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ABSTRACT
Software Product Line Engineering (SPLE) is a software reuse par-
adigm for developing software products, from managed reusable
assets, based on analysis of commonality and variability (C & V)
of a product line. Many approaches of SPLE use a feature as a
key abstraction to capture the C&V. Recently, there have been in-
creasing demands for the provision of flexibility about not only
the variability of features but also the variability of when features
should be selected (i.e., variability on feature binding times). Cur-
rent approaches to support variations of feature binding timemostly
focused on ad hoc implementation mechanisms. In this paper, we
first identify the challenges of feature binding time management
and then propose an approach to analyze the variation of feature
binding times and use the results to specify model-based architec-
tural components for the product line. Based on the specification,
components implementing variable features are parameterized with
the binding times and the source codes for the components and the
connection between them are generated.

KEYWORDS
Model-Based Software Product Line;Models and Components; Prod-
uct Line of Product Lines; Variable Binding Time; Feature Binding
Time

1 INTRODUCTION
Software Product Line Engineering (SPLE) is a software reuse par-
adigm for developing software products from managed reusable
assets. The reusable assets are engineered based on analysis of com-
monality and variability (C & V) of a family of software products in
a specific problem area, known as a domain. The approach uses a
feature as a key abstraction [16, 19, 26]. The commonality represents
the set of mandatory features, the shared traits, which manifest in
all the products of the product line. On the other hand, a feature in
the variability category can be one of the optional/alternative fea-
tures or forms a part of an inclusive OR group. Composition rules
are also used to constrain the selection of features in the variability
category. A feature model[20] is widely used to present C & V in-
formation of a product line compactly(see Fig.1 for example). Each
product in the product line is derived from a selection of a valid
combination of features —a process known as product configuration.
The phase, in the product life cycle, of which a feature is selected
and bound to a product is known as feature binding time[31, 33].
Engineers used the results of C & V analyses to design a Product
Line Architecture (PLA) - a generic software architecture that can

EduPL 

Account Creation

Contact Validation

Messaging Service

Text Message Under Graduate
Email

Application

.................

Graduate

Course Registration

Payment
...... .....

Result Computation

Contact Validation Messaging Service

Graduate Payment

Requires

Requires

Legend

Optional

OR group

Alternative Group

Composed-of relationship

Composition Rule

Sub-degree

.......... .........

Figure 1: Partial feature model of EduPl

be tailored to produce a potentially unique architecture for each of
the products of a product line.

1.1 Background
Recently there have been increasing demands for flexibility of not
only the variability of features but also the variability of when
features should be selected (i.e., variability of feature binding time).
This is often the case when products of a product line have to be con-
figured for delivery to multiple product lines[2, 13]. Fig.1 presents
an example of enterprise software for tertiary institutions of an
anonymous country. The product line, referred to as Educational
Product Line (EduPl), was initiated by our partner university in that
country. The vision of the product line is to provide software prod-
ucts to sister universities, other higher institutions, and Enterprise
Resource Planning (ERP) vendors. The educational institutions in
the country have common and centralized regulatory agencies -
which make their core operations largely the same- hence a product
line. In this example, a customer institution placing a direct order,
through their IT department, requires the binding of Messaging
Service and Contact Validation to be decided at product configu-
ration time. Other customers, who are ERP vendors, require the
same Messaging Service and Contact Validation to be decided at in-
stallation time after their salesman negotiates with customers over
the product price. Yet still, customers hitherto deselected a feature
may demand the same feature at operation time when their ser-
vices evolved. For example, customer institution starting graduate
courses should select and bind (to be downloaded or made available
in a memory stick) the Graduate feature to their product already
in operation. As such, the product line engineers of EduPl should
develop the core assets to support the different binding times of
these features.
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The above example exposes three distinctive challenges: 1) how
to identify the set of features that should be selectable at different
binding times; 2) how to engineer and instantiate reusable assets
to support such selections; and 3) how to maintain the feature
dependencies (e.g., require and mutual exclusion) throughout the
different phase (e.g., product configuration time, installation time,
or operation time) of feature selection. Without addressing these
challenges, the product line assets have to go through an ad hoc
adaptation to serve requests for varying binding times [2].

Ad-hoc adaptations of binding times, through hacks, can induce
architectural degradation [32], which affects maintainability and
adaptability. Also, it can slow-down the time-to-market, increase
production costs, and affect the quality of the products. Equally sub-
optimal is to develop separate assets for the different categories of
customers; i.e., splitting, supposedly, a single asset-based into a set
of parallel asset-based. This approach, clearly adds up to production
and maintenance costs because a product line company has to
maintain multiple assets for the different categories of customers.

The proliferation of software provider-consumer relationships
has aggravated the demands for flexibility in the selection of fea-
tures at different times. The provider is a product line company that
has to deliver partially configured products to consumers that are
separate product lines [13]. In the literature, the terms Product Line
of Product Line (PoPs) and Multi-Product Lines (MPLs) are used to
depict the software provider-consumer relationship as a form of
associations between product lines of separate logical boundaries
[6, 14, 17, 30]. Hartman et al [11, 12] used the term Software Supply
Network (SSN) to qualify the associations between the multiple
product lines as a network of independent stakeholders engaged in
a software supplier-customer relationship.

There have been attempts to address the challenge of providing
flexible feature binding time [4, 7, 8, 27, 27, 34]. However, some of
these approaches addressed flexibility at a fine granular level (e.g.,
flexible composition of low-level model elements such as states and
transitions in state diagram )[34]. Others proposed some ad hoc
manipulations that are only tenable in some specific development
environments [8]. All in all, a comprehensive approach to address
the flexibility of feature binding time selection is largely absent.

In this paper, we describe our initial ideas for supporting flexible
feature binding time in SPLE. We first elaborate the challenges to
set the context and provide the overview of the approach with
examples.

1.2 Challenges for Varying binding times
In the following we elaborate more on the three challenges we have
identified with examples:

C1 How to proactively discover features whose binding time
need to vary and use this knowledge in the design of reusable
assets. By ’proactive’ we mean that we should check with the
potential customers of the product line to find out binding
time requirements before developing the core assets. Iden-
tifying different binding time requirements entails careful
analysis on where and how the customers would use the
product (i.e., the usage contexts of the customers).

C2 How to develop product line assets to support the different
binding times. The challenge is not only about supporting
different binding times for the different features but also
about supporting different binding time of the same feature
and at the same variation point. A variation point is a place
where different variants can be bound for different product
configurations[16].

C3 How to maintain consistency between feature selection and
binding time instantiation. For example, when a parent fea-
ture is selected with a late binding time, its child features
should all be selected at not earlier than the parent feature’s
binding time and we should make sure there are no other
features that require one of the child features at an earlier
binding time. Supporting flexibility in the feature binding
time requires a robust management of feature dependencies
[18] with their different binding time.

To address the above challenges, we propose an approach to
manage the variations of feature binding time. Our work is based
on feature binding unit analysis - an approach initially proposed to
address dynamic reconfiguration of software systems in a dynamic
software product line (DSPL) [24]. Specifically, we adapted feature
binding unit analysis as a guideline on how to decompose product
line architecture to match the boundaries of features that must be
bound together. We extend this approach with flexible connection
mechanisms between components of separate binding units. We
also propose a means to instantiate product line assets with the
different binding time. Fig.2 shows the activities and work products
of the proposed approach, which are explained in the following
section.

2 OVERVIEW OF THE APROACH
To illustrate the approach, the following elaborates on some of
the features in Fig.1: The Account Creation feature is to create an
account with the institution’s portal. The system can optionally
validate an applicant’s contact using Contact Validation. The Con-
tact Validation feature requires Messaging Service to send randomly
generated token to the applicant’s email or a Short Message Service
(SMS) to the applicant’s mobile telephone. Email and Text Message
are inclusive OR features and are the specialization of Messaging
Service. An institution could optionally charge application fees
through the Payment feature. There are different types of applica-
tions: Undergraduate, Graduate and Sub-degree. Both Graduate and
Sub-degree require Payment.

2.1 Process Activities
SPLE consists of two major engineering processes: Domain Engi-
neering (DE) and Application Engineering (AE). DE is the process
of developing assets for reuse while AE is the process of deriving a
specific product from the reusable assets. The following activities
fall within the two engineering processes.

2.1.1 Feature Modeling. In DE process, feature modeling kick-
starts the engineering activities of which a feature model is de-
veloped. Detailed on feature modeling activity can be found in
[19].
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Figure 2: A proposed framework for managing feature binding time

2.1.2 Feature Binding Unit Analysis . To engineer the core assets
to support different binding time of features, the indivisible binding
units must be established. As depicted in Fig.2, a feature model
serves as input to binding unit analysis. A feature binding unit
(FBU) is a set of features that share the same binding time (all the
features in the same binding unit must be bound together for the
correct behavior of the product)[24]. Feature binding unit identifica-
tion starts with the identification of a service feature. Each service
feature represents a major functionality of the system that may be
added/removed as a service unit. In EduPL(Fig.3), Account Creation
and Application are examples of service features. Beginning from
the service feature, an engineer should identify the constituents of
a binding unit by traversing the feature model along the feature
relationships and its composition rules (i.e., cross-tree constraints
such as require/mutual exclusion). Each binding unit is assigned a
name, in a capital letter, similar to the name of the major feature
in the unit. For example, ACCOUNT and VALIDATION are the
names assigned to the binding units containing Account Creation
and Contact Validation respectively (see Fig.3).

In our approach, in addition to analysis of C & V of the prod-
uct features, we also analyze C & V of the different product usage
contexts [12, 22, 25]. We aim to capture the binding time of fea-
tures in terms of product lifecycle (i.e., when and how each of the
feature binding happens), by examining different usage contexts
of the products and in anticipation of product evolution. There
are many recognized binding time of features [31, 33]. In this pa-
per, we focus on three binding times that are most visible to the

Figure 3: Feature binding unit identification fromEduPL fea-
ture model

product line customer (i.e. when a feature is included in a product
configuration and made available to a customer): (i) Product config-
uration (order) time(PT) (ii) Installation (deployment) time (IT) and
(iii) Operation time (OT). The output of feature binding analysis
is a binding unit graph (see the upper part of Fig.4). In Fig. 4, the
dotted lines represent a variable binding time. For example, bind-
ing between VALIDATION and ACCOUNT could happen at either
product configuration time, installation time, or even at operation
time.

2.1.3 Domain Object Modeling. A feature model and other do-
main analyses (e.g. noun phrase analysis) are also inputs to a Do-
main Object Modeling activity (see Fig.2). A domain object model is
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a product line’s model of conceptual classes or objects and their re-
lationships; it is an input to Design Object Model. Detail of domain
object modeling activity can be found in [26].

2.1.4 Design Object Modeling. A design object model is an em-
bodiment of functionalities required for the product line[26]. In the
design object model, a domain engineer captures concrete domain
design, in terms of object based components and their responsibili-
ties that can be mapped to the identified binding units. As shown
in Fig.2, the feature binding graph and the binding time informa-
tion are important inputs for organizing design object model. Our
approach is not limited to Object-Oriented(OO) component, it can
be used with non-OO architecture description approaches. For the
variation of binding time to be feasible, the mapping between bind-
ing units and the variation points in the design object model must
be established explicitly. In Fig. 4, the mapping between binding
units (depicted as the bubble with the optional or the alternative
icon) and the corresponding variation points identified in the ob-
ject model (denoted by the filled rectangle) is depicted with dotted
arrows.

2.1.5 Abstract (meta) Component Modeling and Implementation.
Following Model-Driven approach [28], the captured components
and their relationship (see the bottom part of Fig. 4) must be de-
scribed in abstract terms (i.e. Metamodeling). A metamodel defines
the possible constructs of a model in terms of abstract syntax and
static semantic [28]. The purpose is to enable machine processing
of the model generically (i.e. Metaprogramming). The metamodel
has to be implemented in some sort of infrastructure. Fig.5 depicts a
metamodel of the EduPL in Ecore. Ecore is ametamodeling language
that is part of Eclipse Modeling Framework (EMF)1 infrastructure.

The metamodel in Fig.5 has Component as its metaclass which is
a generalization over the component type of the intending model
(the EduPl architectural model in this case). The specialized meta-
classes are Service, Data, View and Control components. A Service
component carries out computing services or functions[35], for ex-
ample, the generation of random token for user’s contact validation
in the implementation of the Contact Validation feature. A view
component receives input from the end user and displays output
from the system (e.g. an application form). A control component
controls or coordinates other components[35]; as such it controls
the behavior of the system or subsystem. A data component repre-
sents an entity that can be saved and retrieved from a permanent
storage (e.g. an applicant information). The discrimination between
component types is useful for determining a suitable connection
mechanism between the different type of components and also for
imposing architectural constraints (e.g. a view component should
not access data component directly).

Notice from Fig.5, we elevate Port and Connector with first-class
status in the metamodel, in contrast to their usual relegation to
the second-class elements at the implementation level. In essence,
we abstract over concrete ports and connector by generating them
and configuration scripts (as the connection mechanism) based
on the instantiated binding time. For example, if the bindings of

1https://www.eclipse.org/modeling/emf/

ValidationManager and MessageHandler have to be decided at prod-
uct configuration time, we can generate procedure call ports and
tightly coupled connector between these components and the Ac-
countCreationController component. If, however, the bindings of
ValidationManager and MessageHandler have to be decided at in-
stallation time, we may generate event ports, event connector, and
configuration scripts to remove the dependency between the com-
ponents. In this way, we make it possible to include/exclude the
ValidationManager andMessageHandler components from the prod-
uct configuration at installation time. In the case of operation time
binding, we should generate message ports, connectors, and con-
figuration scripts to make it possible to compile the components
separately and include/exclude them at operation time.

2.1.6 Component Based Design (Metamodel Instantiation). The
component-based product line architecture is then modeled as in-
stances of the implemented metamodel. A mapping has to be estab-
lished between the instantiated components and the features they
implement in the feature model. Deselecting a feature from the
feature model removes the corresponding model component. We
assume the existence of the mapping tool such as the commercial
feature model connector of Pure Variant2 or the open-source tool
developed by Czarnecki et al [5]. Those tools embed a model repair
algorithm to fix an ill-formed model automatically. For example, the
domain engineer should design concrete components to correspond
to the design object model depicted at the bottom of Fig.4. The en-
gineer should also mark ValidationManager and MessageHandler as
variable components and their binding will be determined by the
application engineer in the application engineering process.

2.1.7 Component Selection and Binding Time Instantiation. Dur-
ing Application Engineering process, the application engineer se-
lects features from the feature model, which triggers the removal of
components mapped to the deselected feature. The engineer also in-
stantiates the required binding time of features on the components
whose features are selected.

2.1.8 Consistency Checking. Binding time instantiation triggers
the consistency checking process. In case of an error, the application
engineer may have to change feature selections or binding time
selections.

2.1.9 Assets Generation andManual Code Integration. We gener-
ate the skeleton implementation from the architectural components.
Based on the instantiated binding time, we also generate concrete
ports and the connectors for the components. We do not intend
to generate every implementation artifacts from the model as we
believe the separation of high-level architectural concerns and low-
level implementation is useful for our approach to scale in practice.

3 RELATEDWORK
Traditionally, usage context analyses [12, 25] are used to discover
various operational contexts of products of the product line. Goal-
driven analysis [22] is also used to expose the coverage of broad
objectives of which products of a product lineweremeant to achieve.

2https://www.pure-systems.com/products/extensions/pure-variants-connector-for-
emf-feature-mapping-307.html
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These analyses expose the implications of goals and contexts on
the selection of, mainly non-functional, features of the product line
but have not considered the variations of binding time between the
different goals and contexts.

In the implementation, Chakravarthy et al [4] proposed a combi-
nation of design patterns and Aspect-Oriented Programming (AOP)
to achieve binding time flexibility. In their approach, the same fea-
ture is implemented as different aspects, each aspect for one target
binding time at the same variation point. This approach can be
useful if the variation is fixed and features can be bound to stable
variation interfaces. However, the approach limits reusability be-
cause multiple implementations of features have to be maintained.
Dolstra et al [8] discussed how developers manipulated a combina-
tion of pre-processor, compiler, and linker to achieve binding time
flexibility in the retrofitted Linux kernel. The approach described in
[8] is ad-hoc and only attainable if the development environment
supports separate building and linking of modules.

Most researches in binding time management fall within a re-
search theme of DSPL [1, 10, 15, 21, 23] and have an explicit focus
on reconfigurations of features at runtime, often based on changes
in the execution context of a software product; they largely ignore
pre-runtime variation. DSPL is effective when most of the varia-
tions exist only when the product is in operation (e.g., in robotic
domain)[9, 21, 29]. In contrast, in some domains such as enterprise
software, management of variations at different phases of a soft-
ware lifecycle, the focus of this paper, is non-trivial. Specifically,
this paper is about supporting flexibility of variations at different
phases of a software lifecycle.

Model-driven approaches have the potential to manage varia-
tions by mapping features in the feature model to model elements
[3, 5]; i.e. model elements are annotated with a presence condition
of features from the feature model. For example, In [5], a feature
from the feature model can be mapped to class diagram and activity
diagram via annotations. These approaches include support for
enforced variations as well consistent product derivation. How-
ever, their support to addressing variations of binding time [27, 34],
focus on fine granular variations which make these approaches dif-
ficult to scale. In contrast, we emphasize modeling coarse-grained
components that are critical to the architecture of the product line.

In summary, managing variations of feature binding time need
to be further investigated

4 CONCLUSION AND FUTUREWORK
We identified the challenges of managing feature binding time in
SPLE and sketch our idea to address them. Our approach is a gen-
erative framework where variable components are parameterized
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with three possible binding times (product configuration time, in-
stallation time and operation time). Assets are generated based
on the binding time that has been instantiated during application
engineering process. For future works, we shall define concepts of
connection mechanisms that are platform/middleware agnostic and
the first transformation (after passing consistency checking) should
generate a model with those concepts. Subsequent transformations
should then be defined for each of the target platform/middleware.
In model-driven parlance, we aim at multistage transformations
from the Platform Independent Model (PIM) to Platform Specific
Models (PSMs). For the consistency checking, we shall either de-
fined consistency rules in Object Constraint Language (OCL)3 or
transform the PIM model into another form that allows its proper-
ties to be checked (e.g. using Theorem prover).
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