
ar
X

iv
:1

90
1.

10
61

5v
2

 [
cs

.L
O

]
 4

 O
ct

 2
01

9

Data Consistency in Transactional Storage Systems: A

Centralised Approach

SHALE XIONG, Imperial College London, UK

ANDREA CERONE, Football Radar, UK
AZALEA RAAD,MPI-SWS, Germany

PHILIPPA GARDNER, Imperial College London, UK

We introduce an interleaving operational semantics for describing the client-observable behaviour of atomic
transactions on distributed key-value stores. Our semantics builds on abstract states comprising centralised,
global key-value stores and partial client views. We provide operational definitions of consistency models for
our key-value stores which are shown to be equivalent to the well-known declarative definitions of consis-
tency model for execution graphs. We explore two immediate applications of our semantics: specific protocols
of geo-replicated databases (e.g. COPS) and partitioned databases (e.g. Clock-SI) can be shown to be correct
for a specific consistency model by embedding them in our centralised semantics; programs can be directly
shown to have invariant properties such as robustness results against a weak consistency model.

1 INTRODUCTION

Transactions are the de facto synchronisation mechanism in modern distributed databases. To
achieve scalability and performance, distributed databases often use weak transactional consis-
tency guarantees. These weak guarantees pose several challenges: the formalisation of client-
observable behaviour; and the verification of database protocols and client applications. Much
work has been done to formalise the semantics of such consistency guarantees, both declara-
tively and operationally. On the declarative side, several general formalisms have been proposed,
such as dependency graphs [Adya 1999] and abstract executions [Burckhardt et al. 2012], to pro-
vide a unified semantics for formulating different consistency models. On the operational side,
the semantics of specific consistency models have been captured using reference implementa-
tions [Berenson et al. 1995; Raad et al. 2018; Sovran et al. 2011]. However, unlike declarative ap-
proaches, there has been little work on general operational semantics for describing a range of
consistency models.
We summarise briefly the existing work on general operational semantics; further discussion can

be found in §7. Kaki et al. [2017] propose an operational semantics for SQL transaction programs
under the consistency models given by the standard ANSI/SQL isolation levels [Berenson et al.
1995]. Their operational semantics accesses a global, centralised store, and is used to develop a
program logic and prototype tool for reasoning about client programs. They capture consistency
models such as snapshot isolation (SI) [Berenson et al. 1995], but not weaker ones such as parallel
snapshot isolation (PSI) [Sovran et al. 2011] and causal consistency (CC) [Lloyd et al. 2011] which
are important for distributed databases. Following this work, Nagar and Jagannathan [2018] pro-
pose an operational semantics over abstract execution graphs, rather than a concrete centralised
store, in order to prove the robustness of applications against a given consistency model. They
are able to capture weaker consistency models such as PSI and CC . However, although they fo-
cus on consistency models with snapshot property1, their semantics allows for the fine-grained

1Snapshot property, also known as atomic visibility, means that a transaction reads from an atomic snapshot of the database,

and commits atomically.

Authors’ addresses: Shale Xiong, Department of Computing, Imperial College London, UK, shale.xiong14@ic.ac.uk; Andrea

Cerone, Football Radar, UK, andrea.cerone@footballradar.com; Azalea Raad, MPI-SWS, Germany, azalea@mpi-sws.org;

Philippa Gardner, Department of Computing, Imperial College London, London, SW7 2AZ, UK, p.gardner@ic.ac.uk.

http://arxiv.org/abs/1901.10615v2

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

interleaving of operations in different transactions. We believe that this results in an unneces-
sarily complicated semantics. Crooks et al. [2017] provide a trace semantics over a global cen-
tralised store, where the behaviour of clients is formalised by the observations they make on the
totally-ordered history of states. They use their semantics to demonstrate the equivalence of sev-
eral implementation-specific definitions of consistency model. However, the usefulness of their
approach for analysing client programs is not clear, since observations made by their clients in-
volve information that is not generally available to real-world clients, such as the total order in
which transactions commit.

We introduce an interleaving operational semantics for describing the client-observable be-
haviour of atomic transactions on distributed key-value stores (§ 2, § 3), successfully abstract-
ing from the internal details of protocols of geo-replicated and partitioned databases. In our se-
mantics, transactions execute atomically, preventing fine-grained interleaving of the operations
they perform. Our semantics comprises a global, centralised key-value store (kv-store) withmulti-

versioning, which records all the versions of a key, and partial client views, which let clients see
only a subset of the versions. Our approach is partly inspired by the views in the C11 operational
semantics in [Kang et al. 2017]. Our operational semantics is parametric in the notion of execution
test, which determines if a client with a given view is allowed to commit a transaction. Just as with
standard operational semantics, the next transaction step just depends on the current kv-store and
client view. Our execution tests resemble an approach taken in [Crooks et al. 2017], except that the
next step requires an analysis of the whole trace. We capture most of the well-known consistency
models in a uniform way (§ 4): e.g, CC, PSI, SI and serialisability (SER). We also identify a new
consistency model that sits between PSI and SI and retains good properties of both. We call this
new consistency model weak snapshot isolation (WSI). Since we focus on snapshot property, we
are not able to capture popular consistency models such as read committed. Because our focus is on
protocols and applications employed by distributed databases, most of which guarantee snapshot
property, we do not find this constraint to be a severe limitation.
We prove that our operational definitions of consistency models for kv-stores are equivalent

to the well-known declarative definitions of consistency model for execution graphs. Such results
have not been given in [Kaki et al. 2017], but have been given in [Crooks et al. 2017]. We provide
a general proof technique which captures the correspondence between our execution tests and
the axiomatic specifications of consistency models for abstract executions (§ 5 and § E). Using
this technique, we prove that our definitions of consistency model for kv-stores are equivalent to
the declarative definitions of consistency model for abstract executions [Cerone et al. 2015a], and
hence for dependency graphs [Adya 1999; Cerone et al. 2017].
We explore two immediate applications of our operational semantics: the establishment of in-

variant properties such as robustness for simple client applications; and the correctness of specific
distributed protocols. By contrast, these tasks tend to be carried out in different declarative for-
malisms: clients are analysed using dependency graphs [Bernardi and Gotsman 2016; Cerone and Gotsman
2016; Cerone et al. 2015b; Fekete et al. 2005; Nagar and Jagannathan 2018]; protocols are verified
using abstract execution graphs [Burckhardt et al. 2014; Cerone et al. 2015a]; and equivalence re-
sults are used to move between the two [Cerone et al. 2017]. We prove the robustness of a single
counter against PSI and the robustness of multiple counters against our new model WSI (§ 6).
Alomari et al. [2008] present a banking example that is robust against SI. We show that it is also
robust againstWSI (§6). To our knowledge, our robustness results are the first to take into account
client sessions. With sessions, we demonstrate that multiple counters are not robust against PSI.
Interestingly, without sessions, it can be shown that multiple counters are robust against PSI us-
ing static-analysis techniques [Bernardi and Gotsman 2016]; these techniques are known not to
be applicable to sessions. We also establish the correctness of two database protocols against their

Data Consistency in Transactional Storage Systems: A Centralised Approach

k 7→ 0
t0

∅

(a) Initial state

k 7→ 0
t0

{t}
1

t

∅

(b) A�er t

k 7→ 0
t0

{t}
1

t

∅

(c) A possible view of cl2

k 7→ 0
t0

{t , t ′}
1

t

∅
1

t ′

∅

(d) A�er t ′, lost update

Fig. 0. Example key-value stores (a, b, d); a client view (c)

consistency models, demonstrating that they can be accurately expressed in our centralised se-
mantics: the COPS protocol for the fully replicated kv-stores [Lloyd et al. 2011] which satisfies CC
(§6); and the Clock-SI protocol for partitioned kv-stores [Du et al. 2013] which satisfies SI (§H).

2 OVERVIEW

We motivate our key ideas, centralised kv-stores, partial client views and execution tests, via an
intuitive example. We show that our interleaving semantics is an ideal middle point for proving
invariant properties such as robustness, and verifying distributed protocols.

Example. We use a simple transactional library, Counter(k), to introduce our operational seman-
tics. Clients of this counter library can manipulate the value of key k via two transactions:

inc(k), [x := [k]; [k] := x + 1] read(k), [x := [k]]

Command x := [k] reads the value of key k to local variable x; command [k] := x + 1 writes the
value of x+ 1 to key k . The code of each operation is wrapped in square brackets, denoting that it
must be executed atomically as a transaction.
Consider a replicated database where a client only interacts with one replica. For such a data-

base, the correctness of atomic transactions is subtle, depending heavily on the particular consis-
tency model under consideration. Consider the client program PLU = (cl 1 : inc(k) | | cl2 : inc(k)),
where we assume that the clients cl 1 and cl 2 work on different replicas and the k initially holds
value 0 in all replicas. Intuitively, since transactions are executed atomically, after both calls to
inc(k) have terminated, the counter should hold the value 2. Indeed, this is the only outcome al-
lowed under SER where transactions appear to execute in a sequential (serial) order, one after
another. The implementation of SER in distributed kv-stores comes at a significant performance
cost. Therefore, implementers are content with weaker consistency models [Ardekani et al. 2014;
Bailis et al. 2014; Binnig et al. 2014; Du et al. 2013; Li et al. 2012; Liu et al. 2018; Lloyd et al. 2011;
Saeida Ardekani et al. 2013; Sovran et al. 2011; Spirovska et al. 2018]. For example, if the replicas
provide no synchronisation mechanism for transactions, then it is possible for both clients to read
the same initial value 0 for k at their distinct replicas, update them to 1, and eventually propa-
gate their updates to other replicas. Consequently, both sites are unchanged with value 1 for k .
This weak behaviour is known as the lost update anomaly, which is allowed under the consistency
model called causal consistency [Li et al. 2012; Lloyd et al. 2011; Spirovska et al. 2018].

Centralised Operational Semantics. A well-known declarative approach for providing general
reasoning about clients of distributed kv-stores is to use execution graphs [Adya 1999; Adya et al.
2000; Burckhardt et al. 2012; Cerone et al. 2015a], where nodes are atomic transactions and edges
describe the known dependencies between transactions. The graphs capture the behaviour of the
whole program, with different consistency models corresponding to different sets of axioms con-
straining the graphs. However, execution graphs provide little information about how the state of
a kv-store evolves throughout the execution of a program. By contrast, we provide an interleav-
ing operational semantics based on an abstract centralised state. The centralised state comprises a
centralised, multi-versioned kv-store, which is global in the sense that it contains all the versions
written by clients, and client views of the store, which are partial in the sense that clients may see

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

different subsets of the versions in the kv-store. Each update is given by either a simple primitive
command or an atomic transaction. The atomic transaction steps are subject to an execution test

which analyses the state to determine whether the update is allowed by the associated consistency
model.
Let us introduce our global kv-stores and partial client views by showing that we can reproduce

the lost update anomaly given by PLU. Our kv-stores are functions mapping keys to lists of ver-
sions, where the versions record all the values written to each key together with the meta-data
of the transactions that access it. In the PLU example, the initial kv-store comprises a single key k ,
with only one possible version (0, t0, ∅), stating that k holds value 0, that the version writer is the
initialising transaction t0 (this version was written by t0), and that the version reader set is empty
(no transaction has read this version as of yet). Fig. 0a depicts this initial kv-store, with the version
represented as a box sub-divided in three sections: the value 0; the writer t0; and the reader set ∅.
First, suppose that cl1 invokes inc on Fig. 0a. It does this by choosing a fresh transaction identifier,

t , and then proceeds with inc(k). It reads the initial version of k with value 0 and then writes a
new value 1 for k . The resulting kv-store is depicted in Fig. 0b, where the initial version of k has
been updated to reflect that it has been read by t .
Second, client cl2 invokes inc on Fig. 0b. As there are now two versions available for k , we

must determine the version from which cl2 fetches its value, before running inc(k). This is where
client views come into play. Intuitively, a view of client cl2 comprises those versions in the kv-store
that are visible to cl2, i.e. those that can be read by cl 2. If more than one version is visible, then
the newest (right-most) version is selected, modelling the last-writer-wins resolution policy used
by many distributed kv-stores [Vogels 2009]. In our example, there are two view candidates for
cl2 when running inc(k) on Fig. 0b: (1) one containing only the initial version of k; (2) the other
containing both versions of k .2 For (1), the view is depicted in Fig. 0c. Client cl2 chooses a fresh
transaction identifier t ′, reads the initial value 0 and writes a new version with value 1, as depicted
in Fig. 0d. Such a kv-store does not contain a version with value 2, despite two increments on k ,
producing the lost update anomaly. For (2), client cl2 reads the newest value 1 and writes a new
version with value 2.

To avoid undesirable behaviour, such as the lost update anomaly, we use an execution testwhich
restricts the possible update at the point of the transaction commit. One such test is to enforce a
client to commit a transaction writing to k if and only if its view contains all versions available
in the global state for k . This prevents cl2 from running inc(k) on Fig. 0b if its view only contains
the initial version of k . Instead, the cl2 view must contain both versions of k , thus enforcing cl2 to
write a version with value 2 after running inc(k). This particular test corresponds to write-conflict-
freedom of distributed kv-stores: at most one concurrent transaction can write to a key at any one
time. In §4 we give many examples of execution tests and their associated consistency models on
kv-stores. In §5, we develop a proof technique, which we use in §F to show the equivalence of our
operational definitions of consistency models and the declarative ones based on execution graphs.

General Robustness Results. The first application of our operational semantics is to prove gen-
eral robustness results for clients with respect to specific consistency models (§ 6.1). Using our
general operational semantics, we can prove invariant properties (e.g. robustness) of a program
P under weak consistency models. That is, the invariant obtained by executing P under a weak
consistency model can also be obtained under serialisability. To demonstrate this, we prove the
robustness of the single counter library discussed above against PSI, and the robustness of a multi-
counter library and the banking library of Alomari et al. [2008] against our new proposed model
WSI and all stronger models such as SI. The latter is done through general conditions on invariant

2 As we explain in §3.1, we always require the view of a client to include the initial version of each key.

Data Consistency in Transactional Storage Systems: A Centralised Approach

which guarantees robustness against WSI. Thanks to our operational semantics, our invariant-
based approaches only need to work with single program steps rather than whole program traces.

Verifying Implementation Protocols. The second application of our operational semantics is
for showing that implementations of distributed kv-stores satisfy certain consistency models. Kv-
stores and views provide a faithful abstraction of geo-replicated and partitioned databases, and
execution tests provide a powerful abstraction of the synchronisation mechanisms enforced by
these databases when committing a transaction. This then allows us to use our formalism to verify
the correctness of distributed database protocols. To demonstrate this, we show that the COPS
protocol [Lloyd et al. 2011] for implementing a replicated database satisfies causal consistency
(§6.2), and the Clock-SI protocol [Du et al. 2013] for implementing a partitioned database satisfies
snapshot isolation (§H.2).

3 OPERATIONAL MODEL

We define an interleaving operational semantics for atomic transactions over global, centralised
kv-stores and partial client views.

3.1 Key-Value Stores and Client Views

Our global, centralised key-value stores (kv-store) and partial client views provide the abstract
machine states for our operational semantics. A kv-store comprises key-indexed lists of versions
which record the history of the key with values and meta-data of the transactions that accessed it:
the writer and readers.
We assume a countably infinite set of client identifiers3, Client ∋ cl . The set of transaction iden-

tifiers, TransID ∋ t , is defined by TransID, {t0}⊎
{
tn
cl

| cl ∈ Client ∧ n ≥ 0
}
, where t0 denotes the

initialisation transaction and tn
cl

identifies a transaction committed by client cl with n determin-

ing the client session order: that is, SO,
{
(t , t ′) | ∃cl,n,m. t = tn

cl
∧ t ′ = tm

cl
∧ n <m

}
. Subsets of

TransID are ranged over by T ,T ′
, · · · . We let TransID0 , TransID \ {t0}.

Definition 3.1 (Kv-stores). Assume a countably infinite set of keys, Key ∋ k , and a countably
infinite set of values, Val ∋ v , which includes the keys and an initialisation value v0. The set of

versions, Version ∋ ν , is defined by Version,Val×TransID×P (TransID0). A kv-store is a function
K : Key → List(Version), where List(Version) ∋ V is the set of lists of versions.

Each version has the form ν=(v, t ,T), where v is a value, the writer t identifies the transaction
that wrotev , and the reader set T identifies the transactions that readv . We use the notation val(ν),
w(ν) and rs(ν) to project the individual components of ν . Given a kv-store K and a transaction t ,
we write t ∈ K if t is either the writer or one of the readers of a version included in K , |K(k)| for
the length of the version list K(k), and write K(k, i) for the i th version of k , with 0 ≤ i < |K(k)|.
We focus on kv-stores whose consistency model satisfies the snapshot property, ensuring that

a transaction reads and writes at most one version for each key. This is a normal assumption for
distributed databases, e.g. in [Ardekani et al. 2014; Bailis et al. 2014; Binnig et al. 2014; Du et al.
2013; Li et al. 2012; Liu et al. 2018; Lloyd et al. 2011; Saeida Ardekani et al. 2013; Sovran et al. 2011;
Spirovska et al. 2018]. We also assume that the version list for each key has an initial version
carrying the initialisation valuev0, written by the initialisation transaction t0 with an initial empty
reader set. Finally, we assume that the kv-store agrees with the session order of clients: a client
cannot read a version of a key that has beenwritten by a future transactionwithin the same session;
and the order in which versions are written by a client must agree with its session order. A kv-store

3 We use the notation A ∋ a to denote that elements of A are ranged over by a and its variants such as a′, a1, · · · .

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

is well-formed if it satisfies these three assumptions, defined formally in Def. A.1. Henceforth, we
assume kv-stores are well-formed, and write KVS to denote the set of well-formed kv-stores.
A global kv-store provides an abstract centralised description of updates associated with dis-

tributed kv-stores that is complete in that no update has been lost in the description. By contrast,
in both replicated and partitioned distributed databases, a client may have incomplete information
about updates distributed between machines. We model this incomplete information by defining a
view of the kv-store which provides a partial record of the updates observed by a client. We require
that a client view be atomic in that it can see either all or none of the updates of a transaction.

Definition 3.2 (Views). A view of a kv-storeK ∈ KVS is a function u ∈ Views(K),Key → P (N)

such that, for all i, i ′,k,k ′:

0 ∈ u(k) ∧ (i ∈ u(k) ⇒ 0 ≤ i < |K(k)|) (well-formed)

i ∈ u(k) ∧ w(K(k, i))=w(K(k ′, i ′)) ⇒ i ′ ∈ u(k ′) (atomic)

Given two views u,u ′ ∈ Views(K), the order between them is defined by u ⊑ u ′
def
⇔ ∀k ∈

dom(K). u(k) ⊆ u ′(k). The set of views is Views ,
⋃

K∈KVS Views(K). The initial view, u0, is
defined by u0(k) = {0} for every k ∈ Key.

Our operational semantics updates configurations, which are pairs comprising a kv-store and a
function describing the views of a finite set of clients.

Definition 3.3 (Configurations). A configuration, Γ ∈ Conf, is a pair (K,U) with K ∈ KVS and

U : Client
fin
−−⇀ Views(K). The set of initial configurations, Conf0 ⊆ Conf, contains configurations

of the form (K0,U0), where K0 is the initial kv-store defined by K0(k), (v0, t0, ∅) for all k ∈ Key.

Given a configuration (K,U) and a client cl , if u = U(cl) is defined then, for each k , the con-
figuration determines the sub-list of versions in K that cl sees. If i, j ∈ u(k) and i < j , then cl

sees the values carried by versions K(k, i) and K(k, j), and it also sees that the version K(k, j) is
more up-to-date thanK(k, i). It is therefore possible to associate a snapshot with the view u, which
identifies, for each key k , the last version included in the view. This definition assumes that the
database satisfies the last-write-wins resolution policy, employed by many distributed kv-stores.
However, our formalism can be adapted straightforwardly to capture other resolution policies.

Definition 3.4 (View Snapshots). Given K ∈ KVS and u ∈ Views(K), the snapshot of u in K is

a function, snapshot(K,u) : Key → Val, defined by snapshot(K,u) , λk . val(K(k,max<(u(k)))),
where max<(u(k)) is the maximum element in u(k) with respect to the natural order < over N.

3.2 Operational Semantics

Programming Language. A program P comprises a finite number of clients, where each client
is associated with a unique identifier cl ∈ Client, and executes a sequential command C, given by
the following grammar:

C ::= skip | Cp | [T] | C; C | C+ C | C
∗ Cp ::= x := E | assume(E)

T ::= skip | Tp | T; T | T + T | T
∗ Tp ::= Cp | x := [E] | [E] := E

Sequential commands C comprise skip, primitive commands Cp , atomic transactions [T], and stan-
dard compound constructs: sequential composition (;), non-deterministic choice (+) and iteration
(∗). Primitive commands include variable assignment x := E and assume statements assume(E)

which can be used to encode conditionals. They are used for computations based on client-local

Data Consistency in Transactional Storage Systems: A Centralised Approach

variables and can hence be invoked without restriction. Transactional commands T comprise skip,
primitive transactional commands Tp , and the standard compound constructs. Primitive transac-
tional commands comprise primitive commands, lookup x := [E] and mutation [E] := E used for
reading and writing to kv-stores respectively, which can only be invoked as part of an atomic
transaction.
A program is a finite partial function from client identifiers to sequential commands. For clarity,

we often write C1 ‖ . . . ‖ Cn as syntactic sugar for a program P with n clients associated with
identifiers cl1 . . . cln , where each client cl i executes Ci . Each client cl i is associated with its own
client-local stack, si ∈ Stack, Vars → Val, mapping program variables (ranged over by x, y, · · ·)
to values. We assume a language of expressions built from values v and program variables x: E ::=
v | x | E + E | · · · . The evaluation JEKs of expression E is parametric in the client-local stack s:

JvKs , v JxKs , s(x) JE1 + E2Ks , JE1Ks + JE2Ks . . .

Transactional Semantics. In our operational semantics, transactions are executed atomically. It
is still possible for an underlying implementation, such as COPS, to update the distributed kv-
store while the transaction is in progress. It just means that, given the abstractions captured by
our global kv-stores and partial views, such an update is modelled as an instantaneous atomic
update. Intuitively, given a configuration Γ = (K,U), when a client cl executes a transaction [T],
it performs the following steps: (1) it constructs an initial snapshot ss of K using its view U(cl)

as defined in Def. 3.4; (2) it executes T in isolation over ss accumulating the effects (the reads and
writes) of executing T; and (3) it commits T by incorporating these effects into K .

Definition 3.5 (Transactional Snapshots). A transactional snapshot, ss ∈ Snapshot , Key → Val,
is a function from keys to values. When the meaning is clear, it is just called a snapshot.

The rules for transactional commands will be defined using an arbitrary transactional snapshot.
The rules for sequential commands and programs will be defined using a transactional snapshot
given by a view snapshot. To capture the effects of executing a transaction T on a snapshot ss of
kv-store K , we identify a fingerprint of T on ss which captures the values T reads from ss, and the
values Twrites to ss and intends to commit toK . Execution of a transaction in a given configuration
may result in more than one fingerprint due to non-determinism (non-deterministic choice).

Definition 3.6 (Fingerprints). Let Ops denote the set of read (r) and write (w) operations defined

by Ops, {(l ,k,v) | l ∈ {r, w} ∧ k ∈ Key ∧ v ∈ Val}. A fingerprint F is a set of operations, F ⊆ Ops,
such that: ∀k ∈ Key, l ∈ {r, w} . (l ,k,v1), (l ,k,v2) ∈ F ⇒ v1 = v2.

According to Def. 3.6, a fingerprint contains at most one read operation and at most one write
operation. This reflects our assumption regarding transactions that satisfy the snapshot property:
reads are taken from a single snapshot of the kv-store; and only the last write of a transaction to
each key is committed to the kv-store.
Fig. 1 presents the rules for transactional commands. The only non-standard rule is TPrimitive,

which updates the snapshot and the fingerprint of a transaction: the premise (s, ss)
Tp

(s ′, ss′) de-
scribes how executing Tp affects the local state (the client stack and the snapshot) of a transaction;
and the premise o = op(s, ss, Tp) identifies the operation on the kv-store associated with Tp .

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

TPrimitive

(s, ss)
Tp

(s ′, ss′) o = op
(
s, ss, Tp

)
(s, ss,F), Tp → (s ′, ss′,F <⊳ o), skip

F <⊳ (r,k,v) ,

{
F ∪ {(r,k,v)} if ∀l ,v ′

. (l ,k,v ′)<F

F otherwise

F <⊳ (w,k,v) , (F \{(w,k,v ′) | v ′ ∈ Val})∪{(w,k,v)}

F <⊳ ϵ , F
TChoice

i ∈ {1, 2}

(s, ss,F), T1 + T2 → (s, ss,F), Ti

TIter

(s, ss,F), T∗ → (s, ss,F), skip + (T; T∗)

TSeqSkip

(s, ss,F), skip; T → (s, ss,F), T

TSeq

(s, ss,F), T1 → (s ′, ss′,F ′), T′1

(s, ss,F), T1; T2 → (s ′, ss′,F ′), T′1; T2

Fig. 1. Rules for transactional commands.

Definition 3.7. The relation
Tp

⊆ (Stack × Snapshot) × (Stack × Snapshot) is defined by4 :

(s, ss) x:=E
(s
[
x 7→ JEKs

]
, ss) (s, ss)

assume(E)
(s, ss) where JEKs , 0

(s, ss)
x:=[E]

(s
[
x 7→ ss(JEKs)

]
, ss) (s, ss)

[E1]:=E2
(s, ss

[
JE1Ks 7→ JE2Ks

]
)

The function op, computing the fingerprint of primitive transactional commands, is defined by:

op(s, ss, x := E), ϵ op(s, ss, assume(E)), ϵ

op(s, ss, x := [E]), (r, JEKs , ss(JEKs)) op(s, ss, [E1] := E2), (w, JE1Ks , JE2Ks)

The empty operation ϵ is used for those primitive commands that do not contribute to the finger-
print.

The conclusion of theTPrimitive rule uses the combination operator <⊳ : P (Ops)×(Ops⊎{ϵ}) →

P (Ops), defined in Fig. 1, to extend the fingerprint F accumulatedwith operationo associated with
Tp , as appropriate: it adds a read from k if F does not already contain an entry for k; and it always
updates the write for k to F , removing previous writes to k .

Definition 3.8 (Fingerprint Set). Given a client stack s and a snapshot ss, the fingerprint set of a

transaction T is: Fp(T), {F | ∃s, s ′, ss, ss′. (s, ss, ∅), T →∗ (s ′, ss′,F), skip} where→∗ denotes the
reflexive, transitive closure of→ given in Fig. 1. A set F ∈ Fp(T) is called a final fingerprint of T.

Operational Semantics. We give the operational semantics of commands and programs in Fig. 2.

The command semantics describes transitions of the form cl ⊢ (K,u, s), C
λ
−→ET (K ′

,u ′
, s ′), C′,

stating that given the kv-store K , view u and stack s , a client cl may execute command C for one
step, updating the kv-store toK ′, the stack to s ′, and the command to its continuation C′. The label
λ is either of the form (cl , ι) denoting that cl executed a primitive command that required no access
toK , or (cl,u ′′

,F) denoting that cl committed an atomic transactionwith final fingerprint F under
the view u ′′. The semantics is parametric in the choice of execution test ET for kv-stores, which is
used to generate the consistency model on kv-stores under which a transaction can execute. In §4,
we give many examples of execution tests for well-known consistency models. In §5 and §F, we
prove that our execution tests (using kv-stores) generate consistency models that are equivalent
to existing definitions of consistency models (using execution graphs).
The rules for the compound constructs are straightforward and given in §A. The rule for prim-

itive commands, CPrimitive, depends on the transition system
Cp

⊆ Stack × Stack which simply

4 For any function f, the new function f[d 7→ r] is defined by f[d 7→ r](d) = r, and f[d 7→ r](d′) = f(d′) if d′ , d.

Data Consistency in Transactional Storage Systems: A Centralised Approach

CPrimitive

s
Cp

s ′

cl ⊢ (K,u, s), Cp
(cl, ι)
−−−−→ET (K,u, s

′), skip

s
x:=E

s
[
x 7→ JEKs

]
s

assume(E)
s where JEKs , 0

CAtomicTrans

u ⊑ u ′′

ss = snapshot(K,u ′′) (s, ss, ∅), T→∗ (s ′, _,F), skip can-commitET(K,u
′′
,F)

t ∈ nextTid(cl ,K) K ′
= update(K,u ′′

,F , t) vshi�ET(K,u
′′
,K ′
,u ′)

cl ⊢ (K,u, s), [T]
(cl,u′′

,F)
−−−−−−−→ET (K

′
,u ′
, s ′), skip

PProg

u = U(cl) s = E(cl) C = P(cl) cl ⊢ (K,u, s), C
λ
−→ET (K ′

,u ′
, s ′), C′

⊢ (K,U, E), P
λ
−→ET (K ′

,U[cl 7→ u ′], E[cl 7→ s ′]), P[cl 7→ C′])

Fig. 2. Rules for sequential commands and programs.

describes how the primitive command Cp affects the local state of a client. The ruleCAtomicTrans
describes the execution of an atomic transaction under the execution test ET.
We describe the CAtomicTrans rule in detail. The first premise states that the current view u

of the executing commandmay be advanced to a newer view u ′′ (see Def. 3.2). Given the new view
u ′′, the transaction obtains a snapshot ss of the kv-store K , and executes T locally to completion
(skip), updating the stack to s ′, while accumulating the fingerprint F ; this behaviour is modelled
in the second and third premises of CAtomicTrans. Note that the resulting snapshot is ignored as
the effect of the transaction is recorded in the fingerprint F . The can-commitET(K,u

′′
,F) premise

ensures that under the execution test ET, the final fingerprint F of the transaction is compatible
with the (original) kv-store K and the client view u ′′, and thus the transaction can commit. Note
that the can-commit check is parametric in the execution test ET. This is because the conditions
checked upon committing depend on the consistency model under which the transaction is to
commit. In §4, we define can-commit for several execution tests associated with well-known con-
sistency models.
Now we are ready for client cl to commit the transaction resulting in the kv-store K ′ with the

client view u ′′ shifting to a new view u ′: pick a fresh transaction identifier t ∈ nextTid(cl ,K);
compute the new kv-store via K ′

= update(K,u ′′
,F , t); and check if the view shift is permit-

ted under execution test ET using vshi�ET(K,u
′′
,K ′
,u ′). Observe that as with can-commit, the

vshi� check is parametric in the execution test ET. Once again this is because the conditions
checked for shifting the client view depend on the consistency model. In § 4 we define vshi�

for several execution tests associated with well-known consistency models. The set nextTid(cl ,K)

is defined by nextTid(cl ,K) ,
{
tn
cl

�� ∀m. tm
cl

∈ K ⇒m < n
}
. The function update(K,u,F , t) de-

scribes how the fingerprint F of transaction t executed under view u updates kv-storeK : for each
read (r,k,v) ∈ F , it adds t to the reader set of the last version of k in u; for each write (w,k,v), it
appends a new version (v, t , ∅) to K(k).

Definition 3.9 (Transactional update). The function update(K,u,F , t), is defined by:

update(K,u, ∅, t) , K

update(K,u, {(r,k,v)} ⊎ F , t) , let i = max<(u(k)), (v, t
′
,T) = K(k, i) in

update(K[k 7→ K(k)[i 7→ (v, t ′,T ⊎ {t})]],u,F , t)

update(K,u, {(w,k,v)} ⊎ F , t) , let K ′
= K[k 7→ K(k)::(v, t , ∅)] in update(K ′

,u,F , t)

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

where, given a list of versions V = ν0:: · · · ::νn and an index i : 0 ≤ i ≤ n, then V[i 7→ ν] ,
ν0:: · · · ::νi−1::ν ::νi+1 · · ·νn ,

The last rule, PProg, captures the execution of a program step given a client environment E ∈

CEnv. A client environment E is a function from client identifiers to variable stacks, associating
each client with its stack. We assume that the domain of client environments contains the domain
of the program throughout the execution: dom(P) ⊆ dom(E). Program transitions are simply
defined in terms of the transitions of their constituent client commands. This yields an interleaving
semantics for transactions of different clients: a client executes a transaction in an atomic step
without interference from the other clients.

4 CONSISTENCY MODELS: KV-STORES

We define what it means for a kv-store to be in a consistent state. Many different consistency mod-
els for distributed databases have been proposed in the literature [Berenson et al. 1995; Burckhardt
2014; Li et al. 2012; Liu et al. 2018; Sovran et al. 2011], capturing different trade-offs between per-
formance and application correctness: examples range from serialisability, a strong consistency
model which only allows kv-stores obtained from a serial execution of transactions with inevitable
performance drawbacks, to eventual consistency, a weak consistencymodel which imposes few con-
ditions on the structure of a kv-store leading to good performance but anomalous behaviour. We
define consistency models for our kv-stores, by introducing the notion of execution test which spec-
ifies whether a client is allowed to commit a transaction in a given kv-store. Each execution test in-
duces a consistency model as the set of kv-stores obtained by having clients non-deterministically
commit transactions so long as the constraints imposed by the execution test are satisfied. We
explore a range of execution tests associated with well-known consistency models in the litera-
ture. In §5, we demonstrate that our operational formulation of consistency models over kv-stores
using execution tests are equivalent to the established declarative definitions of consistency mod-
els over abstract executions [Burckhardt et al. 2012; Cerone et al. 2015a] and dependency graphs
[Adya 1999].

Definition 4.1 (Execution tests). An execution test is a set of tuples ET ⊆ KVS×Views× Fp×KVS×

Views such that, for all (K,u,F ,K ′
,u ′) ∈ ET: (1)u ∈ Views(K) andu ′ ∈ Views(K ′); (2) can-commitET(K,u,F); (3) vshi�ET(K,u,K

′
,u ′);

and (4) for all k ∈K and v ∈Val, if (r,k,v) ∈F then K(k,max <(u(k)))=v .

Intuitively, (K,u,F ,K ′
,u ′) ∈ ETmeans that, under the execution test ET, a client with initial view

u over a kv-store K can commit a transaction with fingerprint F to obtain the resulting kv-store
K ′ (Def. 3.9) while shifting its view tou ′. We adopt the notation ET ⊢ (K,u)⊲F : (K ′

,u ′) to capture
this intuition. Note that the last condition in Def. 4.1 enforces the last-write-wins policy [Vogels
2009]: a transaction always reads the most recent writes from the initial view u.
The largest execution test is denoted by ET⊤, where for all K,K

′
,u,u,F :

can-commitET⊤(K,u,F)
def
⇔ true and vshi�ET⊤ (K,u,K

′
,u ′)

def
⇔ true

In §5, we show that the consistency model induced by ET⊤ corresponds to the Read Atomic model
[Bailis et al. 2014], a variant of Eventual Consistency [Burckhardt et al. 2012] for atomic transac-
tions.
In § 4.1, we give many examples of execution tests. Here, we explain how an execution test

induces a consistency model. Given an execution test ET, we define a ET-reduction as a labelled
transition which captures how client cl updates a configuration: either cl shifts its view to a more
up-to-date one with the label ε denoting that there was no access to the kv-store; or cl commits a
transaction with the label F denoting the fingerprint of the committed transaction.

Data Consistency in Transactional Storage Systems: A Centralised Approach

ET can-commitET(K,u,F) Closure Relation (where applicable) vshi�ET(K,u,K
′
,u ′)

MR true u ⊑ u ′

RYW true ∀t ∈ K ′ \ K. ∀k, i .

w(K ′(k, i))
SO?

−−→ t ⇒ i ∈u ′(k)

CC closed(K,u,RCC) RCC , SO ∪WRK vshi�MR∩RYW(K,u,K ′
,u ′)

UA closed(K,u,RUA) RUA ,
⋃

(w,k,_)∈FWW−1
K
(k) true

PSI closed(K,u,RPSI) RPSI , RUA ∪ RCC ∪WWK vshi�MR∩RYW(K,u,K ′
,u ′)

CP closed(K,u,RCP) RCP , SO;RW?
K
∪WRK ;RW?

K
∪WWK vshi�MR∩RYW(K,u,K ′

,u ′)

SI closed(K,u,RSI) RSI , RUA ∪ RCP ∪ (WWK ;RWK) vshi�MR∩RYW(K,u,K ′
,u ′)

SER closed(K,u,RSER) RSER ,WW−1 true

Fig. 3. Execution tests of well-known consistency models, where SER* denotes an alternative equivalent SER

specification and SO is as given in §3.1.

Definition 4.2 (ET-reduction). An ET-reduction, (K,U)
(cl,α)

−−−−−_ET (K ′
,U ′), is defined by:

(1) either α = ε ,K ′
= K and U ′

= U[cl 7→ u] for some u such that U(cl) ⊑ u; or
(2) α = F for some F , and ET ⊢ (K,u) ⊲ F : (K ′

,u ′), where K ′
= update(K,u,F , t) for some

t ∈ nextTid(cl ,K),U ′
=U[cl 7→ u ′].

A finite sequence of ET-reductions starting in an initial configuration Γ0 is called an ET-trace.

EachET-trace starting with an initial configuration (Def. 3.3) terminates in a configuration (K, _)
whereK is obtained as a result of several clients committing transactions under the execution test
ET. The consistency model induced by ET, written CM(ET), is the set of all such terminal kv-stores.

Definition 4.3 (Consistency Model). The consistency model induced by an execution test ET is

defined as CM(ET),
{
K

�� ∃Γ0 ∈ Conf0. Γ0
_

−−_
∗
ET (K, _)

}
.

Note that in the definition of ET-traces, the view-shifts and transaction commits are decoupled.
This is in contrast to the operational semantics (§ 3, Fig. 2), where view-shifts and transaction
commits are combined in a single transition of programs (CAtomicTrans). The reason for this
mismatch is best understood when looking at the intended applications. ET-traces are useful for
proving that a distributed transactional protocol implements a given consistency model: in this
case, it is convenient to separate shifting a view from committing a transaction, as these two
steps often take place separately in distributed protocols. The operational semantics is particularly
useful for reasoning about transactional programs: in this case, the treatment of the view-shifts
and transaction commits as a single transition reduces the number of interleavings in programs.
The ET-traces and operational semantics are equally expressive as the following theorem states.

Theorem 4.4. Let JPKET be the set of kv-stores reachable by executing P under the execution test

ET. Then for all ET, CM(ET) =
⋃

PJPKET.

4.1 Example Execution Tests

We give several examples of execution tests which give rise to consistency models on kv-stores.
Recall that the snapshot property and the last write wins are hard-wired into our model. This
means that we can only define consistency models that satisfy these two constraints. Although
this forbids us to express interesting consistency models such as Read Committed, we are able to
express a large variety of consistency models employed by distributed kv-stores. We proceed with
a summary of our notational conventions.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Notation. Given relations r, r′ ⊆ A × A, we write: r?, r+ and r∗ for its reflexive, transitive and

reflexive-transitive closures of r, respectively; r−1 for its inverse; a1
r
−→ a2 for (a1,a2) ∈ r; and r; r′

for {(a1,a2) | ∃a. (a1,a) ∈ r ∧ (a,a2) ∈ r′}.
Recall from Def. 4.1 that an execution test ET comprises tuples of the form (K,u,F ,K ′

,u ′)

where can-commitET(K,u,F) and vshi�ET(K,u,K
′
,u ′). We define can-commit and vshi� for sev-

eral consistency models, using a couple of auxiliary definitions.

Prefix Closure. Given a kv-store K and a view u, the set of visible transactions is:

visTx(K,u), {w(K(k, i)) | i ∈ u(k)}

Given a binary relation on transactions, R ⊆ TransID × TransID, we say that a view u is closed
with respect to a kv-store K and R, written closed(K,u,R), iff:

closed(K,u,R)
def
⇔ visTx(K,u) =

(
(R∗)−1visTx(K,u)

)
\ {t | ∀k, i . t , w(K(k, i))}

That is, if transaction t is visible in u, then all transactions that are R∗-before t are also visible in
u.

Dependency Relations. We define transaction dependency relations for kv-stores, inspired by
analogous relations for dependency graphs due to Adya [1999]. Given a kv-store K , a key k

and indexes i, j such that 0 ≤ i < j < |K(k)|, if there exists ti ,Ti , t such that K(k, i)=(_, ti ,Ti),
K(k, j)=(_, tj , _) and t ∈ Ti , then we say that there is:

(1) a Write-Read dependency over k from ti to t , written (ti , t) ∈ WRK(k);
(2) a Write-Write dependency over k from ti to tj , written (ti , tj) ∈ WWK(k); and
(3) a Read-Write anti-dependency from t to tj , provided that t , tj , written (t , tj) ∈ RWK (k).

Fig. 3a illustrates an example kv-store and its transaction dependency relations.
We give several definitions of execution tests using vshi� and can-commit in Fig. 3. In §5, we

demonstrate that the associated consistency models on kv-stores correspond to well-known con-
sistency models on execution graphs. We anticipate these results, by labelling the execution test
with their well-known consistency models.

4.1.1 Monotonic Reads (MR). This consistency model states that when committing, a client can-
not lose information in that it can only see increasingly more up-to-date versions from a kv-store.
This prevents, for example, the kv-store of Fig. 3b, since client cl first reads the latest version of k
in t1

cl
, and then reads the older, initial version of k in t2

cl
. As such, the vshi�MR predicate in Fig. 3

ensures that clients can only extend their views. When this is the case, clients can then always

commit their transactions, and thus can-commitMR is simply defined as true.

4.1.2 Read Your Writes (RYW). This consistency model states that a client must always see all
the versions written by the client itself. The vshi�RYW predicate thus states that after executing a
transaction, a client contains all the versions it wrote in its view. This ensures that such versions
will be included in the view of the client when committing future transactions. Note that under
RYW the kv-store in Fig. 3c is prohibited as the initial version of k holds value v0 and client cl
tries to increment the value of k twice. For its first transaction t1

cl
, it reads the initial value v0 and

then writes a new version with value v1. For its second transaction t2
cl
, it reads the initial value

v0 again and write a new version with value v1. The vshi�RYW predicate rules out this example
by requiring that the client view, after it commits the transaction t1

cl
, includes the version it wrote.

When this is the case, clients can always commit their transactions, and thus can-commitRYW is
simply true.

Data Consistency in Transactional Storage Systems: A Centralised Approach

k1 7→
t0

{t1}

t2

∅
WR

WW

RW

(a) Dependencies of kv-stores

k1 7→ v0
t0{
t2
cl

} v1
t1{
t1
cl

}
(b) Disallowed by MR

k1 7→ v0
t0{
t1
cl
, t2
cl

} v1
t1
cl

∅
v1

t2
cl

∅

(c) Disallowed by RYW

k 7→ v0
t0

{t , t ′}
v1

t

∅
v1

t ′

∅

(d) Lost update, disallowed by UA

k1 7→ v0
t0

{t}
v1

t1
cl

∅
k2 7→ v0

t0

∅
v2

t2
cl

{t1
cl ′
}

k3 7→ v0
t0

∅
v3

t2
cl ′

{t}

(e) Disallowed by CC

k1 7→ v0
t0

∅
v1

t1
cl

∅
v2

t1
cl ′

{t}
k2 7→ v0

t0

{t}
v3

t1
cl

∅

(f) Allowed by CC and UA but disallowed by PSI

k1 7→ v0
t0{
t2
cl2

} v1
t ′{
t1
cl1

} k2 7→ v0
t0{
t2
cl1

} v1
t{
t1
cl2

}
(g) Long fork, disallowed by CP

k1 7→ v0
t0

{t4}
v1

t1

∅
v2

t2

∅
k2 7→ v0

t0

{t2}
v3

t3

{t4}
v4

t4

∅

(h) Allowed by UA and CP but disallowed by SI

k1 7→ v0
t0

{t2}
v1

t1

∅
k2 7→ v0

t0

{t1}
v2

t2

∅

(i) Write skew, disallowed by SER

Fig. 3. Behaviours disallowed under different consistency models. Sub-figure 3a shows the dependencies of

transactions in kv-stores, where values of versions have been removed for simplicity.

The MR and RYW models together with monotonic writes (MW) and write follows reads (WFR)
models are collectively known as session guarantees. Due to space constraints, we omit the defini-
tions associated with MW and WFR, and refer the reader to §A.

4.1.3 Causal Consistency (CC). Causal consistency subsumes the four session guarantees dis-
cussed above. As such, the vshi�CC predicate is defined as the conjunction of their associated
vshi� predicates. However, as shown in Fig. 3, it is sufficient to define vshi�CC as the conjunc-
tion of the MR and RYW session guarantees alone, where for brevity we write vshi�MR∩RYW for
vshi�MR ∧ vshi�RYW. This is because as we demonstrate in §A, the vshi�MW and vshi�WFR are
defined simply as true, allowing us to remove them from vshi�CC.
Additionally, CC strengthens the session guarantees by requiring that if a client sees a version

ν prior to committing a transaction, then it must also see the versions on which ν depends. If
t is the writer of ν , then ν clearly depends on all versions that t reads. Moreover, if ν is, or it
depends on, a version ν ′ accessed by a client cl , then it also depends on all versions that were
previously read or written by cl . This is captured by the can-commitCC predicate in Fig. 3, defined

as closed(K,u,RCC) with RCC , SO ∪ WRK . For example, the kv-store of Fig. 3e is disallowed
by CC: the version of key k3 carrying value v3 depends on the version of key k1 carrying value v1.
However, transaction t must have been committed by a client whose view included v3, but not v1.

4.1.4 Update Atomic (UA). This consistency model has been proposed by Cerone et al. [2015a]
and implemented by Liu et al. [2018]. UA disallows concurrent transactions writing to the same
key, a property known as write-conflict freedom: when two transactions write to the same key, one
must see the version written by the other. Write-conflict freedom is enforced by can-commitUA
which allows a client to write to key k only if its view includes all versions of k; i.e. its view
is closed with respect to the WW−1(k) relation for all keys k written in the fingerprint F . This
prevents the kv-store of Fig. 3d, as t and t ′ concurrently increment the initial version of k by 1.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

As client views must include the initial versions, once t commits a new version ν with value v1 to
k , then t ′ must include ν in its view as there is a WW edge from the initial version to ν . As such,
when t ′ subsequently increments k , it must read from ν , and not the initial version as depicted in
Fig. 3d.

4.1.5 Parallel Snapshot Isolation (PSI). This consistency model is defined as the conjunction of
the guarantees provided by CC and UA [Cerone et al. 2015a]. As such, the vshi�PSI predicate is
defined as the conjunction of the vshi� predicates for CC and UA. However, we cannot simply
define can-commitPSI as the conjunction of the can-commit predicates for CC and UA. This is for
two reasons. First, their conjunction would only mandate that u be closed with respect to RCC

and RUA individually, but not with respect to their union (recall that closure is defined in terms of
the transitive closure of a given relation and thus the closure of RCC and RUA is smaller than the
closure of RCC∪RUA). As such, we define can-commitPSI as closure with respect to RPSI which must
include RCC ∪ RUA. Second, recall that can-commitUA requires that a transaction writing to a key
k must be able to see all previous versions of k , i.e. all versions of k . That is, when write-conflict
freedom is enforced, a version ν of k depends on all previous versions of k . This observation leads
us to include write-write dependencies (WWK) in RPSI. Observe that the kv-store in Fig. 3f shows
an example kv-store that satisfies can-commitCC ∧ can-commitUA, but not can-commitPSI.

4.1.6 Consistent Prefix (CP). If the total order in which transactions commit is known, CP can be
described as a strengthening of CC: if a client sees the versions written by a transaction t , then it
must also see all versions written by transactions that commit before t . Although kv-stores only
provide partial information about the transaction commit order via the dependency relations, this
is sufficient to formalise Consistent Prefix [Cerone et al. 2017].
In practice, we approximate the order in which transactions commit in an ET-trace that termi-

nates in a configuration (K, _) via theWRK ,WWK ,RWK and SO relations. This approximation is
best understood in terms of an idealised implementation of CP on a centralised system, where the
snapshot of a transaction is determined at its start point and its effects are made visible to future
transactions at its commit point. With respect to this implementation, if (t , t ′) ∈ WR, then t must
commit before t ′ starts, and hence before t ′ commits. Similarly, if (t , t ′) ∈ SO, then t commits be-
fore t ′ starts, and thus before t ′ commits. Recall that (t ′′, t ′) ∈ RW denotes that t ′′ reads a version
that is later overwritten by t ′. That is, t ′′ cannot see the write of t ′, and thus t ′′ must starts before
t ′ commits. As such, if t commits before t ′′ starts ((t , t ′′) ∈ WR or (t , t ′′) ∈ SO), and (t ′′, t ′) ∈ RW,
then t must commit before t ′ commits. In other words, if (t , t ′) ∈ WR;RW or (t , t ′) ∈ SO;RW, then
t commits before t ′. Finally, if (t , t ′) ∈ WW, then t must commit before t ′. We therefore define

RCP , (WRK ;RW
?
K
∪ SO;RW?

K
∪WW), approximating the order in which transactions commit.

Cerone et al. [2017] show that the set (R−1
CP
)+(t) contains all transactions that must be observed by

t under CP. We define can-commitCP by requiring that the client view be closed with respect to
RCP.

Consistent prefix disallows the long fork anomaly shown in Fig. 3g, where clients cl1 and cl2
observe the updates to k1 and k2 in different orders. Assuming without loss of generality that t2

cl 1

commits before t2
cl 2

, then prior to committing its transaction cl2 sees the version of k1 with value

v0. However, since t
WRK
−−−−→ t1

cl 1

SO
−−→ t2

cl 1

RW
−−→ t ′

WR
−−→ t1

cl2

SO
−−→ t2

cl 2
, then cl2 should also see the

version of k1 with value v2, leading to a contradiction.

4.1.7 Snapshot Isolation (SI). When the total order in which transactions commit is known, SI
can be defined compositionally from CP and UA. As such, vshi�SI is defined as the conjunction
of their associated vshi� predicates. However, as with PSI, we cannot define can-commitSI as the

Data Consistency in Transactional Storage Systems: A Centralised Approach

conjunction of their associated can-commit predicates. Rather, we define can-commitSI as closure
with respect to RSI, which includes RCP ∪ RUA . Observe that the kv-store in Fig. 3h shows an
example kv-store that satisfies can-commitUA∧can-commitCP, but not can-commitSI. Additionally,
we include WW;RW in RSI. This is because when the centralised CP implementation (discussed
above) is strengthened with write-conflict freedom, then a write-write dependency between two
transactions t and t ′ does not only mandate that t commits before t ′ commits but also before t ′

starts. Consequently, if (t , t ′) ∈ WW;RW, then t must commit before t ′ commit.

4.1.8 (Strict) serialisability (SER). Serialisability is the strongest consistency model in the litera-
ture, requiring that transactions execute in a total sequential order. The can-commitSER thus allows
clients to commit transactions only when their view of the kv-store is complete, i.e. the client view
is closed with respect toWW−1. This requirement prevents the kv-store in Fig. 3i: without loss of
generality, suppose that t1 commits before t2. Then the client committing t2 must see the version
of k1 written by t1, and thus cannot read the outdated value v0 for k1. This example is allowed by
all other execution tests in Fig. 3.

4.1.9 Weak Snapshot Isolation (WSI): A New Consistency Model. Kv-stores and execution tests are
useful for investigating new consistency models. One example is the consistency model induced
by combining CP and UA, which we refer to as Weak Snapshot Isolation (WSI). To justify this
consistency model in full, it would be useful to explore its implementations. Here we focus on the
benefits of implementing WSI. Because WSI is stronger than CP and UA by definition, it forbids
all the anomalies forbidden by these consistency models, e.g. the long fork (Fig. 3g) and the lost
update (Fig. 3d). Moreover,WSI is strictly weaker than SI. As such,WSI allows all SI anomalies, e.g.
the write skew (Fig. 3i), and allows behaviour not allowed under SI such as that in Fig. 3h. We can
construct a (ETCP ∩ ETUA)-trace terminating in (K, _) by executing transactions t1, t2, t3 and t4 in
this order. In particular, t4 is executed using u=[k1 7→ {0},k2 7→ {0, 1}]. However, the same trace
is not a valid ETSI-trace. Under SI transaction t4 cannot be executed using u: t4 reads the version
of k2 written by t3, meaning that u must include the version written by t3. Since (t2, t3) ∈ RW and
(t1, t2) ∈ WW, then u should contain the version of k1 written by t1, contradicting the fact that t4
reads the initial version of k1.
As WSI is a weaker consistency model than SI, we believe that WSI implementations would

outperform known SI implementations. Nevertheless, the two consistency models are very similar
in that many applications that are correct under SI are also correct underWSI. We give an example
of such an application in §6.

5 CONSISTENCY MODELS: DEPENDENCY GRAPHS AND ABSTRACT EXECUTIONS

We demonstrate that our consistency models for kv-stores are equivalent to the declarative consis-
tency models for dependency graphs [Adya 1999] and abstract executions [Burckhardt et al. 2012;
Cerone et al. 2015a]. We outline our results here, and refer the reader to §D to F for the full details.

5.1 Relating KV-Stores and Dependency Graphs

Dependency graphs [Adya 1999; Adya et al. 2000] provide perhaps the most well-known formal-
ism used for specifying transactional consistency models. A dependency graph G is a directed,
labelled graph whose nodes denote transactions, and whose edges denote dependencies between
transactions. More specifically, nodes are labelled with a transaction identifier and the fingerprint
associated with the transaction. Edges are labelled with a dependency relation SO,WR,WW,RW,
in the same spirit of dependencies of transactions in kv-stores in §4. An example of dependency
graph is given in Fig. 4a. We give the formal definition of dependency graphs in §B.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

(w,k1,v0)
(
w,k2,v

′
0

)
t0

(
r,k2,v

′
0

)
(w,k1,v1)

t1

(r,k1,v0)
(
w,k2,v

′
1

)
t2

WR

WR

RWRW

(a) Dependency graph

(w,k1,v0)
(
w,k2,v

′
0

)
t0

(
r,k2,v

′
0

)
(w,k1,v1)

t1

(r,k1,v0)
(
w,k2,v

′
1

)
t2

VIS,AR

VIS,AR

AR

(b) Abstract execution

Fig. 4. The dependency graph (a) and abstract execution graph (b) associated with the kv-store in Fig. 3i

We can always extract a dependency graph from a kv-store, and vice-versa. For example, Fig. 4a
corresponds to the dependency graph extracted from the kv-store in Fig. 3i.

Theorem 5.1. Dependency graphs are isomorphic to kv-stores.

Consistency models using dependency graphs can be specified by constraining the shape of the
graphs, typically by requiring the absence of certain cycles. For example, strict serialisability is
defined as the set of dependency graphs with no cycles. We can immediately use such constraints
to define execution tests on kv-stores, and hence consistency models for kv-stores. However, to
show that our consistency models over kv-stores given in Fig. 3 are equivalent to existing consis-
tency model definitions using dependency graphs, we first prove that our models are equivalent to
existing definitions using abstract executions, and then appeal to the results of Cerone et al. [2017]
showing the equivalence between definitions using dependency graphs and those using abstract
executions.

5.2 Relating KV-Stores and Abstract Executions

We compare our consistency model specifications using execution tests over kv-stores with an al-
ternative, axiomatic specification style based on abstract executions [Cerone et al. 2015a], defined
shortly. Our main contribution here is the development of a general proof technique for proving
the equivalence of our execution-test-based specifications and abstract-execution-based specifica-
tions. Our proof technique keeps the proof obligations (conditions that must be satisfied by its
user) to a minimum. In particular, the user only needs to show that the constraints on client views
in execution tests relate to analogous constraints on visibility edges in abstract executions. We
then provide a mapping between the ET-traces toK , to a set of abstract executions that satisfy the
axiomatic specification corresponding to ET. Here we use our proof technique to prove that the
execution tests for serialisability (SER) are equivalent to their axiomatic specifications. In §F we
apply our proof technique to show that all the execution tests from Fig. 3 are equivalent to their
respective axiomatic specifications.

5.2.1 Abstract Executions. Abstract executions are labelled graphs whose nodes comprise trans-
action identifiers and their fingerprints. These nodes may be connected either by a visibility edge,

t
VIS
−−→ t ′, when t ′ sees the updates of t ; or an arbitration edge, t

AR
−−→ t ′, when t ′ updates overwrite

t updates. Fig. 4b depicts an example abstract execution.

Definition 5.2 (Abstract executions). An abstract execution is a triple X = (T ,VIS,AR), where
T : TransID⇀ P (Ops) is a partial function mapping transaction identifiers to fingerprints, with
T (t0) = {(w,k,v0) | k ∈ Key}, VIS ⊆ dom(T) × dom(T) is an irreflexive relation such that, for

any t ∈ dom(T), t0
VIS
−−→ t for the initial transaction t0, and AR ⊆ dom(T) × dom(T) is a strict,

total order such that VIS ⊆ AR, minAR(dom(T)) = t0 and t
n
cl

AR
−−→ tm

cl
only if n < m.

Data Consistency in Transactional Storage Systems: A Centralised Approach

Given an abstract execution X = (T ,VIS,AR), we let TX = T , VISX = VIS and ARX = AR.
We write (l ,k,v) ∈X t as a shorthand for (l ,k,v) ∈ TX(t). For t ∈ TX , we define its visible writes
in X as visibleWritesX(k, t),VIS−1

X
(t) ∩ {t ′ | (w,k, _) ∈X t ′}. An abstract execution X satisfies the

last-writer-wins policy: if a transaction t reads key k , it must read from the latest transaction in
the arbitration order that is visible to t and wrote to key k , i.e. ∀t ∈ TX . (r,k,v) ∈X t ⇒ (w,k,v) ∈

maxARX
(visibleWritesX(k, t)). then ∀k,v . (r,k,v) ∈X t ⇒ (w,k,v) ∈ maxARX (visibleWritesX(k, t)).

Henceforth we assume that abstract executions satisfy the last-writer-wins policy, and we let
AbsExecs be the set of all such abstract executions.

Abstract-execution-based specifications of consistency models constrain the overall structure of
abstract executions. Formost consistencymodels [Cerone et al. 2015a, 2017; Nagar and Jagannathan
2018], such constraints are over the set of transactions that must be seen by other transactions.
For example, monotonic reads is specified by requiring that if a transaction t follows another trans-
action t ′ in the session order, then t must see all transactions that are seen by t ′. Serialisability can
be specified by requiring that a transaction t see all transactions preceding t in the arbitration
order.
Formally, an axiomatic specificationA is a set of axiomsA : AbsExecs → P (TransID × TransID),

where ∀X. A(X) ⊆ ARX . We writeX |= AwhenA(X) ⊆ VISX . We refer the reader to §C for details
about abstract executions.
Returning to the monotonic reads (MR) example, we define AMR , {AMR}, where AMR(X) ,

VISX ; SOVIS. By definition, for a given X, X |= AMR if and only if VISX ; SOX ⊆ VISX . That is,

whenever t ′′
VISX
−−−→ t ′

SOX
−−−→ t , then t ′′

VISX
−−−→ t . Similarly, for serialisability (SER) we define ASER ,

{ASER}, where ASER(X),ARX , captures the constraint that a transaction t must see all transactions
preceding it in the arbitration order.
Any abstract executionsX can bemapped into an equivalent dependency graphGX (Cerone et al.

[2017]), and hence into a kv-store KX (Theorem 5.1). We can then use this construction to define
the consistency model induced by an abstract-execution-based specification CM(A) by projecting

abstract executions that satisfy the axioms in A to kv-stores: CM(A), {KX | ∀A ∈ A.X |= A}.
In the remainder of this section we develop a proof techniques for showing that an execution

test ET and an axiomatic specificationA induce the same consistency model, i.e.CM(ET)=CM(A).
Due to space constraints, we focus only on soundness, i.e. on proving the left-to-right inclusion:
CM(ET) ⊆ CM(A); we describe the other direction in full in §E. The core of our proof technique
lies in the soundness of the most permissive execution test, CM(ET⊤), with respect to the weakest
axiomatic specification, given by the empty set of axioms, which we prove next.

5.2.2 Equivalence of Read Atomic and CM(ET⊤). The weakest axiomatic specification, given by
the empty set of axioms, corresponds to the Read Atomic consistency model [Bailis et al. 2014]. To
prove that the most permissive execution test ET⊤ is sound with respect to the weakest axiomatic
specification, we map ET⊤-traces terminating in a configuration of the form (K, _), into the set of
abstract executions whose underlying kv-store is K .

Theorem 5.3. Given an ET⊤-trace τ terminating in (K, _), there exists a non-empty set of abstract

executions execs(τ) such that: ∀X ∈ execs(τ). KX = K , and the order in which transactions are

executed in τ is consistent with ARX .

The proof of Theorem 5.3 is highly non-trivial, and relies on the following intuition that drives the
construction of the set execs(τ): whenever a client cl in τ with view u commits a transaction t , then
in all abstract executions included in execs(τ), transaction t must see the writers of the versions
included in u, and it never sees the writers of versions not included in u (Fig. 5). These are defined
by the set visTx(K,u) (defined in §4.1). Furthermore, abstract executions in execs(τ) differ only in

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

k1 7→K = 0
t0

∅
1

t1

{t2}
k1 7→ 0

t0

∅
1

t1

{t2, t3}
= K ′

(a) Commit t3 in kv-store

(w,k1, 0)X =

t0

(w,k1, 1)

t1

(r,k1, 1)

t2
VIS

VIS

VIS
(w,k1, 0)

t0

(w,k1, 1)

t1

(r,k1, 1)

t2

(r,k1, 1) = {X1,X2}

t3
VIS

VIS
VIS

VIS

VIS VIS

(b) Commi�ing t3 in abstract executions. For simplicity, arbitration edges have been omi�ed

Fig. 5. Correspondence between commi�ing t3 in kv-stores and abstract executions. The figure to the right

denotes a set of abstract executions, which differ in the presence of the dashed visibility edge.

the set of read-only transactions (i.e. those with no write operations) that transactions see. While
mapping an ET⊤-trace into multiple abstract executions is not strictly necessary for proving the
soundness of ET⊤ with respect to the weakest axiomatic specification, it plays a significant role
when proving the soundness of an arbitrary execution test ET with respect to its counterpart in
axiomatic specifications.
The definition of execs(τ) is by induction on the length of the ET⊤-trace τ . For the base case

with τ0 consisting of a single configuration (K0, _), we define execs(τ0) to contain a single ab-
stract execution with a single transaction t0 that initialises all the keys to the initial value v0:

execs(τ0) , {([t0 7→ {(w,k,v0 | k ∈ Key)}], ∅, ∅}. For the inductive case with τ=τ ′
(cl,α)

−−−−−_ET

(K ′
,U ′), let (K,U) be the last configuration appearing in τ ′. If α=ε , then execs(τ) , execs(τ ′).

If α=F for some F , we first determine the transaction identifier t ′ that was used to commit F
in K ′, the view u ′

= U ′(cl) of the client cl when committing t ′, the set of transactions that
cl must see when committing t ′, given by visTx(K ′

,u ′), and the set of read-only transactions
Trd in K ′: the latter are those transactions that never appear as writers. Then, for all abstract
execution X′ ∈ execs(τ ′), we define extend(X′

, t ′, visTx(K ′
,u ′),F) as the largest set such that,

whenever X ∈ extend(X′
, t ′, visTx(K ′

,u ′),F), then (1) TX = TX′[t ′ 7→ F]; (2) for all t ′ ∈ TX ,

t ′
ARX′

−−−−→ t ; and (3) if t ′
VISX
−−−→ t , then either t ∈ visTx(K ′

,u ′), or t ∈ Trd. Finally, we define

execs(τ) ,
⋃

X∈execs(τ ′) extend(X, t , visTx(K
′
,u ′),Trd,F). In §D.2 and D.3 we give the full details.

To understand the construction outlined above, we illustrate one use of the function extend. The
abstract execution X to the left of Fig. 5b has underlying kv-store K , depicted to the left of
Fig. 5a. If a client commits a transaction t3 that reads the last version of k1, then the resulting
kv-store K ′ would be the one to the right of Fig. 5a. This commit is simulated by the function
extend(X′

, t3, visTx(K,u),F), where u,F are the view and fingerprint used to update K to K ′:
the result of this function consists of two abstract executions X1,X2, that only differ in read-only
transactions (the right of Fig. 5a). The visibility edges ofX1 are exactly the concrete edges in Fig. 5b;

however, X2 has the extra dashed visibility edge t2
VIS
−−→ t3. Note that KX2

= KX3
= K ′.

Theorem 5.4. Given an abstract execution X, there exists a non-empty set of ET⊤-traces {τi }i ∈I
such that, for each i ∈ I , the last configuration of τi is (KX, _), and τi executes transactions in the

order established by ARX .

The proof of Theorem 5.4 is given in §D.2 and D.3. Theorems 5.3 and 5.4 together establish the
equivalence of ET⊤ with the weakest axiomatic specification.

5.2.3 Equivalence of axiomatic specifications and execution tests. We are now ready to present our
proof technique for proving the soundness of an execution test ET with respect to an axiomatic
specification A. It can be summarised as follows: the user considers an arbitrary X : X |= A

Data Consistency in Transactional Storage Systems: A Centralised Approach

, and a tuple of the form ET ⊢ (KX,u) ⊲ F : (K ′
,u ′). Then, it constructs a non-empty subset

of extend(X, t , visTx(K,u),F) whose elements satisfy the axioms A. Note that, because abstract

executions in extend(X, t , visTx(K,u),F) differ only in visibility edges of the form trd
VIS
−−→ t , where

trd is a read-only transaction, then constructing the set above amounts to identifying a suitable set
of read-only transactions in X.
To seewhy our proof technique guarantees the soundness of ETwith respect toA (Theorem5.6),

we apply an inductive argument over the number of ET-reductions n in a ET-trace τ : first, if n = 0
then τ = (K0,U0), and X0 ∈ execs(τ) trivially satisfies the axioms A: ∀A ∈ A.A(X0) ⊆ ARX0

=

∅ ⊆ VISX0
. Otherwise, if τ = τ ′

(cl,F)
−−−−→ (K,u), suppose that there exists an abstract execution

X′ ∈ execs(τ ′) that satisfies the axioms A. If the proof obligations of our proof technique are
satisfied, we can construct an abstract execution X ∈ extend(X, t , visTx(K,u),F) ⊆ X(τ) that
satisfies A; furthermore KX = K .
In practice, our proof techniques allows defining a per-client invariant on the visibility relation

of abstract executions, which must be proved to be preserved by ET-reductions (Def. 5.5). This
invariant carries client-specific information that links to vshi� (defined in §4) in execution tests.
Defining the right invariant is crucial for proving the soundness of several execution-test-based
specifications (see §F).

Definition 5.5. An execution test ET is sound with respect to an axiomatic specificationA if and
only if there exists an invariant condition I such that, for any cl , t ,u,u ′

,K,u ′
,F ,X, if:

• ET ⊢ (K,u) ⊲ F : (K ′
,u ′), where K ′

= update(K,u,F , t)

• KX = K and I (X, cl) ⊆ visTx(K,u),

then there exists a non-empty subset of X ⊆ extend(X, t , visTx(K,u),F) such that, for any
X′inX , X |= A and I (X′

, cl) ⊆ visTx(K ′
,u ′).

Theorem 5.6. If ET is sound with respect to (A), then CM(ET) ⊆ CM(A).

We conclude this section by outlining how our proof technique can be applied to show that the
execution test ETSER defined for serialisability is sound with respect to the axiomatic specification
ASER. Let X be an abstract execution such that X |= ASER, and suppose that the underlying kv-
store KX is in CM(ETSER). An example is the abstract execution X and kv-store K to the left of
Fig. 5. We pick an invariant ISER that is always empty since vshi�SER is always true. When a client
cl commits a transaction t with fingerprint F in KX under ETSER, then its view u must contain all
the versions stored in KX (can-commitSER(KX,u,F)). This means that all the abstract executions

X′′ in extend(X, t , visTx(KX ,u),F) are such that there is a visibility edge t ′
VISX′′

−−−−→ t where t ′

is a writer transaction in KX . It is easy to see there exists an singleton set {X′} that is a subset

of extend(X, t , visTx(K,u),F) and X′ |= ASER; in particular, there is an edge t ′
VISX′

−−−−→ t for any
transaction t ′ ∈ TX′ . For example, in Fig. 5, the possible abstract executions are X1,X2. We pick
{X2}, because the new transaction t3 in X2 sees all previous transactions including the visibility

edge t2
VIS
−−→ t3. Last, the invariant ISER(X

′
, cl) ⊆ visTx(K ′

,u) given ISER(X
′
, cl) = ∅.

6 APPLICATIONS

To demonstrate the applications of our operational semantics, in § 6.1 we use our formalism to
prove the robustness of several transactional libraries. In §6.2 we then use our formalism to verify
several distributed protocols.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

k1 7→ 0
t0

{t1} ∪ T0
1

t1

{t2} ∪ T1
· · · n − 1

tn−1

{tn} ∪ Tn−1
n

tn

Tn

Fig. 6. The canonical structure of a kv-store in CM(ETPSI,Counter), where each ti is the result of a inc(k)

operation, and each transaction in Ti is the result of a read(k) operation.

6.1 Application: Robustness of Transactional Libraries

A transactional library, L= {[T]i }i ∈I , provides a set of transactional operations which can be used
by its clients to access the underlying kv-store5. For instance, the set of operations of the counter

library on key k in § 2 is: Counter(k) , {inc(k), read(k)}. A program P is a client program of L
if the only transactional calls in P are to operations of L. Let CM(ET, L) denote the set of kv-
stores obtained by running L clients under ET. A library L is robust against an execution test
ET if for all clients of L, the kv-stores obtained under ET can also be obtained under SER; i.e.
CM(ET, L) ⊆ CM(ETSER).

Theorem 6.1. For all kv-storesK ,K ∈ CM(ETSER) iff (SO∪WRK∪WWK∪RWK)
+ is irreflexive.

This theorem is an adaptation of a well-known result on dependency graphs [Adya 1999] stat-
ing that K ∈ CM(ETSER) if and only if its associated dependency graph is acyclic. Using this
theorem, we prove the robustness of a single counter against PSI. As discussed in §2, the multi-
counter library is not robust against PSI. We thus prove the robustness of the multi-counter library
and the banking library of Alomari et al. [2008] against WSI instead. While previous work on
checking robustness [Bernardi and Gotsman 2016; Cerone and Gotsman 2016; Cerone et al. 2017;
Nagar and Jagannathan 2018] uses static-analysis techniques that cannot be extended to support
client sessions, we give the first robustness proofs that take client sessions into account.

6.1.1 Robustness of a Single Counter against PSI. In the single-counter library Counter(k), a client
reads from k by calling read(k), and writes to k by calling inc(k)which first reads the value of k and
subsequently increments it by one. Pick an arbitrary keyk and a kv-storeK ∈ CM(ETPSI,Counter(k)).
As PSI enforces write conflict freedom (UA), we know that if a transaction t updates k (by calling
inc(k)) and writes version ν to k , then it must have read the version of k immediately preceding ν :
∀t , i > 0. t=w(K(k, i)) ⇒ t ∈ rs(K(k, i−1)). Moreover, as PSI enforces monotonic reads (MR), the
order in which clients observe the versions of k (by calling read(k)) is consistent with the order
of versions in K(k). As such, the kv-stores in CM(ETPSI,Counter(k)) have the canonical structure
depicted in Fig. 6 and defined below, where :: denotes list concatenation, and {ti }

n
i=1 and

⋃n
i=0 Ti

denote disjoint sets of transactions calling inc(k) and read(k), respectively:

K(k) = (0, t0,T0 ∪
{
t1
}
)::(1, t1,T1 ∪

{
t2
}
):: · · · ::(n − 1, tn−1,Tn−1 ∪

{
tn
}
)::(n, tn,Tn)

We define thed relation depicted in Fig. 6 by extending SO∪{(ti , tj) | tj ∈ Ti∨(ti ∈ Ti∧j=i+1)}
to a strict total order (i.e. isd irreflexive and transitive). Note thatd contains SO∪WRK∪WWK∪

RWK and thus (SO ∪WRK ∪WWK ∪ RWK)
+ is irreflexive; i.e. Counter(k) is robust against PSI.

Recall from § 2 that unlike in SER and SI, under PSI clients can observe the increments on
different keys in different orders (see Fig. 3g). As such, multiple counters are not robust against
PSI.

6.1.2 Robustness Conditions againstWSI. Several libraries in the literature that are robust against
SI [Alomari et al. 2008; Bernardi and Gotsman 2016] are also robust against WSI. The operations

5For simplicity, wemodel each operation as a single transaction; it is straightforward to extend this tomultiple transactions.

Data Consistency in Transactional Storage Systems: A Centralised Approach

of these libraries all yield kv-stores that adhere to a particular pattern captured by the following
definition.

Definition 6.2 (WSI-safe). A kv-store K is WSI-safe if it is reachable by executing a program P

from an initial configuration Γ0 under WSI (i.e. Γ0, P −→ETWSI
(K, _), _), and for all t ,k, i :

t ∈ rs(K(k, i)) ∧ t , w(K(k, i)) ⇒ ∀k ′, j . t , w(K(k ′, j)) (6.1)

t , t0 ∧ t = w(K(k, i)) ⇒ ∃j . t ∈ rs(K(k, j)) (6.2)

t , t0 ∧ t = w(K(k, i)) ∧ ∃k ′, j . t ∈ rs(K(k ′, j)) ⇒ t = w(K(k ′, j)) (6.3)

This definition states that a kv-storeK isWSI-safe if for each transaction t : (1) if t reads from k

without writing to it then t must be a read-only transaction (6.1); (2) if t writes to k , then it must
also read from it (6.2), a property known as strictly-no-blind writes; and (3) if t writes to k , then it
must also write to all keys it reads (6.3). It is straightforward to see that the version j read by t in
(6.2) must be written immediately before the version i written by t , i.e. i=j + 1.

Theorem 6.3 (WSI robustness). If a kv-store K isWSI-safe, then it is robust against WSI.

From Theorem 6.1 it suffices to prove that (SO∪WRK ∪WWK ∪RWK)
+ is irreflexive. We proceed

by contradiction and assume that there exists t1 such that t1
(SO∪WRK∪WWK∪RWK)+

−−−−−−−−−−−−−−−−−−−−→ t1. Since K is
reachable under WSI and thus also reachable under CC, this cycle is of the form:

t1
R∗

−−→ t2
RW
−−→ t3

R∗

−−→ · · ·
R∗

−−→ tn−2
RW
−−→ tn−1

R∗

−−→ tn = t1

where R ,WR ∪ SO ∪WW. From Eqs. (6.2) and (6.3) we know that an RW edge from a writing
transaction can be replaced by a WW edge. Moreover, WW edges can be replaced by WR∗ edges
since K is reachable under UA. We thus have:

t1
R′∗

−−→ t ′2
RW
−−→ t ′3

R′+

−−→ · · ·
R′+

−−→ t ′m−2

RW
−−→ t ′m−1

R′∗

−−→ t ′m = tn = t1

where R′ , WR ∪ SO. That is, t1
((WR∪SO);RW?)∗

−−−−−−−−−−−−−→ tn . This however leads to a contradiction as
(WR ∪ SO);RW? ⊆ RCP and WSI requires views to be closed under RCP (see Fig. 3).

6.1.3 Robustness of Multiple Counters against WSI. A multi-counter library on a set of keys K is:

Counters(K) ,
⋃

k∈K Counter(k). We next show that a multi-counter library is WSI-safe, and is
therefore robust against WSI and all stronger models such as SI.

Theorem 6.4. A multi-counter library Counters(K) is robust against WSI.

It is sufficient to show that a kv-store obtained by executing arbitrary transactional calls from
the library are WSI-safe. We proceed by induction on the length of traces. Let Γ0 = (K0,U0)

be an initial configuration and P0 be a program such that dom(P0) ⊆ dom(U0). The initial kv-
store trivially satisfies (6.1), (6.2) and (6.3) above. Let Ki be the resulting kv-store after i steps of
execution under WSI. The next transaction ti+1 may then be a call to either inc(k) or read(k). If
ti+1 is a read(k) call, then the resulting kv-store is:

Ki+1 = Ki [k 7→ Ki (k)[j 7→ (v, t ,T ⊎ {ti+1})]]

for some j and Ki (k, j)=(v, t ,T). Since ti+1 is a read-only transaction, then (6.1), (6.2) and (6.3)
immediately hold. On the other hand, if ti+1 is an inc(k) call, then the resulting kv-store is:

Ki+1 = Ki [k 7→ (Ki (k)[j 7→ (v, t ,T ⊎ {ti+1})])::(v + 1, ti+1, ∅)]

where j=|Ki (k)| andKi (k, j)=(v, t ,T). As ti+1 reads the latest version of k andwrites a new version
to k, the new kv-store Ki+1 satisfies (6.1), (6.2) and (6.3).

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

6.1.4 Robustness of a Banking Library againstWSI. Alomari et al. [2008] present a banking library
which is robust against SI. Here, we show that this library is also robust against WSI. The bank-
ing example is based on relational databases and has three tables: account, saving and checking.
The account table maps customer names to customer IDs (Account(Name, CID)); the saving table
maps customer IDs to their saving balances (Saving(CID, Balance)); and the checking table maps
customer IDs to their checking balances (Checking(CID, Balance)).
For simplicity, we encode the saving and checking tables as a kv-store, and forgo the account

table as it is an immutable lookup table. We model a customer ID as an integer n ∈ N, and assume
that balances are integer values.We then define the key associated with customern in the checking

table as nc , 2n; and define the key associated with n in the saving table as ns , 2n+1. That is,

Key,
⋃

n∈N {nc ,ns }. Moreover, if n identifies a customer, i.e. (_,n) ∈ Account(Name, CID), then:

(n, val(K(ns , |K(ns)|))) ∈ Saving(CID, Balance) (n, val(K(ns , |K(nc)|))) ∈ Checking(CID, Balance)

The banking library provides five transactional operations for accessing the database:

balance(n) , [x := [nc]; y := [ns]; ret := x + y]

depositChecking(n, v), [if (v ≥ 0){ x := [nc]; [nc] := x + v; }]

transactSaving(n, v), [x := [ns]; if (v + x ≥ 0){ [ns] := x + v; }]

amalgamate(n, n′),
[
x := [ns]; y := [nc]; z := [n

′
c]; [ns] := 0; [nc] := 0; [n

′
c] := x + y + z;

]
writeCheck(n, v),

[
x := [ns]; y := [nc];

if (x + y < v){ [nc] := y − v − 1; }else{ [nc] := y − v; } [ns] := x;

]

The balance(n)operation returns the total balance of customer n in ret. The depositChecking(n, v)
operation deposits v to the checking account of customer nwhen v is non-negative; otherwise the
checking account remains unchanged. When v ≥ 0, transactSaving(n, v) deposits v to the sav-
ing account of n. When v < 0, transactSaving(n, v)withdraws v from the saving account of n
only if the resulting balance is non-negative; otherwise the saving account remains unchanged.
The amalgamate(n, n′) operation moves the combined checking and saving funds of consumer n
to the checking account of customer n′. Lastly, writeCheck(n, v) cashes a cheque of customer n in
the amount v by deducting v from its checking account. If n does not hold sufficient funds (i.e. the
combined checking and saving balance is less than v), customer n is penalised by deducting one
additional pound. Alomari et al. [2008] argue that to make the banking library robust against SI,
the writeCheck(n, v) operation must be strengthened by writing back the balance to the saving
account (via [ns] := x), even though the saving balance is unchanged.
The banking library is more complex than the multi-counter library discussed in §6.1.3. Never-

theless, all banking transactions are either read-only or satisfy the strictly-no-blind-writes prop-
erty; i.e. the banking library is WSI-safe. As such, we can prove its robustness against WSI in a
similar fashion to that of the multi-counter library. More concretely, given aWSI-safe kv-store K ,
we show that the kv-store resulting from executing a banking operation on K remainsWSI-safe.

As balance(n) is read-only, it immediately satisfies (6.1), (6.2) and (6.3). When v ≥ 0, then
depositChecking(n, v) both reads and writes nc , and thus preserves (6.1), (6.2) and (6.3). When
v < 0, then depositChecking(n, v) leaves the kv-store unchanged and thus (6.1), (6.2) and (6.3)
are trivially preserved. Lastly, the transactSaving(n, v), amalgamate(n, n′) and writeCheck(n, v)
operations always read and write the keys they access, thus satisfying (6.1), (6.2) and (6.3).

6.2 Verifying Database Protocols

Kv-stores and views faithfully abstract the state of geo-replicated and partitioned databases, and
execution tests provide a powerful abstraction of the synchronisation mechanisms enforced by

Data Consistency in Transactional Storage Systems: A Centralised Approach

(k1,v0, (t0, r0), ∅) (k2,v0, (t0, r0), ∅)

r1

(k1,v0, (t0, r0), ∅) (k2,v0, (t0, r0), ∅)

r2

(a) An initial COPS state with two replicas (r1, r2); each replica contains two keys (k1,k2) with initial versions.

(k1,v0, (t0, r0), ∅) (k2,v0, (t0, r0), ∅) (k1,v1, (t1, r1), ∅)

r1

(k1,v0, (t0, r0), ∅) (k2,v0, (t0, r0), ∅)
(
k1,v

′
1, (t1, r2), ∅

)
(k2,v2, (t2, r2), {(k1, t1, r2)})

r2

(b) Client cl1 commits a new version of k1 carrying valuev1 to replica r1; other clients commit versions to r2.

The new versions in r1 and r2 have not yet been propagated to each other.

(k1,v0, (t0, r0), ∅) (k2,v0, (t0, r0), ∅) (k1,v1, (t1, r1), ∅)(
k1,v

′
1, (t1, r2), ∅

) (
k2,v

′
2, (t2, r2), {(k1, t1, r2)}

)
r1

(c) Replica r1 optimistically fetches the newest ver-

sion for k1,k2 one by one, during which it receives

synchronisation messages from r2.

(k1,v0, (t0, r0), ∅) (k2,v0, (t0, r0), ∅) (k1,v1, (t1, r1), ∅)(
k1,v

′
1, (t1, r2), ∅

) (
k2,v

′
2, (t2, r2), {(k1, t1, r2)}

)
r1

(d) Replica r1 re-fetches a causally consistent snap-

shot for k1,k2 using the dependency sets.

Fig. 7. COPS protocol

these databases when committing a transaction. This makes it possible to use our semantics to
verify the correctness of distributed database protocols. We demonstrate this by showing that the
replicated database COPS [Lloyd et al. 2011] satisfies causal consistency (this section and §H.1)
and the partitioned database Clock-SI [Du et al. 2013] satisfies snapshot isolation (§H.2);
COPS is a fully replicated database, with each replica storing multiple versions of each key as

illustrated in Figs. 7a and 7b. Each COPS version ν , e.g. (k1,v1, (t1, r1), ∅) in Fig. 7b, contains a key
(e.g. k1), a value (e.g.v1), a time-stamp denoting when a client first wrote the version to the replica
(e.g. (t1, r1)), and a set of dependencies, written deps(ν) (e.g. ∅). A time-stamp associated with a
version ν is of the form (t , r), where r identifies the replica that committed ν , and t denotes the
local, real time when r committed ν . Each dependency in deps(ν) comprises a key and the time-
stamp of the version of that key on which ν directly depends. COPS assumes a total order among
replica identifiers. Thus, time-stamps can be totally ordered lexicographically over time-stamps.
The COPS API provides two operations: one for writing to a single key; and another for atom-

ically reading from a set of keys. Each call to a COPS operation is processed by a single replica.
Each client maintains a context, which is a set of dependencies tracking the versions the client
observes.
We demonstrate how a client cl interacts with a replica through the following example:

cl : [[k1] :=v1;] ; [x := [k1]; y := [k2];] (cops-cl)

For brevity, we assume that there are two keys (k1 and k2) and two replicas (r1 and r2) as shown
in Fig. 7a, where r1 < r2. Initially, client cl connects to replica r1 and initialises its local context as
ctx=∅. To execute its first single-write transaction, client cl requests to write v1 to k1 by sending
the message (k1,v1, ctx) to its associated replica r1. It then awaits a reply from r1. Upon receiving
the message, r1 produces a monotonically increasing local time t1, and uses it to install a new ver-
sion ν=(k1,v1, (t1, r1), ctx), as shown in Fig. 7b. Note that the dependency set of ν is the cl context
(ctx=∅). Replica r1 then sends the time-stamp (t1, r1) back to client cl1, and cl1 in turn incorporates
(k1, t1, r1) in its local context; i.e. cl observes its own write. Finally, replica r1 propagates the writ-
ten version to other replicas asynchronously by sending a synchronisation message using causal

delivery as follows. In the general case, when a replica r ′ receives a version ν ′ from another replica
r , it first waits for all dependencies of ν to be committed to r ′, and then commits ν . As such, the set
of versions contained in each replica is closed with respect to causal dependencies. In the example

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

k1 7→ v0
(t0, r0)

_
v1

(t1, r1)

_
v ′
1

(t1, r2)

_
k2 7→ v0

(t0, r0)

_
v2

(t2, r2)

_

(e) A kv-store encoding of a COPS state

k1 7→ v0
(t0, r0)

_
v1

(t1, r1)

_
k2 7→ v0

(t0, r0)

_

(f) A view encoding of a COPS client context

Fig. 7. COPS encoding

above, when other replicas receive version ν from r1, they can immediately commit ν as its depen-
dency set is empty. Note that replicas may accept new versions from different clients in parallel
(see Fig. 7b).

To execute its second multi-read transaction, client cl requests to read from the k1,k2 keys by
sending the message {k1,k2} to replica r1 and awaits a reply. Upon receiving this message, replica
r1 builds a causally consistent snapshot (a mapping from {k1,k2} to values) in two rounds as fol-
lows. First, r1 optimistically fetches the most recent versions for k1 and k2, one at a time. This
process may be interleaved with other writes and synchronisation messages (propagated from
other replicas). For instance, Fig. 7c depicts a scenario where r1 (1) first fetches (k1,v1, (t1, r1), ∅)
for k1 (highlighted); (2) then receives two synchronisation messages from r2, containing versions
(k1,v

′
1, (t1, r2), ∅) and (k2,v

′
2, (t2, r2), {(k1, t1, r2)}); and (3) finally fetches (k2,v

′
2, (t2, r2), {(k1, t1, r2)})

fork2 (highlighted). As such, the versions fetched for {k1,k2} are not causally consistent: (k2,v
′
2, (t2, r2), {(k1, t1, r2)})

depends on a k1 version with time-stamp (t1, r2) which is bigger than that fetched for k1, namely
(t1, r1). To remedy this, after the first round of optimistic reads, r1 collects all dependency sets
and uses them as an lower-bound in the second round to re-fetch the most recent version (with
the biggest time-stamp) of each key from the dependency sets. For instance, in Fig. 7c replica r1
re-fetches the newer version (k1,v

′
1, (t1, r2), ∅) for k1, as depicted in Fig. 7d. The snapshot obtained

after the second round is thus causally consistent. Finally, the snapshot and the dependencies of
each version read are sent to the client, and subsequently added to the client context.
To prove that COPS satisfies causal consistency, we encode the state of the system (comprising

the state of all replicas and clients) as a configuration in our operational semantics. As each replica
stores a set of versions (for each key in COPS) and their dependencies, we can project the state of
COPS replicas into a kv-store by mapping COPS versions into our kv-store versions. The writer of
a mapped version is uniquely determined by the time-stamp of the corresponding COPS version.
The reader set of the mapped version can be recovered by annotating read-only transactions. For
example, the COPS state in Fig. 7b can be encoded as the kv-store depicted in Fig. 7e. Similarly,
as the context of a client cl identifies the set of COPS versions that cl sees, we can project COPS
client contexts to our client views over kv-stores. For example, the context of cl after committing
its first single-write transaction in (cops-cl) is encoded as the client view depicted in Fig. 7f.
We next map the execution of a COPS transaction into an ETCC reduction between the configu-

rations obtained from encoding the COPS states before and after executing the transaction. Note
that existing verification techniques [Cerone et al. 2015a; Crooks et al. 2017] require examining
the entire sequence of operations of a protocol to show that it implements a consistency model.
By contrast, we only need to look at how the system evolves after a single transaction is executed.
In particular, we check the client views (obtained from COPS client contexts) over kv-stores after
executing a single transaction as follows. Intuitively, we observe that when a COPS client cl exe-
cutes a transaction then: (1) the cl context grows, and thus we obtain a more up-to-date view of the
associated kv-store; i.e. vshi�MR holds; (2) the cl context always includes the time-stamp of the ver-
sions written by itself, and thus the corresponding client view always includes the versions cl has
written; i.e. vshi�RYW holds; and (3) the cl context always contains the dependencies correspond-
ing to versions it has either written or read from other transactions, and thus the corresponding
client view is always closed-down with respect to the relation SO ∪WRK ; i.e. closed(K,u,RCC))

Data Consistency in Transactional Storage Systems: A Centralised Approach

holds. As such, from the definition of CC in Fig. 3 we know that COPS satisfies causal consistency
(CC). We refer the reader to §H.1 for further details and the full soundness proof.

7 CONCLUSIONS AND RELATED WORK

We have introduced a simple interleaving semantics for atomic transactions, based on a global,
centralised kv-stores and partial client views. It is expressive enough to capture the anomalous
behaviour of many weak consistency models. We have demonstrated that our semantics can be
used to both verify protocols of distributed databases and analyse client programs.
We have defined a large variety of consistency models for kv-stores based on execution tests,

and have shown these models to be equivalent to well-known declarative consistency models for
dependency graphs and abstract executions. We do not know of an appropriate consistency model
that we cannot express with our semantics, bearing in mind the constraints that our transactions
satisfy snapshot property and the last-write-wins policy. We have identified a new consistency
model, called weak snapshot isolation, which lies between PSI and SI and inherits many of the
good properties of SI. We have shown that examples are robust against WSI. We would need to
provide an implementation of this model to justify it in full in the future. We have proved the cor-
rectness of two real-world protocols employed by distributed databases: COPS [Lloyd et al. 2011],
a protocol for replicated databases that satisfies causal consistency; and Clock-SI [Du et al. 2013],
a protocol for partitioned databases that satisfies snapshot isolation. We have also demonstrated
the usefulness of our framework for proving invariant properties: the robustness of simple trans-
actional libraries against different consistency models.
In future, we aim to extend our framework to handle other weak consistency models. For ex-

ample, we believe that, by introducing promises in the style of [Kang et al. 2017], we can cap-
ture consistency models such as Read Committed. We also plan to validate further the useful-
ness of our framework by: verifying other well-known protocols of distributed databases, e.g.
Eiger [Lloyd et al. 2013], Wren [Spirovska et al. 2018] and Red-Blue [Li et al. 2012]; exploring ro-
bustness results for OLTP workloads such as TPC-C [TPCC 1992] and RUBiS [RUBIS 2008]; and
exploring other program analysis techniques such as transaction chopping [Cerone et al. 2015b;
Shasha et al. 1995], invariant checking [Gotsman et al. 2016; Zeller 2017] and program logics [Kaki et al.
2017].

Related Work. In the introduction (§ 1), we highlight three general operational semantics for
distributed transactional databases. We discuss these semantics in more detail here, and also give
some additional related work on program analysis.
Kaki et al. [2017] propose an operational semantics of SQL transactional programs under the

consistencymodels given by the standard ANSI/SQL isolation levels [Berenson et al. 1995]. In their
framework, transactions work on a local copy of the global state of the system, and the local effects
of a transaction are committed to the system state when it terminates. Because state changes are
made immediately available to all clients of a system, this model is not suitable to capture weak
consistency models such as PSI or CC. They introduce a program logic and prototype verification
tool for reasoning about client programs. However, their definitions of consistency models are not
validated against previously known formal definitions.

Nagar and Jagannathan [2018] propose an operational semantics for weak consistency based
on abstract executions. Their semantics is parametric in the declarative definition of a consistency
model. They introduce a tool for checking the robustness of transactional libraries. They focus on
consistency models with snapshot property, but confusingly allow the interleaving of fine-grained
operations between transactions. This results in an unnecessary explosion of the space of traces
generated by the program. In our semantics, the interleaving is between transactions.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Crooks et al. [2017] propose a state-based formal framework for weak consistency models that
employs concepts similar to execution tests and views, called commit tests and read states respec-
tively. They prove that consistency models previously thought to be different are in fact equiva-
lent in their semantics. They capture a wide range of consistency models including read committed
which we cannot do. In their semantics, one-step trace reduction is determined by the whole previ-
ous history of the trace. In contrast, our reduction step only depends on the current configuration
(kv-store and view). They do not consider program analysis. Their notion of commit tests and read
states requires the knowledge of information that is not known to clients of the system, i.e. the
total order of system changes that happened in the database prior to committing a transaction. For
this reason, we believe that their framework is not suitable for the development of techniques for
analysing client programs.
Doherty et al. [2019] develop an operational semantics for release-acquire fragment of C11mem-

ory model, an variant of causal consistency. Their semantics is based on an variant of dependency
graph where nodes and edges are tailored for C11 operations. They introduce per-thread observa-
tions, and they must be compatible for executing next operations; this is similar to our views and
execution tests. We believe we can also model release-acquire fragment of C11.
Several other works have focused on program analysis for transactional systems. Dias et al.

[2012] developed a separation logic for the robustness of applications against SI. Fekete et al. [2005]
derived a static analysis check for SI based on dependency graph. Bernardi and Gotsman [2016] de-
veloped a static analysis check for several consistencymodelswith snapshot property. Beillahi et al.
[2019] developed a tool based on Lipton’s reduction [Lipton 1975] for checking robustness against
SI. Cerone et al. [2017] investigated the relationship between abstract executions and dependency
graphs from an algebraic perspective, and applied it to infer robustness checks for several consis-
tency models.

REFERENCES

Atul Adya. 1999.Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions. Ph.D.

Dissertation. Massachusetts Institute of Technology, Cambridge, MA, USA.

Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized Isolation Level Definitions. In ICDE.

M. Alomari, M. Cahill, A. Fekete, and U. Rohm. 2008. The Cost of Serializability on Platforms That Use Snapshot Isolation.

In 2008 IEEE 24th International Conference on Data Engineering. 576–585. https://doi.org/10.1109/ICDE.2008.4497466

Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2014. G-DUR: A Middleware for Assembling, Analyzing, and

Improving Transactional Protocols. In Proceedings of the 15th International Middleware Conference (Middleware’14). ACM,

New York, NY, USA, 13–24. https://doi.org/10.1145/2663165.2663336

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014. Scalable Atomic Visibility with RAMP

Transactions. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 27–38.

Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2019. Checking Robustness Against Snapshot Isolation.

CoRR abs/1905.08406 (2019). arXiv:1905.08406 http://arxiv.org/abs/1905.08406

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A Critique of ANSI SQL

Isolation Levels. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (SIGMOD’95).

ACM, 1–10. https://doi.org/10.1145/223784.223785

Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against Consistency Models with Atomic Visibility. In Proceed-

ings of the 27th International Conference on Concurrency Theory. 7:1–7:15. https://doi.org/10.4230/LIPIcs.CONCUR.2016.7

Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang Lee, and Norman May. 2014. Distributed

Snapshot Isolation: Global Transactions Pay Globally, Local Transactions Pay Locally. The VLDB Journal 23, 6 (December

2014), 987–1011. https://doi.org/10.1007/s00778-014-0359-9

Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found. Trends Program. Lang. 1, 1-2 (October 2014), 1–150.

https://doi.org/10.1561/2500000011

Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Mooly Sagiv. 2012. Eventually Consistent Transactions. In

Proceedings of the 21nd European Symposium on Programming. Springer.

https://doi.org/10.1109/ICDE.2008.4497466
https://doi.org/10.1145/2663165.2663336
http://arxiv.org/abs/1905.08406
http://arxiv.org/abs/1905.08406
https://doi.org/10.1145/223784.223785
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1007/s00778-014-0359-9
https://doi.org/10.1561/2500000011

Data Consistency in Transactional Storage Systems: A Centralised Approach

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated Data Types: Specification,

Verification, Optimality. In Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages (POPL’14). ACM, 271–284.

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015a. A Framework for Transactional Consistency Models

with Atomic Visibility. In Proceedings of the 26th International Conference on Concurrency Theory (Leibniz International

Proceedings in Informatics (LIPIcs)), Luca Aceto and David de Frutos-Escrig (Eds.), Vol. 42. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 58–71. https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

Andrea Cerone and Alexey Gotsman. 2016. Analysing Snapshot Isolation. In Proceedings of the 2016 ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing (PODC’16). ACM, 55–64. https://doi.org/10.1145/2933057.2933096

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2015b. Transaction Chopping for Parallel Snapshot Isolation. In

Proceedings of the 29th International Symposium on Distributed Computing. 388–404.

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2017. Algebraic Laws for Weak Consistency. In Proceedings of the

27th International Conference on Concurrency Theory (Leibniz International Proceedings in Informatics (LIPIcs)), Roland

Meyer and UweNestmann (Eds.), Vol. 85. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 26:1–

26:18. https://doi.org/10.4230/LIPIcs.CONCUR.2017.26

Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is Believing: A Client-Centric Specification of

Database Isolation. In Proceedings of the 2017 ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing

(PODC’17). ACM, New York, NY, USA, 73–82. https://doi.org/10.1145/3087801.3087802

Ricardo J. Dias, Dino Distefano, João Costa Seco, and João M. Lourenço. 2012. Verification of Snapshot Isolation in Trans-

actional Memory Java Programs. In ECOOP 2012 – Object-Oriented Programming, James Noble (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 640–664.

Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. 2019. Verifying C11 Programs Operationally. In

Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming (PPoPP ’19). ACM, New York, NY,

USA, 355–365. https://doi.org/10.1145/3293883.3295702

Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. 2013. Clock-SI: Snapshot Isolation for Partitioned Data Stores Using

Loosely Synchronized Clocks. In Proceedings of the 32nd Leibniz International Proceedings in Informatics (LIPIcs) (SRDS’13).

IEEE Computer Society, Washington, DC, USA, 173–184. https://doi.org/10.1109/SRDS.2013.26

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha. 2005. Making Snapshot Isolation

Serializable. ACMTransactions on Database Systems 30, 2 (June 2005), 492–528. https://doi.org/10.1145/1071610.1071615

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’m Strong Enough:

Reasoning about Consistency Choices in Distributed Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 371–384.

GowthamKaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. 2017. Alone Together: Compositional Reasoning

and Inference for Weak Isolation. Proceedings of the ACM on Programming Languages 2, POPL, Article 27 (December

2017), 34 pages. https://doi.org/10.1145/3158115

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

memory Concurrency. In Proceedings of the 44th Annual ACMSIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’17). ACM, New York, NY, USA, 175–189. https://doi.org/10.1145/3009837.3009850

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-

Replicated Systems Fast as Possible, Consistent when Necessary. In Proceedings of the 10th Symposium on Operating

Systems Design and Implementation. 265–278.

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (December

1975), 717–721. https://doi.org/10.1145/361227.361234

Si Liu, Peter Csaba Ölveczky, Keshav Santhanam, Qi Wang, Indranil Gupta, and José Meseguer. 2018. ROLA: A New Dis-

tributed Transaction Protocol and Its Formal Analysis. In Fundamental Approaches to Software Engineering, Alessandra

Russo and Andy Schürr (Eds.). Springer, Cham, 77–93.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t Settle for Eventual: Scalable

Causal Consistency for Wide-area Storage with COPS. In Proceedings of the 23rd ACM Symposium on Operating Systems

Principles (SOSP’11). ACM, 401–416.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger Semantics for Low-Latency

Geo-Replicated Storage. In Presented as part of the 10th USENIX Symposium onNetworked Systems Design and Implementa-

tion. USENIX, Lombard, IL, 313–328. https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd

Kartik Nagar and Suresh Jagannathan. 2018. Automated Detection of Serializability Violations Under

Weak Consistency. In Proceedings of the 29th International Conference on Concurrency Theory. 41:1–41:18.

https://doi.org/10.4230/LIPIcs.CONCUR.2018.41

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2018. On Parallel Snapshot Isolation and Release/Acquire Consistency. In

Proceedings of the 27th European Symposium on Programming, Amal Ahmed (Ed.). Lecture Notes in Computer Science,

https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/2933057.2933096
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1109/SRDS.2013.26
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/3158115
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/361227.361234
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Cham, 940–967.

RUBIS 2008. The RUBiS benchmark. https://rubis.ow2.org/index.html.

M. Saeida Ardekani, P. Sutra, andM. Shapiro. 2013. Non-monotonic Snapshot Isolation: Scalable and Strong Consistency for

Geo-replicated Transactional Systems. In Proceedings of the 32nd Leibniz International Proceedings in Informatics (LIPIcs).

163–172.

Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. 1995. Transaction Chopping: Algo-

rithms and Performance Studies. ACM Transactions on Database Systems 20, 3 (September 1995), 325–363.

https://doi.org/10.1145/211414.211427

KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative Programming over Eventually Consis-

tent Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI ’15). ACM, New York, NY, USA, 413–424. https://doi.org/10.1145/2737924.2737981

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional Storage for Geo-replicated Systems. In

Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). ACM, New York, NY, USA, 385–400.

https://doi.org/10.1145/2043556.2043592

Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2018. Wren: Nonblocking Reads in a Partitioned Transactional

Causally Consistent Data Store. In Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable Sys-

tems and Networks (DSN’18). 1–12. https://doi.org/10.1109/DSN.2018.00014

TPCC 1992. The TPC-C benchmark. http://www.tpc.org/tpcc/.

Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (January 2009), 40–44.

Peter Zeller. 2017. Testing Properties of Weakly Consistent Programs with Repliss. In Proceedings of the 3rd International

Workshop on Principles and Practice of Consistency for Distributed Data (PaPoC’17). ACM, New York, NY, USA, Article 3,

5 pages. https://doi.org/10.1145/3064889.3064893

https://rubis.ow2.org/index.html
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1109/DSN.2018.00014
http://www.tpc.org/tpcc/
https://doi.org/10.1145/3064889.3064893

Data Consistency in Transactional Storage Systems: A Centralised Approach

A OPERATIONAL SEMANTICS ON KV-STORES

Definition A.1 (Multi-version Key-value Stores). Assume a countably infinite set of keys Key ∋ k ,
and a countably infinite set of values Val ∋ v , including an initialisation value v0. The set of

versions, Version ∋ ν , is: Version , Val × TransID × P (TransID0). A kv-store is a function K :
Key → List(Version), where List(Version) ∋ V is the set of lists of versions Version. Well-formed
key-values store satisfy:

∀k, i, j . rs(K(k, i)) ∩ rs(K(k, j)) , ∅ ∨w(K(k, i)) = w(K(k, j)) ⇒ i = j (1.1)

∀k . K(k, 0) = (v0, t0, _) (1.2)

∀k, cl , i, j,n,m. tncl = w(K(k, i)) ∧ tmcl ∈ {w(K(k, j))} ∪ rs(K(k, i)) ⇒ n < m (1.3)

The full semantics is in Fig. 8 and the full definition of consistency models is in Fig. 9.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

→ : ((Stack × Snapshot × Fp) × Trans) × ((Stack × Snapshot × Fp) × Trans)

TPrimitive

(s, ss)
Tp

(s ′, ss′) o = op
(
s, ss, Tp

)
(s, ss,F), Tp → (s ′, ss′,F <⊳ o), skip

TChoice

i ∈ {1, 2}

(s, ss,F), T1 + T2 → (s, ss,F), Ti

TIter

(s, ss,F), T∗ → (s, ss,F), skip + (T; T∗)

TSeqSkip

(s, ss,F), skip; T → (s, ss,F), T

TSeq

(s, ss,F), T1 → (s ′, ss′,F ′), T′1

(s, ss,F), T1; T2 → (s ′, ss′,F ′), T′1; T2

−→ : Client × ((KVS × Views × Stack) × Cmd) × ET × Labels × ((KVS × Views × Stack) × Cmd)

CAtomicTrans

u ⊑ u ′′ ss = snapshot(K,u ′′) (s, ss, ∅), T →∗ (s ′, _,F), skip t ∈ nextTid(cl ,K)

K ′
= update(K,u ′′

,F , t) can-commitET(K,u
′′
,F) vshi�ET(K,u

′′
,K ′
,u ′)

cl ⊢ (K,u, s), [T]
(cl,u′′

,F)
−−−−−−−→ET (K ′

,u ′
, s ′), skip

CPrimitive

s
Cp

s ′

cl ⊢ (K,u, s), Cp
(cl, ι)
−−−−→ET (K,u, s ′), skip

CChoice

i ∈ {1, 2}

cl ⊢ (K,u, s), C1 + C2
(cl, ι)
−−−−→ET (K,u, s), Ci

CIter

cl ⊢ (K,u, s), C∗
(cl, ι)
−−−−→ET (K,u, s), skip+ (C; C∗)

CSeqSkip

cl ⊢ (K,u, s), skip; C
(cl, ι)
−−−−→ET (K,u, s), C

CSeq

cl ⊢ (K,u, s), C1
(cl, ι)
−−−−→ET (K,u ′

, s ′), C1
′

cl ⊢ (K,u, s), C1; C2
(cl, ι)
−−−−→ET (K,u ′

, s ′), C1
′; C2

−→: (Conf × CEnv × Prog) × ET × Label × (Conf × CEnv × Prog)

PProg

cl ⊢ (K,U(cl), E(cl)), P(cl),
λ
−→ET (K ′

,u ′
, s ′), C′

(K,U, E), P
λ
−→ET (K ′

,U[cl 7→ u ′], E[cl 7→ s ′]), P[cl 7→ C′]

Fig. 8. Operational Semantics on Key-value Store

Data Consistency in Transactional Storage Systems: A Centralised Approach

ET can-commitET(K,u,F) Closure Relation (where applicable) vshi�ET(K,u,K
′
,u ′)

MR true u ⊑ u ′

RYW true ∀t ∈ K ′ \ K. ∀k, i .

w(K ′(k, i))
SO?

−−→ t ⇒ i ∈u ′(k)

MW closed(K,u,RMW) RMW , SO ∩WWK true

WFR closed(K,u,RWFR) RWFR ,WRK ; (SO ∪ RWK)? true

CC closed(K,u,RCC) RCC , SO ∪WRK vshi�MR∩RYW(K,u,K ′
,u ′)

UA closed(K,u,RUA) RUA ,
⋃

(w,k,_)∈FWW−1
K
(k) true

PSI closed(K,u,RPSI) RPSI , RUA ∪ RCC ∪WWK vshi�MR∩RYW(K,u,K ′
,u ′)

CP closed(K,u,RCP) RCP , SO;RW?
K
∪WRK ;RW?

K
∪WWK vshi�MR∩RYW(K,u,K ′

,u ′)

WSI closed(K,u,RWSI) RSI , RUA ∪ RCP vshi�MR∩RYW(K,u,K ′
,u ′)

SI closed(K,u,RSI) RSI , RUA ∪ RCP ∪ (WWK ;RWK) vshi�MR∩RYW(K,u,K ′
,u ′)

SER closed(K,u,RSER) RSER ,WW−1 true

SER* closed(K,u,RSER∗) RSER∗ , RUA ∪ SO ∪WWK ∪WRK ∪ RWK vshi�MR∩RYW(K,u,K ′
,u ′)

Fig. 9. Execution tests of well-known consistency models, where SER* denotes an alternative equivalent SER

specification and SO is as given in §3.1.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

B RELATIONS TO DEPENDENCY GRAPHS

Dependency graphswere introduced byAdya to define consistencymodels of transactional databases
[Adya 1999]. They are directed graphs consisting of transactions as nodes, each of which is labelled
with transaction identifier and a set of read and write operations, and labelled edges between trans-
actions for describing how information flows between nodes. Specifically, a transaction t reads a
version for a key k that has been written by another transaction t ′ (write-read dependency WR),
overwrites a version of k written by t ′ (write-write dependency WW), or reads a version of k that is
later overwritten by t ′ (read-write anti-dependency RW). Note that we have named dependencies in
kv-stores after the labelled edges of dependency graph. The main result of this Section shows that
kv-stores are in fact isomorphic to dependency graphs, and dependencies in a kv-store naturally
translates into a labelled edge in the associated dependency graph.

Definition B.1. A dependency graph is a quadruple G = (T ,WR,WW,RW), where

• T : TransID⇀ P (Ops) is a partial mapping from transaction identifiers to the set of opera-
tions, where there are at most one read operation and one write operation per key, and such
that T (t0) = {(w,k,v0 | k ∈ Key}; furthermore, t0 ∈ dom(T , and T (t0) = {(w,k,v0) | k ∈

Key},
• WR : Key → P (dom(T) × dom(T)) is a function that maps each key k into a relation
between transactions, such that for any t , t1, t2,k, cl ,m,n:

– if (r,k,v) ∈ T (t), there exists t ′ , t such that (w,k,v) ∈ T (t ′), and t ′
WR(k)
−−−−−→ t ,

– if t1
WR(k)
−−−−−→ t and t2

WR(k)
−−−−−→ t , then t1 = t2.

– if tm
cl

WR(k)
−−−−−→ tn

cl
, thenm < n.

• WW : Key → P (dom(T) × dom(T)) is a function that maps each key into an irreflexive
relation between transactions, such that for any t , t ′,k, cl ,m,n,

– if t
WW(k)
−−−−−→ t ′, then (w,k, _) ∈ T (t), (w,k, _) ∈ T (t ′),

– if (w,k, _) ∈ T (t), (w,k, _) ∈ T (t ′), then either t = t ′, t
WW(k)
−−−−−→ t ′, or t ′

WW(k)
−−−−−→ t ; further-

more, if t = t0, then it must be the case that t
(WW(k))
−−−−−−−→ t ′,

– if tm
cl

WW(k)
−−−−−→ tn

cl
, thenm < n,

• RW : Key → P (dom(T) × dom(T)) is defined by letting t
RW(k)
−−−−−→ t ′ if and only if t ′′

WR(k)
−−−−−→

t , t ′′
WW(k)
−−−−−→ t ′ for some t ′′.

Let Dgraphs be the set of all dependency graphs.

Given a dependency graph G = (T ,WR,WW,RW), we let WRG =WR, and similarly forWW

and RW. We also let TG = dom(T), and write (l ,k,v) ∈G t if (; ,k,v) ∈ G(t). We often commit an
abuse of notation and useWR to denote the relation

⋃
k ∈KeyWR(k); a similar notation is adopted

forWW,RW. It will always be clear from the context whether the symbolWR refers to a function
from keys to relations, or to a relation between transactions.
As stated above, kv-stores are isomorphic to dependency graphs. The proof of this result is the

topic of this Section.

Theorem B.2. There is a one-to-one map between kv-stores and dependency graphs.

The proof structure of Theorem B.2 is standard in its nature. We first how to encode a kv-store
into a dependency graph. Thenwe show how to encode a dependency graph into a kv-store. Finally,
we prove that the two constructions are one the inverse of the other: if we convert a kv-store K
into a dependency graph GK , then back to a kv-store KGK

, we obtain the initial kv-store.

Data Consistency in Transactional Storage Systems: A Centralised Approach

To convert a kv-store K into a dependency graph, we first define how to extract a fingerprint
of a transaction identifier t appearing in K :

Definition B.3. Let K be a kv-store. For any transaction identifier t , we define FK(t) to be the
smallest set such that whenever K(k, _) = (v, t , _) then (w,k,v) ∈ t , and whenever K(k, _) =
(v, _, {t} ∪ _), then (r,k,v) ∈ t .

PropositionB.4. For anyK, t , the fingerprintFK(t) is well defined. That is, whenever (w,k,v1), (w,k,v2) ∈

FK(t), then v1 = v2, and whenever (r,k,v1), (r,k,v2) ∈ FK(t), then v1 = v2.

Proof. Suppose that (w,k,v1), (w,k,v2) ∈ FK(t) for some key,v1,v2. That is, there exist two in-
dexes i1, i2 such thatK(k, i1) = (v1, t , _), andK(k, i2) = (v2, t , _). That is,w(K(k, i1)) = w(K(k, i2)),
and it follows from Def. A.1 that i1 = i2. In particular, this implies that v1 = v2.
A similar argument can be used to prove that if (r,k,v1), (r,k,v2) ∈ FK(t), then v1 = v2. In this

case, in fact, we have that there exist two indexes i1, i2 such that K(k, i1) = (v1, _, {t} ∪ _), and
K(k, i2) = (v2, _, {t} ∪ _). Equivalently, t ∈ rs(K(t , i1)) ∩ rs(K(t , i2)), and from Def. A.1 it must be
the case that i1 = i2, hence v1 = v2. �

Using Def. B.3, conerting a kv-store K into a dependency graph is immediate, as the following
definition shows:

Definition B.5. Given a kv-storeK , the dependency graph GK = (TK ,WRK ,WWK ,RWK) is de-
fined by letting TK (t) be defined if and only if FK(t) , ∅, in which case we letTK(t) = FK(t). The
relations WRK ,WWK ,RWK are inherited directly from the transactional dependencies defined
for K .

Definition B.6. Given a dependency graph G = (T ,WR,WW,RW), we define the kv-store KG

as follows:

(1) for any transaction t ∈ dom(T) such that (w,k,v) ∈ T (t), let T =

{
t ′
���� t WR(k)

−−−−−→ t ′
}
, and let

ν (t ,k) = (v, t ,T),

(2) For each key k , let ν 0
k
= (v0, t0,T

0
k
), where T 0

k
=

{
t

���� (r,k, _) ∈ T (t) ∧ ∀t ′. ¬(t ′
WR(k)
−−−−−→ t

}
.

Let also
{
ν i
k

}n
i=1

be the ordered set of versions such that, for any i = 1, · · · ,n, ν i
k
= ν (t ,k)

for some t such that (w,k, _) ∈ T (t), and such that for any i, j : 1 ≤ i < j ≤ n, w(ν i
k
)

WW(k)
−−−−−→

w(ν
j

k
). Then we let KG = λk .

∏n
i=0 ν

i
k
.

Proposition B.7. Let K be a well-formed kv-store. Then GK is a well-formed dependency graph.

Proof. LetK be a (well-formed) kv-store.We need to show thatGK = (TK ,WRK ,WWK ,RWK)

is a dependency graph. As a first step, we show that GK is a dependency graph, i.e. it satisfies all
the constraints placed by Def. B.1.

• Let t ∈ dom(TK), and suppose that (r,k,v) ∈ TK(t). We need to prove that there exists a
transaction t ′ ∈ dom(TK) such Because (r,k,v) ∈ TK(t), there must exist an index i : 0 ≤

i < |K(k)| such thatK(k, i) = (v, t ′, {t} ∪_) for some t ′ ∈ TransID. In this case we have that

t ′
WRK (k)
−−−−−−→ t , and by Def. B.3 we have that (w,k,v) ∈GK

t ′.

• Let t ∈ dom(TK), and suppose that there exist t1, t2 such that t1
WRk (K)
−−−−−−→ t , t2

WRk (K)
−−−−−−→ t . By

Def. B.5, there exist two indexes i, j : 0 ≤ i, j < |K(k)|, such that K(k, i) = (_, t1, {t} ∪ _),
K(k, j) = (_, t2, {t}∪_).We have that t ∈ rs(K(k, i))∩rs(K(k, j)), i.e. rs(K(k, i))∩rs(K(k, j)) ,

∅. Because we are assuming that K is well-formed, then it must be the case that i = j . This
implies that t1 = t2.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

• Let cl ∈ Client, m,n ∈ N and k ∈ Key be such that tn
cl

WRK (k)
−−−−−−→ tm

cl
. We prove that n < m.

By Def. B.5, it must be the case that there exists an index i : 0 ≤ i < |K(k)| such that
K(k, i) = (_, tn

cl
,
{
tm
cl

}
∪ _). Because K is well-formed, it must be the case that n <m.

• Let t ∈ dom(TK). We show that ¬(t
WWK
−−−−→ t). We prove this fact by contradiction: suppose

that t
WWK (k)
−−−−−−−→ t for some key k . By Def. B.5, there must exist two indexes i, j : 0 ≤ i <

j < |K(k)| such that t = w(K(k, i)) and t = w(K(k, j)). Because we are assuming that K is
well-formed, then it must be the case that i = j , contradicting the statement that i < j .

• Let t , t ′ be such that t ′
WWk (K)
−−−−−−−→ t . We must show that (w,k, _) ∈ TK(t

′), and (w,k, _) ∈

TK (t). By Def. B.5, there exist i, j : 0 ≤ i, j < |K(k)| such that K(k, i) = (v ′
, t ′, _) and

K(k, j) = (v, t , _), for some v,v ′ ∈ Val. Def. B.5 also ensures that (w,k,v ′) ∈ TK (t
′), and

(w,k,v) ∈ TK (t).
• Let t , t ′ be such that (w,k, _) ∈ TK (t) and (w,k, _) ∈ TK(t

′). We need to prove that either

t = t ′, t
WWK (k)
−−−−−−−→ t ′, or t ′

WWK (k)
−−−−−−−→ t . By Def. B.5 there exist two indexes i, j : 0 < i, j < |K(k)|

such that K(k, i) = (_, t , _) and K(k, j) = (_, t ′, _). If i = j , then t = t ′ and there is nothing
left to prove. Otherwise, suppose without loss of generality that i < j . Then Def. B.5 ensures

that t
WWK (k)
−−−−−−−→ t ′.

• Suppose that tm
cl

WWK (k)
−−−−−−−→ tn

cl
for some cl ∈ Client and m,n ∈ N. We need to show that

m < n. By Def. B.5, because tm
cl

WWK (k)
−−−−−−−→ tn

cl
there exist two indexes i, j : 0 < i, j < |K(k)|

such that w(K(k, i)) = tm
cl

and w(K(k, j)) = tn
cl
. From the assumption thatK is well-formed,

it follows that n <m.

�

Next, we show how to convert a dependency graph G into a kv-store K . The main idea is that
any transaction t ∈ TG induces a set of versions, and for each key k , the write-write-dependency
order WWG(k) determines the order of these versions in KG .

Definition B.8. Let G be a dependency graph. Given a key k , let nk , {v
k
i }

nk
i=0 {t

k
i }

nk
i=0 be such that

{tki }
nk
i=0 = {t | (w,k,vki) ∈G t}, where the index set {1, · · · ,nk } is chosen to be consistent with

WWG(k): that is, ti
WW(k)
−−−−−→ tj if and only if i < j . Given a key k and an index i = 1, · · · ,nk , we

also let T k
i = {t | tki

WR(k)
−−−−−→}t . Note that this set is possibly empty. Finally, we letKG be such that,

for any k ∈ Key, |KG(k)| = nk , and for any i = 0, · · · ,n,KG(k, i) = (vki , t
k
i ,T

k
i).

Proposition B.9. For any dependency graph G, KG is a (well-formed) kv-store.

Proof. We show thatKG satisfies all the constraints fromf Def. A.1. Throughout the proof, we
adopt the same notation of Def. B.8.
Let k ∈ Key, and let i, j be such that rs(KG(k, i)) ∩ rs(KG(k, j)) , ∅, that is there exists a

transaction t ∈ rs(KG(k, i)) ∩ rs(KG(k, j)). We show that i = j . By definition, rs(KG(k, i)) = T i
k
,

and rs(KG(k, j)) = T
j

k
. Def. B.8 ensures that tki

WRG (k)
−−−−−−→ t , and tkj

WRG(k)
−−−−−−→ t . By definition of

dependency graph, it must be the case that tki = tkj , and because the order of writers transactions

in versions in KG(k) is defined to be consistent with WWG(k), then it must also be the case that
i = j .

Suppose no that k, i, j are such that w(KG(k, i)) = w(KG(k, j)). By definition w(KG(k, i)) =

tki , and w(KG(k, j) = tkj . That is, t
k
i = tkj . Because the order of writer transactions in KG(k) is

consistent with WWG(k), we also have that i = j .

Data Consistency in Transactional Storage Systems: A Centralised Approach

Next, note that for any key k , tk0 = t0. In fact, because t0 ∈G (w,k,v0), we have that t0 = tki
for some i = 0, · · · ,nk . Also, because whenever t is such that (w,k, _) ∈G t , then it must be

the case that t0
WW(k)
−−−−−→ t , then it must be the case that i = 0. It follows that, for any k ∈ Key,

KG(k, 0) = (v0, t0, _).
Finally, suppose that tn

cl
= w(KG(k, i)), t

m
cl
= w(KG(k, j)) for some i, j such that i < j . In this

case we have that tn
cl
= tki , t

m
cl
= tkj , and because i < j it must be the case that tn

cl

WWG (k)
−−−−−−−→ tm

cl
. The

definition of dependency graph ensures then that it must n < m. A similar argument shows that,

if tn
cl

∈ w(KG(k, i)), t
m
cl

∈ rs(KG(k, i)), then it must be the case that tn
cl

WRG(k)
−−−−−−→ tm

cl
, and therefore

n < m. �

Finally, we need to show that the two constructions outlined in Def. B.8 and Def. B.6 are one
the inverse of the other.

Proposition B.10. For any kv-store K , KGK
= K .

Proof. We prove that for any k ∈ Key, K(k) = KGK
(k).

Let thenk ∈ Key, and suppose thatK(k) = (v0, t0,T0) · · · (vn, tn ,Tn). By construction, in (w,k,vi) ∈GK

ti , and whenever there is a transaction t such that (w,k, t) ∈GK
t , then t = ti for some i = 0, · · · ,n.

In particular, we have that t0
WWK (k)
−−−−−−−→ · · ·

WWK (k)
−−−−−−−→ tn completely characterises the write-write-

dependency relationWWK(k) overKG (recall that, by Def. B.8,WRGK
=WRK). By definition, we

have that KGK
= (v0, t0,T

′
0) · · · (vn, tn,T

′
n).

It remains to prove that, for any i = 0, · · · ,n, T ′
i = Ti . For any i = 0, · · · ,n, and transaction

t ∈ Ti , Def. B.8 ensures that ti
WRK
−−−−→ t , and by Def. B.6 it must be the case that t ∈ T ′

i . Furthermore,

if t ′ ∈ T ′
i , then fromDef. B.6 it must be the case that ti

WRGmkvs
(k)

−−−−−−−−−−→ t ′, or equivalently ti
WRK (k)
−−−−−−→ t ′i .

(Def. B.8). Then it must be the case that t ′ ∈ Ti . �

Proposition B.11. For any dependency graph G, GKG
= G.

Proof. The proof of this claim is similar to Prop. B.10, and therefore omitted. �

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

C OPERATIONAL SEMANTICS OF ABSTRACT EXECUTIONS

Abstract executions are a framework originally introduced in [Burckhardt et al. 2012] to capture
the run-time behaviour of clients interacting with a database. In abstract execution, two relations
between transactions are introduced: the visibility relation establishes when a transaction observes
the effects of another transaction; and the arbitration relation helps to determine the value of a key
k read by a transaction, in the case that the transaction observes multiple updates to k performed
by different transactions.

Definition C.1. An abstract execution is a triple X = (T ,VIS,AR), where

• T : TransID ⇀ P (Ops) is a partial, finite function mapping transaction identifiers to the
set of operations that they perform, with T (t0) = {(w,k,v0 | k ∈ Key},

• VIS ⊆ dom(T) × dom(T) is an irreflexive relation, called visibility,

• AR ⊆ dom(T)×dom(T) is a strict, total order such thatVIS ⊆ AR, andwhenever tn
cl

AR
−−→ tm

cl
,

then n < m.

The set of abstract executions is denoted by absExec.

Given an abstract execution X = (T ,VIS,AR), the notation TX = T , TX = dom(T), VISX =
VIS and ARX = AR. The session order for a client SOX(cl) and then the overall session order SOX

are defined as the following:

SOX(cl) =
{
(tncl , t

m
cl)

�� cl ∈ Client ∧ tncl ∈ TX ∧ tmcl ∈ TX ∧ n <m
}

and
SOX =

⋃
cl ∈Client

SOX(cl)

The notation (r,k,v) ∈X t denotes (r,k,v) ∈ TX(t), and similarly for write operations (w,k,v) ∈X
t . Given an abstract executionX, a transaction t ∈ TX , and a keyk , the visible writers set visibleWritesX(k, t),{
t ′
���� t ′ VISX

−−−→ t ∧ (w,k, _) ∈X t ′
}
.

The operational semantics on abstract executions (Fig. 10) is parametrised in the axiomatic defi-
nition (RP,A) of a consistencymodel: transitions take the form (X,CEnv, P)

_
−→(RP,A) (X

′
,CEnv′, P′).

An axiomatic definition of a consistency model is given by a pair (RP,A), where RP is a resolu-
tion policy (Def. C.2) and A is a set of axioms for visibility relation (Def. C.3). An abstract exe-
cution X satisfies the consistency model, written X |= (RP,A) if it satisfies its individual compo-
nents. The set of abstract executions induced by an axiomatic definition is given by CM(RP,A) =

{X | X |= (RP,A)}.
We first introduce a notation of two abstract executions agree. Given two abstract executions

X1,X2 ∈ absExec and set of transactions T ⊆ TX1
∩ TX2

, X1 and X2 agree on T if and only if for
any transactions t t ′ in T :

TX1
(t) = TX2

(t) ∧ ((t
VISX1
−−−−→ t ′) ⇐⇒ (t

VISX2
−−−−→ t ′)) ∧ ((t

ARX1
−−−−→ t ′) ⇐⇒ (t

ARX2
−−−−→ t ′))

Definition C.2. A resolution policy RP is a function RP : absExec×P (TransID) → P (Snapshot)

such that, for any X1,X2 that agree on a subset of transactions T , then RP(X1,T) = RP(X2,T).
An abstract execution X satisfies the execution policy RP if,

∀t ∈ TX . ∃ss ∈ RP(X,VIS−1X (t)). ∀k,v . (r,k,v) ∈X t ⇒ ss(k) = v

Definition C.3. An axiom A is a function from abstract executions to relations between trans-
actions, A : absExec → P (TransID × TransID), such that whenever X1,X2 agree on a subset of
transactions T , then A(X1) ∩ (T × T) ⊆ A(X2).

Data Consistency in Transactional Storage Systems: A Centralised Approach

−→ : Client × ((AbsExecs × Stack) × Cmd) × ET × Label × ((AbsExecs × Stack) × Cmd)

AAtomicTrans

T ⊆ TX ss ∈ RP(X,T) (s, ss, ∅), T →∗ (s ′, _,F), skip

t ∈ nextTid(TX, cl) X′
= extend(X, t ,T ,F) ∀A ∈ A. {t ′ | (t ′, t) ∈ A(X′)} ⊆ T

cl ⊢ (X, s), [T]
(cl,T,F)
−−−−−−→(RP,A) (X′

, s ′), skip

APrimitive

s
Cp

s ′

cl ⊢ (X, s), Cp
(cl, ι)
−−−−→ET (X, s ′), skip

AChoice

i ∈ {1, 2}

cl ⊢ (X, s), C1 + C2
(cl, ι)
−−−−→ET (X, s), Ci

AIter

cl ⊢ (X, s), C∗
(cl, ι)
−−−−→ET (X, s), skip+ (C; C∗)

ASeqSkip

cl ⊢ (X, s), skip; C
(cl, ι)
−−−−→ET (X, s), C

ASeq

cl ⊢ (X, s), C1
(cl, ι)
−−−−→ET (X, s ′), C1

′

cl ⊢ (X, s), C1; C2
(cl, ι)
−−−−→ET (X, s ′), C1

′; C2

−→: (AbsExecs × CEnv × Prog) × ET × Label × (AbsExecs × CEnv × Prog)

AProg

cl ⊢ (X, E(cl)), P(cl),
λ
−→(RP,A) (X′

, s ′), C′

(X, E), P
λ
−→(RP,A) (X′

, E[cl 7→ s ′]), P[cl 7→ C′])

Fig. 10. Operational Semantics on Abstract Executions

Axioms of a consistency model are constraints of the form A(X) ⊆ VISX . For example, if we
require A(X) = ARX , then the corresponding axiom is given by ARX ⊆ VISX , thus capturing
the serialisability of transactions, i.e. this axiom is equivalent to require that VISX is a total order.
The requirement on subsets of transactions on which abstract executions agree will be needed
later, when we define an operational semantics of transactions where clients can append a new
transaction t at the tail of an abstract execution X, which satisfies an axiom A. This requirement
ensures that we only need to check that the axiom is A is satisfied by the pre-visibility and pre-
arbitration relation of the transaction t in X′. In fact, the resulting abstract execution X′ agrees
with X on the set TX : in this case we’ll note that we can rewrite A(X′) = A(X′) ∩ ((TX × TX)) ∪

(TX × {t})). Then A(X′) ∩ ((TX ×TX)) ⊆ A(X) ∩ (TX ×TX) ⊆ VISX ∩ (TX ×TX) ⊆ VISX′ , hence we
only need to check that A(X′) ∩ (TX × {t}) ⊆ VISX′ .
We say that an abstract executionX satisfies an axiom A, if A(X) ⊆ VISX . An abstract execution

X satisfies (RP,A), written X |= (RP,A), if the abstract execution X satisfies RP and A.

Definition C.4 (Abstract executions induced by axiomatic definition). The set of all abstract execu-

tions induced by an axiomatic definition,CM(RP,A) is defined asCM(RP,A),{X | X |= (RP,A)}.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

The Fig. 10 presents all rules of the operational semantics of programs based on abstract exe-
cutions. TheACommit rule is the abstract execution counterpart of rule PCommit for kv-stores.
TheACommitmodels how an abstract executionX evolves when a client wants to execute a trans-
action whose code is [T]. In the rule, T is the set of transactions ofX that are visible to the client cl
that wishes to execute [T]. Such a set of transactions is used to determine a snapshot ss ∈ RP(X,T)

that the client cl uses to execute the code [T], and obtain a fingerprint F . This fingerprint is then
used to extend abstract executionX with a transaction from the set nextTid(TX, cl). Similar PProg
rule, theAProg rule in Fig. 10 models multi-clients concurrency in an interleaving fashion. All the
rest rules of the abstract operational semantics in Fig. 10 have a similar counterpart in the kv-store
semantics.
Note that AAtomicTrans is more general than Rule PAtomicTrans in the kv-store semantics.

In the latter, the snapshot of a transaction is uniquely determined from a view of the client, in a
way that roughly corresponds to the last write wins policy in the abstract execution framework.
In contrast, the snapshot of a transaction used in AAtomicTrans is chosen non-deterministically
from those made available to the client by the resolution policy RP, which may not necessarily be
last-write-win.
Throughout this reportwewill workmainlywith theLastWriteWins resolution policy (Def. C.5).

When discussing the operational semantics of transactional programs, we will also introduce the
Anarchic resolution policy.

Definition C.5. The Last Write Wins resolution policy RPLWW is defined as RPLWW(X,T), {ss}

where

ss = λk .let Tk = (T ∩ {t | (w,k, _) ∈X t}) in

{
v0 if Tk = ∅

v if (w,k,v) ∈X maxARX (Tk)

Data Consistency in Transactional Storage Systems: A Centralised Approach

D RELATIONSHIP BETWEEN KV-STORES AND ABSTRACT EXECUTION

D.1 KV-Store to Abstract Executions

We introduce the definition of the dependency graph induced an abstract execution:

Definition D.1. Given an abstract execution X that satisfies the last write wins policy, the de-

pendency graph graphOf(X), (TX,WRX,WWX,RWX) is defined by letting

• t
WRX (k)
−−−−−−→ t ′ if and only if t = maxARX (visibleWritesX(k, t

′)),

• t
WWX (k)
−−−−−−−→ t ′ if and only t , t ′ ∈X (w, k, _) and t

ARX
−−−→ t ′,

• t
RWX (k)
−−−−−−→ t ′ if and only if either (r,k, _) ∈X t , (w,k, _) ∈X t ′ and whenever t ′′

WRX (k)
−−−−−−→ t ,

then t ′′
WWX (k)
−−−−−−−→ t ′.

Note that each abstract execution X determines a kv-store KX , as a result of Def. D.1 and The-
orem B.2. Let K be the unique kv-store such that GK = graphOf(X), then KX = K . As we will
discuss later in this Section, this mapping K(_) is NOT a bijection, in that several abstract execu-
tions may be encoded in the same kv-store. Because kv-stores abstract away the total arbitration
order of transactions.
Upon the relationKX = K , there is a deeper link between kv-store plus views and abstract exer-

tions. This notion, named compatibility, bases on the intuition that clients can make observations
over kv-stores and abstract executions, in terms of snapshots.
In kv-stores, observations are snapshots induced by views. While in abstract executions, obser-

vations correspond to the snapshots induced by the visible transactions. Note that it is under the
condition that the abstract execution adopts RPLWW resolution policy. This approach is analogous
to the one used by operation contexts in [Burckhardt et al. 2014]. Thus, a kv-storeK is compatible

with an abstract execution X, written K ≃X if any observation made on K can be replicated by
an observation made on X, and vice-versa.

Definition D.2. Given a kv-storeK , an abstract executionX is compatiblewithK , writtenX ≃K ,
if and only if there exists a mapping f : P (TX) → Views(K) such that

• for any subset T ⊆ TX , then RPLWW(X,T) = {snapshot(K, f (T))};
• for any view u ∈ Views(K), there exists a subset T ⊆ TX such that f (T) = u, and
RPLWW(X,T) = {snapshot(KX,u)}.

The function getView(X,T) defines the view on KX that corresponds to T as the following:

getView(X,T), λk . {0} ∪ {i | w(KX(k, i)) ∈ T }

Inversely, the function visTx(K,u) converts a view to a set of observable transactions:

visTx(K,u), {w(K(k, i)) | k ∈ Key ∧ i ∈ u(k)}

Given getView, visTx, Def. D.2, it follows X ≃KX shown in Theorem D.3.

Theorem D.3. For any abstract execution X that satisfies the last write wins policy, X≃KX .

Proof. Given the function getView(X, ·) from P (TX) to Views(KX), we prove it satisfies the
constraint of Def. D.2. Fix a set of transitions T . By the Prop. D.4, the view getView(X,T) on KX

is a valid view, that is, getView(X,T) ∈ Views(KX). Given that it is a valid view, the Prop. D.5
proves:

RPLWW(X,T) = {snapshot(KX, getView(X,T))} (4.1)

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

The anotherway round ismore subtle, becauseT contains any read only transaction. By Prop. D.6,
it is safe to erase read only transactions from T , when calculating the view getView(X,T). Last,
by Prop. D.7, we prove the following:

RPLWW(X,T) = snapshot(KX,u) (4.2)

By Eq. (4.1) and Eq. (4.2), it follows X ≃KX . �

Proposition D.4 (Valid views). For any abstract execution X, and T ⊆ TX , getView(X,T) ∈

Views(KX).

Proof. Assume an abstract execution X, a set of transactions T ⊆ TX , and a key k . By the
definition of getView(X,T), then 0 ∈ getView(X,T)(k), and 0 ≤ i < |KX(k)| for any index i

such that i ∈ getView(X,T)(k). Therefore we only need to prove that getView(X,T) satisfies
(atomic). Let j ∈ getView(X,T)(k) for some key k , and let t = w(KX(k, j)). Let also k

′
, i be such

that w(KX(k
′
, i)) = t . We need to show that i ∈ getView(X,T)(k ′). Note that it t = t0 then

w(KX(k
′
, i)) = t only if i = 0, and 0 ∈ getView(X,T)(k ′) by definition. Let then t , t0. Because

w(KX(k, j)) = t and j ∈ getView(X,T), then it must be the case that t ∈ T . Also, because
w(KX(k

′
, i)) = t , then (w,k, _) ∈ TX(t). It follows that there exists an index i ′ ∈ getView(X, t)(k ′)

such that w(KX(k
′
, i ′)) = t . By definition of KX , if w(KX(k

′
, i ′)) = t , then it must be i ′ = i , and

therefore i ∈ getView(X, t)(k ′). �

Proposition D.5 (Visible transactions to views). For any subset T ⊆ TX , RPLWW(X,T) =

{snapshot(KX , getView(X,T))}.

Proof. Fix T ⊆ X, and let {K} = RPLWW(X,T). We prove that, for any k ∈ Key, K(k) =

snapshot(getView(X,T))(k). There are two different cases:

(1) T ∩{t | (w,k, _) ∈X t} = ∅. In this caseK(k) = v0. We know that graphOf(X) satisfies all the
constraints required by the definition of dependency graph ([Cerone et al. 2017]). Together
with Theorem B.2 it follows that KX(k, 0) = (v0, t0, _). We prove that getView(X,T)(k) =

{0}, hence

snapshot(KX, getView(X,T))(k) = val(KX(k, 0)) = v0

Note that whenever (w,k, _) ∈X t for some t , then t < T . Therefore, whenever (v, t , _) =
KX(k, i) for some i ≥ 0, then t < T .

getView(X,T)(k) = {0} ∪ {i | w(KX(k, i)) ∈ T)} = {0} ∪ ∅ = {0}

(2) Suppose now that T ∩ {t | (w,k, _) ∈X t} , ∅. Let then t = maxARX (T ∩ {t | (w,k, _) ∈X t}).
Then (w,k,v) ∈X t for some v ∈ Val. Furthermore, RPLWW(X,T)(k) = v . By definition,

t ′ ∈ T ∩ {t | (w,k, _) ∈X t}, then either t ′ = t or t ′
ARX
−−−→ t . The definition of graphOf(X)

gives that t ′
WWX (k)
−−−−−−−→ t . Because (w,k,v) ∈X t , then there exists an index i ≥ 0 such that

KX(k, i) = (v, t , _). Furthermore, whenever w(k, j) = t ′ for some t ′ and j > i , then it must be

the case that t
WWX (k)
−−−−−−−→ t ′, and becauseWWX(k) is transitive and irreflexive, it must be that

¬(t ′
WWX (k)
−−−−−−−→ t) and t , t ′: this implies that t ′ < T . It follows that max(getView(X,T)(k)) =

i , hence snapshot(KX, getView(X,T)) = val(KX(k, i)) = v .

�

Proposition D.6 (Read-only transactions erasing). Let u ∈ Views(KX), and let T ⊆ TX be

a set of read-only transactions in X. Then getView(X,T ∪ visTx(KX,u)) = u.

Data Consistency in Transactional Storage Systems: A Centralised Approach

Proof. Fix a key k . Suppose that i ∈ getView(X,T ∪ visTx(KX,u))(k). By definition,KX(k, j) =

(_, t , _) for some t ∈ T ∪ visTx(KX ,u). Because T only contains read-only transactions, by defi-
nition of KX there exists no index j such that KX(k, j) = (_, t ′, _) for some t ′ ∈ T , hence it must
be the case that t ∈ visTx(KX,u). By definition of visTx, this is possible only if there exist a key
k ′ and an index j such that KX(k

′
,u) = (_, t , _). Because u is atomic by definition, and because

KX(k, i) = (_, t , _), then we have that i ∈ u(k).
Now suppose that i ∈ u(k), and letKX(k, i) = (_, t , _) for some t . This implies that (w,k, _) ∈X t .

By definition t ∈ visTx(KX ,u), hence t ∈ T ∪ visTx(KX ,u)). Because t ∈ T ∪ visTx(KX ,u), then
for any key k ′ such that (w,k ′, _) ∈X t , there exists an index j ∈ getView(X,T ∪ visTx(KX ,u))

K(k ′, j) = (_, t , _); because kv-stores only allow a transaction to write at most one version per key,
then the index j is uniquely determined. In particular, we know that (w,k, _) ∈X t , and KX(k, i) =

(_, t , _), from which it follows that i ∈ getView(X,T ∪ visTx(KX,u))(k). �

Proposition D.7 (Views to visible transactions). Given a view u ∈ Views(KX), there exists

T ⊆ TX such that getView(X,T) = u, and RPLWW(X,T) = snapshot(KX ,u).

Proof. We only need to prove that, for any u ∈ Views(KX), there exists T ⊆ TX such that
getView(X,T) = u. Then it follows from Prop. D.5 that RPLWW(X,T) = snapshot(KX ,u). It
suffices to choose T =

⋃
k ∈Key({w(KX(k, i)) | i > 0 ∧ i ∈ u(k)}). Fix a key k , and let i ∈ u(k). We

prove that i ∈ getView(X,T). If i = 0, then i ∈ getView(X,T) by definition. Therefore, assume
that i > 0. Let t = w(KX(k, i)). It must be the case that t ∈ T and i ∈ getView(X,T)(k).
Next, suppose that i ∈ getView(X,T)(k). We prove that i ∈ u(k). Note that if i = 0, then

i ∈ u(k) because of the definition of views. Let then i > 0. Because i ∈ getView(X,T)(k), we
have that w(KX(k, i)) ∈ T . Let t = w(KX(k, i)). Because i > 0, it must be the case that t , t0. By
definition, t ∈ T only if there exists an index j and key k ′, possibly different from k , such that
w(KX(k

′
, j)) = t and j ∈ u(k ′). Because t , t0 we have that j > 0. Finally, because u is atomic by

definition, j ∈ u(k ′) w(KX(k
′
, j)) = t = w(KX(k, i)), then it must be the case that i ∈ u(k), which

concludes the proof. �

D.2 KV-Store Traces to Abstract Execution Traces

To prove our definitions using execution test on kv-stores is sound and complete with respect with
the axiomatic definitions on abstract executions (§F), we need to prove trace equivalent between
these two models.
In this section, we only consider the trace that does not involve P but only committing finger-

print and view shift. In §E, we will go further and discuss the trace installed with P.
Let ET⊤ be the most permissive execution test. That is ET⊤ ⊢ (K,u) ⊲ F : (K ′

,u ′) such that
whenever u(k) , u ′(k) then either (w,k, _) ∈ F or (r,k, _) ∈ F . We will relate ET⊤-traces to
abstract executions that satisfy the last write wins resolution policy, i.e. (RPLWW, ∅).
To bridge ET⊤-traces to abstract executions, The absExec (τ) function converse the trace of ET⊤

to set of possible abstract executions (Def. D.8). In fact, for any trace τ and abstract execution X ∈

absExec(τ), the last configuration of τ is (KX, _) (Prop. D.9). We often use Xτ for X ∈ absExec(τ).

Definition D.8. Given a kv-store K , a view u, an initial abstract execution X0 = ([], ∅, ∅), an
abstract executionX, a set of transactions T ⊆ TX , a transaction identifier t and a set of operations

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

F , the extend function defined as the follows:

extend(X, t ,T ,F),

{
undefined if t = t0

(TX ⊎ {t 7→ F } ,VIS′,AR′) if †

† ≡ t = tncl ∧ VIS′ = VISX ⊎ {(t ′, t) | t ∈ T }

∧ AR′
= ARX ⊎ {(t ′, t) | t ′ ∈ TX}

Given a ET⊤ trace τ , let lastConf(τ) be the last configuration appearing in τ . The set of abstract
executions absExec(τ) is defined as the smallest set such that:

• X0 ∈ absExec((K0,U0)),

• if X ∈ absExec(τ), then X ∈ absExec

(
τ

(cl,ε)
−−−−−_ET⊤ (K,U)

)
,

• if X ∈ absExec(τ), then X ∈ absExec

(
τ

(cl, ∅)
−−−−−_ET⊤ (K,U)

)
,

• let (K ′
,U ′) = lastConf(τ); if X ∈ absExec(τ), F , ∅, and T = visTx(K,U ′(cl)) ∪ Trd where

Trd is a set of read-only transactions such that (w,k,v) <X t ′ for all keys k and values v and
transactions t ′ ∈ Trd, and if the transaction t is the transaction appearing in lastConf(τ) but

not in K , then extend(X, t ,T ,F) ∈ absExec

(
τ

(cl,F)
−−−−−−_ET⊤ (K,U)

)
.

Proposition D.9 (Trace of ET to abstract executions). For any ET⊤-trace τ , the abstract

execution X ∈ absExec(τ) satisfies the last write wins policy, and (KX, _) = lastConf(τ).

Proof. Fix a ET⊤-trace τ . We prove by induction on the number of transitions n in τ .

• Base case: n = 0. It means τ = (K0, _). It follows from Def. D.8 that Xτ = ([], ∅, ∅). This
triple satisfies the constraints of Def. C.1, as well as the resolution policy RPLWW. It is also
immediate to see that graphOf(X) = ([], ∅, ∅, ∅). In particular, TgraphOf(X) = ∅, and the only
kv-store K such that TGK

= ∅ is given by K = K0. By definition, KXτ = K0, as we wanted
to prove.

• Inductive case: n > 0. In this case, we have that τ = τ ′
(cl,µ)

−−−−−_ET (K,U) for some cl , µ,K,U.
The ET⊤-trace τ

′ contains exactly n − 1 transitions, so that by induction we can assume that
Xτ ′ is a valid abstract execution that satisfies RPLWW. and lastConf(τ ′) = (KXτ ′ ,U

′) for
some U ′.
We perform a case analysis on µ . If µ = ε , then it follows that K = KXτ ′ , and Xτ = Xτ ′ by
Def. D.8. Then by the inductive hypothesis Xτ is an abstract execution that satisfies RPLWW,
lastConf(τ) = (K, _), and KXτ = KXτ ′ = K , and there is nothing left to prove.
Suppose now that µ = F , for someF . In this casewe have thatK ∈ update

(
KXτ ′ ,U

′(cl),F , cl
)
.

Note that if F = ∅, then K = KXτ ′ and Xτ = Xτ ′ . By the inductive hypothesis, Xτ is an
abstract execution that satisfies RPLWW, and K = KXτ ′ = KXτ . Assume then that F , ∅.
By definition, K = update

(
KXτ ′ ,U

′(cl),F , t
)
for some t ∈ nextTid(cl ,KXτ). It follows that

t is the unique transaction such that t < KXτ ′ , and t ∈ K (the fact that t ∈ K follows from
the assumption that F , ∅). Let T = visTx

(
KXτ ′ ,U

′(cl)
)
; then Xτ = extend

(
KXτ ′ , t ,T ,F

)
.

Note that Xτ satisfies the constraints of abstract execution required by Def. C.1:
– Because t ∈ nextTid(cl ,KXτ), it must be the case that t = tm

cl
for some m ≥ 1; we have

that TXτ = TXτ ′

[
tm
cl

7→ F
]
, from which it follows that

TXτ = dom(TXτ) = dom(TXτ ′) ∪
{
tmcl

}
= TXτ ′ ∪

{
tmcl

}
By inductive hypothesis, t0 < TXτ ′ , and therefore t0 < TXτ ′ ∪

{
tm
cl

}
= TX .

Data Consistency in Transactional Storage Systems: A Centralised Approach

– VISXτ ⊆ ARXτ . Let (t
′
, t ′′) ∈ VISXτ . Then either t ′′ = tm

cl
and t ′ ∈ T , or (t ′, t ′′) ∈ VISXτ ′ .

In the former case, we have that (t ′, tm
cl
) ∈ ARXτ by definition; in the latter case, we have

that (t ′, t ′′) ∈ ARXτ ′ becauseXτ ′ is a valid abstract execution by inductive hypothesis, and
therefore (t ′, t ′′) ∈ ARXτ by definition. This concludes the proof that VISXτ ⊆ ARXτ .

– VISXτ is irreflexive. Assume (t ′, t ′′) ∈ VISXτ , then either (t ′t ′′) ∈ VISXτ ′ , and because
VISXτ ′ is irreflexive by the inductive hypothesis, then t ′ , t ′′; or t ′′ = tm

cl
, t ′ ∈ T ⊆ TXτ ′ ,

and because tm
cl
< KXτ ′ , then t ′ , tm

cl
.

– ARXτ is total. Let (t ′, t ′′) ∈ TXτ . Suppose that t
′
, t ′′.

(1) If t ′ , tm
cl
, t ′′ , tm

cl
, then it must be the case that t ′, t ′′ ∈ TXτ ′ ; this is because we have

already argued that TXτ = TXτ ′ ∪
{
tm
cl

}
. By the inductive hypothesis, we have that either

(t ′, t ′′) ∈ ARXτ ′ , or (t
′′
, t ′) ∈ ARXτ ′ . Because ARXτ ′ ⊆ ARXτ , then either (t ′, t ′′) ∈ ARXτ ′

or (t ′′, t ′) ∈ ARXτ .
(2) if t ′′ = tm

cl
, then it must be t ′ ∈ TXτ ′ . By definition, (t ′, tm

cl
) ∈ ARXτ . Similarly, if t ′ = tm

cl
,

we can prove that (t ′′, tm
cl
) ∈ ARXτ .

– ARXτ is irreflexive. It follows is the same as the one of VISXτ .
– ARXτ is transitive. Assume (t ′, t ′′) ∈ ARXτ and (t ′′, t ′′′) ∈ ARXτ . Note that it must be the
case that t ′, t ′′ ∈ TXτ ′ by the definition of ARX , and in particular (t ′, t ′′) ∈ ARXτ ′ . For t

′′′,
we have two possible cases.

(1) Either t ′′′ ∈ TXτ , from which it follows that (t ′′, t ′′′) ∈ ARXτ ′ ; because of ARXτ ′ is
transitive by the inductive hypothesis, then (t ′, t ′′′) ∈ ARXτ ′ , and therefore (t ′, t ′′′) ∈

ARXτ .
(2) Or t ′′′ = tm

cl
, and because t ′ ∈ TXτ ′ , then (t ′, tm

cl
) ∈ ARXτ by definition.

– SOXτ ⊆ ARXτ . Let cl
′ be a client such that (t i

cl ′
, t

j

cl ′
) ∈ ARXτ . If cl

′
, cl , then it must be

the case that t i
cl ′
, t

j

cl ′
∈ TXτ ′ , and therefore (t

i
cl ′
, t

j

cl ′
) ∈ ARXτ ′ . By the inductive hypothesis,

it follows that i < j . If cl ′ = cl , then by definition of ARXτ it must be i , m. If j , m we
can proceed as in the previous case to prove that i < j . If j = m, then note that t i

cl
∈ TXτ

only if t i
cl

∈ KXτ ′ . Because t
m
cl

∈ nextTid(KXτ ′ , cl), then we have that i <m, as we wanted
to prove.

Next, we prove that Xτ satisfies the last write wins policy. Let t ′ ∈ TXτ , and suppose that
(r,k,v) ∈Xτ t

′.
– If t ′ , t , then we have that t ∈ TXτ ′ . We also have that VIS−1

Xτ
(t ′) = VIS−1

Xτ ′
(t ′), AR−1

Xτ
(t ′) =

AR−1
Xτ ′

(t ′); finally, for any t ′′ ∈ TXτ ′ , (w,k,v
′) ∈Xτ t ′′ if and only if (w,k,v ′) ∈Xτ ′ t ′′.

Therefore, let tr = maxARXτ (VIS
−1
Xτ
(t ′) ∩

{
t ′′

�� (w,k, _) ∈Xτ t ′′}). We have that

tr = max
ARXτ ′

(VIS−1Xτ ′ (t) ∩
{
t ′′

�� (w,k, _) ∈Xτ ′ t ′′})
and because Xτ ′ satisfies the last write wins resolution policy, then (w,k,v) ∈Xτ ′ tr . This
also implies that (w,k,v) ∈Xτ tr .

– Now, suppose that t ′ = t . Suppose that (r,k,v) ∈Xτ t ′. By definition, we have that

(r,k,v) ∈ F . Recall that τ = τ ′
(cl,F)

−−−−−−_ET⊤ (K,U), and lastConf(τ ′) = (KXτ ′ ,U
′) for

some U ′. That is,

(KXτ ′ ,U
′)

(cl,F)
−−−−−−_ET⊤ (K,U)

which in turn implies that ET⊤ ⊢ (KXτ ′ ,U
′(cl))⊲F : (K,U(cl)). Let then r = max {i | i ∈ U ′(cl)(k)}.

By definition of execution test, and because (r,k,v) ∈ F , then it must be the case that
KXτ ′ (k, r) = (v, t ′′, _) for some t ′′.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

We now prove that t ′′ = maxARXτ (VIS
−1
Xτ
(t) ∩

{
t ′′

�� (w,k, _) ∈Xτ t ′′}). First we have
VIS−1

Xτ
(t) = visTx

(
KXτ ′ ,U

′(cl)
)
=

{
w(KXτ ′ (k

′
, i))

�� k ′ ∈ Key ∧ i ∈ U ′(cl)(k ′)
}

Note that r ∈ U ′(cl)(k), and t ′′ = w(KXτ ′ (k, r)). Therefore, t
′′ ∈ VIS−1

Xτ
(t). Because

K = update
(
KXτ ′ ,U

′(cl),F , t
)
, it must be the case that w(K(k, r)) = t ′′. Also, because

w(KXτ ′ (k, r)) = t ′′, then (w,k, _) ∈Xτ ′′ t ′′, or equivalently (w,k, _) ∈ TXτ ′ (t
′′). We have

already proved that VISXτ is irreflexive, hence it must be the case that t ′′ , t . In partic-
ular, because Xτ = extend(Xτ ′, t , _, _), then we have that TXτ (t

′′) = TXτ ′ [t 7→ F](t ′′) =

TXτ ′ (t
′′), hence (w,k, _) ∈ TXτ (t

′′). Equivalently, (w,k, _) ∈Xτ t ′′. We have proved that

t ′′ ∈ VIS−1
Xτ
(t), and (w,k, _) ∈Xτ t

′′.

Now let t ′′′ be such that t ′′′ ∈ VIS−1
Xτ
(t), and (w,k_) ∈Xτ t ′′′. Note that t ′′′ , t because

VISXτ is irreflexive. We show that either t ′′′ = t ′′, or t ′′′
ARXτ
−−−−→ t ′′. Because t ′′′ ∈ VIS−1

Xτ
(t),

then there exists a key k ′ and an index i ∈ U ′(cl) such that w(KXτ ′ (k
′
, i)) = t ′′′. Because

(w,k, _) ∈Xτ t ′′′, and because t ′′′ , t , then (w,k, _) ∈Xτ ′ t ′′′, and therefore there exists
an index j such that w(KXτ ′ (k, j)) = t ′′′. We have that w(KXτ ′ (k, j) = w(KXτ ′ (k

′
, i)), and

i ∈ U ′(cl). By Eq. (atomic), it must be j ∈ U ′(cl). Note that r = max {i | i ∈ U ′(cl)}, hence
we have that j ≤ r . If j = r , then t ′′′ = t ′′ and there is nothing left to prove. If j < r , then
we have that (t ′′′, t ′′) ∈ ARXτ ′ , and therefore (t ′′′, t ′′) ∈ ARXτ .

Finally, we need to prove that K = KXτ . Recall K = update
(
KXτ ′ ,U

′(cl),F , t
)
, and Xτ =

extend
(
Xτ ′, visTx

(
KXτ ′ ,U

′(cl)
)
, t ,F

)
. The result follows then from Prop. D.10.

�

Proposition D.10 (extend matching update). Given an abstract execution X, a set of transac-

tions T ⊆ TX , a transaction t < TX , and a fingerprint F ⊆ P (Ops), if the new abstract execution

X′
= extend(X,T , t ,F), and the view u = getView(KX,T), then update(KX ,u,F , t) = KX′ .

Proof. Let G = Gupdate(KX,u,F,t), G
′
= graphOf(X′). Note thatKX′ is the unique kv-store such

that GKX′ = graphOf(X′) = G′. It suffices to prove that G = G′. Because the function G· is
injective, it follows that update(KX ,u,F , t) = KX′ , as we wanted to prove.
The proof is a consequence of Lemma D.11 and Lemma D.12. Consider the dependency graph

GKX
. Recall thatKX is the unique kv-store such thatGKX

= graphOf(X). We prove thatTG = TG′ ,
WRG =WRG′ and WWG =WWG′ (from the last two it follows that RWG = RWG′).

• It is easy to see TG = TG′ .

• WRG = WRG′ . Let K = KX . Suppose that t
′

WRG(k)
−−−−−−→ t ′′ for some t ′, t ′′. By Lemma D.12 we

have that either t ′
WRGK

(k)

−−−−−−−→ t ′′, or t ′′ = t , (r,k, _) ∈ F , t ′ = maxWWGK
(k) {w(k, i) | i ∈ u(k)}.

– If t ′
WRGK

(k)

−−−−−−−→ t ′′, then because GK = graphOf(X), we have that t ′
WRgraphOf(X)(k)
−−−−−−−−−−−→ t ′′. Recall

that G′
= graphOf(extend(X,T , t ,F)), hence by Lemma D.11 we obtain that t ′

WRG′ (k)
−−−−−−→

t ′′.
– If t ′′ = t , (r,k, _) ∈ F , and t ′ = maxWWGK

(k) {w(KX(k, i)) | i ∈ u(k)}, then we also have

that t ′ = maxWWgraphOf(X)(k)(T ∩ {t ′′′ | (w,k, _) ∈X t ′′′}). This is because of the assumption
that

{w(KX(k, i)) | i ∈ u(k)} = {w(KX(k
′
, i)) | k ′ ∈ Key ∧ i ∈ u(k ′)} ∩ {w(KX(k, _)}

= visTx(KX,u) ∩ {w(KX(k, _)}

= T ∩ {t ′′′ | (w,k, _) ∈X t ′′′}

Data Consistency in Transactional Storage Systems: A Centralised Approach

Again, it follows from Lemma D.11 that t ′
WRG′ (k)
−−−−−−→ t ′′.

• WWG =WWG′ . TheWWG =WWG′ follows the similar reasons asWRG =WRG′ .

�

Lemma D.11 (Graph to abstract execution extension). Let X be an abstract execution, t <

TX ∪ {t0} be a transaction identifier TX , and F ∈ TX . Let T ⊆ TX be a set of transaction identifiers.

Let G = graphOf(X),G′
= graphOf(extend(X, t ,T ,F)). We have the following:

(1) for any t ′ ∈ TG′ , either t ′ ∈ TG and TG(t
′) = TG′(t ′), or t ′ = t and TG′(t) = F .

(2) t ′
WRG′ (k)
−−−−−−→ t ′′ if and only if either t ′

WRG (k)G
−−−−−−−→ t ′′, or (r,k, _) ∈ F , t ′′ = t and t ′ =

maxWWG (k)(T),

(3) t ′
WWG′ (k)
−−−−−−−→ t ′′ if and only if either t ′

WWG (k)
−−−−−−−→ t ′′, or (w,k, _) ∈ F , t ′′ = t , and (w,k, _) ∈G t ′.

Proof. Fix a key k . Let X′
= extend(X, t ,T ,F). Recall that G′

= graphOf(X′).

(1) By definition of extend, and because t < TX , we have that TX′ = TX ⊎ {t}. Furthermore,
TX′(t) = F , from which it follows that TG′(t) = F . For all t ′ ∈ TX , we have that TX′(t ′) =

TX(t
′) = TG(t

′).
(2) There are two cases that either the t ′′ already exists in the dependency graph before, or it is

the newly committed transaction.

• Suppose that t ′
WR(k)G
−−−−−−→ t ′′ for some t ′, t ′′ ∈ TG . By definition, (r,k, _) ∈X t ′′, and t ′ =

maxARX
(VIS−1

X
(t ′′) ∩ {t ′′′ | (w,k, _) ∈X t ′′′}). Because t ′′ ∈ TG = TX , it follows that t

′′
, t .

By definition, VIS−1
X′(t

′′) = VIS−1
X
(t): also, whenever ta , tb ∈ VIS−1

X′(t) we have that ta , tb ∈

TX , and therefore if ta
ARX′

−−−−→ tb , then it must be the case that ta
ARX
−−−→ tb ; also, TX(ta) =

TX′(ta). As a consequence, we have that

max ARX′ (VIS
−1
X′(t) ∩ {t ′′′ | (w,k, _) ∈X′ t ′′′}) = max ARX (VIS

−1
X
(t) ∩ {t ′′′ | (w,k, _) ∈X t ′′′}) = t ′

and therefore t ′
WRG′

−−−−→ t .
• Suppose now that (r,k, _) ∈ F , and t ′ = maxWW(k)G (T). By Definition, t ′ = maxARX

(T)∩

{t ′′′ | (w,k, _) ∈X t ′′′}, and, T = VIS−1
X′(t). Because T ⊆ TX , we have that for any ta , tb , if

ta
ARX
−−−→ tb , then ta

ARX′

−−−−→ tb ; and TX′(ta) = TX(ta). Therefore,

t ′ = max ARX′ (VIS
−1
X′(t) ∩ {t ′′′ | (w,k, _) ∈X′ t ′′′} ,

from which it follows that t ′
WRG′ (k)
−−−−−−→ t .

Now, suppose that t ′
WRG′ (k)
−−−−−−→ t ′′ for some t ′, t ′′ ∈ TG′ = TX′ . We have that (r,k, _) ∈X′ t ′′,

(w,k, _) ∈X′ t ′, and t ′′ = maxARX′ (VIS
−1
X′(t

′′) ∩ {t ′′′ | (w,k, _) ∈X′ t ′′′}. We also have that
TX′ = TX ⊎ {t}. We perform a case analysis on t ′′.
– If t ′′ = t , then by definition of extend we have that VIS−1

X′(t) = T . Note that T ⊆ TX , so

that for any ta , tb ∈ TX , we have that ta
ARX′

−−−−→ tb if and only if ta
ARX
−−−→ tb , and (w,k,v) ∈X′

ta if and only if (w,k,v) ∈X ta . Thus, t
′
= maxARX

(T ∩ {t ′′′ | (w,k, _) ∈X t ′′′}) =

maxWWG (k)(T).

– If t ′′ ∈ TX , then it is the case that t ′ = maxARX′ (VIS
−1
X′(t

′′) ∩ {t ′′′ | (w,k, _) ∈X′ t ′′′}.

Similarly to the case above, we can prove that VIS−1
X′(t

′′) = VIS−1
X
(t), for any ta , tb ∈

VIS−1
X
(t), (w,k,v) ∈X′ ta implies (w,k,v) ∈X ta , and ta

ARX′

−−−−→ tb implies ta
ARX
−−−→ tb ,

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

from which it follows that t ′ = maxARX (VIS
−1
X
(t ′′)∩{t ′′′ | (w,k_) ∈X t ′′′}), and therefore

t ′
WRG (k)
−−−−−−→ t ′′.

(3) Similar to WR(k)G , there are two cases that either the t ′′ already exists in the dependency
graph before, or it is the newly committed transaction.

• Suppose that t ′
WWG (k)
−−−−−−−→ t ′′ for some t ′, t ′′ ∈ TX . Then (w,k, _) ∈X t ′, (w,k, _) ∈X t ′′,

and t ′
ARX
−−−→ t ′′. By definition of extend, it follows that t ′

ARX′

−−−−→ t ′′, and because t ′, t ′′ ∈
TX , hence t

′
, t ′′ , t , then (w,k, _) ∈X′ t ′, (w,k, _) ∈X′ t ′′. By definition, we have that

t ′
WWX′ (k)
−−−−−−−→ t ′′.

• Suppose that (w,k, _) ∈X t ′, (w,k, _) ∈ F . Because t ′ ∈ TX , we have that t ′ , t , hence
(w,k, _) ∈X′ t ′. By definition, TX′(t) = F , hence (w,k, _) ∈X′ t . Finally, the definition

of extend ensures that t ′
ARX′

−−−−→ t . Combining these three facts together, we obtain that

t ′
WWG′ (k)
−−−−−−−→ t .

Now, suppose that t ′
WWG′ (k)
−−−−−−−→ t ′′ for some t ′, t ′′ ∈ TX . Then t ′

ARX′

−−−−→ t ′′, (w,k, _) ∈X′ t ′,
(w,k, _) ∈X′ t ′′. Recall that TG′ = TX′ = TX ⊎ {t}. We perform a case analysis on t ′′.

– If t ′′ = t , then the definition of extend ensures that t ′
ARX′

−−−−→ t implies that t ∈ TX , hence
t ′ , t . Together with (w,k, _) ∈X′ t ′, this leads to (w,k, _) ∈X t ′.

– If t ′′ ∈ TX , then t ′′ , t . The definition of extend ensures that t ′
ARX
−−−→ t ′′. This implies

that t ′, t ′′ ∈ TX , hence t
′
, t ′′ , t , and TX′(t ′) = TX(t

′), TX′(t ′′) = TX(t
′′). It follows

that (w,k, _) ∈X t ′, (w,k, _) ∈X t ′′, and therefore t ′
WWG(k)
−−−−−−−→ t ′′.

�

Lemma D.12 (Graph to kv-store update). Let K be a kv-store, and u ∈ Views(K). Let t < K ,

and F ⊆ P (Ops), and let K ′
= update(K,u,F , t). Let G = GK , G

′
= GK′ ; then for all t ′, t ′′ ∈ TG′

and keys k ,

• TG′ = TG[t 7→ F],

• t ′
WRG′ (k)
−−−−−−→ t ′′ if and only if either t ′

WRG(k)
−−−−−−→ t ′′, or (r,k, _) ∈ F and

t ′ = max
WWG(k)

({w(K(k, i))} i ∈ u(k))

• t ′
WWG′ (k)
−−−−−−−→ t ′′ if and only if either t ′

WWG (k)
−−−−−−−→ t ′′, or (w,k, _) ∈ F and t ′ = w(K(k, _)).

Proof. Fix k ∈ Key. Because t < K , then t < TG , and by definition of update we obtain that
{t ′ | t ′ ∈ K ′} = {t ′ | t ′ ∈ K} ∪ {t}. It follows that TG′ = TG ⊎ {t}.

(1) Suppose that (r,k,v) ∈G t ′. By definition, there exists an index i such thatK(k, i) = (v, _, {t ′}∪
_). BecauseK ′

= update(K,u,F , t), it is immediate to observe thatK ′(k, i) = (v, _, {t ′}∪_),
and therefore (r,k,v) ∈G′ t ′. Conversely, note that if (r,k,v) ∈G′ t , then there exists an
index i = 0, · · · , |K ′(k)| − 1 such thatK ′(k, i) = (v, _, {t ′} ∪ _). it follows that it must be the
case that i ≤ |K(k)| − 1, and because t ′ , t , we have thatK(k, i) = (v, _, {t ′} ∪ _). Therefore
(r,k,v) ∈G t ′.
Similarly, if (w,k,v) ∈G t ′, then there exists an index i = 0, · · · , |K(k)|−1 such thatK(k, i) =

(v, t ′,v). It follows that K ′(k, i) = (v, t ′, _), hence (w,k,v) ∈G′ t ′. If (w,k,v) ∈ F , then we
have that K ′(k, |K ′(k)| − 1) = (v, t ′, _), hence (w,k,v) ∈G′ t ′. Conversely, if (w,k,v) ∈G′ t ′,
then there exists an index i = 0, · · · , |K ′(k)| − 1 such that K(k, i) = (v, t ′, _). We have two
possible cases: either i < |K ′(k, i)|−1, leading to t ′ , t andK(k, i) = (v, t ′, _), or equivalently

Data Consistency in Transactional Storage Systems: A Centralised Approach

(r,k,v) ∈G t ′; or i = |K ′(k, i)| − 1, leading to t ′ = t , and K(k, i) = (v, t , ∅) for some v such
that (w,k,v) ∈ F .
Putting together the facts above, we obtain that TG′ = TG[t 7→ F], as we wanted to prove.

(2) There are two cases that either the t ′′ already exists in the dependency graph before, or it is
the newly committed transaction.

• Suppose that t ′
WRG (k)
−−−−−−→ t ′′. By definition, there exists an index i = 0, · · · , |K(k)| − 1 such

that K(k, i) = (_, t ′, {t ′′} ∪ _). It is immediate to observer, from the definition of update,

that K ′(k, i) = (_, t ′, {t ′′} ∪ _), and therefore t ′
WRG′ (k)
−−−−−−→ t ′′.

• Next, suppose that (r,k, _) ∈ F , and t ′ = maxWWG (k)({w(K(k, i)) | i ∈ u(k)}. By Defini-
tion, K(k, i) = (_, t ′, _), where i = max(u(k)). This is because t ′ → WWG(k)t

′′ if and
only if t ′ = w(K(k, j1)), t

′′
= w(K(k, j2)) for some j1, j2 such that j1 < j2. The definition of

update now ensures thatK ′(k, i) = (_, t ′, {t} ∪ _), from which it follows that t ′
WRG′ (k)
−−−−−−→ t .

Conversely, suppose that t ′
WRG′ (k)
−−−−−−→ t ′′. Recall that TG′ = TG ∪ {t}, hence either t ′′ ∈ TG

or t ′′ = t .
– If t ′′ = t , then it must be the case that there exists an index i = 0, · · · , |K ′(k)|−1 such that
K ′(k, i) = (_, t ′, {t}∪_). Note that ifK ′(k, |K ′(k)|−1) is defined, then it must be the case
thatK ′(k, |K ′(k)| − 1) = (_, t , ∅), hence it must be the case that i < |K ′(k)| − 1. Because
t < K , then by the definition of update it must be the case that (r,k, _) ∈ F , K(k, i) =

(_, t ′, _) and i = max(u(k)); this also implies that t ′ = maxWW(k) {w(K(k, i)) | i ∈ u(k)}.
– If t ′′ ∈ TG , then it must be the case that t ′′ , t . In this case, it also must exist an
index i = 0, · · · , |K ′(k)| − 1 such that K ′(k, i) = (_, t ′, {t ′′} ∪ _). As in the previous
case, we note that i < |K ′(k)| − 1, which together with the fact that t ′′ , t leads to

K(k, i) = (_, t ′, {t ′′} ∪ _). It follows that t ′
WRG(k)
−−−−−−→ t ′′.

(3) Similar to WR(k)G , there are two cases that either the t ′′ already exists in the dependency
graph before, or it is the newly committed transaction.

• Suppose that t ′
WWG (k)
−−−−−−−→ t ′′. By definition, there exist two indexes i, j such that K(k, i) =

(_, t ′, _), K(k, j) = (_, t ′′, _) and i < j . The definition of update ensures that K ′(k, i) =

(_, t ′, _), K ′(k, j) = (_, t ′′, _), and because i < j we obtain that t ′
WWG′ (k)
−−−−−−−→ t ′′.

• Suppose that (w,k, _) ∈ F . Then K ′(k, |K(k)|) = (_, t , _). Let t ′ ∈ TG ; by definition there
exists an index i = 0, · · · , |K(k)| such that K(k, i) = (_, t ′, _). It follows that K ′(k, i) =

(_, t ′, _), and because i < |K(k)|, then we have that t ′
WWG′ (k)
−−−−−−−→ t .

Conversely, suppose that t ′
WWG′ (k)
−−−−−−−→ t ′′. Because TG′ = TG∪{t}, we have two possibilities.

Either t ′′ = t , or t ′′ ∈ TG .
– If t ′′ = t , then it must be the case that (w,k, _) ∈G′ t , or equivalently there exists an index
i = 0, · · · , |K ′(k)| − 1 such that K ′(k, i) = (_, t , _). Because t < K , and because for any
i = 0, · · · , |K(k)|−1,K ′(k, i) = (_, t , _) ⇒ K(k, i) = (_, t , _), then it necessarily has to be
i = K ′(k)| −1. According to the definition of update, this is possible only if (w,k, _) ∈ F .

Finally, note that because t ′
WWG′ (k)
−−−−−−−→ t , then there exists an index j < |K ′(k, i)| − 1 such

thatK ′(k, j) = (_, t ′, _). The fact that j < |K ′(k, i)| − 1 we obtain thatK(k, j) = (_, t ′, _),
or equivalently t ′ = w(K(k, _)).

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

– If t ′′ ∈ TG , then there exist two indexes i, j such that j < |K ′(k, j)| − 1, K ′(k, j) =

(_, t ′′, _), i < j , andK ′(k, i) = (_, t ′, _). It is immediate to observe thatK(k, i) = (_, t ′, _),

K(k, j) = (_, t ′′, _), from which t ′
WWG(k)
−−−−−−−→ t ′′ follows.

�

D.3 Abstract Execution Traces to KV-Store Traces

We show to construct, given an abstract execution X, a set of ET⊤-traces KVtrace(ET⊤,X) in nor-
mal form such that for any τ ∈ KVtrace(ET⊤,X), the trace τ satisfies lastConf(τ) = (KX, _). We
first define the cut(X,n) function in Def. D.13 which gives the prefix of the first n transactions of
the abstract execution X. The cut(X,n) function is very useful for later discussion.

Definition D.13. Let X be an abstract execution, let n = |TX |, and let {ti }
n
i=1 ⊆ TX be such that

ti
ARX
−−−→ ti+1. The cut of the first n transactions from an abstract execution X is defined as the

follows:

cut(X, 0), ([], ∅, ∅)

cut(X, i + 1), extend
(
cut(X, i), ti+1,VIS

−1
X (ti+1),TX(ti+1)

)
Proposition D.14 (Well-defined cut). For any abstract execution X, X = cut(X, |TX |).

Proof. This is an instantiation of Lemma D.15 by choosing i = |TX |. �

Lemma D.15 (Prefix). For any abstract execution X, and index i : i ≤ j ≤ |TX |, if TX = {ti }
n
i=1

be such that ti
ARX
−−−→ ti+1, then cut(X, i) = Xi where

TXi (t) =

{
TX(t) if ∃j ≤ i . t = tj

undefined otherwise

VISXi =

{
(t , t ′) ∈ TXi

���� t VISX
−−−→ t ′

}

ARXi =

{
(t , t ′) ∈ TXi

���� t ARX
−−−→ t ′

}

Proof. Fix an abstract execution X. We prove by induction on i = |TX |.

• Base case: i = 0. Then TX′ = [],VISX′ = ∅, ARX′ = ∅, which leads to X′
= cut(X, 0).

• Inductive case: i = i ′ + 1. Assume that cut(X, i ′) = Xi ′ . We prove the following:
– Tcut(X,i) = TXi . By definition,

Tcut(X,i) = Tcut(X,i ′)[ti 7→ TX(ti)]TXi′ [ti 7→ TX](ti) = TXi

– VIScut(X,i) = VISXi . Note that, by inductive hypothesis, Tcut(X,i ′) = TXi′ =
{
tj
}i ′
j=1

. We have

that

VIScut(X,i) = VIScut(X,i ′) ∪
{
(tj , ti) ∈ VISX

�� 1 ≤ j ≤ i ′
}

= VISXi′ ∪
{
(tj , ti) ∈ VISX

�� 1 ≤ j ≤ i ′
}

=

{
(tj′ , tj) ∈ VISX

�� 1 ≤ j ≤ i ′
}
∪
{
(tj , ti) ∈ VISX

�� 1 ≤ j ≤ i ′
}

=

{
(tj′ , tj) ∈ VISX

�� 1 ≤ j ≤ i ′
}

= VISXi

– ARcut(X,i) = ARXi . It follows the same way as the above.

�

Data Consistency in Transactional Storage Systems: A Centralised Approach

Let Client(X) ,
{
cl

�� ∃n. tn
cl

∈ TX
}
. Given an abstract execution X, a client cl and an index i :

0 ≤ i < |TX |, the function nextTid(X, cl , i),minARX

{
t
j

cl

��� tncl < Tcut(X,i)
}
. Note that nextTid(X, cl , i)

could be undefined. The conversion from abstract execution tests to ET traces is in Def. D.16.

Definition D.16. Given an abstract execution X and an index i : 0 ≤ i < |TX |, the function
KVtrace(ET⊤,X, i) is defined as the smallest set such that:

• (K0, λcl ∈ Client(X).λk . {0}) ∈ KVtrace(ET⊤,X, 0),
• suppose that τ ∈ KVtrace(ET⊤,X, i) for some i . Let
– t = minARX

(TX \Tcut(X,i)),
– cl ,n be such that t = tn

cl
,

– u = getView
(
X,VIS−1

X
(tn
cl
)
)
,

– u ′
= getView(X,T), where T is an arbitrary subset of TX if nextTid(X, cl , i + 1) is unde-

fined, or is such that T ⊆ (AR−1
X
)?(t) ∩ VIS−1

X
(nextTid(cl , i + 1)),

– F = TX(t),
– (Kτ ,Uτ) = lastConf(τ), and
– K = update(Kτ ,u,F , t).
Then(
τ

(cl,ε)
−−−−−_ET⊤ (Kτ ,Uτ [cl 7→ u])

(cl,F)
−−−−−−_ET⊤ (K,Uτ [cl 7→ u ′])

)
∈ KVtrace(ET⊤,X, i + 1)

Last, the function KVtrace(ET⊤,X), KVtrace(ET⊤,X, |TX |).

Proposition D.17 (Abstract executions to trace ET⊤). Given an abstract execution X satis-

fying RPLWW, and a trace τ ∈ KVtrace(ET⊤,X), then lastConf(τ) = (KX , _) and KX ∈ CM(ET⊤).

Proof. Let X be an abstract execution that satisfies the last write wins policy. Let n = |TX |. Fix
i = 0, · · · ,n, and let τ ∈ KVtrace(ET⊤,X, i). We prove, by induction on i , that τ ∈ CM(ET⊤), and
lastConf(τ) = (K(cut(X,i), _). Then the result follows from Prop. D.14.

• Base case: i = 0. By definition, τ = (K0,U0), where U0 = λcl ∈ Client(X).λk . {0}. Clearly,
we have that τ ∈ CM(ET⊤).

• Inductive case: i = i ′ + 1. Let ti = minARX
(TX \ Tcut(X,i ′)), and suppose that ti = tm

cl
for some

client cl and indexm. Fix u = getView
(
X,VIS−1

X
(ti)

)
, and F = TX(ti). We prove that there

exists a trace τ ′ ∈ KVtrace(ET⊤,X, i
′) and a set T such that:

(1) if nextTid(cl ,X, i) is undefined then T ⊆ TX , otherwise

T ⊆ VIS−1X (nextTid(cl ,X, i)) ∩ (AR−1
X)?(ti)

(2) the new trace τ such that

τ = τ ′
(cl,ε)

−−−−−_ (Kτ ′,Uτ ′[cl 7→ u])
(cl,F)

−−−−−−_ (K,Uτ ′[cl 7→ u ′])

where (Kτ ′,Uτ ′) = lastConf(τ ′), and K = update(Kτ ′,u,F , ti), and u
′
= getView(X,T).

By inductive hypothesis, we may assume that τ ′ ∈ CM(ET⊤), andKτ ′ = Kcut(X,i ′). We prove
the following facts:

(1) K = Kcut(X,i). Because of Prop. D.10 and Prop. D.14, we obtain

K = update(Kτ ′,u,F , ti)

= update
(
Kcut(X,i ′), getView

(
X,VIS−1

X
(ti)

)
,TX(ti), ti

)
= Kextend(cut(X,i ′),VIS−1X (ti),ti ,TX(ti))
= Kextend(cut(X,i))

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

(2) (Kτ ′,Uτ ′)
(cl,ε)

−−−−−_ (Kτ ′,Uτ ′[cl 7→ u]). It suffices to prove that Uτ ′(cl) ⊑ u for any key k .

By Lemma D.15 we have that Tcut(X,i ′) =
{
tj
}i ′
j=1

, for some t1, · · · , ti ′ such that whenever

1 ≤ j < j ′ ≤ i ′, then tj
ARX
−−−→ tj′ . We consider two possible cases:

– For all j : 1 ≤ j ≤ i ′, and h ∈ N, then tj , th
cl
. In this case we have that no transition

contained in τ ′ has the form (_, _)
(cl,_)

−−−−−_. (_, _), from which it is possible to infer that
Uτ ′(cl) = λk . {0}. Because u = getView

(
X,VIS−1

X
(ti)

)
, then by definition we have that

0 ∈ u(k) for all keys k ∈ Key. It follows that Uτ ′(cl) ⊑ u.
– There exists an index j : 1 ≤ j ≤ i ′ and an integer h ∈ N such that tj = th

cl
. Without

loss of generality, let j be the largest such index. It follows that the last transition in τ ′

of the form (_, _)
(cl,Fj)
−−−−−→ (_,Upre) is such that Upre(cl) = getView

(
X,Tpre

)
, for some

Tpre ⊆ VIS−1
X
(ti) ∩ (AR−1

X
)?(tj). This is because nextTid(cl ,X, j) is defined and equal to

ti . Furthermore, because the trace τ ′ is in normal form by construction, in τ ′ a transi-

tion of the form (_, _)
(cl,ε)

−−−−−_ET⊤ (_, _) is always followed by a transition of the form

(_, _)
(cl,F′)

−−−−−−_ET⊤ (_, _). Because we assume that the last transition where client cl exe-

cutes a transaction in τ ′ has the form (_, _)
(cl,Fj)

−−−−−−_ET⊤ (_,Upre), then the latter is also
the last transition for client cl in τ ′ (i.e. including both execution of transactions and view
updates). It follows thatUτ ′(cl) =Upre(cl), and in particularUτ ′(cl) = getView

(
X,Tpre

)
.

By definition, Tpre ⊆ VIS−1
X
(ti) ∩ (AR−1

X
)?(tj) ⊆ VIS−1

X
(ti). By Lemma D.18, we have that

Uτ ′(cl) = getView
(
X,Tpre

)
⊑ getView

(
X,VIS−1

X
(ti)

)
= u, as we wanted to prove.

(3) (Kτ ′,Uτ ′[cl 7→ u])
(cl,F)

−−−−−−_ET⊤ (K,Uτ ′[cl 7→ u ′]). It suffices to show that ET⊤ ⊢ (Kτ ′,u) ⊲

F : (K,u ′). That is, it suffices to show that u ∈ Views(Kτ ′), u
′ ∈ Views(K), and when-

ever (r,k,v) ∈ F , then max<(u(k)) = (v, _, _). The first two facts are a consequence
of Lemma D.19, Kτ ′ = Kcut(X,i ′), and Kcut(X,i). The last one that if (r,k,v) ∈ F then
max<(u(k)) = (v, _, _) follows the fact that X satisfies the last write wins policy and the
fact that u = getView

(
VIS−1

X
(ti)

)
.

�

Lemma D.18 (Monotonic getView). Let X be an abstract execution, and let T1 ⊆ T2 ⊆ TX . Then

getView(X,T1) ⊑ getView(X,T2).

Proof. Fix k ∈ Key. By definition

getView(X,T1)(k) = {0} ∪ {i | w(KX(k, i)) ∈ T1}

⊆ {0} ∪ {i | w(KX(k, i)) ∈ T2}

= getView(X,T2)(k)

then it follows that getView(X,T1) ⊑ getView(X,T2). �

Lemma D.19 (Valid view on cut of abstract execution). Let X be an abstract execution,

with TX = {ti }
n
i=1 for n = |TX |, and i : 0 ≤ i < n such that ti

ARX
−−−→ ti+1. Assuming T0 = ∅, and

Ti ⊆ (AR−1)?(ti) for i : 0 ≤ i ≤ n, then getView(X,Ti) ∈ Views(Kcut(X,i)).

Proof. We prove by induction on the index i .

• Base case: i = 0. It follows T0 = ∅, and getView(X,T0) = λk . {0}. We also have that
Kcut(X,0) = λk . (v0, t0, ∅), hence it is immediate to see that getView(X,T0) ∈ Views(Kcut(X,0)).

Data Consistency in Transactional Storage Systems: A Centralised Approach

• Inductive case: i = i ′ + 1. Suppose that for any T ⊆ (AR−1
X
)?(ti ′), then getView(X,T) ∈

Views(Kcut(X,i)). Let consider the set Ti . Note that, because of Prop. D.10, we have that

Kcut(X,i) = Kextend(cut(X,i ′),ti ,VIS−1X (ti),TX(ti)) = update
(
Kcut(X,i ′), getView

(
VIS−1

X
(ti)

)
,TX(ti), ti

)
There are two possibilities:
– ti < Ti , where caseTi ⊆ (AR−1

X
)?(ti ′). From the inductive hypothesiswe get getView(X,Ti) ∈

Views(Kcut(X,i ′)). Note that Kcut(X,i ′) only contains the transactions identifiers from t1 to

ti ′ ; in particular, it does not contain ti . Because Kcut(X,i) = update
(
Kcut(X,i ′), _, _, ti

)
, then

by Lemma D.20 we have that getView(X, ti) ∈ Views(Kcut(X,i)).
– t ∈ Ti . Note that for any key k such that (w,k, _) < TX(ti), then getView(X,Ti)(k) =

getView(X,Ti \ {ti })(k); and for any keyk such that (w,k, _) ∈ TX(ti), then getView(X,Ti)(k) =
getView(X,Ti \ {ti })(k) ∪

{
j
�� w(KX(k, i)) = tj

}
. In the last case, the index j must be such

that j < |Kcut(X,i)| − 1, because we know that ti ∈ Kcut(X,i). It follows from this fact and
the inductive hypothesis, that getView(X,Ti) ∈ Views(Kcut(X,i)).

�

Lemma D.20 (update preserving views). Given a kv-storeK , a transactions t < K , views u,u ′ ∈

Views(K), and set of operations F , then u ∈ update(K,u ′
,F , t).

Proof. Immediate from the definition of update. Note that t < K ensures that u still satisfies
(atomic) with respect to the new kv-store update(K,u ′

,F , t). �

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

E THE SOUND AND COMPLETE CONSTRUCTORS OF THE KV-STORE SEMANTICS

WITH RESPECT TO ABSTRACT EXECUTIONS

In this Section we first define the set of ET-traces generated by a program P. Then we prove cor-
rectness our semantics on kv-stores, meaning that if a program P executing under the execution
test ET terminates in a state (K, _), then K ∈ CM(ET).

E.1 Traces of Programs under KV-Stores

The Ptraces(ET, P) is the set of all possible traces generated by the program P starting from the
initial configuration (K0,U0).

Definition E.1. Given an execution test ET a program P and a state (K,U, E), thePtraces(ET, P,K,U, E)
function is defined as the smallest set such that:

• (K,U) ∈ Ptraces(ET, P,K,U, E)

• if τ ∈ Ptraces(ET, P′,K ′
,U ′
, E ′) and ((K,U, E), P)

(cl, ι)
−−−−→ET (K

′
,U ′
, E ′), then

τ ∈ Ptraces(ET, P,K,U, E ′)

• if τ ∈ Ptraces(ET, P′,K ′
,U ′
, E ′) and (K,U, E), P)

(cl,u,F)
−−−−−−→ ((K ′

,U ′
, E ′), P′), then(

(K,U)
(cl,ε)

−−−−−_ET (K,U[cl 7→ u])
(cl,F)

−−−−−−_ET τ

)
∈ Ptraces(ET, P,K,U, E)

The set of traces generated by a program P under the execution test ET is then defined asPtraces(ET, P),
Ptraces(ET, P,K0,U0, E0), where U0 = λcl ∈ dom(P).λk . {0}, and E0 = λcl ∈ dom(P).λa.0.

Proposition E.2. For any program P and execution test ET, Ptraces(ET, P) ⊆ conf(ET) and τ ∈

Ptraces(ET, P) is in normal form.

Proof. First, by the definition of Ptraces, it only constructs trace in normal form. It is easy to
prove that for any trace τ in Ptraces(ET, P), by induction on the trace length, the trace is also in
conf(ET). �

Corollary E.3. If a trace in the following form

(K0,U0, E0), P) →ET · · · →ET (K,U, E, λcl ∈ dom(P).skip)

then K ∈ CM(ET).

Proof. By the definition of Ptraces, there exists a corresponding trace τ ∈ Ptraces(ET, P). By
Prop. E.2, such trace τ ∈ conf(ET), therefore K ∈ CM(ET) by definition of CM(ET). �

Similar to JPK(RP,A) , the function JPKET is defined as the following:

JPKET =
{
K

�� (K0,U0, E0), P
_
−→

∗
ET (K, _, _), Pf)

}
where E0 = λcl ∈ dom(P).λx.0 and Pf = λcl ∈ dom(P).skip.

Proposition E.4. For any program P and execution test ET: JPKET = JPKET⊤ ∩ CM(ET).

Proof. Weprove a stronger result that for any program P and execution test ET,Ptraces(ET, P) =
Ptraces(ET⊤, P)∩conf(ET). It is easy to see Ptraces(ET, P) ⊆ Ptraces(ET⊤, P). By Prop. E.2, we know
Ptraces(ET, P) ⊆ conf(ET). Therefore Ptraces(ET, P) ⊆ Ptraces(ET⊤, P) ∩ conf(ET).
Let consider a trace τ in Ptraces(ET⊤, P) ∩ conf(ET). By inductions on the length of trace, every

step that commits a new transaction must satisfy ET as τ ∈ conf(ET). It also reduce the program
P since τ ∈ Ptraces(ET⊤, P). By the definition Ptraces(ET, P), we can construct the same trace τ so
that τ ∈ Ptraces(ET, P). �

Data Consistency in Transactional Storage Systems: A Centralised Approach

E.2 Adequate of KV-Store Semantic

Our main aim is to prove that for any program P, the set of kv-stores generated by P under ET
corresponds to all the possible abstract executions that can be obtained by running P on a database
that satisfies the axiomatic definition A. In this sense, we aim to establish that our operational
semantics is adequate.
More precisely, suppose that a given execution test ET captures precisely a consistency model

defined in the axiomatic style, using a set of axioms A and a resolution policy RP over abstract
executions. That is, for any abstract execution X that satisfies the axioms A and the resolution
policy RP, then KVtrace(ET⊤,X) ∩ CM(ET) , ∅; and for any τ ∈ CM(ET), there exists an abstract
execution X ∈ absExec(τ) that satisfies the axioms A and the resolution policy RP.
We now consider the program P. The Prop. E.5 and Prop. E.6 show the connection between

reduction steps between the last write win resolution policy (RPLWW, ∅) and the most permissive
execution test ET⊤.

Proposition E.5 (Permissive execution test to last write win). Suppose that

(K,U, E), P
(cl,u,F)
−−−−−−→ET⊤ (K ′

,U ′
, E ′), P′

Assuming an abstract execution X such that KX = K , and a set of read-only transactions T ⊆ TX ,

then there exists an abstract execution X′ such that KX′ = K ′, and

(X, E), P
(cl,T∪visTx(K,u),F)
−−−−−−−−−−−−−−−−→(RPLWW, ∅) (X

′
, E ′), P′

Proof. Suppose that (K,U, E), P
(cl,u,F)
−−−−−−→ET⊤ (K ′

,U ′
, E), P′. This transition can only be in-

ferred by applying Rule PSingleThread, meaning that

• P(cl) 7→ C for some command C,

• cl ⊢ (K,U(cl), E(cl)), C
(cl,u,F)
−−−−−−→ET⊤ (K ′

,u ′
, s ′), C′ for some u ′

, s ′, and
• U ′

=U[cl 7→ u ′], E ′
= E[cl 7→ s ′] and P′ = P[cl 7→ C′].

Let X be such that KX = K , and let T ⊆ TX be a set of read-only transactions in X. It suffices to
show that there exists an abstract execution X′ such that KX′ = K ′, and

cl ⊢ (X, E(cl)), C
(cl,T∪visTx(K,u),F)
−−−−−−−−−−−−−−−−→(RPLWW, ∅) (X

′
, s ′), C′.

By the ASingleThread rule, we obtain

(X, E)P,
(cl,T∪visTx(K,u),F)
−−−−−−−−−−−−−−−−→(RPLWW, ∅) (X

′
, E ′), P′

Now we perform a rule induction on the derivation of the transition

cl ⊢ (K,U(cl), E(cl)), C
(cl,u,F)
−−−−−−→ET⊤ (K ′

,u ′
, ss′), C′

Base case: PCommit. This implies that

• C = [T] for some T, and C′ = skip,
• U(cl) ⊑ u,
• let ss = snapshot(K,u); then (E(cl), ss, ∅) →∗ (s ′, _,F),
• K ′

= update(K,u,F , t) for some t ∈ nextTid(K, cl), and
• ET⊤ ⊢ (K,u) ⊲ F : (K ′

,u ′).

Choose an arbitrary set of of read-only transactionsT ⊆ TX .We observe that getView(X,T ∪ visTx(K,u)) =

u since KX = K and Prop. D.6. We can now apply Prop. D.5 and ensure that RPLWW(X,T ∪

visTx(K,u)) = {ss}. LetX′
= extend(X, t ,T ∪ visTx(K,u)). Because getView(X,T ∪ visTx(K,u)) =

u, KX = K , then by Prop. D.10 we have that KX′ = update(K,u, t ,F) = K ′. To summarise, we

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

have that T ∪ visTx(K,u) ⊆ TX , ss ∈ RPLWW(X,T ∪ visTx(K,u)), (E(cl), ss, ∅) →∗ (s ′, _,F) and
t ∈ nextTid(TX, cl). Now we can apply ACommit and infer

cl ⊢ (X, E(cl)), [T]
cl,T∪visTx(KX,u)
−−−−−−−−−−−−−−→(RPLWW, ∅) (X

′
, s ′), skip

which is exactly what we wanted to prove.
Base case: PPrimitive,PChoice,PIter,PSeqSkip. These cases are trivial since they do not alter
the state of K . Inductive case: PSeq. It is derived by the I.H. �

Proposition E.6 (Last write win to permissive execution test). Suppose that

(X, E), P
(cl,T,F)
−−−−−−→(RPLWW, ∅) (X

′
, E ′), P′

Then for any U and u ∈ Views(KX) such that u ⊑ getView(X,T), the following holds:

(KX,U[cl 7→ u], E), P
(cl,getView(X,T),F)
−−−−−−−−−−−−−−−−→ET⊤ (KX′,U, E ′), P′

Proof. Suppose that

(X, E), P
(cl,T,F)
−−−−−−→(RPLWW, ∅) (X

′
, E ′), P′

Fix a functionU from clients in dom(P) to views in Views(K), and a view u ⊑ getView(X,T). We

show that (KX,U[cl 7→ u], E)
(cl,getView(X,T),F)
−−−−−−−−−−−−−−−−→ET⊤ (KX′,U, E ′), P′.

Note that the transition X, E, P
(cl,T,F)
−−−−−−→(RPLWW, ∅) (X

′
, E ′), P′ can only be inferred using ASin-

gleThread rule, from which it follows that

cl ⊢ (X, E(cl)), P(cl)
(cl,T,F)
−−−−−−→(RPLWW, ∅) (X

′
, s ′), C′

for some s ′ such that E ′
= E[cl 7→ s ′] and C′ such that P′ = P[cl 7→ C′]. It suffices to show that

cl ⊢ (KX ,u, E(cl)), P(cl)
(cl,getView(KX,T),F)
−−−−−−−−−−−−−−−−−→ET⊤ (KX′,U(cl), s ′), C′

Then by applying PSingleThread we obtain

(KX,U[cl 7→ u], E), P
(cl,getView(KX,T),F)
−−−−−−−−−−−−−−−−−→ET⊤ (KX′,U, E ′), P′

The rest of the proof is performed by a rule induction on the derivation to inter

cl ⊢ (X, E(cl)), P(cl)
(cl,T,F)
−−−−−−→(RPLWW, ∅) (X

′
, s ′), C′

Base case: ACommit. In this case we have that

• P = [T],
• P′ = skip,
• (E(cl), ss, ∅), T →∗ (s ′, _,F), skip for an index ss ∈ RPLWW(X,T), and
• X′

= extend(X, t ,T ,F) for some t ∈ nextTid(X, cl).

Furthermore, it is easy to see by induction on the length of the derivation (E(cl), ss, ∅), T →∗

(s ′, _,F), skip, thatwhenever (r,k,v) ∈ F then ss(k) = v . Note that snapshot(KX, getView(X,T)) =

ss by Prop. D.5. Also, if (r,k,v) ∈ F then ss(k) = v , which is possible only ifKX(k,max<(getView(X,T)(k))) =

(v, _, _). This ensures that ET⊤ ⊢ (KX, getView(X,T)) ⊲ F : U(cl). We can now combine all the
facts above to apply rule PCommit

cl ⊢ (KX,u, E(cl)), [T]
(cl,getView(KX,T),F)
−−−−−−−−−−−−−−−−−→ET⊤ (K ′

,U(cl), s ′), skip,

where K ′
= update(KX , t , getView(X,T),F). Recall that X′

= extend(X,T , t ,F). Therefore by
Prop. D.10 we have that K ′

= KX′ , which concludes the proof of this case.

Data Consistency in Transactional Storage Systems: A Centralised Approach

Base case: APrimitive,AChoice,AIter,ASeqSkip. These cases are trivial since they do not alter
the state of X. Inductive case: ASeq. It is derived by the I.H. �

Corollary E.7. For any program P,

JPKET⊤ =
{
KX

�� X ∈ JPK(RPLWW, ∅)

}
Proof. It can be derived by Prop. E.6 and Prop. E.5. �

E.3 Soundness and Completeness Constructor

We now show how all the results illustrated so far can be put together to show that the kv-store
operational semantics is sound and complete with respect to abstract execution operational se-
mantics.

E.3.1 Soundness. Recall that in the abstract execution operational semantics, a client cl loses in-
formation of the visible transactions immediately after it commits a transaction. Yet such infor-
mation is indirectly presented when the next transaction from the same client is committed. To
define the soundness judgement (Def. E.9), we introduce a notation of invariant (Def. E.8) to encore
constraints on the visible transactions after each commit.

Definition E.8 (Invariant for clients). A client-based invariant condition, or simply invariant, is a
function I : AbsExecs×Client → P (TransID) such that for any cl we have that I (X, cl) ⊆ TX , and

for any cl ′ such that cl ′ , cl we have that I (extend
(
X, t ·

cl ′
, _, _

)
, cl) = I (X, cl).

Definition E.9 (Soundness judgement). An execution test ET is soundwith respect to an axiomatic
definition (RPLWW,A) if and only if there exists an invariant condition I such that if assuming that

• a client cl having an initial view u, commits a transaction t with a fingerprint F and up-
dates the view to u ′, which is allowed by ET i.e. ET ⊢ (K,u) ⊲ F : (K ′

,u ′) where K ′
=

update(K,u,F , t),
• a X such that KX = K and I (X, cl) ⊆ visTx(K,u),

then there exist a set of read-only transactions Trd such that

• the new abstract execution X′
= extend(X, t , visTx(K,u) ∪ Trd,F),

• the view u satisfies A, i.e. ∀A ∈ A. {t ′ | (t ′, t) ∈ A(X′)} ⊆ visTx(K,u) ∪ Trd,
• the invariant is preserved, i.e. I (X′

, cl) ⊆ visTx(K ′
,u ′).

Theorem E.10 (Soundness). If ET is sound with respect to (RPLWW,A), then

CM(ET) ⊆ {K | ∃X ∈ CM(RPLWW,A)). KX = K}

Proof. Let ET be an execution test that is soundwith respect to an axiomatic definition (RPLWW,A).
Let I be the invariant that satisfies Def. E.9. Let consider an ET-trace τ . We can assume that τ is
in normal form, a trace that every view shift of a client cl is followed by a transaction from cl ,
and any transaction from cl must be after a view shift of cl . Without lose generality, we can also
assume that the trace does not have transitions labelled as (_, ∅). Thus we have that the following
trace τ :

τ = (K0,U0)
(cl0,ε)

−−−−−−_ET (K0,U
′
0)

(cl0,F0)
−−−−−−−_ET (K1,U1)

(cl1,ε)
−−−−−−_ET · · ·

(cln−1,Fn−1)
−−−−−−−−−−_ET (Kn ,Un)

For any i : 0 ≤ i ≤ n, let τi be the prefix of τ that contains only the first 2i transitions. Clearly τi is
a valid ET-trace, and it is also a ET⊤-trace. By Prop. D.9, any abstract execution Xi ∈ absExec(τi)
satisfies the last write wins policy. We show by induction on i that we can always find an abstract
execution Xi ∈ absExec(τi) such that Xi |= A and I (Xi , cl) ⊆ T i

cl
for any client cl and set of

transactions T i
cl
= visTx(Xi ,Ui (cl)) ∪ T i

rd
, and read-only transactions T i

rd
in Xi . If so, because

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Xi satisfies the last write wins policy, then it must be the case that Xi |= (RPLWW,A). Then by
choosing i = n, we will obtain that Xn |= (RPLWW,A). Last, by Prop. D.9, KXn = Kn , and there is
nothing left to prove. Now let prove such Xi ∈ absExec(τi) always exists.
Base case: i = 0. LetX0 be the only abstract execution included in absExec(τ0), that isX0 = ([], ∅, ∅).
For any A ∈ A, it must be the case that A(X0) ⊆ TX0

= ∅, hence the inequation A(X0) ⊆ VISX0
is

trivially satisfies. Furthermore, for the client invariant I we also require that I (X0, _) ⊆ TX0
= ∅; for

any client cl we can choose T 0
cl
= visTx

(
KX0
,U0(cl)

)
∪ ∅ = ∅. Therefore I (X0, cl) = ∅ ⊆ ∅ = T 0

cl
.

Inductive case: i ′ = i + 1 where i < n. By the inductive hypothesis, there exists an abstract
execution Xi such that

• Xi |= A for all A ∈ A, and
• I (X, cl) ⊆ T i

cl
for any client cl and set of transactions T i

cl
= visTx(Ki ,Ui (cl)).

We have two transitions to check, the view shift and committing a transaction.

• the view shift transition (Ki ,Ui)
(cl i ,ε)

−−−−−−_ET (Ki ,U
′
i). By definition, it must be the case that

U ′
i =Ui

[
cl 7→ u ′

i

]
for someu ′

i such thatUi (cl) ⊑ u ′
i . Let (T

i
cl
)′ = visTx

(
Ki ,u

′
i

)
; thenwe have

T i
cl
= visTx(Ki ,Ui (cl)) ⊆ visTx

(
Ki ,u

′
i

)
= (T i

cl
)′ As a consequence, I (X, cl) ⊆ T i

cl
⊆ (T i

cl
)′.

• the commit transaction transition (Ki ,U
′
i)

(cl i ,Fi)
−−−−−−−_ET (Ki+1,Ui+1). A necessary condition

for this transition to appear in τ is that ET ⊢ (Ki ,U(cl)) ⊲ Fi : (Ki+1,Ui+1(cl)). Because I
is the invariant to derive that ET is sound with respect to A, and because I (Xi , cl i) ⊆ (T i

cl
)′,

then by Def. E.9 we have the following:
– there exists a set of read-only transactions Trd such that{

t ′
�� (t ′, t(cl,i)) ∈ A(Xi+1)

}
⊆ T i

cl

′
∪ Trd

where t(cl,i) ∈ nextTid(Ki , cl) and Xi+1 = extend
(
Xi , t(cl,i), (T

i
cl
)′ ∪ Trd,Fi

)
,

– I (Xi+1, cl) ⊆ visTx(Ki+1,Ui+1(cl)).
BecauseXi ∈ absExec(τi), by definition of absExec(_)we have thatXi+1 ∈ absExec(τ) (under
the assumption that Fi , ∅), and because lastConf(τi+1) = (Ki+1, _), then KXi+1 = Ki+1.
Now we need to check if Xi+1 satisfies A and the invariant I is preserved.
– A(Xi+1) ⊆ VISi+1

X
for any A ∈ A. Fix A ∈ A and (t ′, t) ∈ A(Xi+1). Because Xi+1 =

extend
(
Xi , t(cl,i), (T

i
cl
)′ ∪ Trd,Fi

)
, we distinguish between two cases.

∗ If t = t(cl,i), then it must be the case that t ′ ∈ (T i
cl
)′∪Trd, and by definition of extend we

have that (t ′, t(cl,i)) ∈ VISXi+1 .
∗ If t , t(cl,i), then we have that t , t ′ ∈ TXi . Because Xi and Xi+1 agree on TXi , then
(t ′, t) ∈ A(Xi). Because Xi |= A, then (t ′, t) ∈ VISXi . By definition of extend, it follows
that (t ′, t) ∈ VISXi+1 .

– Finally, we show the invariant is preserved. Fix a client cl ′.
∗ If cl ′ = cl , then we have already proved that I (Xi+1, cl) ⊆ T i+1

cl
.

∗ if cl ′ , cl , then note that Ui (cl
′) = U ′

i (cl
′) = Ui+1(cl

′), and in particular (T cl ′

i)′ =

visTx
(
Xi ,U

′
i (cl

′)
)
= visTx(Xi+1,Ui+1(cl

′)) = T i+1
cl ′

. By the inductive hypothesis we

know that I (Xi , cl) ⊆ T i
cl ′
, and by the definition of invariant, we have I (Xi+1, cl) ⊆

T i
cl ′
= T i+1

cl ′
.

�

Corollary E.11. If ET is sound with respect to (RPLWW,A), then for any program P, JPKET ⊆{
KX

�� X ∈ JPK(RPLWW,A)

}
.

Data Consistency in Transactional Storage Systems: A Centralised Approach

Proof.

JPKET = JPKET⊤ ∩ CM(ET)

= {KX | X satisfies RPLWW} ∩ CM(ET)

Theorem E .10
⊆ {KX | X satisfies RPLWW ∧ X ∈ CM(RPLWW,A)}

=

{
KX

�� X ∈ JPK(RPLWW,A)

}
�

E.3.2 Completeness. The Completeness judgement is in Def. E.12. Given a transaction ti from
client cl , it converts the visible transactions VIS−1

X
(ti) into view and such view should satisfy the

ET. Note that X does not contain precise information about final view after update, yet the visible
transactions of the immediate next transaction from the same client cl include those information.

Definition E.12. Anexecution test ET is completewith respect to an axiomatic definition (RPLWW,A)

if, for any abstract executionX ∈ CM(RPLWW,A) and index i : 1 ≤ i < |TX | such that ti
ARX
−−−→ ti+1,

there exist an initial view ui and a final view u ′
i where

• ui = getView
(
X,VIS−1

X
(ti)

)
,

• let ti = tn
cl
for some cl ,n;

– if the transaction t ′i = minSOX

{
t ′
���� ti SOX

−−−→ t ′
}
is defined, then u ′

= getView(X,Ti) where

Ti ⊆ (AR−1
X
)?(ti) ∩ VIS−1

X
(t ′i));

– otherwise u ′
= getView(X,Ti) where Ti ⊆ (AR−1

X
)?(ti),

• ET ⊢ (Kcut(X,i−1),ui) ⊲ TX(ti) : (Kcut(X,i),u
′
i).

Theorem E.13. Let ET be an execution test that is complete with respect to an axiomatic definition

(RPLWW,A). Then CM(RPLWW,A) ⊆ CM(ET).

Proof. Fix an abstract execution X ∈ CM(RPLWW,A). For any i : 1 ≤ i < |TX |, suppose that ti

that is the i-th transaction follows the arbitrary order, i.e. ti
ARX
−−−→ ti+1 and let cl i be the client of

the i-th step, i.e. ti = t
_
cl i

. Because ET is complete with respect to (RPLWW,A), for any step i we

can find an initial views ui ,and a final view u ′
i such that

• ui = getView
(
X,VIS−1

X
(ti)

)
,

• there exists a set of transactionsTi such that getView(X,Ti) = u
′
i , and eitherminSOX

{
t ′
���� ti SOX

−−−→ t ′
}

is is defined and Ti ⊆ (AR−1
X
)?(ti) ∩ VIS−1

X
(t ′), or Ti ⊆ (AR−1

X
)?(ti),

• ET ⊢ (Kcut(X,i−1),ui) ⊲ TX(ti) : (Kcut(X,i),u
′
i).

Given above, let Ki = cut(X, i) and Fi = TX(ti). Define the views for clients as

U0 = λcl ∈ {cl ′ | ∃t ∈ TX . t = tcl ′} . λk . {0} U ′
i−1 =Ui [cl i 7→ ui] Ui = U ′

i−1

[
cl i 7→ u ′

i

]
and the ke-stores as

K0 = λk .(v0, t0, ∅) Ki = update(Ki−1,ui ,Fi , ti)

Now by Prop. D.17 we have that the following sequence of ET⊤-reductions

(K0,U0)
(cl1,ε)

−−−−−−_ET⊤ (K0,U
′
0)

(cl1,F1)
−−−−−−−_ET⊤ (K1,U1)

(cl2,ε)
−−−−−−_ET⊤ · · ·

(cln,Fn)
−−−−−−−−_ET⊤ (Kn ,Un)

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Note that Ki = Kcut(X,i). Because ET ⊢ (Kcut(X,i−1),ui) ⊲ Fi : (Ki ,u
′
i), or equivalently ET ⊢

(Kcut(X,i−1),U
′
i−1(cl i)) ⊲ Fi : (Kcut(X,i−1),Ui (cl i)), therefore

(K0,U0)
(cl1,ε)

−−−−−−_ET (K0,U
′
0)

(cl 1,F1)
−−−−−−−_ET (K1,U1)

(cl2,ε)
−−−−−−_ET · · ·

(cln,Fn)
−−−−−−−−_ET (Kn,Un)

It follows that Kn ∈ CM(ET) then Kn = Kcut(X,n) = KX , and there is nothing left to prove. �

Corollary E.14. If ET is complete with respect to (RPLWW,A), then for any program P,{
KX

�� X ∈ JPK(RPLWW,A)

}
⊆ JPKET

Proof. {
KX

�� X ∈ JPK(RPLWW,A)

}
= {KX | X satisfies RPLWW ∧ X ∈ CM(RPLWW,A)}

Theorem E .13
⊆ {KX | X satisfies RPLWW} ∩ CM(ET)

= JPKET⊤ ∩ CM(ET)

= JPKET

�

Data Consistency in Transactional Storage Systems: A Centralised Approach

F THE SOUNDNESS AND COMPLETENESS OF EXECUTION TESTS

We use Defs. E.9 and E.12 to prove the soundness and completeness of execution tests with respect
to axiomatic definitions. It is sufficient to match these two definition, then by Cors. E.11 and E.14
we have CM(ET) = {KX | X ∈ CM(RPLWW,A)}.

We first prove the Theorem F.1, which states that the least fix point of view matches the con-
straint on the visibility relation on abstract execution.

Theorem F.1 (View closure to visibility closure). Assume K and X such that K = KX , and

RK and RX such that RK = RX . For any t ,F , if there is a viewu = getView
(
K,

(
R−1
K

)∗
(visTx(K,u))

)
,

then the new abstract executionX′
= extend

(
X, t ,F ,

(
R−1
K

)∗
(visTx(K,u))

)
satisfies R−1

X
(VIS−1

X′(t)) ⊆

VIS−1
X′(t). Conversely, If there a new abstract execution X′

= extend(X, t ,F ,T) for some T that satis-

fiesR−1
X
(T) ⊆ T , and if a viewu = getView(K,T), then the viewu = getView

(
K,

(
R−1
K

)∗
(visTx(K,u))

)
.

Proof. Assume K and X such thatK = KX , and RK and RX such that RK = RX , Assume t ,F .

Let T =
(
R−1
K

)∗
(visTx(K,u)). Assume that a view satisfies u = getView(K,T). By the definition

of extend, the visible transactions VIS−1
X′(t) = T . Let consider transactions t ′, t ′′ such that t ′

RX
−−→

t ′′
VISX′

−−−−→ t . This means there exists a natural number n such that t ′′ ∈
(
R−1
K

)n
(visTx(K,u)). Given

that RK = RX , it follows t
′ ∈

(
R−1
K

)n+1
(visTx(K,u)), then t ′ ∈ T and so t ′

VISX′

−−−−→ t .

Assume there a new abstract execution X′
= extend(X, t ,F ,T), that satisfies R−1

X
(T) ⊆ T .

Assume u = getView(K,T). Note that RX = RK . It suffices to prove {t ′ ∈ T | t ′ has writes} ={
t ′ ∈

(
R−1
K

)∗
(visTx(K,u))

��� t ′ has writes}.
• Assume a transaction t ′ ∈ T that has writes. It is easy to see there are k, i such that i ∈ u(k)

and w(K(k, i)) ∈ T . This means t ′ ∈ visTx(K,u).

• Assume a transaction t ′ ∈ visTx(K,u), we now prove
(
R−1
K

)n
(t ′) ⊆ T for all n.

– Base case: n = 0. It trivially holds that t ′ ∈ visTx(K,u) ⊆ T .

– Inductive case: n + 1. Assume a transaction t ′′′ ∈
(
R−1
K

)n+1
(t ′). It means there is a t ′′ ∈(

R−1
K

)n
(t ′) such that t ′′′

RK
−−→ t ′′. By I.H., t ′′ ∈ T . Given RK = RX and R−1

X
(T) ⊆ T , it is

known that t ′′′ ∈ T .

�

F.1 Monotonic Read MR

The execution test ETMR is sound with respect to the axiomatic definition [Sivaramakrishnan et al.
2015]

(RPLWW, {λX.VISX ; SOX})

We choose an invariant as the following,

I (X, cl) =
©
«

⋃
{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®¬
\ Trd

where Trd is all the read-only transactions in
⋃
{tncl ∈TX | n∈N} VIS

−1
X
(tn
cl
). Assume a kv-store K , an

initial and a final view u,u ′ a fingerprint F such that ETMR ⊢ (K,u) ⊲ F : (K ′
,u ′). Also choose

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

an arbitrary cl , a transaction identifier t ∈ nextTid(K, cl), and an abstract execution X such that
KX = K and

I (X, cl) ⊆ visTx(K,u) (6.1)

Let X′
= extend(X, t ,F , visTx(K,u) ∪ Trd). We now check if X′ satisfies the axiomatic definition

and the invariant is preserved:

• {t ′ | (t ′, t) ∈ VISX′ ; SOX′} ⊆ visTx(K,u) ∪ Trd. Suppose that t ′
VISX′

−−−−→ t ′′
SOX′

−−−−→ t for some
t ′, t ′′. We show that t ′ ∈ I (X, cl), and then Eq. (6.1) ensures that t ′ ∈ visTx(K,u) ∪ Trd.

Suppose t ′′
SOX′

−−−−→ t , then t ′′ = tn
cl

for some n ∈ N. Because t ′′ , t and TX′ \ TX = {t}, we

also have that t ′′ ∈ X. By the invariant of I (X, cl), we have that VIS−1
X
(cl) ⊆ I (X, cl): because

t ′
VISX′

−−−−→ t ′′ and t ′′ , t we have that t ′
VISX
−−−→ t ′′ and therefore t ′ ∈ I (X, cl).

• I (X′
, cl) ⊆ visTx(X′

,u ′) = visTx(K ′
,u ′). In this case, because ETMR ⊢ (K,u) ⊲ F : (K ′

,u ′),
then it must be the case that u ⊑ u ′. A trivial consequence of this fact is that visTx(K,u) ⊆
visTx(K,u ′). Also, becauseX′

= extend(X, t , visTx(K,u) ∪ Trd), we have that visTx(KX ,u) =

visTx(KX′,u). Finally, note that
{
tn
cl

∈ X′
�� n ∈ N

}
=

{
tn
cl

∈ TX
�� n ∈ N

}
∪ t , that for any

tn
cl

∈ TX we have that VIS−1
X′(t

n
cl
) = VIS−1

X
(tn
cl
), and that VIS−1

X′(t) = visTx(K,u) ∪ Trd. Using
all these facts, we obtain

I (X′
, cl) =

©«
⋃

{tncl ∈X
′ | n∈N}

VIS−1X′(t
n
cl)

ª®®
¬
\ Trd

=

©
«
©
«

⋃
{tncl ∈X | n∈N}

VIS−1X (tncl)
ª®®
¬
\ Trd

ª®®
¬
∪
(
VIS−1X′(t) \ Trd

)

= I (X, cl) ∪ visTx(K,u)

(6.1)
⊆ visTx(K,u)

= visTx(KX ,u)

= visTx(KX′,u)

⊆ visTx(KX′,u ′)

We show that the execution test ETMR is complete with respect to the axiomatic definition

(RPLWW, {λX.(VISX ; SOX)})

Let X be an abstract execution that satisfies the definition CM(RPLWW, {λX.(VISX ; SOX)}), and
consider a transaction t ∈ TX . Assume i-th transaction ti in the arbitrary order, and let ui =
getView

(
X,VIS−1

X
(ti)

)
. We have two possible cases:

• the transaction t ′i = minSOX

{
t ′
���� ti SOX

−−−→ t ′
}
is defined. In this case let

u ′
i = getView

(
X, (AR−1

X)?(ti) ∩ VIS−1X (t ′i)
)

Note that ti
SOX
−−−→ t ′i , and because X |= VISX ; SOX , it follows that VIS

−1
X
(ti) ⊆ VIS−1

X
(t ′i).

We also have that VIS−1
X
(ti) ⊆ (AR−1

X
)?(ti) because of the definition of abstract execution. It

follows that

VIS−1X (ti) ⊆ (AR−1
X)?(ti) ∩ VIS−1X (t ′i),

Data Consistency in Transactional Storage Systems: A Centralised Approach

Recall that ui = getView
(
X,VIS−1

X
(ti)

)
, and u ′

i = getView
(
X, (AR−1

X
)?(ti) ∩ VIS−1

X
(t ′i)

)
. Thus

we have that ui ⊑ u ′
i , and therefore ETMR ⊢ (Kcut(X,i),ui) ⊲ TX(ti) : (Kcut(X,i+1),u

′
i).

• the transaction t ′i = minSOX

{
t ′
���� ti SOX

−−−→ ti

}
is not defined. In this case, let

u ′
i = getView

(
X, (AR−1

X)?(ti)
)

As for the case above, we have that ui ⊑ u ′
i , and therefore ETMR ⊢ (Kcut(X,i),ui) ⊲ TX(ti) :

(Kcut(X,i+1),u
′
i ,u

′
i).

F.2 Monotonic Write MW

The execution test ETMW is sound with respect to the axiomatic definition [Sivaramakrishnan et al.
2015]

(RPLWW, {λX.(SOX ∩WWX);VISX})

We pick the invariant as empty set given the fact of no constraint on the view after update:

I (X, cl) = ∅

Assume a kv-storeK , an initial and a final view u,u ′ a fingerprint F such that ETMW ⊢ (K,u)⊲F :
(K ′
,u ′). Also choose an arbitrary cl , a transaction identifier t ∈ nextTid(K, cl), and an abstract

execution X such that KX = K and I (X, cl) = ∅ ⊆ visTx(K,u). Note that since the invariant
is empty set, it remains to prove that there exists a set of read-only transactions Trd such that
X′
= extend(X, t , visTx(K,u) ∪ Trd,F) and:

∀t ′. (t ′, t) ∈ (SOX′ ∩WWX′);VISX′ ⇒ t ′ ∈ visTx(K,u) ∪ Trd

which can be derived from Theorem F.1.
The execution test ETMW is complete with respect to the axiomatic definition

(RPLWW, {λX.((SOX ∩WWX);VISX)})

LetX be an abstract execution that satisfies the definitionCM(RPLWW, {λX.((SOX ∩WWX);VISX)}),
and consider a transaction t ∈ TX . Let K = KX . Assume i-th transaction ti in the arbitrary
order, and let view ui = getView

(
K,VIS−1

X
(ti)

)
. We also pick any final view such that u ′

i ⊆

getView
(
K, (AR−1

X
)?(ti)

)
. It suffices to prove ETMW ⊢ (Kcut(X,i−1),ui) ⊲ TX(ti) : (Kcut(X,i−1),u

′
i).

It means to prove the following:

ui = getView
(
Kcut(X,i−1), lfpTx

(
Kcut(X,i−1),u, SO ∩WWKcut(X, i−1)

))
which can be derived from Theorem F.1.

F.3 Read Your Write RYW

The execution test ETRYW is soundwith respect to the axiomatic definition [Sivaramakrishnan et al.
2015] (RPLWW, {λX. SOX}). We pick an invariant for the ETRYW as the following:

I (X, cl) =
©
«

⋃
{tncl ∈TX | n∈N}

(SO−1
X)?(tncl)

ª®®
¬
\ Trd

where Trd is all the read-only transactions in
⋃
{tncl ∈TX | n∈N}(SO

−1
X
)?(tn

cl
). Assume a kv-storeK , an

initial and a final view u,u ′ a fingerprint F such that ETRYW ⊢ (K,u) ⊲ F : (K ′
,u ′). Also choose

an arbitrary cl , a transaction identifier tn
cl

∈ nextTid(K, cl), and an abstract execution X such that

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

KX = K and I (X, cl) ⊆ visTx(K,u). Let a new abstract executionX′
= extend

(
X, tn

cl
,F , visTx(K,u) ∪ Trd

)
.

We need to prove that X′ satisfies the constraint and the invariant is preserved:

• t ∈ visTx(K,u)∪Trd for all t such that t
SOX′

−−−−→ tn
cl
. Assume a transaction t such that t

SOX′

−−−−→ tn
cl
.

It immediately implies that t = tm
cl

wherem < n and tm
cl

∈ X. Thus we prove that

t ∈
©
«

⋃
{tncl ∈TX | n∈N}

(SO−1
X)?(tncl)

ª®®¬
⊆ visTx(K,u) ∪ Trd

• I (X′
, cl) ⊆ visTx(KX′,u ′). Let T ′

rd
= Trd if the new transaction tn

cl
has writes, otherwise

T ′
rd
= Trd ∪

{
tn
cl

}
. First we have

I (X′
, cl) =

©«
⋃

{tmcl ∈TX′ | m∈N}

(SO−1
X′)

?(tmcl)
ª®®
¬
\ T ′

rd =

(
(SO−1

X′)
?(tncl)

)
\ T ′

rd

Note that tn
cl

is the latest transaction committed by the client cl . For any transaction t ∈

(SO−1
X′)

?(tn
cl
) \ T ′

rd
that has write, because execution test requires z ∈ u ′(k) for any key k and

index z such that w(KX′(k, z))
SOX
−−−→ t , then t ∈ visTx(KX′,u ′) as what we wanted.

The execution test ETRYW is completewith respect to the axiomatic definition (RPLWW, {λX.SOX}).
Let X be an abstract execution that satisfies the definition CM(RPLWW, {λX.SOX}). Assume i-th
transaction ti in the arbitrary order, and let view ui = getView

(
X,VIS−1

X
(ti)

)
. We construct the

final view u ′
i depending on whether ti is the last transaction from the client.

• If the transaction t ′i = minSOX

({
t ′
���� ti SOX

−−−→ t ′
})

is defined, then u ′
i = getView(X,Ti) where

Ti ⊆ (AR−1
X
)?(ti) ∩VIS−1

X
(t ′i) for some Ti . Given the definition λX.SOX , we know SO−1

X
(t ′i) ⊆

VIS−1
X
(t ′i), so (AR

−1
X
)?(ti)∩SO

−1(t ′i) = (SO−1)?(ti) ⊆ Ti . Take j,k such thatw
(
Kcut(X,i)(k, j)

) SO?

−−−→

t ′i . By the constraint of X, that is SOX ⊆ VISX , it follows w
(
Kcut(X,i)(k, j)

)
∈ Ti . Recall

u ′
i = getView

(
Kcut(X,i),Ti

)
. By the definition of getView, it follows i ∈ u ′

i (k). Therefore
ETRYW ⊢ (Kcut(X,i−1),ui) ⊲ TX(ti) : (Kcut(X,i),u

′
i).

• If there is no other transaction after ti from the same client, we pick u ′
i = getView(X,Ti)

where Ti = (SO−1
X
)?(ti), so ETRYW ⊢ (Kcut(X,i−1),ui) ⊲ TX(ti) : (Kcut(X,i),u

′
i).

F.4 Write Following Read WFR

The write-read relation on X is defined as the following:

WR(X,k),

{
(t , t ′)

���� ∃v . (w,k,v) ∈X t ∧ (r,k,v) ∈X t ′ ∧ t = max
AR

(VIS−1(t ′))

}

The notation WRX is defined as WRX ,
⋃

k ∈KeyWR(X,k). Note that for a kv-store K such that
K = KX , by the definition of K = KX , the following holds:

WRX = {(t , t ′) | ∃k, i . K(k, i) = (_, t , t ′ ∪ _)}

Note that suchWRX coincides with WRG andWRK .
The execution test ETWFR is soundwith respect to the axiomatic definition [Sivaramakrishnan et al.

2015]

(RPLWW,
{
λX.WRX ; (SO ∩ RWX)

?;VISX
}
)

Data Consistency in Transactional Storage Systems: A Centralised Approach

We pick the invariant as I (X, cl) = ∅, given the fact of no constraint on the view after update.
Assume a kv-storeK , an initial and a final view u,u ′ a fingerprint F such that ETWFR ⊢ (K,u)⊲F :
(K ′
,u ′). Also choose an arbitrary cl , a transaction identifier t ∈ nextTid(K, cl), and an abstract

execution X such that KX = K and I (X, cl) = ∅ ⊆ visTx(K,u). Note that since the invariant
is empty set, it remains to prove there is a set of read-only transactions Trd such that Let X′

=

extend(X, t , visTx(K,u) ∪ Trd,F) and

∀t ′. (t ′, t) ∈ WRX′ ; SO?
X′ ;VISX′ ⇒ t ′ ∈ visTx(K,u)

which can be derived from Theorem F.1.
The execution test ETWFR is complete with respect to the axiomatic definition

(RPLWW,
{
λX.WR;WRK ; (SO ∩ RWX′)?;VISX′

}
)

Assume i-th transaction ti in the arbitrary order, and let view ui = getView
(
Kcut(X,i−1),VIS

−1
X
(ti)

)
.

We also pick any final view such that u ′
i ⊆ getView

(
Kcut(X,i), (AR

−1
X
)?(ti)

)
. Note that there is noth-

ing to prove for u ′
i , so it is sufficient to prove the following:

ui = getView
(
Kcut(X,i−1), lfpTx

(
Kcut(X,i−1),u,WRKcut(X, i−1)

; SO
))

which can be derived from Theorem F.1.

F.5 Causal Consistency CC

The wildly used definition on abstract executions for causal consistency is that VIS is transitive.
Yet it is for the sack of elegant definition, while there is a minimum visibility relation given by
(WRX ∪ SOX);VISX ⊆ VISX (Lemma F.2).

Lemma F.2. For any abstract execution X under last-write-win, if it satisfies the following:

(WRX ∪ SOX);VISX ⊆ VISX SOX ⊆ VISX

There exists a new abstract execution X′ where TX = TX′ , ARX = ARX′ , VISX′ ;VISX′ ⊆ VISX′ , and

under last-write-win TX(t) = TX′(t) for all transactions t .

Proof. To recall, thewrite-read relation under a keyWR(X,k) is defined asWR(X,k),
{
(t , t ′)

�� ∃v . (w,k,v) ∈X t ∧ (r,k,v) ∈X t ′ ∧ t = maxAR(VIS
−1(t ′))

}
.

Given an X that satisfies the following

(WRX ∪ SOX);VISX ⊆ VISX SOX ⊆ VISX

we erase some visibility relation for each transaction following the order of arbitration AR until
the visibility is transitive. Assume the i-th transaction ti with respect to the arbitration order. Let
Ri denote a new visibility for transaction ti such that Ri⇂2= {ti } and the visibility relation before
(including) ti is transitive. Let Xi = Kcut(X,i) and VISi =

⋃
0≤k≤i Ri . For each step, says i-th step,

we preserve the following:

VISi ;VISi ⊆ VISi (6.2)

∀t . (t , ti) ∈ Ri ⇒ (t , ti) ∈ (WRi ∪ SOi) (6.3)

• Base case: i = 1 and R1 = ∅. Assume it is from client cl . There is no transaction committed
before, so VIS1 = ∅ and VIS1;VIS1 ⊆ VIS1 as Eq. (6.2).

• Inductive case: i-th step. Suppose the (i-1)-th step satisfies Eq. (6.2) and Eq. (6.3). Let consider
i-th step and the transaction ti . Initially we takeRi as empty set. We first extend Ri by closing
with respect toWRi and prove that it does not affect any read from the transaction ti . Then
we will do the same for SOi .

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

– WRi . For any read (r,k,v) ∈ ti , there must be a transaction tj that tj
WR(Xi,k),AR
−−−−−−−−−−→ ti and

j < i . We include (tj , ti) ∈ Ri . Let consider all the visible transactions of tj . Assume a
transaction t ′ ∈ VIS−1i−1(tj), thus t

′ ∈ VIS−1j (tj) = R−1
j (tj). It is safe to include (t ′, ti) ∈ Ri

without affecting the read result, because those transaction t ′ is already visible for ti in
the abstract executionX: by Eq. (6.3) we know Rj ⊆ (WRj ∪SOj)

+ ⊆ (WRX ∪SOX)
+, and

by the definition ofWR(Xi ,k) we knowWR(Xi ,k) ⊆ VISX .

– Given SOX ⊆ VISX , we include (tj , ti) for some tj such that tj
SOX
−−−→ ti . For the similar

reason asWR, it is safe to includes all the visible transactions t ′ for tj , i.e. t
′ ∈ R−1

j .

By the construction, both Eq. (6.2) and Eq. (6.3) are preserved. Thus we have the proof.

�

Proposition F.3. For any abstract execution X under last-write-win, if it satisfies the following:

(WRX ∪ SOX)
+;VISX ⊆ VISX SOX ⊆ VISX

then

∃R ⊆ ARX . VIS = (WRX ∪ SOX ∪ R)+

By Lemma F.2, the execution test ETCC is sound with respect to the axiomatic definition

(RPLWW,
{
λX.(SOX ∪WRX)

+;VISX , λX. SOX

}
)

We pick an invariant for the ETCC as the union of those forMR and RYW shown in the following:

I1(X, cl) =
©
«

⋃
{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®¬
\ Trd

I2(X, cl) =
©
«

⋃
{tncl ∈TX | n∈N}

(SO−1
X)?(tncl)

ª®®
¬
\ Trd

where Trd is all the read-only transactions included in both:

Trd ∈
©«

⋃
{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®
¬

and

Trd ∈
©
«

⋃
{tncl ∈TX | n∈N}

(SO−1
X)?(tncl)

ª®®¬
Assume a kv-store K , an initial and a final view u,u ′ a fingerprint F such that ETCC ⊢ (K,u) ⊲

F : (K ′
,u ′). Also choose an arbitrary cl , a transaction identifier tn

cl
∈ nextTid(K, cl), and an

abstract execution X such that KX = K and I1(X, cl) ∪ I2(X, cl) ⊆ visTx(K,u). We are about to
prove there exists an extra set of read-only transactions T ′

rd
such that the new abstract execution

X′
= extend

(
X, tn

cl
,F , visTx(K,u) ∪ Trd ∪ T ′

rd

)
and:

∀t . (t , tncl) ∈ SOX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′
rd (6.4)

∀t . (t , tncl) ∈ (SOX′ ∪WRX′);VISX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′
rd (6.5)

I1(X
′
, cl) ∪ I2(X

′
, cl) ⊆ visTx(KX′,u ′) (6.6)

Data Consistency in Transactional Storage Systems: A Centralised Approach

• The invariant I2 implies Eq. (6.4) as the same as RYW in §F.3.
• Eq. (6.5). Note that (t , tn

cl
) ∈ (SOX′ ∪WRX′);VISX′ ⇒ (t , tn

cl
) ∈ (SOX ∪WRX);VISX′ . Also,

recall that SOX = SOK and WRX = WRK . Let T
′

rd
= lfpTx(K,u, SOK ∪WRK). This means

that X′
= extend

(
X, tn

cl
,F , lfpTx(K,u, SOK ∪WRK) ∪ Trd

)
. Let assume t

SOK∪WRK
−−−−−−−−→ t ′ and

t ′ ∈ lfpTx(K,u, SOK ∪WRK) ∪ Trd. We have two possible cases:
– If t ′ ∈ lfpTx(K,u, SOK ∪WRK), by Theorem F.1, we know t ∈ lfpTx(K,u, SOK ∪WRK).
– If t ′ ∈ Trd, there are two cases:

∗ t ′ ∈
(⋃

{tncl ∈TX | n∈N} VIS
−1
X
(tn
cl
)
)
. By the property of X (before update) that (SO ∪

WRX);VISX ∈ VISX , it is known that t ∈
(⋃

{tncl ∈TX | n∈N} VIS
−1
X
(tn
cl
)
)
, that is, t ∈

visTx(K,u) ∪ Trd.

∗ t ′ ∈
(⋃

{tncl ∈TX | n∈N} SO
−1
X
(tn
cl
)
)
. Thenwe know t ∈ (SO∪WRX)

−1
(⋃

{tncl ∈TX | n∈N} SO
−1
X
(tn
cl
)
)
.

By the property of X (before update) that SO ∪WRX ∈ VISX , it follows:

t ∈ V IS−1X

©
«

⋃
{tncl ∈TX | n∈N}

SO−1
X (tncl)

ª®®
¬

=

©
«

⋃
{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®¬

= visTx(K,u) ∪ Trd

• Finally the new abstract execution preserves the invariant I1 and I2 becauseCC satisfiesMW

and RYW. The proofs are the same as those in §F.1 and §F.3.

The execution test ETCC is complete with respect to the axiomatic definition

(RPLWW, {λX.VISX ;VISX , λX. SOX})

Assume i-th transaction ti in the arbitrary order, and let view ui = getView
(
X,VIS−1

X
(ti)

)
. We

pick final view as u ′
i = getView

(
X, (AR−1

X
)?(ti) ∩ VIS−1

X
(t ′i)

)
, if t ′i = minSO

{
t ′
��� ti SO

−−→ t ′
}
is defined,

otherwise u ′
i = getView

(
X, (AR−1

X
)?(ti)

)
. Let the K = Kcut(X,i−1). Now we prove the three parts

separately.

• MR. By Prop. F.3 since VISX ; SOX ⊆ VISX ;VISX ⊆ VISX so it follows as in §F.1.
• RYW. For RYW, since WRX ; SOX ;VISX ⊆ VISX ;VISX ;VISX ⊆ VISX , the proof is as the
same proof as in §F.3.

• allowed(WRK ∪ SO). It is derived fromTheoremF.1 and (WRX∪SO);VISX ⊆ VISX ;VISX ⊆

VISX .

F.6 Update Atomic UA

Given abstract executionX, we definewrite-write relation for a keyk as the following [Cerone et al.
2015a]:

WW(X,k),

{
(t , t ′)

���� t ARX
−−−→ t ′ ∧ (w,k, _) ∈ t ∧ (w,k, _) ∈ t ′

}

Then, the notationWWX ,
⋃

k ∈KeyWW(X,k). Note that for a kv-store K such thatK = KX , by
the definition of K = KX , the following holds:

WWX = {(t , t ′) | ∃k, i, j . t = w(K(k, i)) ∧ t ′ = w(K(k, j)) ∧ i < j}

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Also theWWX coincides with WWG and WWK .
The execution test ETUA is sound with respect to the axiomatic definition (RPLWW, {λX.WWX}).

We pick the invariant as I (X, cl) = ∅, given the fact of no constraint on the final view. Assume a
kv-store K , an initial and a final view u,u ′ a fingerprint F such that ETUA ⊢ (K,u) ⊲ F : (K ′

,u ′).
Also choose an arbitrary cl , a transaction identifier t ∈ nextTid(K, cl), and an abstract execution
X such that KX = K and I (X, cl) = ∅ ⊆ visTx(K,u). Let X′

= extend(X, t , visTx(K,u),F). Note
that since the invariant is empty set, it remains to prove the following:

∀t ′. t ′
WWX′

−−−−−→ t ⇒ t ′ ∈ visTx(K,u)

Assume a transaction t ′ that writes to a key k as t , i.e. t ′
WWX′

−−−−−→ t . Since that t ′ is a trans-
action already existing in K , we have w(K(k, i)) = t ′ for some index i and key k . It means
(w,k, val(K(k, i))) ∈ F . By the execution test of UA, we know i ∈ u(k) therefore t ′ ∈ visTx(K,u).
The execution test ETUA is completewith respect to the axiomatic definition (RPLWW, {λX.WWX}).

Assume i-th transaction ti in the arbitrary order, and let view ui = getView
(
X,VIS−1

X
(ti)

)
. We also

pick any final view such thatu ′
i ⊆ getView

(
X, (AR−1

X
)?(ti)

)
. Note that there is nothing to prove for

u ′
i , so it is sufficient to prove the following:

∀k . (w,k, _) ∈ TX(ti) ⇒ ∀j : 0 ≤ j < |Kcut(X,i−1)(k)|. j ∈ ui (k)

Let consider a key k that have been overwritten by the transaction ti . By the constraint of X that
WWX ⊆ VISX , for any transaction t that writes to the same key k and committed before ti , they

are included in the visible set t ∈ VIS−1
X
(ti). Note that t

WWX
−−−−→ ti ⇒ t

ARX
−−−→ ti ⇒ t ∈ Kcut(X,i−1).

Since that the transaction t write to the key k , it means w(Kcut(X,i−1)(k, j)) = t for some index j .
Then by the definition of getView, we have j ∈ ui (k).

F.7 Consistency Prefix CP

Given abstract execution X, we define read-write read-write relation:

RW(X,k),

{
(t , t ′)

���� t ARX
−−−→ t ′ ∧ (r,k, _) ∈ t ∧ (w,k, _) ∈ t ′

}

It is easy to see RW(X,k) can be derived fromWW(X,k) and WR(X,k) as the following:

RW(X,k) = {(t , t ′) | ∃t ′′. (t ′′, t) ∈ WR(X,k) ∧ (t ′′, t ′) ∈ WW(X,k)}

Then, the notation RWX ,
⋃

k ∈Key RW(X,k). Note that for a kv-store K such that K = KX , by
the definition of K = KX , the following holds:

RWX = {(t , t ′) | ∃k, i, j . t ∈ rs(K(k, i)) ∧ t ′ = w(K(k, j)) ∧ i < j}

The RWX also coincides with RWG and RWK .
An abstract execution X satisfies consistency prefix (CP), if it satisfies ARX ;VISX ⊆ VISX and

SOX ⊆ VISX . Given the definition, there is a corresponding definition on dependency graph by
solve the following inequalities:

WR ⊆ VIS

WW ⊆ AR
VIS ⊆ AR

VIS;RW ⊆ AR

AR;AR ⊆ AR

SO ⊆ VIS

AR;VIS ⊆ VIS

Data Consistency in Transactional Storage Systems: A Centralised Approach

By solving the inequalities the visibility and arbitration relations are:

AR,
(
(SO ∪WR);RW? ∪WW ∪ R

)
+

VIS,
(
(SO ∪WR);RW? ∪WW ∪ R

)∗
; (SO ∪WR)

for some relation R ⊆ AR. When R = ∅, it is the smallest solution therefore the minimum visibility
required.

Lemma F.4. For any abstract execution X, if it satisfies(
(SO ∪WR);RW? ∪WW

)
;VISX ⊆ VISX SOX ⊆ VISX

then there exists a new X′ such that TX = TX′ , under last-write-win TX(t) = TX′(t) for all transac-

tions t , and the relations satisfy the following:

ARX′ ;VISX′ ⊆ VISX′ SOX′ ⊆ VISX′

and vice versa.

Proof. Assume abstract executionX′ that satisfies ARX′ ;VISX′ ⊆ VISX′ and SOX′ ⊆ VISX′ . We
already show that:

ARX′ =

(
(SOX ∪WRX);RW

?
X ∪WWX ∪ R

)
+

VISX′ =

(
(SOX ∪WRX);RW

?
X ∪WWX ∪ R

)∗
; (SOX ∪WRX)

for some relation R ⊆ ARX′ . If we take R = ∅, we have the proof for:

SO ⊆ VISX

(
(SOX ∪WRX);RW

?
X ∪WWX

)
;VISX ⊆ VISX

For another way, we pick the R that extends
(
(SOX ∪WRX);RW

?
X
∪WWX ∪ R

)
+

to a total order.

�

By Lemma F.4 to prove soundness and completeness of ETCP, it is sufficient to use the definition:

(RPLWW,

{
λX.

(
(SO ∪WR);RW? ∪WW

)
;VISX , λX. SOX

}
)

For the soundness, we pick the invariant as the following:

I1(X, cl) =
©
«

⋃
{t icl ∈TX | i ∈N}

VIS−1X (t icl)
ª®®
¬
\ Trd

I2(X, cl) =
©
«

⋃
{t icl ∈TX | i ∈N}

(SO−1
X)?(t icl)

ª®®¬
\ Trd

where Trd is all the read-only transactions included in both

Trd ∈
©«

⋃
{t icl ∈TX | i ∈N}

VIS−1X (t icl)
ª®®
¬

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

and

Trd ∈
©
«

⋃
{t icl ∈TX | i ∈N}

(SO−1
X)?(t icl)

ª®®¬
Assume a key-value store K , an initial and a final view u,u ′ a fingerprint F such that ETCP ⊢

(K,u) ⊲ F : (K ′
,u ′). Also choose an arbitrary cl , a transaction identifier tn

cl
∈ nextTid(K, cl),

and an abstract execution X such that KX = K and I1(X, cl) ∪ I2(X, cl) ⊆ visTx(K,u). We are
about to prove that there exists an extra set of read-only transaction T ′

rd
such that the new abstract

execution X′
= extend

(
X, tn

cl
,F , visTx(K,u) ∪ Trd ∪ T ′

rd

)
and

∀t . (t , tncl) ∈ SOX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′
rd (6.7)

∀t . (t , tn
cl
) ∈

(
(SOX′ ∪WRX′);RW?

X′ ∪WWX′

)
;VISX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′

rd
(6.8)

I1(X
′
, cl) ∪ I2(X

′
, cl) ⊆ visTx(KX′,u ′) (6.9)

• the invariant I2 implies the Eq. (6.7) where the proof is the same as RYW in §F.3.
• Eq. (6.8). Note that

(t , tncl) ∈
(
(SOX′ ∪WRX′);RW?

X′ ∪WWX′

)
;VISX′

⇒ (t , tncl) ∈
(
(SOX ∪WRX);RW

?
X ∪WWX

)
;VISX′

Also, recall that RX = RK for R ∈ {SO,WR,WW,RW}. Let

T ′
rd = lfpTx

(
K,u, (SOK ∪WRK);RW

?
K ∪WWK

)

Let assume t
(SOK∪WRK);RW?

K
∪WWK

−−−−−−−−−−−−−−−−−−−−→ t ′ and t ′ ∈ lfpTx
(
K,u, (SOK ∪WRK);RW

?
K
∪WWK

)
∪

Trd. We have two possible cases:

– If t ′ ∈ lfpTx
(
K,u, (SOK ∪WRK);RW

?
K
∪WWK

)
, by Theorem F.1, we know

t ∈ lfpTx
(
K,u, (SOK ∪WRK);RW

?
K ∪WWK

)

– If t ′ ∈ Trd, there are two cases:

∗ t ′ ∈
(⋃

{tncl ∈TX | n∈N} VIS
−1
X
(tn
cl
)
)
. Note that t ′ is a read-only transaction, which means

t
SOK∪WRK
−−−−−−−−→ t ′. By the property of X (before update) that (SO ∪WRX);VISX ∈ VISX , it

is known that t ∈
(⋃

{tncl ∈TX | n∈N} VIS
−1
X
(tn
cl
)
)
, that is, t ∈ visTx(K,u) ∪ Trd.

∗ t ′ ∈
(⋃

{tncl ∈TX | n∈N} SO
−1
X
(tn
cl
)
)
and it is a read only transaction. Then we know t ∈

(SO ∪ WRX)
−1

(⋃
{tncl ∈TX | n∈N} SO

−1
X
(tn
cl
)
)
. By the property of X (before update) that

Data Consistency in Transactional Storage Systems: A Centralised Approach

SO ∪WRX ∈ VISX , it follows:

t ∈ V IS−1X

©
«

⋃
{tncl ∈TX | n∈N}

SO−1
X (tncl)

ª®®
¬

=

©
«

⋃
{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®¬

= visTx(K,u) ∪ Trd

• Since CP satisfies RYW and MR, thus invariants I1 and I2 are preserved after update.

The execution test ETCP is complete with respect to the axiomatic definition

(RPLWW, {λX.ARX ;VISX, λX. SOX})

Assume i-th transaction ti in the arbitrary order, and let view ui = getView
(
X,VIS−1

X
(ti)

)
. We

pick final view as u ′
i = getView

(
X, (AR−1

X
)?(ti) ∩ VIS−1

X
(t ′i)

)
, if t ′i = minSO

{
t ′
��� ti SO

−−→ t ′
}
is defined,

otherwise u ′
i = getView

(
X, (AR−1

X
)?(ti)

)
. Let the K = Kcut(X,i−1). Now we prove the three parts

separately.

• MR. By Prop. F.3 since VISX ; SOX ⊆ ARX ;VISX ⊆ VISX so it follows as in §F.1.
• RYW. For RYW, sinceWRX ; SOX ;VISX ⊆ ARX ;ARX ;VISX ⊆ VISX , the proof is as the same
proof as in §F.3.

• allowed

(
(SO;RW?

K
) ∪ (WRK ;RW

?
K
) ∪WWK

)
can be derived from Theorem F.1 and

(SO;RW?
X) ∪ (WRX ;RW

?
X) ∪WWX ;VISX ⊆ ARX ;VISX ⊆ VISX

F.8 Parallel Snapshot Isolation PSI

The axiomatic definition for PSI is

(RPLWW, {λX.VISX ;VISX , λX. SOX, λX.WWX})

There exist a minimum visibility such that

(RPLWW, {λX.(WRX ∪WWX ∪ SO);VISX, λX. SOX, λX.WWX})

by solve the following inequalities:

WR ⊆ VIS

WW ⊆ VIS

SO ⊆ VIS
VIS;VIS ⊆ VIS

It is easy to see the former implies to later. For another way round, Lemma F.5.

Lemma F.5. For any abstract execution X under last-write-win, if it satisfies the following:

(WRX ∪WWX ∪ SOX);VISX ⊆ VISX SOX ⊆ VISX

There exists a new abstract execution X′ where TX = TX′ , ARX = ARX′ , VISX′ ;VISX′ ⊆ VISX′ , and

under last-write-win TX(t) = TX′(t) for all transactions t .

Proof. we erase some visibility relation for each transaction following the order of arbitration
AR until the visibility is transitive. Assume the i-th transaction ti with respect to the arbitration
order. LetRi denote a new visibility for transaction ti such thatRi⇂2= {ti } and the visibility relation

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

before (including) ti is transitive. Let Xi = Kcut(X,i) and VISi =
⋃

0≤k≤i Ri . For each step, says i-th
step, we preserve the following:

VISi ;VISi ⊆ VISi (6.10)

∀t . (t , ti) ∈ Ri ⇒ (t , ti) ∈ (WRi ∪WWi ∪ SOi) (6.11)

• Base case: i = 1 and R1 = ∅. Assume it is from client cl . There is no transaction committed
before, so VIS1 = ∅ and VIS1;VIS1 ⊆ VIS1 as Eq. (6.10).

• Inductive case: i-th step. Suppose the (i-1)-th step satisfies Eq. (6.10) and Eq. (6.11). Let
consider i-th step and the transaction ti . Initially we take Ri as empty set. We first extend Ri
by closing with respect toWRi and prove that it does not affect any read from the transaction
ti . Then we will do the same for SOi and WWi .

– WRi . For any read (r,k,v) ∈ ti , there must be a transaction tj that tj
WR(Xi,k),AR
−−−−−−−−−−→ ti and

j < i . We include (tj , ti) ∈ Ri . Let consider all the visible transactions of tj . Assume a
transaction t ′ ∈ VIS−1i−1(tj), thus t

′ ∈ VIS−1j (tj) = R−1
j (tj). It is safe to include (t ′, ti) ∈ Ri

without affecting the read result, because those transaction t ′ is already visible for ti in
the abstract execution X: by Eq. (6.11) we know Rj ⊆ (WRj ∪ SOj ∪WWj)

+ ⊆ (WRX ∪

SOX ∪WWX)
+, and by the definition ofWR(Xi ,k) we know WR(Xi ,k) ⊆ VISX .

– Given SOX ⊆ VISX (and WWX ⊆ VISX respectively) we include (tj , ti) for some tj such

that tj
SOX
−−−→ ti (and tj

WWX
−−−−→ ti respectively). For the similar reason as WR, it is safe to

includes all the visible transactions t ′ for tj , i.e. t
′ ∈ R−1

j .

By the construction, both Eq. (6.2) and Eq. (6.3) are preserved. Thus we have the proof.

�

To prove soundness, we pick an invariant for the ETPSI as the union of those for MR and RYW

shown in the following:

I1(X, cl) =
©«

⋃
{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®
¬
\ Trd

I2(X, cl) =
©
«

⋃
{tncl ∈TX | n∈N}

(SO−1
X)?(tncl)

ª®®¬
\ Trd

where Trd is all the read-only transactions included in both

Trd ∈
©«

⋃
{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®
¬

and

Trd ∈
©«

⋃
{tncl ∈TX | n∈N}

(SO−1
X)?(tncl)

ª®®
¬

Assume a kv-store K , an initial and a final view u,u ′ a fingerprint F such that ETPSI ⊢ (K,u) ⊲

F : (K ′
,u ′). Also choose an arbitrary cl , a transaction identifier tn

cl
∈ nextTid(K, cl), and an

abstract execution X such that KX = K and I1(X, cl) ∪ I2(X, cl) ⊆ visTx(K,u). We are about to

Data Consistency in Transactional Storage Systems: A Centralised Approach

prove there exists an extra set of read-only transactions T ′
rd
such that the new abstract execution

X′
= extend

(
X, tn

cl
,F , visTx(K,u) ∪ Trd ∪ T ′

rd

)
and:

∀t . (t , tncl) ∈ SOX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′
rd (6.12)

∀t . (t , tncl) ∈ WWX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′
rd (6.13)

∀t . (t , tncl) ∈ (SOX′ ∪WRX′ ∪WWX′);VISX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′
rd (6.14)

I1(X
′
, cl) ∪ I2(X

′
, cl) ⊆ visTx(KX′,u ′) (6.15)

• The invariant I2 implies Eq. (6.12) as the same as RYW in §F.3.
• Since PSI also satisfies UA, the Eq. (6.17) can be proven as the same as UA in §F.6.
• Eq. (6.14). Note that

(t , tncl) ∈ (SOX′ ∪WRX′ ∪WWX′);VISX′ ⇒ (t , tncl) ∈ (SOX ∪WRX ∪WWX);VISX′

Also, recall that SOX = SOK ,WRX =WRK and WWX =WWK . Let

T ′
rd = lfpTx(K,u, SOK ∪WRK ∪WWK)

This means

X′
= extend

(
X, tncl ,F , lfpTx(K,u, SOK ∪WRK ∪WWK) ∪ Trd

)
Let assume t

SOK∪WRK∪WWK
−−−−−−−−−−−−−−→ t ′ and t ′ ∈ lfpTx(K,u, SOK ∪WRK ∪WWK) ∪ Trd. We have

two possible cases:
– If t ′ ∈ lfpTx(K,u, SOK ∪WRK ∪WWK), by Theorem F.1, we know

t ∈ lfpTx(K,u, SOK ∪WRK ∪WWK)

– If t ′ ∈ Trd, there are two cases:

∗ t ′ ∈
(⋃

{tncl ∈TX | n∈N} VIS
−1
X
(tn
cl
)
)
. Since t ′ is a read-only transaction, it means t

SOK∪WRK
−−−−−−−−→

t ′. By the property of X (before update) that (SO ∪ WRX);VISX ∈ VISX , it is known

that t ∈
(⋃

{tncl ∈TX | n∈N} VIS
−1
X
(tn
cl
)
)
, that is, t ∈ visTx(K,u) ∪ Trd.

∗ t ′ ∈
(⋃

{tncl ∈TX | n∈N} SO
−1
X
(tn
cl
)
)
. Given that t ′ is a read only transaction, we know t ∈

(SO ∪ WRX)
−1

(⋃
{tncl ∈TX | n∈N} SO

−1
X
(tn
cl
)
)
. By the property of X (before update) that

SO ∪WRX ∈ VISX , it follows:

t ∈ V IS−1X

©
«

⋃
{tncl ∈TX | n∈N}

SO−1
X (tncl)

ª®®¬
=

©«
⋃

{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®
¬

= visTx(K,u) ∪ Trd

• Finally the new abstract execution preserves the invariant I1 and I2 becauseCC satisfiesMW

and RYW.

The execution test ETPSI is complete with respect to the axiomatic definition

(RPLWW, {λX.VISX ;VISX, λX. SOX, λX.WWX})

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Assume i-th transaction ti in the arbitrary order, and let view ui = getView
(
X,VIS−1

X
(ti)

)
. We

pick final view as u ′
i = getView

(
X, (AR−1

X
)?(ti) ∩ VIS−1

X
(t ′i)

)
, if t ′i = minSO

{
t ′
��� ti SO

−−→ t ′
}
is defined,

otherwise u ′
i = getView

(
X, (AR−1

X
)?(ti)

)
. Let the K = Kcut(X,i−1). Now we prove the three parts

separately.

• MR. By Prop. F.3 since VISX ; SOX ⊆ VISX ;VISX ⊆ VISX so it follows as in §F.1.
• RYW. For RYW, since WRX ; SOX ;VISX ⊆ VISX ;VISX ;VISX ⊆ VISX , the proof is as the
same proof as in §F.3.

• UA. Since WWX ⊆ VISX , the proof is as the same proof as in §F.6.
• allowed(WRKWWK ∪ ∪SO). It is derived from Theorem F.1 and

(WRX ∪WWX ∪ SOX);VISX ⊆ VISX ;VISX ⊆ VISX

F.9 Snapshot Isolation SI

The axiomatic definition for SI is

(RPLWW, {λX.ARX ;VISX, λX. SOX , λX.WWX})

By a lemma proven in [Cerone and Gotsman 2016], for any X satisfies the SI there exists an equiv-
alent X′ with minimum visibility VISX′ ⊆ VISX satisfying(

RPLWW,

{
λX.

(
(SOX′ ∪WWX′ ∪WRX′);RW?

X′

)
;VIS′X′, λX. (WWX′ ∪ SOX′)

})
Under the minimum visibility VIS all the transactions still have the same behaviour as before,
meaning they do not violate last-write-win.
To prove the soundness, we pick the invariant as the following:

I1(X, cl) =
©
«

⋃
{t icl ∈TX | i ∈N}

VIS−1X (t icl)
ª®®¬
\ Trd

I2(X, cl) =
©«

⋃
{t icl ∈TX | i ∈N}

(SO−1
X)?(t icl)

ª®®
¬
\ Trd

where Trd is all the read-only transactions included in both

Trd ∈
©
«

⋃
{t icl ∈TX | i ∈N}

VIS−1X (t icl)
ª®®¬

and

Trd ∈
©«

⋃
{t icl ∈TX | i ∈N}

(SO−1
X)?(t icl)

ª®®
¬

Assume a kv-store K , an initial and a final view u,u ′ a fingerprint F such that ETSI ⊢ (K,u) ⊲

F : (K ′
,u ′). Also choose an arbitrary cl , a transaction identifier tn

cl
∈ nextTid(K, cl), and an

abstract execution X such that KX = K and I1(X, cl) ∪ I2(X, cl) ⊆ visTx(K,u). We are about to
prove there exists an extra set of read-only transaction T ′

rd
such that the new abstract execution

Data Consistency in Transactional Storage Systems: A Centralised Approach

X′
= extend

(
X, tn

cl
,F , visTx(K,u) ∪ Trd ∪ T ′

rd

)
and

∀t . (t , tncl) ∈ SOX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′
rd (6.16)

∀t . (t , tncl) ∈ WWX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′
rd (6.17)

∀t . (t , tn
cl
) ∈

(
(SOX′ ∪WWX′ ∪WRX′);RW?

X′

)
;VISX′ ⇒ t ∈ visTx(K,u) ∪ Trd ∪ T ′

rd
(6.18)

I1(X
′
, cl) ∪ I2(X

′
, cl) ⊆ visTx(KX′,u ′) (6.19)

• The invariant I2 implies Eq. (6.16) as the same as RYW in §F.3.
• Since SI also satisfies UA, the Eq. (6.17) can be proven as the same as UA in §F.6.
• Eq. (6.18). Note that

(t , tncl) ∈
(
(SOX′ ∪WWX′ ∪WRX′);RW?

X′

)
;VISX′

⇒ (t , tncl) ∈
(
(SOX ∪WWX ∪WRX);RW

?
X

)
;VISX′

Also, recall that RX = RK for R ∈ {SO,WR,WW,RW}. Let

T ′
rd = lfpTx

(
K,u,

(
(SOX′ ∪WWX′ ∪WRX′);RW?

X′

))
This means that

X′
= extend

(
X, tncl ,F , lfpTx

(
K,u,

(
(SOX′ ∪WWX′ ∪WRX′);RW?

X′

))
∪ Trd

)

Let assume t

(
(SOX′∪WWX′∪WRX′);RW?

X′

)
−−−−−−−−−−−−−−−−−−−−−−−→ t ′ and

t ′ ∈ lfpTx
(
K,u,

(
(SOX′ ∪WWX′ ∪WRX′);RW?

X′

))
∪ Trd

We have two possible cases:

– If t ′ ∈ lfpTx
(
K,u,

(
(SOX′ ∪WWX′ ∪WRX′);RW?

X′

))
, by Theorem F.1, we know

t ∈ lfpTx
(
K,u,

(
(SOX′ ∪WWX′ ∪WRX′);RW?

X′

))
– If t ′ ∈ Trd, there are two cases:

∗ t ′ ∈
(⋃

{tncl ∈TX | n∈N} VIS
−1
X
(tn
cl
)
)
. Since t ′ is a read-only transaction, it means t

SOK∪WRK
−−−−−−−−→

t ′. By the property of X (before update) that (SO ∪ WRX);VISX ∈ VISX , it is known

that t ∈
(⋃

{tncl ∈TX | n∈N} VIS
−1
X
(tn
cl
)
)
, that is, t ∈ visTx(K,u) ∪ Trd.

∗ t ′ ∈
(⋃

{tncl ∈TX | n∈N} SO
−1
X
(tn
cl
)
)
. Given that t ′ is a read only transaction, we know t ∈

(SO ∪ WRX)
−1

(⋃
{tncl ∈TX | n∈N} SO

−1
X
(tn
cl
)
)
. By the property of X (before update) that

SO ∪WRX ∈ VISX , it follows:

t ∈ V IS−1X

©
«

⋃
{tncl ∈TX | n∈N}

SO−1
X (tncl)

ª®®¬
=

©
«

⋃
{tncl ∈TX | n∈N}

VIS−1X (tncl)
ª®®¬

= visTx(K,u) ∪ Trd

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

• Since SI satisfies RYW andMR, thus invariants I1 and I2 are preserved, that is, Eq. (6.19).

The execution test ETSI is complete with respect to the axiomatic definition

(RPLWW, {λX.ARX ;VISX, λX. SOX , λX.WWX})

Assume i-th transaction ti in the arbitrary order, and let view ui = getView
(
X,VIS−1

X
(ti)

)
. We

pick final view as u ′
i = getView

(
X, (AR−1

X
)?(ti) ∩ VIS−1

X
(t ′i)

)
, if t ′i = minSO

{
t ′
��� ti SO

−−→ t ′
}
is defined,

otherwise u ′
i = getView

(
X, (AR−1

X
)?(ti)

)
. Let the K = Kcut(X,i−1). Now we prove the three parts

separately.

• MR. By Prop. F.3 since VISX ; SOX ⊆ VISX ;VISX ⊆ VISX so it follows as in §F.1.
• RYW. For RYW, since WRX ; SOX ;VISX ⊆ VISX ;VISX ;VISX ⊆ VISX , the proof is as the
same proof as in §F.3.

• UA. Since WWX ⊆ VISX , the proof is as the same proof as in §F.6.

• allowed

((
(SOK ∪WWK ∪WRK);RW

?
K

))
. It is derived from Theorem F.1 and(

(SOX ∪WWX ∪WRX);RW
?
X

)
;VISX ⊆ ARX ;VISX ⊆ VISX

F.10 Serialisability SER

The execution test ETSER is sound with respect to the axiomatic definition

(RPLWW, {λX.AR})

We pick the invariant as I (X, cl) = ∅, given the fact of no constraint on the view after update.
Assume a kv-storeK , an initial and a final view u,u ′ a fingerprint F such that ETSER ⊢ (K,u) ⊲ F :
(K ′
,u ′). Also choose an arbitrary cl , a transaction identifier t ∈ nextTid(K, cl), and an abstract ex-

ecutionX such thatKX = K and I (X, cl) = ∅ ⊆ visTx(K,u). LetX′
= extend(X, t , visTx(K,u),F).

Note that since the invariant is empty set, it remains to prove there exists a set of read-only trans-
actions Trd such that:

∀t ′. t ′
ARX′

−−−−→ t ⇒ t ′ ∈ visTx(K,u) ∪ Trd

Since the abstract execution satisfies the constraint for SER, i.e. AR ⊆ VIS, we know AR = VIS.
Since visTx(K,u) contains all transactions that write at least a key, we can pick a Trd such that
visTx(K,u) ∪ Trd = TX , which gives us the proof.

The execution test ETUA is completewith respect to the axiomatic definition (RPLWW, {λX.ARX}).
Assume i-th transaction ti in the arbitrary order, and let view ui = getView

(
X,VIS−1

X
(ti)

)
. We also

pick any final view such thatu ′
i ⊆ getView

(
X, (AR−1

X
)?(ti)

)
. Note that there is nothing to prove for

u ′
i , Now we need to prove the following:

∀k, j . 0 ≤ j < |Kcut(X,i−1)(k)| ⇒ j ∈ ui (k)

Because VIS−1(ti) = AR−1(ti) =
{
t
�� t ∈ Kcut(X,i−1)

}
, so for any key k and index j such that 0 ≤ j <

|Kcut(X,i−1)(k)|, the j-th version of the key contains in the view, i.e. j ∈ u(k).

Data Consistency in Transactional Storage Systems: A Centralised Approach

G PROGRAM ANALYSIS

We give applications of our theory aimed at showing the robustness of a transactional library
against a given consistency model. The first application considers a single counter library, and
proves that it is robust against Parallel Snapshot Isolation. We present a general robustness con-
ditions for WSI and then show multiple-counter example and a banking example [Alomari et al.
2008] are robust against WSI.

G.1 Single counter

We start by reviewing the transactional code for the increment and read operations provided by a
counter object over a key k , denoted as inc(k) and read(k), respectively.

inc(k) =

[
a := [k];
[k] := a + 1;

]
read(k) = [a := [k];]

Clients can interact with the key-value store only by invoking the inc(k) and read(k) operations. A
transactional library is a set of transactional operations. For a single counter over key k , we define
the transactional library Counter(k) = {inc(k), read(k)}, while for multiple counters over a set of
keys K = {ki }i ∈I , respectively, we define Counter(K) =

⋃
i ∈I Counter(ki).

KV-store semantics of a transactional library. Given the transactional code [T], we define
F (K,u, [T]) to be the fingerprint that would be produced by a client that has view u over the
kv-store K , upon executing [T]. For the inc(k) and read(k) operations discussed above, we have
that

F (K,u, inc(k)) = {(r,k,n), (w,k,n + 1) | n = snapshot(K,u)(k)}

and

F (K,u, read(k)) = {(r,k,n) | n = snapshot(K,u)(k)}

Given an execution test ET, and a transactional library L = {[Ti]}i ∈I , we define the set of valid
ET-traces for L as the set Traces(ET, {[Ti]}i ∈I) of ET-traces in which only ET-reductions of the
form

(K0,U0)
(cl0,λ0)

−−−−−−−_ET (K1,U1)
(cl 1,λ1)

−−−−−−−_ET · · ·
(cln−1,λn−1)

−−−−−−−−−−_ET (Kn ,Un),

where for any j = 0, · · · ,n − 1, either λj = ε or λj = F (Kj ,Uj (cl j), [Ti]) for some i ∈ I .

Henceforth we commit an abuse of notation and write (K,U)
(cl, [T])

−−−−−−_ET (K ′
,U ′) in lieu of

(K,U)
(cl,F(K,U(cl), [T])

−−−−−−−−−−−−−−−−_ET (K ′
,U ′). We also let KVStores(ET, {[Ti]}i ∈I) be the set of kv-stores

that can be obtained when clients can only perform operations from {[Ti]}i ∈I under the execution
test ET. Specifically,

KVStores(ET, {[Ti]}i ∈I),
{
K

��� ((K0,U0)
·

−_ET · · ·
·

−_ET (K, _)
)
∈ Traces(ET, {[Ti]}i ∈I)

}
G.1.1 Anomaly of a single counter under Causal Consistency. It is well known that the transac-
tional library consisting of a single counter over a single key, Counter(k), implemented on top of
a kv-store guaranteeing Causal Consistency, leads to executions over the kv-store that cannot be
simulated by the same transactional library implemented on top of a serialisable kv-store. For sim-

plicity, let us assume that Key = {k}. Let K0 = [k 7→ (0, t0, ∅)],K1 = [k 7→ (0, t0,
{
t1
cl 1

}
::(0, t1

cl1
, ∅),

K2 = [k 7→ (0, t0,
{
t1
cl 1
, t1
cl 2

}
)::(0, t1

cl1
, ∅)::(0, t1

cl2
, ∅). Let also u0 = [k 7→ 0]. Then we have that

(K0, [cl1 7→ u0, cl2 7→ u0])
(cl 1, inc(k))

−−−−−−−−−_ETCC (K1, [cl1 7→ _, cl2 7→ u0])
(cl1, inc(k))

−−−−−−−−−_ETCC (K2, _).

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

By looking at the kv-store K2, we immediately find a cycle in the graph induced by the relations

SOK2
,WRK2

,WWK2
,RWK2

: t1
cl1

RW
−−→ t1

cl2

RW
−−→ t1

cl 1
. Following from Theorem 6.1, then which

proves that K2 is not included in CM(ETSER), i.e. it is not serialisable.

G.1.2 Robustness of a Single counter under Parallel Snapshot Isolation. Here we show that the
single counter library Counter(k) is robust under any consistency model that guarantees both
write conflict detection (formalised by the execution test ETUA), monotonic reads (formalised by
the execution test ETMR) and read your writes (formalised by the execution test ETRYW). Because
ETPSI guarantees all such consistency guarantees, i.e. CM(ETPSI) ⊆ CM(ETMR ∩ ETRYW ∩ ETUA),
then it also follows that a single counter is robust under Parallel Snapshot Isolation.

Proposition G.1. LetK ∈ KVStores(ETUA∩ETMR∩ETRYW,Counter(k)). Then there exist {ti }
n
i=1

and {Ti }
n
i=0 such that

K(k) = ((0, t0,T0 ⊎ {t1}):: · · · ::(n − 1, tn−1,Tn−1 ⊎ {tn})) ::(n, tn,Tn) (7.1)

∀i : 0 ≤ i ≤ n. Ti ∩ {ti }
n
i=0 = ∅ (7.2)

∀t , t ′, i, j : 0 ≤ i, j ≤ n. t
SO
−−→ t ′ ∧ t ∈ {ti } ∪ Ti ⇒

(
(t ′ = tj ⇒ i < j) ∧

(t ′ ∈ Tj ⇒ i ≤ j)

)
(7.3)

Proof. It suffices to prove that the properties (7.1),(7.2), (7.3) given in Prop. G.1, are invariant
under (ETMR ∩ ETRYW ∩ ETUA)-reductions of the form

(K,U)
(cl, inc(k))

−−−−−−−−−_ETUA∩ETMR∩ETRYW (K ′
,U ′) (7.4)

(K,U)
(cl,read(k))

−−−−−−−−−−_ETUA∩ETMR∩ETRYW (K ′
,U). (7.5)

To this end, we will need the following auxiliary result which holds for any configuration (K,U)

that can be obtained under the execution test ETRYW ∩ ETMR:

∀i, j,n,m, cl,k . tncl ∈ {w(K(k, i))} ∪ rs(K(k, i))
∧ tmcl ∈ {w(K(k, j))} ∪ rs(K(k, j)) ∧m < n ∧ i ∈ U(cl)(k) ⇒ j ∈ U(cl)(k)

(7.6)

Suppose that there exist two sets {ti }
n
i=1 and {Ti }

n
i=0 such that (K, {ti }

n
i=1 , {Ti }

n
i=0) satisfies the

properties (7.1)-(7.3). We prove that, for transitions of the form (7.4)-(7.5), there exist an indexm
and two collections {ti }

m
i=1,

{
T ′
i

}m
i=0

such that (K ′
, {ti }

m
i=1 ,

{
T ′
i

}m
i=0

) satisfies the properties (7.1)-
(7.3). We consider the two transitions separately.

• Assume that

(K,U)
(cl, inc(k))

−−−−−−−−−_ETUA∩ETMR∩ETRYW (K ′
,U ′)

for some cl ,K ′
,U ′. Let n+ 1 = |K(k)|. Because of the definition of ETUA, we must have that

U(cl) = [k 7→ {0, · · · ,n}]. Also, becauseK satisfies (7.1), we have that snapshot(K,U(cl))(k) =

n. In particular, F (k,U(cl), inc(k)) = {(r,k,n), (w,k,n + 1)}. Thus we have that

K ′ ∈ update(K,U(cl), cl , {(r,k,n), (w,k,n + 1)})

Let tn+1 be the transaction identifier chosen to update K , i.e.

K ′
= update(K,U(cl), tn+1, {(r,k,n), (w,k,n + 1)})

where tn+1 ∈ nextTid(K, cl); let also Tn+1 = ∅. Then we have the following:
– (K ′

, {ti }
n+1
i=1 , {Ti }

n+1
i=0) satisfies Property (7.1). Recall that (K, {ti }

n
i=1 , {Ti }

n
i=0) satisfies (7.1),

i.e.

K(k) = ((0, t0,T0 ⊎ {t1}):: · · · ::(n − 1, tn−1,Tn−1 ⊎ {tn})) ::(n, tn,Tn).

Data Consistency in Transactional Storage Systems: A Centralised Approach

It follows that K ′(k) = ((0, t0,T0 ⊎ {t1}):: · · · ::(n − 1, tn−1,Tn ⊎ {tn+1})) ::(n + 1, tn+1,Tn+1),
where we recall that Tn+1 = ∅.

– (K ′
, {ti }

n+1
i=1 , {Ti }

n+1
i=0) satisfies Property (7.2). Let i = 0, · · · ,n + 1. If i = n + 1, then Ti = ∅,

from which Ti ∩
{
tj
}n+1
j=0
= ∅ follows. If i < n + 1, then because (K, {ti }

n
i=1 , {Ti }

n
i=0)

satisfies Property (7.2), then Ti ∩
{
tj
}n
j=0
= ∅. Finally, because tn+1 was chosen to be fresh

with respect to the transaction identifiers appearing in K , and Ti ⊆ rs(K(k, i)), then we
also have that Ti ∩ {tn+1} = ∅.

– (K ′
, {ti }

n+1
i=1 , {Ti }

n+1
i=0) satisfies Property (7.3). Let t , t ′ be such that t

SO
−−→ t ′. Choose two

arbitrary indexes i, j = 0, · · · ,n + 1, and assume that t ∈ {ti } ∪ Ti . Note that if i ≤ n,
j ≤ n, then because (K, {ti }

n
i=1 , {Ti }

n
i=0) satisfies Property (7.3), then if t ′ = tj it follows

that i < j , and if t ′ ∈ Tj it follows that i ≤ j , as we wanted to prove. If t ∈ {tn+1} ∪ Tn+1,
then it must be t = tn+1 because Tn+1 = ∅. Recall that tn+1 is the transaction identifier that
was used to update K to K ′, i.e. K ′

= update(K,U(cl), tn+1, _). By definition of update,

it follows that tn+1 ∈ nextTid(K, cl), and because tn+1
SO
−−→ t ′, then t ′ cannot appear in K ′.

In particular, t ′ <
{
tj
}n+1
j=0

∪
⋃ {

Tj
}n+1
j=0

, hence in this case there is nothing to prove. Finally,

if t ′ ∈ {tn+1} ∪ Tn+1, then it must be the case that t ′ = tn+1. If t = tj , because t
SO
−−→ t ′ and

t ′ = tn+1, it cannot be t = tn+1, hence it must be i ≤ n < n + 1.
• Suppose that

(K,U)
(cl,read(k))

−−−−−−−−−−_ETUA∩ETMR∩ETRYW (K ′
,U ′).

As in the previous case, we have that K ′
= update(K,U(cl), t , {(r,k, i)}), where m =

snapshot(K,U(cl))(k) - in particular, because (K, {ti }
n
i=1 , {Ti }

n
i=0 satisfies Property (7.1),

then it must be the case thatm = max<(U(cl)(k)) - and t ∈ nextTid(K, cl). For i = 0, · · · ,n,
let T ′

i := Ti if i ,m, T ′
i = Ti ∪{t} if i =m. Then we have that (K ′

, {ti }
n
i=0 ,

{
T ′
i

}n
i=0

) satisfies
properties (7.1)-(7.3). Putting all these facts together, we obtain the following:

– (K ′
, {ti }

n
i=0 ,

{
T ′
i

}n
i=0

) satisfies Property (7.1). WIthout loss of generality, suppose thatm <

n. Because (K, {ti }
n
i=0 , {Ti }

n
i=0) satisfies Property (7.1), we have that

K(k) = ((0, t0,T0 ⊎ {t1}):: · · · ::(m, tm,Tm ⊎ {tm+1}):: · · · ::(n − 1, tn−1,Tn−1 ⊎ {tn})) ::(n, tn,Tn),

and from the definition of update it follows that

K(k) = ((0, t0,T0 ⊎ {t1}):: · · · ::(m, tm,Tm ∪ {t} ⊎ {tm+1}):: · · · ::(n − 1, tn−1,Tn−1 ⊎ {tn})) ::(n, tn,Tn)
=

(
(0, t0,T

′
0 ⊎ {t1}):: · · · ::(m, tm,T

′
m ⊎ {tm+1}):: · · · ::(n − 1, tn−1,Tn−1 ⊎ {tn})

)
::(n, tn,Tn)

– (K ′
, {ti }

n
i=0 ,

{
T ′
i

}n
i=0

) satisfies Property (7.2). Recall that m = max<(U(cl)(k)); let i =
0, · · · ,n.
Let again i = max< U(cl)(k) . If i , m, then T ′

i = Ti , and because (K, {ti }
n
i=0 , {Ti }

n
i=0)

satisfies Property (7.2) we have thatT ′
i ∩{ti }

n
i=0 = ∅. If i =m, thenwe have thatT ′

i = T ′
m =

Tm ∪ {t}, where we recall that t ∈ nextTid(K, cl). Because (K, {ti }
n
i=0 , {Ti }

n
i=0) satisfies

Property (7.2), we have that Tm ∩ {ti }
n
i=0 = ∅. Finally, because t ∈ nextTid(K, cl), then

it must be the case that for any i = 0, · · · ,n, t < {w(K ′(k, i))}mi=0 = {ti }
m
i=0, where the

last equality follows because we have already proved that (K ′
, {ti }

n
i=0 ,

{
T ′
i

}n
i=0

) satisfies
Property (7.1).

– (K ′
, {ti }

n
i=0 ,

{
T ′
i

}n
i=0

) satisfies Property (7.3). Let t ′, t ′′ be such that t ′
SO
−−→ t ′′. Suppose

also that t ′ ∈ {ti } ∪ T ′
i for some i = 0, · · · ,n. We consider two different cases:

∗ t ′ = ti . Suppose then that t ′′ = tj for some j = 0, · · · ,n. Because (K, {ti }
n
i=0 , {Ti }

n
i=0)

satisfies Property (7.3), then it must be the case that i < j . Otherwise, suppose that

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

t ′′ ∈ T ′
j for some j = 0, · · · ,n. If j ,m, then T ′

j = Tj , and because (K, {ti }
n
i=0 , {Ti }

n
i=0)

satisfies Property (7.3), we have that i ≤ j . Otherwise, T ′
j = T ′

m = Tm ∪ {t}. Without

loss of generality, in this case we can assume that t ′′ = t (we have already shown that
if t ′′ ∈ Tj , then it must be i ≤ j . Recall that j = m = max(U(cl)(k)), by the Definition

of ETUA it must be the case that U(cl) = [k 7→ {0, · · · , j}]. It also follows that t = t
p

cl

for some p ≥ 0, and because t ′
SO
−−→ t ′′ = t , then t ′ = t

q

cl
for some q < p. Because of

Property (7.6), and because t ′ = ti = w(K(k, i)), then it must be the case the case that
i ∈ U(cl)(k), hence i ≤ m = j .

∗ t ′ ∈ T ′
i . We need to distinguish the cases i , m, leading to T ′

i = Ti , or i = m, in which
case T ′

i = T ′
m = Tm ∪ {t}. If either i , m, or i = m and t ∈ Tm , then we can proceed as

in the case t ′ = ti . Otherwise, suppose that i = m and t ′ = t . Then, because t ′
SO
−−→ t ′′,

and t ∈ nextTid(K, cl), it must be the case that t = t
p

cl
for some p ≥ 0, and whenever

t ·
cl

∈ k , then t ·
cl

SO
−−→ t . In particular we cannot have that t ′′ ∈ k , because t

SO
−−→ t ′′, which

concludes the proof.
– (K ′

,U ′) satisfies Property (7.6).

�

Corollary G.2. Given K ∈ KVStores(ETUA ∩ ETMR ∩ ETRYW,Counter), then graphOf(K) is

acyclic.

Proof. Let {ti }
n
i=1, {Ti }

n
i=0 be such that ({ti }

n
i=1 , {Ti }

n
i=0) satisfies properties (7.1)-(7.3). First, we

define a partial order between transactions appearing in K as the smallest relation d such that
for any t , t ′, t ′′ and i, j = 0, · · · ,n

t ∈ Ti ⇒ ti d t ,

i < j ⇒ ti d tj ,

t ∈ Ti ∧ i < j ⇒ t d tj

t , t ′ ∈ Ti ∧ t
SO
−−→ t ′ ⇒ t d t ′

t d t ′ → t ′′ ⇒ t d t ′′

It is immediate that if t d t ′ then either t ∈ {ti } ∪ Ti , t
′
=

{
tj
}
∪ Tj for some i, j such that i < j ,

or t = ti , t
′ ∈ Ti , or t , t

′ ∈ Ti and t
SOK
−−−→ t ′. A consequence of this fact, is thatd is irreflexive.

Next, observe that we have the following:

• whenever t
WRK
−−−−→ t ′, then there exists an index i = 0, · · · ,n such that t = ti , and either i < n

and t ′ ∈ Ti ∪ {ti+1}, or i = n and t ′ ∈ Ti : by definition, we have that t d t ′;

• whenever t ,
WWK
−−−−→ t ′, then there exist two indexes i, j : 0 ≤ i < j ≤ n such that t = ti , t

′
= tj ;

again, we have that t d t ′,

• whenever t
RWK
−−−−→ t ′, then there exist two indexes i, j : 0 ≤ i < j ≤ n such that either t ∈ Ti

and t ′ = tj , or t = ti+1, i + 1 < j and t ′ = tj ; in both cases, we obtain that t d t ′,

• whenever t
SOK
−−−→ t ′, then t ∈ {ti } ∪Ti for some i = 0, · · · ,n, and either t ′ = tj for some i < j ,

or t ′ ∈ Tj for some i ≤ j; it follows that t d t ′.

We have proved thatd is an irreflexive relation, and it contains (SOK∪WRK∪WWK∪RWK)
+;

because any subset of an irreflexive relation is itself irreflexive, we obtain that graphOf(K) is
acyclic. �

Corollary G.3. KVStores(ETPSI,Counter(k)) ⊆ KVStores(ETSER,Counter(k)).

Data Consistency in Transactional Storage Systems: A Centralised Approach

Proof. LetK ∈ KVStores(ETPSI,Counter(k)). Because ETPSI ⊇ ETMR ∩ ETRYW ∩ ETUA, we have
that K ∈ KVStores(ETMR ∩ ETRYW ∩ ETUA,Counter(k)). By Cor. G.2 we have that graphOf(K)

is acyclic. We can now employ the construction outlined in [Cerone et al. 2017] to recover an
abstract execution X = (TK ,VIS,AR) such that SO ⊆ VIS and AR ⊆ VIS, and graphOf(X) =

graphOf(K). Finally, the results from §F.10 establish that, from X we can recover a ETSER-trace in
Traces(ETSER,Counter(k)) whose last configuration is (K ′

, _), and graphOf(K ′) = graphOf(X) =

graphOf(K), leading to K ′
= K . It follows that K ∈ KVStores(ETSER,Counter(k)). �

G.2 Robust againstWSI

Definition G.4. A key-value store K isWSI safe if K is reachable from executing an program P

from an initial configuration Γ0, i.e. ETWSI ⊢ Γ0, P −→ (K,U), P′, and K satisfies the following:

∀t ,k,k ′, i, j . (t ∈ rs(K(k, i)) ⇒ t , w(K(k, i))) ⇒ t , w(K(k ′, j)) (7.7)

∀t ,k, i . t , t0∃j . t = w(K(k, i)) ⇒ t ∈ rs(K(k, j)) (7.8)

∀t ,k,k ′, i, j . t , t0∃k . t = w(K(k, i)) ∧ t ∈ rs(K(k ′, j)) ⇒ t = w(K(k ′, j)) (7.9)

Theorem G.5. If a key-value store K isWSI safe, it is robust againstWSI.

Proof. Assume a kv-store K that is WSI safe. Given Def. G.4 that K is reachable under WSI

therefore CC and UA since CC ∪ UA ⊆ WSI, it is easy to derive the following properties:

∀t , t ′. t
WR∪SO∪WW
−−−−−−−−−−→ t ′ ⇒ t , t ′ (7.10)

∀k, i, j . t = w(K(k, i)) ∧ t ∈ rs(K(k, j)) ⇒ i = j + 1 (7.11)

Eq. (7.10) To prove the robustness, it is sufficient to prove that the relation (WW∪WR∪RW∪SO)+

is irreflexive, that is, for any transactions t and t ′:

t
(WW∪WR∪RW∪SO)+

−−−−−−−−−−−−−−−−→ t ′ ⇒ t , t ′

We prove that by contradiction. Let assume t = t ′. By Eq. (7.10), it must be the case that the cycle
contains RW, which means there exists t1 to tn such that

t = t1
R∗

−−→ t2
RW
−−→ t3

R∗

−−→ · · ·
R∗

−−→ tn−2
RW
−−→ tn−1

R∗

−−→ tn = t ′

where R =WR ∪ SO ∪WW. We replace some edges from the cycle.

• First, let consider transactions ti such that ti
RW
−−→ ti+1. This means ti ∈ rs(K(k, x)) and

ti+1 = w(K(k,y)) for some key k and two indexes x ,y such that x < y. There are two
possible cases depending on if ti wrote the key k .
– if ti also wrote any key k ′, by Lemma G.6, it also wrote the key k and we can replace the

edge with a WW edge, that is ti
WW
−−−→ ti+1.

– if ti did not wrote any key, we leave the edge the same as before.
After the first step, any RW edge in the cycle must start from a read only transaction.

ti
RW
−−→ ti+1 ⇒ ∀k, i . t , w(K(k, i)) (7.12)

• Second, let now consider transactions ti such that · · ·
RW
−−→ ti

R∗

−−→ ti+1
RW
−−→ · · ·. Transaction

ti at least wrote a key but ti+1 is a read-only transaction, thus ti , ti+1. This means · · ·
RW
−−→

ti
R+

−−→ ti+1
RW
−−→ · · ·.

• Last, by Lemma G.7 we replace all the WW with WR∗.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Let R′
=WR ∪ SO. Now we have cycle in the following form:

t = t ′1
R′∗

−−→ t ′2
RW
−−→ t ′3

R′+

−−→ ·
R′+

−−→ t ′m−2

RW
−−→ tm−1

R′∗

−−→ t ′m = t ′

for some transactions t ′1 to t ′m and m ≤ n. This means t
((WR∪SO);RW?)∗

−−−−−−−−−−−−−→ t ′. Because K is reach-
able under WSI and so CP, it must the case that t , t ′, which contradicts with the assumption.
Therefore, the relation (WW ∪WR ∪ RW ∪ SO)+ is irreflexive. �

Lemma G.6. If a key-value store K isWSIsafe, then for any transactions t , t ′

t
RW
−−→ t ′ ∧ ∃k, i . t = w(K(k, i)) ⇒ t

WW
−−−→ t ′

Proof. Assume t
RW
−−→ t ′, which means t ∈ rs(K(k, i)) and t ′ = w(K(k, j)) for a key k and two

indexes i, j such that i < j . Assume the transaction t also wrote some key k ′. Since that K is WSI

safe, t must write key k too, i.e. t = w(K(k, z)) for some index z. Because theK is reachable under
WSI and therefore UA, this means z = i + 1. Since that each version can only have one writer, we

have i < z = i + 1 < j , therefore t
WW
−−−→ t ′. �

Lemma G.7. If a key-value store K isWSI safe, then for any transactions t , t ′

t
WW
−−−→ t ′ ⇒ t

(WR)∗

−−−−→ t ′

Proof. Assume a kv-store K . Assume a key k and two versions of it, i and j respectively with

i < j . Assume t = w(K(k, i)) and t ′ = w(K(k, j)). We prove t
(WR)∗

−−−−→ t ′ by induction on the distance
of the two versions.

• Base case: j−i = 1 . ByWSI safe (Def. G.4), t ′ must also read the key k , that is, t ′ ∈ rs(K(k, z))

for some z. Because the K is reachable under WSI and therefore UA, this means that if t ′

read and writes key k , it must read the immediate predecessor. This means z = i and then

t
WR
−−→ t ′.

• Inductive case: j − i > 1. By the Def. G.4, t ′ must also read the key k , that is, t ′ ∈ rs(K(k, z))

for some z. Because the K is reachable under WSI and therefore UA, this means if t ′ read
and writes key k , it must read the immediate previous version with respect to the version it
wrote. This means z = j − 1. Assume the writer of the z-th version is t ′′ = w(K(k, j − 1)).

We have t ′′
WR
−−→ t ′. Applying I.H., we get t

(WR)∗

−−−−→ t ′′. Thus we have t
(WR)∗

−−−−→ t ′.

�

G.3 Multiple counters

We define a multi-counter library on a set of keys K as the following:

Counters(K),
⋃
k∈K

Counter(k)

G.3.1 Anomaly of multiple counters under Parallel Snapshot Isolation. Suppose that the kv-store
contains only two keys k,k ′, each of which can be accessed and modified by clients using the code
of transactional libraries Counter(k),Counter(k ′), · · · . We show that in this case it is possible to
have the interactions of two client with the kv-store result in a non-serialisable final configuration.

Data Consistency in Transactional Storage Systems: A Centralised Approach

More formally, suppose that Key = {k1,k2}, and let Counter =
⋃

k ∈Key Counter(k). Let also

K0 = [k1 7→ (0, t0, ∅),k2 7→ (0, t0, ∅)]

K1 = [k1 7→ (0, t0,
{
t1
cl1

}
)::(1, t1

cl1
, ∅),k2 7→ (0, t0, ∅)]

K2 = [k1 7→ (0, t0,
{
t1
cl1

}
)::(1, t1

cl1
, ∅),k2 7→ (0, t0,

{
tcl2

}
)::(1, t1

cl2
, ∅)

K3 = [k1 7→ (0, t0,
{
t1
cl1

}
)::(1, t1

cl1
, ∅),k2 7→ (0, t0,

{
tcl2

}
)::(1, t1

cl2
,

{
t2
cl 1

}
)

K4 = [k1 7→ (0, t0,
{
t1
cl1

}
)::(1, t1

cl1
,

{
t2
cl2

}
),k2 7→ (0, t0,

{
tcl 2

}
)::(1, t1

cl2
,

{
t2
cl1

}
)

U0 = [cl1 7→ [k1 7→ {0} ,k2 7→ {0}], cl2 7→ [k1 7→ {0} ,k2 7→ {0}]]
U1 = [cl1 7→ [k1 7→ {0, 1} ,k2 7→ {0}], cl2 7→ [k1 7→ {0} ,k2 7→ {0}]]
U2 = [cl1 7→ [k1 7→ {0, 1} ,k2 7→ {0}], cl2 7→ [k1 7→ {0} ,k2 7→ {0, 1}]]
U3 = U2

U4 = U2

Observe that we have the sequence of ETPSI-reductions

(K0,U0)
cl1, inc(k1)
−−−−−−−−−_ETPSI (K1,U1)

(cl 2, inc(k2)
−−−−−−−−−_ETPSI

(K2,U2)
(cl 1,read(k2)

−−−−−−−−−−_ETPSI (K3,U3)
(cl2,read(k1)

−−−−−−−−−−_ETPSI (K4,U4)

and therefore K4 ∈ KVStores(ETPSI,Counter). On the other hand, for graphOf(K4) we have the
following cycle, which proves that K4 < KVStrores(ETSER,Counter):

t1cl1

SOK4
−−−−→ t2cl1

RWK4
−−−−→ t1cl2

SOK4
−−−−→ t2cl 2

RWK4
−−−−→ t1cl1 .

G.3.2 Robustness under Weak Snapshot Isolation. It is easy to see a multi-counter libraries isWSI
safe, therefore robust under WSI.

Theorem G.8. Mulit-counter libraries Counters(K) are WSI safe.

Proof. Assume an initial configuration Γ0 = (K0,U0 and some P0 where dom[proд] ⊆ dom[U0].
Under WSI, we prove any reachable kv-store Ki satisfies Eqs. (7.7) to (7.9) by induction on the
length of trace.

• Base case: i = 0 . The formulae Eqs. (7.7) to (7.9) trivially hold given K0 contains only the
initial transaction t0.

• Inductive case: i > 0. Let Γi = (Ki ,Ui) be the result of running P0 for i steps. We perform
case analysis for the next transaction ti+1.
– If ti+1 reads a key k, i.e. read(k), it must start from a view that is closed to the relation
((WW∪WR∪SO)∪WR;RW∪SO;RW)∗. LetKi (k, j) = (v, t ′,T ′) be the latest version in-
cluded in the view. Thus the new kv-storeKi+1 = Ki [k 7→ Ki (k)[j 7→ (v, t ′,T ′ ⊎ {ti+1})]].
Given ti+1 only read the key k without writing, Eqs. (7.7) to (7.9) trivially holds. For other
transactions t that are different from ti+1, they must exist in Ki . By I.H., then we prove
thatmkvsi+1 is WSI safe.

– If ti+1 increments a key k, i.e. inc(k), it means that all versions of k must be included in
the view. Let Ki (k, j) = (v, t ′,T ′) be the latest version of key k. Thus the new kv-store
Ki+1 = Ki [k 7→ (Ki (k)[j 7→ (v, t ′,T ′ ⊎ {ti+1})])::(v + 1, ti+1, ∅)]. Given ti+1 only read and
then rewrites the key k, Eqs. (7.7) to (7.9) trivially holds. For other transactions t that are
different from ti+1, they must exist in Ki . By I.H., then we prove thatmkvsi+1 is WSI safe.

�

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

G.4 Bank Example

Alomari et al. [2008] presented a bank example and claimed that this example is robust against SI.
We find out that the bank example is also robust againstWSI. The example bases on relational data-
base with three tables, account, saving and checking. The account table maps customer names to
customer IDs (Account(Name, CustomerID)) and saving and checking map customer IDs to saving
balances (Saving(CustomerID, Balance)) and checking balances (Checking(CustomerID, Balance))
respectively. We ignore the account table since it is an immutable lookup table. We encode the sav-
ing and checking tables together as a kv-store. Each customer is represent as an integer n, that is,
(_,n) ∈ Account(Name, CustomerID), its checking balance is associated with key ns = 2 × n and
saving with nc = 2 × n + 1.

nc , 2 × n ns , 2 × n + 1 Key,
⋃
n∈N

{nc ,ns }

If n is a customer, then

(n, val(K(ns , |K(ns)|))) ∈ Saving(CustomerID, Balance)

and

(n, val(K(ns , |K(nc)|))) ∈ Checking(CustomerID, Balance)

To interact with tables, there are five types of transactions. For brevity we assume balances are
integers.

balance(n), [x := [nc]; y := [ns]; ret := x + y]

depositChecking(n, v), [if (v ≥ 0){ x := [nc]; [nc] := x + v; }]

transactSaving(n, v), [x := [ns]; if (v + x ≥ 0){ [ns] := x + v; }]

balance(n) returns customer n total balance. depositChecking(n, v) deposits v to the check-
ing account of customer n, if v is non-negative, otherwise the transaction does nothing. While
transactSaving(n, v) allows a consumer n to deposit or withdraw money from the saving ac-
count as long as the saving account afterwards is non-negative.

amalgamate(n, n′),

[
x := [ns]; y := [nc]; z := [n

′
c];

[ns] := 0; [nc] := 0; [n
′
c] := x + y + z;

]

writeCheck(n, v),

x := [ns]; y := [nc];
if (x + y < v){ [nc] := y − v − 1; }else{ [nc] := y − v; }
[ns] := x;

amalgamate(n, n′) represents moving all funds from consumer n to the checking account of cus-
tomer n′. Last, writeCheck(n, v) updates the checking account of n. If funds, both saving and
checking, from n is greater than the v , the transaction deduct v from the checking account of n. If
funds are not enough, the transaction further deducts one pounds as penalty. Alomari et al. [2008]
argued that, to make this example robust against SI, writeCheck(n, v)must be strengthened by
writing back the balance to the saving account (the last line, [ns] := x), even thought the saving
balance is unchanged. The bank bank libraries are defined by

Bank,

{
balance(n), depositChecking(n, v), amalgamate(n, n′),

writeCheck(n, v), writeCheck(n, v)

}
[n,n′ ∈ N ∧v ∈ Z]

Theorem G.9. The bank libraries Bank areWSI safe.

Data Consistency in Transactional Storage Systems: A Centralised Approach

Proof. Assume an initial configuration Γ0 = (K0,U0) and some P0 where dom(P) ⊆ dom(U0).
Under WSI, we prove any reachable kv-store Ki satisfies Eqs. (7.7) to (7.9) by induction on the
length of trace.

• Base case: i = 0 . The formulae Eqs. (7.7) to (7.9) trivially hold given K0 contains only the
initial transaction t0.

• Inductive case: i > 0. Let Γi = (Ki ,Ui) be the result of running P0 for i steps. We perform
case analysis for the next transaction ti+1.
– If ti+1 is balance(n), the only possible fingerprint is {(r,nc ,vc), (r,ns ,vs)} for some values
vc and vs . Since it is a read-only transaction, Eqs. (7.7) to (7.9) trivially hold.

– If ti+1 is depositChecking(n, v), in the cases of v < 0, the fingerprint is empty and
Eqs. (7.7) to (7.9) trivially hold.However, in the case ofv ≥ 0, the fingerprint is {(r,nc ,vc), (w,nc ,vc +v)}.
Because it read and wrote only one key, nc , Eqs. (7.7) to (7.9) hold.

– If ti+1 is transactSaving(n, v), there are two cases: either a read-only fingerprint {(r,ns ,vs)}
when saving account has insufficient funds, or a read andwrite on keyns , that is {(r,ns ,vs), (w,ns ,vs +v)}.
For both cases it is easy to see Eqs. (7.7) to (7.9) hold.

– If ti+1 is amalgamate(n, n
′), the fingerprint is{

(r,ns ,vs), (w,ns , 0), (r,nc ,vc), (w,nc , 0), (r,n
′
c ,v

′
c), (w,n

′
c ,v

′
c +vs +vc)

}
Because the transaction always read and then wrote keys it touched, namely ns ,nc and n

′
c ,

Eqs. (7.7) to (7.9) hold.
– Last, if ti+1 is writeCheck(n, v), the fingerprint is{

(r,ns ,vs), (w,ns ,vs), (r,nc ,vc), (w,nc ,v
′
c)
}

where v ′
c can be either vc − v or vc − v − 1. Similar to amalgamate(n, n′), the transaction

always read and then wrote keys it touched, so Eqs. (7.7) to (7.9) hold.

�

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

H VERIFICATION OF IMPLEMENTATIONS

We verify two protocols, COPS and Clock-SI, that the former is a full replicated implementation
for causal consistency and the latter is a shard implementation for snapshot isolation.

H.1 COPS

H.1.1 Code.

Structure. COPS is a fully replicated database protocol for causal consistency. There are two
versions, that the simplified version only supports either a single read or a single write per trans-
action, and the full version supports either multiple reads or a single write pe transactions. Here
we verify the full version.

The overall database is modelled as a key-value store. Each key, instead of a single value, is as-
sociated with a list of versions, consisting of value, version number VersionNo and dependencies
Dep. COPS relies on the version number to resolve conflict, that is, the write with greater version
number wins. Version number composite by time (higher bits) and replica identifier (lower bits).
Since the replica identifiers are full ordered, therefore version numbers are full ordered. The depen-
dencies is a set of versions (pairs of keys and versions numbers) that the current version depends
on.

1 VersionNo :: LocalTime + ID

2 Dep :: Set(Key ,VersionNo)

3 KV :: Key -> List (Val ,VersionNo ,Dep)

Code 1. COPS Structure

Under the hood, there are many replicas, where each replica has a unique identifier and contains
the full key-value store yet might be out of data. Replica also tracks its local time.

1 Replicas :: ID -> (KV ,LocalTime)

Code 2. COPS Replicas

To track session order, Client interact with a replica via certain API. To call those API, client
has the responsibility to provide context Ctx which contains versions that has been read from or
written to the replica from the same client.

1 Ctx :: {

2 readers : List (Key ,VersionNo ,Dep)

3 writers : List (Key ,VersionNo ,Dep)

4 }

Code 3. Client context

Write. The client call put to commit a new write to a key k with value v with the context
ctx. It extracts the dependencies from the context, by unioning all the versions inside the context,
then calls the replica API ver = put_after(k,v,deps,dep_to_nearest(deps),dep), which
require to provide the dependencies so that the replica can check whether they are exists. Note
dep_to_nearest(deps) is for performance by providing the latest versions. The replica returns
a version number allocated for the new version for key k, and then the version is added into the
context.

1 Ctx put(k,v,ctx) {

2 // add up all the read and write dependency

3 deps = ctx_to_dep (ctx);

4 // call replica API

Data Consistency in Transactional Storage Systems: A Centralised Approach

5 ver = put_after (k,v,deps ,dep_to_nearest (deps));

6 // update context

7 ctx.writers += (k,ver ,deps);

8 return ctx;

9 }

10

11 Dep ctx_to_dep (ctx) {

12 return { (k,ver) | (k,ver ,_) ∈ ctx.readers ∨ (k,ver ,_) ∈ ctx.writers }

13 }

14

15 Dep dep_to_nearest (deps) {

16 return { (k,ver) | ∀k',ver ',deps '. (k',ver ',deps ') ∈ deps ⇒ (k,ver) < deps '

};

17 }

Code 4. Client API for write

The put_after waits until all the versions contained in nearest exists, consequently all the
versions contained in deps exists. The replica increments the local time and insert the new version
with version numbers time ++ id (local time concatenating replica identifier) to the key k. At
this point, replica returns the new version number to client and later on it will broad case to other
replica6.

1 VersionNo put_after (k,v,deps ,nearest ,vers){

2 for (k,ver) in nearest { wait until (_,ver ,_) ∈ kv(k); }

3

4 time = inc(local_time);

5

6 // appending local kv with a new version.

7 list_isnert (kv[k], (v, (time ++ id), deps));

8

9 asyn_brordcase (k, v, (time ++ id), deps);

10 return (local_time + id);

11 }

Code 5. Replica API for write

When a replica receives a update message, it checks the existence of versions included in the
dependencies and then adds the new version to the replica. Last, the replica updates the local time
if the new version’s time is greater than the local time.

1 on_receive (k,v,ver ,deps) {

2 for (k',ver ') in deps { wait until (_,ver ',_) ∈ kv(k'); }

3

4 list_isnert (kv[k],(v,ver ,deps));

5 (remote_local_time + id) = ver;

6 local_time = max(remote_local_time , local_time);

7 }

Code 6. Receive update message

6It uses message queue for broad-casting

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Read. To read multiple keys ks in a transaction, client calls the get_trans(ks,ctx). Note that
between two reads for different keys, the replica might be interleave and schedule other transac-
tions. The challenge here is to ensure all the values are consistent, i.e. overall they satisfy the causal
consistency. That is, if the transaction fetches a version ν for key k , and this version ν depends on
anther version ν ′ for another key k ′, then the transaction should at least fetches ν ′ for the key k ′,
or any later version for the key k ′.
The algorithm, in the first phase, optimistically reads the current latest version for each key

from the replica via the replica API rst[k]=get_by_version(k,LATEST). In the second phase,
it computes the maximum version ccv[k] from any dependencies rst[k].deps read in the first
phase. Such ccv[k] is the minimum version that should be fetched. Therefore at the end, it only
needs to re-fetched the specifically version ccv[k], if the version fetched in the first phase is older
than ccv[k].

1 List (Val) get_trans (ks ,ctx) {

2 // only guarantee to read up-to -date value

3 // the moment reading the individual key

4 for k in ks { rst[k] = get_by_version (k,LATEST); }

5

6 for k in ks {

7 ccv[k] = max (ccv[k],rst[k]. ver);

8 for dep in rst[k].deps

9 if (dep.key ∈ ks) ccv[k] = max (ccv[dep.key],dep.vers);

10 }

11

12 for k in ks

13 if (ccv[k] > rst[k]. vers) rst[k] = get_by_version (k,ccv[k]);

14

15 // update the ctx

16 for (k,ver ,deps) in rst { ctx.readers += (k,ver ,deps); }

17

18 return to_vals(rst);

19 }

Code 7. Reads

The client API get_by_version(k,ver) returns the version ver for key k.

1 (Val ,Version ,Dep) get_by_version (k,ver) {

2 if (ver = LATEST){ ver = max(kv[k].vers); }

3

4 wait until (_,ver ,_) ∈ kv(k);

5

6 let (val ,ver ,deps) from kv[k];

7 return (val ,ver ,deps);

8 }

Code 8. Replica API for read

H.1.2 Verification.

Semantics the code. Let r ∈ Repls denotes the set of totally ordered replicates. Each replicate
can have multiple clients, and each clients can commit a sequence of either read-only transitions
or single-write transactions. To model these, we annotate the transaction identifier with replicate

r , client cl , local time of the replicate n and read-only transactions counter n′, i.e. t (n,r ,n
′)

(r ,cl)
. Note that

Data Consistency in Transactional Storage Systems: A Centralised Approach

the (n, r ,n′) can be treated as a single number that n are the higher bits, r the middle bits and n′

the lower bits. For a new single-write transaction, it is allocated with a transaction identifier with
larger local time, and for a read-only transactions, it is allocated with a transaction identifier with
larger read-only counter. There is a total order among transitions from the same replica and from
the same client.
To model the dependencies of each version, We extend version from Def. 3.1 with the set of all

versions it dependencies on, dp ∈ P (Key × TransID). The function depsν denotes the dependen-
cies set of the version. We use K̄ for key-value store whose versions contain the dependencies.
We use view to model the client context, that is, a version is included in a context if and only

if such version is in the view of the client. We also use view to model a replica state, that is, if a
replica contains a version if and only if such version in the view of the replica. For readability, we
annotate view with either a replica, ur , or a client, ucl . The view environment is extended with

replicas and their views, Ū : (Repls × Client)
fin
−−⇀ Views. We give the following semantics to

capture the behaviours of the code.

Write. For purpose of verification, we eliminate code for performance, and put the client API
and replica API in the same function (Code 9).

1 // mixing the client API and system API

2 put(repl ,k,v,ctx) {

3

4 // Dependency for previous reads and writes

5 deps = ctx_to_dep (ctx);

6

7 // increase local time and appending local kv with a new version.

8 inc(repl.local_time);

9 list_isnert (repl.kv[k],(v, (local_time + id), deps));

10

11 // update dependency for writes

12 ctx.writers += (k,(local_time + id),deps);

13

14 // broad case

15 asyn_brordcase (k, v, (time ++ id), deps);

16 return (local_time + id);

17 }

Code 9. put

The following is the rule corresponds to Code 9:

Put

(s, , ∅), [k] := x → (s ′, _, {(w,k,v)}), skip
dp =

{
(k ′, t)

�� ∃i . i ∈ ucl (k
′) ∧ t = w(K̄(k ′, i)) ∨ (k ′, t) ∈ deps

(
K̄(k ′, i)

)}
---> Code 9, line 5

t = min
{
t
(n′

,r ,0)
(r ,cl)

��� ∀k ′, i ∈ ur (k
′),n. t

(n,_,_)
(_,_)

= w(K̄(k ′, i)) ⇒ n′ > n
}

---> Code 9, line 8

K̄ ′
= K̄

[
k 7→ K̄(k)::(k, t , ∅,dp)

]
---> Code 9, line 9

u ′
r = ur

[
k 7→ ur (k) ⊎

{
|K̄ ′(k)| − 1

}]
---> Code 9, line 9

u ′
cl = ucl

[
k 7→ ur (k) ⊎

{
|K̄ ′(k)| − 1

}]
---> Code 9, line 12

r , cl ⊢ K̄,ur ,ucl , s, [[k] := x;]
ucl , {(w,k,v)}
−−−−−−−−−−→ K̄ ′

,u ′
r ,u

′
cl , s

′
, skip

The first premiss is to execute the transaction locally (Fig. 1). Since there is only a write, the
snapshot can be any snapshot. The second line computes the dependency set for the new write

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

operation, by collecting all the writers of versions included in the viewucl . The third line simulates
the increment of local time. Even thought we do not directly track the local time of a replica, yet
the local time can compute as the maximum time contained in the replica’s view ur . The forth
and fifth simulates the updates of the replica’s key-value store, and the last premiss simulates the
update of client context.

Read. The following is a simplified algorithm by directly taking a list of versions ccv satisfies
causal consistency constraint, i.e. the second phase of Code 7, and then read the versions indicated
by ccv.

1 List (Val) get_trans (ks ,ctx) {

2 // only guarantee to read up-to -date value

3 // the moment reading the individual key

4 for k in ks { rst[k] = get_by_version (k,LATEST); }

5

6 for k in ks {

7 ccv[k] = max (ccv[k],rst[k]. ver);

8 for dep in rst[k].deps

9 if (dep.key ∈ ks) ccv[k] = max (ccv[dep.key],dep.vers);

10 }

11 for k in ks

12 if (ccv[k] > rst[k]. vers) rst[k] = get_by_version (k,ccv[k]);

13

14 // update the ctx

15 for (k,ver ,deps) in rst { ctx.readers += (k,ver ,deps); }

16

17 return to_vals(rst);

18 }

Code 10. get_trans

The following is the rule for read-only transaction:

GetTrans

T = x1 := [k1]; . . . ; xj := [kj]; u0 = ucl
for i in {1, . . . , j}
mi ∈ ur (ki)

u ′
i = ui−1[ki 7→ ui−1(ki) ∪ {mi }] ---> Code 10, line 4

ui = λk .u ′
i (k) ∪

{
x
�� (k,w(

K̄(k, x)
)
) ∈ deps

(
K̄(ki ,mi)

)}
---> Code 10, lines 7 to 12 and 15

u ′
cl = uj (s, getMax

(
K̄,u ′

cl

)
, ∅), T→ (s ′, _,F), skip ---> Code 10, line 17

t
(n′

,r ,n)

(r ,cl)
= max

{
t
(z′,r ,z)

(r ,cl)

��� t (z′,r ,z)
(r ,cl)

∈ K̄
}

K̄ ′
= update

(
K̄,u ′

cl ,F , t
(n′

,r ,n+1)
(r ,cl)

)

r , cl ⊢ K̄,ur ,ucl , s,
[
x1 := [k1]; . . . ; xj := [kj];

] u′
cl
,F

−−−−→ K̄ ′
,ur ,u

′
cl , s

′
, skip

ClientCommit

r , cl ⊢ K̄, Ū(r), Ū(cl), s, P(cl)
u′′
cl
,F

−−−−→ K̄ ′
,u ′

r ,u
′
cl , s

′
, C′

K̄, Ū, E, P
u′′
cl
,F

−−−−→ K̄ ′
, Ū

[
r 7→ u ′

r

] [
cl 7→ u ′

cl

]
, E[cl 7→ s ′], P[cl 7→ C′]

Data Consistency in Transactional Storage Systems: A Centralised Approach

The for-loop in the premiss picks a version for key ki from ur and adds to client view, which
corresponds to the initial ccv(ki). Then it add all the new dependencies deps

(
K̄(ki ,mi)

)
to the

view that yields ui . The view ui corresponds to ccv(ki) after the update against the dependencies.
Given the view ucl , the client fetches the version with the maximum writer it can observed for
each key, which is computed by getMax function. It is different from snapshot because snapshot
fetches the latest version with respect to the position in the list, but later one we will prove getMax

and snapshot are equivalent.

getMax
(
K̄,ucl

)
, λk .

(
max

{
(v, t ,T ,dp)

�� ∃i . (v, t ,T ,dp) = K̄(k, i) ∧ i ∈ ucl (k)
})
⇂1

(v, t
(n,r ,n′)

(r ,cl)
,T ,dp) > (v ′

, t
(n′′

,r ′,n′′′)

(r ′,cl′)
,T ′
,dp ′)

def
⇔ (n, r ,n′) > (n′′, r ,n′′′)

The rest part are trivial be picking a new transaction identifier with larger read counter and com-
mitting to key-value store.
Last the rule for receiving a update. A replica updates its local state only if all the dependencies

has been receive as shown in Code 6.
sync

ur = Ū(r)
[
k 7→ Ū(r)(k) ⊎ i

](
∀k ′,m,ν . ν = K̄(k, i) ∧ (k ′,w(K̄(k ′,m))) ∈ ν⇂4⇒m ∈ u ′

r (k
′)
)

K̄, Ū, E, P −→ K̄, Ū[r 7→ ur], E, P

The premiss says, the first line, the replica r receive a new version i for key k , and, the second line,
only if all the dependencies of the new update already in the replica’s view.

COPS key-value store. To verify the algorithm, we prove that for any COPS trace produced
by the algorithm, there exists a corresponding causal consistency trace. First we prove that the
key-value stores from COPS trace satisfy Def. 3.1.

Theorem H.1 (Well-formed COPS key-value). Let ignore the dependencies of versions from K̄ .

Given the initial key-value store K̄0, initial views Ū0 and some programs P0, for any K̄i and Ūi such

that:

K̄0, Ū0, E0, P0−→
∗K̄i , Ūi , Ei , Pi

The key-value store K̄i satisfies Def. 3.1 and any replica or client view u from Ūi is a valid view of

the key-value store, i.e. u ∈ Views(K̄i).

Proof. We need to prove the K̄i satisfies the well-formed conditions, and any view uiViews(K̄i).
We prove it by introduction on the length i .

• Base case: i = 0. It holds trivially since each key only has the initial version (v0, t0, ∅, ∅). Since
there is only the initial version for each key, it is easy to see that any view u0 satisfying the
well-formed conditions in Def. 3.2.

• Inductive case: i + 1. We perform case analysis on the possible (i + 1)-th step:
– Put Assume the client cl of a replica r commits a single-write transaction t that installs a

new version for key k . By the premiss of Put, the new transaction identifier t = t
(n′

,r ,0)
(r ,cl)

where for somen′ that is greater than any n from any writers t
(n,_,_)
(_,_)

that are observable by

the replica r . Since the new transaction t = t
(n′

,r ,0)
(r ,cl)

is a single-write transaction which is

always installed at the end of the list associated to k , it is sufficient to prove the following:

∀j . 0 ≤ j < |K̄i (k)| ⇒ w(K̄i (k, j)) , t (8.1)

∀j,n. t
(n,r ,_)
(r ,cl)

∈
{
w(K̄i (k, j))

}
∪ rs(K̄i (k, j)) ⇒ n < n′ (8.2)

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Lemma H.2 implies Eq. (8.1) and Eq. (8.2). Thus the new key-value store K̄i+1 satisfies the
well-formed conditions. Now let consider the views, especially the views of the replica
u ′
r and the client u ′

cl
. Because views different replicas or clients remain unchanged, by

I.H. they satisfy u ′ ∈ Views(K̄i+1). The new view for replica u ′
r = ur

[
k 7→ |K̄i+1(k)| − 1

]
where ur is the replica’s view before updating and the writer of the last version of k is t .
Because t is a single-write transaction, so the new view u ′

r still satisfies the atomic read.
For similar reason, the new view for client u ′

cl
till satisfies atomic read. Therefore we have

u ′
r ,u

′
cl

∈ Views(K̄i+1).
– GetTrans Assume the client cl of a replica r commits a read-only transaction t . Since it
is a read-only transaction, it suffice to prove the following:

∀k, j . 0 ≤ j < |K̄i (k)| ⇒ t < rs(K̄i (k, j)) (8.3)

Lemma H.2 implies Eq. (8.3). Thus the new key-value store K̄i+1 satisfies the well-formed
conditions. Now let consider the views. Since only the client view has changed, it is suf-
ficient to prove that u ′

cl
∈ Views(K̄i+1), where u

′
cl
is the new client view. By Lemma H.3,

the new view u ′
cl
satisfies the atomic read constraint. Therefore u ′

cl
∈ Views(K̄i+1).

�

Lemma H.2 (Monotonic local time). Given a reduction step such that:

K̄,ur ,ucl , s, C−→
∗K̄ ′
,u ′

r ,u
′
cl , s

′
, C′

let t
(n,r ,n′)

(r ,cl)
be the new transaction, i.e. t (n,r ,n

′)

(r ,cl)
∈ K̄ ′ ∧ t

(n,r ,n′)

(r ,cl)
< K̄ . It implies the new transaction is

greater than any transaction committed by the same client view ucl , i.e.

t
(n′′

,r ,n′′′)

(r ,cl)
∈ K̄ ⇒ (n, r ,n′) > (n′′, r ,n′′′)

Proof. We perform case analysis.

• Put By the premiss of the rule, the new transaction is in the form t
(n,r ,0)
(r ,cl)

, and for any existing

transaction t
(n′

,r ,_)
(r ,cl)

,

t
(n′

,r ,_)
(r ,cl)

∈ K̄ ⇒ n > n′

• GetTrans Let t (n,r ,n
′)

(r ,cl)
be the new transaction. By the premiss we have that for any existing

transaction t
(n′′

,r ,n′′′)

(r ,cl)
,

t
(n′′

,r ,n′′′)

(r ,cl)
∈ K̄ ⇒ n = n′′ ∧ n′ > n′′′

�

Lemma H.3 (Uniqe writer). Each version has a unique writer.

Proof. Because a transaction can write to at most one key, and a client at least observes its own
writes (the premiss of Put) we have the proof. �

Data Consistency in Transactional Storage Systems: A Centralised Approach

COPS normal trace. We define COPS semi-normal trace then normal trace. Later, we prove for
any COPS trace, there exists an equivalent normal trace.
The dependency of a transaction deps

(
K̄, t

)
is defined as:

• if t is a single-write transaction:

deps
(
K̄, t

)
, dp where ∃k, j . lastConf(τ)⇂1 (k, j) = (_, t , _,dp)

• if t is a read-only transaction:

deps
(
K̄, t

)
,

⋃
{ν | ∃k, j . ν=K̄(k, j)∧t ∈rs(ν)}

deps(ν)

Given a trace τ , the function maxVersion(τ , t) returns the version that the transaction t depends
on and is the last one that appears in the trace:

maxVersion(τ , t), ti the ti is the last one appears in τ such that
(k ′, ti) ∈ deps(lastConf(τ)⇂1, t) ∧ ti < K̄i ∧ ti ∈ K̄i+1

Give two COPS’s traces τ and τ ′, K̄ being the final state of τ and K̄ ′ for τ ′, if the two traces are
equivalent, if and only if,

∀t ,F ,dp. t ∈ K̄ ∧ F = RWset
(
K̄, t

)
∧ dp = deps

(
K̄, t

)
⇐⇒ t ∈ K̄ ′ ∧ F = RWset

(
K̄ ′
, t
)
∧ dp = deps

(
K̄ ′
, t
)

where RWset
(
K̄, t

)
is the read-write set of t . Note that RWset is well-defined by Theorem H.1.

A COPS’s semi-normal trace is a trace τ if it is in the form that read-only transactions trd directly
follows its maxVersion(τ , trd) or another read-only transaction t ′

rd
such that maxVersion(τ , trd) =

maxVersion
(
τ , t ′

rd

)
.

Corollary H.4. For any COPS’s trace τ , there exists a equivalent semi-normal trace τ ′ such that

lastConf(τ) = lastConf(τ ′).

Proof. It is easy to prove by induction on the numbers of read-only transactions that are not in
thewanted position. Let take the first one for those read-only transactions trd who does not follows
its maxVersion(τ , ti). It is safe to move the reduction step to the right in the trace, until it directly
follows its maxVersion(τ , trd) or another read-only transaction t ′

rd
such that maxVersion(τ , trd) =

maxVersion
(
τ , t ′

rd

)
. Assume it is i-th step, and assume (i−1)-th is notmaxVersion(τ , trd) nor another

read-only transaction t ′
rd
such thatmaxVersion(τ , trd) = maxVersion

(
τ , t ′

rd

)
. It means the (i − 1)-th

step must be a write that trd does not depend on. Because if (i−1)-th step is a read only transaction

t ′′
rd
it must be the case maxVersion(τ , trd) = maxVersion

(
τ , t ′′

rd

)
, otherwise trd is not the first read-

only transaction that is not in the wanted place. �

A COPS’s normal trace is a trace τ if it is semi-normal trace and the single-write transactions
step appears in the trace in the order of the writers of those transactions.

Theorem H.5 (normal trace). For any COPS’s trace τ , there exists an equivalent normal trace

τ ′.

Proof. By Cor. H.4, let consider a semi-normal trace τ . It is easy to prove by induction on the

single-write transactions that are out of order. Let take the first single-write transaction t = t
(n,r ,n′)

(r ,cl)

that is out of order. Suppose it is the i-step. Assume t write to key k with value v . Assume the

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

preview write-only transaction t ′ = t
(n′′

,r ′,n′′′)

(r ′,cl′)
and it follows (n, r ,n′) < (n′′, r ′,n′′′). The intuition

here is to swap the reduction steps of these two transactions and those read-only transactions
following them. We assume t and t ′ write to the same key, otherwise it is safe to swap. For any
read-only transactions trd ∈ Trd following t , we knows t ′ < deps

(
K̄i , trd

)
, otherwise it violate

maxVersion(τ , trd) = t . Thus it is safe to swap the reduction steps and alter views that includes
either or both versions. Note that if a view u includes both t and t ′, and if t ′ also write to the same
key k with value v ′, the u will fetch the value from t ′: getMax

(
K̄i ,u

)
(k) = v ′

�

Corollary H.6. For the Put and GetTrans, it is safe to replace the function getMax with the

function snapshot.

Proof. By Theorem H.5, each trace τ has an equivalent normal trace τ ′. Assume i-th step in the
trace τ ′. Assume the key-value store before is K̄i . For any versionsm and j from the same key in
the τ ′:

0 <m < j < |K̄i (k)| ⇒ w(K̄i (k,m)) < w(K̄i (k, j))

thus it is safe to use snapshot. �

COPS normal trace to ETCC trace. Given Theorems H.1 and H.5 and Cor. H.6, for any COPS’s
trace τ , there exists a trace τ ′ that is a normal trace and satisfies ET⊤. Then by the following
theorem (Theorem H.7), we proof the COPS trace satisfies ETCC.

Theorem H.7 (COPS satisfying causal consistency). Given a trace starting from the initial

key-value store K̄0, initial views Ū0 and some programs P0, for any K̄i and Ūi such that:

K̄i , Ūi , Ei , Pi
ucl ,F
−−−−→ K̄i+1, Ūi+1, Ei+1, Pi+1

then the i-th step satisfies ETCC, i.e.

ETCC ⊢ (K̄i ,ucl) ⊲ F : (K̄i+1, Ūi+1(cl))

Proof. We prove this by induction on the length of trace i . We introduce two invariants I1, I2.
The I1 states that for any view u, if the view u includes a version, it also includes all the version it
depends on, that is,

∀cl ,u,k,k ′, j,m,dp.

u = co − dom
(
Ūi

)
∧ j ∈ ucl (k

′) ∧ (_, _, _,dp) = K̄i (k, j) ∧ (k ′,w(K̄i (k
′
,m))) ∈ dp

⇒m ∈ u(k ′)

The I2 states that for any transaction t , deps
(
K̄i , t

)
includes transactions that t depends on with

respect to (SO ∪WR).

∀t ,k, j . t = w
(
K̄i (k, j)

)
⇒ ((SO ∪WR)−1)∗(t) ⊆ deps

(
K̄i (k, j)

)
if the view u includes a version, Since ETCC = ETMR ∩ ETRYW ∩ allowed(SO ∪WR), we prove
the three constraints separately. In each case we need to consider Put, GetTrans and Sync Let t
be the new transaction committed to replica r by the client cl . Let ucl and u

′
cl
be the client views

before and after respectively, and ur and u
′
r be the replica views before and after respectively.

• ETMR. For Put, it is easy to see ucl ⊑ u ′
cl

and ur ⊑ u ′
r . For GetTrans, it is known that

ur = u
′
r . In the premiss of GetTrans, it fetches a version,mi -th version, from the replica for

each key ki and adds all dependencies, which are associated with version, in the client view.
This means ucl ⊑ u ′

cl
.

• ETRYW. By ETMR, it suffices to only consider if the newly committed transaction is included in
the view. We only need to consider Put. The new viewsu ′

cl
= ucl [k 7→ j] andu ′

r = ur [k 7→ j]

where the new version K̄i+1(k, j) is written by the client cl .

Data Consistency in Transactional Storage Systems: A Centralised Approach

• allowed(SO ∪WR). Given the invariants I1 and I2, let consider Put, GetTrans and Sync.
– Put. By invariants I1 and I2, we know ucl = getView

(
K̄i , ((SO ∪WR)−1)∗(visTx

(
K̄i ,ucl

)
)
)
.

Now we need to re-establish the I1 for the new views u ′
cl
and Ū ′ and I2 for the new trans-

action t .
∗ Since it is a single-write transaction, assume it appends j-th version to key k . This means
the new client views u ′

cl
= ucl [k 7→ ucl (k) ∪ {j}], Let dp be the dependency for the new

version, i.e. dp = deps(K̄i+1(k, j)). By the premiss, the dp includes all versions included
in ucl . This means for any key k ′ and indexm:

(k ′,w
(
K̄i (k

′
,m)

)
) ∈ dp ⇒m ∈ u ′

cl (k
′)

Note that u ′
cl

⊑ u ′
r , therefore the invariant I1 holds.

∗ It is enough to only consider the newly committed transaction t . Since it is a write trans-

action, let assume any transaction t ′ such that t ′
SO
−−→ t . ByMR and RYW, transaction t ′

is in the view ucl , that is, for some k ′,m:

t ′ ∈
{
w
(
K̄i (k

′
,m)

)}
∪ rs

(
K̄i (k

′
,m)

)
⇒m ∈ ucl (k

′)

Given the definition of dependencies the new version written by t :

dp =
{
(k ′′, t ′′)

�� ∃z. z ∈ ucl (k
′′) ∧ t ′′ = w(K̄i (k

′′
, z)) ∨ (k ′′, t ′′) ∈ deps

(
K̄i (k

′′
, z)

)}
it follows (k ′,m) ∈ dp. By I.H. of invariant I2, we know that dp is close with respect to
SO∪WR. Thus we know for the new transaction ((SO∪WR)−1)∗(t) ⊆ deps

(
K̄i , t

)
, that

is, we re-establish invariant for i + 1.
– For GetTrans, the client cl commits a read-only transaction. By the premiss of the rule,
the client will pick a new view u ′

cl
such that u0 = ucl ⊑ u ′

cl
= uj and:

for z in {1, . . . , j}
mz ∈ ur (kz)

u ′
z = uz−1[kz 7→ uz−1(kz) ∪ {mz }]

uz = λk .u ′
z (k) ∪

{
x
�� (k,w(

K̄(k, x)
)
) ∈ deps

(
K̄(kz ,mz)

)}
Weprove each iteration preserves the invariant I1. Suppose the invariants holds after (z−1)-
th, let consider z-th. By construction, u ′

z = uz−1[kz 7→ uz−1(kz) ∪ {mz }], themz version of
some key kz is included in u

′
z . Then all the versions K̄i (kz ,mz) is is included in uz as

uz = λk .u ′
z (k) ∪

{
x
�� (k,w(

K̄(k, x)
)
) ∈ deps

(
K̄(kz ,mz)

)}
This implies I1 for uz . For I2, we apply I.H. of invariant I2, since the new transaction is a
read-only transaction.

– For Sync, the premiss of the rule implies that I1 holds under the new replica view u ′
r . For

I2, we apply I.H. of invariant I2.

�

H.2 Clock-SI

H.2.1 Code.

Structure. Clock-SI is a partitioned distributed NoSQL database, which means each server, also
called shard, contains part of keys and does not overlap with any other servers. Clock-SI imple-
ments snapshot isolation. To achieve that, each shard tracks the physical time. Note that times
between shards do not match, but there is a upper bound of the difference.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

1 Shard :: ID -> (clockTime)

Code 11. Shard

A key maintains a list of values and their versions. A version is the time when such value is
committed.

1 VersionNo :: Time

2 KV :: Keys -> List (Val , VersionNo)

3 (each key is asscoaited with a shard)

Code 12. Key-value store

The idea behind Clock-SI is that a client starts a transaction in a shard, and the shard is responsible
for fetching value from other shards if keys are not stored in the local shard. During execution, a
transaction tracks the write set.

1 WS :: Key -> Val

Code 13. Write set

At the end, the transaction commits all the update in the write set, and the local shard acts as
coordinator to update keys either locally or remotely. To commit a transaction, Clock-SI use two-
phase commits protocol. A transaction has four states:

• active, the transaction is still running;
• prepared, shards receive the update requests from the coordinator;
• committing, shards receive the update confirmations from the coordinator;
• committed, the transaction commits successfully.

To implement SI, a transaction also tracks its snapshot time so it knows which version should be
fetched. Also a transaction tracks the prepared and committing times, which are used to postpone
other transactions’ reads if those transactions’ snapshots time are greater.

1 State :: { active , prepared , committing , committed }

2 Trans :: (state , snapTime , prepareTime , commitTime , ws)

Code 14. Transaction runtime

Start Transaction. Clock-SI proposes two versions, with or without session order. Here we
verify the one with session order. To start a transaction, the client contacts a shard and provides
the previous committing time. The shard will return a snapshot time, which is greater than the
committing time provided, for the new transaction. Note that client might connects to a different
shard from last time, which means that the shard might have to wait until the shard local time is
greater than the committing time.

1 startTransaction (Trans t, Time ts)

2 wait until ts < getClockTime ();

3 t.snapshotTime = getClockTime ();

4 t.state = active;

Code 15. Transaction runtime

From this point, such transaction will always interact with the shard and the shard will act as
coordinator if necessary.

Data Consistency in Transactional Storage Systems: A Centralised Approach

Read. A transaction t might read within the transaction if the key has been updated by the
same transaction before, that is, read from the write set ws. A transaction t might read from the
original shard if the key store in the shard, but it has to wait until any other transactions t' commit
successfully who are supposed to commit before the current transaction’s snapshot time, i.e. t'
are in prepared or committing stage and the corresponding time is less the t snapshot time.

1 Read (Trans t, key k)

2 if (k in t.ws) return ws(k);

3 if (k is updated by t' and t'. state = committing

4 and t.snapshotTime > t'. committingTime)

5 wait until t'. state == committed ;

6 if (k is updated by t'

7 and t'.state = prepared and t.snapshotTime > t'. preparedTime

8 and t.snapshotTime > t'. committingTime)

9 wait until t'. state == committed ;

10 return K(k,i), where i is the latest version before t.snapshotTime ;

Code 16. Read from original shard

If the key is not stored in the original shard, the original shard sends a read request to the shard
containing the key. Because of time difference, the remote shard’s time might before the snapshot
time of the transaction. In this case, the shard wait until the time catches up.

1 On read k request from a remote transaction t

2 wait until t.snapshotTime < getClockTime ()

3 return read(t,k);

Code 17. Read from original shard

Commit Write Set. If all the keys in the write set are hosted in the original shard that the
transaction first connected, the write set only needs to commit local.

1 localCommit (Trans t)

2 if noConcurrentWrite (t) {

3 t.state = committing ;

4 t.commitTime = getClockTime ();

5 log t.commitTime ;

6 log t.ws;

7 t.state = committed ;

8 }

Code 18. Local Commit

To commit local, it first checks, by noConcurrentWrite(t), if there is any transaction t' that
writes to the same key as the transaction new transaction t, and the transaction t' commit after the
snapshot of t. Sincewriting database needs time, it sets the transaction state to committingand log
the commitTime, before the updating really happens. During committing state, other transactions
will be pending, if they want to read the keys being updated. Last, the state of transaction is set to
committed.
To commit to several shards, Clock-SI uses two-phase protocol.

1 distributedCommit (Trans t)

2 for p in t.updatedPartitions { send ``prepare t'' to p; }

3 wait receiving ``t prepared '' from all participants , store into prep;

4 t.state = committing ;

5 t.commitTime = max(prep);

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

6 log t.commitTime ;

7 t.state = committed ;

8 for p in t.updatedPartitions { send ``commit t'' to p; }

9

10 On receiving ``prepare t''

11 if noConcurrentWrite (t) {

12 log t.ws and t.coordinator ID

13 t.state = prepared;

14 t.prepareTime = getClockTime ();

15 send ``t prepared '' to t.coordinator

16 }

17

18 On receiving ``commit t''

19 log t.commitTime

20 t.state = committed

Code 19. Distributed Commit

The original shard, who acts as the coordinator, sends ''prepare t'' to shards that will be
updated. Any shard receiving ''prepare t'' checks, similarly, if there is any transaction write
to the same key committing after the snapshot time. If the check passes, the shard logs the write set
and the coordinator shard ID, set the state to prepared, and sends the local time to the coordinator.
Once the coordinator receives all the preparedmessages, it starts the second phase by setting the
state to committing. Then the coordinator picks the largest time from all the preparedmessages
as the commit time for the new transaction. Since the write set has been logged in the first phase,
so here it can immediately set the state to be committed. Last, the coordinator needs to send
commit t to other shards so theywill log the commit time and set the state to committed.Note that
participants have different view for the new transaction from the coordinator, but it guarantees
eventually they all updated to committedwith the same commit time.

H.2.2 Verification.

Structure. We model the database use key-value store from Def. 3.1, yet here it is necessary
to satisfy the well-formed conditions. Transaction identifier tn

cl
are labelled with the committing

time n. Sometime we also write tc
cl
or omit the client label, i.e. tn and tc .

Database is partitioned into several shards. A shard r ∈ Shards contains some keys which are
disjointed from keys in other shards. The shardOf(k) denotes the shard where the key k locates.

Shards and clients are associated with clock times, c ∈ ClockTimes , N, which represent the

current times of shards and clients. We use notation C ∈ (Shards ∪ Client)
fin
−−⇀ ClockTimes.

We will use notation [T] to denote the static code of a transaction, and [T]Fc for the runtime of a
transaction, where c is the snapshot time and F is the read-write set. Note that in the model, we
only distinguishes active and committed state, since the prepared and committing are only for
better performance.

Start Transaction. To start a transaction, it picks a random shard r as the coordinator, reads
the local time C(r) as the snapshot, and sets the initial read-write set to be an empty set. Also the
client time is updated to the snapshot time. For technical reason, we also update the shard time to
avoid time collision to other transaction about to commit. Note that in real life, all the operations

Data Consistency in Transactional Storage Systems: A Centralised Approach

running in a shard take many time cycles, so it is impossible to have time collision.

StartTrans

c < C(r) C′
= C[r 7→ C(r) + 1] ---> simulate time elapses

cl ⊢ K, c, C, s, [T]
C(r),c, ∅,⊥
−−−−−−−−→ K, C(r), C′

, s, [T]∅
C(r)

Read. The clock-SI protocol includes some codes related to performance which does not affect
the correctness. Clock-SI distinguishes a local read/commit and a remote read/commit, yet it is
sufficient to assume all the read and commit are “remote”, while the local read and commit can
be treated as self communication. Similarly we assume a transaction always commits to several
shards.

1 On receive ``read (t,k)'' {

2 if (k in t.ws) return ws(k);

3

4 asssert(t.snapshotTime < getClockTime ())

5 for t' that writes to k:

6 if(t.snapshotTime > t'. preparedTime

7 || t.snapshotTime > t'. committingTime)

8 asssert(t.state == committed)

9

10 return K(k,i), where i is the latest version before t.snapshotTime ;

11 }

Code 20. simplified read

If the key exists in the write set F , the transaction read from the write set immediately.

ReadTrans

k = JEKs (w,k,v) ∈ F ---> Code 20, line 2

cl ⊢ K, c, C, s, [x := [E]]Fc
cl,c,F<⊳(r,k,v),⊥
−−−−−−−−−−−−−−→ K, c, C, s[x 7→ v], [skip]

F<⊳(r,k,v)
c

Otherwise, the transaction needs to fetch the value from the shard. The first premiss says the
transaction must wait until the shard local time C(shardOf(k)) is greater than the snapshot time
c . If so, by the second line, the transaction fetches the latest version for key k before the snapshot
time c .

ReadRemote

k = JEKs (w,k, _) < F c < C(shardOf(k)) ---> Code 20, line 4

n = max
{
n′

��� ∃j . tn′

= w(K(k, j)) ∧ n′ < c
}

---> Code 20, line 10

K(k, i) = (v, tn, _)

cl ⊢ K, c, C, s, [x := [E]]Fc
cl,c,F<⊳(r,k,v),⊥
−−−−−−−−−−−−−−→ K, c, C′

, s[x 7→ v], [skip]
F<⊳(r,k,v)
c

Write. Write will not go to the shard until committing time. Before it only log it in the write
set.

Write

k = JE1Ks v = JE2Ks

cl ⊢ K, c, C, s, [[E1] := E2]
F
c

cl,c,F<⊳(w,k,v),⊥
−−−−−−−−−−−−−−→ K, c, C, s, [skip]

F<⊳(w,k,v)
c

Commit. We also assume transaction always commit to several shards and the local commit is
treated as self-communication.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

1 commit(Trans t)

2 for p in t.updatedPartitions

3 send ``prepare t'' to p;

4 wait receiving ``t prepared '' from all participants , store into prep;

5 t.state = committing ;

6 t.commitTime = max(prep);

7 log t.commitTime ;

8 t.state = committed ;

9 for p in t.updatedPartitions

10 send ``commit t'' to p;

11

12 On receiving ``prepare t''

13 if noConcurrentWrite (t)

14 log t.ws to t.coordinator ID

15 t.state = prepared;

16 t.prepareTime = getClockTime ();

17 send ``t prepared '' to t.coordinator

18

19 On receiving ``commit t''

20 log t.commitTime

21 t.state = committed

Code 21. simplified commit

Note that Clock-SI uses two phase commit: the coordinator (the shard that the client directly
connects to) distinguishes “committing” state and “committed” state, where in between the coordi-
nator pick the committing time and log the write set, and the participants distinguishes “prepared”
state and “committed” state. Such operations are for possible network partition or single shard er-
rors, and allowed a more fine-grain implementations which do not affect the correctness, therefore
it suffices to assume they are one atomic step.

Commit

∀k, i . (w,k, _) ∈ F ∧ w(K(k, i)) < c ---> Code 21, line 13

n = max ({c ′ | ∃k . (_,k, _) ∈ F ∧ c ′ = C(shardOf(k))} ∪ {c}) ---> Code 21, lines 4 to 6

K ′
= commitKV

(
K, c, tncl ,F

)
---> Code 21, lines 20 and 21

∀r .

(
r ∈ {shardOf(k) | (_,k, _) ∈ F }

⇒ C′(r) = C(r) + 1

)
∨ (C′(r) = C(r)) ---> simulate time elapses

r , cl ⊢ K, c, C, s, [skip]Fc
cl,c,F,n
−−−−−−→ K ′

,n + 1, C′
, s, skip

To commit the new transaction, it needs to check, by the first premiss, there is no other trans-
actions writing to the same keys after the snapshot time. If it passes, by the second line it picks
the maximum time n among all participants as the commit time. The new key-value store K ′

=

Data Consistency in Transactional Storage Systems: A Centralised Approach

commitKV
(
K, c, tn

cl
,F

)
, where

commitKV(K, c, t ,F ⊎ {(r,k,v)}), let n = max
{
n′

��� ∃j . tn′

= w(K(k, j)) ∧ n′ < c
}

andK(k, i) = (v, tn,T)

andK ′
= commitKV(K, c, t ,F)

in K ′[k 7→ K ′(k)[i 7→ (v, tn,T ∪ {t})]]

commitKV(K, c, t ,F ⊎ {(w,k,v)}), letK ′
= commitKV(K, c, t ,F)

inK ′[k 7→ K ′(k)::(v, t , ∅)]

Note that commitKV is similar to update by appending the new version to the end of a list. The
commitKV also updates versions read by the new transaction using the snapshot time of the trans-
action. Last, like StartTranswe update the client time after the commit time, i.e.n+1 and simulate
time elapses for all shards updated.

Time Tick. For technical reasoning, we have non-deterministic time elapses.

TimeTick

K, C, C′
, E, P

r ,C(r)+1
−−−−−−−→ K, C, C′[r 7→ C(r) + 1], E, P

ClientStep

cl ⊢ K, C(cl), C′
, E(cl), P(cl)

cl,c ′,F,c ′′

−−−−−−−−→ K ′
, c, C′′

, s, C

K, C, C′
, E, P

cl,c ′,F,c ′′

−−−−−−−−→ K, C[cl 7→ c], C′′
, E[cl 7→ s], P[cl 7→ C]

Verification. Clock-SI allows interleaving, yet for any clock-si trace τ there exists a equivalent
trace τ ′ where transactions do not interleave with others (Theorem H.8). Furthermore, in such
trace τ ′, transactions are reduced in their commit order.

TheoremH.8 (Normal clock-SI trace). A clock-SI trace τ is a clock-SI normal trace if it satisfies

the following: there is no interleaving of a transaction,

∀cl, c,Ki , Ci , C
′
i , Ei , Pi .

τ = · · ·
cl,c,_,⊥
−−−−−−→ Ki , Ci , C

′
i , Ei , Pi

_
−→ · · ·

⇒ ∃c ′,Kj , Cj , C
′
j , Ej , Pj .

τ = · · ·
cl,c,_,⊥
−−−−−−→ Ki , Ci , C

′
i , Ei , Pi

cl,c,_,⊥
−−−−−−→ _

cl,c,_,⊥
−−−−−−→ · · ·

cl,c,_,c ′

−−−−−−→ Kj , Cj , C
′
j , Ej , Pj

(8.4)

and transactions in the trace appear in the committing order,

∀cl i , cl j , ci , c j , c
′
i , cl

′
j ,Fi ,FjKi ,Kj , Ci , Cj , C

′
i , C

′
j , Ei , Ej , Pi , Pj .

τ = · · ·
cl i ,ci,Fi,c

′
i

−−−−−−−−−→ Ki , Ci , C
′
i , Ei , Pi

_
−→ · · ·

cl j ,c j,Fj ,c
′
j

−−−−−−−−−→ Kj , Cj , C
′
j , Ej , Pj ⇒ c ′i < c ′j

(8.5)

For any clock-SI trace τ , there exists an equivalent normal trace τ ′ which has the same final configu-

ration as τ .

Proof. Given a trace τ , we first construct a trace τ ′ that satisfies Eq. (8.5), by swapping steps.
Let take the first two transactions tn

cl i
and tm

cl j
that are out of order, i.e. n >m and

τ = · · ·
cl i ,ci,Fi,n
−−−−−−−−→ Ki , Ci , C

′
i , Ei , Pi

_
−→ · · ·

cl j ,c j,Fj,m
−−−−−−−−−→ Kj , Cj , C

′
j , Ej , Pj

By Lemma H.9, the two clients are different cl i , cl j and thus two steps are unique in the trace.
We will construct a trace that tn

cl i
commits after tm

cl j
.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

• First, it is important to prove that tm
cl j

does not read any version written by tn
cl i

. By LemmaH.20,

the snapshot time c j of t
m
cl j

is less than the commit time, i.e. c j <m, therefore c j < n. By the

read rule, c j < n implies the transaction tm
cl j

never read any version written by tn
cl i

.

• Let consider any possible time tick for those shard r that has been updated by tm
cl j

, that is,

r = shardOf(k) for some key k that (w,k, _) ∈ Fi and

τ = · · ·
cl i ,ci,Fi,n
−−−−−−−−→ Ki , Ci , C

′
i , Ei , Pi

_
−→ · · ·

r ,c
−−→ _

_
−→ · · ·

cl j ,c j,Fj,m
−−−−−−−−−→ Kj , Cj , C

′
j , Ej , Pj (8.6)

Since c j < m < n < c , therefore such time tick will not affect the transaction tm
cl j

, which

means it is safe to move the time tick step after the tm
cl j

.

Now we can move the commit of tn
cl i

and time tick steps similar to Eq. (8.6) after the commit of

tm
cl j

,

τ ′ = · · ·
cl j,c j,Fj ,m
−−−−−−−−−→ Kj , Cj , C

′
j , Ej , Pj

cl i ,ci,Fi,n
−−−−−−−−→ Ki , Ci , C

′
i , Ei , Pi

r ,c
−−→ · · ·

We continually swap the out of order transaction until the newly constructed trace τ ′ satisfying
Eq. (8.5).
Now let consider Eq. (8.4). Let take the first transaction t whose read has been interleaved by

other transaction or a time tick.

• If it is a step that the transaction t read from local state,

τ = · · ·
cl,c,F<⊳(r,k,v),⊥
−−−−−−−−−−−−−−→ _

α
−→ · · ·

cl,c,F′′
,n

−−−−−−−→ · · ·

then by ReadTrans we know F <⊳ (r,k,v) = F , and it is safe to swap the two steps as the
following

τ ′ = · · ·
α
−→ _

cl,c,F<⊳(r,k,v),⊥
−−−−−−−−−−−−−−→ · · ·

cl,c,F′′
,n

−−−−−−−→ · · ·

• If it is a step that the transaction t read from remote, the step might be interleaved by a step
from other transaction or time tick step.
– if it is interleaved by the commit of other transaction t ′ = tm

cl ′
, that is

τ = · · ·
cl,c,F,⊥
−−−−−−−→ K, C, C′

, E, P
cl ′,c ′,F′

,m
−−−−−−−−→ · · ·

cl,c,F′′
,n

−−−−−−−→ · · ·

where cl ′ , cl .
∗ if the transaction t ′ does not write to any key k that is read by t ,

∀k . (r,k, _) ∈ F ⇒ (w,k, _) < F ′

In this case, it is safe to swap the two steps

τ ′ = · · ·
cl ′,c ′,F′

,m
−−−−−−−−→ _

cl,c,F,⊥
−−−−−−−→ · · ·

cl,c,F′′
,n

−−−−−−−→ · · ·

∗ if the transaction t ′ write to a key k that is read by t ,

(r,k, _) ∈ F ∧ (w,k, _) ∈ F ′

Let r = shardOf(k). By the ReadRemote, we know the current clock time for the shard
r is greater than c which is the snapshot time of t , that is, C′(r) > c . Then by commit,
the commit time of t ′ is picked as the maximum of the shards it touched, i.e.m ≥ C′(r).
Now by the ReadRemote and m ≥ c , it is safe to swap the two steps since the new
version of k does not affect the t .

Data Consistency in Transactional Storage Systems: A Centralised Approach

– if it is interleaved by the read of other transaction t ′, that is

τ = · · ·
cl,c,F,⊥
−−−−−−−→ K, C, C′

, E, P
cl ′,c ′,F′

,⊥
−−−−−−−−→ · · ·

cl,c,F′′
,n

−−−−−−−→ · · ·

Because reads have no side effect to any shard by readRemote, it is safe to swap the two
steps

τ ′ = · · ·
cl ′,c ′,F′

,⊥
−−−−−−−−→ _

cl,c,F,⊥
−−−−−−−→ · · ·

cl,c,F′′
,n

−−−−−−−→ · · ·

– if it is interleaved by a time tick step,

τ = · · ·
cl,c,F<⊳(r,k,v),⊥
−−−−−−−−−−−−−−→ K, C, C′

, E, P
r ,c ′

−−−→ · · ·
cl,c,F′′

,n
−−−−−−−→ · · ·

∗ if the transaction t does not read from the shard r , it means for any key k ,

shardOf(k) , r

In this case, it is safe to swap the two steps

τ ′ = · · ·
r ,c ′

−−−→ _
cl,c,F<⊳(r,k,v),⊥
−−−−−−−−−−−−−−→ · · ·

cl,c,F′′
,n

−−−−−−−→ · · ·

∗ if the transaction t read from the shard r , it means that there exists a key k

shardOf(k) = r

By the ReadRemote, we know the current clock time for the shard r is greater than the
snapshot time of t , that is, C′(r) > c . Then by TimeTick, we have c ′ > C′(r). Now by
the ReadRemote and c ′ > c , it is safe to swap the two steps.

�

Lemma H.9 (Monotonic client clock time). The clock time associated with a client monotoni-

cally increases, That is, given a step

K, C, C′
, E, P

_
−→ K ′

, C′′
, C′′′
, E ′
, P′

then for any clients cl ,

C(cl) ≤ C(cl ′)

Proof. It suffices to only check the ClientStep rule which is the only rule updates the client
clock time, especially, it is enough to check the client cl that who starts or commits a new trans-
action.

• Commit. Let c be the clock time before committing, c = C(cl). By the premiss of the rule,
the new client time n + 1 satisfies that,

n = max ({c ′ | ∃k . (_,k, _) ∈ F ∧ c ′ = C(shardOf(k))} ∪ {c})

It means c < (n + 1).
• StartTrans. Let c be the clock time before taking snapshot, c = C(cl). By the premiss of
the rule the new client time C′(r) for a shard r , such that c < C′(r).

�

Lemma H.10 (No side effect local operation). Any transactional operation has no side effect

to the shard and key-value store,

K, C, C′
, E, P

cl,c,F,⊥
−−−−−−−→ K ′

, C′′
, C′′′
, E ′
, P′ ⇒ K = K ′

Proof. It is easy to see that StartTrans, ReadTrans, ReadRemote andWrite do not change
the state of key-value store. �

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

Clock-SI also has a notion view which corresponds the snapshot time. The following definition
viewOf(K, c) extracts the view from snapshot time.

Definition H.11. Given a normal clock-SI trace τ and a transaction tcl , such that

τ = · · ·
cl,c, ∅,⊥
−−−−−−→ · · ·

cl,c,F,⊥
−−−−−−−→ K, C, C′

, E, P
cl,c,F,c ′

−−−−−−−→ · · ·

the initial view of the transaction is defined as the following:

viewOf(K, c), λk . {i | ∃tn . w(K(k, i)) = tn ∧ n < c}

Given the view viewOf(K, c) for each transaction, we first prove that clock-si produces a well-
formed key-value store (Def. 3.1).

Lemma H.12. Given any key-value store K and snapshot time c from a clock-SI trace τ ,

τ = · · ·
_
−→ K, C, C′

, E, P → cl , c,F , c ′ · · ·

viewOf(K, c) and viewOf(K, c ′) (Def. H.11) produce well-formed views.

Proof. It suffices to prove that Eq. (atomic) in Def. 3.2. Assume a key-value store K and a
snapshot time c . Suppose a version i in the view i ∈ viewOf(K, c)(k) for some key k . By Def. H.11,
the version is committed before the snapshot time, i.e. tn = w(K(k, i)) ∧ n < c . Assume another
version tn = w(K(k ′, j)) for some key k ′ and index j . By Def. H.11 we have j ∈ viewOf(K, c)(k ′).
Similarly viewOf(K, c ′) is a well-formed view. �

Second, given the view viewOf(K, c) for each transaction, both commitKV and update produce
the same result.

Lemma H.13. Given a normal clock-SI trace τ and a transaction tcl , such that

τ = · · ·
cl,c, ∅,⊥
−−−−−−→ · · ·

cl,c,F,⊥
−−−−−−−→ K, C, C′

, E, P
cl,c,F,c ′

−−−−−−−→ · · ·

the following holds:

commitKV
(
K, c, tc

′

cl ,F
)
= update

(
K, viewOf(K, c),F , tc

′

cl

)
Proof. We prove by induction on F .

• Base case: F = ∅. It is easy to see that

commitKV
(
K, c, tc

′

cl , ∅
)
= K = updateK, viewOf(K, c),F , tc

′

cl

• Inductive case: F ⊎ (w,k,v). Because in both functions, the new version is installed at the
tail of the list associated with k ,

commitKV
(
K, c, tc

′

cl
,F ⊎ (w,k,v)

)
= commitKV

(
K, c, tc

′

cl
,F

)
[k 7→ K(k)::(v, t , ∅)]

= update
(
K, viewOf(K, c),F , tc

′

cl

)
[k 7→ K(k)::(v, t , ∅)]

= update
(
K, viewOf(K, c),F ⊎ (w,k,v), tc

′

cl

)
• Inductive case: F ⊎ (r,k,v). Let K(k, i) be the version being read. That is, the writer tn =
w(K(k, i)) is the latest transaction written to the key k before the snapshot time c ,

n = max
{
n′

��� ∃j . tn′

= w(K(k, j)) ∧ n′ < c
}

Data Consistency in Transactional Storage Systems: A Centralised Approach

Let the new version ν =
(
val(K(k, i)),w(K(k, i)), rs(K(k, i)) ⊎

{
tc

′

cl

})
. By Lemma H.12, it fol-

lows i ∈ viewOf(K, c)(k), then by LemmaH.14, the version is the latest one i = max(viewOf(K, c)(k)).
Therefore we have,

commitKV
(
K, c, tc

′

cl
,F ⊎ (r,k,v)

)
= commitKV

(
K, c, tc

′

cl
,F

)
[k 7→ K(k)[i 7→ ν]]

= update
(
K, viewOf(K, c),F , tc

′

cl

)
[k 7→ K(k)[i 7→ ν]]

= update
(
K, viewOf(K, c),F ⊎ (r,k,v), tc

′

cl

)
�

Lemma H.14 (Strictly monotonic writers). Each version for a key has a writer with strictly

greater clock time than any versions before:

∀K,k, i, j, tn, tm . w(K(k, i)) = tn ∧ w(K(k, j)) = tm ∧ i < j ⇒ n < m

By TheoremH.8, it is sufficient to only consider normal clock-SI trace. Since transactions do not
interleave in a normal clock-SI trace, all transactional execution can be replaced by Fig. 1.

Theorem H.15 (Simulation). Given a clock-SI normal trace τ , a transaction tn
cl

from the trace,

and the following transactional internal steps

K0, c0, C0, s0, [T]
cl,c, ∅,⊥
−−−−−−→ · · ·

cl,c,F,n
−−−−−−→ Ki , ci , Ci , si , [skip]

for some i , there exists a trace

(s0, snapshot(K0, viewOf(K0, c)), ∅), T→
∗ (si , ssi ,Fi), skip

that produces the same final fingerprint in the end.

Proof. Given the internal steps of a transaction

K0, c0, C0, s0, [T0]
F0
c

_
−→ · · ·

_
−→ Ki , ci , Ci , si , [Ti]

Fi
c

We construct the following trace,

(s0, snapshot(K0, viewOf(K0, c)),F0), T0 →
∗ (si , ssi ,Fi), Ti

Let consider how many transactional internal steps.

• Base case: i = 0. In this case,

K0, c0, C0, s0, [T]
F0
c

It is easy to construct the following

(s0, snapshot(K, viewOf(K, c)),F0), T0

• Inductive case: i + 1. Suppose a trace with i steps,

K0, c0, C0, s0, [T0]
F0
c

_
−→ · · ·

_
−→ Ki , ci , Ci , si , [Ti]

Fi
c

and a trace

(s0, snapshot(K0, viewOf(K0, c)),F0), T0 →
∗ (si , ssi ,Fi), Ti

Now let consider the next step.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

– ReadTrans. In this case

Ki , ci , Ci , si , [Ti]
Fi
c

_
−→ Ki+1, ci+1, Ci+1, si+1, [Ti+1]

Fi+1
c

such that
Fi+1 = Fi <⊳ (r,k,v) = Fi ∧ (w,k,v) ∈ Fi

for some key k and value v , and

Ti ≡ x := [E]; T ∧ JEKsi = k ∧ si+1 = si [7→v] ∧ Ti+1 ≡ skip; T

for some variable x, expression E and continuation T. Since (w,k,v) ∈ Fi , it means i (k) = v
for the local snapshot. By the TPrimitive, we have

(si , ssi ,Fi), Ti → x := [E]; T → (si+1, ssi ,Fi+1), Ti+1

– ReadRemote. In this case

Ki , ci , Ci , si , [Ti]
Fi
c

_
−→ Ki+1, ci+1, Ci+1, si+1, [Ti+1]

Fi+1
c

such that

Fi+1 = Fi <⊳ (r,k,v) = Fi ⊎ {(r,k,v)} ∧ ∀v . (w,k,v ′) < Fi

for some key k and value v , and

Ti ≡ x := [E]; T ∧ JEKsi = k ∧ si+1 = si [7→v] ∧ Ti+1 ≡ skip; T

for some variable x, expression E and continuation T. By the premiss of the ReadRemote,
the value read is from the last version before the snapshot time:

n = max
{
n′

��� ∃j . tn′

= w(K(k, j)) ∧ n′ < c
}
∧ val(Ki (k,n)) = v

By the definition of u0 = viewOf(K0, c) and snapshot(K0,u0) and the fact that there is no
write to the key k , it follows ssi (k) = v . Thus, by the TPrimitive, we have

(si , ssi ,Fi), Ti → x := [E]; T → (si+1, ssi ,Fi+1), Ti+1

– Write. In this case

Ki , ci , Ci , si , [Ti]
Fi
c

_
−→ Ki+1, ci+1, Ci+1, si+1, [Ti+1]

Fi+1
c

such that

Fi+1 = Fi <⊳ (w,k,v) = Fi \ {(w,k,v
′) | v ′ ∈ Val} ⊎ {(r,k,v)}

for some key k and value v , and

Ti ≡ [E1] := E2; T ∧ JE1Ksi = k ∧ JE2Ksi = v ∧ Ti+1 ≡ skip; T

for some expressions E1 and E2, and continuation T. By the TPrimitive, it is easy to see:

(si , ssi ,Fi), Ti → [E1] := E2; T → (si+1, ssi ,Fi+1), Ti+1

�

By Def. H.11, Lemma H.12, and Theorem H.15, we know for each clock-SI trace, there exists a
trace that satisfies ET⊥. Last, we prove such trace also satisfies ETSI.

Theorem H.16 (Clock-SI satisfying SI). For any normal trace clock-SI trace τ , and transaction

tn
cl
such that

τ = · · ·
cl,c,F,⊥
−−−−−−−→ K, C, C′

, E, P
cl,c,F,n
−−−−−−→ K ′

, C′′
, C′′′
, E ′
, P′

_
−→ · · ·

the transaction satisfies ETSI, i.e. ETSI ⊢ (K, viewOf(K, c)) ⊲ F : viewOf(K, C′′(cl))

Data Consistency in Transactional Storage Systems: A Centralised Approach

Proof. Recall ETSI = {(K,u,F ,u ′) | †} ∩ ETMR ∩ ETRYW ∩ ETUA Note that final view of the
client, C′′(cl) = n + 1. We prove the four parts separately.

• {(K, viewOf(K, c),F , viewOf(K, C′′(cl))) | †}. Assume a version i ∈ viewOf(K, c)(k) for
some key k . Suppose a version K(k ′, j) such that

w(K(k ′, j))
((SO∪WRK∪WWK);RW?

K
)+

−−−−−−−−−−−−−−−−−−−−−→ w(K(k, i))

Let tn = w(K(k ′, j)) and tm = w(K(k, i)). By Lemmas H.17 and H.18, we know n < m then
j ∈ viewOf(K, c)(k ′).

• ETMR. By Commit, we know c ≤ n < C′′(cl) then viewOf(K, c) ⊑ viewOf(K, C′′(cl)).
• ETMW. By Commit, for any write (w,k,v) ∈ F , there is a new version written by the client
cl in the K ′,

w(K ′(k, |K ′(k)| − 1)) = tncl
Since n < C′′(cl), it follows |K ′(k)| − 1 ∈ viewOf(K, C′′(cl))(k).

• ETUA. By the premiss of Commit, for any write (w,k,v) ∈ F , any existed versions of the key
k must be installed by some transactions before the snapshot time of c ,

∀k, i . (w,k, _) ∈ F ∧ w(K(k, i)) < c

It implies that
∀i . i ∈ dom(K(k)) ⇒ i ∈ viewOf(K, c)(k)

�

Lemma H.17 (RWK). Given a normal clock-SI trace τ , and two transactions tn
cl

and tm
cl ′

from the

trace

τ = · · ·
_
−→ K, C, C′

, E, P
cl,c,F,n
−−−−−−→ · · · ∧ τ = ·

_
−→ K ′

, C′′
, C′′′
, E ′
, P′

cl ′,c ′,F′
,m

−−−−−−−−→ · · ·

Suppose the final state of the trace τ is K ′′. , if tn
cl

RW?
K′′

−−−−−→ tm
cl ′

then the snapshot time of tn
cl

took

snapshot before the commit time of tm
cl ′
, i.e. c ≤ m.

Proof. By definition of tn
cl

RW?
K′′

−−−−−→ tm
cl ′
, it follows that

tncl ∈ rs(K ′′(k, i)) ∧ tm
cl ′
= w(K ′′(k, j)) ∧ i < j

for some key k and indexes i, j . There are two cases depending on the commit order.

• If tn
cl
commits after tm

cl ′
, we have,

τ = ·
_
−→ K ′

, C′′
, C′′′
, E ′
, P′

cl ′,c ′,F′
,m

−−−−−−−−→ · · ·
_
−→ K, C, C′

, E, P
cl,c,F,n
−−−−−−→ · · ·

We prove by contradiction. Assume c > m. Since it is a normal trace τ (Theorem H.8), it
follows n > m. Note that both transactions access the key k , and then by Lemmas H.20
and H.21, we have n > c > m. Given c > m, by ReadRemote the transaction tn

cl
should at

least read the version written by tm
cl ′

for the key k . That is,

tncl ∈ rs(K ′′(k, i)) ∧ tm
cl ′
= w(K ′′(k, j)) ∧ i > j

which contradict tn
cl

RW?
K′′

−−−−−→ tm
cl ′
.

• If tn
cl
commits before tm

cl ′
,

τ = · · ·
_
−→ K, C, C′

, E, P
cl,c,F,n
−−−−−−→ · · ·

_
−→ K ′

, C′′
, C′′′
, E ′
, P′

cl ′,c ′,F′
,m

−−−−−−−−→ · · ·

It is trivial that c ≤ m by Lemmas H.20 and H.21.

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner

�

Lemma H.18 (WRK ,WWK and SOK). Given a normal clock-SI trace τ , and two transactions tn
cl

and tm
cl ′

from the trace

τ = · · ·
_
−→ K, C, C′

, E, P
cl,c,F,n
−−−−−−→ · · · ∧ τ = · · ·

_
−→ K ′

, C′′
, C′′′
, E ′
, P′

cl ′,c ′,F′
,m

−−−−−−−−→ · · ·

Suppose the final state of the trace τ is K ′′. , if tn
cl

WR?
K′′

−−−−−→ tm
cl ′

then the transaction tn
cl
commit before

the commit time of tm
cl ′
, i.e. n < m. Similarly, n < m for the relations WWK and SOK .

Proof. • WRK′′ . Since tn
cl

WR?
K′′

−−−−−→ tm
cl ′
, it is only possible that the later commits after the

former,

τ = · · ·
_
−→ K, C, C′

, E, P
cl,c,F,n
−−−−−−→ · · · ∧

_
−→ K ′

, C′′
, C′′′
, E ′
, P′

cl ′,c ′,F′
,m

−−−−−−−−→ · · ·

By Lemma H.19,we know n <m.
• WWK′′ . By the definition ofWWK′′ and Lemma H.14,we know n < m.
• SOK′′ . By the definition of SOK′′ and Lemma H.9,we know n <m.

�

Lemma H.19 (Reader greater than writer). Assume a trace τ and two transactions tn
cl

and

tm
cl ′
,

τ = · · ·
_
−→ K, C, C′

, E, P
cl,c,F,n
−−−−−−→ · · · ∧

_
−→ K ′

, C′′
, C′′′
, E ′
, P′

cl ′,c ′,F′
,m

−−−−−−−−→ · · ·

Assume the final state of key-value store of the trace is K ′′. If tm
cl ′

reads a version written by tn
cl

w(K ′′(k, i)) = tn ∧ tm ∈ rs(K ′′(k, j))

Then, the snapshot times of readers of a version is greater then the commit time of the writer n < c ′

Proof. Trivially, w(K ′(k, i)) = tn . By the ReadRemote, it follows

n = max
{
n′

��� ∃j . tn′

= w(K(k, j)) ∧ n′ < c ′
}

which implies n < c ′. �

Lemma H.20 (Commit time after snapshot time). The commit time of a transaction is after

the snapshot time. Suppose the following step,

K, C, C′
, E, P

cl,c,F,n
−−−−−−→ K ′

, C′′
, C′′′
, E ′
, P′

then c < n.

Proof. It is easy to see by ClientStep and then Commit that

n > n − 1max ({c ′ | ∃k . (_,k, _) ∈ F ∧ c ′ = C′(shardOf(k))} ∪ {c})

so c < n. �

Lemma H.21 (Monotonic shard clock time). The clock time associated with a shard monoton-

ically increases, Suppose the following step,

K, C, C′
, E, P

cl,c,F,n
−−−−−−→ K ′

, C′′
, C′′′
, E ′
, P′

then

∀r ∈ dom(C′). C′(r) ≤ C′′′(r)

Data Consistency in Transactional Storage Systems: A Centralised Approach

Proof. We perform case analysis on rules.

• TimeTick By the rule there is one shard r ′ ticks time C′′′(r ′) = C′(r) + 1 > C′(r).
• ClientStep. There are further five cases, yet only StartTrans and Commit change the
shard’s clock times.
– StartTrans By the rule a new transaction starts in a shard r ′ and triggering the shard r ′

ticks time C′′′(r ′) = C′(r) + 1 > C′(r).
– Commit By the rule the transaction commits their fingerprint F to those shards r ′ it read
or write, and triggering the shard r ′ ticks time C′′′(r ′) = C′(r) + 1 > C′(r).

�

	Abstract
	1 Introduction
	2 Overview
	3 Operational Model
	3.1 Key-Value Stores and Client Views
	3.2 Operational Semantics

	4 Consistency Models: Kv-stores
	4.1 Example Execution Tests

	5 Consistency Models: Dependency Graphs and Abstract Executions
	5.1 Relating KV-Stores and Dependency Graphs
	5.2 Relating KV-Stores and Abstract Executions

	6 Applications
	6.1 Application: Robustness of Transactional Libraries
	6.2 Verifying Database Protocols

	7 Conclusions and Related Work
	References
	A Operational Semantics on KV-Stores
	B Relations to Dependency Graphs
	C Operational Semantics of Abstract Executions
	D Relationship between kv-stores and abstract execution
	D.1 KV-Store to Abstract Executions
	D.2 KV-Store Traces to Abstract Execution Traces
	D.3 Abstract Execution Traces to KV-Store Traces

	E The Sound and Complete Constructors of the KV-Store Semantics with Respect to Abstract Executions
	E.1 Traces of Programs under KV-Stores
	E.2 Adequate of KV-Store Semantic
	E.3 Soundness and Completeness Constructor

	F The Soundness and Completeness of Execution Tests
	F.1 Monotonic Read MR
	F.2 Monotonic Write MW
	F.3 Read Your Write RYW
	F.4 Write Following Read WFR
	F.5 Causal Consistency CC
	F.6 Update Atomic UA
	F.7 Consistency Prefix CP
	F.8 Parallel Snapshot Isolation PSI
	F.9 Snapshot Isolation SI
	F.10 Serialisability SER

	G Program Analysis
	G.1 Single counter
	G.2 Robust against WSI
	G.3 Multiple counters
	G.4 Bank Example

	H Verification of implementations
	H.1 COPS
	H.2 Clock-SI

