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Thermoacoustic devices represent a significant future opportunity in the fields of energy
generation and refrigeration. A key component of this type of device is the regenerator,
where the conversion between acoustic energy and thermal energy takes place. This
conversion occurs due to an externally imposed temperature gradient on the wall of
the regenerator channels. Hence, this paper concerns the physics of sound waves in
the proximity of such walls. It establishes a new analytical framework which clarifies
the disturbance energy conservation in thermoacoustic devices. In this framework, a
thermoacoustic production term is proposed to quantify the generation or consumption
of disturbance energy originated from the temperature gradient. An extended disturbance
energy flux term is identified to account for wave growth or decay through the regenerator.
The disturbance energy balance relation states that the disturbance energy flux equals
the thermoacoustic production less the viscous and thermal dissipation resulting from
gradients of fluctuating velocity and temperature. The analytical framework is imple-
mented into an axisymmetric cylindrical domain; the two dimensional nature of this
work helps to uncover that the wave always decays in the region close to the wall. A
dimensional analysis is conducted to identify the controlling parameters, namely the
Womersley, Helmholtz and Prandtl number. A parametric study of the Womersley and
Helmholtz number is conducted to showcase the new analytical methodology; the results
make it possible to optimize the geometry, wave properties and working conditions of a
thermoacoustic device according to the preference of its efficiency, loss and output.

Key words:

1. Introduction

The need to reduce CO2 emissions is transforming the energy-related sectors; new
methods of production and waste heat recovery are under development to achieve
the required reduction targets. Similarly much research in recent years has focused
on recovering waste heat and harness renewable energy sources. Among the possible
technologies, the thermoacoustic device is unique in terms of its flexibility, reliability and
affordability. Any external heat (solar energy, combustion, exhaust gas, hot liquid) can be
supplied to the system via heat exchangers. The need of any moving parts, such as pistons,
shafts and turbo-machines, is eliminated thereby minimising friction, lubrication and
wear. Thermoacoustic devices also have a simple structure which leads to reduced parts,
ease of assembly and consequently low construction costs. In addition, thermoacoustic
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linear alternator/thermoacoustic refrigerator

waveguide

thermoacoustic engine

regenerator

Figure 1. A schematic diagram of a typical travelling-wave thermoacoustic energy system. The
blue and red strip denote cold and hot heat exchangers, respectively. Arrows denote the direction
in which the waves propagate.

devices typically use noble gases as working fluid; these gases are environmentally-friendly
and cause no greenhouse effects.

Thermoacoustic devices in this paper refer to any cyclic devices which make use of the
interaction between acoustic waves and solid boundaries with a temperature gradient. In
place of mechanical components, the acoustic waves provide the necessary compression
and expansion process and drive the fluid to oscillate. As the fluid moves back and forth
over the imposed spatial temperature difference, it absorbs and rejects heat from and to
the solid wall. Depending on the sequence of heat transfer and pressure/volume change,
a thermoacoustic device can accomplish either power generation or refrigeration. When
the acoustic waves are externally supplied, for example by a loudspeaker, the device
operates as a thermoacoustic refrigerator (e.g. Poese & Garrett 2000; Bassem et al. 2011)
where acoustic work is consumed to transport heat against a temperature increase. If the
temperature gradient is externally imposed, the device operates as a thermoacoustic
engine (Backhaus & Swift 1999; Tijani & Spoelstra 2011) where the acoustic waves are
spontaneously excited by the net heat input. The acoustic waves can be used for electricity
generation if the engine is coupled with a linear alternator (Yu et al. 2012) or driving a
thermoacoustic refrigerator, completing a heat-acoustic-cool conversion (Dai et al. 2006).
A schematic diagram of a typical travelling-wave thermoacoustic energy system is shown
in figure 1. The amplified waveform after going through the thermoacoustic engine
indicates the conversion from thermal to acoustic energy. The diminished waveform
indicates the consumption of acoustic energy by output devices such as linear alternator
and thermoacoustic refrigerator. Figure 1 also that the regenerator consists of numerous
narrow flow channels. This paper concerns the disturbance energy conservation in one
single regenerator channel.

Thermoacoustics as a physical process exists in different systems with different char-
acteristics, but the conversion between thermal and acoustic energy is always central to
the phenomenon. In combustion systems like gas turbine engines, the thermoacoustic
combustion instability is a major issues (Lieuwen & Yang 2005). The thermal energy
from unsteady heat release amplifies acoustic waves (Dowling & Stow 2003), which
causes damage. On the contrary, in thermoacoustic devices, the conversion is purposefully
encouraged as much as possible. The conversion happens in the component called the
regenerator or stack which consists of many small channels; the energy conversion is
therefore subtle and complex due to the interaction of oscillations, viscosity and heat
transfer. It is worth noting that often the modelling of thermoacoustic processes is
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approximated using a heat transfer term and a drag term (Karpov & Prosperetti 2002;
Scalo et al. 2015); although these terms help to model the system dynamics, the empirical
method provides limited new insights into the energy conversion. The direct solution of
energy conversion, in perturbation theory, requires the evaluation of at least second-
order terms. Merkli & Thomann (1975) first found that in order to get the second-order
time-averaged wall heat flux, only the linear solutions of temperature and axial velocity
oscillation were needed. They gave the analytical expression of heat flux to the wall for a
constant temperature in the resonance tube. The results showed that the local wall heat
flux equals the axial change of cross-sectional enthalpy flux due to the oscillation. This
idea has been further developed by Rott (1975), who included a temperature gradient
on the wall.

Another approach to analyse the energy balance in thermoacoustic devices is to use
the sum of all energy flux density, which is a conserved quantity for periodic oscillation
(Cao et al. 1996). The energy balance was explained as the conversion between acoustic
intensity and the product of mean density, mean temperature and local entropy flux
(Swift 1988; Tominaga 1995) which was loosely termed ‘thermoacoustic heat flux’.
Although this theory could explain the growth of acoustic intensity, it assumes that
the wall is adiabatic for second-order heat flux. Also dissipation was not included in the
conversion and the role of wall temperature was not clear.

A third angle of energy analysis has been briefly mentioned by Swift (2002, pp. 109-
111). Based on a lumped-element approach, it discussed the axial change of acoustic
intensity in two simplified cases: zero viscosity and constant wall temperature. Although
the definition of dissipation and source term are preliminary, this approach is particularly
inspirational to the current study.

In other research area, there has also been some very relevant discussion. As a pure
mechanics problem, the disturbance energy conservation itself has received considerable
interests. Chu (1965) recognised the role of entropy fluctuation in the definition distur-
bance energy compared with acoustic energy. Myers (1991) has shown the disturbance
energy corollary is a ‘complete, consistent representation of total fluid energy conser-
vation’ at the leading order (second order) and it only contains first-order fluctuation
quality. Built upon this work, Giauque et al. (2006) extended the disturbance energy
corollary to reacting flow by including a mixture of gaseous species and heat release
terms.

In summary, there is a lack of rigorous theory in the literature to explain the distur-
bance energy budget in conditions typically found in thermoacoustic devices:
• extreme long and narrow tubes,
• significant viscous effects,
• mean temperature gradient imposed on the solid boundary,
• significant heat transfer with the wall.

More importantly, by using the disturbance energy balance, a new perspective is enabled
to look at how various parameters affect the performance and characteristics of thermoa-
coustic devices. This is urgently needed to make thermoacoustic devices more efficient
and applicable.

This paper presents a new analytical framework by applying the disturbance energy
corollary to thermoacoustic devices. A thermoacoustic production term which is directly
linked to the wall temperature gradient is newly defined. In place of acoustic intensity,
an extended flux term is used to account for spatial growth or decay of the energy
transported by the waves. Together with viscous and thermal dissipation resulting from
gradients of fluctuating velocity and temperature, the disturbance energy balance relation
is then established. The analytical framework is implemented in an axisymmetric cylin-
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drical domain. A dimensional analysis is conducted to reveal the controlling parameters,
namely the Womersley, Helmholtz and Prandtl number. The disturbance energy terms are
then simplified by using order of magnitude analysis and taking advantage of boundary
conditions. The solutions and numerical scheme are then given and a global error is
defined. A parametric study of the Womersley number and Helmholtz demonstrates the
usage of the analytical framework and provides insights into the flow physics.

2. Analytical framework

In this section, a new analytical framework for disturbance energy balance is developed,
starting with linearising and re-arranging the basic governing equations. The thermoa-
coustic production is rigorously defined together with an extended flux term to account
for the spatial disturbance energy change. With the inclusion of dissipation mechanisms,
the disturbance energy balance relation is established and the physical interpretation of
the terms is given in detail.

The formulation begins with the governing equations,

p = ρRgT, (2.1)

∂ρ

∂t
+∇ · (ρv) = 0, (2.2)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+∇ · τ , (2.3)

ρT

(
∂s

∂t
+ v · ∇s

)
= ∇ · k∇T + (τ · ∇) · v. (2.4)

The fluid is taken as an ideal gas and the flow as laminar. In oscillatory pipe flow,
three main types of flow regimes have been observed: laminar flow, disturbed laminar
flow and intermittently turbulent flow (Hino et al. 1976; Akhavan et al. 1991). The
intermittently turbulence is characterized by the sudden burst into turbulence during
the decelerating phase of the cycle and the subsequent reversion to laminar flow during
the accelerating phase. The transition usually depends on both the Stokes parameter (the
ratio of pipe radius to Stokes-layer thickness) and the Reynolds number. The maximum
Stokes parameter and diameter-based Reynolds number is calculated to be 1.2 and 190,
respectively, for all cases in this study. According to the criteria given by Ohmi et al.
(1982), the flow in this study is laminar and well away from transition.

When a disturbance is present, flow variables can be decomposed into mean values,
denoted by subscript 0, and fluctuation component, denoted by prime, such as p = p0+p ′

and ρ = ρ0 + ρ ′. Assuming that the mean state is quiescent and the mean pressure is
homogeneous, it follows that v = v ′, τ = τ ′, ∇p0 = 0 and ∂f0/∂t = 0 where f is any
flow variable. When the disturbance is of a small amplitude, linear approximation applies
and only the first-order terms are kept. The linearised governing equations take the form,

p0 = ρ0RgT0, (2.5a)

p ′/p0 = ρ ′/ρ0 + T ′/T0, (2.5b)

∂ρ ′

∂t
+ ρ0∇ · v ′ + v ′ · ∇ρ0 = 0, (2.6)

ρ0
∂v ′

∂t
= −∇p ′ +∇ · τ ′, (2.7)
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ρ0T0

(
∂s ′

∂t
+ v ′ · ∇s0

)
= k∇2T ′, (2.8)

where the gradient of thermal conductivity (∇k) is ignored. Multiplying (2.6) with p ′/ρ0,
(2.8) with T ′/T0, taking the dot product of (2.7) with v ′ and adding them together yields

∂

∂t

(
1

2
ρ0v

′2
)

+
p ′

ρ0

∂ρ ′

∂t
+ ρ0T

′ ∂s
′

∂t
=−∇ · (p ′v ′)− p ′v ′

ρ0
· ∇ρ0 + v ′ · (∇ · τ )

+
T ′

T0
k∇2T ′ − ρ0T ′v ′ · ∇s0. (2.9)

Using Taylor’s theorem to expand thermodynamic relations ρ = ρ(p, s) and T = T (p, s)
around mean values and again keeping only the first-order term, yields

ρ ′ =

(
∂ρ

∂p

)
0

p ′ +

(
∂ρ

∂s

)
0

s ′, (2.10)

T ′ =

(
∂T

∂p

)
0

p ′ +

(
∂T

∂s

)
0

s ′, (2.11)

whose coefficients can be evaluated using the definition of isentropic sound speed c, spe-
cific heat at constant pressure cp, coefficient of thermal expansion β and thermodynamic
partial differential relations. The coefficients are then written as,(

∂ρ

∂p

)
0

=
1

c20
,

(
∂ρ

∂s

)
0

= −ρ0β0T0
cp0

,

(
∂T

∂p

)
0

=
β0T0
ρ0cp0

,

(
∂T

∂s

)
0

=
T0
cp0

.

(2.12)
For ideal gases, β0 = 1/T0. Henceforth dropping the subscript 0 in c0 and cp0, the
equations become,

ρ ′ =
1

c2
p ′ − ρ0

cp
s ′, (2.13)

T ′ =
1

ρ0cp
p ′ +

T0
cp
s ′. (2.14)

Substituting (2.13) and (2.14) into the LHS of (2.9),

LHS =
∂

∂t

(
1

2
ρ0v

′2
)

+
∂

∂t

(
1

2

1

c2ρ0
p ′2
)

+
∂

∂t

(
1

2

ρ0T0
cp

s ′2
)
. (2.15)

The third and forth term on the RHS of (2.9) can be written as,

v ′ · (∇ · τ ′) = ∇ · (τ ′ · v ′)− τ ′ : ∇v ′, (2.16)

T ′

T0
k∇2T ′ = ∇ ·

(
T ′

T0
k∇T ′

)
−∇T ′ · ∇kT

′

T0

= ∇ ·
(
T ′

T0
k∇T ′

)
− k (∇T ′)2

T0
+ k

T ′

T 2
0

∇T0 · ∇T ′. (2.17)

Since ∇p0 = 0, it is easy to show that

− 1

ρ0
∇ρ0 =

1

T0
∇T0 =

1

cp
∇s0. (2.18)
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Substituting the above equation and rearranging,

RHS = −∇ ·
(
p ′v ′ − τ ′ · v ′ − T ′

T0
k∇T ′

)
+ (p ′ − ρ0cpT ′)v ′ ·

∇T0
T0

+
T ′

T0
k∇T ′ · ∇T0

T0
−

(
τ ′ : ∇v ′ + k

(∇T ′)2

T0

)
. (2.19)

In a similar manner as in (2.10)–(2.14), thermodynamic relation s = s(T, p) becomes,

s ′ =
cp
T0
T ′ − 1

T0ρ0
p ′. (2.20)

After substituting the above equation into (2.19) and rearranging, (2.9) can be written
as,

∂w

∂t
+∇ · I = −Dν −Dk + P , (2.21)

where,

w =
1

2
ρ0v

′2 +
1

2

1

c2ρ0
p ′2 +

1

2

ρ0T0
cp

s ′2, (2.22)

I = p ′v ′ − τ ′ · v ′ − T ′

T0
k∇T ′, (2.23)

Dν = τ ′ : ∇v ′, (2.24)

Dk = k
(∇T ′)2

T0
, (2.25)

P =

(
T ′

T0
k∇T ′ − T0ρ0s ′v ′

)
∇T0
T0

. (2.26)

The disturbance energy corollary (2.21) is a central contribution of the present work; it
describes the disturbance energy conservation law obtained from the linearised governing
equations. The term ∂w

∂t is the time rate of change of disturbance energy per unit volume
in a infinitesimal control volume. The term I represents the energy transported per unit
area and time on the surfaces of the infinitesimal control volume due to the fluctuation
of pressure, velocity and temperature. The transport is due to the flow work (p ′v ′), the

work done by viscous stresses (τ ′ ·v ′) and the heat conduction (T
′

T0
k∇T ′). The term I is a

more general representation of the energy flux transported by waves than the commonly
used acoustic energy flux or acoustic intensity (namely fluctuating flow work p ′v ′). Hence
I is referred to as disturbance energy flux in this study to reflect this generalization, but
‘acoustic energy’ is still casually used to resonate with readers. A positive ∇ · I means
more disturbance energy flows out of the control volume than what flows in; hence there
is a spatial increase of energy transported by the waves. In other words, there is wave
growth. Similarly, a negative∇·I means a spatial decrease of wave energy, i.e. wave decay.
Practically, there are two types of thermoacoustic device depending on the sign of ∇ · I.
The positive ∇ · I is the desirable output of a thermoacoustic engine, in which case the
wave is amplified; the negative ∇ · I is the energy input to thermoacoustic refrigerators
where acoustic energy is consumed.

The non-negative Dν and Dk are analogous to the ordinary viscous dissipation function
and irreversible heat conduction dissipation but here solely result from the gradients of
fluctuating velocity and temperature. For brevity, they are referred to here as viscous
and thermal dissipation, respectively.

The final term P in equation (2.21) contains fluctuating heat conduction (T
′

T0
k∇T ′),
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Disturbance energy balance in thermoacoustic devices 7

energy contained in the fluctuating entropy transportation −T0ρ0s ′v ′ and temperature
gradient (∇TT ). This newly proposed term P reveals the role of ∇T0 as a disturbance
energy source or sink in thermoacoustic devices. To better explain this, assume that
the disturbances are periodic and then take the time average over one period, f̄ =
1
T

∫ t0+T
t0

f dt, where f is an arbitrary scaler. It follows that ∂f
∂t = 0. Taking the time

average on both sides of equation (2.21) leads to ∂w
∂t = 0 and hence,

∇ · I = −Dν −Dk + P , (2.27)

which is the time-averaged disturbance energy corollary. The following of this paper
discusses only the cycled-averaged effects as opposed to instantaneous changes; for clarity,
equation (2.27) is referred to as disturbance energy balance relation.

For a thermoacoustic engines, the aim is to achieve wave growth by supplying a
temperature gradient. Therefore P must be positive and greater than the sum of dissi-
pation terms in order to obtain a positive ∇ · I. The term P therefore represents the
thermoacoustic production mechanism of disturbance energy and ∇T0 is the source. It is
interesting that (2.27) also offers a way of finding a critical ∇T0 when all the disturbance
energy produced is exactly dissipated. Letting ∇ · I = 0 yields the threshold value above
which the ∇T0 has to be if any wave growth is to be achieved. When it is below the
threshold, the production is not enough to overcome dissipation; the wave decays still. A
trivial case occurs when ∇T0 = 0; equation (2.21) reduces to classic disturbance energy
equation (see Pierce 1981, p. 516).

For a thermoacoustic refrigerator, the aim is to establish a temperature gradient by
consuming acoustic energy; hence the wave decays, which means ∇ · I < 0. Given non-
negative dissipation, P must also be negative. In this case, in addition to overcoming
the dissipative processes, energy is extracted from the disturbance to maintain the mean
temperature gradient. The P represents the thermoacoustic consumption of disturbance
energy and ∇T0 is the sink. The duality of P as production or consumption in different
working modes makes the term unique. Henceforth P is uniformly referred to as ther-
moacoustic production, with the generalization that consumption is negative production.

To the authors’ knowledge, this is the first explicit mathematical identification of dis-
turbance energy production and consumption in thermoacoustic devices. Mean temper-
ature gradient is essential for thermoacoustic engines to operate; through the production
term, its role has now been explained. By the concept of disturbance energy balance,
the key engineering indicators of actual devices such as engine power output, losses, heat
input are formally mapped to each term in the overarching equation.

In terms of the understanding disturbance energy conservation in general, equation
(2.21) can be viewed as an extension to classic acoustic and disturbance energy equations
(Pierce 1981) but also a special case of generalized disturbed flow (Chu 1965; Myers
1991) with zero mean flow and constant mean pressure. In the research field of combus-
tion instabilities, the idea of acoustic source term is prevalent (see Nicoud & Poinsot
2005), referred to as Rayleigh criterion. Equation (2.27) can therefore be interpreted
as the Rayleigh criterion for thermoacoustic devices. Finally, the disturbance energy
corollary has been discussed previously under specific physical conditions including one-
dimensional, inviscid, non-heat-conducting flow with mean temperature gradient (Karimi
et al. 2008) and two-dimensional premixed laminar propane-air flame (Giauque et al.
2006) in a duct. In the light of relevant work, the contribution of equation (2.21) and
(2.27) is the expression of the disturbance energy corollary in channels of very small
aspect ratio ε ∼ O(0.01), with significant viscous effects, non-zero mean temperature
gradient and significant heat transfer with the wall. Hence the disturbance energy balance
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r

Σ1

Σ2 : dTw
dz

ez

Σ3

L

R
z

Figure 2. Illustration of the cylindrical control volume considered in this work. The control
surfaces are labelled Σ1 and Σ3 for two end surfaces and Σ2 for the curved surface. The
cylindrical coordinates are established at the centre of Σ1. Σ2 represents the solid wall where
heat transfer happens and on the wall a temperature gradient in the axial direction is applied.
Σ1 is referred to as inlet and Σ3 as outlet.

exhibits unique features, namely, strong viscous and thermal dissipation, duality of P
(disturbance energy production or consumption) and ∇·I (disturbance growth or decay)
and dual direction of the equations (causality), which are all linked to operating mode
of thermoacoustic devices.

3. Simplification and Solution

In order to implement the analytical framework which has been established in the
previous section, a particular geometry is needed. A single regenerator channel is con-
sidered here, modelled as a cylinder of radius R and length L as shown in figure 2. This
shape is chosen based on the frequent use of honeycomb and stacked mesh screens in
the experiments. The cylinder models the tube-like structure and has better analytical
properties than a square or hexagon. In practical terms, the circular shape avoids stress
concentration and abrupt changes of heat transfer around the solid wall. As shown in
figure 2, an axial temperature gradient dTw

dz ez is imposed on the curved surface Σ2 which
represents the wall.

To speed up the computation, two set of assumptions are made to further simplify
the problem: axisymmetric 2D flow and Rott’s assumptions. The former is a reasonable
assumption in cylindrical flow when the tangential change is negligible and the latter
is a well-tested theory for thermoacoustic devices. Therefore the assumptions should
incur minimal compromise on the physical understanding sought in this paper. Rott’s
assumptions are reviewed in the following section.

Finally, the solutions and numerical scheme are given. A global relative error was
defined to test and ensure the accuracy of the numerical procedures and assumptions
applied.

3.1. Axisymmetric 2D flow assumption

Two dimensional flow condition sets vθ = 0 and axisymmetry sets ∂f
∂θ = 0 where f is

any scalar flow quantity or component of a vector. In cylindrical coordinates, the velocity
gradient tensor reduces to,

∇v ′ =


∂v ′r
∂r

0
∂v ′z
∂r

0
v ′r
r

0

∂v ′r
∂z

0
∂v ′z
∂z

 . (3.1)

Note that the gradient (∇v ′)θθ is not zero because of the rotation of radial unit vector in
eθ

1
r
∂
∂θ (vrer), although ∂vr

∂θ = 0. Accordingly the viscous stress tensor, applying Stokes’
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hypothesis, is

τ ′ = µ
(
∇v ′ + (∇v ′)T

)
− 2

3
µ(∇ · v ′)I

= µ


4

3

∂v ′r
∂r
− 2

3

v ′r
r
− 2

3

∂v ′z
∂z

0
∂v ′z
∂r

+
∂v ′r
∂z

0
4

3

v ′r
r
− 2

3

∂v ′r
∂r
− 2

3

∂v ′z
∂z

0

∂v ′z
∂r

+
∂v ′r
∂z

0
4

3

∂v ′z
∂z
− 2

3

1

r

∂(rv ′r)

∂r

 . (3.2)

Hence the acoustic viscous dissipation function Dν identified in (2.21) takes the reduced
form of,

Dν = τ ′ : ∇v ′

= 2µ

[(
∂v ′r
∂r

)2

+

(
v ′r
r

)2

+

(
∂v ′z
∂z

)2

+
1

2

(
∂v ′z
∂r

+
∂v ′r
∂z

)2

− 1

3

(
1

r

∂(rv ′r)

∂r
+
∂v ′z
∂z

)2
]
.

(3.3)

This concludes all the simplification obtained with axisymmetric cylindrical assumption.

3.2. Rott’s Assumption

Rott (1969) has proposed three key assumptions to further simplify the linearised
governing equations (2.6)–(2.8). The first two assumptions can be mathematically sum-
marised as

∂p ′

∂r
= 0, (3.4)

and
∂T0
∂r

= 0. (3.5)

The third one, ‘axial heat conduction in the acoustic wave and friction due to axial
gradients are ignored’, is more subtle. The first part states that heat conduction happens
in the radial direction only,

q ′ = k∇T ′ = k
∂T ′

∂r
er, (3.6)

and the second part states that the friction terms with ∂
∂z are ignored, as indicated by

the inclined cross line,

(∇ · τ ′) · ez = µ[
∂2v ′z
∂r2

+
�
�
�∂2v ′r

∂r∂z︸ ︷︷ ︸
∂τ ′rz
∂r

+
1

r

∂v ′z
∂r

+
�

�
�1

r

∂v ′r
∂z︸ ︷︷ ︸

τ ′rz
r

+
������������
1

∂z

(
4

3

∂v ′z
∂z
− 2

3

1

r

∂(rv ′r)

∂r

)
︸ ︷︷ ︸

∂τ ′zz
∂z

]. (3.7)

Despite its simplicity, Rott’s theory has proved to be in good agreement with exper-
imental data when linear approximation holds (see Backhaus & Swift 2000; Wu et al.
2014). Therefore these underlying assumptions were used in the present study to simplify
(2.6)–(2.8) and this yields,

∂ρ ′

∂t
+ v ′z

dρ0
dz

+ ρ0
∂v ′z
∂z

+ ρ0
1

r

∂(rv ′r)

∂r
= 0, (3.8)

ρ0
∂v ′z
∂t

= −∂p
′

∂z
+ µ

∂2v ′z
∂r2

+ µ
1

r

∂v ′z
∂r

, (3.9)
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10 X. Lu, R. Martinez-Botas and J. Hey

ρ0T0
∂s ′

∂t
+ ρ0T0v

′
z

ds0
dz

= k
∂2T ′

∂r2
+ k

1

r

∂T ′

∂r
, (3.10)

which in this study are subject to the following boundary conditions,

T0(R, z) = Tw(z), T ′(R, z) = 0, v ′(R, z) = 0, v ′r(0, z) = 0, ∀z ∈ [0, L], (3.11)

where function Tw(z) is given. The momentum equation in the radial direction is reduced

to ∂p ′

∂r = 0 and mean temperature

T0(r, z) = Tw(z). (3.12)

This concludes the simplification obtained with Rott’s assumptions.

3.3. Dimensional Analysis

To further simplify the disturbance energy equation (2.27) and reduce the number of
independent parameters, the problem is non-dimensionalised. Scaling procedures follow
the ones used by In’t Panhuis et al. (2009). The dimensionless variables, denoted by
upper asterisk, are,

r = Rr∗, z = Lz∗, t =
1

ω
t∗, v ′z = crefv

′∗
z , v ′r = εcrefv

′∗
r ,

ρ ′ = ρrefρ
′∗, ρ0 = ρrefρ

∗
0, p ′ = ρrefc

2
refp

′∗, p0 = ρrefc
2
refp
∗
0, T ′ =

c2ref
cp
T ′∗,

T0 =
c2ref
cp
T ∗0 , s = cps

′∗, s0 = cps
∗
0, µ = µrefµ

∗, k = krefk
∗, (3.13)

where ε = R
L is the aspect ratio and the reference point for ρref , cref , µref and kref was set

at the mid-point (zref = L
2 ) of the regenerator. The governing equations in dimensionless

form are,

He
∂ρ ′∗

∂t∗
+ v ′∗z

dρ∗0
dz∗

+ ρ∗0
∂v ′∗z
∂z∗

+ ρ∗0
1

r∗
∂(r∗v ′∗r )

∂r∗
= 0, (3.14)

ρ∗0
∂v ′∗z
∂t∗

= − 1

He

∂p ′∗

∂z∗
+

1

Wo2µ
∗
(
∂2v ′∗z
∂r∗2

+
1

r∗
∂v ′∗z
∂r∗

)
, (3.15)

ρ∗0T
∗
0

∂s ′∗

∂t∗
+

1

He
ρ∗0T

∗
0 v
′∗
z

ds∗0
dz∗

=
1

Pr ·Wo2

kω

p0

(
∂2T ′∗

∂r∗2
+

1

r∗
∂T ′∗

∂r∗

)
, (3.16)

where

He =
ωL

cref
, Wo = R

(
ωρref
µref

) 1
2

, (3.17)

are the Helmholtz number and the Womersley number, respectively, with Pr being the
Prandtl number .

Wo2 is the ratio of transient inertial force (ρref
cref
1
ω

) to viscous force µref
cref
R

1
R . In fact

Wo2 is also the Reynolds number when the length and time scale, instead of velocity
scale, are imposed (which leads to the Strouhal number St = 1), namely

Wo2 = Re =
ρref(ωR)R

µref
. (3.18)

Correspondingly, the Pr ·Wo2 would be Péclet number, i.e.

Pr ·Wo2 =
cpµref

kref

ρref(ωR)R

µref
= Pe. (3.19)
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Disturbance energy balance in thermoacoustic devices 11

Some authors (e.g. Worlikar & Knio 1996) prefer the notion of Re and Pe but in this
paper Wo2 is used because its physical meaning can be interpreted in various ways.
Firstly, Wo2 and Pr ·Wo2 can be interpreted as the ratio of two distances,

Wo =
√

2
R

δν
,
√

Pr ·Wo =
√

2
R

δk
, (3.20)

where

δν =

√
2µ

ωρ0
, δk =

√
2k

ωρ0cp
, (3.21)

are the depth of Stokes layer and its thermal counterpart, respectively. They are the
characteristic length of momentum and thermal diffusion in one period. Therefore if
Wo ∼ O(1) the whole channel is filled with oscillatory boundary layer as in case of
regenerators considered here and Wo � 1 are found in ordinary acoustic resonators.

Another interpretation of Wo2 is proposed by Tominaga (1995), as the ratio of two
time scales,

Wo2 = ωtν , Pr ·Wo2 = ωtk, (3.22)

and

tν =
R2

ν
, tk =

R2

α
, (3.23)

where ν is kinematic viscosity and α the thermal diffusivity while tν and tk characterize
the time of momentum and thermal diffusion across the channel area. Therefore Wo2 is
the time-scale of the diffusion measured in the period of oscillation.

3.3.1. Simplification of disturbance energy terms

In the following, the scales obtained form dimensional analysis are used to achieve the
simplification of disturbance energy terms. First consider the velocity gradients,

∂v ′r
∂z

∂v ′r
∂r

v ′r
r

∂v ′z
∂z

∂v ′z
∂r

.

cref
L
· ( ε 1 1 1

1

ε
) (3.24)

The scales are written beneath as the product of a common factor (in this case cref
L )

and relative orders defined as ε2, ε, 1, 1/ε, 1/ε2. Note that the aspect ratio ε is small,
ε ∼ O(0.01).

The rationale behind the Rott’s third assumption, namely equation (3.6) and (3.7),
becomes clearer with this dimensional analysis, because,

(∇ · τ ′) · ez = µ

[
∂2v ′z
∂r2

+
∂2v ′r
∂r∂z

+
1

r

∂v ′z
∂r

+
1

r

∂v ′r
∂z

+
1

∂z

(
4

3

∂v ′z
∂z
− 2

3

1

r

∂(rv ′r)

∂r

)]
,

µrefcref
L2

· (
1

ε2
1

1

ε2
1 1 ). (3.25)

The leading terms
∂2v ′z
∂r2 and 1

r
∂v ′z
∂r , which are kept in the assumption, are two orders larger

than the rest. Similarly,

q ′ = k

(
∂T ′

∂r
er +

∂T ′

∂z
ez

)
,

krefTref
L

· (
1

ε
1 ). (3.26)
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12 X. Lu, R. Martinez-Botas and J. Hey

the radial heat flux is one order bigger than the axial heat flux.

Now apply the order of magnitude analysis to the terms in disturbance energy equation.
The scales of squared terms in viscous dissipation are,(

∂v ′r
∂r

)2

+

(
v ′r
r

)2

+

(
∂v ′z
∂z

)2

+
1

2

(
∂v ′z
∂r

+
∂v ′r
∂z

)2

− 1

3

(
1

r

∂(rv ′r)

∂r
+
∂v ′z
∂z

)2

,

(cref
L

)2
· ( 1 1 1

1

ε2
ε2 1 1 ) .

The leading term (
∂v ′z
∂r )2 is two orders larger than the rest, so the viscous dissipation can

be assumed to be,

Dν = µ

(
∂v ′z
∂r

)2

, (3.27)

without losing much accuracy.

For thermal dissipation, simply applying Rott’s assumption equation (3.6), yields,

Dk = k
(∇T ′)2

T0
=

k

T0

(
∂T ′

∂r

)2

. (3.28)

For the production term, given that the direction of ∇T0 as shown in figure 2 is
orthogonal to the direction of simplified heat flux, it takes the form of,

P =

(
k
T ′

T0
∇T ′ − T0ρ0s ′v ′

)
· ∇T0
T0

= k
T ′

T 2
0

∂T ′

∂r
er

dT0
dz

ez − ρ0s ′v ′zez
dT0
dz

ez − ρ0s ′v ′rer
dT0
dz

ez

= −ρ0s ′v ′z
dT0
dz

. (3.29)

Finally consider the disturbance energy flux term by term,

∇ · I = ∇ · (p ′v ′)−∇ · (τ ′ · v ′)−∇ · (T
′

T0
k∇T ′). (3.30)

With τ ′ : ∇v ′ and v ′ · (∇ · τ ′) already individually simplified, given the divergence
identity, it must satisfy

∇ · (τ ′ · v ′) = v ′ · (∇ · τ ′) + τ ′ : ∇v ′

= µ[vz
∂2vz
∂r2

+ vz
1

r

∂v ′z
∂r

+

(
∂v ′z
∂r

)2

]. (3.31)

From the simplified form of ∇ · (τ ′ · v ′), τ ′ : ∇v ′ and v ′ · (∇ · τ ′), an equivalent stress
tensor can be defined as,

τ ′e =

0 0 τrz
0 0 0
0 0 0

 = µ

0 0
∂v ′z
∂r

0 0 0
0 0 0

 . (3.32)

Note that the stress tensor is said to be ‘equivalent’ because it leads to the correct
simplified form (3.7), (3.27), (3.31) but it does not obey symmetry and Stokes’ hypothesis.
The equivalent tensor is useful in determining τ ′ · v ′ in the following paragraphs.
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Disturbance energy balance in thermoacoustic devices 13

Similarly,

∇ · (T
′

T0
k∇T ′)= T ′

T0
k∇2T ′ + k

(∇T ′)2

T0
− k T

′

T 2
0

∇T0 · ∇T ′

=
T ′

T0
k

(
∂2T ′

∂r2
+

1

r

∂T ′

∂r

)
+

1

T0
k

(
∂T ′

∂r

)2

. (3.33)

Taking advantage of the boundary conditions, ∇ · I can be further simplified in the
integral form. The control volume in this study was a cylinder bounded by three surfaces
Σ1, Σ2 and Σ3 as shown in figure 2. Integrating the time-averaged disturbance energy
balance relation (2.27) over it and applying Green’s theorem, yields∫∫

Σ

n · I dS = −
∫∫∫
Ω

Dν dV −
∫∫∫
Ω

Dk dV +

∫∫∫
Ω

P dV, (3.34)

where n is the outward-pointing unit normal vector on Σ. Equation (3.34) is the integral
form of time-averaged disturbance energy balance relation.

The instantaneous disturbance energy flux is,∫∫
Σ

n · I dS =

∫∫
Σ

n · (p ′v ′ − τ ′ · v ′ − T ′

T0
k∇T ′) dS. (3.35)

On Σ2, the boundary conditions (3.11) sets the integration (3.35) to zero and on Σ1 and
Σ3, n was parallel to ez, so (3.35) becomes,∫∫

Σ

n · I dS =

∫∫
Σ3

ez · (p ′v ′ − τ ′ · v ′ −
T ′

T0
k∇T ′) dS

−
∫∫
Σ1

ez · (p ′v ′ − τ ′ · v ′ −
T ′

T0
k∇T ′) dS. (3.36)

With the equivalent stress tensor already defined, it is found that

τ ′ · v ′ = τ ′e · v ′ = τ ′rzv
′
zer = µ

∂v ′z
∂r

v ′zer, (3.37)

T ′

T0
k∇T ′ =

T ′

T0
k
∂T ′

∂r
er, (3.38)

which are both orthogonal to ez.
Hence the final simplified expression of

∫∫
Σ

n · I dS in a cylindrical domain is,∫∫
Σ

n · I dS =

∫∫
Σ3

p ′v ′z dS −
∫∫
Σ1

p ′v ′z dS. (3.39)

Therefore it is shown that, after the simplification, the disturbance energy flux in a
cylindrical domain reduces to the classic acoustic flux.

This section has reported in detail the simplification of Dν , Dk, P and
∫∫

n · I dS,
taking the form of (3.27), (3.28), (3.29) and (3.39), respectively.

3.3.2. Dimensionless disturbance energy balance

The integral form of the disturbance energy balance is non-dimensionalised using
integrated inlet disturbance energy flux (n · I)Σ1 . Shorthand notation (·)cv and (·)cs
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14 X. Lu, R. Martinez-Botas and J. Hey

are used for
∫∫∫
Ω

·dV and
∫∫
Σ

·dS, respectively. The equation takes the form of,

(n · I)∗cs = −(Dν)∗cv − (Dk)∗cv + (P )∗cv, (3.40)

where each term

(·)∗cs|cv =
(·)cs|cv

(n · I)Σ1

. (3.41)

The (n · I)∗cs then represents the relative wave growth; (P)∗, (Dν)∗, (Dk)∗ are production,
viscous dissipation and thermal dissipation relative to the energy transported by the
wave, respectively. The benefit of scaling in this way is to offer better intuition since
terms are expressed as fractions or multiples of inlet energy and are hence O(1). Also the
equality of left and right side of the equation can be easily shown by taking the difference
∆∗ = (P )∗cv − (Dν)∗cv − (Dν)∗cv − (n · I)∗cs.

It is worth noting that another possible scaling procedures is to non-dimensionalise
the energy terms by its respective flow variables. For example,

(Dk)cv =

∫ L

0

∫ R

0

k

T0

(
∂T ′

∂r

)2

r dr dl = krefTrefL

∫ 1

0

∫ 1

0

k∗

T ∗0

(
∂T ′∗

∂r∗

)2

r∗ dr∗ dl∗ (3.42)

Define,

(Dk)† =
k∗

T ∗0

(
∂T ′∗

∂r∗

)2

, (Dk)†cv =

∫ 1

0

∫ 1

0

(Dk)†r∗ dr∗ dl∗, (3.43)

where the dagger (†) superscript denotes non-dimensionalisation using corresponding flow
variables. It can be shown that the two non-dimensionalisation methods are equivalent
because,

(Dk)∗cv =
(Dk)cv

(n · I)Σ1

=
kref

c2ref
cp
L(Dk)†

ρrefc3refR
2(n · I)†Σ1

=
He

Wo2

(Dk)†

(n · I)†Σ1

. (3.44)

For two dynamically similar flows, He, Wo2, (Dk)†, (n · I)†Σ1
are identical and hence so

are (Dk)∗cv. Similarly,

(Dν)† = µ∗
(
∂v ′∗z
∂r∗

)2

, (Dν)†cv =

∫ 1

0

∫ 1

0

(Dν)†r∗ dr∗ dl∗. (3.45)

(P)† = −ρ∗0s ′∗v ′∗z
dT ∗0
dz∗

, (P)†cv =

∫ 1

0

∫ 1

0

(P)†r∗ dr∗ dl∗. (3.46)

The equivalence of these two methods allows us to use the flow variables and equa-
tion (3.43), (3.45) and (3.46) to explain the trends of disturbance energy terms defined
in (3.40).

The differential disturbance energy balance is non-dimensionalised using inlet flux
density (∇ · I)Σ1 on the axis r = 0,

(∇ · I)∗ = −(Dν)∗ − (Dk)∗ + (P )∗, (3.47)

where each term

(·)∗ =
(·)

(∇ · I)Σ1,r=0

. (3.48)

This section has shown the non-dimensionalisation of the governing equations. It has
also discussed key dimensionless groups: He and Wo, the simplification of disturbance
energy terms and the non-dimensionalisation of the disturbance energy balance.
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Disturbance energy balance in thermoacoustic devices 15

3.4. Solution

Assuming that all the disturbances are time-harmonic signals with angular frequency
ω, equation (3.8)–(3.10) can be solved in the frequency domain f ′(x, t) = Re(f̂(x)eiωt)

where f̂(x) is the complex amplitude. Since instantaneous values are of no interests in
this study, no distinction is made between frequency-domain and time-domain variables.
Complex and real disturbance are uniformly denoted as f ′, whose meaning should be
clear in the context. The equations were solved in two dimensions instead of using area
average performed by Rott in the original paper and most of subsequent work.

Note that the solutions are given in dimensional form on purpose because it is easier
for readers to compare the solutions reported here with those in the previous literature.
Dimensional form is also easier to interpret in practice for implementation. Dimensionless
solutions are given on an ad-hoc basis when they are needed in the results section.

Velocity and temperature fluctuation were solved in terms of p ′ and dp ′

dz , with i being
the complex unit,

v ′z =
1−Hν
−iωρ0

dp ′

dz
, (3.49)

v ′r =
1

2
r

[
− iω

p0

1 + (γ − 1)Gk
γ

p ′ +
iRg
ωp0

dTw
dz

Gk − Gν
1− Pr

dp ′

dz
− ∂

∂z

(
1− Gν
−iωρ0

dp ′

dz

)]
, (3.50)

T ′ =
1−Hk
ρ0cp

p ′ − 1

ρ0ω2

dTw
dz

(1−Hk)− Pr(1−Hν)

1− Pr

dp ′

dz
, (3.51)

s ′ =
−Hk
ρ0T0

p ′ − cp
ρ0T0ω

2

dTw
dz

(1−Hk)− Pr(1−Hν)

1− Pr

dp ′

dz
, (3.52)

where the radial distribution is given by

H(r, z) =
J0 [(i− 1) r/δ]

J0 [(i− 1)R/δ]
. (3.53)

J0 and J1 are Bessel functions of the first kind of order 0 and 1, respectively. Hν uses
viscous boundary layer thickness δν , and Hk uses thermal boundary layer thickness δk, as
defined in equation (3.21). The solution structure was adapted from Swift (2002). Notice
that H contains R/δν and R/δk which are the local 1√

2
Wo and 1√

2

√
PrWo, underlying

again the importance of the Womersley number. The radial distribution function G is
defined as the area average of H in a circle of radius r,

G(r, z) =
2

r2

∫
Hr dr =

2δ

(i− 1)r

J1 [(i− 1) r/δ]

J0 [(i− 1)R/δ]
. (3.54)

which also has two form Gν and Gk. At r = 0,

G(z, 0) := lim
r→0+

G(r, z) = 1/J0 [(i− 1)R/δ] = H(z, 0). (3.55)

The derivatives needed to evaluate the simplified P , Dν , Dk were also derived,

∂v ′z
∂r

=
Iυ
−iωρ0

dp ′

dz
, (3.56)

∂v ′z
∂z

=
∂

∂z

(
1−Hυ
−iωρ0

dp ′

dz

)
, (3.57)
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16 X. Lu, R. Martinez-Botas and J. Hey

∂v ′r
∂r

= − iω

2p0γ
p ′ − i

2ω

d

dz

(
1

ρ0

dp ′

dz

)
− iω

p0

(γ − 1)
(
Hk − 1

2Gk
)

γ
p ′

+
iRg
ωp0

dTw
dz

(Hk − 1
2Gk)− (Hν − 1

2Gν)

1− Pr

dp ′

dz
− ∂

∂z

(Hν − 1
2Gν

−iωρ0

dp ′

dz

)
, (3.58)

∂T ′

∂r
=

1

ρ0cp
Ikp ′ −

1

ρ0ω2

dTw
dz

Ik − PrIν
1− Pr

dp ′

dz
, (3.59)

with

I(r, z) = −∂H
∂r

=
i− 1

δ

J1 [(i− 1) r/δ]

J0 [(i− 1)R/δ]
. (3.60)

This concludes the definition of radial distribution functions H, G, I and the analytical

solutions in the radial direction in terms of p ′ and dp ′

dz .

3.5. Numerical Scheme

Since all the flow quantities were expressed in terms of p ′ and dp ′

dz , it is important to
find an efficient numerical scheme to solve them in the axial direction. Now let,

F(z) = G(R, z). (3.61)

Then evaluating (3.50) at R and applying the non-slip boundary condition vr(R, z) = 0,
yields,

− iω

p0

1 + (γ − 1)Fk
γ

p ′ +
1

Tw

dTw
dz

Fk −Fν
(1−Fν)(1− Pr)

(
1−Fν
−iωρ0

dp ′

dz

)
− d

dz

(
1−Fν
−iωρ0

dp ′

dz

)
= 0. (3.62)

which is Rott’s thermoacoustic wave equation. Function F(z) is the area average of H
on the entire circular cross-section and hence (3.62) only depends on z. The physical

meaning of the term 1−Fν
−iωρ0

dp ′

dz is area-averaged axial velocity (v ′z)av because

(v ′z)av =
1

πR2

∫ R

0

1−Hν
−iωρ0

dp ′

dz
2πr dr =

1− Gν(R, z)

−iωρ0

dp ′

dz
=

1−Fν(z)

−iωρ0

dp ′

dz
. (3.63)

Therefore the second-order ODE (3.62) can be conveniently converted to two simultane-
ous first-order ODEs,

dp ′

dz
=
−iωρ0

1−Fν(z)
(v ′z)av, (3.64a)

d(v ′z)av
dz

= − iω

p0

1 + (γ − 1)Fk
γ

p ′ +
1

Tw

dTw
dz

Fk −Fν
(1−Fν)(1− Pr)

(v ′z)av, (3.64b)

and the use of (v ′z)av instead of 1−Fν
−iωρ0

dp ′

dz gives more physical intuition. Given R, ω, p0,

values of p ′ and dp ′

dz at any point, (3.62) can be solved progressively. In this study, (v ′z)av
and p ′ were given at the inlet (Σ1 shown in figure 2) as boundary conditions and (3.62)
was solved using 8th-order Dormand-Prince method (Prince & Dormand 1981) with
new embedded formulas (Hairer et al. 1993, p. 255). The local absolute and relative error
tolerance used for the adaptive stepsize control were both 10−6. The output positions were
specified and then interim stepsize was automatically adjusted depending on the ratio of

specified tolerance to local error. With p ′ and dp ′

dz , it is very easy to obtain T ′ and v ′z
since the solutions are radially analytical as mentioned previously. In contrast, for second-

order derivatives which contain H or G, such as ∂
∂z

(
1−Gν
−iωρ0

dp ′

dz

)
in v ′r, it is technically
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hz

1
10
hz

r

z

···
· · ·hr

h

Figure 3. Illustration of computational grid in this study, including main output points (◦),
auxiliary points (♦) and interim points (x). hz and hr are the axial and radial output stepsize,
respectively. h is the self-adaptive integration stepsize.

possible to obtain the analytical solutions but complexity is an issue, especially the
implicit z dependence of δ, which is contained in H or G. Therefore the central difference
formula was used for the evaluating second-order derivative containing radial distribution
functions. Instead of using the main output points for the central difference calculation,
auxiliary points were added on both sides of the main output points, as shown in figure 3,
to increase the accuracy.

A global error is needed to validate the simplification made and ensure overall accuracy
of the numerical procedures. In linear regime, (3.34) holds exactly. The equality is
compromised by simplification and use of numerical methods. Therefore in this study
the global relative error was defined as,

ε =
|(P )cv − (Dν)cv − (Dk)cv − (n · I)cs|

max(|(P )cv|, |(Dν)cv|, |(Dk)cv|, |(n · I)cs|)
. (3.65)

The mesh numbers were adjusted during the computation to reach a satisfactory error
level (here in the order of 10−5) to balance computation speed and accuracy.

4. Results and Discussion

The aim of the present study is to establish a new analytical framework to clarify the
disturbance energy conservation in thermoacoustic devices. In order to demonstrate the
usage of the analytical framework, practical cases are considered and a parametric study
is conducted to showcase the new perspectives and understanding which would not be
possible without the proposed framework.

After a review of actual thermoacoustic devices (e.g. Poese & Garrett 2000; Bassem
et al. 2011; Backhaus & Swift 2000; Tijani & Spoelstra 2011; Yu et al. 2012; Dai et al.
2006) available in the literature and the application constraints such as the temperature
of low grade heat sources, the typical ranges of the parameters are summarized as follows,

R ∈ [0.05, 0.3] mm, L ∈ [10, 50] mm, Tc ∼ 325 K, Th ∈ [473, 573] K, ω ∈ [40, 300]πs−1

p0 ∈ [0.1, 3] MPa, |p ′|Σ1
/p0 ∈ [1, 10]%, |p ′|Σ1

/|(v ′z)av|Σ1
∈ [1, 30](ρ0c)Σ1

, φvp ∈ [−π
2
,
π

2
].

where Tc = Tw(0) and Th = Tw(L) denote the cold and hot end temperature. The
subscript Σ1 indicates that the flow variable is valued at the inlet surface Σ1 in figure 2.
φvp is a concise notation for the phase difference of (v ′z)av and p ′ at inlet surface, namely

φvp := φ[(v ′z)av]Σ1
− φ[p ′]Σ1

. (4.1)

The notation φ[f ] means the phase of a complex quantity f .
The baseline point was chosen to be roughly the mid-points of the ranges for parameters

such as R, L, Th or a moderate value, such as for p0, that does not demand extreme
operating conditions of the device. In this way, it is possible to show the changes towards
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Figure 4. The balance of the dimensionless disturbance energy terms against Wo2. (a) the

values of the dimensionless thermoacoustic production in the control volume (P )∗cv (– –), viscous

dissipation (Dν)∗cv ( ), thermal dissipation (Dν)∗cv ( ) and disturbance energy flux (n · I)∗cs ( )

and (b) the deviation from equality defined as ∆∗ = (P )∗cv − (Dν)∗cv − (Dν)∗cv − (n · I)∗cs.

both lower and upper bound of the ranges in the following parametric study. The baseline
point was therefore set at R = 0.15 mm, L = 30 mm, Tc = 325 K, Th = 523 K, p0 =
0.3 MPa, |p ′|Σ1

/p0 = 7%, |(v ′z)av|Σ1
= 3 ms−1, φvp = π

36 , ω = 200π s−1.
The working fluid was chosen as helium for this parametric study, but the framework

is not restricted to this fluid. The dynamic viscosity and thermal conductivity of helium
obeys the power laws (Touloukian et al. 1975, 1970), µ(T ) = µref(T/Tref)

nµ and k(T ) =
kref(T/Tref)

nk , respectively, where Tref = 300 K, µref = 1.9938 × 10−5 kg/ms, kref =
0.1524 W/mK, nµ = 0.68014, nk = 0.716.

The global relative error defined in (3.65) in the baseline case was 5.7× 10−5 using a
equally spaced 201 (radially) × 51 (axially) mesh, showing the suitability of the approach.

4.1. Parametric Study: Womersley number

The Womersley number is the most widely discussed dimensionless number in the
research of thermoacoustic devices. This is reasonable since it appears both in the
dimensionless momentum equation as Wo2 and energy equation as Pr ·Wo2. Although
µ = µ(T0) and k = k(T0), the Prandtl number is very weakly dependent on temperature,
varying only by 0.01 in the temperature range [325, 525] K. Therefore the Prandtl number
is treated as a constant for helium in this study. Wo2 being a function of radius, density,
frequency and viscosity, can be varied in many ways. In this study, it was varied by
changing p0 and, ultimately, ρref , given that ∇p0 = 0 and p0 = ρrefRgTref . Note that
|p ′|Σ1 needed to be changed to keep p ′∗ constant. It follows that the inlet disturbance
energy flux (n · I)Σ1used to scale the disturbance energy terms was a linear function of
Wo2.

The terms in the integral disturbance energy balance (3.40) are shown in figure 4
against Wo2. The vertical heights of light, middle and dark grey area represent respec-
tively dimensionless values of the disturbance energy flux (n · I)∗cs, thermal dissipation
(Dk)∗cv and viscous dissipation (Dν)∗cv, of which the sum should equal the thermoacoustic
production (P)∗cv (dashed line in figure 4(a)). The deviation from the equality, defined
as ∆∗ = (P )∗cv − (Dν)∗cv − (Dν)∗cv − (n · I)∗cs, is plotted in figure 4(b). It can be seen that
the difference is 4 orders of magnitude smaller and hence validates the simplification and
assumption made previously. In figure 5, (Dν)∗cv, (Dk)∗cv and total dissipation (Dk+ν)∗cv
are shown again for better visualization.

A straightforward yet important conclusion from figure 5(b) is that the relative impor-
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Figure 5. The changes of (a) the dimensionless thermal dissipation (Dk)∗cv (—), viscous

dissipation (Dν)∗cv (– –) and total dissipation (Dk+ν)∗cv (– · –) and (b) the viscous dissipation
( ) and thermal dissipation ( ) in percentage of the total dissipation against Wo2.

Figure 6. The changes of the magnitude of (a) the dimensionless temperature fluctuation

|T ′∗| and (b) the dimensionless radial derivative of temperature fluctuation | ∂T
′∗

∂r∗ | against

dimensionless radial position r/R at mid-axial position z = L
2

for four different Wo2: Wo2 = 0.06

(– · –), Wo2 = 0.19 (—), Wo2 = 0.32 (– –), Wo2 = 1.9 (· · ·).

tance of viscous and thermal dissipation, which can be defined as the percentage (Dν)cv
(Dk+ν)cv

and (Dk)cv
(Dk+ν)cv

, respectively, shift with Wo2. When other conditions are maintained, viscous

dissipation is more significant at low Wo2 while thermal dissipation is the main loss
mechanism at high Wo2. This is because Wo, according to equation (3.20), represents
the channel radius relative to boundary layer thickness; as the relative radius gets larger,
the portion of main flow, which has little velocity gradient, also grows. Hence the relative
viscous dissipation drops. For the temperature profile, no oscillation is allowed (i.e.
T ′ = 0) at the wall due to the implicit assumption of its infinite heat capacity originated
from the boundary condition T (R, z) = Tw(z). As the relative radius gets larger compared
to thermal boundary layer, the wall’s ability to ‘smooth out’ the temperature profile
decreases as shown in figure 6: the magnitude of temperature oscillation becomes larger
and so does its radial gradient. This leads to the surge of thermal dissipation. In summary,
figure 5(b) points out the main loss mechanism to tackle when building thermoacoustic
devices.

The changes of (P)∗cv, (Dν)∗cv, (Dk)∗cv, (n · I)∗cs with Wo2 can be divided into four
regions by three critical values of Wo2 as labelled in figure 4. With Wo2 increasing
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Figure 7. The changes of the thermoacoustic efficiency η against Wo2.

from 0, (n · I)∗cs grows faster than (P)∗cv. Given (n · I)∗cs = (P)∗cv − (Dk+ν)∗cv, this faster
increase of acoustic output clearly benefits from the initial drop of total dissipation as
shown in figure 5(a) from 0 to C1; C1 is Wo2 where total dissipation reaches minimum. It
follows that C1 is also the position where (P)∗cv and (n · I)∗cs have parallel tangent lines,
i.e. d(P)∗cv = d(n · I)∗cs. Formally, C1 is defined as,

C1 = min
(
Wo2 : d(Dk+ν)∗cv = 0

)
. (4.2)

where the min() function ensures the first such Wo2. The physical meaning of C1 is Wo2

where thermoacoustic production starts to grow faster than acoustic output and where
the system has the minimum loss.

Continuing to increase Wo2, the total dissipation starts to pick up and the rate of
change of the production exceeds that of the disturbance energy flux and the second
critical value C2 can be defined as,

C2 = min

(
Wo2 : d

(n · I)∗cs
(P)∗cv

= 0

)
. (4.3)

Equivalently, C2 is also where dln(P)∗cv = dln(n · I)∗cs. It is clear that this ratio,

η :=
(n · I)∗cs
(P)∗cv

. (4.4)

is the efficiency of the conversion from thermal energy to acoustic energy. Then C2 is
Wo2 where maximum efficiency is reached. This new definition of ‘true’ thermoacoustic
efficiency reflects only the energy conversion between different aspects of the disturbance
and does not concern any steady state physical process. The changes of thermoacoustic
efficiency is better visualized in figure 7.

Further increasing Wo2, it can be seen that both thermoacoustic production and
dissipation (mainly thermal) rise sharply. It is clear in figure 4(a) that the (n · I)∗cs has
a turning point C3, i.e. d(n · I)∗cs = 0. It follows that C3 is also the position where (P)∗cv
and (Dk+ν)∗cv have the same rate of change, namely d(P)∗cv = d(Dk+ν)∗cv. Formally,

C3 = min
(
Wo2 : d(n · I)∗cs = 0

)
. (4.5)

The physical meaning of C3 is Wo2 where (n · I)∗cs reaches the maximum and also where
dissipation starts to grow faster than production.

It follows that the four distinct regions are,
• Wo2< C1: the total dissipation decreases, the efficiency of the device rises and the

energy flux grows faster than the production,
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Figure 8. The balance of dimensionless disturbance energy terms against He. (a) the values

of the dimensionless thermoacoustic production in the control volume (P )∗cv (– –), viscous

dissipation (Dν)∗cv ( ), thermal dissipation (Dν)∗cv ( ) and disturbance energy flux (n · I)∗cs
( ) and (b) the deviation from equality defined as ∆∗ = (P )∗cv − (Dν)∗cv − (Dν)∗cv − (n · I)∗cs.

• C1 <Wo2< C2: efficiency rises, total dissipation rises and production grows faster
than energy flux,
• C2 <Wo2< C3: efficiency drops but production grows faster than dissipation, and
• Wo2> C3, dissipation rises faster than production.

4.2. Parametric study: Helmholtz number

The Helmholtz number represents the length of the channel relative to the wavelength.
The thermoacoustic regenerator is generally very short compared with the wavelength:
He∼ O(0.01). In this section, the effects of He on disturbance energy budget is studied
by varying the channel length L while maintaining other conditions.

The terms in the disturbance energy balance equation are shown in figure 8(a) against
the Helmholtz number. Similar to figure 4, the heights of the light, middle and dark grey
area represent dimensionless values of disturbance energy flux (n · I)∗cs, thermal dissipa-
tion (Dk)∗cv and viscous dissipation (Dν)∗cv, respectively, of which the sum should equal
the thermoacoustic production (P)∗cv (dashed line in figure 8). The drop of thermoacoustic
production with He is expected because a larger length reduces the temperature gradient.
Compared to figure 4, no turning point of (n · I)∗cs is observed in the computed range;
(n · I)∗cs decreases monotonically. This result seem to suggest that shorter regenerators
are always preferable; however, in practice, the conductivity of the material needs to
be taken into account. If the length was too short, most of the heat input would be
conducted through the solid wall instead of being transferred to the fluid. The deviation
from equality ∆∗ against He is shown in figure 8(b); again excellent agreement is seen.

The minimum total dissipation C1 was obtained at He = 0.014, a combined effect
of dropping thermal dissipation and rising viscous dissipation with He as shown in
figure 9(a). Hence the main loss mechanics for a long regenerator is friction while for
short ones it is irreversible heat conduction as visualised in figure 9(b).

The viscous dissipation is expected to rise with increasing He because at high He,
the boundary layer extends further in the axial direction, consequently leading to more
dissipation. The decline of thermal dissipation with increasing He can be traced back
to T ′∗ as shown in figure 10(a). It is clear magnitude of T ′∗ diminishes as He increases

and, given that R is constant, so does |∂T
′∗

∂r∗ |. According to equation (3.43), the thermal
dissipation diminishes too.

The thermoacoustic production, by equation (3.46), depends on |s ′∗|, |v ′∗z |, φvs. The
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Figure 9. The changes of (a) the dimensionless thermal dissipation (Dk)∗cv (—), viscous

dissipation (Dν)∗cv (– –) and total dissipation (Dk+ν)∗cv (– · –) and (b) the viscous dissipative
( ) and thermal dissipation ( ) in percentage of total dissipation against He.

Figure 10. The changes of the magnitude of (a) the dimensionless temperature fluctuation
|T ′∗| and (b) the dimensionless entropy fluctuation |s ′∗| against dimensionless axial position
z/L on the axis r = 0 for four different He: He = 0.008 (– · –), He = 0.012 (—), He = 0.019
(– –), He = 0.031 (· · ·).

main contributor in this case was |s ′∗|, which also drops with increasing He as shown in
figure 10(b). This is because, the solutions of T ′∗ and s ′∗ are

T ′∗ =
1−Hk
ρ∗0

p ′∗ − 1

He2

1

ρ∗0

dT ∗w
dz∗

(1−Hk)− Pr(1−Hν)

1− Pr

dp ′∗

dz∗
, (4.6)

s ′∗ =
−Hk
ρ∗0T

∗
0

p ′∗ − 1

He2

1

ρ∗0T
∗
0

dT ∗w
dz∗

(1−Hk)− Pr(1−Hν)

1− Pr

dp ′∗

dz∗
. (4.7)

It can be seen the second parts of the solutions contain
dT∗w
dz∗ ; they are the temperature and

entropy fluctuation originated from the temperature gradient. In the parametric study,
dT∗w
dz∗ are identical across He: same cold and hot temperature varying linearly form 0 to 1.

It is He that accounts for the temperature gradient changes in the dimensionless domain.
Since both solutions contain the inverse of He, the magnitudes drop with increasing He.

The thermoacoustic efficiency η is shown against He in figure 11. Although there exists
the highest efficiency C2 at He = 0.012, the change of the efficiency is rather insensitive
to He compared with that against Wo2 in figure 7. This indicates that as long as He
is small (∼ O(0.01)), the effect of the channel length (and consequently temperature
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Figure 11. The changes of the thermoacoustic efficiency against He.

gradient) on the efficiency is less important than the effects of shear and heat transfer in
the radial direction.

As mentioned previously, the wave growth decreases monotonically with larger He; in
practice the choice of ω and L should ideally be such that the resulting He falls to the
left of C1, i.e. He < C1, taking advantage of both high efficiency and high output.

4.3. Two dimensional variation

Up to this point, the global values (volume integral (P )∗cv, (Dk)∗cv, (Dν)∗cv and surface
integral (n · I)∗cs) and the integral form of the disturbance energy balance relation (3.34)
have been used. In this section, the differential form of disturbance energy (2.27) is
employed to analyse the two dimensional variation of the point-based values (P )∗,
(∇ · I)∗, (Dk)∗ and (Dν)∗.

Compared with previous 1D models, one of the highlights of this work is that the
problem is considered in an axisymmetric cylindrical domain. Hence, this work is capable
of showing the two dimensional variation of the disturbance energy terms against radial
and axial location. The profiles of (P )∗, (∇ · I)∗, (Dk)∗, and (Dν)∗ are given in figure
12. The vertical axis is the dimensionless radius r∗ = r/R where r∗ = 0 represents the
axis and r∗ = 1 is the wall.

Focus first on the radial variation. At the wall, (P)∗ is zero because v ′∗z is zero (non-slip

boundary condition). The (Dν)∗ and (Dk)∗ are significant because |∂T
′∗

∂r∗ | and |∂v
′∗
z

∂r∗ | are
both large at the wall. Consequently, the near-wall region actually sees a negative energy
flux density (∇ · I)∗ = (P)∗ − (Dk+ν)∗ < 0, representing a wave decay. The (∇ · I)∗ = 0
level mark is shown in figure 12(c) for clearer visualization. It is interesting to realize that
even for thermoacoustic devices designed to amplify the waves, a small region of wave
decay always exists. The near-wall wave decay also provides support to the conclusion in
section 4.1 that overly small Wo2 is not optimal. On the axis, (P)∗ reaches the maximum
while dissipation is zero (axisymmetric condition) and hence (∇· I)∗ = (P)∗ on the axis.
The fact that wave growth is uneven in the radial direction implies the presence of the
radial mixing loss associated with fluid near both ends entering and leaving the channels
during oscillation.

With regards to the axial variation, it is too simplistic to assume the shapes of the
profiles are self-similar. Take P for example. Normalise each profile using respective values
on the axis as shown in figure 13. It can be seen that the profiles are almost self-similar
but not quite. This is because radial distribution functions contain the local viscous and
thermal boundary layer thickness δν and δk, which ultimately depend on T (z).

The axial changes were monotonic: (P)∗, (Dk)∗, (∇ · I)∗ dropped as the axial location
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Figure 12. The profiles of the cycle-averaged (a) dimensionless thermoacoustic production

(P )∗, (b) viscous dissipation (Dν)∗, (c) disturbance energy flux density (∇· I)∗ and (d) thermal

dissipation (Dk)∗ at six axial locations: z/L = 0.02, 0.2, 0.4, 0.6, 0.8, 0.98 which are denoted by
◦, �, ♦, 4, ., /, respectively, at the baseline point.

Figure 13. The profiles of the thermoacoustic production normalised by its value on
the axis P/(P)r=0 against dimensionless radial position r/R at six axial locations:
z/L = 0.02, 0.2, 0.4, 0.6, 0.8, 0.98 which are denoted by ◦, �, ♦, 4, ., /, respectively, at the
baseline point.

moves towards the hot end; on the contrary, (Dν)∗ increased. Recalling equation (3.45)
and (3.43), the changes of (Dk)∗ and (Dν)∗ are readily explained by the profiles of

|∂T
′∗

∂r∗ | and |∂v
′∗
z

∂r∗ | as shown in figure 14. Note that although k(Tw(z)) increased with axial
location (actually k(L) = 1.41k(0)), the factor k∗ 1

T∗0
in (3.43) actually dropped with

axial location given the power law k ∝ T 0.716 as mentioned previously.

By referring to the thermoacoustic production (3.46), the effect of
dT∗0
dz∗ vanished here by
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Figure 14. The profiles of the magnitude of (a) the dimensionless radial derivative

of temperature fluctuation | ∂T
′∗

∂r∗ | and (b) the dimensionless radial derivative of axial

velocity fluctuation | ∂v
′∗
z

∂r∗ | against dimensionless radial position r/R at six axial locations:
z/L = 0.02, 0.2, 0.4, 0.6, 0.8, 0.98 which are denoted by ◦, �, ♦, 4, ., /, respectively, at the
baseline point.

Figure 15. The profiles of the cycle-averaged product of dimensionless fluctuating entropy
and axial velocity −s ′∗v ′∗z against dimensionless radial position r/R at six axial locations:
z/L = 0.02, 0.2, 0.4, 0.6, 0.8, 0.98 which are denoted by ◦, �, ♦, 4, ., /, respectively, at the
baseline point.

the choice of linear temperature distribution. The factor −s ′∗v ′∗z is the specific entropy
transported by the volumetric flow rate per unit area per unit time. The profiles of
−s ′∗v ′∗z are shown in figure 15. It is clear that −s ′∗v ′∗z increased as axial position moves
towards the hot end. However, this trend was reversed by ρ∗0, which decreases with z.

In summary, it has been shown that there is a near-wall wave decay region and the two
dimensional variation of (P )∗, (∇ · I)∗, (Dk)∗ and (Dν)∗ can be summarized as similar
radial profiles and monotonic axial changes.

5. Conclusions

In this work, a new analytical framework has been developed to better understand
the disturbance energy balance in thermoacoustic devices. In this framework, a thermoa-
coustic production term is newly proposed which directly quantifies the generation or
consumption of disturbance energy from an imposed temperature gradient. An extended
disturbance energy flux term, in place of acoustic intensity, is defined to account for wave
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growth or decay in thermoacoustic devices. The viscous and thermal dissipation solely
resulting from the gradients of fluctuating velocity and temperature are obtained. The
disturbance energy balance relation is then established, stating that the wave growth
equals thermoacoustic production less viscous and thermal dissipation. The proposed
framework enables a new analytical perspective using these four disturbance energy terms
and the changes of the balance itself. Both the differential and integral form of disturbance
energy balance equation are given.

In this study, the framework has been implemented in an axisymmetric cylindrical
domain. The governing equations have been non-dimensionalised and the driving di-
mensionless parameters, namely the Womersley number, the Helmholtz number and the
Prandtl number are revealed. The well-accepted Rott’s assumptions were re-interpreted
using order of magnitude analysis. The disturbance energy terms are then simplified by
extending the Rott’s assumptions and taking advantage of boundary conditions. The
flow variables have been solved analytically in the radial direction and numerically in
the axial direction. A global error of the disturbance energy balance has been defined to
validate the assumptions made and the numerical scheme used in this study. Compared
with previous 1D models, one of the highlights of this work is the ability to show two
dimensional variations. It has been found the disturbance energy terms have similar but
not strictly self-similar radial shapes and monotonic axial changes. It has been discovered
that the wave always decays in the region close to wall, which implies extra mixing loss
that 1D models fail to see.

In order to showcase the new perspectives enabled by the proposed framework, a
parametric study of the Womersley and Helmholtz number has been conducted. The
study is not intended to be exhaustive but to demonstrate how new physical insights
and design guideline can be obtained from the disturbance energy balance relation. The
findings are:

(i) The Womersley and Helmholtz number can be interpreted as the channel radius
relative to boundary layer thickness and the channel length relative to the wavelength,
respectively. It has been found that for a relatively wide channel (represented by a
large Womersley number) or short channel (small Helmholtz number), the major loss
mechanism is thermal dissipation; in both case this is due to substantial temperature
fluctuation. For a relatively narrow or long regenerator channel, viscous dissipation
dominates. The significance of thermal dissipation in thermoacoustic devices has become
clear for the first time.

(ii) This paper answers the question of what the ‘true’ thermoacoustic efficiency
is. A new thermoacoustic efficiency has been defined as the ratio of wave growth to
thermoacoustic disturbance production; it reflects only the energy conversion between
different aspects of the disturbance and does not concern any steady state physical
process.

(iii) The change of thermoacoustic efficiency is rather insensitive to the Helmholtz num-
ber compared to the Womersley number. This indicates that as long as the regenerator
is short compared to the waves (He ∼ O(0.01)), the effect of the channel length (and
consequently temperature gradient) on the efficiency is less important than the effects of
momentum and thermal diffusion in the radial direction.

(iv) Three critical design values are identified: the minimum of dimensionless total
dissipation, the maximum of thermoacoustic efficiency and the maximum of dimensionless
wave growth. These three critical values divided the parameter space into four regimes;
a designer can wisely pick the combination of geometry, wave properties and working
conditions according to the preference of efficiency, output and loss.
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