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Event-Triggered H∞ Control: a Switching Approach
Anton Selivanov and Emilia Fridman, Senior Member, IEEE

Abstract—Event-triggered approach to networked control sys-
tems is used to reduce the workload of the communication
network. For the static output-feedback continuous event-trigger
may generate an infinite number of sampling instants in finite
time (Zeno phenomenon) what makes it inapplicable to the
real-world systems. Periodic event-trigger avoids this behavior
but does not use all the available information. In the present
paper we aim to exploit the advantage of the continuous-time
measurements and guarantee a positive lower bound on the inter-
event times by introducing a switching approach for finding a
waiting time in the event-triggered mechanism. Namely, our idea
is to present the closed-loop system as a switching between the
system under periodic sampling and the one under continuous
event-trigger and take the maximum sampling preserving the
stability as the waiting time. We extend this idea to the L2-
gain and ISS analysis of perturbed networked control systems
with network-induced delays. By examples we demonstrate that
the switching approach to event-triggered control can essentially
reduce the amount of measurements to be sent through a
communication network compared to the existing methods.

I. INTRODUCTION

NETWORKED control systems (NCS), that are comprised

of sensors, actuators, and controllers connected through

a communication network, have been recently extensively

studied by researchers from a variety of disciplines [2]–[5].

One of the main challenges in such systems is that only

sampled in time measurements can be transmitted through a

communication network. Namely, consider the system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

with a state x ∈ R
n, input u ∈ R

m, and output y ∈ R
l.

Assume that there exists K ∈ R
m×l such that the control

signal u(t) = −Ky(t) stabilizes the system (1). In NCS

the measurements can be transmitted to the controller only

at discrete time instants

0 = s0 < s1 < s2 < . . . , lim
k→∞

sk = ∞. (2)

Therefore, the closed-loop system has the form

ẋ(t) = Ax(t)−BKCx(sk), t ∈ [sk, sk+1), k ∈ N0, (3)

where N0 is the set of nonnegative integers. There are different

ways of obtaining the sequence of sampling instants sk that

preserve the stability. The simplest approach is periodic sam-

pling where one chooses sk = kh with appropriate period h.

Under periodic sampling the measurements are sent even

when the output fluctuation is small and does not significantly
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change the control signal. To avoid these “redundant” packets

one can use continuous event-trigger [6], where

sk+1 = min{t > sk | (y(t)− y(sk))
TΩ(y(t)− y(sk))

≥ εyT (t)Ωy(t)} (4)

with a matrix Ω ≥ 0 and a scalar ε > 0. In case of a static

output-feedback execution times sk, implicitly defined by (4),

can be such that limk→∞ sk < ∞ [7]. That is, an infinite

number of events is generated in finite time what makes (4)

inapplicable to NCS. To avoid this Zeno phenomenon one can

use periodic event-trigger [8]–[11] by choosing

sk+1 = min{sk + ih | i ∈ N, (y(sk + ih)− y(sk))
TΩ×

(y(sk + ih)− y(sk)) > εyT (sk + ih)Ωy(sk + ih)}. (5)

This approach guarantees that the inter-event times are at

least h and fits the case where the sensor measures only

sampled in time outputs y(ih).
However, when the continuous measurements are available

one can use this additional information to improve the control

algorithm. In [12]–[14] the following strategy of choosing the

sampling instants has been considered:

sk+1 = min{t ≥ sk + T | η ≥ 0}, (6)

where T > 0 is a constant waiting time and η is an event-

trigger condition. In [13], [14] the value of T that preserves

the stability was obtained by solving a scalar differential

equation. For η = |y(t) − y(tk)| − C with a constant C
some qualitative results concerning practical stability have

been obtained in [12].

In this work we propose a new constructive and efficient

method of finding an appropriate waiting time. Our idea is

to present the closed-loop system as a switching between the

system under periodic sampling and the one under continuous

event-trigger and take the maximum sampling preserving

the stability as a waiting time. We extend this idea to the

systems with network-induced delays, external disturbances,

and measurement noise (Section III). Differently from [8],

[12]–[14] our method is applicable to uncertain linear systems

and the waiting time is found from LMIs. Comparatively to

periodic event-trigger of [9]–[11] our method leads to error

separation between the system under periodic sampling and

the one under continuous event-trigger that allows for larger

sampling periods for the same values of the event-trigger

parameter ε. The latter allows to reduce the amount of sent

measurements as illustrated by examples brought from [7] and

[15] (Section IV).

II. A SWITCHING APPROACH TO EVENT-TRIGGER

Consider (1). Assume that there exists K such that A −
BKC is Hurwitz. For C = I such K exists if (A,B) is
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stabilizable. For the static output-feedback case such K exists

if the transfer function C(sI − A)−1B is hyper-minimum-

phase (has stable zeroes and positive leading coefficient of

the numerator, see, e.g., [16]). Assume that the measurements

are sent at time instants (2). The closed-loop system (3) can

be rewritten in the form

ẋ(t) = (A−BKC)x(t)−BKe(t), (7)

where e(t) = y(sk) − y(t) for t ∈ [sk, sk+1). In the case of

periodic sampling sk = kh, e(t) is the error due to sampling

that can be presented as [17]

e(t) = −C

∫ t

t−τ(t)

ẋ(s) ds,

τ(t) = t− kh, t ∈ [kh, (k + 1)h), k = 0, 1, . . .

(8)

In the case of continuous event-trigger, e(t) is the error due

to triggering that can be bounded using relation (4) [6].

Under periodic sampling (leading to (7), (8)) “redundant”

packets can be sent while continuous event-trigger (that leads

to (4), (7)) can cause Zeno phenomenon. To avoid the above

drawbacks periodic event-trigger (5) can be used, where the

closed-loop system can be written as

ẋ(t)=(A−BKC)x(t)+BKC

∫ t

t−τ(t)

ẋ(s) ds−BKe(t) (9)

with τ(t) = t − sk − ih ≤ h, e(t) = y(sk) − y(sk + ih) for

t ∈ [sk + ih, sk + (i+1)h), i ∈ N0 such that sk + (i+1)h ≤
sk+1. As one can see, (9) contains both error due to sampling

(the integral term) and the error due to triggering e(t) what

makes it more difficult to ensure the stability of (9) compared

to (7) with only one error.

We propose an event-trigger that allows to separate these

errors by considering the switching between periodic sampling

and continuous event-trigger. Namely, after the measurement

has been sent, the sensor waits for at least h seconds (that

corresponds to T in (6)). During this time the system is

described by (7), (8). Then the sensor begins to continuously

check the event-trigger condition and sends the measurement

when it is violated. During this time the system is described

by (7) with e(t) satisfying the event-trigger condition. This

leads to the following choice of sampling:

sk+1 = min{s ≥ sk + h | (y(s)− y(sk))
TΩ(y(s)− y(sk))

≥ εyT (s)Ωy(s)} (10)

with a matrix Ω ≥ 0 and scalars ε ≥ 0, h > 0, where the

inter-event times are not less than h. The system (3), (10) can

be presented as a switching between (7), (8) and (4), (7):

ẋ(t) = (A−BKC)x(t) + χ(t)BKC

∫ t

t−τ(t)

ẋ(s) ds

− (1− χ(t))BKe(t), (11)

where

χ(t) =

{

1, t ∈ [sk, sk + h),

0, t ∈ [sk + h, sk+1),

τ(t) = t− sk ≤ h, t ∈ [sk, sk + h),

e(t) = y(sk)− y(t), t ∈ [sk + h, sk+1).

(12)

By using the functional V = xTPx+ χ(VU + VX), where

VU and VX are defined in (13) and (26) of [18], the following

stability conditions can be derived (see [1] for the proof).

Theorem 1: For given scalars h > 0, ε ≥ 0, δ > 0 let there

exist n × n matrices P > 0, U > 0, X , X1, P2, P3, Y1, Y2,

Y3 and l × l matrix Ω ≥ 0 such that

Ξ > 0, Ψ0 ≤ 0, Ψ1 ≤ 0, Φ ≤ 0, (13)

where

Ξ=

[

P + hX+XT

2 hX1 − hX

∗ −hX1 − hXT
1 + hX+XT

2

]

,

Φ=





Φ11 Φ12 −PT
2 BK

∗ −PT
3 − P3 −PT

3 BK
∗ ∗ −Ω



 ,

Ψ0=





Ψ11 −Xδ Ψ12 + hX+XT

2 Ψ13 +X1δ

∗ Ψ22 + hU Ψ23 − h(X −X1)
∗ ∗ Ψ33 −X2δ|τ=0



 ,

Ψ1=









Ψ11 −
X+XT

2 Ψ12 Ψ13 +X −X1 hY T
1

∗ Ψ22 Ψ23 hY T
2

∗ ∗ Ψ33 −X2δ|τ=h hY T
3

∗ ∗ ∗ −hUe−2δh









,

Φ11 = PT
2 (A−BKC)+(A−BKC)TP2+εC

TΩC+2δP,
Φ12 = P + (A−BKC)TP3 − PT

2 ,
Ψ11 = ATP2 + PT

2 A+ 2δP − Y1 − Y T
1 ,

Ψ12 = P − PT
2 +ATP3 − Y2,

Ψ13 = Y T
1 − PT

2 BKC − Y3,
Ψ22 = −P3 − PT

3 ,
Ψ23 = Y T

2 − PT
3 BKC,

Ψ33 = Y3 + Y T
3 ,

Xδ = (1/2− δh)(X +XT ),
X1δ = (1− 2δh)(X −X1),
X2δ = (1/2− δ(h− τ))(X +XT − 2X1 − 2XT

1 ).

Then the system (3) under the event-trigger (10) is exponen-

tially stable with a decay rate δ.

Remark 1: Using the functional of Theorem 1 with χ = 1
the following result is obtained [1]:

For given scalars h > 0, ε ≥ 0, δ > 0 let there exist n× n
matrices P > 0, U > 0, X , X1, P2, P3, Y1, Y2, Y3 and l × l
matrix Ω ≥ 0 such that

Ξ > 0,








−PT
2 BK

Ψi −PT
3 BK
0

∗ −Ω









+ ε[In 0]
TCTΩC[In 0] ≤ 0, i = 0, 1.

(14)

Then the system (3) under periodic event-trigger (5) is expo-

nentially stable with a decay rate δ.

Remark 2: The feasibility of (14) implies the feasibility

of (13). Therefore, the stability of (3) under (10) can be

guaranteed for not smaller h and ε than under (5). Examples

in Section IV show that these values under (10) are essentially

larger what allows to reduce the amount of sent measurements.

Note that for the same h, ε, and Ω the amount of sent

measurements under periodic event-trigger (5) is deliberately
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Fig. 1. A system with network-induced delays

less than under (10). Indeed, if the measurement is sent at sk
and the event-trigger rule is satisfied at sk+h, according to (5)

the sensor will wait till at least sk+2h before sending the next

measurement, while according to (10) the next measurement

can be sent before sk + 2h.

III. EVENT-TRIGGER UNDER NETWORK-INDUCED DELAYS

AND DISTURBANCES

Consider the system

ẋ(t) = Ax(t) +B1w(t) +B2u(t),

z(t) = C1x(t) +D1u(t),

y(t) = C2x(t) +D2v(t)

(15)

with a state x ∈ R
n, input u ∈ R

m, controlled output z ∈ R
nz ,

measurements y ∈ R
l, and disturbances w ∈ R

nw , v ∈ R
nv .

Denote by ηk ≤ ηM the overall network-induced delay

from the sensor to the actuator that affects the transmitted

measurement y(sk) (see Fig. 1). Here sk is a sampling instant

on the sensor side. We assume that ηk are such that the ZOH

updating times tk = sk + ηk satisfy

tk = sk + ηk ≤ sk+1 + ηk+1 = tk+1, k ∈ N0. (16)

Then the system (15) with u(t) = Ky(sk) for t ∈ [tk, tk+1)
has the form

ẋ(t)=Ax(t)+B1w(t)+B2K[C2x(tk−ηk)+D2v(tk−ηk)],

z(t)=C1x(t) +D1K[C2x(tk − ηk) +D2v(tk − ηk)].
(17)

Similar to Section II we would like to present the resulting
closed-loop system (10), (17) as a system with periodic
sampling for t ∈ [tk, tk+h) (i.e. t ∈ [sk+ηk, sk+ηk+h)) and
as a system with continuous event-trigger for t ∈ [tk+h, tk+1).
If tk + h = sk + ηk + h > sk+1 + ηk+1 = tk+1 (what
may happen due to the communication delay ηk) no switching
occurs. Therefore, the system (10), (17) can be presented as

ẋ(t)=Ax(t)+B1w(t)+χ(t)B2K[C2x(t− τ(t))+D2v(t−τ(t))]

+ (1− χ(t))B2K[C2x(t− η̄(t)) +D2v(t− η̄(t)) + e(t)],

z(t)=C1x(t) + χ(t)D1K[C2x(t− τ(t)) +D2v(t− τ(t))]

+ (1− χ(t))D1K[C2x(t− η̄(t)) +D2v(t− η̄(t)) + e(t)],
(18)

where

χ(t) =

{

1, t ∈ [tk,min{tk + h, tk+1}),

0, t ∈ [min{tk + h, tk+1}, tk+1),

τ(t) = t− sk, t ∈ [tk,min{tk + h, tk+1}),

e(t) = y(sk)− y(t− η̄(t)), t ∈ [min{tk + h, tk+1}, tk+1).

Fig. 2. Switching between the subsystems of (18)

Here τ(t) ≤ h+ηM , τM and η̄(t) ∈ [0, ηM ] is a “fictitious”

delay to be defined hereafter.

Consider the case where tk +h < tk+1 (see Fig. 2). To use

the event-trigger condition we would like to choose such η̄(t)
that (10) implies

0 ≤ ε[C2x(t− η̄(t)) +D2v(t− η̄(t))]TΩ×

[C2x(t− η̄(t)) +D2v(t− η̄(t))]− eT (t)Ωe(t) (19)

for t ∈ [tk + h, tk+1). Relation (19) is true if t − η̄(t) ∈
[sk + h, sk+1) for t ∈ [tk + h, tk+1). Therefore, the simplest

choice of η̄(t) is a linear function with η̄(tk + h) = ηk and

η̄(tk+1) = ηk+1, i.e. for t ∈ [min{tk + h, tk+1}, tk+1)

η̄(t) =
tk+1 − t

tk+1 − tk − h
ηk +

t− tk − h

tk+1 − tk − h
ηk+1.

Though for both χ(t) = 0 and χ(t) = 1 the system (18)

includes time-delays, the upper bound ηM for η̄(t) is smaller

than τM since τ(t) includes the delay due to sampling.

We say that the system (10), (17) is internally exponentially

stable if it is exponentially stable with w(t) ≡ 0, v(t) ≡ 0.

Let us extend the definition of τ(t) by setting τ(t) = η̄(t) for

t ∈ [min{tk + h, tk+1}, tk+1). We say that the system (10),

(17) has an L2-gain (H∞ gain) less than γ if for the zero

initial condition x(0) = 0 and all w, v ∈ L2[0,∞) such that

wT (t)w(t)+vT (t−τ(t))v(t−τ(t)) 6≡ 0 the following relation

holds on the trajectories of (10), (17):

J =

∫

∞

0

{

zT (t)z(t)− γ2[wT (t)w(t)

+ vT (t− τ(t))v(t− τ(t))]
}

dt < 0. (20)

Theorem 2: For given γ > 0, h > 0, ηM ≥ 0, ε ≥ 0, δ > 0
let there exist n×n matrices P > 0, S0 ≥ 0, S1 ≥ 0, R0 ≥ 0,

R1 ≥ 0, G1, G0 and l × l matrix Ω ≥ 0 such that

Ψ ≤ 0, Φ ≤ 0,

[

R0 G0

GT
0 R0

]

≥ 0,

[

R1 G1

GT
1 R1

]

≥ 0,

(21)

where Ψ = {Ψij} and Φ = {Φij} are symmetric matrices

composed from the matrices

Ψ11=Φ11=A
TP+PA+2δP+S0−e

−2δηMR0+C
T
1 C1,

Ψ12=e
−2δηMR0,

Ψ14=PB2KC2 + CT
1 D1KC2,

Ψ15=Φ16=PB1,
Ψ16 = Φ17 = PB2KD2 + CT

1 D1KD2,
Ψ17=Φ18=A

TH,
Ψ23=e

−2δτMG1,
Ψ24=e

−2δτM (R1 −G1),
Ψ22=Φ22 = e−2δηM (S1 − S0 −R0)− e−2δτMR1,
Ψ33=Φ33=−e−2δτM (R1 + S1),
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Ψ34=e
−2δτM (R1 −GT

1 ),
Ψ44=e

−2δτM (G1 +GT
1 − 2R1) + (D1KC2)

TD1KC2,
Ψ46=(D1KC2)

TD1KD2,
Ψ47=Φ48 = (B2KC2)

TH,
Ψ55=Φ66=−γ2I,
Ψ57=Φ68=B

T
1 H,

Ψ77=Φ88=−H,
Ψ66=(D1KD2)

TD1KD2 − γ2I,
Ψ67=Φ78=(B2KD2)

TH,
Φ12=e

−2δηMG0,
Φ23=e

−2δτMR1,
Φ24=e

−2δηM (R0 −GT
0 ),

Φ14=PB2KC2 + e−2δηM (R0 −G0) + CT
1 D1KC2,

Φ15=PB2K + CT
1 D1K,

Φ45=(D1KC2)
TD1K,

Φ44=e
−2δηM(G0+G

T
0−2R0)+(D1KC2)

TD1KC2+εC
T
2 ΩC2,

Φ47=(D1KC2)
TD1KD2 + εCT

2 ΩD2,
Φ58=(B2K)TH,
Φ55=(D1K)TD1K − Ω,
Φ57=(D1K)TD1KD2,
Φ77=(D1KD2)

TD1KD2 + εDT
2 ΩD2 − γ2I,

H=η2MR0 + h2R1,

τM = h+ηM , other blocks are zero matrices. Then the system

(17) under the event-trigger (10) is internally exponentially

stable with a decay rate δ and has L2-gain less than γ.

Proof: See Appendix.

Corollary 1: If (21) are valid with C1 = 0, D1 = 0 then

the system (18) under the event-trigger (10) is Input-to-State

Stable with respect to w̄(t) = col{w(t), v(t− τ(t))}.

Proof: If w̄T (t)w̄(t) is bounded by ∆2 then (28) (see

Appendix) with C1 = 0, D1 = 0 transforms to V̇ ≤ −2δV +
γ2∆2. This implies the assertion of the corollary.

Remark 3: The system (17) under periodic event-trigger (5)

can be presented in the form (18) with χ = 0 and η̄(t) ≤ τM .

By modifying the proof of Theorem 2 one can obtain the

stability conditions using the functional (23) with arbitrary

chosen “delay partitioning” parameter ηM ∈ (0, τM ) [19],

[20].

Remark 4: Though there are no universal methods of finding

optimal event-trigger parameters h and ε, for practical use, one

can find the maximum h∗ that ensures stability of a system

under periodic sampling (by using Theorem 1 or 2 with ε = 0)

and calculate the maximum ε > 0 for some h < h∗
Remark 5: The proposed approach can be easily extended

to cope with packet dropouts with bounded amount of consec-

utive packet losses. Consider the unreliable network with the

maximum number of consecutive packet losses dsc (from the

sensor to the controller) and dca (from the controller to the

actuator). To cope with this issue we set the sensor to send the

measurement y(sk) d
sc+1 times at time instants sk+ihd/d

sc,

where i = 0, . . . , dsc, hd > 0. The same strategy is applied

to the data sent from the controller. Denote by rsck and rcak
network delays that correspond to the first successfully sent

packets. Then the closed-loop system is given by (17) with

ηk = (dsck /d
sc + dcak /d

ca)hd + rsck + rcak ≤ ηM ,

where dsck and dcak are the actual amounts of consecutive

packets that were lost. If rsck + rcak < ηM one can choose

TABLE I
AVERAGE AMOUNTS OF SENT MEASUREMENTS (SM)

ε h SM

Periodic sampling — 1.173 18

Event-trigger (5) 4.6× 10
−3

1.115 17.47

Event-trigger (5) 0.555 0.344 24.8

Switching approach (10) 0.555 0.899 11.13

hd > 0 such that ηk ≤ ηM and apply the results of this

section. This approach can be improved by introducing the

acknowledgement signal of successful reception as suggested

in [21]. Such improvement is a possible direction of the future

work.

Remark 6: Differently from periodic event-trigger approach

considered in [8] our method is applicable to linear systems

with polytopic-type uncertainties, since LMIs of Theorems 1

and 2 are affine in A, B, B1, and B2.

IV. NUMERICAL EXAMPLES

Example 1 [7]. Consider the system (3) with

A =

[

0 1
0 −3

]

, B =

[

0
1

]

, C =
[

1 0
]

, K = 3. (22)

As it has been shown in [7] for this system an accumulation

of events occurs under continuous event-trigger (4). In what

follows we compare three approaches of choosing the sam-

pling instants sk: periodic sampling with sk = kh, periodic

event-trigger (5), and switching event-trigger (10).

For ε = 0 (10) transforms into periodic sampling, therefore,

Theorem 1 can be used to obtain the maximum period h.

Under periodic sampling the amount of sent measurements

is
[

Tf

h

]

+ 1, where Tf is the time of simulation and [·] is

the integer part of a given number. To obtain the amount of

sent measurements for sk given by (5) (or (10)), for each

ε = i× 10−4 (i = 0, 1, . . . , 104) we find the maximum h that

satisfies Remark 1 (or Theorem 1) and for each pair of (ε, h)
we perform numerical simulations for several initial conditions

given by (x1(0), x2(0)) = (10 cos(2πk/30), 10 sin(2πk/30))
with k = 1, . . . , 30. Then we choose the pair (ε, h) that en-

sures the minimum average amount of sent measurements. The

obtained average amount of sent measurements for δ = 0.24
and Tf = 20 are presented in Table I. As one can see periodic

event-trigger (5) does not give any significant improvement

compared to periodic sampling, while the switching event-

trigger (10) allows to reduce the network workload by al-

most 40%. Note that for the same value of ε the value of

h obtained for switching event-trigger (10) is more than 2.5
times larger than the one for periodic event-trigger (5).

Example 2 [15]. Consider an inverted pendulum on a cart

described by (3) with

A =









0 1 0 0
0 0 −1 0
0 0 0 1
0 0 10/3 0









, B =









0
0.1
0

−1/30









, C = I.

For K = −[2, 12, 378, 210] Theorem 1 gives h = 0.242,

ε = 0.35. According to the numerical simulations, performed
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TABLE II
AMOUNTS OF SENT MEASUREMENTS (SM)
WITH TIME-DELAYS AND DISTURBANCES

ε h SM

Periodic sampling — 0.091 330

Event-trigger (5) 0.033 0.036 195

Event-trigger (10) 0.044 0.065 173

for Tf and x(0) from [15], the average release period under

switching event-trigger (10) is 0.5769, which is larger than

0.5131 obtained for the same system in [10] (where the

average release period is larger than in [15], [22]–[24]).

Consider the system (17) with the same A, BT
1 = C1 =

[1, 1, 1, 1], B2 = B, C2 = I , D1 = 0.1, D2 = [0, 0, 0, 0], K =
[2.9129, 10.4357, 287.9029, 160.3271]. For γ = 200, ηM =
0.1 Theorem 2 (with δ = 0) gives h = 0.117, ε = 0.13. From

the numerical simulations, performed for Tf and w(t) from

[10], we obtained an average release period 0.3488, which is

larger than 0.3098 obtained for the same system in [10] (where

the average release period is larger than the one obtained in

[15] for a different controller gain).

For γ = 100 in a manner similar to Example 1 we obtained

the amount of sent measurements presented in Table II. As

one can see both event-triggers reduce the network workload

and switching event-trigger (10) allows to reduce the amount

of sent measurements by more than 11% compared to periodic

event-trigger (5).

V. CONCLUSION

We proposed a new approach to event-triggered control

under the continuous-time measurements that guarantees a

positive lower bound for inter-event times and can significantly

reduce the workload of the network. Our idea is based on a

switching between periodic sampling and continuous event-

trigger. We extended this approach to the L2-gain and ISS

analyses of perturbed NCS with network-induced delays.

Our results are applicable to linear systems with polytopic-

type uncertainties. The presented method can be extended to

nonlinear NCSs that may be a topic for the future research.

APPENDIX

PROOF OF THEOREM 2

The system (10), (17) is rewritten as (18). Similar to [19]

we consider Lyapunov functional

V =VP + VS0
+ VS1

+ VR0
+ VR1

, (23)

where xt(θ) = x(t + θ) for θ ∈ [−h, 0], VP (xt) =
xT (t)Px(t),

VS0
(t, xt) =

∫ t

t−ηM

e2δ(s−t)xT (s)S0x(s) ds,

VR0
(t, xt) = ηM

∫ 0

−ηM

∫ t

t+θ

e2δ(s−t)ẋT (s)R0ẋ(s) ds dθ,

VS1
(t, xt) =

∫ t−ηM

t−τM

e2δ(s−t)xT (s)S1x(s) ds,

VR1
(t, xt) = h

∫

−ηM

−τM

∫ t

t+θ

e2δ(s−t)ẋT (s)R1ẋ(s) ds dθ.

By differentiating these functionals we obtain

V̇S0
= −2δVS0

+ xT (t)S0x(t)

− e−2δηMxT (t− ηM )S0x(t− ηM ),

V̇S1
= −2δVS1

+ e−2δηMxT (t− ηM )S1x(t− ηM )

− e−2δτMxT (t− τM )S1x(t− τM ),

V̇R0
= −2δVR0

+ η2M ẋ
T (t)R0ẋ(t)

− ηM

∫ t

t−ηM

e2δ(s−t)ẋT (s)R0ẋ(s) ds,

V̇R1
= −2δVR1

+ h2ẋT (t)R1ẋ(t)

− h

∫ t−ηM

t−τM

e2δ(s−t)ẋT (s)R1ẋ(s) ds.

(24)

A. System (18) with χ(t) = 0, η̄(t) ∈ [0, ηM ]. We have

V̇P = 2xT (t)P [Ax(t) +B1w(t) +B2KC2x(t− η̄(t))

+B2KD2v(t− η̄(t)) +B2Ke(t)]. (25)

To compensate x(t− η̄(t)) we apply Jensen’s inequality [25]

and Park’s theorem [26] to obtain

− ηM

∫ t

t−ηM

e2δ(s−t)ẋT (s)R0ẋ(s) ds ≤ −e−2δηM×

[

x(t)−x(t−η̄(t))
x(t−η̄(t))−x(t−ηM )

]T[
R0 G0

GT
0 R0

][

x(t)−x(t−η̄(t))
x(t−η̄(t))−x(t−ηM )

]

,

(26)

− h

∫ t−ηM

t−τM

e2δ(s−t)ẋT (s)R1ẋ(s)ds ≤ −e−2δτM×

[x(t− ηM )− x(t− τM )]TR1[x(t− ηM )− x(t− τM )].
(27)

By summing up (19), (24), (25) in view of (26) and (27) and

substituting z from (18) we obtain

V̇ + 2δV + zT z − γ2[wTw + vT (t− η̄(t))v(t− η̄(t))]

≤ ϕT (t)Φ′ϕ(t) + ẋT (t)Hẋ(t),

where ϕ(t) = col{x(t), x(t − ηM ), x(t − τM ), x(t − η̄(t)),
e(t), w(t), v(t − η̄(t))} and the matrix Φ′ is obtained from

Φ by deleting the last block-column and the last block-row.

Substituting expression for ẋ and applying Schur complement

formula we find that Φ ≤ 0 guarantees that

V̇ +2δV +zT z−γ2[wTw+vT (t−τ(t))v(t−τ(t))] ≤ 0. (28)

B. System (18) with χ = 1, τ(t) ∈ (ηM , τM ]. For τ(t) ∈
[0, ηM ] the system (18) with χ = 1 is described by (18) with

χ = 0 and e(t) = 0 satisfying (19). That is, Φ ≤ 0 guarantees

(28) for (18) with χ = 1, τ(t) ∈ [0, ηM ]. Therefore, we study

the system (18) for χ = 1, τ(t) ∈ (ηM , τM ]. We have

V̇P = 2xT (t)P [Ax(t) +B1w(t) +B2KC2x(t− τ(t))

+B2KD2v(t− τ(t))]. (29)
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To compensate x(t − τ(t)) with τ(t) ∈ (ηM , τM ] we apply

Jensen’s inequality and Park’s theorem to obtain

− ηM

∫ t

t−ηM

e2δ(s−t)ẋT (s)R0ẋ(s) ds

≤ −e−2δηM [x(t)− x(t− ηM )]TR0[x(t)− x(t− ηM )],
(30)

− h

∫ t−ηM

t−τM

e2δ(s−t)ẋT (s)R1ẋ(s)ds ≤ −e−2δτM×

[

x(t−ηM )−x(t−τ(t))
x(t−τ(t))−x(t−τM )

]T[
R1 G1

GT
1 R1

][

x(t−ηM )−x(t−τ(t))
x(t−τ(t))−x(t−τM )

]

.

(31)

By summing up (24) and (29) in view of (30) and (31) and

substituting z from (18) we obtain

V̇ + 2δV + zT z − γ2[wTw + vT (t− τ(t))v(t− τ(t))]

≤ ψT (t)Ψ′ψ(t) + ẋT (t)Hẋ(t),

where ψ(t) = col{x(t), x(t − ηM ), x(t − τM ), x(t − τ(t)),
w(t), v(t − τ(t))} and the matrix Ψ′ is obtained from Ψ
by deleting the last block-column and the last block-row.

Substituting expression for ẋ and applying Schur complement

formula we find that Ψ ≤ 0 guarantees (28) for (18) with

χ = 1.

Thus, (28) is true for the switched system (18). For w ≡ 0,

v ≡ 0 (28) implies V̇ ≤ −2δV . Therefore, the system (18)

is internally exponentially stable with the decay rate δ. By

integrating (28) from 0 to ∞ with x(0) = 0 we obtain (20).
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