristically and

hyperparameters were optimized in multiple stages of grid
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Fig. 6. Architecture and visualization of the week scale pattern extraction scheme.

search. A small subset of 128 out of the total 3912 CNN

features is selected here using the two dropout-regularized FC

layers with restricted number of units. To support this, sparse

regularization penalty with λl1 = 0.01 was also applied to the

weights of FC kernels [27]. Besides that, Batch Normalization

[23] was also applied in the output FC layers, as shown in

Figure 1. Same as in [28], the motivation behind it was to

increase the convergence speed and stability during the model

training. Next, the reduced CNN features were concatenated

with manually extracted predictors and then a combined pro-

cessing was performed by a single dense layer with 64 units

followed by a standard linear regression output unit.

III. EXPERIMENT AND RESULTS

A. Data set

The proposed model was trained and validated on a dataset

collected from 759 people with T1D attending Sheffield Teach-

ing Hospitals in the period between 2013 and 2015. Each entry

in the training set was formed by a subject’s HbA1c test, their

demographic data (age, gender, years with diabetes) and final

84 days (12 weeks) of SMBG readings preceding the test,

with the length of epochs being justified by physical meaning

and definition of HbA1c [2]. In practical settings SMBG data

provided by patients is often incomplete, containing days

with skipped readings or even intervals of days with no BG

measurements at all. In order to validate the practicality of our

method we have allowed such imperfect epochs to be included

in our dataset. Thus, SMBG time series containing no more

than 30 % of days with completely missing data and at least

2.5 BG tests per day on average on days with measurements

were included, which resulted in a total of 1543 epochs being

selected and 351 epochs being filtered out.

Selected epochs had a mean of 3.67 readings per day and

89% of days with any recordings. The average age of the 759

selected participants was 48.76±17.2 with a mean duration of

diabetes of 24.65± 15.57 years. Among them 392 were male

and 367 were female (51/49%). At least 29.2% of participants

have attended a DAFNE course on T1D management [29].

HbA1c levels were measured in a laboratory using SEBIA

CAPILLARYS kit, with error coefficient of variance (CV) of

1.8− 2.4% [30]. Selected HbA1c test results had the mean of

66.84± 11.36 mmol/mol.

B. Accuracy analysis and comparison

The proposed model was trained and evaluated iteratively on

the selected dataset. The evaluation protocol involved ten-fold

cross validation (CV), where the dataset was randomly split

multiple times so that each data point was used in a training set

9 times and once in a test set. A more comprehensive evalua-

tion would be possible using, for example, Leave One Group

Out partitioning approach, where each single patient’s data

would be used as a validation set in a separate train-evaluation

scenario. However, such exhaustive validation approach is

extremely computationally expensive and is infeasible in our

settings. The further validation with external data is also of

interest.

Within each fold of CV, the proposed model was trained

using the Adam optimization algorithm [31] for 250 epochs

using the batch size of 96 observations. The training and

validation learning curves describing the proposed model

training progression are displayed in Figure 8. Note that the

non-smooth optimization trajectory is due to the effect of the

Dropout layers.

During the 10-fold CV partitioning the observations were

grouped by patient ids to avoid the effects of individual

specificity. Besides the whole model, the manual features and

the CNN branches of model were also evaluated separately

for comparison. Accuracy metrics collected over the validation
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Fig. 7. A)-B) Error grid for Nathan’s HbA1c estimate and the 10 fold CV of the proposed model.

Fig. 8. Summary of the proposed model training progression from 10
fold CV. Training and validation MAE loss learning curves are given in
blue and orange respectively.

folds are summarized in table I. These results averaged over

the ten folds are also compared to the accuracy of the

HbA1c estimation formula described by DM Nathan, et al.

[7]. Comparison with the dynamic tracking method of B.P.

Kovachev, et al. [8], [9] is of interest, but are not provided

here, since the method requires 7-point BG profiles and regular

calibration points which are not available in the given dataset.

In this table MAE stands for mean absolute error, MedAE

denotes median absolute error, bias - average prediction bias

and R2 is the coefficient of determination.

Over the 10 validation cycles our model has achieved the

average MAE of 4.80 ± 0.62 mmol/mol with a median at

3.81±0.58 mmol/mol, R2 of 0.71±0.09 and a total regression

bias of −0.0071 ± 0.21. Figure 7-A and Figure 7-B show

the error grids of predictions accumulated over the 10 folds

compared to the estimates obtained with Nathan’s formula.

With the proposed model prediction percentage error for 89 %

of observations did not exceed 15 % while 59.5 % of estimates

fell within a 5 mmol/mol error margin.

Table II gives precision metrics of the proposed model and

linear estimator by ranges of reference HbA1c . Within all

presented bands our model has shown an improvement in

prediction accuracy and most notably in the 58-87 mmol/mol

range. From this table it can also be noted that the generaliza-

tion accuracy of the proposed model in a particular band of

HbA1c highly depends on the amount of relevant observations.

Figure 9 displays the 95% confidence intervals of prediction

TABLE I

VALIDATION ACCURACY COMPARISON

Nathan’s formula Manual FE network CNN only Combined

MAE 8.26 6.10± 0.84 5.98± 0.81 4.80± 0.62

MedAE 7.08 5.03± 0.66 4.87± 0.64 3.81± 0.58

R2 0.19 0.58± 0.07 0.62± 0.07 0.71± 0.09

Bias -0.43 −0.18± 0.2 −0.19± 0.34 −0.0071± 0.21

Accuracy metrics: MAE = mean absolute error, MedAE = median absolute
error, R2

= coefficient of determination. Standard deviation between the folds
of cross validation is provided where appropriate.
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Fig. 9. Mean absolute prediction errors and their 95% confidence
intervals of the proposed model (in blue) and Nathan’s estimate (in
orange) plotted against the average BG test frequency.

TABLE II

VALIDATION ACCURACY OF COMBINED MODEL BY HBA1C RANGES

The proposed combined model

HbA1c ranges, mmol/mol ≤ 58 58 - 87 ≥ 87

Count 300 1166 77

MAE 5.09 ±0.78 4.58 ±0.55 6.94 ±1.71

MedAE 3.93 ±0.48 3.60 ±0.49 6.51 ±1.1

Bias 3.85 ±1.62 -0.66 ±0.87 -5.11 ±3.19

Nathan’s formula

MAE 6.32 8.39 13.92
MedAE 5.35 7.26 13.11
Bias -0.35 -0.91 6.58

Accuracy metrics: MAE = mean absolute error, MedAE =

median absolute error. Standard deviation between the folds
of cross validation is provided where appropriate.

errors accumulated over the 10 validation folds against the

average amount of SMBG readings per day. The error means

and 95% confidence intervals for each method are given in

blue for the proposed model and in orange for Nathan’s

estimate. The accuracy comparison shows that the proposed

model consistently outperformed the linear Nathan’s estimate

on the given dataset, and especially on sparse epochs with

lower density of measurements. With higher density of SMBG

the information about the true average level of BG becomes

clearer, thus linear HbA1c estimation on epochs with dense

measurements provides accuracy comparable to our model.

IV. DISCUSSION

The modelling approach presented in this work has shown a

high HbA1c prediction accuracy and robustness in the presence

of incomplete data. Through a hybrid feature extraction mech-

anism SMBG series preceding the HbA1c tests were encoded

to reflect the long term BG dynamics and subjects’ behaviors.

The latter was represented by a combination of BG profiles

and sequential event rates extracted using a set of trainable

time domain filters. Considering that the average BG alone

is sufficient for a relatively accurate HbA1c estimation, it can

be stated that the increase in precision was achieved by the

additional regularization and biasing performed by the output

FC layers based on the shared subject behaviors. Similar to

many other data-driven approaches the model’s performance

is expected to improve further with the increase in size of the

training sample.

Although the dataset used in this work is relatively large

and more inclusive compared to the other related works, the

number of consecutive HbA1c tests for individual subjects

was limited. Some of the known frameworks, such as eA1c

described in [8], use periodic laboratory tests for calibration

and then the relative change in HbA1c is predicted rather

than its absolute value. Thus in further work this implies

that the use of such calibration points would allow for a

more personalized behavioral pattern analysis, which would

be expected to improve the model stability and potentially

even further reduce the data integrity constraints.

The availability of accurate daily HbA1c estimates and their

short-term trends can allow for more prompt and personalized

behavioral interventions and advice from clinicians helping to

shape the lifestyles of patients, reducing the risks of diabetes

and improving their quality of life. Specific behavioral patterns

that lead to poor glycaemic control and increase in HbA1c can

be extracted for example from the CNN branch outputs,

although due to the noisy nature of data, high model capacity

and perhaps insufficient amount of observations, the visual

assessment of such patterns is problematic. Therefore, further

analysis of behavioral features extracted in CNN is of interest.

For the majority of people with T1D a large number

of daily BG measurements allows for a better accuracy of

HbA1c prediction even with simpler methods such as linear

regression since a more complete picture about the average BG

levels is provided [32]. With CGM equipment becoming in-

creasingly available in clinical practice the accurate estimation

of HbA1c based on average blood glucose becomes feasible. A

number of studies, however, have identified that average BG

alone may sometimes be insufficient for accurate prediction

of glycosylated hemoglobin due to the certain physiological

specificities of subjects [10], [33]. We speculate that such

biological traits affect the BG patterns and patient behaviors

at various scales and therefore, were captured by our feature

extraction mechanism and included in the automatic analysis

by FC layers resulting in reduced prediction error. Considering

the nature of CNN, our proposed modeling method can seam-

lessly be adapted to CGM data and other signal modalities

allowing for even more accurate daily tracking of HbA1c and

other novel applications of behavioral pattern analysis.

V. CONCLUSION

The dynamic tracking of HbA1c supports more timely and

informed behavioral interventions in cases of poor self-care

in T1D. This study has presented a hybrid deep learning
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model for HbA1c prediction from realistically imperfect time

series of SMBG. While major indicators of HbA1c are well-

known and can be easily obtained, their predictive performance

deteriorates in the presence of incomplete data and certain

physiological specificities. The automatic extraction of self-

care behavior patterns by the proposed multi-scale temporal

CNN provides additional context for regression and regularizes

the prediction based on behavioral clustering.

The results of regression analysis on a sample of 1543

observations from 759 subjects with T1D has demonstrated

the advantages of behavioral characterization. The accuracy of

the proposed HbA1c estimate in a 10-fold cross-validation test

was significantly higher for sparse BG epochs, and was higher

or comparable for epochs with high density of measurements.

As a result, the proposed approach achieves the main design

objective, i.e., improvement of accuracy and robustness of

HbA1c prediction.
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