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The role of Candida albicans in root 
caries biofilms: an RNA-seq analysis

Objective: This study sought to analyze the gene expression of Candida 
albicans in sound root surface and root caries lesions, exploring its role in 
root caries pathogenesis. Methodology: The differential gene expression of 
C. albicans and the specific genes related to cariogenic traits were studied 
in association with samples of biofilm collected from exposed sound root 
surface (SRS, n=10) and from biofilm and carious dentin of active root 
carious lesions (RC, n=9). The total microbial RNA was extracted, and the 
cDNA libraries were prepared and sequenced on the Illumina Hi-Seq2500. 
Unique reads were mapped to 163 oral microbial reference genomes 
including two chromosomes of C. albicans SC5314 (14,217 genes). The 
putative presence of C. albicans was estimated (sum of reads/total number 
of genes≥1) in each sample. Count data were normalized (using the DESeq 
method package) to analyze differential gene expression (using the DESeq2R 
package) applying the Benjamini-Hochberg correction (FDR<0.05). Results: 
Two genes (CaO19.610, FDR=0.009; CaO19.2506, FDR=0.018) were up-
regulated on SRS, and their functions are related to biofilm formation. 
Seven genes (UTP20, FDR=0.018; ITR1, FDR=0.036; DHN6, FDR=0.046; 
CaO19.7197, FDR=0.046; CaO19.7838, FDR=0.046; STT4, FDR=0.046; 
GUT1, FDR=0.046) were up-regulated on RC and their functions are related 
to metabolic activity, sugar transport, stress tolerance, invasion and pH 
regulation. The use of alternative carbon sources, including lactate, and the 
ability to form hypha may be a unique trait of C. albicans influencing biofilm 
virulence. Conclusions: C. albicans is metabolically active in SRS and RC 
biofilm, with different roles in health and disease. 
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Introduction

The bacterial biofilm associated with root caries 

lesions must harbor microorganisms that can produce 

acid from carbohydrates (acidogenicity) and must be 

able to growth in a low-pH environment (aciduricity).1 

Diverse bacteria are prevalent and involved in the 

etiology of root caries, albeit to date, little has 

been explored regarding other microorganisms 

domains, such as archea, fungi and virus, and their 

role in biofilms. Previous studies demonstrated 

that Streptococcus mutans, Lactobacillus species 

(spp.), and Veillonella spp., as well as C. albicans, 

are present in major proportion in root caries than 

in sound root surface.2 Actinomyces spp., Veillonella 

spp., Streptococcus spp., Bifidobacterium spp., Rothia, 

Enterococcus, Staphylococcus spp., Capnocytophaga 

spp., Prevotella spp. and Candida spp., were also 

cultivated from root caries.1,3,4

Candida species has been associated with dental 

caries, especially with early childhood caries and root 

caries.5 A strong association was found between the 

prevalence of C. albicans and dental caries.6 Several 

authors showed that the proportion of Candida 

species was higher in individuals with caries than in 

individuals without caries. Furthermore, C. albicans is 

an important colonizer of carious lesions and has been 

found frequently in dentin caries lesions rather than in 

biofilm or saliva.4 Lower salivary flow rate, a common 

occurrence in older adults, is one of the factors that 

promote favorable conditions for a presence of C. 

albicans in these sites.7 However, it is still unknown 

whether the yeast acts as caries pathogen or plays 

a role as a commensal microbe. C. albicans possess 

some important properties that can characterize it 

as an important root caries pathogen. It is capable 

of adhering to saliva-coated hydroxyapatite and 

possesses strong adherence to collagen.8 It is as acid 

tolerant and acidogenic as S. mutans and Lactobacilli, 

which are both well-established cariogenic pathogens.9 

To determine the role of C. albicans in root caries, a 

high-throughput sequencing of mRNA (RNA-Seq) was 

applied in clinical biofilms samples from two distinct 

conditions: sound root-surface biofilms and root 

carious lesions biofilms. This technique may be helpful 

to investigate Candida’s role in a carious biofilm. 

Methodology

This study is part of the project “metatranscriptome 

of root caries”.10 Briefly, volunteers to this study 

were divided into two groups: sound exposed root 

surface group (SRS; n=10) and root caries group 

(RC; n=30). Participants were allocated to the SRS 

group (n=10) if they had an exposed root surface on 

at least one tooth and no root caries lesions. Dental 

biofilms were collected with sterilized Gracey curette 

from all available exposed root surfaces. The number 

of exposed root surfaces varied among individuals. 

Participants recruited to the root caries (RC) group 

(n=30) had one primary cavitated root lesion in 

need of restorative treatment. All lesions showed 

characteristics of present activity (soft and yellow 

dentin). Biofilm and carious dentin samples (of soft 

and infected tissue) were collected from patients 

during the restorative treatment. All participants 

were asked to refrain from tooth brushing for at 

least 12 hours prior to the sampling, to allow for 

dental biofilm accumulation, and were also asked to 

refrain from eating and drinking for at least 1 hour 

prior to the sampling. After collection, biofilm and 

carious dentin were immediately placed in 1 mL of 

RNA protect reagent (Qiagen, Hilden, North Rhine-

Westphalia, Germany). The total RNA was extracted 

using the UltraClean® Microbial RNA Isolation (Mo-bio, 

San Diego, Califórnia, USA) with on-column DNase 

digestion (Qiagen, Hilden, North Rhine-Westphalia, 

Germany). Samples with total RNA concentration <30 

ng/RNA were pooled, leading to a final sample size 

of 10 SRS and 9 RC. The Ribo-Zero™ Meta-Bacteria 

Kit (Illumina, Madison, Wisconsin, USA) was used 

for mRNA enrichment and Illumina®TruSeq™ library 

prep protocols (Illumina, San Diego, Califórnia, USA) 

were used to library preparation and sequencing was 

performed with Illumina HiSeq2500 (Illumina, San 

Diego, Califórnia, USA). RNA sequencing data are 

available in the National Center for Biotechnology 

Information (NCBI) Sequence Read Archive, under 

the accession numbers SRS779973 and SRS796739. 

FASTQ files were obtained for each sample and 

imported into the CLC Genomics Workbench 7.5.1 

software (CLC bio, Aarhus, Denmark) for mapping 

against 163 oral microbial genomes.10 The number of 

sequence reads that have been assigned to each gene 

is considered as the read count data. 

The role of Candida albicans in root caries biofilms: an RNA-seq analysis
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Candida albicans genome and data analysis
The C. albicans SC5314 was the genome selected 

for this study. This strain was chosen for being largely 

studied and its genome has been fully sequenced as 

well. After mapping, a count table was generated 

containing the read count for 14,217 oral C. albicans 

SC5314 genes. 

The putative presence of the organism in the 

sample was estimated by the sum of reads assigned 

to C. albicans divided by the total number of genes 

for each sample. Samples with ≥14,217 reads were 

considered as valid; then samples with less than 30% 

of genes with at least one read were excluded from 

the analysis. 

The number of reads and the relative median 

expression (RME) (25th-75th) level for genes were 

estimated for each of the sample groups, as previously 

described.11 Then, the RME was ranked to observe 

the most highly expressed transcripts in RC and SRS 

samples. To draw a profile of gene expression, the 

median of RME of transcripts in SRS and RC conditions 

were considered low expression RME between 0-10, 

medium 11-100, and high above 100 (percentile 10 

of RME distribution). RME was calculated from the 

median values of normalized read counts using DE-

Seq algorithm. Genes related to C. albicans virulence 

factors were analyzed: invasion, biofilm formation 

and co-aggregation, adherence and damage, 

morphogenesis, acid production, acid tolerance and 

stress response.

All RME medians for SRS and RC were ranked and 

all genes with median RME values ≥100 per group were 

analyzed for an overview of the most prevalent genes.

Differential gene expression was inferred between 

sample groups by applying the R package DESeq2.12 

The cut-off for designating a gene as being differentially 

expressed was a change in transcript levels of at least 

2-fold change (Log2FoldChange>1) and false discovery 

rate (FDR) <0.05 (padj value<0.05, Benjamini & 

Hochberg). Functions and putative pathogenicity in 

root caries of genes up-regulated in SRS and RC were 

analyzed.

Regarding to ethics considerations, this study was 

approved by the Federal University of Rio Grande do 

Sul research ethics committee (process n° 427.168) 

and by the research ethics committee of the National 

Research Ethics Service Committee Yorkshire & The 

Humber – Leeds West (protocol no. 2012002DD). 

All volunteers signed an informed consent form and 

received clinical dental assistance.

Results

According to the cut-off point chosen to determine 

the putative presence of a mapped organism in each 

sample, C. albicans was present in n=4 biofilms from 

SRS and in n=6 biofilm from RC, as shown in Figure 

1. Table 1 shows that the number of reads distribution 

in sound and disease samples were equal (p=0.522).

Figure 1- Relative median expression (RME; log10) of genes in the Sound Root Surfaces (SRS; n=4) and Root Caries (RC; n=6) samples. 
RME was calculated from the median values of normalized read counts. The top median RME values for SRS and RC were selected and 
sorted, and indicate the most expressed genes by C. albicans SC5413

EV LD, DAMÉ-TEIXEIRA N, DO T, MALTZ M, PAROLO CC
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Gene expression per sample
Figure 1 shows an overview of the most prevalent 

genes in C. albicans biofilm with and without caries. 

A total of 37 genes with median of RME>100 were 

analyzed (34 in SRS and 20 in RC). A total of 17 

genes have RME>100 in both health and disease 

conditions for all the samples (FBA1, HSP90, HXK2, 

ALS3, CDC19, PGK1, OLE1, HWP1, HXT63, GPM1, 

CaO19.2765, EFT2_2, EAP1_1, CaO19.13778, 

CaO19.6420, CaO19.2764 and TEF1), wheras 17 

genes were expressed only in SRS (EDT1, ACT1, 

GCA1_2, CaO19.6160, CaO19.6815, CaO19.14107, 

PTP3, SSB1_1, ADH1_1, RIM101, CaO19.1490, 

CaO19.9067, CaO19.2659, GAC1, TEF3_1, PGI1_2 

and GCA12_1) and just 3 genes were expressed only 

in RC conditions (GSC1_2, ATP1_1 and FAS1_1), as 

shown in Table 2.

Expression of genes related to possible 
cariogenic traits 

C. albicans genes associated with possible virulence 

factors (RME and percentiles of these genes) were 

evaluated in both conditions (Table 2). We found 

transcript of 51 out of 67 genes related to virulence 

traits that are presented in the literature as important 

factors. None of these genes had significant differential 

expression. 

Differential expression analysis (DE)
The DE analysis has shown the overexpressed genes 

in root biofilms with and without caries (Figure 2). The 

up-regulated genes in SRS group were CaO19.610 and 

CaO19.2506. The CaO19.610 (FDR=0.009) codes for a 

potential DNA binding regulator of filamentous growth. 

The CaO19.2506 (FDR=0.018) codes for a hypothetical 

protein with a very weak similarity to Streptococcal 

proline-rich surface protein PspC. 

The up-regulated genes in RC group were UTP20, 

ITR1, DHN6, CaO19.7197, CaO19.7838, STT4, 

and GUT1. The UTP20 (FDR=0.018) codes for a 

potential U3 small nucleolar RNAs (snoRNA) protein. 

The ITR1 (FDR=0.036) codes for a potential active 

sugar transporter, potential Myo-inositol transporter, 

similar to S. cerevisiae ITR1 (YDR497C). The DHN6 

(FDR=0.046) codes for a dehydrin hypothetical 

protein. The CaO19.7197 (FDR=0.046) codes for a 

hypothetical protein similar to S. cerevisiae YLR002C, 

with unknown function. The CaO19.7838 (FDR=0.046) 

codes for a flocculin-like protein serine-rich, repetitive 

ORF similar to S. cerevisiae MUC1 (YIR019C) cell 

surface flocculin. The STT4 (FDR=0.046) codes for 

a hypothetical protein phosphatidylinositol-4-kinase. 

The GUT1 (FDR=0.046) codes for a potential glycerol 

kinase Gut1p, likely carbohydrate kinase similar to S. 

cerevisiae GUT1 (YHL032C) glycerol kinase. 

Discussion

Possible virulence traits of Candida spp. were 

related to several survival strategies such as the 

capacity to exploit and invade the host tissues, forming 

biofilms and co-aggregate to various microorganisms, 

switching form, producing acids and reacting to stress. 

C. albicans is metabolically active in biofilm of SRS and 

RC, presenting different roles in health and disease. 

Some genes were expressed in both conditions, which 

seem to be relevant to C. albicans survival to these 

sites. Genes overexpressed in SRS were involved in 

biofilm formation, while genes overexpressed in RC 

were involved in survival strategies that could be 

related to cariogenicity.

Two genes were up-regulated in SRS biofilms. The 

CaO19.610 codes for a potential DNA binding regulator 

of filamentous growth. This gene is a version of C. 

albicans efg1 with altered C terminus. EFG1 protein is a 

key transcriptional regulator in C. albicans and controls 

various aspects of morphogenesis and metabolism13, 

being required for the true hyphae growth, biofilm 

formation, cell adhesion and filamentous growth in 

C. albicans.14 Efg1 gene confers to C. albicans the 

capacity of transition from commensal microorganism 

to opportunistic pathogen status.15 In an in vitro 

experiment, efg1 had significantly higher gene 

expression at initial biofilm formation stage.16 Other 

studies showed that EFG1 is essential for the formation 

of a mature and stable biofilm that is resistant to 

antifungal therapy and to immune system, allowing the 

colonization of the root site.17,18 The CaO19.2506 codes 

for a hypothetical protein with a very weak similarity to 

streptococcal proline-rich surface protein PspC. In S. 

pneumoniae, PspC has a well-established importance 

Median 25th-75th Range

SRS 157.175 48.329 - 197.776 22.721 – 223.511

RC 209.495 79.770 – 571.876 48.759 – 738.400

*SRS =sound root surface. RC=root caries

Table 1- Total numbers of DESeq normalized reads (median/
percentile/range) by group

The role of Candida albicans in root caries biofilms: an RNA-seq analysis
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Accession ID Median SRS (25th-75th) Median RC (25th-75th) Virulence Trait
ACT
ACT1_1 416.13(156.10-2871.60) 38.92(2.07-221.80)

Invasion
ACT1_2 415.74(147.50-2811.20) 37.65(2.06-209.30)
ACT2_1 3.75(0.93-3.85) 8.21(2.82-12.75)
ACT2_2 5.02(4.02-9.45) 6.81(6.69-10.22)
LIP9
LIP9_2 0(0-0) 0.47(6.36-1.85)

Invasion
LIP9_1 0(0-0) 0(6.10-1.22)
PLB2
PLB2_1 0(0-0.47) 0.95(0-7.49)

Invasion
PLB2_2 0(0-0) 0.18(0-4.16)
TEC1
TEC1_1 21.98(18.5-26.30) 14.46(2.65-26.40)

Biofilm Formation
TEC1_2 18.23(6.75-21.38) 12.08(6.96-37.16)
EFG1 70.10(38.95-86.02) 22.14(0-62.93) Biofilm Formation/ Morphogenesis
HWP1
HWP1_1 127.29(19.59-176.94) 80.53(0-167.24)

Biofilm Formation/ Adherence
HWP1_2 126.31(20.02-188.10) 72.18(0-148.94)
ALS1
ALS1_1 9.26(0.78-36.07) 26.58(0-84.96)

Adherence
ALS1_2 39.03(13.44-64.22) 22.85(0-147.17)
ALS2
ALS2_1 4.61(0.93-13.47) 4.64(0.78-6.23)

Adherence
ALS2_2 2.79(0.62-9.47) 3.73(0-7.46)
ALS3
ALS3_1 199.32(45.47-274.46) 88.26(0-122.72)

Invasion/Adherence
ALS3_2 50.15(3.16-98.69) 33.79(0-77.51)
ALS3_3 171.47(34.94-255.39) 91.19(2.51-124.35)
ALS3_4 159.55(34.17-225.69) 24.39(1.47-89.82)
ALS4 5.93(1.04-13.48) 10.63(0-23.22) Adherence
ALS5
ALS5_1 3.47(2.07-4.99) 5.04(0-11.62)

Adherence
ALS5_2 1.35(0.16-3.42) 5.65(0-12.03)
ALS6 2.76(0-6.47) 9.35(0-17.69) Adherence
ALS7 9.38(6.41-37.42) 18.73(0-36.87) Adherence
ALS9
ALS9_1 3.80(0-11.14) 4.03(0-13.27)

AdherenceALS9_2 6.48(1.35-9.75) 2.30(0-8.02)
ALS9_3 0(0-0) 1.80(0-4.62)
RBT5
RBT5_1 51.14(18.72-76.96) 38.22(0-70.20)

Adherence
RBT5_2 43.62(15.26-72.99) 33.44(0-74.34)
SAP1
SAP1_1 0(0-0.27) 1.30(0-2.84)

Collagen degradation
SAP1_2 0(0-0.52) 0(4.06-2.01)
SAP2
SAP2_1 0.31(0-1.19) 0.93(55.86-4.55)

Collagen degradation
SAP2_2 0.35(0-4.2) 1.18(115.19-4.03)
SAP3
SAP3_1 0(0-0) 0(26.17-1.93)

Collagen degradation
SAP3_2 0(0-0.27) 0.36(29.39-2.27)
SAP4
SAP4_1 0(0-0) 0(0-0.61)

Collagen degradation
SAP4_2 0(0-0) 1.65(0-4.38)
SAP5
SAP5_1 0(0-0.27) 0.41(1.16-3.76)

Collagen degradation/ Biofilm formation/Invasion
SAP5_2 0(0-0) 1.85(0-3.56)

Table 2- Relative median expression (RME) and percentiles (25th-75th) of genes related to virulence factors in Candida albicans in the 
Sound Root Surfaces (SRS; n=4) and Root Caries (RC; n=6) samples

Continued on the next page
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SAP6
SAP6_1 0(0-0) 0.59(0.52-3.61)

Collagen degradation
SAP6_2 0(0-0) 1(0-6.06)
SAP7
SAP7_1 16.52(14.19-21.6) 11.59(6.80-28.20)

Collagen degradation
SAP7_2 18.89(6.9-25.58) 15.71(0-25.99)
SAP8
SAP8_1 0(0-4.03) 1.295(0-4.85)

Collagen degradation
SAP8_2 0(0-0) 0.06(0-3.67)
SAP9
SAP9_1 13.75(5.16-18.51) 16.32(0.54-25.66)

Collagen degradation
SAP9_2 16.27(5.08-25.63) 17.15(1.07-30.05)
SAP10
SAP10_1 0.31(0-0.94) 1.84(4.84-6.65)

Collagen degradation
SAP10_2 0(0-0.27) 1.06(13.5-3.99)
SAP98
SAP98_1 0.31(0-0.94) 0.52(0.35-2.27)

Collagen degradation
SAP98_2 0(0-0) 0.53(1.92-1.64)
SAP99
SAP99_1 0(0-0) 1.24(0-4.56)

Collagen degradation
SAP99_2 0.18(0-1.01) 0.12(0-1.93)
CDC24
CDC24_1 6.25(1.13-13.59) 9.45(1.21-13.71)

Morphogenesis
CDC24_2 6.66(4.24-11.23) 5.8(0-12.67)
CDC42
CDC42_1 6.58(1.99-11.37) 3.45(0-4.37)

Morphogenesis
CDC42_2 1.38(0-3) 2.95(0-3.9)
STE11
STE11_1 9.07(5.47-17.16) 7.33(0.54-14.34)

Morphogenesis
STE11_2 14.44(4.44-28.53) 7.30(2.34-18.04)
CST20
CST20_1 16.77(8.48-24.6) 12.58(0-23.91)

Morphogenesis
CST20_2 16.99(12.72-21.04) 15.66(0-22.24)
HST7
HST7_1 6.02(5.50-7.33) 4.55(0-11.04)

Morphogenesis
HST7_2 5.06(1.24-5.33) 3.73(0-9.39)
CYR1
CYR1_1 5.06(1.24-9.98) 4.47(0-13.31)

Morphogenesis
CYR1_2 8.35(5.96-10.10) 7.98(0-17.23)
TPK2
TPK2_1 6.71(5.57-7.61) 5.79(0-9.88)

Morphogenesis
TPK2_2 5.64(1.13-7.49) 7.98(0-10.83)
PKA1
PKA1_1 1.85(0-3.82) 2.04(24.88-3.86)

Morphogenesis
PKA1_2 15.85(8.48-21.81) 6.53(15.73-9.34)
CZF1
CZF1_1 0.52(0-2.11) 1.27(5.05-5.85)

Morphogenesis
CZF1_2 1.75(0.26-4.65) 1.35(6.26-3.44)
NRG1 2.28(0.64-4.99) 6.05(6.01-13.69) Morphogenesis
CPH1
CPH1_1 9.58(1.56-35.08) 8.13(0-17.53)

Morphogenesis
CPH1_2 0(0-0.47) 0.59(0-1.48)
CDC28
CDC28_1 0.35(0-1.56) 1.69(0-3.16)

Morphogenesis
CDC28_2 1.04(0-8.58) 2.83(0-6.96)
CPH2
CPH2_1 52.42(21.47-56.66) 23.81(0-46.74)

Morphogenesis
CPH2_2 26.53(14.35-43.96) 13.48(0-20.62)
HSP90

Continued from previous page

Continued on the next page
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in adherence and colonization.19 The possible function 

of CaO19.2506 is related to adhesion and coding for 

a membrane adhesin. Both filamentous growth and 

cell wall adhesion are important in biofilm formation 

and are required for the establishment of C. albicans 

in root surfaces biofilm. These characteristics could 

explain why C. albicans has been largely observed 

colonizing sound root surface.5

The role of C. albicans in root caries could be 

potentially more complex. Seven genes were up-

regulated in root caries conditions expressing different 

functions. The CaO19.7197 codes for a hypothetical 

HSP90_1 212.35(129.29-284.69) 89.73(19.53-129.49)
Morphogenesis/ Stress Response

HSP90_2 254.89(158.85-313.28) 111.99(14.61-143.75)
RAS1
RAS1_1 2.59(0-5.46) 5.45(0-6.90)

Morphogenesis
RAS1_2 3.30(0.62-5.07) 4.68(0-5.76)
TUP1
TUP1_1 24.91(19.85-32.21) 10.47(0-14.82)

Morphogenesis
TUP1_2 20.69(9.82-28.32) 8.03(0-10.93)
RFG1
RFG1_1 0(0-1.04) 2.28(0-6.62)

Morphogenesis
RFG1_2 7(1.35-8.9) 5.59(0-11.98)
HYR1
HYR1_1 0(0-0.47) 0.47(0-1.67)

Morphogenesis
HYR1_2 0(0-0.47) 1.42(0-7.26)
ECE1
ECE1_1 0.18(0-2.40) 0.42(0-1.93)

Morphogenesis
ECE1_2 1.23(0-4.65) 1.03(0-4.44)
PHR1
PHR1_1 33.62(25.20-94.04) 38.18(0-57.07)

Acid tolerance
PHR1_2 36.96(27.23-104.02) 48.26(0-57.07)
PHR2
PHR2_1 4.71(2.27-29.58) 7.77(0.78-32.06)

Acid tolerance
PHR2_2 51.11(2.69-118.06) 58.10 (0.18-137.34)
RIM101 120.39(89.45-151.32) 65.67(2.72-111.54) Stress response/ Morphogenesis
HOG1
HOG1_1 4(1.89-5.07) 4.36(1.30-5.09)

Stress response
HOG1_2 3.96(0.77-6.99) 4.2(1.065-7.63)
CAP1
CAP1_1 7.15(1.73-7.64) 5.21(3.12-8.725)

Stress response
CAP1_2 11.01(6.34-14.78) 9.25(1.65-11.7)

Continued from previous page

Figure 2- Differential expression (Log2FoldChange) of genes up-regulated in sound root surface (SRS; negative values, green bars) 
and up-regulated in root caries (RC, positive values, red bars) calculated using DESeq2 algorithms. FDR<0.05. GUT1= potential 
glycerol kinase; STT4= hypothetical protein phosphatidylinositol-4-kinase; CaO19.7838= flocullin-like protein serine-rich; CaO19.7197= 
hypothetical protein; DHN6= dehydrin hypothetical protein; ITR1= potential Myo-inositol transporter; UTP20= potential U3 small nucleolar 
RNAs protein; CaO19.2506= hypothetical protein with a very weak similarity to Streptoccal proline-rich surface protein PspC; CaO19.610= 
potential DNA binding regulator of filamentous growth
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protein similar to S. cerevisiae YLR002C, with unknown 

function. Several hypothetical proteins and genes 

with uncharacterized function were identified in this 

study, highlighting the importance of more studies 

related to C. albicans transcriptome. The DHN6 codes 

for a dehydrin hypothetical protein, related to stress 

tolerance in plants. These proteins can be induced 

in vegetative tissues by different stress factors that 

cause cell dehydration (i.e., drought, salinity, cold, 

heat, low temperature, etc).20,21 The STT4 codes for 

a hypothetical protein phosphatidylinositol-4-kinase. 

The gene STT4 is essential for viability and plays an 

important role in the phosphatidylinositol-mediated 

signal transduction pathway required for cell wall 

integrity.22 Therefore, the up-regulated genes DHN6 

and STT4 could be related to the ability to survive in 

an extreme environment with several stress factors 

(low pH, carbohydrate viability, for example) such 

as the ones found in root cavitated caries lesions. 

The UTP20 codes for a potential U3 small nucleolar 

RNAs (snoRNA) protein. UTP20 has been reported 

as a component of U3 snoRNA protein complex and 

has been implicated in 18S rRNA processing, being 

essential for 18 rRNA function.23,24 The ITR1 codes 

for a potential active sugar transporter, potential 

Myo-inositol transporter, similar to S. cerevisiae ITR1 

(YDR497C). Myo-inositol is an essential substrate for 

C. albicans, and it can be used as carbon source. For 

its survival, C. albicans must be able to synthesize the 

essential metabolite inositol or acquire it from the host. 

C. albicans could not transport inositol and become 

nonviable in the absence of ITR1.25 The CaO19.7838 

codes for flocculin-like protein serine-rich, repetitive 

ORF similar to S. cerevisiae MUC1 (YIR019C) cell 

surface flocculin. MUC1 encodes cell-surface flocculin 

and it is required for pseudohyphal and invasive growth 

of C. albicans.14 The up-regulation of this invasive 

growth gene shows the importance of this virulence 

trait for the colonization/penetration of C. albicans in 

the carious dentin. The GUT1 codes for a potential 

glycerol kinase Gut1p, likely carbohydrate kinase 

similar to S. cerevisiae GUT1 (YHL032C) glycerol 

kinase (NCBI). In Saccharomyces cerevisiae, glycerol 

utilization is mediated by two enzymes, glycerol kinase 

(Gut1p) and mitochondrial glycerol-3-phosphate 

dehydrogenase (Gut2p). The carbon source regulation 

of GUT1 depends on carbon source availability. The 

promoter activity of GUT1 was lower during growth on 

glucose and highest on the non-fermentable carbon 

sources, glycerol, ethanol, lactate, acetate and oleic 

acid.26 UTP20, ITR1, CaO19.7838, and GUT1 are genes 

related to C. albicans metabolism associated with 

caries progression to a cavitated status.

The overexpressed genes in RC were related to 

sugar transport (ITR1 – Myo-inositol) and to carbon 

source regulation (GUT1 – Glycerol kinase), that were 

related to the use of alternative carbon sources (Figure 

2). The use of lactate by C. albicans could be related to 

the pH regulation (neutralization) in biofilm, which is 

important for the microbiome survival.27 Furthermore, 

this neutralization of the medium could explain 

the CaO19.7838 overexpression, a gene related to 

hyphal growth since hyphal formation is stimulated 

by neutral pH.28 Morphogenesis is a special virulence 

trait of C. albicans, and hyphal form is related to 

pathogenesis, being more invasive and contributing 

to host tissue damage29,30, as well as contributing 

to the active cavitation of RC lesions. Besides the 

stimulation of hyphal growth, changes in carbon source 

has a significant impact on the C. albicans virulence, 

resulting in an increased resistance to stresses, 

adherence, biofilm formation, drug resistance, and 

immune recognition when compared with glucose-

grown cells.31 Although a cariogenic environment is 

related to low pH conditions, the excessive production 

of acids could affect the biofilm metabolism. For the 

cariogenic biofilm survival, it is important to have a 

microorganism that main the viability of the biofilm, 

thus preventing excessive acidification even in a 

carious habitat. 

Conclusions

Our data shows that Candida albicans SC5314 have 

an active metabolism in biofilm of SRS and biofilm of 

carious dentin of RC as well. The differential expression 

analysis shows that, in healthy individuals, the up-

regulated genes were related to metabolic activity, 

sugar transport, stress tolerance, invasion and pH 

regulation. C. albicans may have a role in root caries 

progression. 
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