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Abstract
Mitochondrial creatine kinase (Mt-CK) is a major determinant of cardiac energetic status and is down-regulated in chronic 
heart failure, which may contribute to disease progression. We hypothesised that cardiomyocyte-specific overexpression of 
Mt-CK would mitigate against these changes and thereby preserve cardiac function. Male Mt-CK overexpressing mice (OE) 
and WT littermates were subjected to transverse aortic constriction (TAC) or sham surgery and assessed by echocardiography 
at 0, 3 and 6 weeks alongside a final LV haemodynamic assessment. Regardless of genotype, TAC mice developed progres-
sive LV hypertrophy, dilatation and contractile dysfunction commensurate with pressure overload-induced chronic heart 
failure. There was a trend for improved survival in OE-TAC mice (90% vs 73%, P = 0.08), however, OE-TAC mice exhibited 
greater LV dilatation compared to WT and no functional parameters were significantly different under baseline conditions 
or during dobutamine stress test. CK activity was 37% higher in OE-sham versus WT-sham hearts and reduced in both TAC 
groups, but was maintained above normal values in the OE-TAC hearts. A separate cohort of mice received in vivo cardiac 
31P-MRS to measure high-energy phosphates. There was no difference in the ratio of phosphocreatine-to-ATP in the sham 
mice, however, PCr/ATP was reduced in WT-TAC but preserved in OE-TAC (1.04 ± 0.10 vs 2.04 ± 0.22; P = 0.007). In 
conclusion, overexpression of Mt-CK activity prevented the changes in cardiac energetics that are considered hallmarks of 
a failing heart. This had a positive effect on early survival but was not associated with improved LV remodelling or function 
during the development of chronic heart failure.
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Introduction

Effective treatments for chronic heart failure often act to 
reduce cardiac energy demand by lowering afterload and/
or heart rate (e.g. β-adrenergic antagonists, ACE inhibitors 
and diuretics). However, this approach is limited by the risk 
of bradycardia and hypotension, and an attractive alternative 
for new heart failure therapies is therefore to also improve 
myocardial energy supply [12, 34].

The creatine kinase (CK) phosphagen system has a cen-
tral role in matching energy supply to energy demand and 
represents a potential target for therapeutic intervention. The 
mitochondrial isoform of CK (Mt-CK) is located within the 
mitochondrial intermembrane space, where it is functionally 
coupled to ATP production via the adenine nucleotide trans-
locase (ANT). Mt-CK catalyses the transfer of a phosphoryl 
group from the newly generated ATP onto creatine to form 
phosphocreatine (PCr) and ADP (which stimulates further 
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oxidative phosphorylation) [40]. PCr is relatively smaller 
and less polar than ATP allowing it to accumulate to higher 
levels and act as an energy transport and buffering system, 
capable of regenerating ATP when demand outstrips supply. 
This reaction is catalysed by cytosolic CK isoforms, such as 
muscle (M-CK), that are often functionally coupled to major 
ATP-using enzymes (e.g. myosin ATPase, SERCA) [40].

A substantial body of observational data in patients and 
animal models has implicated an impaired CK system in the 
pathophysiology of chronic heart failure (CHF) [15, 22], 
with both total creatine levels and CK activity reduced com-
mensurate with disease severity (reviewed in [34]). This is 
most commonly observed in vivo as a fall in the PCr/ATP 
ratio using 31phosphorus-magnetic resonance spectroscopy 
(31P-MRS). For example, in patients with dilated cardiomyo-
pathy, a low PCr/ATP was associated with higher mortality 
and correlated with New York Heart Association class and 
ejection fraction [35, 36].

However, whether loss of CK function has a causative 
role in the pathophysiology of CHF has yet to be proven. 
Genetic knockout studies in mice have suggested only mild 
or ambiguous effects on cardiac function, suggesting that a 
dysfunctional CK system, in itself, is usually insufficient to 
cause heart failure [5, 23, 24]. Even when loss of function has 
been superimposed on surgical models of CHF, the expected 
detrimental effects have not been obvious [13, 20, 32].

A complementary approach is to ask whether preventing 
energetic remodelling via augmentation of the CK system 
would be beneficial. Increasing myocardial levels of cre-
atine protected against ischaemia–reperfusion injury (I/R), 
but did not improve outcomes in the setting of CHF [6, 21]. 
However, seminal evidence comes from overexpression of 
M-CK in mouse heart, which improved survival and contrac-
tile function in a model of pressure overload-induced CHF. 
Most convincingly, this was associated with preservation of 
ATP production via the CK reaction (CK flux), and protec-
tion was lost in a sub-group of mice where the transgene was 
turned off partway through the protocol [9].

The therapeutic potential for augmentation of Mt-CK in 
CHF has yet to be tested and, quite apart from it being a major 
determinant of PCr/ATP [49], there are good reasons to think 
that this approach may also be beneficial. Not least, is an effect 
to reduce opening probability of the mitochondrial permeabil-
ity transition pore (mPTP), thereby preventing cardiomyocyte 
death [48, 50]. This is a key event governing I/R injury where 
Mt-CK overexpression has already been shown to be cardio-
protective [48], and it is also thought to contribute to cellular 
loss in the chronically failing heart. Preserving mitochondrial 
health is an important goal in heart failure, and the close func-
tional coupling between Mt-CK and oxidative phosphoryla-
tion is thought to promote this. A further contributory factor 
is likely the role of Mt-CK in promoting mitochondrial struc-
tural integrity by forming contact sites between the inner and 

outer membranes [40]. Finally, Mt-CK is particularly vulner-
able to deactivation via reactive oxygen species [47], which 
are known to be elevated in the failing heart. Replacement 
of affected protein could prove beneficial, especially since 
Mt-CK activity closely correlates with recovery of LV func-
tion in post-ischaemic myocardium [2].

For the reasons outlined above, we hypothesised that 
overexpression of Mt-CK would be beneficial in terms of 
cardiac energetics, function and structural remodelling in 
a mouse model of pressure overload CHF. We utilised an 
existing strain of cardiac-specific Mt-CK-OE under control 
of the α-MHC promoter that was generated in our laboratory 
[48]. This used a cautious transgenic approach to increase 
myocardial Mt-CK activity by 25–30%, which had no meas-
ureable effect on baseline mitochondrial function, but was 
sufficient to provide protection against I/R injury.

Methods

Ethics statement and colony maintenance

All animal experiments were approved by the Committee 
for Animal Care and Ethical Review at the University of 
Oxford, and comply with Home Office Regulations incorpo-
rating the Animals (Scientific Procedures) Act of 1986 and 
Directive 2010/63/EU of the European Parliament (project 
licence number 30/3314). Mice were maintained in indi-
vidually ventilated cages on a 12 h night/day cycle with 
controlled temperature (21 °C) and humidity. Mice were 
fed irradiated Global Diet 2916 (Envigo, Huntingdon, UK) 
and water ad libitum and housed with littermates in specific 
pathogen-free conditions. Creation of the cardiac-specific 
transgenic CK-Mt-OE line and genotyping protocol has been 
described previously [48]. This strain has been backcrossed 
for > 10 generations using C57BL/6JOlaHsd mice obtained 
from Envigo, Huntingdon, UK (formerly known as Harlan). 
For all experiments, transgenic mice were homozygote for 
CK-Mt overexpression and wild-type (WT) were non-trans-
genic littermates bred in our establishment.

Study design

Male WT and overexpressing (OE) mice aged 15 ± 3 weeks 
were randomly assigned to either transverse aortic con-
striction (TAC) or sham surgery to create four experimen-
tal groups: WT-Sham, OE-Sham, WT-TAC, and OE-TAC. 
All mice had an echocardiogram a few days before surgery 
(week 0) and at week 3 and week 6 post-surgery to assess 
onset of chronic heart failure. Left ventricular (LV) haemo-
dynamics were assessed 2–3 days after the final echocar-
diogram, after which animals were killed by removal of the 
heart under terminal anaesthesia. LV tissue was washed 
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briefly in physiological saline, blotted and weighed, then 
snap frozen using Wollenberger tongs in liquid nitrogen and 
stored at − 80 °C until use. An independent cohort of mice 
received TAC or sham surgery and were subjected to 31P-
MRS for analysis of in vivo PCr/ATP ratio at 6 weeks post-
surgery. Supplementary Table 1 shows animal numbers and 
fate for all experimental steps.

Surgery

TAC surgery was performed aseptically as described pre-
viously under isoflurane general anaesthesia (2% in medi-
cal oxygen with anaesthetic depth assessed by loss of pedal 
reflex) [18, 27]. Buprenorphine analgesia was given subcuta-
neously immediately prior to surgery (0.8 mg/Kg) and again 
the morning after surgery (0.4 mg/Kg).

Echocardiography and haemodynamics

Mice were maintained on isoflurane anaesthesia (1.0–1.5% 
in medical  O2), placed on a homeothermic table and par-
asternal short-axis B-mode views obtained at the level of 
the papillary muscles using a Visualsonics Vevo 2100 ultra-
sound system with 22–55 MHz transducer (MS 550D). Data 
analysis was performed by a single operator blinded to geno-
type using Vevo Lab, Edition 1.7.1 (Visualsonics, Toronto, 
Canada). Measurements were made directly from the 2-D 
images and are therefore expressed as areas.

Retrograde LV cannulation was performed under isoflu-
rane anaesthesia via the right carotid artery using a 1.4F 
solid-state pressure catheter (SPR-839, Millar Instruments, 
Texas, USA) as described previously [5]. The jugular vein 
was cannulated using flame-stretch polyethylene tubing 
(Portex 0.96 mm OD, 800/100/200, Smiths Medical, UK) 
for administration of dobutamine hydrochloride at 16 ng/g 
BWt/min. Mice were killed at the end of the experiment by 
overdose of pentobarbitone.

Biochemistry

Frozen LV tissue was powdered and total creatine (i.e. the sum 
of free creatine and phosphocreatine (PCr)) was quantified by 
HPLC [43]. Total creatine kinase (CK) and citrate synthase 
activities were quantified under saturating conditions using 
standard spectrophotometric techniques and relative CK iso-
enzyme activities via the SAS-1 gel electrophoresis system 
(Helena Biosciences, UK). Values were normalised to protein 
content measured by the Lowry method, as described previ-
ously [48]. The relative maximal velocity of the CK reaction 
was estimated by the product of enzyme activity and total cre-
atine concentration, since these two parameters represent the 
numerators of the rate equation that vary the most under disease 
conditions and are therefore the primary determinants [14].

In vivo 31P‑MRS

General anaesthesia was maintained using 1.5–2.0% isoflu-
rane in oxygen with mice placed prone in a heated cradle with 
the heart directly over the surface coil array and ECG and res-
piratory gating [4]. All 31P-MRS data were acquired utilising a 
horizontal 9.4 T magnetic resonance system equipped with a 
Direct Drive2 console and 120 mm i.d., 0.6 T/m, shielded gra-
dient set (Agilent Technologies, USA) operating at 400 MHz 
frequency for 1H and 168 MHz for 31P measurements. Images 
were acquired using a linear double-tuned, actively decoupled, 
1H/31P 39 mm birdcage resonator (i.d. 39 mm) and a 14 mm 
actively decoupled quadrature surface coil array for 31P signal 
reception (Rapid Biomedical, Germany). Anatomical scout 
images were acquired using the 1H channel of the birdcage 
resonator for both transmit and receive.

Two-dimensional, density-weighted, 31P chemical shift 
imaging (2D-CSI) was used in short-axis orientation to 
acquire spectroscopic measurements in vivo (FOV 30 × 30 
 mm2, 16 × 16 PE steps, 5 mm slice thickness, threefold 
undersampled, 2600 FIDs, 60° flip angle, cardiac triggered, 
TR ≈ 250 ms [i.e. two cardiac cycles], total acquisition 
time ~ 25 min); the resulting spatial resolution was approxi-
mately 1.9 × 1.9 × 5.0 mm (voxel volume of 17.6 μL). Prior 
to Fourier transform, the data were zero-filled to 64 × 64 
PE steps to improve the apparent spatial resolution of the 
images, and a line broadening of 60 Hz was applied to 
improve the SNR of the resulting spectra.

The data were reconstructed using IDL 8.2 (Harris Geo-
spatial Solutions, USA) and spectra corresponding to voxels 
placed in the myocardium and blood were fitted in the time 
domain using in-house software [28]. Correction for myo-
cardial signal contamination from blood, and T1 saturation 
effects was carried out in Excel 2014 (Microsoft Corpora-
tion, USA); T1 values for PCr and ATP in the mouse myo-
cardium at 9.4 T were taken from the literature [7].

Analysis and statistics

Researchers were blinded to experimental groups for all 
data analysis. A log-rank (Mantel–Cox) test was used to 
determine whether Kaplan–Meier survival curves were 
significantly different. Echocardiography data were 
analysed by two-way repeated-measures ANOVA with 
Tukey’s multiple comparison test. Haemodynamic, organ 
weights and biochemistry data were checked for normal-
ity using a D’Agostino–Pearson (K2) test and analysed by 
one-way ANOVA with Sidak’s multiple comparison test if 
normally distributed, or, by nonparametric Kruskal–Wal-
lis test with Dunn’s correction if not. Four comparisons 
were predetermined to be made for all analyses: WT-
Sham vs. OE-Sham; WT-Sham vs. WT-TAC; OE-Sham 
vs. OE-TAC; WT-TAC vs. OE-TAC.
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Results

Survival

The total number of animals entering the study and their 
subsequent fate are detailed in Supplementary Table 1. The 
Kaplan–Meier survival curves for the TAC surgery groups 
(Fig. 1) show a strong trend for improved survival in the OE 

mice compared to WT (3 deaths from n = 30 OE mice vs. 9 
deaths from n = 33 WT, P = 0.08), in particular, within the 
first 10 days post-surgery. An analysis of the causes of death 
(Supplementary Table 2) indicates that WT-TAC mice had 
more incidence of acute and chronic heart failure during 
that period. Deaths during haemodynamic examination were 
spontaneous rather than due to surgical error and affected 
more in the OE group.
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Fig. 1  Survival and echocardiographic parameters in sham and trans-
verse aortic constriction (TAC) operated mice. a Kaplan–Meier sur-
vival curve for wild-type (WT, n = 33) and Mt-CK overexpressing 
(OE, n = 30) mice following TAC surgery for the main study and 
MRS sub-study combined. Sham groups are not shown since there 
were no procedural deaths. b–f Echocardiography parameters derived 
from 2-D parasternal short-axis views and therefore expressed as 
areas. The legend and numbers given in (b) apply to all panels: WT-
Sham n = 10, OE-Sham n = 12, WT-TAC n = 16; OE-TAC n = 20. 
There were no significant differences between sham groups for any 
parameter at any time point. Both TAC groups showed a progressive 

LV dilation compared to shams during diastole (c) and systole (d) 
and was significantly more pronounced in the OE mice. e This mani-
fested as a greatly reduced contractile function in both TAC groups 
compared to sham controls, but to a broadly similar extent. f shows 
myocardial cross-sectional area as an indicator of LV hypertrophy, 
which was highly significant in both TAC group irrespective of geno-
type. Data shown are mean ± standard error with analysis by two-way 
repeated measures ANOVA with Tukey’s multiple comparison test, 
*P < 0.05 for OE-Sham versus OE-TAC; #P < 0.05 and $P < 0.001 for 
both sham groups versus their respective controls
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LV remodelling and function

No differences in echocardiographic parameters were evi-
dent between WT and Mt-CK-OE animals prior to surgery 
(week 0) or between sham-operated groups at any time point 
(Fig. 1). Both TAC groups exhibited overt LV dilatation, 
contractile dysfunction and LV hypertrophy compared to 
their sham controls (Fig. 1b–f and representative images in 
Fig. 2). By 6 weeks post-surgery, the hearts from OE-TAC 
mice were significantly more dilated than WT-TAC, with a 
trend towards impaired contractility (Fig. 1e), but with no 
differences in hypertrophic response (Fig. 1f and confirmed 
at post-mortem Fig. 3g).

A similar pattern was observed for the LV haemody-
namic data. There were no significant differences between 
WT and OE-sham groups, while both TAC groups had sig-
nificantly impaired LV function compared to their respec-
tive sham controls, indicative of chronic heart failure (Fig. 3 
and Supplementary Table 3). In both TAC groups, a similar 
proportion of mice had signs of pulmonary congestion, as 
evidenced by elevated RV and lung weights at post-mortem 
(Fig. 3h, i). Mt-CK overexpression did not significantly alter 
any of these parameters.

Cardiac energetics

Total creatine kinase activity was 37% higher in OE-sham 
compared to WT-sham hearts (Table 1). As expected, val-
ues were lower in both TAC groups, but only in OE hearts 
was total CK activity maintained above normal WT levels 

despite the development of heart failure. In OE-sham hearts 
the relative content of MM-CK isoforms was paradoxically 
higher, but this was normalised in the OE-TAC hearts, where 
higher Mt-CK activity made the largest contribution to 
maintaining total CK activity. No differences in total creatine 
levels or citrate synthase activity were detected between any 
groups.

To provide a more sensitive indicator of CK activity, an 
estimate of relative reaction velocity through Mt-CK was 
calculated by multiplying by the total creatine concentration 
(as per [45]). This confirmed that Mt-CK reaction velocity 
was elevated in OE-sham hearts and was lower in TAC fail-
ing hearts, but was nevertheless maintained at supra-normal 
levels in OE-TAC (Fig. 4).

The ratio of phosphocreatine to ATP was measured 
in vivo in a separate cohort of mice and representative scout-
ing image and spectra are shown in Fig. 4. There was no 
difference in PCr/ATP between sham groups, but the clear 
trend for lower PCr/ATP in WT-TAC hearts was completely 
prevented by Mt-CK-OE, such that PCr/ATP was signifi-
cantly higher in OE-TAC versus WT-TAC hearts (P = 0.007) 
thereby maintaining normal baseline levels (Fig. 4b).

Discussion

Here we demonstrate for the first time that overexpression 
of the mitochondrial isoform of CK preserves normal lev-
els of Mt-CK activity and PCr/ATP ratio in the chronically 
failing mouse heart. The consequences proved nuanced, 

Fig. 2  Representative echocar-
diograms obtained 6 weeks 
after transverse aortic constric-
tion (TAC) or sham surgery. a 
Shows M-mode images from 
the parasternal short-axis view 
from all four experimental 
groups, representing wild-type 
(WT) and Mt-CK overexpress-
ing mice (OE). b Shows sagittal 
views through the aortic arch 
with the aortic root in the upper 
left of each image. The upper 
and middle images are from a 
sham-operated mouse shown 
with and without colour Dop-
pler for anatomical reference. 
The lower image illustrates the 
severe aortic stenosis that was 
observed in all TAC operated 
mice
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since although more Mt-CK-OE mice survived the acute 
compensatory stage following TAC surgery, they were not 
subsequently protected from adverse LV remodelling or con-
tractile dysfunction measured at later time points.

There was a clear trend towards improved early survival 
in the Mt-CK-OE mice (90% vs. 73% for WT), which can 

be attributed to a higher incidence of heart failure in WT 
during the first 10 days. This did not quite reach statistical 
significance, in part, because mortality in the WT group was 
relatively low (cf. [9]), which inevitably limits the potential 
effect size and therefore the power of the study to detect it. It 
is therefore possible and plausible that OE mice are partially 
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Fig. 3  Left ventricular haemodynamics and organ weights obtained 
6 weeks after sham or transverse aortic constriction (TAC). a Heart 
rate, b LV end-systolic pressure, c LV end-diastolic pressure, d iso-
volumetric constant of relaxation, tau, as a measure of relaxation, e 
the rate of pressure rise maximum (dP/dtmax) as a measure of con-
tractility, f dP/dtmax during IV infusion with dobutamine at 16  ng/g 
BW/min as a measure of contractile reserve. Organ weights were 
obtained post-mortem and normalised to tibial length for g left ven-
tricle, h right ventricle and i lung weight. Directional changes for all 

parameters are consistent with severe LV hypertrophy and subsequent 
development of a heart failure phenotype in TAC animals, which was 
not affected by genetic modification. Data shown are mean ± stand-
ard error for WT-Sham n = 10, OE-Sham n = 12, WT-TAC n = 14; 
OE-TAC n = 19. Analysis by one-way ANOVA with Sidek’s multiple 
comparison test, except for data shown in panels b, f, h, and i, which 
failed the normality test and were analysed by Kruskal–Wallis with 
Dunn’s correction
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protected during the early period of adaptation to acute 
pressure overload, since workload, and therefore energetic 
requirements, are high while compensatory adaptations are 
still developing. This would not be detected by our in vivo 
assessments at 3 and 6 weeks and therefore further studies 
of this early response are merited.

We cannot rule out that survival bias may have influ-
enced the later time points. For instance, if mice survived 
that would otherwise have died during the acute phase, then 
we would expect them to show more severe indices of heart 
failure. This could explain why Mt-CK-OE hearts exhibited 
greater LV dilatation and were more likely to spontaneously 
stop beating during the stress of haemodynamic assessment.

In all chronic heart failure studies of this type, these is a 
trade-off between animal welfare and the length of follow-
up. It could be argued that the extent of heart failure was 
not severe enough or sufficiently prolonged, since we did 
not observe high mortality or large falls in total CK activity 
or in myocardial creatine levels [Cr]. In this context, was 
the energetic deficit too mild to demonstrate a rescue? One 
consideration is the presence of a missense mutation in nico-
tinamide nucleotide transhydrogenase (Nnt) in the C57BL/6J 
strain, which has been shown to reduce oxidative stress and 
ameliorate heart failure induced by TAC [37]. However, this 
is not a factor here, since our transgenic mice and controls 
were created from the C57BL/6JOlaHsd substrain, which 
does not harbour the Nnt mutation [8]. Our previous experi-
ence of the TAC model has shown that CK system changes 
only occur in the most severely affected mice, i.e. those with 
evidence of pulmonary congestion [22]. Even then we only 
observed a relatively modest 11% fall in total [Cr], which 
appears to reflect the lower starting values in this species. 
In the current study we observe a sizeable subset of animals 
with elevated lung weights suggesting pulmonary congestion 
and elevated RV weights indicating prolonged elevation of 
LV diastolic pressures. Indeed, the values for haemodynamic 

Table 1  LV myocardial enzyme 
activities and creatine levels

Data are mean ± SEM and expressed per milligram of protein. *P < 0.05 and **P < 0.01 for WT-Sham vs 
OE-Sham; #P < 0.05 for OE-Sham vs OE-TAC; §P < 0.05 WT-TAC vs OE-TAC by one-way ANOVA and 
Sidak’s multiple comparison test

WT-Sham
(n = 10)

OE-Sham
(n = 11)

WT-TAC 
(n = 17)

OE-TAC 
(n = 20)

Total CK (IU/mg protein) 6.36 ± 0.42 8.74 ± 0.64** 6.14 ± 0.36 6.85 ± 0.37#

Mt-CK (IU/mg protein) 1.60 ± 0.20 2.02 ± 0.20 1.14 ± 0.11 1.58 ± 0.09§

MM-CK (IU/mg protein) 4.36 ± 0.43 6.15 ± 0.49* 4.69 ± 0.29 4.93 ± 0.36
MB-CK (IU/mg protein) 0.36 ± 0.07 0.55 ± 0.13 0.23 ± 0.02 0.28 ± 0.02#

BB-CK (IU/mg protein) 0.03 ± 0.01 0.02 ± 0.01 0.08 ± 0.02 0.06 ± 0.01
Citrate synthase (IU/mg protein) 0.75 ± 0.05 0.81 ± 0.07 0.69 ± 0.05 0.66 ± 0.06
Total creatine (nmol/mg protein) 59 ± 2 66 ± 3 56 ± 3 58 ± 3

A B

C D

E F

Fig. 4  Cardiac energetics 6  weeks after sham or transverse aortic 
constriction (TAC). a Estimate of maximal Mt-CK reaction velocity 
calculated as product of Mt-CK activity and creatine concentration 
in ex  vivo LV tissue. Mean ± standard error from WT-Sham n = 8, 
OE-Sham n = 11, WT-TAC n = 16; OE-TAC n = 15, with one-way 
ANOVA and Sidek’s multiple comparison test *P = 0.03. b Ratio of 
phosphocreatine (PCr) to γATP peak measured in vivo by 31P-MRS. 
Mean ± standard error from WT-Sham n = 6, OE-Sham n = 4, WT-
TAC n = 6; OE-TAC n = 7, with one-way ANOVA and Dunn’s correc-
tion, **P = 0.007. c–f Representative myocardial spectra from each 
of the four experimental groups showing peaks for 2,3-Diphospho-
glycerate (DPG), PCr and the γ, α, and β phosphoryl groups of ATP 
alongside corresponding short-axis scout image
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and echocardiographic parameters are comparable to our 
previous findings suggesting that we do have an effective 
heart failure model [22]. It is probably fair to say that ex vivo 
enzyme activities and substrate pools are the least sensitive 
measures of energetic status [25].

For this reason, we also estimated maximal reaction 
velocity by multiplying CK activity by total [Cr], which 
takes into account changes in both enzyme and substrate, 
since these are the major determinants of the rate equation 
[14, 45]. The expected drop in reaction velocity following 
TAC was observed in both genotypes, but absolute values 
remained supra-physiological in Mt-CK-OE hearts. In an 
independent experiment, we also performed in vivo 31P-
MRS in these transgenic mice for the first time and showed 
that PCr/ATP ratio was not altered in the sham animals, but 
that Mt-CK-OE completely prevented the fall in PCr/ATP 
commonly observed in the failing heart. The absolute values 
obtained and the size of PCr/ATP reduction is comparable to 
other published values for pressure overload in human and 
mouse [10, 11, 29, 30].

A key question arising from this study is why improved 
energetics did not translate into improved cardiac func-
tion? One possibility is that overexpression of Mt-CK-OE 
had unknown confounding effects on mitochondria that an 
improvement in energetics could not overcome. Although we 
cannot rule this out, it seems unlikely, since we have previ-
ously shown that Mt-CK-OE does not affect mitochondrial 
cell density, citrate synthase activity, or mitochondrial respi-
ration. Metabolomics indicated normal cellular metabolism 
and expression of closely associated proteins, ANT, VDAC, 
and BCL-2 were not significantly altered [48]. However, 
since Mt-CK-OE inhibits mPTP opening, our data raise the 
possibility that prolonged inhibition might be deleterious in 
the TAC model.

Similarly, Mt-CK could have increased reactive oxygen 
species (ROS) or provided a target for oxidative damage 
that added to the cumulative burden. It is a limitation of our 
study that we did not quantify the effects of Mt-CK-OE on 
oxidative stress, however, we have previously found no dif-
ference in mitochondrial proton leak and uncoupling, which 
suggests the major source of cellular ROS is unlikely to be 
different [48]. Mt-CK has also been found to reduce (rather 
than increase) ROS formation under stress conditions [31]. 
Furthermore, Mt-CK protein is very sensitive to oxidative 
damage and this is reflected in reduced Mt-CK activity [42], 
yet in the current study, the Mt-CK activity compared to 
sham was 0.46 IU/mg lower in WT compared to 0.44 IU/
mg in Mt-CK-OE hearts. This suggests that mitochondrial 
exposure to ROS was similar in both heart failure groups.

There is no doubt that PCr/ATP is an important biomarker 
for the energetic status of the heart. Multiple studies across 
species and aetiologies have demonstrated that PCr/ATP 
correlates with measures of cardiac workload, e.g. ejection 

fraction and wall stress [16, 30, 33, 35]. Improvement in 
clinical condition is also often tracked by improvement in 
PCr/ATP [29, 33, 36].

However, PCr/ATP simply reflects relative metabolite 
pools and is not a specific marker. For example, the fall 
in this ratio is underestimated in advanced heart failure if 
both PCr and ATP levels are reduced [25]. PCr/ATP lev-
els are affected by multiple conditions, often before overt 
contractile dysfunction is evident, e.g. in type 2 diabetes 
[39], hypertension [16], and obesity [38]. PCr/ATP may also 
change acutely, e.g. falling in response to increased work-
load in hearts with pre-existing disease [38].

It should, therefore, not come as a surprise that we occa-
sionally observe a large disconnect between PCr/ATP lev-
els and outcomes. For example, in pressure overload mice 
(TAC model) a maximal reduction in PCr/ATP was already 
observed at 3 weeks, but contractile function continued to 
decline and only correlated with PCr/ATP at 6 weeks [30]. 
Conversely, in the same TAC model by a different group, 
contractile dysfunction preceded the fall in PCr/ATP by 
11 weeks [1]. Perhaps the most egregious example is in mice 
null for the GLUT4 transporter, which develop LV hypertro-
phy and depressed ejection fraction despite myocardial PCr/
ATP that is 60% higher [46].

It is also notable that low PCr/ATP does not per se 
result in contractile dysfunction. Mice fed a high-fat, high-
sucrose diet had a 30% reduction in PCr/ATP, but this did 
not adversely affect function under resting conditions [17]. 
Similarly, diabetic db/db mice were shown to have a low 
PCr/ATP early on when cardiac function was normal, but 
11 weeks later, function had deteriorated at a time when 
PCr/ATP improved [1, 19].

It is a strength of our study that 31P-MRS was performed 
in vivo at physiological workloads, but ideally we would 
have liked to measure CK flux by saturation transfer, since 
this is considered a more sensitive indicator than PCr/ATP 
in chronic heart failure [3, 25]. However, the technical capa-
bility in murine heart was not available to us at the time 
of this study and there are very few groups worldwide that 
can. Nevertheless, our study shows for the first time that 
a metabolic intervention effective at preserving PCr/ATP 
is not sufficient in itself to protect the pressure-overloaded 
heart from developing CHF. The sole use of PCr/ATP to 
identify potential new therapeutic agents should therefore 
be approached with caution.

Our findings are in contrast to transgenic mice overex-
pressing the muscle isoform of CK in the heart (M-CK), 
which were shown to have reduced mortality and improved 
systolic function in the TAC model [9]. This was associated 
with relative preservation of PCr/ATP levels and CK flux 
that was maintained at control levels. The reasons for this are 
not immediately apparent, it is notable that protein expres-
sion of Mt-CK was found to be the main determinant of PCr/
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ATP and of CK flux in a porcine model of pressure overload 
[49]. This is supported by our own findings and we would 
therefore expect augmentation of Mt-CK to be a particularly 
attractive strategy. Perhaps the simplest explanation is one 
of gene dosing, the M-CK-OE model had ~ 70% increase in 
total CK activity, whereas it was only 37% higher in our Mt-
CK-OE mouse hearts. This was a deliberate strategy on our 
part, since we were concerned at the potential detrimental 
effects of expressing too much transgenic protein within a 
small cellular compartment. However, while we cannot rule 
out that greater Mt-CK expression would bring benefits, this 
seems unlikely given that we successfully maintained PCr/
ATP and CK reaction velocity at normal levels and this level 
of Mt-CK overexpression is sufficient to protect against I/R 
injury [48]. It is possible that the key difference relates to 
how well ADP is buffered at the myofilaments, since this 
depends on the activity of cytosolic creatine kinases (pre-
dominantly M-CK), which are typically impaired in heart 
failure and would not be improved by Mt-CK overexpres-
sion. ADP levels are not readily detectable by in vivo 31P-
MRS, but experiments ex vivo have shown that elevated 
ADP is enough to cause diastolic dysfunction, particularly 
in the presence of  Ca2+ overload [41, 44]. It may therefore 
be insufficient to only correct PCr/ATP and there may be 
synergy in increasing activity of both mitochondrial- and 
M- CK isoforms together.

Our findings add to the debate on whether impairment 
of the CK system has a causative role in heart failure pro-
gression, which we have previously reviewed in detail [26]. 
The fact that preventing these changes did not positively 
influence pathophysiology argues against causation, which 
is in agreement with our previous studies in several knockout 
models [5, 20, 23].

In conclusion, overexpression of Mt-CK in the heart suc-
cessfully maintained key markers of cardiac energetics at 
or above normal control values. That this was insufficient 
to improve LV remodelling or function during the develop-
ment of chronic heart failure shows that normalisation of 
PCr/ATP and mitochondrial creatine kinase levels are not 
in themselves curative. Nevertheless, we observed a trend 
for improved survival during the acute compensatory phase, 
which suggests a focus for future study.
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