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Abstract
Recently, an iterative optimization method was proposed that

determines the spectral transmittance of a color filter which, when
placed in front of a camera, makes the camera more colori-
metric [1]. However, the performance of this method depends
strongly on the filter (guess) that initializes the optimization. In
this paper, we develop a simple extension to the optimization
where we systematically sample the set of possible initial filters
and for each initialization solve for the best refinement.

Experiments demonstrate that improving the initialization
step can result in the effective ‘camera+filter’ imaging system be-
ing much more colorimetric. Moreover, the filters we design are
smoother than previously reported (which makes them easier to
manufacture).

Introduction
An imaging device is colorimetric if it meets the so-called

Luther condition [2], i.e. its spectral sensitivities curves are a lin-
ear transform of the spectral sensitivity curves of the human vi-
sual system (or equivalently linearly related to the CIE XYZ color
matching functions [3]). Under the Luther condition, the imaging
device records exactly the same triplets of the scene—after a lin-
ear mapping—sensed by a standard human observer [4]. Cameras
have sensors with spectral sensitivities that do not meet the Luther
conditions both because such sensors are difficult to manufacture
and the sensors deployed need to consider other issues such as
image noise [5].

Finlayson et al. [6] proposed making a camera more col-
orimetric by designing a spectrally precise color filter that when
placed in front of the camera the new effective spectral sensitiv-
ities (of ‘camera+filter’) meet or approximately meet the Luther
condition. The Luther condition is a strong requirement in that
a camera which meets this condition will always measure color
correctly for all possible spectra. But, of course not all spectra in
the world are equally likely. In [1], Finlayson and Zhu developed
a Data-driven filter design where the color filter is designed to
minimize the least-squares errors between the camera responses
and the XYZ tristimulus values of a collection of measured lights
and surfaces.

The Data-driven optimization seeks to find a filter and a per
illuminant based linear transform such that the filtered camera re-
sponses corrected with the corresponding linear transform are as
close to the target XYZs as possible, as illustrated in Fig. 1. As we
review later, the optimization is solved using an alternating least-
squares algorithm (ALS). In ALS, we solve for the per illuminant
correction matrices assuming a known filter and then with these
matrices in hand we solve for the filter. We iteratively solve for

Figure 1: A camera and the eye measure triplets (RGBs and cone
responses, or equivalently XYZs). In this paper we find a filter so
that the camera with the filter measures RGBs that are approxi-
mately linearly related to XYZs.

the filter then the correction matrices until the process converges
(convergence is guaranteed in ALS).

An important issue not considered in the original method is
the choice of filter initialization. Indeed, while the ALS method
converges, there is no guarantee that it converges to the global
optimum and moreover it will converge to a different solution
depending on the initialization condition. We have found that,
empirically, the choice of initial filter has a strong impact on the
extent which the solved-for filter makes a camera colorimetric.

Our solution to this problem is simple. We simply run the op-
timization many times for many filter initializations. Of course we
can only sample so many filters and we would like to be confident
that we are sampling the set of plausible filters reasonably finely.
Our solution to this problem is to revisit the filter design prob-
lem assuming the filters belong to a set of smooth filters. With
respect to the smooth set we find a relatively small number of
-systematically sampled - samples suffices to sample the set. Ad-
ditionally, we add the constraint that filters must transmit more
than a minimum percentage of the incident light.

Background
Optimization Formulation

We wish to find a filter which, when placed in front of the
camera - for a given collection of illuminants and reflectance spec-
tra - makes the camera colorimetric. That is, the filtered RGBs
multiplied by a per illuminant based color correction matrix are
close to the corresponding CIE XYZs [1].

Image formation for Lambertian surfaces [7], which we con-
sider here, is written as:

ρ =
∫

ω

E(λ )S(λ )Q(λ )dλ (1)
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where E(λ ), S(λ ) and Q(λ ) respectively denote the spectral
power distribution of the light, the surface spectral reflectance and
the R, G and B spectral sensitivities of a camera (Q is a vector
function). The corresponding RGB triplets, ρ , result from inte-
grating the product of these functions over the visible spectrum
ω . It will be convenient to use color signals, C(λ ) = E(λ )S(λ ),
in the following derivations.

We can well approximate this integral by a discrete matrix-
vector product:

ρ = QTC (2)

where Q is an n×3 matrix with n denoting the number of sampled
points over the visible spectrum ω . Each column in Q denotes a
discretely sampled camera spectral sensitivity curve. The vector
C is n× 1 and denotes a sampled color signal spectrum. In this
paper, we sample the visible spectrum from 400 to 700 nanometrs
at an interval of 10 nanometers, which makes n = 31.

Let us now consider how to formulate the color filter design
problem. First let X denote the sampled CIE 1931 standard ob-
server functions [3]. Let the vector f represent the spectral trans-
mittance of a color filter sampled over the visible spectrum. When
placing a filter in front of a camera, the new effective spectral sen-
sitivities of the camera system equal, at each wavelength, the filter
transmittance multiplied by the camera sensitivities. This is writ-
ten mathematically as diag( f )Q where diag() operator turns the
filter vector into a diagonal matrix. Per 10 nanometer sampling,
the size of matrices Q and X are 31×3 and f as a 31-dimensional
vector. Let us denote a 31×N color signal matrix C (N color
signals in N columns).

Returning to Figure 1, we would like to solve for a filter and
a color correction matrix that minimize:

CT diag( f )QM ≈CT X . (3)

Actually, we wish to optimize the filter for a more general
condition. Let us assume we have cnt illuminants. We are going
to solve for a single filter but a different color correction matrix
for each illuminant. The color signals for a set of measured re-
flectance spectra under the jth illuminant is denoted as C j and
the corresponding color correction matrix is denoted as M j. The
data-driven filter design problem is formulated as the following
minimization

cnt

∑
j=1

min
f ,M j
‖CT

j diag( f )QM j−CT
j X ‖2

F s.t. f > 0 (4)

where the superscript T denotes the matrix transpose and ‖ ‖F
denotes the Frobenius norm. Note that the filter vector f is solved
subject to positive values since physically a color filter must have
non-negative transmittance.

In the minimization formula, the first term CT
j diag( f )QM j

denotes the camera responses with a color filter in place while
the second term CT

j X denotes the corresponding XYZ tristimuli.
Mathematically, the objective of the optimization is to look for
the best filter and correction matrices solutions that minimize the
cost function defined by the squared errors between the effective
camera responses and the reference XYZ tristimuli for a set of
color signals.

Algorithm 1 ALS algorithm for solving the optimization problem

1: # filter initialization:
k = 0, f 0 = f seed

2: # calculate the best correction matrices for the initial filter:
min
M0

j

‖CT
j diag( f 0)QM0

j −CT
j X ‖2

F , j = 1,2, ...,cnt

3: # update the effective sensitivity matrix after linear transform:
Q0

j = diag( f 0)QM0
j , j = 1,2, ...,cnt

4: for k = 1 to K do
5: # refine the filter solution:

min
f k

∑
cnt
j=1 ‖CT

j diag( f k)Qk−1
j −CT

j X ‖2
F s.t. f = ∏

k
s=0 f s > 0

6: # refine the correction matrices:
min
Mk

j

‖CT
j diag( f k)Qk−1

j Mk
j −CT

j X ‖2
F , j = 1,2, ...,cnt

7: # update the effective sensitivity matrix:
Qk

j = diag( f k)Qk−1
j Mk

j , j = 1,2, ...,cnt
8: end for
9: f = ∏

K
k=0 f k and M j = ∏

K
k=0 Mk

j , j = 1,2, ...,cnt

Alternating Least-Squares
The minimization in Eq. (4) can be solved using the Alter-

nating Least-Squares (ALS) technique, see Algorithm 1. As we
have two unknown parts in the minimization equation, the filter
and correction matrices are tackled in the one-after-the-other way.
The algorithm starts by initializing the filter f 0, the corresponding
color correction transforms, M0

j ( j = 1,2, ...,cnt), for each illumi-
nation condition can be calculated. After the initialization step,
the filter and correction matrices will be refined at each iteration.
Solving for the best correction matrices and filter are both, indi-
vidually, simple least-squares problems and are readily solved (in
closed-form) [1]. In previous work, the uniform vector f seed = 1
(i.e. a filter that is 100% transmissive at each wavelength) was
used to seed the minimization.

The reader will note that Algorithm 1 runs for a fixed number
of iterations. Alternately, a ‘while’ loop can be used where we
keep iterating until the solution at step k differs from the one in
step k− 1 by less than a criterion amount. We found the process
converges quickly and the simple fixed number of iterations works
well.

The final step in Algorithm 1 returns the filter solution by
multiplying (element-wise multiplication) all the refined filters
obtained from each iteration, f = ∏

K
k=0 f k. Similarly, the final

color correction matrix for the jth illuminant is also calculated by
multiplying all the refined matrices, M j = ∏

K
k=0 Mk

j .
While the ALS method is guaranteed to converge, the overall

global minimum may not be found [8]. In Algorithm 1, empiri-
cally we found that different initializations (i.e. not initializing
with the uniform vector f seed = 1) could result in different fil-
ters being found. Consequently, the goodness (the extent they
supported low colorimetric error) of the discovered filters varied
significantly.

Improving the Optimization
The most important contribution of this paper is to present a

deterministic way to evaluate different initializations to the filter
design problem. However, a key substep to achieving this is to
constrain the shape of the filter. Indeed, as we are representing



filters as discrete vectors (in a 31-dimensional space), we cannot
plausibly sample all vectors. Rather we will constrain our filters to
be sufficiently smooth that we can sensibly sample the filter space.
A great advantage of this approach is that smooth filters should be
easier to manufacture. Another concern is that the filters should
transmit enough light. So, the optimization will also be modified
to incorporate a lower-bound on the filter transmittance.

Filter Constraints
Let us constrain f as a linear combination of an m-

dimensional basis set of filters - denoted by a 31×m matrix B
- and to have the minimum and maximum transmittance thresh-
olds:

f = Bc s.t. fmin ≤ f ≤ fmax (5)

where fmax is set to 1 as fully transmissive and fmin is a positive
value between 0 and 1. In this paper, B denotes the first m basis of
the discrete Cosine series (specifically we adopt the 2nd variant
of the discrete Cosine basis vectors [9]).

Now we rewrite the filter design optimization as:

cnt

∑
j=1

min
c,M j
‖CT

j diag(Bc)QM j−CT
j X ‖2

F s.t. fmin ≤ Bc≤ fmax (6)

In the current minimization, we are looking for the basis coeffi-
cient vector c to form a bounded smooth filter that returns the least
error.

This new minimization formulation can also be solved by the
same paradigm shown in Algorithm 1 except that in each iteration,
we refine the coefficient vector to satisfy the basis and threshold
constraints (and to do this Quadratic programming is used for our
minimizations [10]).

Initialization Set by Sampling
We have found that in Algorithm 1, whether finding an

unconstrained or a constrained filter, the solved filter depends
strongly on the initialization condition. Given the filters are rep-
resented as a linear combination of the first m terms in the Cosine
series, we would like to sample this space and then find the best
filter using each sample as the initialization (e.g. for f seed in Algo-
rithm 1). Algorithm 2 sets forth an algorithm for finding # f ilters
(number of initial filters) by uniformly and randomly sampling
the filter space subject to smoothness and minimum transmittance
constraints.

The algorithm has a preprocessing step where we find two
bounding vectors cmin and cmax for the coefficient vectors. Over
all filters that can be written as Bc, for the ith component in vector
c, the minimum and maximum values the coefficient can take are
denoted respectively cmin

i and cmax
i ,

cmin
i ≤ ci ≤ cmax

i , i = 1,2, ...,m. (7)

Given we have an m-dimensional coefficient vector, cmin and cmax

effectively delimit a hypercube in m-dimensional space. Not all
coefficient vectors in this hypercube satisfy the upper and lower
thresholds on transmittance but all filters that are parameterized
by coefficients outside of the hypercube do not satisfy the trans-
mittance bounds.

Algorithm 2 Algorithm for generating an initial filter subset

1: F = {}
2: for i = 1 to m do
3: cmin

i = argminci s.t. fmin ≤ Bc≤ fmax
4: cmax

i = argmaxci s.t. fmin ≤ Bc≤ fmax
5: end for
6: while cardinality(F )< # f ilters do
7: ci ∼ U

(
cmin

i ,cmax
i
)
, i = 1,2, ...,m

8: f = Bc
9: if fmin ≤ f ≤ fmax & {∀q ∈F : angle( f ,q)> θ} then

10: F ←F ∪{ f}
11: end if
12: end while

Within the hypercube we uniformly and randomly choose
coefficient vectors. For each selected vector we check if the con-
structed filter satisfies the transmittance threshold constraints. If
it does, and if it is sufficiently distinguishable from those already
in the set, we add it to the initial filters set, F , that we wish to
use as initializations for the optimization. We keep adding to the
set F until the number of members reaches # f ilters (formally
cardinality(F ) = # f ilters). In the pseudocode of Algorithm 2
we denote the action of choosing every component of the coeffi-
cient vector c randomly and uniformly from the coefficient hyper-
cube as ci ∼ U

(
cmin

i ,cmax
i
)
, i = 1,2, ...,m. We say that a filter is

sufficiently far from those already in the set if the angle between
these two filter vectors is larger than θ degrees.

Results
For our camera, we use a Canon 5D Mark II DLSR digi-

tal camera with known spectral sensitivity functions [11]. The
Data-driven optimization is carried out on a collection of mea-
sured spectral data of 102 illuminants and 1995 surface re-
flectances [12].

The color reproduction results of our experiments are evalu-
ated using CIELAB color difference metric ∆E∗ab [3]. It is a per-
ceptual color difference metric computing a single number of Eu-
clidean distance between two colors in the CIELAB color space.
One ∆E∗ab unit corresponds approximately to the ‘Just Noticeable
Difference’ to a standard human observer.

We are going to solve for the best filter for the camera using
6 and 8 Cosine basis functions. In both cases we seek a filter that
has a lower bound transmittance of 20% and we generate a set of
# f ilters = 20,000 initial filters that drive our optimization. Every
filter in the initialization set is at least 1 degree (θ = 1◦) from its
closest neighboring filters in the set. For each basis condition (6
or 8), we run our optimization 20,000 times. Then, we simply
choose the filter that delivers the least mean DeltaE error overall.

Table 1 shows the color reproduction results. ‘NAT’ gives
the baseline color correction performance when no color filter is
used. Here the least-squares optimal 3× 3 matrix is used, per
illuminant, to map the Canon recorded RGBs (for the 1995 re-
flectances) to the corresponding XYZs. When we initialize the
filter as a 100% transmitting filter (which we did in [1]), we label
the results as ‘DATA_1s’. Note for this set we present both results
from filters constrained and unconstrained by the basis functions.
Finally, ‘DATA_sampling’ denotes the results found by the cur-



Table 1: Comparison of Color Reproduction Results

Mean median 90% 95% 99% max
NAT 1.72 1.03 3.68 5.12 12.94 28.39

a minimum transmittance of 20%

DATA_1s 0.69 0.42 1.47 2.11 4.69 19.48

6 Cosine basis with a minimum transmittance of 20%

DATA_1s 0.81 0.49 1.80 2.54 5.21 18.85

DATA_sampling 0.59 0.35 1.30 1.83 3.77 14.19
8 Cosine basis with a minimum transmittance of 20%

DATA_1s 0.71 0.38 1.60 2.38 5.42 19.25

DATA_sampling 0.45 0.25 1.02 1.41 3.10 10.63
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Figure 2: (a) Solid line (in red) shows the filter solved for by our
sampled initialization method constraining the filter to be well
described by a linear combination of the first 6 terms in a Cosine
series. Dashed curve (in blue) shows the filter that is found with-
out sampling (previous method) and the dotted line (in black) is
for no sampling and no constraint on filter smoothness. (b) repeats
the experiment for an 8-dimensional Cosine basis.

rent method, using the best filter where we search over a large set
of possible initializations.

In Table 1, for these 6 different methods, we show the
color reproduction in terms of mean, median, 90%-quantile, 95%-
quantile, 95%-quantile, and maximum ∆E∗ab errors. The spectral
transmittance distribution of the best filters of 6 basis and 8 ba-
sis are shown in Figs. 2a and 2b respectively (see solid red lines

denoted ‘initial by sampling’). We also plot the spectral trans-
mittance of the filters found where the 100% transmitting filter
is used as the initialization condition (see dashed blue lines de-
noted by ‘initial by 1s’). For reference, the filter using the uni-
form vector as initialization but constrained only by the minimum
transmittance is also given (see black dotted lines in Figs. 2a and
2b denoted ‘lower bound only’). It is evident that the discovered
filters are quite different under different initialization conditions.

From the table, we can see that our new method
(DATA_sampling) provides significantly better color reproduc-
tion accuracy: it reduces by about two-thirds of the mean, me-
dian, 90-quantile, 95-quantile, 99-qunatile error metrics and over
half of the maximum color error, comparing to those by NATive
color correction. Surprisingly, the new method also outperforms
the results of non-smoothed filter (only bounded by the minimum
transmittance) using a single fixed uniform initialization. When
we compare DATA_1s to DATA_sampling under the smoothness
constraints (constructed by basis functions), the latter method de-
livers errors about a 1/3 smaller. That is, the best initialization
leads to (across all error measures) over 30% reduction in error.
Finally, we see there is a modest improvement in the error statis-
tics when 8 as oppose to 6 basis functions are used.

Of course the need to sample adds complexity to the filter
design problem. So, let us investigate the number of sampled
smooth filters we need for finding a good approximation to the
optimal solution, e.g. within acceptable deviation (for the data at
hand). We test on the 6-Cosine basis condition and evaluate the
average and the standard deviation of the mean color errors by
varying # f ilters in the initialization set from 100, 200, 500, 1000,
2000, 5000, 10,000 to 20,000 (where these filters are selected us-
ing Algorithm 2).

In Figure 3 the x-axis represents the number of filters in
our initialization set and the y-axis represents the average mean
color error in terms of ∆E∗ab (for the corresponding optimized fil-
ter which is refined for that set of initializations). The dashed line
denotes the best results obtained from the overall 20,000 trials.
One standard deviation error bar is also shown.

From the figure, we can see that a set of 1000 filter initial-
izations suffices for our method: we obtain almost the same mean
color error performance (compared to larger initializations) and
the error bar is small. While we do not show the plot here, 1000
filters are also sufficed for filters that are described with an 8-
dimensional Cosine basis.

Conclusion
Previous work has shown that a specially designed - via nu-

merical optimization - transmittance filter can - when the filter is
placed in front of a camera - make a camera significantly more
colorimetric [1]. In this paper we extended that method. We
showed that the performance of the optimized filter could be im-
proved if initialization conditions of the optimization were con-
sidered. Specifically, we set forth a method to enumerate - to a
criterion accuracy - the set of possible initialization filters when a
6- and 8-dimensional Cosine basis are used (to construct the fil-
ters). Our new method - across a variety of error metrics - reduces
the recorded errors by at least a further 30%. Compared to using
a simple 3× 3 color correction matrix (per illuminant), our new
method designs a filter which to be placed in front of the camera
and using a 3×3 matrix can result in just 1/3 of the original error.



Figure 3: The effect of # f ilters in the initialization set on the color
reproduction results in terms of mean color error assuming filters
fall within the 6-dimensional Cosine basis. The magnitude of the
bars represents the average color error from groups of varying
# f ilters. The upper 1 standard deviation error bar is also shown.
The red dash line denotes the best result obtained from the overall
20,000 initializations.
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