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Abstract

In the era of big data, large-scale information visualization has become an important challenge. Scalable resolution display envi-
ronments (SRDEs) have emerged as a technological solution for building high-resolution display systems by tiling lower resolution
screens. These systems bring serious advantages, including lower construction cost and better maintainability compared to other
alternatives. However, they require specialized software but also purpose-built content to suit the inherently complex underlying
systems. This creates several challenges when designing visualizations for big data, such that can be reused across several SRDEs
of varying dimensions. This is not yet a common practice but is becoming increasingly popular among those who engage in
collaborative visual analytics in data observatories. In this paper, we define three key requirements for systems suitable for such
environments, point out limitations of existing frameworks, and introduce Tuoris, a novel open-source middleware for visualizing
dynamic graphics in SRDEs. Tuoris manages the complexity of distributing and synchronizing the information among different
components of the system, eliminating the need for purpose-built content. This makes it possible for users to seamlessly port ex-
isting graphical content developed using standard web technologies, and simplifies the process of developing advanced, dynamic
and interactive web applications for large-scale information visualization. Tuoris is designed to work with Scalable Vector Graph-
ics (SVG), reducing bandwidth consumption and achieving high frame rates in visualizations with dynamic animations. It scales
independent of the display wall resolution and contrasts with other frameworks that transmit visual information as blocks of images.
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1. Introduction

Data visualization is a fundamental step in most modern data
analytics workflows, and is often used more than once in these
processes – during the initial exploration as well as a mecha-
nism to present and communicate results. In fact, the term vi-5

sual analytics was coined to describe the process in which addi-
tional and relevant insights may be gained by representing data
in a pictorial way [1]. The ever increasing demand for big data,
which is the driving force behind a number of novel technolo-
gies, presents not only unique research and business opportu-10

nities, but also significant challenges and problems [2, 3]. One
key challenge concerns the interpretation and understanding of
large and diverse datasets, which require expertise from multi-
ple domains. Data science researchers encourage collaborative
visual analytics as a resolution to this challenge [4, 5].15

Immersive data observatories [6, 7, 8] and scalable display
walls [9, 10, 11] are proven to be excellent platforms for col-
laborative visual analytics. Such systems have been in exis-
tence for nearly three decades [12] and have seen tremendous
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commercial success offering a dramatic increase in the ability20

to generate valuable insight from big data. Despite computa-
tional power, storage capacity, and network bandwidth improv-
ing in orders of magnitude over the past decades, display de-
vices have seen a much slower evolution and large display en-
vironments remain costly to build and hard to maintain [13].25

Building large high-resolution displays by tiling smaller and
cheaper screens has therefore become a popular choice, and we
find a variety of such scalable resolution display environments
(SRDEs) [14, 15] in existence.

The Data Science Institute of Imperial College London has30

several such SRDEs which are capable of accommodating au-
diences of various sizes: (a) an immersive data observatory in
a cylindrical layout configuration of 64 HD screens providing a
132.7 megapixel display which can accommodate 20 individu-
als, (b) a 2D display wall made from 8 4K screens providing a35

66.35 megapixel display which can accommodate 6–8 individu-
als, and (c) a 3D display wall made from 6 glassless 3D screens
providing a 12.44 megapixel display which can accommodate
3–5 individuals. This makes it possible for multidisciplinary
teams to explore big data in various settings.40

One of the key challenges in operating SRDEs is the inabil-
ity to use general purpose software in such environments as they
do not support high performance rendering and high resolution
output, restricting us to a select few specially designed middle-
ware such as SAGE2 [16, 17], DisplayCluster [18], CGLX [19]45
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and Equalizer [20, 21]. Despite the individual merits of these
frameworks we find major limitations in performance, scalabil-
ity, and transparency preventing us adopting them across multi-
ple purpose-built SRDEs. These limitations are common to any
institution planning to operate more than one SRDE, or for a50

group of institutions that plan to engage in collective decision
making on big data. We therefore define three requirements
for systems suitable for collaborative visual analytics across a
range of several SRDEs:

Performance of the system regardless of scale and complexity55

of the visualization, achieving a high frame rate suitable
for producing smooth and satisfactory animated graphics
for the human eye. The system must operate within a rea-
sonable and predictable CPU and memory footprint and be
suitable for general purpose networking infrastructure.60

Scalability of a visualization such that it would properly ren-
der at any resolution making it possible for an audience
to view the same content in a single display, across a
few screens driven by a single computer, or a large high-
resolution display of an SRDE. This scalability must not65

lead to degraded performance.

Transparency or the ability to design a visualization once and
use it across environments of various scales without any
reduction of quality, modifications to its contents and code,
or having to introduce special adaptations for them to be70

usable at higher resolutions.

In addition to meeting the requirements mentioned above,
other aspects such as reliability (does it crash frequently or not),
maintainability (how easy is it to maintain and evolve), and us-
ability (how easy is it to control interactive applications at run-75

time), must also be considered when designing middleware for
SRDEs.

This manuscript introduces Tuoris, a novel open-source mid-
dleware for visualizing dynamic graphics in SRDEs. Tuoris is
capable of distributing graphics in an SVG format while syn-80

chronizing predefined animations and interactive operations
across tiled displays of variable resolutions. It is capable of
driving an SRDE using commodity hardware and aims to offer
a framework for collaborative visual analytics while meeting
the performance, scalability and transparency requirements de-85

fined earlier.
In this paper, we start off by looking at the evolution of

large high-resolution displays and high performance render-
ing pipelines and review contemporary middleware for SRDEs
pointing out their limitations which prevent their adoption for90

our collaborative visual analytics use-cases. We then describe
the design decisions underpinning Tuoris and explain its archi-
tecture in Section 3. This is followed by Section 4 where we
discuss different use-cases along with a thorough performance
analysis conducted within the SRDEs at the Data Science Insti-95

tute of Imperial College London. Our manuscript ends with a
conclusion and a list of further lines of action.

2. Related Work

The idea of using high resolution images to explore large
datasets and also the use of high performance rendering100

pipelines to prepare such images has been a topic of interest
in the computer graphics community for many years. Whit-
man [22] explained the history of attempts to parallel render-
ing spanning from the late 1970s. Molnar’s classification of
parallel rendering [23] in the mid 1990s paved the way for105

many interesting approaches to dynamic rendering of high-
resolution graphics. However, the visualization of such high
resolution graphics in tiled display walls was not popular until
recently. Early examples such as Chromium [24], SAGE [10]
and Parallel-SG [25] were introduced some 15 years ago. Mod-110

ern SRDEs are an evolution of these early examples, with var-
ious infrastructures proposed in the past 5–10 years. These
systems are diverse but solve similar problems using different
strategies, and are not always suitable for each and every prob-
lem requiring an SRDE.115

The standardization of middleware for SRDEs is still a pend-
ing task, but several authors have made attempts to categorize
them in different ways. Chen et al. [26, 27] divided them into
two groups (master-slave and client-server) based on their ex-
ecution model. Ni et al. [14] classified them based on their120

data distribution architectures (as display data streaming soft-
ware and distributed rendering software). Chung et al. [28]
divided them into four groups based on applications they tar-
get: (a) transparent frameworks (for legacy applications), (b)
distributed scene graph (DSG) frameworks (for 3D graphics125

applications), (c) interactive application frameworks, and (d)
scalable rendering frameworks. A final grouping, noted by Re-
nambot et al. [17], is according to their deployment models
(browser-based vs. desktop-application).

Given these various classifications of middleware for SRDEs,130

we started off by looking at some window management sys-
tems. These systems intend to provide a unified workspace
for distributed data visualization, making it possible to run dif-
ferent applications at the same time across several tiled dis-
plays. Distributed Multihead X (DMX2) was designed to pro-135

vide multi-head support for the X-Windows desktop in systems
composed of multiple displays. DMX follows a client-server
model, where the server node distributes the visual elements,
which are later rendered in client nodes.

Another popular window management architecture is Scal-140

able Adaptive Graphics Environment (SAGE) [29] of which
a second version SAGE2 [16, 17] is also available and now
known as Scalable Amplified Group Environment. SAGE2 is
a browser-based client-server cross-platform middleware dis-
tributed with different useful applications, which was designed145

to provide a powerful solution for remote collaboration in data
intensive environments. These two systems have achieved sig-
nificant popularity and have a large number of deployments
around the world.

Though not as popular as SAGE2, DisplayCluster [18] is an-150

other dynamic windowing environment with built-in capabili-

2http://dmx.sourceforge.net/
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ties for viewing media, which includes the display and stream-
ing of ultra high-resolution images and video content. Despite
these being transparent frameworks featuring a non-invasive
programming model, they heavily rely on pixel streaming to155

distribute most visual information from server to clients. This
greatly reduces the scalability of such systems in terms of sup-
ported resolution and restrict their applicability to environments
where high-performance networks are available.

Unlike window management approaches, parallel graphics160

rendering middleware such as the Image Composition Engine
for Tiles (IceT) [30, 31] distribute the rendering workload
across multiple nodes of a distributed system. This allows ap-
plications to perform sort-last parallel rendering by splitting the
display area into tiles and assigning them to one or more proces-165

sors. And, at the same time, each processor can also be render-
ing content for more than one tile. IceT distributes the rendering
of graphical content for M tiles across N processors and rely on
multiple strategies such as binary trees and map-reduce to com-
pose the resulting tiles and generate a unique image. While170

IceT met both the performance and scalability requirements we
anticipated, it requires visualizations to be purpose-built to suit
its rendering pipelines, limiting its scope.

A different approach is found in Chromium [24], a frame-
work based on the older WireGL [32] system from Stanford.175

It operates by manipulating and distributing streams of graphic
API commands on clusters of computers. Chromium can run
OpenGL-based applications while intercepting OpenGL com-
mands, which are distributed to client nodes. These clients ex-
ecute the commands they receive in order to render their corre-180

sponding portion of a much larger scene. The main limitation
of Chromium is that it incurs on a high network usage —even
when the scene does not change— which is a result of its low-
level focus giving priority to precision over performance.

Garuda [33] was proposed to solve limitations of Chromium.185

It reduces network bandwidth consumption by caching and
managing the transmitted geometry at rendering nodes. Only
required parts of the scene are transmitted to each client by us-
ing an adaptive algorithm that culls the scene graph to a hierar-
chy of frustums to determine which objects are visible in each190

tile of the wall. While Garuda closely matched many of our
needs, it has performance implications such as the need for a
high-end server machine and a gigabit ethernet in order to pro-
vide a stable frame rate for animations. But, the biggest weak-
ness of Garuda was that it could only support applications of195

a scene graph type, which makes it less popular among those
who engage in collaborative visual analytics.

Equalizer [20] is a toolkit for scalable parallel rendering
based on OpenGL. It provides an application programming in-
terface (API) to develop scalable graphics applications, that can200

run in different configurations including tiled displays. The
Cross-Platform Cluster Graphic Library (CGLX) [19] provides
another API that allows to run the same copies of an OpenGL-
based application on all clients and replicate visualization data
on all the clients. CGLX was also developed as an enhance-205

ment to Chromium, but had a much broader scope compared
to Garuda and was not restricted to scene graph type applica-
tions, similar to Equalizer. But, unlike Equalizer it was much

easier to maintain and was better in terms of transparency. The
main weakness of CGLX was its scalability: we found that its210

performance (measured in FPS, common for animated content)
reduced as the number of display tiles increased, due to the syn-
chronization overhead introduced by the head node. This means
that animations would run much faster on displays with fewer
screens compared to displays with many screens.215

Having carefully surveyed alternatives, we found that
1) frameworks supporting dynamic windowing environments
were dependent on pixel streaming and performed poorly, 2)
frameworks that were focusing on DSG had a limited scope
and corresponding transparency implications, and 3) others had220

scalability limitations which prevented their use on SRDEs
of different dimensions. For these reasons, we developed
Tuoris following a different approach to address these limita-
tions, but borrowed many key concepts from existing frame-
works, which greatly influenced our design.225

3. Implementation of Tuoris

Tuoris is an open-source middleware designed to visualize
highly dynamic graphics across multiple SRDEs using com-
modity hardware. Its objective is to support multidisciplinary
teams engage in collaborative visual analytics on big data. All230

design decisions underpinning its software architecture and im-
plementation are driven by these two core aspects.

3.1. Design decisions and limitations

We chose to develop Tuoris as a web-based middleware in-
stead of an OpenGL-based desktop application. We were in-235

spired by the choice of a web-based architecture in SAGE2,
in contrast to their predecessor SAGE and also by the grow-
ing popularity of web technology in general and particularly its
widespread adoption in industry and academia for data visual-
ization and visual analytics. This would make it possible for240

us to cater for a much larger audience intending to use SRDEs
for collaborative visual analytics. Furthermore, a deployment
of Tuoris involves a minimum installation overhead as it runs
on a web browser. It also does not require specific communi-
cation and rendering libraries as it relies on a rich ecosystem245

of features provided by web browsers such as the support for
HTML, JavaScript and WebSocket standards.

Another important choice was to use the SVG file format,
which makes the system scalable. It not only provides the abil-
ity to render both vector and raster image formats but also in-250

teractive and dynamic drawings which can include animations
that are declaratively defined and triggered or scripted using
JavaScript. SVG (which is based on XML and an open standard
by W3C since 1999) is the most widely adopted mechanism
for describing vector graphics in modern web browsers. SVG255

drawings can be efficiently rendered and distributed across dis-
play environments spanning many screens with minimum im-
pact on underlying networks as the specification itself is res-
olution independent. This enables displaying very high qual-
ity graphics in tiled displays spanning multiple screens without260

aliasing problems. An additional advantage of supporting the
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SVG specification is that there are a large number of browser-
based software frameworks that can be used to develop SVG-
based visualizations, D3 [34] being one of the most popular
ones. On top of that, software such as Convertio3 can be used265

to convert files from over 100 different formats into the SVG
format. This makes it possible for us to use Tuoris to render
a large number of documents of different types at variable res-
olutions, or to embed files of various types within a visualiza-
tion designed for an SRDE. However, SVG has its limitations,270

and there are a number of browser based content formats that
Tuoris does not support such as playing audio and video or ren-
dering 3D visualizations that are GPU-intensive.

We also opted for retained rendering [28] to increase the
performance. With this mode of distributed rendering, the dis-275

play nodes of Tuoris cache a copy of the visual elements mak-
ing it possible to optimize network bandwidth consumption in
subsequent frames by having the server only forward updates
to the clients. The alternative to this is immediate rendering
where the server passes all visual elements on a per-frame basis.280

All pixel streaming based middleware (including SAGE2) does
not support retained mode rendering. Parallel rendering tech-
niques are used to preserve the scalability of these systems, but
this still introduces significant network overheads when work-
ing with high resolution graphics. Our choice of the SVG file285

format makes it possible to support retained rendering.
The implementation of Tuoris follows a client-server archi-

tecture, in which a client initiates a request that is processed
by a server. The server then responds back to the requestor
or all clients in general. This contrasts with the master-slave290

approach, in which the application is either replicated or bro-
ken down into pre-defined segments and distributed among the
slaves. The master node drives the system and takes charge
of ensuring each slave executes its code at a precise time. As
pointed out by Ni et al. [14], the master-slave approach requires295

lesser network bandwidth and therefore performs better. But,
we discarded the master-slave architecture as it presented us
with several limitations in terms of synchronizing state and tim-
ing animations across multiple screens. Secondly, as pointed
out by Nirnimesh et al. [33], our chosen client-server architec-300

ture does not require replicating all information on each and ev-
ery client. This is particularly useful for scalability on SRDEs.

The next important decision was to focus on a non-invasive
programming model similar to most transparent frameworks
and DSG frameworks. As a fully transparent middleware,305

Tuoris only requires either a URL of an SVG drawing or a
valid HTML document with an SVG element containing the
visualization; and does not require any modification to existing
SVG-based web applications.

One of the key design decisions of Tuoris is also one key lim-310

itation. The single-controller multi-viewer deployment model
of Tuoris is both scalable and also very easy to deploy and
manage. The limitation is that all of those who would want to
interact with Tuoris would have to share a single user interface
such as a webpage rendered on a tablet. Compared to other315

3https://convertio.co/

contemporary middleware for SRDEs such as SAGE2, which
allow collaboration even across multiple sites, Tuoris cannot be
controlled by more than one user interface at a time. However,
this does not prevent multiple people interacting through a sin-
gle control UI, which is achieved by large multi-touch screens.320

This key decision made it possible for us to greatly simplify
the design and deliver real-time interactivity for fairly complex
drawings rendered at a very high resolution.

In summary, Tuoris is a browser-based client-server cross-
platform middleware like SAGE2 but specifically designed for325

working with graphics defined in an SVG format. It is similar to
DSG frameworks (such as Garuda) which are restricted to scene
graph type applications. This limits the scope of our middle-
ware compared to that of SAGE2, but completely avoids need
for pixel streaming and instead uses a specialized distributed-330

rendering algorithm, which we describe later. Tuoris works at
an element-level, distributing differences to an SVG canvas as
a series of messages similar to frameworks such as Chromium
and CGLX. And, it supports retained rendering and distributes
messages using a multicast-model while culling them to suit335

each tile as in the case of Garuda. This makes Tuoris scale
to suit an SRDE of any dimension and perform independent
of the display resolution, while the non-invasive programming
model ensures transparency. One of the main implications of
our design is that Tuoris is distinctively different to existing340

frameworks from a technological, algorithmic and application
standpoint. Therefore, to confirm its suitability, we provide
an extensive list of examples and testcases in Section 4. We
also compare the performance, scalability and transparency of
Tuoris with SAGE2 and discuss how these two frameworks345

meet other specific requirements such as reliability, maintain-
ability and usability.

3.2. System architecture

Tuoris is made up of three loosely coupled components (a
server, a control client, and a set of display clients) designed350

to be hardware and operating system platform independent.
The server component requires a Node.js runtime environment
which can be installed on a physical server, virtual machine or
Docker environment. The display clients only require a modern
web browser. The choice of client-side as well as server-side355

JavaScript [35] technology was based on their extensive sup-
port for event-driven architectures and asynchronous input and
output capabilities. Together with the adoption of the SVG file
format, these language-specific features contribute to the scala-
bility of Tuoris.360

Providing Tuoriswith a URL of an SVG drawing (or alterna-
tively an HTML document in which an SVG element is defined)
triggers its server-side processing pipeline. This starts by cre-
ating a new HTML document which includes content from the
original SVG file and injects a number of JavaScript elements365

to monitor changes on the underlying SVG element. These
scripts adopt the MutationObserver specification4, which is an
interface provided by modern web browsers to keep track of

4https://dom.spec.whatwg.org/#interface-mutationobserver
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mutations to a tree of Document Object Model (DOM) nodes.
Tuoris observes changes to children and attributes of the entire370

HTML document, but ignores everything that is not within an
SVG element.

There are two types of execution modes supported by
Tuoris (see Figure 1):

Interactive mode: where Tuoris exposes a control webpage375

which contains the new HTML document. This webpage
can be rendered on a separate web browser which the users
would interact with. Any mutations to the SVG elements
that happen as a result of these interactions will be tracked
and broadcasted as a series of events to the server.380

Non-interactive mode: where Tuoris renders the new HTML
document using a headless Chromium web browser5,
which plays the role of the client. All changes that happen
to the SVG element as a result of any existing scripts (such
as pre-set animations) would be tracked by this client and385

broadcasted as a series of events to the server.

We collectively refer to the headless browser and the con-
trol webpage as the control client. In both execution modes
the original SVG is rendered on this client. In the interactive
mode the dimensions of this SVG would be suitable for a hu-390

man viewer and scale to fit the browser on which it runs. In the
non-interactive mode this would match the pre-defined internal
dimensions (set to the minimum) of the headless browser. The
dimensions of the SVG rendered on the control client are fixed
regardless of the resolution of the display clients. This makes395

the performance of the rendering step independent of the SRDE
in use. This is an advantage of using SVG, and it also makes
our control client highly responsive and deterministic in terms
of performance (as the browser spends a fixed and minimum
amount of effort in terms of the rendering and painting of the400

interactive visualization).
The communication between the server and control client

uses the WebSocket protocol, a standard for establishing a du-
plex communication channel over TCP [36]. The commu-
nication between the server and display clients also use the405

same protocol, which we implemented using the socket.io li-
brary. Similar to other browser based visualization frameworks
for SRDEs such as SAGE2, Tuoris leverages the WebSocket
protocol to provide an efficient communication mechanism be-
tween web servers and display clients while introducing a min-410

imum connection overhead. But unlike most other frameworks
Tuoris reduces both the size and frequency of the messages
exchanged between each of these components, by means of a
specially designed algorithm:

1. The control client tracks all mutations to the SVG DOM415

tree and stores them in an array as and when they happen,
but process them at the rate at which a display refreshes
(usually 60 FPS).

5https://pptr.dev/

2. All mutations are recorded along with an identifier corre-
sponding to the node that changed, which makes it possi-420

ble to correlate each of them with that specific node.

3. Mutation processing stops either when there are no more
mutations to process or when 30ms has elapsed (30ms
duration gives us sufficient time to process changes and
broadcast them). By throttling the rate at which we pro-425

cess mutations, we make it possible for the display clients
to maintain a stable refresh rate of 60 FPS.

4. All mutations are then recorded on a changeset and se-
quenced according to the order in which they must be ex-
ecuted. Any mutation that can be executed immediately430

will have an order of 0 while others will have some posi-
tive integer value.

5. If the changeset is not empty it will be broadcasted to the
server at the end of each processing cycle.

6. The server application intercepts this changeset and de-435

termines whether they must be broadcasted to the display
clients. When each display client establishes a connection
with the server, it specifies a viewbox with the boundaries
of the specific portion of a visualization that will be ren-
dered within it. Mutations outside this viewbox are not440

relevant to a display client, and are culled by the server to
ensure a minimum communications overhead.

7. The server then forwards relevant mutations to the respec-
tive display clients, which interpret them. This means that
the server component would not have any significant per-445

formance impact.

The server receives messages from the control client in six
different formats, which are explained in Table 1.

message description
M1 adds or updates a DOM node and includes a tag name,

namespace, parent identifier, payload and an order.
M2 removes an existing DOM node.
M3 updates a value of a named DOM attribute.
M4 provides details of the bounding box of a given node

as left, top, right and bottom.
M5 defines a collection of CSS rules.
M6 defines the viewbox for the parent SVG element.

Table 1: Different types of messages received by the Tuoris server.

All messages include a type attribute, and messages of type
M1–M4 also include a node identifier. Messages of types M5450

and M6 are different to other messages. M5 is only sent once
when the drawing is first loaded and M6 is only sent again if
the SVG element’s viewbox changed due to resizing the web-
page, for example. The server broadcasts these messages to the
display clients in four different formats:455

E1: represents a DOM node using a sequence of properties:
type, node identifier, parent identifier, tag name, names-
pace, attributes, text content and bounding box details.

5
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(a) In the non-interactive mode the input SVG is rendered on the
headless browser. The different parts are then sent to the appropriate
display clients.

(b) In the interactive mode the input SVG is rendered on the con-
trol webpage. Users interact with the content on this webpage. The
different parts are then sent to the appropriate display clients.

Figure 1: Diagram of the Tuoris system, depicting the two modes of operation.

E2: includes the type and a collection of CSS rules.

E3: includes the type and the viewbox for the parent SVG ele-460

ment.

Messages of type E1 are very frequent, while messages of
type E2 and E3 are infrequent and may only be sent when the
page first loads. All of these are broadcasted to the display
clients in batches as and when the server receives new mes-465

sages.
The display clients treat messages of types E1–E3 as events

and enqueues them onto a queue on receipt which will be pro-
cessed afterwards. The display client pushes a special type of
event, E4, on to the same queue at the end of each batch to470

instruct the system to clean up any nodes that are dangling or
invisible within the given range for a specific display client as a
result of a transformation.

The client-side processing of the event queue is also at the
same rate at which the display refreshes (usually 60 FPS). And475

similar to the server-side algorithm it too processes updates un-
til there are no more or up to 30ms at a time, which ensures that
the system is never overloaded. Due to culling at the server-
side the workload at the client-side is generally much lower and
avoids lags and tearing of content at each refresh interval. The480

special event of type E4 makes the clean-up a part of this itera-
tive workflow and does not introduce any additional overheads
to the system.

To avoid lags and inter-screen tearing, our implementation
uses the requestAnimationFrame method, and therefore relies485

on synchronized clocks on the client-side machines. The videos
provided as supplementary material confirm that there are no
lags and no visible tearing.

A frame rate of around 15FPS is deemed sufficient for a
human to perceive something as interactive [37, 38]. Film490

and television cameras use 24FPS and 30FPS frame rates and
most displays available today achieve a maximum frame rate
of 60FPS. Figure 2 is a photograph of Tuoris achieving up to
60FPS for a typical visualization. We provide a separate video
of the same as supplementary material to confirm that Tuoris is495

capable of supporting interactive visualizations.

Figure 2: Photograph of Tuoris achieving up to 60FPS framerate (measured
using the FPS meter of the Google Chrome web browser).

Tuoris is designed to handle highly dynamic visualizations.
In each interactive step the elements of an SVG drawing may
be transformed or moved to different areas of the display area
and thus becoming no longer relevant to a specific monitor of500

an SRDE. To make rendering very efficient, these elements are
discarded and recreated only if they reappear by means of a
specific element lifecycle. The element is created if there are
events corresponding to a non-existing element. It is retained
as long as there are no events to mutate it. If one or more at-505

tributes of this element are changed they will be added or re-
moved, accordingly. If the element has no parent or lies outside

6



the viewbox of the display client it would be removed.
The design of Tuoris demands a moderately performant

server-node but the clients need not have specialized hardware510

resources. These are confirmed in the tests that we carried out
(explained in the next section). We also find that the flexibil-
ity as well as the scalability of Tuoris is due to its modular
design and rate-limited message processing architecture. This
also ensures consistency of visualization regardless of the vol-515

ume of messages that are exchanged between the server and
client components.

4. Examples and performance analysis

In order to validate our design hypothesis and subsequent im-
plementation, in this section we present different examples of520

visualizations powered by the Tuoris system, covering a wide
spectrum of use cases. We also use them as means of demon-
strating and evaluating different aspects of performance, scala-
bility and transparency of Tuoris.

Performance and scalability are fundamental to any design525

of a distributed system, be it specialized in visualization or oth-
erwise. But, the complex nature of such systems and their de-
pendencies on various other software and hardware elements
makes it hard to make an accurate measurement of these char-
acteristics. Therefore, in order to perform a fair evaluation,530

we designed a battery of tests and ran them at Imperial Col-
lege London’s immersive data observatory. It is composed of
64 full HD Samsung UD46D-P professional video wall moni-
tors, arranged in a cylindrical layout in 4 rows and 16 columns;
they are powered by 32 rendering nodes. This system offers a535

scalable display wall with a total resolution of 30720 pixels of
width and 4320 pixels of height, resulting in a display of 132.7
megapixels, and have been also showcased in previous related
publications [4, 5]. The Google Chrome web browser was used
in the client nodes.540

To demonstrate that our middleware supports transparency,
we used previously created web-hosted content with no modifi-
cations in all of our use-cases; we simply provided Tuoris with
a URL using its interactive mode. For our tests, we chose over
10 different SVG visualizations available on the internet, with545

different types of content. The particular visualizations, their
URLs, and a reference to a screenshot of it running are given in
Table 2.

4.1. Transparency
Our tests on transparency are grouped into five different cat-550

egories. The first category of tests comprises of graphs devel-
oped using the popular D3.js framework:

T1a: Les Misérables character co-occurrence network repre-
sented as an adjacency matrix diagram which covered sce-
narios such as animation, selection of nodes and redraw-555

ing.

T1b: Les Misérables character co-occurrence network drawn
as a force-directed graph. We were able to re-position a
node and observe the dynamic re-drawing of the graph
based on the forces.560

T1c: a clustered force layout based on multiple custom forces
to test the interactivity and the responsiveness of multiple
viewers driven by a single controller. It proved that the
effect of random forces does not cause the diagram to be
drawn differently on individual display clients.565

T1d: a multi-line chart rendered on a white and a black back-
ground to check the sharpness of rendering of the lines,
text and also the axes.

T1e: a hive-plot that displayed 764 dependencies among 220
classes, where we could select nodes or links to understand570

how connected they were.

The next category includes other diagrams with animations:

T2a: a star map of the Northern Hemisphere using a flipped
stereographic projection.

T2b: an animation that demonstrated how Bridson’s Poisson575

disc sampling algorithm [39] works.

The third, fourth and fifth categories are content of various
formats such as 3D graphics, converted office documents and
geospatial content:

T3: the capability of rendering 3D content using an example580

from Three.js,

T4: the ability to render PowerPoint presentations and PDF
documents converted into the SVG format using the Con-
vertio online image converter,

T5: a geographic map of the Czech Republic (a large -15MB-585

SVG file which included many features). The same SVG
is reused in subsequent tests to validate scalability (Sec-
tion 4.2) and performance (Section 4.3).

Using these 10 visualizations, we confirm that Tuoris is
able to properly render animated graphics of various formats.590

We made sure to include non-animated (and therefore non-
interactive) content (T1d) as well as animations that require no
user interaction (T2b, T3 and T5). Figure 3 (a–f) includes pho-
tographs of each of the above test cases and we have included
videos of some of them as supplementary material. Our tests595

did not cover all types of graphs that can be produced using
D3 as well as graphs that can be rendered using other similar
software such as Raphaël [40] and Graphviz [41], but we made
sure to cover reasonable ground to confirm successful adoption
of Tuoris to render a wide majority of graphs developed in the600

SVG format at very high resolutions spanning many screens.
Published research show that people prefer larger displays

[42] and that maximizing the available screen real estate
demonstrably affects visualization [11]. Larger displays are
particularly useful for rendering high resolution content that605

may only be readable and interpretable at such dimensions.
With Tuoris it is easy to switch between various resolutions and
select what best suits the content that is displayed. To show the
benefits we have provided two screenshots of Tuoris rendering
a modified version of the adjacency matrix diagram from T1a610

7



Figure 3: Photographs taken for various tests carried out on Tuoris
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Test URL Figure
T1a https://bost.ocks.org/mike/miserables/ 3a
T1b https://bl.ocks.org/mbostock/raw/4062045/5916d145c8c048a6e3086915a6be464467391c62/ 3b
T1c https://bl.ocks.org/mbostock/raw/7881887/c4cad93c5eaf159cccb8d6858d72894c45fbb6be/ 3g
T1d https://bl.ocks.org/mbostock/raw/3884955/95ccdeac9bbf2012300eb16f8109514e5ea234a2/ 3d,3e
T1e https://bost.ocks.org/mike/hive/ 3f
T2a https://bl.ocks.org/mbostock/raw/c7e85d2b47d11982db38/941bfa0419ef6b246e05f2d8525f8020dae36c89/ 3h
T2b https://bl.ocks.org/mbostock/raw/dbb02448b0f93e4c82c3/ae0487ceddd1d0763e5437c4e445f3f25319e698/ 3c
T3 https://threejs.org/examples/svg sandbox.html 3i
T4 https://convertio.co/image-converter/ –
T5 https://upload.wikimedia.org/wikipedia/commons/0/08/CzechRepublic-geographic map-cz.svg 3j
F1 https://www.jasondavies.com/maps/sphere-spirals/ –
F2 https://bl.ocks.org/mbostock/raw/4636377/15ee95d79908587bc6fa3c1b1e7019b45739b9a6/ –

Table 2: Visualizations used on the different test scenarios. Their original URLs are provided (a majority of these are from D3 examples developed by Mike
Bostock). The corresponding images are all found in Figure 3.

displaying 10 times as much information at two different reso-
lutions in Figures 4 and 5 Furthermore, this also makes a case
for why SRDEs displaying high resolution content is actually
useful.

Figure 4: Screenshot of a modified version of T1a displaying 10 times as much
information at a 1920 x 1080 resolution.

Figure 5: Screenshot of a modified version of T1a displaying 10 times as much
information, same as Figure 4, but only shows the top-left 1

16 th at a 7680 x 4320
resolution.

Tuoris is an open source6 cross-platform middleware which615

is straightforward to install; and, as we have used publicly avail-

6https://github.com/fvictor/tuoris

able content in our tests with no modifications, interested read-
ers only need to provide the system the same URLs to repeat
these tests, or URLs of other similar visualizations to revalidate
its capabilities. Tuoris can be deployed on an SRDE of any di-620

mension using commodity hardware and it is not necessary to
match the specification of our environment.

4.2. Scalability

To validate the scalability of our system we studied the server
performance (total CPU and RAM consumption, as well as the625

time to complete the processing) while varying the display reso-
lution and the number of clients. We reused the same SVG from
T5 above, as it was of a reasonable size (a large 15MB SVG)
including many features. We ran tests in each configuration 10
times in order minimize potential interferences and ensure the630

reliability of our results. We tested 7 different combinations of
resolutions and display nodes with a fixed server specification
having 8 CPU cores and 16 GB RAM (see Figures 6 and 7 for
results).

Based on our tests, we are able to confirm that the system is635

scalable despite the computation complexity of these visualiza-
tions and the resource consumption is proportional to the num-
ber of elements in the visualization rather than the number of
pixels on the display wall, confirming its suitability for SRDEs.
In addition to that the images always had smooth borders and640

corners (as we utilize the SVG standard), and occupied a num-
ber of pixels proportional to size of the displays and resolution
of the individual monitors.

The load on RAM (see Figure 6) was almost constant at
around 12% explaining that there are no memory bottlenecks645

(at least for this particular example). Also, in Figure 6 and by
means of a box-and-whisker plot, we show that the amount of
CPU used does vary but mostly according to the number of dis-
play nodes and not the resolution. Using fewer display nodes
would reduce the CPU overhead, but we were also able to con-650

firm that the increase in CPU consumption (with many display
nodes) was due to the data transfer between the server and the
display nodes rather than the computational overheads. This
is confirmed by the varying server processing time (total CPU
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time instead of the average time spent per node) that we show in655

Figure 7, again as a box-and-whisker plot. In all of these tests
the time taken by the clients to render the content was the same.

Figure 6: Comparison for the percentage of CPU load and RAM usage for
the different resolutions (and number of display nodes) tested, represented as a
box-and-whisker plot, summarizing 10 runs. The box in the middle represent
the two central quartiles, and the line separating them is the median. The ends
of the whiskers represent the minimum and maximum values.

Figure 7: Comparison for the server time for the different resolutions (and num-
ber of display nodes) tested; represented as a box-and-whisker plot that sum-
marizes 10 runs.

4.3. Performance

Next, we were also interested in evaluating the server-side
performance of Tuoris and its associated overheads. For that,660

we carried out two additional tests with the aim of evaluating:

• performance of the system against different server re-
sources (CPU/RAM) combinations.

• performance of the system while varying the complexity
and file sizes of the SVG visualizations.665

The corresponding test setups, results and main findings are de-
scribed in the following subsections.

4.3.1. Performance vs. server specification
In these experiments, we fixed the resolution of the dis-

plays at 2880 x 1620 pixels and reused the SVG from T5 as670

above. And, as before we tested each configuration a total of 10
times. The results are displayed in Figures 8 and 9. Note that

Figure 8: Comparison for the percentage of total CPU load and RAM usage for
different combinations of CPU+RAM in the server; represented as a box-and-
whisker plot that summarizes 10 runs. Note that Tuoris was not able to run in
the first configuration.

Figure 9: Comparison of server time to process the visualization for different
combinations of CPU+RAM in the server; represented as a box-and-whisker
plot that summarizes 10 runs. Note that Tuoris was not able to run in the first
configuration.

Tuoris was not able to run in the configuration with the lowest
system specification (2 CPUs and 1 GB of RAM).

In our results we find that the server processing time is very675

similar in all cases, and the variance reduces with the specifi-
cation of the server. We also find that the percentage of mem-
ory used is linearly proportional to the amount of total memory
available. The CPU requirement is non linearly proportional
and it is noted that a reduction of the number of cores does680

not necessarily mean that the system demands a proportionally
higher CPU. This confirms that the system is suitable for most
commodity hardware configurations though it would certainly
benefit from a server with a high number of CPU cores. It must
be noted that a 15MB SVG with such high complexity is rare685

and the typical CPU and RAM consumption would be much
lower for the average case. This is confirmed by the tests ex-
plained in the next subsection.

4.3.2. Performance vs. complexity of the SVG
Next, we fixed both the server specification (to 8 CPU cores690

and 16 GB RAM) and the display resolution (to 2880 x 1620
pixels), and evaluated with three SVGs: T2a of size 0.75 MB,
T1d of size 0.12 MB, and T5 of size 15 MB.

As expected, the CPU and RAM overheads (see Figure 10) as
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Figure 10: Box-and-whisker plot comparing the percentage of total CPU load
and RAM usage of three visualizations with different number of elements.

Figure 11: Box-and-whisker plot comparing server time to process 3 visualiza-
tions with different number of elements.

well as the server-side processing time (see Figure 11) reduces695

sharply with the size of the visualizations (i.e. the number of
elements in the SVG) decreases. There is indeed a noticeable
reduction of CPU overhead as there is a much lesser amount
of data to be transferred from server to client as previously ex-
plained in Section 4.2.700

The design of Tuoris has a limitation of having to transfer
a new HTML document injected with JavaScript and SVG el-
ements that are broadcasted not all at once but as a series of
batches at a rate of 60 FPS. This indirectly results in a pro-
longed server time and a correspondingly high initial CPU con-705

sumption, but the subsequent operations require much less CPU
once the display nodes have built up their corresponding caches
of SVG elements. Though this suits a wide majority of use-
cases covering all the popular types of visualizations, it also
has some limitations which we discuss in Section 4.5.710

4.4. Comparison with SAGE2
Having measured the performance and scalability character-

istics of Tuoris, we were eager to understand how well it com-
pares against other web-based frameworks such SAGE2. Un-
like Tuoris, SAGE2 is not a transparent framework and does715

not support a non-invasive programming model. For SVGs
to be visible on SAGE2 they need minor code modifications,
which is counterproductive. Therefore, should Tuoris compare
reasonably well with SAGE2, it becomes a worthy alternative
despite its limited scope.720

Figure 12: Box-and-whisker plot comparing the percentage of total CPU load
on Tuoris and SAGE2, for different resolutions (and number of display nodes)
of the SVG from T5, which is 15MB in size.

Figure 13: Box-and-whisker plot comparing total RAM usage on Tuoris and
SAGE2, for different resolutions (and number of display nodes) of the SVG
from T5, which is 15MB in size.

Figure 14: Box-and-whisker plot comparing percentage of CPU load and RAM
usage for SVGs of different sizes on Tuoris and SAGE2.

Figures 12 and 13 show a comparison of CPU load and
RAM usage on Tuoris and SAGE2, using once again box-and-
whisker plots. From both of these charts, it becomes clear that
Tuoris requires more CPU and RAM as the resolution increases
while SAGE2 requires constant CPU and RAM. This shows725

that SAGE2 is a much more scalable framework in comparison.
But, these observations are for a large SVG (T5, 15MB). Fig-
ure 14 provides a comparison for SVGs of various sizes using
three SVGs from T2a, T1d and T5. From this chart, we can
conclude that Tuoris performs better than SAGE2 for SVGs730
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that are smaller in size.
Another important aspect is how well these two frameworks

compare from a reliability, usability and maintainability point
of view. As Tuoris supports a non-invasive programming
model, it is much easier to use. Existing content can be directly735

loaded on an SRDE by simply providing a URL. Also, as there
are no code modifications involved, the maintenance overhead
is less. And, from a reliability point of view both frameworks
compare equally.

But, SAGE2 has a much bigger limitation impacting D3-740

based visualizations; they all need to match the D3 version
that is embedded within the SAGE2 framework (and similarly
for other core libraries). This embedded version of D3 keeps
changing between major releases of SAGE2. Therefore, a
framework version change in SAGE2 becomes a major main-745

tenance overhead that impacts all visualisations in contrast to
Tuoris which has no overhead at all. Therefore, for projects
using many SVG-based visualizations Tuoris is much better.

In summary, these observations suggest that Tuoris is a better
option for visualizing content of a moderate size and a worthy750

contender for those with a much larger file size.

4.5. Limitations
Lastly, we discuss two scenarios where Tuoris consistently

failed to render the SVG content within a reasonable amount of
time on a computer with a reasonable hardware specification (8755

CPU cores and 16 GB RAM):

Sphere spirals (F1): a visualization to explain the concept of
spherical curves taken by ships that travel from the South
Pole to the North Pole of the planet Earth while keeping a
fixed angle with respect to the meridians. We found that760

the JavaScript code behind this visualization made rapid
changes to the entire structure causing Tuoris to broadcast
a very high volume of messages between the control client,
server and display clients leading to a very poor perfor-
mance (recall that Tuoris relies on broadcasting changes765

to the SVG structures rather than replicated execution of
JavaScript on the browser). Tuoris worked well with a
modified version of the code with less frequent changes.

Rotating Voronoi (F2): An animation based on Fortune’s al-
gorithm for computing the Voronoi diagram [43] or De-770

launay triangulation of a set of two-dimensional points. In
this example, we found that the web browser was strug-
gling to paint the animation at very high resolutions (due
to complexity in re-painting the image). Though this is out
of scope for Tuoris, its heavy dependence on the browser775

makes this another key limitation.

These limitations can be reproduced by running Tuoris at a
7680 x 4320 resolution and providing the URLs of visualiza-
tions F1 and F2 (see Table 2).

5. Conclusions780

This manuscript introduced Tuoris, an open-source middle-
ware for visualizing dynamic graphics in SRDEs. This new tool

eases the creation of complex, dynamic and interactive visual-
izations for immersive data observatories and scalable display
walls and thereby enables collaborative visual analytics on big785

data. Tuoris is designed to be used by multidisciplinary teams,
by hiding the underlying complexity from the developers, who
can make use of standard web technologies and a number of
popular programming languages, frameworks and libraries to
create visualizations as if they were meant to run on a single790

computer with a standard display. The simplification of effort
makes it much easier to explore big data in various settings.

Compared to other frameworks described in Section 2, such
as SAGE2, Tuoris has a limited scope and focuses exclusively
on content described in an SVG format. But, this trade-off795

makes it possible for Tuoris to meet three key requirements,
performance, scalability and transparency – which are all re-
quired for collaborative visual analytics across a range of sev-
eral SRDEs, such as the diverse visualization environment land-
scape at the Data Science Institute of Imperial College London.800

Our tests confirm the suitability of Tuoris for these require-
ments, while highlighting its key feature which is the ability to
simply provide a URL to a pre-created web-hosted SVG-based
visualization and render it on an SRDE at the desired resolution
with no loss of image quality, without making a single modifi-805

cation. These include a wide variety of graphs, drawings and
a number of document formats, geospatial content along with
3D graphics and interactive animations. It meets the standard
scalability and performance requirements of a distributed mid-
dleware suitable for SRDEs, and also is cross-platform and ca-810

pable of being installed and run over completely heterogenous
systems.

Among current limitations of Tuoris, we can cite that only
content that can be represented through SVG is allowed. There-
fore, videos cannot be displayed with this tool. We also pointed815

out two scenarios F1 and F2, where Tuoris fails to render con-
tent of certain types within a reasonable amount of time. Also,
in the interactive mode, it only supports one controller UI at a
time.

Despite being designed to exclusively support SVG content,820

Tuoris can also be extended to support other vector image file
formats such as PostScript, WebGL or CartoVL7 (a proprietary
geospatial data format). We also believe that further enhance-
ments to the server-side algorithm should make it possible to
use Tuoris for use-cases such as F1. F2 however, would con-825

tinue to remain out of scope. And, as future work, we plan to
find a way to complement Tuoris with other technologies by
running it as a library within frameworks such as SAGE2.

We have made Tuoris available as an open source middle-
ware8 under a permissive MIT license. It is straightforward to830

install and run and is immediately usable on display environ-
ments regardless of their scale and resolution. The simple URL-
based approach makes it suitable for users with limited techni-
cal knowledge. We invite readers to download Tuoris and use it
as a platform to develop new visualizations or use it to visualize835

7https://carto.com/developers/carto-vl/
8https://github.com/fvictor/tuoris
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their own pre-existing creations in immersive data observatories
and scalable display walls.
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