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When ground-state atoms are accelerated and the field with which they interact is in its

normal vacuum state, the atoms detect Unruh radiation. We show that atoms falling

into a black hole emit acceleration radiation which, under appropriate initial conditions
(Boulware vacuum), has an energy spectrum which looks much like Hawking radiation.

This analysis also provides insight into the Einstein principle of equivalence between

acceleration and gravity. The Unruh temperature can also be obtained by using the
Kubo–Martin–Schwinger (KMS) periodicity of the two-point thermal correlation func-

tion, for a system undergoing uniform acceleration; as with much of the material in this
paper, this known result is obtained with a twist.

Ia. Introduction: Dedication

Julian Schwinger, that towering figure of 20th century physics, taught us how to

tame the infinities of quantum field theory and much more. For example, he and his

students taught us how to profitably apply the formalism of quantum field theory to

the problem of nonequilibrium quantum statistical mechanics;1,2 yielding, among

other things, the famous KMS condition, which we use herein. Indeed, modern

quantum optics owes much to Schwinger’s Green’s function-correlation function

approach. In particular, we have found that the tools of quantum optics provide

another window into the problem of Unruh–Hawking radiation. It is therefore fitting

that we summarize and extend our work on acceleration radiation in this Schwinger

centennial collection.
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Fig. 1. Julian Schwinger rides a hay wagon at the New Mexico Scully ranch in 1987.

Ib. Introduction: Overview

The existence of black holes (BHs), regions of spacetime that nothing — not even

light — can escape from, is one of predictions of Einstein’s general relativity. Hawk-

ing’s3 demonstration that a non-rotating, uncharged BH of mass M emits thermal

radiation at temperature4

TBH =
~c3

8πGMkB
(1)

is mathematically based on quantum field theory in curved spacetime. This remark-

able result is intriguing and beautiful but also a bit subtle and mysterious.

From a different point of view, our group of quantum optics and general relativity

aficionados have teamed up to show5,6 that atoms freely falling into a BH with the

field in the Boulware vacuum (the state of the field in which no Hawking radiation

is emitted by the black hole) emit radiation which has a thermal energy spectrum

(but has phase correlations between the energy states making the emitted radiation

a pure state rather than a thermal density matrix) which to a distant observer

has aspects that look like (but also aspects that differ from) Hawking radiation.

We call it Horizon Brightened Acceleration Radiation (HBAR).5 It is produced

solely by emission from the atom while outside the BH. This work was inspired

by quantum optics in flat spacetime, which predicts that atoms moving with a

uniform acceleration emit thermal radiation with Unruh7 temperature. Although

freely falling (having geodesic motion), the atoms seem to a distant observer to be

accelerating in their fall into the black hole, and thus seem to that observer to be
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Fig. 2. A detector accelerating through a spacetime region in its field vacuum state detects Unruh

radiation. This happens if in the frame relative-to-which the vacuum modes are defined, the atom
is accelerating; whether or not the atom is actually accelerating. This could even happen if the

atom is inertial, and the metric is flat, or if there are mirrors modifying the boundary conditions

of the spacetime modes.

accelerated detectors in the Boulware vacuum (which for a distant observer is one

with no particles).

However, rather than being excited as though in a thermal bath, they emit

radiation whose energy spectrum as seen by the distant observer looks thermal

with a temperature TU proportional to their acceleration α,

TU =
~α

2πckB
. (2)

As is explained in the following section, this “acceleration radiation” arises from pro-

cesses in which the atom jumps from the ground state to an excited state, together

with the emission of a photon.8,9 In quantum optics, such processes are usually dis-

carded because they violate conservation of energy, and the virtual photons must be

quickly reabsorbed in order to maintain the overall energy conservation. However,

if the atom is accelerated away from the original point of virtual emission, there is

a small probability that the virtual photon will “get away” before it is re-absorbed.

Alternatively, the Doppler shift of the accelerated atom takes the otherwise re-

absorbed photon out of the atom’s bandwidth. Atom acceleration converts virtual

photons into real ones at the expense of the energy supplied by the external force

field driving the center-of-mass motion of the atom (in Unruh’s original case, the ac-

celeration results from an external force, while in our case, the seeming acceleration

is due to gravity). In an alternate point of view, one can trace the excitation of the

atom to a vacuum fluctuation, which in the usual case is canceled by a succeeding,

correlated fluctuation. However, in the accelerated case, the velocity of the atom is

different by the time that correlated fluctuation hits it, giving a Doppler shift which

now means that the fluctuation has the wrong frequency for de-exciting the atom.



4

Near the event horizon, at radii close to rg = 2MG/c2, the Schwarzschild metric

is well-approximated by the constant-acceleration Rindler metric,10 in which an

atom would have a gravitational acceleration of α = c2/2rg (even though to itself

it has zero acceleration). The vacuum state through which it falls is one in which

observers at rest in that frame see no particles. While in the usual Unruh effect,

the atom is excited, in this case, the atom emits photons whose energy spectrum

(as seen by distant stationary observers) appears to be thermal. As a result, the

temperature, the HBAR temperature, can be obtained from the Unruh temperature

by plugging α = c2/2rg into Eq. (2) to find

THBAR =
~

2πckB

c2

2rg
= TBH . (3)

THBAR is equal to the temperature of Hawking radiation (1).

This radiation differs from Hawking radiation in that, although the probability

of emission of the various possible energies is proportional to a thermal spectrum,

the emission from any one atom is a pure state, with definite phase relations between

the energies. Of course if one has many atoms with incoherent times of fall into

the black hole, or if one took into account the recoil of the atom, some of that

phase coherence could be destroyed, making the emission look closer to Hawking

radiation.

However, the physics is very different from that of the Hawking effect. Here

we have radiation coming from the atoms, whereas Hawking radiation requires no

extra matter (e.g., atoms) and arises just from the BH geometry.

There are several features of this finding that some have found surprising. For

example one objection could be that the atom is freely falling with proper accel-

eration of zero. Where then does the radiation come from? However this neglects

that the state of the field is assumed to be the Boulware vacuum state in which the

particle content near infinity is zero, but near the horizon is full of particles (the

energy density actually diverges at the horizon). It is those particles that the atom

is interacting with. And from far away, the atom looks as though it is accelerated

as it falls into the black hole.

In the following section (Sec. II), we first follow a quantum optics path to Unruh

radiation and compare it to the more usual treatment based on quantum fields in

curved spacetime. In Sec. III, we use two scenarios where, surprisingly, acceleration

radiation is emitted by inertial detectors, for discussing the equivalence principle of

Einstein (in one case, we have a stationary atom interacting with a moving mirror,

and in the other case, we have an atom freely-falling into a black hole). In Sec. IV,

we discuss how Unruh radiation occurs because of the difference between mode

definitions in different frames — a point of view in which it is not surprising that

an inertial observer would detect acceleration radiation. In Sec. V, we present a

KMS-inspired method for obtaining the Unruh temperature, an approach pioneered

by Christensen and Duff.11 There, we use the KMS periodicity approach to get the

Unruh temperature from both a field and an atom perspective. We summarize in

Sec. VI.
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Fig. 3. Feynman’s blackboard as he left it. On the bottom-right corner he inscribed “accel.

Temp” under “TO LEARN:”. This is a strong indication of the subtlety and interest in this

problem (courtesy of the Archives, California Institute of Technology).

II. Quantum Optics Route to Obtaining Unruh Radiation in

Minkowski Coordinates

In this section, we provide a simple first principles calculation of the radiation

emitted by an accelerating atom. This calculation bears similarities to that of Unruh

and Wald.12 It answers, in part, the implied question of Feynman and Milonni, as

in Fig. 3.

Milonni wrote:

[A] uniformly accelerated detector [i.e., atom] in the vacuum responds as it

would if it were at rest in a thermal bath at temperature T = ~a/2πckB.

It is hardly obvious why this should be [emphasis added] — it took half a

century after the birth of the quantum theory of radiation for the thermal

effect of uniform acceleration to be discovered.

IIa. Accelerating atom in a vacuum

We consider a two-level atom (a is the excited level and b is the ground state) with

transition frequency ω moving along the z-axis in a 1 + 1-dimensional spacetime

with a uniform acceleration α. The atom trajectory is given by

ct(t̄) = ` sinh

(
ct̄

`

)
, z(t̄) = ` cosh

(
ct̄

`

)
, (4)

where t is the lab time and t̄ is the proper time for the accelerated atom,13 and

where

` = c2/α (5)

is the length-scale in the problem. The interaction Hamiltonian between the atom

and an outward-propagating photon with wave number k reads

V̂ (t̄) = ~g
[
âke
−iνt(τ)+ikz(τ) + H.a.

] (
σ̂e−iωt̄ + H.a.

)
, (6)
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where operator âk is the photon annihilation operator, σ̂ is the atomic lowering

operator, and g is the atom-field coupling constant which depends on the atomic

dipole moment and on the electric field in the frame of the atom.

Initially the atom is in the ground state and there are no photons. If the in-

teraction is weak enough, the state vector of the atom-field system at the atomic

proper time t̄ can be found using first-order time-dependent perturbation theory,

|ψ(t̄)〉 = |ψ(τ0)〉 − i

~

τ∫
t̄0

dt̄′ V̂ (t̄′) |ψ(τ0)〉 . (7)

The probability of excitation of the atom (frequency ω) with simultaneous emis-

sion of a photon with frequency ν is due to a counter-rotating term â+
k σ̂

+ in the

interaction Hamiltonian.

The probability of this event is

P =
1

~2

∣∣∣∣∣∣
∞∫
−∞

dt̄′ 〈1k, a| V̂ (t̄′) |0, b〉

∣∣∣∣∣∣
2

= g2

∣∣∣∣∣∣
∞∫
−∞

dt̄′ eiνt(t̄
′)−ikz(τ ′)eiωτ

′

∣∣∣∣∣∣
2

, (8)

where |b〉 and |a〉 are the ground and excited state of the atom respectively, and

t(t̄′) and z(τ ′) are obtained from Eqs. (4), and using that k = ν/c and changing the

variable of integration to x = ν`
c e
−ct̄′/`, and taking into account that

∞∫
0

dx e−ixx−i
ω`
c −1 = e−

1
2
πω`
c Γ

(
− iω`

c

)
,

where Γ(x) is the gamma function, and the property |Γ(−ix)|2 = π/[x sinh(πx)],

we finally obtain that the probability is

P =
2πcg2

αω

1

exp
(
2π ω`c

)
− 1

. (9)

We find that P is proportional to the Planck factor 1/
[
exp

(
2πωc
α

)
− 1
]

which

is the probability that the atom is excited and a photon is emitted. The Planck

factor corresponds to excitation probability with a temperature that is proportional

to the acceleration α,

TU =
~α

2πckB
.

This can be understood as was discussed in the previous section, as generating

a photon by breaking adiabaticity due to the acceleration of the atom. Another

physical picture involved the promotion of vacuum fluctuations. In any case, the

operator product σ̂†(t̄)â†k(t, z) tells us that the (Minkowski) photon is emitted and

the atom is excited.
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Fig. 4. (a) An atom is fixed in Minkowski spacetime at coordinate z0 and the field is in the

Rindler vacuum (created by an accelerated mirror). (b) An atom moves in the vicinity of the

BH event horizon in the Boulware vacuum, emitting acceleration radiation. These two cases are
equivalent to each other, given that the acceleration of the mirror is related to the BH mass by

Eq. (60).

IIb. Excitation of a Static Atom by the Rindler Vacuum

Having seen that an atom accelerating through the Minkowski vacuum emits

(Minkowski) photons, we consider the “inverse” problem of a stationary atom in

an accelerating Rindler vacuum. To put this in perspective, Sec. IIa represents the

Cavity QED problem of an atom passing through a stationary cavity. In this section

(IIb), we are essentially dealing with an accelerating mirror14 (with the state of the

field being a Rindler-like vacuum) and stationary atom, as in Fig. 4b. This is the

physics behind the present Rindler coordinate analysis.

We proceed by assuming that an atom is fixed in the inertial reference frame

(t, z) at position z = z0 (see Fig. 4a). We make a coordinate transformation into a

uniformly accelerating reference frame,

ct = `ez̄/` sinh

(
ct̄

`

)
, z = `ez̄/` cosh

(
ct̄

`

)
, (10)

where ` is defined in the same way as in Eq. (4), which gives that the proper

acceleration at z̄ = 0 is α. See Fig. 5.
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Fig. 5. Minkowski space divided into four wedges. Of particular relevance are the right and left
wedges, which are called “the right Rindler wedge” and “the left Rindler wedge,” respectively.

The coordinate transformation (10) covers only the part of the Minkowski space-

time with z > c|t| (right Rindler wedge). It converts the Minkowski spacetime line

element ds2 = c2dt2 − dz2 to the Rindler line element,10,15

ds2 = e2az̄/c2
(
c2dt̄2 − dz̄2

)
. (11)

An observer moving along the trajectory z̄ = 0 in the Rindler space is uniformly-

accelerating in the Minkowski space along the trajectory (4), which is a special case

(z̄ = 0) of Eq. (10). Normal modes of scalar photons in the conformal metric (11)

take the same form as the usual positive frequency normal modes in the Minkowski

metric, e.g., one can take them as traveling waves,

φν(t̄, z̄) =
1√
ν
e−iνt̄+ikz̄ , (12)

where ν is the photon angular frequency in the reference frame of the Rindler space

and k = ±ν/c. However, the modes (12) are a mixture of positive and negative

frequency modes with respect to the physical Minkowski spacetime. Therefore, the

vacuum state of these modes is not the Minkowski vacuum but rather the Rindler

vacuum, which is what we assume for those modes.

From Eq. (10) we obtain t̄ and z̄ in terms of t and z,

ct̄(t, z) =
`

2
ln

(
z + ct

z − ct

)
, z̄(t, z) =

`

2
ln

[
z2 − c2t2

`2

]
. (13)

The atomic trajectory is obtained from Eq. (13) by setting the Minkowski space
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position to z = z0. In the Rindler space, the atomic velocity is

V̄ =
dz̄

dt̄
= −c

2t

z0
. (14)

From the perspective of the atom, it passes through the right Rindler wedge

within the proper time interval

−z0

c
< t <

z0

c

for which the atom velocity in the Rindler space V̄ changes from c to −c. During

this time the atom interacts with the mode (12). The probability P that the static

atom gets excited and a photon in the mode (12) is generated is given by the integral

P = g2

∣∣∣∣∣
∫ z0

c

− z0c
dt φ∗ν(t, z0)eiωt

∣∣∣∣∣
2

, (15)

where t is the proper time for the atom, and z is taken at the atomic position z0.

Using Eqs. (12) and (13), we obtain (assuming k = ν/c)

P = g2

∣∣∣∣∣∣∣
z0
c∫

− z0c

dt e−i
ν`
c ln[(z0−ct)/`]+iωt

∣∣∣∣∣∣∣
2

. (16)

Changing the integration variable to x = ω(z0/c− t), we have

P =
g2

ω2

∣∣∣∣∣∣∣
2ωz0
c∫

0

dx eixxi
ν`
c

∣∣∣∣∣∣∣
2

. (17)

Using that

2ωz0
c∫

0

dx eixxi
ic`
c = e−

π
2
ν`
c γ

(
1 + i

ν`

c
,−i2ωz0

c

)
,

where γ(s, x) is the incomplete lower gamma function which has the asymptotic

behavior γ(s,−ix)→ iΓ(s), as x→∞, we find that the probability in Eq. (17) is

P =
g2

ω2
e−π

ν`
c

∣∣∣∣γ (1 + i
ν`

c
,−i2ωz0

c

)∣∣∣∣2 . (18)

In the limit z0 � c/ω we have∣∣∣∣γ (1 + i
ν`

c
,−i2ωz0

c

)∣∣∣∣2 ≈ ∣∣∣∣Γ(1 + i
ν`

c

)∣∣∣∣2 =

(
ν`

c

)2 ∣∣∣∣Γ(iν`c
)∣∣∣∣2 =

ν`

c

π

sinh
(
π ν`c

)
(19)
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which yields that the probability for exciting the atom along with emission of a

ν-photon is

P ≈ 2πν`g2

cω2

1

exp
[
2π ν`c

]
− 1

. (20)

Notice that in our present case of a stationary atom in the Rindler vacuum the

Planck factor is ν-dependent, whereas in the case of the accelerating atom, the

Planck factor in the analogous Eq. (9) in Sec. II is ω-dependent. It is the emitted

radiation by the stationary atom which is thermal, not the excitation of the atom.

The probability of photon absorption is obtained by changing ν → −ν. Equa-

tion (20) yields

Pabs = exp

[
2π
ν`

c

]
Pexc . (21)

However, if we use the more accurate Eq. (18), we obtain

Pabs = exp

[
2π
ν`

c

] ∣∣γ (1 + iν`c , i
2ωz0
c

)∣∣2∣∣γ (1 + iν`c ,−i
2ωz0
c

)∣∣2Pexc , (22)

which is thermal only in the limit z0 � c/ω.

III. Acceleration radiation and the equivalence principle using

Unruh–Minkowski modes

Let us approach the question of the relation between accelerated motion of either

the mirror or the atom in an accelerated vacuum in a different way.

Consider the function

f(t) = lim
λ→0+

(
t± iλ
`/c

)iΩ
(23)

where Ω = ν′`/c is some dimensionless frequency, and λ→ 0+. This iλ prescription

is to indicate the sector of the complex t plane in which we place the branch-cut

of the function. I.e., in both cases, we take λ → 0+, but −iλ indicates that the

branch cut is in the upper-half complex t-plane, while +iλ would indicate that is

in the lower-half complex t-plane. See Fig. 6.

To determine the frequency content of f(t) in Eq. (23), we consider the integral

F (ω) =

∫ ∞
−∞

dt eiωt
(
t− iλ
`/c

)iΩ
. (24)

If ω < 0, the integral can be completed in the lower-half complex t-plane, giving

F (ω) = 0 for all values of Ω. Thus, the Fourier transform of f(t) is non-zero only

for positive ω, i.e., it is a purely positive-frequency function.
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Fig. 6. The definition of the branch cut in Eq. (23) for positive λ.

Similarly, [c(t+ iλ)/`]iΩ is a purely negative-frequency function for all values of

Ω. These functions thus form a complete set of functions over t under the Klein–

Gordon inner-product

〈f, g〉 = − i
2

∫
dt

(
f
∂

∂t
g∗ − g∗ ∂

∂t
f

)
. (25)

We will use a complete set of modes similar to Eq. (23) to examine two different

situations: the motion of a mirror by a stationary atom, and the motion of a two-

level atom (or detector) in the presence of a mirror, both interacting with a massless

scalar field Φ̂. We will work in 1+1 dimensional spacetime. These will be special

cases of systems which some of us have examined previously.5,6,16

In the first case, we will have a mirror at rest in the ordinary Minkowski vac-

uum state, i.e., the state in which one would ordinarily say there are no particle

excitations of the scalar field. The atom, however, is accelerated with constant ac-

celeration α, following the trajectory in Eq. (4). We specialize to the case where the

atom’s closest approach to the mirror is given by the distance `, defined in Eq. (5).

See Fig. 7. In the second case, we swap the behavior of the atom and the mirror,

and choose a different initial state for the field. The mirror will follow a trajectory

of constant acceleration, Eq. (4), while the atom will be at rest. Again, the distance

of closest approach of the mirror to the atom would be `. In this case, we will take

the state of the quantum field to be the so-called Rindler vacuum. This is the state

in which the accelerated mirror sees the quantum field as containing no particles.

See Fig. 8. It is in some sense an approximate weak equivalence principle∗ analog

∗This is of course only a crude approximation for the weak equivalence principle, since when one
is in a bumper car that decelerates rapidly when it hits another one against a rail that prevents it
from accelerating, one will feel different from when one is in a bumper car against a rail that does

not accelerate when another hits it, even though the relative acceleration is the same in the two

cases. See Fig. 9, where it is seen that the full equivalence principle is between an accelerating
mirror (B) and an atom freely-falling into a black hole (C). There, we find that the spectra are

equivalent. However, while the spectra of the accelerating atom (A) and the accelerating mirror
(B) are strikingly similar they are different, and therefore, the two cases are not equivalent.
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of the first case.17 In both cases, the mirror sees no photons, and the mirror and

atom have the same relative accelerations with respect to each other.

In each case, we look at the interaction between the atom and the field only to

lowest order in the coupling constant.

Let us look at the flat spacetime examples first and take the coordinates (t, z)

to be the usual Minkowski coordinates such that the metric is

ds2 = dt2 − dz2 . (26)

Let us define dimensionless null coordinates u and v,

u = (ct− z)/` , v = (ct+ z)/` . (27)

The equation of motion for a massless scalar field is (the massless Klein–Gordon

equation)

1

c2
∂2
t φ− ∂2

zφ = 0 , (28)

which, in terms of the null coordinates u and v in Eq. (27) is

∂u∂vφ = 0 , (29)

where we use the notation ∂ξ ≡ ∂
∂ξ .

The plane-wave modes of the field, which are commonly used for expanding

solutions of Eqs. (28) or (29), are

φω+ =
1√

4π |ω|
e−iω(ct−z)/c =

1√
4π |ω|

eiω`/c u , (30)

φω− =
1√

4π |ω|
e−iω(ct+z)/c =

1√
4π |ω|

eiω`/c v , (31)

where ω± correspond to right- and left-moving solutions, respectively.

In terms of the Klein–Gordon norm for the fields, Eq. (25), the modes with

ω > 0 have a positive value for the norm, while those for ω < 0 have a negative

norm. We however, use a different complete set of modes, Eq. (32) below, which

are similar to Eq. (23), for expanding solutions of Eq. (29).

Instead of the solutions (30) and (31), we elect to use a complete set of modes

for the field by

φ̂Ω+ =
e−πΩ/2√

8πΩ sinh(πΩ)
lim
λ→0+

(u− iλ)iΩ , (32)

where we normalized Eq. (23) and use a different variable, u. These are a com-

plete set of positive norm (often called the positive frequency Unruh–Minkowski

modes,7,12) even though Ω takes all values positive and negative. The negative-

norm modes are just the complex-conjugate of these (due to the sign of iλ, or

ultimately, the definition of the branch-cut).
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IIIa. Accelerating atom

We are now going to place a mirror at position z = 0. We will take the boundary

conditions on the solutions φ that they be zero at the mirror. The solutions of

Eq. (29) then are of the form

φ(u, v) = g(u)− g(v) , (33)

for some function g. Since at z = 0, the null coordinates are both u = v = ct/`, then

we see that φ(z = 0, t) = g(t) − g(t) = 0, whish satisfies the boundary conditions.

Using Eq. (33) and the modes (32), we have that the modes satisfying the boundary

conditions are

φΩ(u, v) =
e−πΩ/2√

4Ω sinh(πΩ)
lim
λ→0+

[
(u− iλ)iΩ − (v − iλ)iΩ

]
. (34)

For the two-level atom, let us define the two states |b〉 as the ground state of

the atom and |a〉 as the excited state, with proper energy ω, and the atomic raising

operator σ̂†, which takes σ† |b〉 = |a〉, having time dependence eiωt̄ in the interaction

picture, where t̄ is the proper time of the atom.

We can write the quantum field Φ̂ in terms of the null coordinates u and v

Φ̂(u, v) =

∫
dΩ

(
âΩφΩ(u, v) + â†Ωφ

∗
Ω(u, v)

)
. (35)

In terms of the null coordinates (27), the path of the particle (4) is

u(t̄) = −e−ct̄/` , v(t̄) = ect̄/` . (36)

The interaction between the atom and the field will be taken to be

ĤI = g
(
σ̂e−iωt̄ + σ̂†eiωt̄

)
wµ∂µΦ̂ , (37)

where wµ is the four velocity of the atom, and t̄ is the proper time along the path

of the detector. In the frame of the atom, it is stationary, thus we have

wµ∂µΦ̂ = ∂t̄Φ̂ , (38)

where the derivative is evaluated along the path of the the atom. This interaction

is chosen because it makes the field Φ̂ an ohmic-coupled bath for the detector, in

the nomenclature of Caldera and Leggett.18 See Fig. 7.

Since the atom begins in its ground state, and the quantum field in the

Minkowski vacuum state, in the atom-field interaction, the only term that con-

tributes to the probability amplitude that the atoms becomes excited is the

“counter-rotating” term, in the language of quantum optics. I.e., we need terms

that look like σ̂†â†. If the atom is not accelerated, such counter-rotating terms will

give zero when integrated over time. However, using the above definition of the

field, and the fact that the time-dependence of the atomic raising operator σ̂† is
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Fig. 7. An atom accelerates in the presence of a stationary mirror. Initially, the atom is in its

ground state |b〉, and the field is in the Minkowski vacuum |0M〉. There is some amplitude |Aex〉
for the atom to become excited. We note that since the mirror destroys the Lorentz invariance (in

contrast to the true, Lorentz-invariant vacuum case in Sec. V), the state seen by the accelerated

atom is not a static thermal bath, but this aspect does not matter for our conclusions.

eiωt̄, we get an excitation amplitude of

|Aex〉 = 〈a| g
∫

dt̄
[
σ̂†eiω̂t̄ + σ̂e−iω̂t̄

]
∂t̄Φ̂

(
− e−ct̄/`, ect̄/`

)
|b, 0M〉 (39)

= g

∫ T

−T
dt̄ eiωt̄

×
∫ ∞
−∞

dΩ
iΩc

`

[
(−e−ct̄/`)−iΩ + (ect̄/`)−iΩ

] e−πΩ/2√
8πΩ sinh(πΩ)

â†Ω |0R〉 ,

(40)

since ∂t̄φ
∗
Ω(u, v) is

∂t̄φ
∗
Ω(u, v) =

iΩc

`

e−πΩ/2√
8πΩ sinh(πΩ)

lim
λ→0+

[
(u+ iλ)−iΩ + (v + iλ)−iΩ

]
, (41)

where we used Eq. (34). I.e., the first-order excitation is due to the σ̂†â† term, a

product of the counter-rotating terms in the quantum optics nomenclature. If Ω > 0,

then the second term in the square brackets will be zero after integration over t̄,

while if Ω < 0, it is the first term that will be zero. Now (−x+ iλ)iΩ = xiΩe−πΩ for

positive x since one must take the contour around the upper −x complex values so

that (−1)iΩ = (e+iπ)iΩ = e−πΩ. See Fig. 6. The integral in Eq. (40) thus becomes

(in the limit that T →∞)

|Aex〉 ≈ 2T
e−πω/2a√

8πω sinh(πω/a)/a

(
â†ω/a − â

†
−ω/a

)
|0M〉 , (42)
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where â†ω and â†−ω are the creation operators for the right- and left-moving modes,

Eqs. (30) and (31), respectively. The probability of atomic excitation is

Pex = 〈Aex|Aex〉 , (43)

which is proportional to the thermal factor 1/(e2πω/a − 1).

We note that this is interesting in that there is really no horizon hiding the

partner particles from the quantum field from the detector. There is entanglement

between the incoming field in the right Rindler wedge and that behind the incoming

horizon. But the latter gets reflected out by the mirror. Thus the entanglement

in the Minkowski vacuum occurs between the ingoing modes in the right Rindler

wedge and the outgoing modes in that same wedge, instead of being hidden behind

the horizon.

We can ask whether or not the system is truly thermal by comparing the prob-

ability of emission of radiation by an excited accelerated atom with the absorption

of the counter-rotating term by the unexcited atom.

IIIb. Accelerating mirror

In the second case, we consider an accelerated mirror, with a stationary detector

whose surface is at uv = −1, and the field initially in the Rindler vacuum (as defined

by Fulling19). With the mirror accelerated, the field is expanded in terms of the

positive-norm Rindler modes,10

φ̄Ω++ =
1√
4πΩ

{
u−iΩ, u > 0

0, u < 0
φ̄Ω+− =

1√
4πΩ

{
0, u > 0

(−u)iΩ, u < 0

φ̄Ω−+ =
1√
4πΩ

{
v−iΩ, v > 0

0, u < 0
φ̄Ω−− =

1√
4πΩ

{
0, u > 0

(−v)iΩ, v < 0

(44)

with positive Ω.

Because of the mirror, this spacetime features the following modes, which are

superposition of the basic positive-frequency modes, (44). See Fig. 8. We have

the positive-norm “1-modes,” which are left-moving modes in the negative v region

(and are zero elsewhere),

φ̄Ω1 =
1√
4πΩ

(−v)iΩ ; v < 0 , (45)

and we have the positive-norm “3-modes,” which are right-moving modes in the

positive u region (and zero elsewhere),

φ̄Ω3 =
1√
4πΩ

(u)−iΩ ; u > 0 . (46)

In these regions, v < 0 and u > 0, there is no mirror. We have the positive-

norm “2-modes,” which interact with the mirror. The region of the spacetime with

negative u and positive v contains the mirror, which lies on the surface uv = −1.



16

Fig. 8. A stationary atom with a moving mirror. While usually the spatial left- and right-moving

modes are independent, in this scenario, we have three families of modes which interact with the
atom. The first (labeled ‘2’), consists of right- and left-moving components, with relative phase

(−1) between them, so that they vanish at the mirror. Also in this spacetime are left-moving

modes and right-moving modes (labeled ‘1’ and ‘3’, respectively) which do not interact with the
mirror. Those have a random phase relationship to one another. The mirror follows a trajectory of

constant acceleration, and the atom is at rest. The three cases depicted are (1) the positive-norm

“1-modes” that originate before the past right null asymptote of the mirror trajectory and travel
to the left; (2) the positive-norm “2-modes” that originate from the left before the past extension

of the future null asymptote for the mirror, bounce off the mirror, and continue traveling to the

left after the past null asymptote of the mirror; (3) the positive-norm “3-modes” that originate
from the left after the extension of the future null asymptote of the mirror and travel to the right.

The field is in the Rindler vacuum state, which means that each of the three types of modes above
(and the “4-modes” (not depicted) that are to the right of the mirror and do not interact with

the atom) are independent of (unentangled and uncorrelated with) any of the other modes and

have no particles detectable by accelerated observers in either Rindler wedge. The atom is at rest
(moving along an inertial static world line) at distance ` from the closest approach of the mirror.

These modes are a superposition of the positive-norm left- and right-moving Rindler

modes, Eq. (44), which vanish at the mirror. They are

φ̄Ω2(u, v) =
1√
4πΩ

[
(u)iΩ − (−v)−iΩ

]
, (47)

and zero elsewhere. These are a bit subtly-defined, because the right-moving piece

is defined for u < 0, but the left-moving part is in v > 0, see Fig. 8. We also have

the “4-modes” (not shown in the figure). These are confined to the region u < 0

and v > 0 (the right wedge) and vanish at the mirror, but do not interact with the

atom, so we ignore them.

In terms of the positive-norm mode families which interact with the atom,

Eqs. (45), (46), and (47), the field Φ̂ is

Φ̂(u, v) =

3∑
i=1

(∫ ∞
0

dΩ b̂ΩiφΩi + H.a.

)
, (48)

where the summation over i is to include all three mode types. The atom travels
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along the path u = v = ct/`. The state of the field, the Rindler vacuum, |0R〉, is

defined by b̂Ωi |0R〉 = 0 for all values of Ω, and the only terms in the amplitude

which survive if the detector is initially in its ground state |b〉 are

|Aex〉 =

∫ T

−T
dt

∫ ∞
0

dΩ eiωt∂tφ
∗
Ωi(t, t)b̂

†
Ωi |0R〉 , (49)

where 2T is the interaction time, and we used Eq. (48) for the field Φ̂ and Eq. (37)

for the interaction Hamiltonian.

To calculate (49) for infinite interaction time T , we first compute WΩ±, where

WΩ± = ±
∫ ±∞

0

dt eiωt∂t

(
± ct

`

)±iΩ
. (50)

To compute WΩ+, we rotate the contour of integration from the real t-axis to the

imaginary t-axis, with tI = Im {t} and where the branch-cut is not in the first

quadrant of the complex t-plane.

WΩ+ =

∫ ∞
0

dtI e
−ωtI∂tI

(
ctI
`

)iΩ
e−πΩ/2 . (51)

Changing integration variables from tI to x = ωtI we get

WΩ =
( c

ω`

)iΩ
e−πΩ/2

∫ ∞
0

dx e−x∂xx
iΩ = (iΩ)

( c

ω`

)iΩ
e−πΩ/2 Γ(iΩ)

= i

√
πΩ e−πΩ/2√
sinh(πΩ)

eiϕ(Ω)
( c

ω`

)iΩ
, (52)

where ϕ(Ω) is the slowly-varying phase of the complex argument gamma function

Γ(iΩ), which starts at −π/2 for Ω = 0 and reaches 0 only once Ω ≈ 3, by which

time e−πΩ
√

Ω
2 sinh(πΩ) will have dropped by a factor of about 103. I.e., the phase of

Γ(iΩ) is essentially constant over the range in which the Γ(iΩ) is non-zero.

Similarly, one can rotate the contour in Eq. (50) the other way and evaluate

−WΩ− =

∫ 0

∞
dt eiωt∂t

(
i
ct

`

)iΩ
=
( c

ω`

)iΩ ∫ 0

∞
dx e−πΩ/2e−x∂xx

iΩ . (53)

We thus find that WΩ = WΩ+ = (WΩ−)∗, and therefore, the excitation amplitude

per Ω is

|AΩ〉 =
g√
4πΩ

[
b̂†Ω1W

∗
Ω + b̂†Ω3WΩ + b̂†Ω2

(
WΩ −W ∗Ω

)]
, (54)

where, using (49), the full amplitude is

|Aex〉 =

∫
dΩ |AΩ〉 . (55)

Integrating the amplitude |AΩ〉 in Eq. (54) over Ω gives some constant which is

independent of the frequency of the atom, and certainly not thermal. However, the
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probability of emitting a mode with frequency Ω is proportional to a thermal factor

PΩ = | 〈0R| b̂Ωi |AΩ〉 |2 ∝
1

1− exp[2πΩ]
(56)

which was also found in Ref. 6.

Thus, an accelerated atom above a stationary mirror with the field in the

Minkowski vacuum (no particles detected by the mirror as striking the station-

ary mirror) is excited with a probability proportional to the thermal factor, while

an accelerated mirror above a stationary atom, with the field in the Rindler vac-

uum (i.e., no particles detected by the mirror as striking the mirror) emits Rindler

modes with a probability proportional to the thermal factor. We must distinguish

this statement from stating that the atom emits particles into a thermal state. The

atom emits modes with correlations between the modes, given by the phase factor

i(a/ω)iΩeϕ(Ω), as in Eq. (52). I.e., what an unaccelerated atom below the acceler-

ated mirror emits is a pure state, not a thermal state (a mixed state); albeit, the

probability distribution over Rindler energies is proportional to a thermal factor.

There is thus some crude approximate form of the equivalence principle in play

here.

Hawking showed that a black hole emits thermal radiation. While an observer at

infinity sees the black hole as in some sense stationary, a static observer or atom near

the horizon is accelerated with constant acceleration. The Hartle–Hawking state

of the field near the black hole looks like a thermal state to such a static observer,

but looks much more like a vacuum state to a freely-falling observer. We can again

look at two cases, the one analyzed by Hawking, in which the atom is accelerated

and near the horizon, while the state is the vacuum state as far as the horizon

is concerned (although it is a state in thermal equilibrium with a temperature

inversely-proportional to the mass for an observer far away). The second case is

where the atom is in free fall into the horizon, while the state of the field is the so-

called Boulware vacuum (the analog of the Rindler vacuum in the curved spacetime

of the Schwarzschild metric of a non-rotating black hole), where a distant observer

sees nothing coming out of the black hole.

IV. Acceleration Radiation and the Equivalence Principle

In this section, we discuss acceleration radiation from atoms which do not accel-

erate, and show the approximate equivalence between atoms freely-falling into a

Schwarzschild black hole and stationary atoms (in Minkowski space) in the pres-

ence of an accelerating mirror. See Fig. 9.

When Einstein first formulated the equivalence principle he was mainly con-

cerned with the laws of classical physics. Ginzburg and Frolov in their review

paper20 mentioned that: “The question of whether or not the equivalence principle

holds for the description of phenomena for which their quantum nature is important

is by no means trivial.”
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Fig. 9. The three physical cases which we consider: (A) An atom uniformally accelerated in

Minkowski space in the presence of a stationary mirror with the Minkowski vacuum. (B) A
stationary atom in Minkowski space in the presence of an accelerating mirror and the Rindler

vacuum. (C) An atom in free-fall in the Schwarzschild metric in the Boulware vacuum. In all
three sub-figures, we indicate the probability of atomic excitation (atomic frequency ω) in the first
case or with an excitation probability at high frequency for the electromagnetic field mode with
frequency ν. Cases (B) and (C) are similar because in both cases, the atom is freely-falling, but

still emits radiation. Case A is a physically-different case, because the atom has non-zero proper
acceleration, and it is the atom that is thermally-excited, giving physically-different results.
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Fig. 10. Atoms in the ground state |b〉 are freely-falling in a Schwarzschild black hole metric,

where the state of the field is the Boulware vacuum. The atoms, though inertial and moving along

geodesics, emit acceleration radiation. When the atoms are released at random times from infinity,
the outgoing field is thermal.

Here we discuss acceleration radiation of an atom freely-falling in the gravita-

tional field of a static BH. The equivalence principle tells us that the atom essentially

falls “force-free” into the BH, that is, the atom’s acceleration is equal to zero. How

then could it emit something which looks like acceleration radiation? To answer

this question we consider modes of the field in the reference frame of the black hole.

In the Schwarzschild metric the field modes are stationary, even though they are

modified by the gravitational field of the BH. However, in the reference frame of

the freely falling atom the field modes are changing with time.

The equivalence principle is manifested as a symmetry between emission by

a static atom in Minkowski spacetime in the Rindler vacuum (discussed in the

previous section), and an atom freely falling in a gravitational field of a BH in the

Boulware vacuum. Moreover, there is an analogy between the Rindler horizon and

the BH event horizon. Indeed, the time-radius part of Schwarzschild metric interval,

ds2 =
r − rg

r
c2dt2 − r

r − rg
dr2 , (57)

which could be approximated near the event-horizon r = rg by

ds2 ' r − rg

rg
c2dt2 − rg

r − rg
dr̄2 , (58)
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and using the coordinate r̄ such that r − rg = er̄/rg to describe space-time events

outside the event horizon, the time-radius Schwarzschild interval becomes

ds2 ' er̄/rg
(
c2dt2 − d~r 2

)
, (59)

which is the interval of the Rindler space metric, Eq. (11). Comparing with the

interval of Rindler space, Eq. (11), we obtain an effective acceleration corresponding

to a free fall near the event horizon

d2r̄

ds2
= α =

1

2rg
. (60)

Next we consider an atom launched radially from the event horizon with an

initial radial velocity V0 = cdr/ds (see Fig. 10b). Using the Schwarzschild metric

in Eq. (57), the equations of atomic radial motion are(
dr

ds

)2

=
V 2

0

c2
+
rg

r
− 1 ,

dt

ds
=

V0

c2
(
1− rg

r

) . (61)

For V0 � c we find the following solution

r

rg
= 1 +

V 2
0

c2
− s2

4r2
g

,

t =
rg

c
ln

(
2rgV0 + cs

2rgV0 − cs

)
. (62)

In terms of the coordinate r̄, the atomic trajectory is

r̄ = rg ln

[
1

4r2
g

(
4r2

gV
2
0

c2
− s2

)]
. (63)

The trajectory of the atom near the BH event horizon, given by Eqs. (62) and (63),

has the same form as the trajectory of the atom fixed in Minkowski spacetime at

z0 = 2
V0

c
rg (64)

viewed in the Rindler coordinates (10) when relating the acceleration in the Rindler

case to the effective acceleration near the BH, Eq. (60). Since near the event horizon

the Schwarzschild metric (57) can be approximated as the Rindler metric (59), the

probability of atomic excitation and photon emission for an atom falling into a

Schwarzschild black hole is given by the same expressions, (18) and (20), only where

α and z0 are replaced with the corresponding values, (60) and (64), respectively.
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V. The “Bogoliubov” Path to Unruh Radiation

In this section, we present yet another interpretation of Unruh radiation. It could be

understood as a difference of perspective between two observers. For simplicity, we

consider a real scalar field Φ̂(z, t) to represent the photons. This field is an operator,

which can be expanded in different basis sets. Let us consider two observers — a

stationary and an accelerating observer (in Minkowski space) — which naturally

have two basis sets to describe the modes of the field. The stationary observer has

the line element ds2 = c2dt2 − dz2, while the accelerating observer’s line element

is ds2 = e−2z̄/`(c2dt̄2 − dz̄2), which is obtained from the stationary observer’s line

element by transforming to “accelerating” coordinates, Eq. (10). The normal modes

φω in each coordinate systems are different, satisfying the wave equation

1√
−g

∂µ
√
−ggµν∂νφω = 0 , (65)

where gµν is the metric, which could be read-off from the expression for the line

element, and g is its determinant. Using Eq. (65), with the metrics corresponding to

Minkowski (stationary) and Rindler (11) (accelerating) observers, the normal modes

for the stationary and accelerated observer both satisfy [(∂0)2 − (∂1)2]φ = 0, albeit

in different coordinate systems. So in both cases the normal modes are complex

exponentials, but in terms of different coordinates. The stationary observer’s modes

φν , evaluated at some spacetime event, (z̄, t̄) specified in Rindler coordinates, are

φν(z̄, t̄) =
1√
ν
e−iν/c

(
z(z̄,t̄)−ct(z̄,t̄)

)
=

1√
ν
e−iν`/c exp[(ct̄−z̄)/`] (66)

and for the accelerating observer

φν(z̄, t̄) =
1√
ν
e−iν/c(z̄−ct̄) . (67)

So in the right Rindler wedge, the two observers describe the field as

Φ̂(z̄, t̄) =
∑
ν

(
φν(z̄, t̄)âν + φ∗ν(z̄, t̄)â†ν

)
=
∑
ν̄

(
φ̄ν̄(z̄, t̄)b̂ν̄ + φ̄∗ν̄(z̄, t̄)b̂†ν̄

)
. (68)

Using the orthogonality of the modes, 〈φν(z, t), φν̄(z, t)〉 = δν,ν̄ , where the inner-

product is given by Eq. (25), we see that we could obtain âν ’s in terms of the

b̂ν̄ ’s,

âν =
〈
φν(z, t), Φ̂(z, t)

〉
=
∑
ν̄

(
ανν̄ b̂ν̄ + βνν̄ b̂

†
ν̄

)
, (69)

where ανν̄ =
〈
φν , φ̄ν̄

〉
, and βνν̄ =

〈
φν , φ̄

∗
ν̄

〉
. Alternatively, one can obtain the b̂ν̄ ’s

in terms of the âν ’s,

b̂ν̄ =
〈
φ̄ν̄ , Φ̂

〉
=
∑
n

(
α∗νν̄ âν − β∗νν̄ â†ν

)
, (70)



23

where we have used the properties of the inner-product (25),

〈f, g〉 = 〈g, f〉∗ = −〈g∗, f∗〉 = −〈f∗, g∗〉∗ . (71)

Particles in the vacuum

We can use Eq. (69) to make calculations, for instance, the number of S particles

in the S̄ vacuum is

〈n̂〉 =
〈
0S̄
∣∣â†ν âν∣∣0S̄〉 =

∑
ν̄

|βνν̄ |2 (72)

and using Eq. (70), we find that the number of S̄ particles in the S vacuum is〈
ˆ̄n
〉

=
〈

0S

∣∣∣b̂†ν̄ b̂ν̄∣∣∣0S〉 =
∑
ν

|βνν̄ |2 . (73)

An interesting symmetry is that in both cases, the number of particles in the other

frame’s vacuum is given by a summation of |βνν̄ |2; albeit, the two quantities involve

summations over different indices. If we use the Unruh–Minkowski modes for the

modes φν ,

φν(u) =
e−πν`/2c√
sinh(πν`/c)

lim
λ→0+

(
u− iλ
`

)iν`/c
, (74)

whose annihilation operator corresponds to a superposition of plane wave

eiν
′(ct−z)/

√
ν′ annihilation operators α̂ν′ ,

âν = Γ

(
1 +

ν`

c

)∫
dν′

iν′

[
(iν′)iν`/c

eπν`/c
− (−iν′)iν`/c

]
α̂ν′ . (75)

ανν̄ and βνν̄ are

ανν̄ =
e−

π
2 ν`/c√

2 sinh
(
πν`/c

)δνν̄ , βνν̄ =
e−

π
2 ν`/c√

2 sinh
(
πν`/c

)δνν̄ , (76)

we find that the number of Rindler photons in the Minkowski vacuum state, and

the number of Unruh–Minkowski photons in the Rindler vacuum state are both

〈n̂〉 =
〈
ˆ̄n
〉

=
1

2

1

exp
(

2πν`/c
)
− 1

, (77)

which is the Planck factor corresponding to the temperature of TU = ~a/2πckB.

An accelerating observer in Minkowski vacuum

Notice that the Minkowski-space mode φ in Eq. (66) is only defined in the right

Rindler wedge, see Fig. 5. However, the extension to the rest of Minkowski space

(into the left Rindler wedge) is unique if we demand that it correspond to an anni-

hilation operator, and that it not have any creation operator “components” (for all



24

values of the frequency parameter ν). To correspond to an annihilation operator,

it must have positive-norm, and demanding that its norm be positive for all ν, we

find that it is

φR
ν =

1√
2 sinh(πν`/c)

{
e−πν`/2cφ̄∗Lν , left wedge,

eπν`/2cφ̄R
ν , right wedge.

(78)

There is another family of Minkowski modes, φL
ν , which is concentrated mostly in

the left Rindler wedge,

φL
ν =

1√
2 sinh(πν`/c)

{
eπν`/2cφ̄L

ν , left wedge,

e−πν`/2cφ̄∗Rν , right wedge.
(79)

Consider a two-level atom with constant acceleration in the right Rindler wedge,

with trajectory given by Eq. (4). In its frame, the atom interacts with the mode φ̄R
ν

in the right Rindler wedge, Eq. (10), which corresponds to the annihilation operator

b̂Rν . Thus, the time evolution of the state of the field–atom system is given by the

time-evolution operator Û (first-order time-dependent perturbation theory)

Û ' 1̂ +
1

i~

∫ τ ′

0

dτ σ̂†eiωτ b̂Rν e
−iντ , (80)

which means that the atomic excitation process is accompanied by the annihilation

of a a right Rindler wedge photon.

For the Minkowski observer, however, the mode which the atom interacts with is

zero in the left wedge, and he describes the annihilation operator b̂Rν using Eqs. (78)

as

b̂Rν =
1√

2 sinh(πν`/c)

(
eπν`/2câR

ν + e−πν`/2câ†Lν

)
. (81)

Thus, since âR
ν |0M〉 = 0, the time-evolution operator, operating on the initial

Minkowski vacuum state, is

Û ' 1̂ +
1

i~
1√

2 sinh(πν`/c)
e−πν`/2c

∫ τ ′

0

dτ σ†eiωτ â†Lν e
−iντ . (82)

VI. Periodicity Trick for Unruh Temperature

Now we will give a “trick” for deriving the Unruh temperature. The trick is to argue

that, in the Rindler metric, the time coordinate must be periodic in the imaginary

direction and this imaginary periodicity implies that Rindler spacetime has a tem-

perature. The original derivation of the Unruh temperature using periodicity in

imaginary time may be found in a paper by one of us,11,21,22 following a similar

derivation of the Hawking temperature.23

Quantum field theory at finite temperature is periodic in imaginary time, with

periodicity

t→ t+ i~β , (83)
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where β = 1/kBT . One way to see this is by looking at the thermal average, which

possesses the property 〈
Q̂(t)Q̂(t′)

〉
=
〈
Q̂(t′)Q̂(t+ i~β)

〉
. (84)

Indeed, using the equation for the time evolution of the Q̂ operator and the invari-

ance of the trace under cyclic permutation, we obtain〈
Q̂(t)Q̂(t′)

〉
=

1

Z
Tr
(
e−βĤeiĤt/~Q̂(0)e−iĤt/~Q̂(t′)

)
=

1

Z
Tr
(
ei
Ĥ
~ (t+i~β)Q̂(0)e−i

Ĥ
~ (t+i~β)e−βĤQ̂(t′)

)
=

1

Z
Tr
(
e−βĤQ̂(t′)Q̂(t+ i~β)

)
. (85)

Equation (84) is commonly referred to as the Kubo–Martin–Schwinger (KMS) con-

dition. Since the ordering of the field operators on the two sides are interchanged,

the corresponding periodicity along the imaginary time direction is referred to as

“periodicity with a twist.”

Now let us assume that state of the field is the Minkowski vacuum |0M〉. That

is, in the inertial reference frame the temperature is equal to zero. Then the zero

temperature average over this state can be written as

G(t, z; t′, z′) = 〈0M| Φ̂(t, z)Φ̂(t′, z′) |0M〉 , (86)

where Φ̂(t, z) is the field operator at the spacetime event (z, t).

Since the vacuum is Lorentz-invariant, the two-point function (86) must depend

only on the Lorentz-invariant spacetime interval c2(t− t′)2− (z− z′)2. If we make a

coordinate transformation into the Rindler spacetime using Eq. (10) to express the

interval in terms of the Rindler coordinates, the average (86) depends on

c2(t− t′)2 − (z − z′)2 = `2

[(
ez̄/` sinh

(
ct̄

`

)
− ez̄

′/` sinh

(
ct̄′

`

))2

−
(
ez̄/` cosh

(
ct̄

`

)
− ez̄

′/` cosh

(
ct̄′

`

))2
]
. (87)

Hence, because of the periodicity of hyperbolic sine and cosine functions under the

addition of the imaginary increment 2πi to their argument, we have

sinh
(c
`
t̄
)

= sinh

[
1

`

(
t̄+

2π`

c
i

)]
= sinh(ct̄/`) cos(2π) ,

cosh
(c
`
t̄
)

= cosh

[
1

`

(
t̄+

2π`

c
i

)]
= cosh(ct̄/`) cos(2π) , (88)

and we conclude that in the Rindler spacetime the two-point function G(t̄, z̄; t̄′, z̄′)

obeys the KMS condition, namely

G(t̄, z̄; t̄′, z̄′) = G

(
t̄′, z̄′; t̄+

2π`

c
i, z̄

)
. (89)
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Comparing this with Eq. (84), we see that 2π`/c = 2πc/α = ~/kBTU, which

yields the Unruh temperature

TU =
~α

2πckB
. (90)

In other words, when viewed from a uniformly accelerating frame (i.e., the Rindler

frame), the two-point function computed in the Minkowski vacuum appears to sat-

isfy the KMS condition (84). Therefore, one may conclude that with respect to the

Rindler observer, the Minkowski vacuum looks like a thermal reservoir of tempera-

ture TU.

VII. Conclusions

We revisit Unruh Radiation and arrive at the effect by different means. Using a

quantum-optics route, we treat both the accelerating atom and accelerating mirror

cases, which we also treat using the Unruh–Minkowski modes. The case of an

atom freely-falling into a black hole is also discussed, and we discuss its relation to

Einstein’s Equivalence Principle. Then, we show how the effects could be obtained

from Bogoliubov transformations, and finally, we show the relation to the KMS

condition, of which Schwinger is among the namesakes.

Acknowledgments

MOS, JSB, and AAS would like to thank the Robert A. Welch Foundation (Grant

No. A-1261), the Office of Naval Research (Award No. N00014-16-1-3054), and the

Air Force Office of Scientific Research (FA9550-18-1-0141) for their the support.

DNP and WGU are supported by the Natural Sciences and Engineering Council of

Canada. MJD is supported in part by the STFC under rolling grant ST/P000762/1.

WPS thanks Texas A&M University for a Faculty Fellowship at the Hagler Insti-

tute for Advanced Study at Texas A&M University and Texas A&M AgriLife for

support of this work. He is also a member of the Institute of Quantum Science and

Technology (IQST) which is financed partially by the Ministry of Science, Research

and Arts Baden-Württemberg.
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