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surfaces

Abstract

This thesis is a collection of various results related to the arithmetic of K3

surfaces and hypersurfaces which were obtained by the author during the

course of his PhD studies.

The first part is related to Artin’s conjecture on hypersurfaces over p-adic

fields and solves the following question using tools from logarithmic geometry:

Let f : X → Y be a proper, dominant morphism of smooth varieties over a

number field k. When is it true that for almost all places v of k, the fibre

XP over any point P ∈ Y (kv) contains a zero-cycle of degree 1?

The second part proves new cases of Mazur’s conjecture on the topology of

rational points. Let E be an elliptic curve over Q with j-invariant 1728. For

a class of elliptic pencils which are quadratic twists of E by quartic polyno-

mials, the rational points on the projective line with positive rank fibres are

dense in the real topology. This extends results obtained by Rohrlich and

Kuwata-Wang for quadratic and cubic polynomials. We also give a proof of

Mazur’s conjecture for the Kummer surface associated to the product of two

elliptic curves without any restrictions on the j-invariants.

The third and largest part presents a cohomological framework for determin-

ing the full Brauer group of a variety over a number field with torsion-free

geometric Picard group. It investigates the middle cohomology of weighted

diagonal hypersurfaces and implements the framework in the case of degree

2 K3 surfaces over Q which are double covers of the projective plane ramified

in a diagonal sextic curve.

iv



To my family.

v



Acknowledgments

A PhD degree is not accurately described as the achievement of a single

individual but of a whole community.

Foremost, I would like to thank my advisor Alexei Skorobogatov for ac-

companying me on this journey with expertise, enthusiasm, encouragement,

commitment and the occasionally necessary care like a real “Doktorvater”.

Second, I would like to thank all my friends and colleagues at the Lon-

don School of Geometry and Number Theory, Imperial, UCL and King’s for

the comradeship, many questions answered, seminars, Friday pubs, parties,

brunches, lunches and trips. Jonny Evans and Toby Gee provided crucial

direction to me during the transition to a PhD student and I am grateful

for this. Nicky Townsend has been an excellent manager and first point of

contact for any administrative queries.

The results presented here have benefited from feedback by mathematicians

apart from those already named, namely J.-L. Colliot-Thélène, M. Kuwata,
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Part I

Arithmetic Surjectivity for

Zero-Cycles
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1
Introduction

In [LSS19], Loughran-Skorobogatov-Smeets develop, building upon work of

Denef [Den16], a necessary and sufficient criterion to say when a morphism of

varieties over a number field k is surjective on kv-points for almost all finite

places v. This property is called arithmetic surjectivity by Colliot-Thélène

[CT11, §13]. More precisely, Loughran et. al. define a variety X to be pseudo-

split if every Galois automorphism over the ground field fixes some geometric

component of X of multiplicity 1. They then prove:

Theorem 1.1. [LSS19, Theorem 1.4] Let f : X → Y be a dominant mor-

phism between proper, smooth, geometrically integral varieties over a number

field k with geometrically integral generic fibre.

Then f is arithmetically surjective if and only if for each modification f ′ :

X ′ → Y ′ of f and for each codimension 1 point ϑ′ in Y ′, the fibre f ′−1(ϑ′) is

pseudo-split.

By a modification of f , we mean a morphism f ′ : X ′ → Y ′ of proper, smooth,

geometrically integral varieties over k such that there exist proper, birational

morphisms αX : X ′ → X and αY : Y ′ → Y with f ′ ◦ αX = αY ◦ f .

In this part of the thesis, we closely follow and extend the methods from
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[LSS19] to deal with the analogous question for zero-cycles. We introduce

the notion of combinatorial cycle-splitness and prove:

Theorem 1.2. Let f : X → Y be a dominant morphism between proper,

smooth, geometrically integral varieties over a number field k with geometri-

cally integral generic fibre.

The following statements are equivalent:

(i) For almost all places v, f has a v-adic zero-cycle of degree 1 in all fibres

over kv-points.

(ii) For each modification f ′ : X ′ → Y ′ and for each codimension 1 point

ϑ′ in Y ′, the fibre f ′−1(ϑ′) is combinatorially cycle-split.

A situation where Theorem 1.2 applies but not Theorem 1.1 is given at the

end in Example 4.14.

Note that we do not naively ask for surjectivity on zero-cycles but only for

zero-cycles that are each entirely contained in a fibre. This has three reasons.

First, if we allowed for zero-cycles whose summands lie in several distinct

fibres, the question would not be fibre-wise anymore and our tools would not

suffice to provide an answer for dimY > 1. Secondly, the naive version is not

very well-behaved even in dimensions 0 and 1, which we can handle, where

it already leads to rather complicated criteria.

Thirdly, it can be argued that the problem as posed above arises more natu-

rally, for example when considering Artin’s conjecture on p-adic forms in its

variant for zero-cycles of degree 1.

Conjecture 1.3 (e.g. [KK86, Problem 3]). If p is an arbitrary prime and if

n and d are positive integers such that n ≥ d2, then a degree d hypersurface

in PnQp has a zero-cycle of degree 1.

In other words, this open conjecture posits that the famous Ax-Kochen theo-

rem, a special application of Theorem 1.1, holds without the need to exclude

any primes when restated for zero-cycles of degree 1. In moduli terms, this

asks for fibre-wise p-adic zero-cycles of degree 1 in the universal family of

such hypersurfaces for every prime p.
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1.1 Notation and conventions

By a variety, we mean a separated scheme of finite type over a field K. We

denote by X the base change of a variety X along an algebraic closure K of

K. For a field K ′ ⊃ K, we write XK′ for X ×K K ′. If k is a number field

and S a finite set of finite places in k, we write Ok for the ring of integers of

k and Ok,S for the S-integers of k. Furthermore, for a finite place v of k, kv

shall denote the completion at v with ring of integers Okv and residue field

k(v) of size N(v).

By a model of a variety X over k (respectively kv), we mean a scheme X
which is flat and of finite type over Ok,S for some finite set of places S

(respectively Okv) together with an isomorphism of its generic fibre to X. If

X is proper, X a fixed model of X and x ∈ X is a closed point, we write x̃ for

the closure of x in X . By a model of a morphism of varieties f : X → Y over

k (respectively kv), we mean a morphism f : X → Y over Ok,S (respectively

Okv) such that X and Y are models of X and Y compatible with f in the

obvious way.

1.2 Preliminary definitions

To start, we introduce some terminology related to zero-cycles and our ques-

tion.

Definition 1.4. A variety over a field K is r-cycle-split, if it contains a zero-

cycle of degree r which is the sum of smooth points.

A variety over a number field k is locally r-cycle-split outside a finite set of

places S, if for all finite places v /∈ S of k, the base change Xkv is r-cycle-split.

Definition 1.5. A morphism of varieties over a field K is r-cycle-surjective,

if the fibre over any rational point contains a zero-cycle of degree r.

A morphism of varieties over a number field k is arithmetically r-cycle-

surjective outside a finite set of places S, if for all finite places v /∈ S of

k, the base change f ×k kv is r-cycle-surjective.
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In the case r = 1, we propose the easier terminology cycle-split, locally cycle-

split, cycle-surjective and arithmetically cycle-surjective. Although Theo-

rem 1.2 is only concerned with arithmetic cycle-surjectivity, dealing with the

case of general r does not add further complications. The terms are chosen

in relation to [LSS19].

It turns out to be important to bound the degree of points appearing in

zero-cycles.

Definition 1.6. For a zero-cycle Z =
∑
nixi on a variety over a field K, define

the maximum degree of Z

maxdegZ = max[K(xi) : K],

where K(xi) is the residue field of the point xi.

We will make crucial use of a uniform version of the Lang-Weil estimates

[LW54].

Lemma 1.7. There exists a function Φ : N3 → N with the following property.

Let U ⊂ Pν be a geometrically irreducible, quasi-projective variety over a

finite field, U its closure in Pν and ∂U = U \ U .

Then there exists a zero-cycle Z of degree 1 on U with

maxdegZ ≤ Φ(N, degU, deg ∂U).

If X is proper and ι : X 99K Pν a rational embedding defined on an open

U ⊂ X, then we will write Φ(ι) for Φ(N, deg ι(U), deg ∂(ι(U))).
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2
Combinatorial cycle-splitness

We define the notion of combinatorial cycle-splitness, first for algebras and

then for varieties.

2.1 In dimension 0

Let X be a finite étale scheme over a field K. It can be written as X =

Spec(A) for some finite K-algebra A = ⊕ni=1Ki (where Ki/K are finite field

extensions but not necessarily normal). Let the Galois extension L/K be the

compositum of the Galois closures of the Ki and denote G := Gal(L/K).

Let Hi := Gal(L/Ki), i.e. LHi = Ki. We note that X has a global zero-cycle

of degree r, if and only if gcdi(#G/#Hi)|r. An element g ∈ Gal(L/K) acts

on the set G/Hi of right cosets from the right and partitions it into ri orbits

of sizes which we denote by mg
i1, . . . ,m

g
iri

.

Definition 2.1. Define the combinatorial index of X at g ∈ G as

IX(g) := gcd
i,j

(mg
ij).
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We call X combinatorially r-cycle-split if and only if IX(g)|r for all g ∈ G.

If r = 1, we say X is combinatorially cycle-split.

For the rest of this section, we take K to be a number field k. With notation

as above, the extension L/k is unramified outside a finite set of places S. A

finite place of k that is unramified in all Ki is also unramified in L. For a

finite place v /∈ S, let Frobv ∈ G be the Frobenius automorphism at v.

Lemma 2.2. Let v /∈ S be a finite place of k. Then

A⊗ kv =
n⊕
i=1

ri⊕
j=1

kij

where kij/kv is a finite extension of degree mFrobv
ij .

Proof. This is [Mar77, Theorem 33].

Note that the list of orbit sizes really only depends on the conjugacy class

of g: the size of the orbit of Hit under g is the smallest integer j such that

tgj ∈ Hit, or equivalently gj ∈ t−1Hit.

Corollary 2.3. Let X be a finite étale scheme over a number field k and S

a finite set of places such that L/k is unramified outside S. For a finite place

v /∈ S, Xkv is r-cycle-split, if and only if gcdi,j(m
Frobv
ij )|r.

Corollary 2.4. Let X be a finite étale scheme over a number field k and S a

finite set of places such that L/k is unramified outside S. Then X is locally

r-cycle-split outside S, if and only if X is combinatorially r-cycle-split.

Proof. One direction directly follows from the previous corollary. The other

direction follows because by Cebotarev density, for every conjugacy class

C ⊆ G, there exist infinitely many places v with Frobv ∈ C. Hence, if X is

not combinatorially r-cycle split there exists a v /∈ S such that gcdi,j(m
Frobv
ij ) -

r.

Example 2.5. The preceding corollary gives a very explicit condition that can

be explicitly checked for a finite group G. One example of an everywhere
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locally cycle-split scheme that is not cycle-split is

Spec(k[t]/(t2 − a)(t2 − b)(t6 − ab))

with a, b, a/b /∈ k2. In the case where a or b is a square in kv, the scheme has

a rational point. If v does not lie over 2, a, b ∈ O×kv and neither a nor b are

squares in kv, then ab is a square in kv and we get kv-points of degree 2 and

3, hence a zero-cycle of degree 1.

In fact, this is a “modification” of an example by Colliot-Thélène for non-split

pseudo-splitness where the exponent 6 is replaced by 2 [CT14, 4.1].

Example 2.6. Take

X = Spec(Q[t]/(t2 + 1)(t6 − 3t2 − 1))

which has a local zero-cycle of degree 1 everywhere. The second factor (t6−
3t2 − 1) is an irreducible polynomial that is everywhere reducible. This is

because its non-cyclic Galois group is A4, of which a subgroup of order 2

leaves Q[t]/(t6 − 3t2 − 1) fixed. Moreover, due to the absence of subgroups

of order 6 in A4, locally there always is a factor of order dividing 3 which

together with (t2 + 1) yields a zero-cycle of degree 1.

Moreover, X is not a finite cover of a non-split pseudo-split scheme X ′ over Q
as in Example 2.5. This is because A4 is the smallest counterexample to the

converse Lagrange’s theorem and thus one sees that any proper quotient of

Z/2×A4 fails to satisfy even the group theoretic condition for combinatorial

cycle-splitness.

It is a curious result that there is no connected example (n = 1) as the

following theorem shows.

Theorem 2.7. The Hasse principle for zero-cycles of degree 1 holds for

connected, reduced zero-dimensional schemes over a number field k.

Proof. As before, let L/k be a finite non-trivial Galois extension with Galois

group G and H ( G a proper subgroup. We want to show that SpecLH

is not locally cycle-split at infinitely many places. Equivalently, we want to
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find an element g such that

gcd
t∈G

min{k|gk ∈ t−1Ht} > 1.

To do this we use the following fact proven “outrageous[ly]” in [FKS81, Theo-

rem 1] via the classification of finite simple groups: for a finite group G, there

exists a prime number p and an element g /∈
⋃
t∈G t

−1Ht of order a power of

p. This is sufficient since then p|min{k|gk ∈ t−1Ht} for all t ∈ G.

In more down-to-earth language, there is no irreducible polynomial over k

that factors into coprime degrees modulo almost all primes.

2.2 In higher dimensions

For the beginning of this section, let us again allow K to be any field. Let

X be a proper variety over K. For X ′ a reduced, irreducible component

of X, we define the (apparent) multiplicity of X ′ in X as the length of the

local ring OX,η′ where η′ is the generic point of X ′. We define the geometric

multiplicity of X ′ in X as the length of the local ring OX,η′ where η′ is a

point of X lying over η′. If X ′ is geometrically reduced, for example when

K is perfect, then multiplicity and geometric multiplicity coincide.

Let Xm
1 , . . . , X

m
n be the reduced, irreducible components of geometric multi-

plicity m in X. Let Ki be the separable closure of K in the function field of

Xm
i .

Definition 2.8. Define the algebra of irreducible components of geometric mul-

tiplicity m as Zm
X := Spec(⊕ni=1Ki). (If there are no such components, then

Zm
X is empty.)

The reason for this definition is of course that the embedding of the ground

field into the function field of a scheme controls, to some extent, its geometric

properties and thus we can reduce to the previous section. A scheme T of

finite type over K is geometrically irreducible if and only if T is irreducible

and K is separably closed in the function field of T (see [Gro65, 4.5.9]).
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However, using the functor of open irreducible components defined by Ro-

magny we can obtain finer results. For a finite type morphism of schemes

T → R with R integral, let IrrmT/R be the subfunctor of IrrT/R defined in

[Rom11, Def. 2.1.1] of open irreducible components of geometric multiplicity

m. We recall that IrrT/R parametrises open subschemes U of an R-scheme

R′ such that the geometric fibres of U ×RR′ → R′ are interiors of irreducible

components in the geometric fibres of T ×RR′ → R′. Note that this is stable

under base change and thus functorial because we use the geometric instead

of the apparent multiplicity.

Lemma 2.9. The functor IrrmT/R is representable over a dense open of R by

a finite étale cover.

Proof. Let η be the generic point of R and T ′ ↪→ T → R be the reduced

closure of the irreducible components of geometric multiplicity m in the fibre

over η. Then after replacing R with a dense open subscheme, we have that

IrrmT/R = IrrT ′/R because the geometric multiplicity of the fibre over η spreads

out to a dense open neighbourhood by [Gro66, Proposition 9.8.6].

After further replacement of R with a dense open subscheme, the functor

IrrT ′/R is representable by a separated algebraic space which is finite étale over

R by [Rom11, 2.1.2,2.1.3]. However, by Knutson’s representability criterion,

this algebraic space over R must in fact be a scheme (cf. [LS16, Proof of

Proposition 3.7] for this last step).

Lemma 2.10. The functor IrrmX/K is represented by Zm
X .

Proof. This follows from [Rom11, 2.1.4].

Definition 2.11. Let G be the Galois group defined in Section 2.1 for the

finite étale K-scheme Zm
X . Define the combinatorial index of X at g ∈ G as

IX(g) := gcd
m

(mIZmX (g)).

We call X combinatorially r-cycle-split if and only if IX(g)|r for all g ∈ G.

If r = 1, we say X is combinatorially cycle-split.

10



This is compatible with the previous definition of combinatorial index in

dimension 0 and only depends on the conjugacy class of g in G.

Let us return to the case of k a number field and assume X is smooth and

proper over k. Let v be a finite place of k. To tackle the question of zero-

cycles on Xkv , we need to relate closed points in the special and generic

fibres of a model. This seems to be folkloric knowledge partly written down

in [BLR90, §9, Cor. 9.1] but the author could not find a complete reference

before [BL99] (see also [Wit15, 4.6] and [KN17, 2.4]).

Lemma 2.12. Let X be a proper, flat model over Okv of Xkv . Let x ∈
X (k(v)) be a point which is regular in X and regular in the reduction Xk(v)

and lies on a geometrically irreducible component of Xk(v) of multiplicity m.

Then there exists a closed point x ∈ Xkv of degree m with reduction x.

Proof. See [CTS96, 2.3].

Conversely, the following result applies.

Lemma 2.13. Let X be a proper, regular, flat model over Okv of Xkv and x

a closed in point in Xkv of degree d with reduction x̃.

Let Dj, j ∈ J , be the irreducible components of Xk(v) on which x̃ lies. Denote

by mj the multiplicity of Dj and by dj the minimal degree of an extension

of k(v) over which Dj splits into geometrically irreducible components. Then

gcdj∈J mjdj divides d.

Proof. See [BL99, 1.6].

Lemma 2.14. Let X be a proper, normal, flat model over Okv of Xkv . Let

Frobv be the Frobenius element in the absolute Galois group of k(v).

If IXk(v)(Frobv)|r, then Xkv is r-cycle-split. If X is regular, then the converse

holds.

There exists a function Φ : N3 → N not depending on X with the following

property. Let ι : Xk(v) 99K Pνk(v) be a rational embedding. If

IXk(v)(Frobv)|r,
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then there exists a zero-cycle Z of degree r on Xkv with maxdegZ ≤ Φ(ι)

(where Φ(ι) is defined as after Lemma 1.7).

Proof. Assume IXk(v)(Frobv)|r. Then there exist geometrically irreducible

components Dj, j ∈ J , of the special fibre of multiplicities mj defined over

extensions of k(v) of degrees dj s.t.

gcd
j∈J

djmj = IXk(v)(Frobv).

By the Lang-Weil estimates as formulated in Section 1.2, each Dj has a

zero-cycle Z of degree dj.

Let Zj be the union of the non-regular locus of X and the non-regular locus

of the reduction of Dj. Because X is assumed normal, hence regular in

codimension 1, Zj does not contain all of Dj. Then degZj has an upper

bound only depending on ν and the degree of the image of ι. By the Lang-

Weil estimates as described in Section 1.2, one can arrange for the summands

of Z to avoid all Zj and satisfy maxdegZ ≤ Φ(ι) for a suitable function Φ.

Applying Lemma 2.12 to each of the summands, the existence of points of

orders mjdj and thus a zero-cycle of degree r in Xkv follows.

The converse in the case of regular X follows from Lemma 2.13.

Remark 2.15. We remark that to examine r-cycle-splitness of the special

fibre itself, all components of multiplicity greater than 1 would have to be

discarded. Thus, there are two notions, r-cycle-split and combinatorially r-

cycle-split. This is a difference to the case of rational points with only one

notion of pseudo-split.

Lemma 2.16. Let X be a smooth, proper variety over a number field k. Let

ι : X 99K Pν be a rational embedding of X. Then X is almost everywhere

locally r-cycle-split if and only if X is combinatorially r-cycle-split. In this

case, Xkv has a zero-cycle Z of degree r with maxdegZ ≤ Φ(ι) for all v /∈ S.

Proof. Let U ⊆ X be a dense open subvariety on which ι is defined. We can

find a finite set S of places such that U ↪→ X and ι : U ↪→ Pν spread out to
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models U ↪→ X and ιS : U ↪→ PνOk,S over Ok,S where U and X are smooth

over Ok,S.

By Lemma 2.10 and Lemma 2.9, after possibly enlarging S, IrrmX/Ok,S is rep-

resented by Spec(⊕ni=1OKi,S). The result now follows from Lemma 2.14.
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3
s0-invariants

In analogy to the s-invariants in [LSS19], we construct s0-invariants that

measure failure of combinatorial cycle-splitness in families. Let f : X → Y

be a morphism of varieties over a number field k.

For any (possibly non-closed) point y ∈ Y , set K := k(y). We get finite

étale (possibly empty) K-schemes Zm
f−1(y) = Irrmf−1(y)/K for all multiplicities

m. We may pick L/K a minimal Galois extension which splits all Zm
f−1(y)

with Galois group G. Denote by kK and kL the algebraic closures of k in

K and L. By replacing kL with its Galois closure and extending L, we can

assume that kL/k is Galois. Let N be the subgroup of G acting trivially on

kL. Denote by ΩkK the set of finite places of kK .

Definition 3.1. For a finite place v of k, define s0,r
f,y(v) in the following way:

(i) as 1, if v ramifies in kL or there is no place in kK of degree 1 over v

(ii) otherwise, as

∑
w∈ΩkK

N(w)=N(v)
w|v

#{g ∈ G : Frobw ≡ g mod N, If−1(y)(g)|r}

#N#{w ∈ ΩkK |N(w) = N(v), w|v}
.
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One can see that s0,r
f,y(v) is constant on the conjugacy class of Frobv, i.e. that

this function is Frobenian in the sense of Serre [Ser12, §3.3.3.5] but this fact

will not be directly needed.

Over finite fields, the s0-invariants asymptotically quantify the failure of com-

binatorial r-cycle-splitness.

Proposition 3.2. Assume Y is integral of dimension n with generic point

η. Let f : X → Y be a model of f over Ok. Then

#{y ∈ Y(k(v))|f −1(y) is combinatorially r-cycle-split}
=s0,r

f,η(v)#Y(k(v)) +O(N(v)n−1/2)

as N(v)→∞, where the asymptotic constant of the O-notation only depends

on the chosen model.

Proof. The main idea after [LSS19, Proposition 3.13] is to count and then

compare both sides using Lang-Weil estimates and the Cebotarev density

theorem for schemes. We divide the proof into several parts.

Set-up By the Lang-Weil estimates we can remove strict closed subsets of Y
since for dimension reasons, their rational points only contribute to the error

term. Hence, with the help of Lemma 2.9, we assume that IrrmX/Y → Y finite

étale.

In the same way, we ensure that Y and its special fibres Yk(v) are normal

for all v not contained in some finite set S by removing the closed singular

locus (including possibly finitely many special fibres). Set y := η and from

there on K, L, kK and kL, G and N as before. Enlarging S further, we may

spread out and assume that L is the generic fibre of a Galois closure L of

IrrmX/Y → Y . From now on, let v /∈ S

Counting points of Ykv with Lang-Weil The functor IrrYk(v)/k(v) is rep-

resented by

SpecOkK ⊗Ok k(v) =
⊕

w∈ΩkK
w|v

k(w).

Therefore, geometrically irreducible components of Xk(v) correspond to places
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w with N(w) = N(v). We write Yw for such a component. By the normality

assumption, the irreducible components of Yk(v) are all disjoint, so if there

is none which is geometrically irreducible, Yk(v) has no rational point. This

is the trivial case of the proposition. In the non-trivial case, we can count

points by Lang-Weil:

#Y(k(v)) =
∑

w∈ΩkK
N(w)=N(v)

w|v

#Yw(k(w)) =
∑

w∈ΩkK
N(w)=N(v)

w|v

N(v)n +O(N(v)n−1/2)

= #{w ∈ ΩkK |N(w) = N(v), w|v}N(v)n +O(N(v)n−1/2).

Counting combinatorially r-cycle-split fibres with Cebotarev For a

rational point y ∈ Y(k(v)), we can view the Frobenius Froby as an element

of G up to conjugacy. The fibre f −1(y) is combinatorially r-cycle-split if and

only if If −1(η)(Froby) = If −1(y)(Froby)|r. Let δf (g) ∈ {0, 1} be the indicator

function of the set of elements g ∈ G for which If −1(y)(g)|r. This function

only depends on the conjugacy class of g. Applying the Cebotarev density

theorem for étale morphisms as in [Ser12, 9.15] to δf one gets:

#{y ∈ Y(k(v))|f −1(y) is combinatorially r-cycle-split}

=
N(v)n

#N

∑
w∈ΩkK

N(w)=N(v)
w|v

#{g ∈ G : Frobw ≡ g mod N, If−1(η)(g)|r}+O(N(v)n−1/2)

Comparing both counts with the definition of s0,r
f,η(v), the result follows.

The asymptotic formula gives a necessary condition for combinatorial cycle-

splitness of all fibres.

Corollary 3.3. With the same notation, if s0,r
f,η(v) < 1 for some v /∈ S, then

there exists y ∈ Y(k(v)) such that f −1(y) is not combinatorially r-cycle-split.

Proof. For v large enough, there will be rational points on Yk(v) but by

Proposition 3.2, not all fibres over them can be combinatorially r-cycle-split.
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The asymptotics also give the other direction.

Corollary 3.4. With the same notation, assume Y is integral normal and

Irrmf finite étale over Y for all m. Then there exists a finite set of places S

such that for all v /∈ S, s0,r
f,η(v) = 1 if and only if the fibre of f over every

y ∈ Y(k(v)) is combinatorially r-cycle-split.

Proof. One direction has just been proven. For the other direction, we use

the same notation as in Proposition 3.2.

A point y ∈ Y(k(v)) must lie on a geometrically irreducible component cor-

responding to the degree 1 place w of kK . Let l ∈ L be a closed point over

y and u be the corresponding place of its irreducible component. Then

k(y) = k(w) ⊂ k(u) ⊂ k(l)

and there exist natural embeddings

Gal(k(l)/k(y)) ↪→ G

and

Gal(k(u)/k(y)) ↪→ G/N.

By functoriality of Frobenius, we have

Frobl/y modN = Frobu/w .

Because of the assumption that s0,r
f,η(v) = 1, we deduce that Frobl/y acts

on Irrmf −1(y)/y such that If −1(y)(Frobl/y)|r. Hence f −1(y) is combinatorially

r-cycle-split.

Corollary 3.5. The fibre f−1(y) is combinatorially r-cycle-split if and only

if s0,r
f,y(v) = 1 for almost all v.

Proof. This is Corollary 3.4 in the case of a zero-dimensional base.
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4
Arithmetic cycle-surjectivity

Let f : X → Y be a dominant morphism between proper, smooth, geometri-

cally integral varieties with geometrically integral generic fibre over a number

field k.

4.1 Birational invariance

We want to prove that arithmetic r-cycle-surjectivity is a property invariant

under modifications. The argument here is more subtle than in the case of

rational points.

Definition 4.1. Let v be a place of k. If a fibre over a kv-point y of Y contains

a zero-cycle of degree r we call this cycle a witness for r-cycle-surjectivity

over y at v.

Lemma 4.2. Let v be a place of k. Let V be a dense open subset of Y .

Assume that there exists B ∈ N such that f−1(V ) → V is r-cycle-surjective

at v and there exist witnesses Zv for r-cycle-surjectivity over y at v for all

y ∈ V (kv) with maxdegZv ≤ B. Then f is r-cycle-surjective at v.
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Proof. Assume cycle-surjectivity on an open V with a uniform bound B as

described above. Let kv(i) denote the compositum of all degree i extensions

of kv. Then X(kv(i)) ⊆ X(kv) is the set of kv-points fixed by all elements in

Gal(kv/kv(i)) and this a closed subset. Hence

YB(f) :=
⋃

I⊂{1,...,B}
gcd(I)|r

⋂
i∈I

f(X(kv(i)))

is a finite union of closed subsets of Y (kv).

Let y be a kv-rational point in V for which the fibre f−1(y) contains a zero-

cycle Z of degree r with maxdegZ ≤ B. There exists I ⊂ {1, . . . , B} such

that

y ∈
⋂
i∈I

f(X(kv(i))) ⊂ YB(f).

On the other hand, a point y ∈ YB(f) lies in
⋂
i∈I f(X(kv(i))) for some

I ⊂ {1, . . . , B} with gcd(I)|r, so its fibre has a closed kv(i)-point for all

i ∈ I. Let ji be the degree of this point. It follows that the prime factors

of ji are contained in the prime factors of i. In particular, the fibre has a

zero-cycle of degree gcdi∈I ji = gcd I|r.

Now YB(f) is closed and contains V (kv) which is dense and open in Y (kv),

hence Y (kv) ⊆ YB(f).

Remark 4.3. The above proof generalises to kv any Henselian (non-trivially)

valued field.

Lemma 4.4. To show arithmetic r-cycle-surjectivity of f , it is enough to

show arithmetic r-cycle-surjectivity of f−1(V ) → V for a dense open V in

Y .

Proof. By Lemma 4.2 all we have to show is that for v large enough, if

f is arithmetically r-cycle-surjective over V , there is a uniform bound on

the maximum degree of witnesses. By generic smoothness [Har77, Corollary

10.7], after shrinking V , we may assume that all fibres over V are smooth.
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Let ι : X 99K PνY be a rational embedding. But now by Lemma 2.16 (which

has a smoothness assumption), a fibre over a point in V is almost everywhere

locally r-cycle-split if and only if it is almost everywhere locally r-cycle-split

with zero-cycles as witnesses that have maximum degree less than Φ(ι).

4.2 Necessary condition

From the results over finite fields, we can deduce a necessary condition for

arithmetic r-cycle-surjectivity.

Proposition 4.5. Let f : X → Y be a proper model of f over Ok,S for

a finite set of places S of k with regular source and target. Let T ⊂ Y be

a reduced divisor such that f is smooth away from T . Then after possibly

enlarging S, we can find a subset R ⊂ TOk,S of codimension at least 2 in

YOk,S such that for all v /∈ S the following holds.

Choose ỹ ∈ Y(Okv); denote its generic point by y ∈ Y (kv). If ỹ intersects

TOk,S transversally outside ROk,S and the fibre at (ỹ mod πv) is not combina-

torially r-cycle-split, then f−1(y) is not r-cycle-split.

Proof. This is a variant of [LS16, Theorem 2.8]: After possibly enlarging S,

R can be chosen of codimension 2 in a way such that

(i) by generic flatness for regular schemes, f is flat on the complement

Y \ R, and

(ii) by generic submersivity [LS16, Theorem 2.4] in characteristic 0, f is

submersive (i.e. surjective on tangent spaces) over T \ R.

Then X ×Y ỹ is regular and its special fibre is not combinatorially r-cycle-

split. The rest follows by Lemma 2.14.

Proposition 4.6. Let ϑ ∈ Y (1) be a codimension 1 point of Y . There exists a

finite set of places S such that for all v /∈ S the following holds: if s0,r
f,ϑ(v) < 1,

then f is not arithmetically r-cycle-surjective.
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Proof. If s0,r
f,ϑ(v) < 1, let E be the closure of ϑ in Y . By Corollary 3.3, for

suitable S we can find a point y in the special fibre of E above which the fibre

is not combinatorially r-cycle-split. By Proposition 4.5, it therefore suffices

to lift y to an integral point intersecting E transversally. The argument for

this is well-known and literally the same as in [LSS19, Theorem 4.2] via

blowing-up Y in y and choosing a point on the exceptional divisor.

4.3 Sufficient condition and proof of main

theorem

Finally, using tools from logarithmic geometry, we can give a necessary and

sufficient criterion for arithmetic r-cycle-surjectivity. A brief overview of

the foundations of logarithmic geometry is provided in Appendix A. The

experienced reader may ignore it and read this section on its own. All log

schemes in this section will be fs Zariski log schemes.

For this section assume that we have a log smooth, proper model

f : (X ,D)→ (Y , E)

of f where (X ,D) and (Y , E) are Zariski log regular schemes (with divisorial

log structure induced by D and E) that are log smooth and proper over Ok,S
equipped with the trivial log structure for some finite set of places S. This

can be achieved after a modification of f by using Abramovich-Denef-Karu’s

Toroidalisation Theorem (cf. Theorem A.17) and spreading out. Denote by

D and E the generic fibres of D and E . Set U := X \ D, U := X \ D,

V := Y \ E , and V := Y \ E. On these open sets, the log structures are

trivial.

By possibly enlarging S in the spreading-out procedure above, we may as-

sume that all irreducible components E ′ of E intersect the generic fibre non-

trivially, i.e. their generic points lie in Y . This property of our chosen model

is absolutely crucial for the method presented here. Namely, one can control

the splitting behaviour of the fibre of f over a point in the interior of E ′ by
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the behaviour of the fibre of f over the generic (characteristic 0) point ϑ′ of

E ′ (see Lemma 4.7).

Let v be a finite place of k. Let k′/k be a finite extension and w an extension

of v to k′. By the valuative criterion of properness, any closed point

y : Spec k′w → Y

extends to a morphism

ỹ : (SpecOk′w)† → (Y , E),

where (SpecOk′w)† is the log scheme equipped with the standard divisorial

log structure defined by a uniformiser πw (i.e. with monoid given by Ok′w \0).

A morphism g of log regular schemes induces a morphism F (g) of Kato fans.

Because F(SpecOk′w )†
∼= SpecN, this defines a logarithmic height h(y) for any

y ∈ Y (k′w). Morally, the height of y quantifies how often ỹ intersects the

special fibre.

Lemma 4.7. For any t ∈ FY and m ∈ N, the functor Irrmf −1(U(t))/U(t) is

representable by a finite étale scheme over U(t).

Proof. It is shown in [LSS19, Proposition 5.18] that Irrf −1(U(t))/U(t) is repre-

sentable by a finite étale scheme over U(t). By [LSS19, Proposition 5.16],

apparent multiplicity is constant along logarithmic strata for proper, log

smooth morphisms of log regular schemes, and because log smoothness is

stable under base change, the same is true for geometric multiplicity. Thus

the subfunctor Irrmf −1(U(t))/U(t) is represented by the closure of Irrmf −1(t))/t in

Irrf −1(U(t))/U(t).

The following two propositions bound the intersection behaviour of points in

Y the fibres above which we have to consider.

Proposition 4.8. There is a positive integer N with the following property.

Let B ∈ N be arbitrary and v /∈ S a place of k. If the fibre over each point

y ∈ V (kv) with hY(y) ≤ N has a zero-cycle Z of degree r with maxdegZ ≤ B,

then f ×k kv is r-cycle-surjective.
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Proof. The proof is very similar to the one in [LSS19, Proposition 6.1], which

itself is an adaptation of [Den16, 4.2], and we only sketch the steps and

highlight the necessary changes.

Let F (f)∗ : FX(SpecN)→ FY (SpecN) be the morphism induced by f . Then

define for all s ∈ FX and t = F (f)∗(s) ∈ FY :

Nt = min{hY (t′)|t′ ∈ F t
Y (SpecN), t′ /∈ F (f)∗(FX(SpecN))},

Ns,t = min{hY (t′)|t′ ∈ F (f)∗(F
s
X(SpecN)) ⊂ F t

Y (SpecN)}

and N = max{Nt, Ns,t}.

We have thus a finite partition

FY (SpecN) =
⊔
t∈FY

F t
Y (SpecN) \ F (f)∗(FX(SpecN))

t
⊔
s∈FX

F (f)∗(F
s
X(SpecN)),

where each partition subset contains at least one element with height less

than N .

Given some arbitrary y ∈ V (kv), we have to show that its fibre is r-cycle-split

with a uniform bound B on the maximum degree of witnesses so that we can

conclude by Lemma 4.2. The proof works by twice applying the logarithmic

analogue of Hensel’s lemma for log smooth morphisms (cf. Lemma A.16).

By the above, we may find b ∈ FY (SpecN) in the same partition subset as

F (ỹ) with hY (b) ≤ N . Write b =
∑

i∈I bivi, where (vi)i∈I are the cones in FY

corresponding to the irreducible components (Ei)i∈I of E .

Let (πi)i∈I be local equations for (Ei)i∈I in an affine neighbourhood SpecA

of (ỹ mod πv) in Y .

Let ϕ be the canonical morphism

ϕ : Okv \ 0→ (Okv \ 0)/(1 + πvOkv) ∼= k(v)∗ ⊕ N→ k(v)∗.
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The first application of logarithmic Hensel’s lemma is to the diagram

Spec(k(v))† (Y , E)

Spec(Okv)† Spec(Okv)tr

.

Here, Spec(Okv)tr denotes the trivial log structure with monoid O∗kv and

Spec(k(v))† denotes the standard log point with log structure k(v)∗⊕N, the

restriction of Spec(Okv)†.

On the level of monoids, the upper horizontal arrow is defined by

A∗ × NI → k(v)∗ ⊕ N,

α ∈ A∗ 7→ (α(ỹ mod πv), 0),

1i ∈ NI 7→ (ϕ(πi(ỹ)), bi),

where 1i is the generator of the i-th factor. All other morphisms are the

obvious ones.

The point y′ ∈ Y (kv) yielded by logarithmic Hensel’s lemma has the same

reduction as y but satisfies

F (ỹ′) = b

and

ϕ(πi(ỹ)) = ϕ(πi(ỹ
′)).

This is the first half of the proof and works verbatim as in [LSS19, Proposition

6.1].

For the second half, the assumption of our proposition now states that f−1(y′)

contains a zero-cycle of degree r which we write as
∑

h nhx
′
h. Here, x′h is a

closed point defined over a finite extension lwh/kv with [lwh : kv] ≤ B. We

are done with the proof, if we can lift each (x̃′h mod πwh) to an lwh-point

xh ∈ f−1(y).

To do so, we only have to slightly alter diagram (6.3) from the original proof
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in [LSS19] and apply (for the second time) logarithmic Hensel, namely to

Spec(k(wh))
† (X ,D)

Spec(Olwh )† (Y , E)

.

On schemes, the upper horizontal morphism is given by (x̃′h mod πwh) and

the lower horizontal morphism is defined by ỹ composed with Spec(Olwh )† →
Spec(Okv)†.

Let eh be the ramification index of lwh/kv. Then on fans

Spec(Olwh )† → Spec(Okv)†

is just SpecN→ SpecN induced by multiplication with eh and hence

F (Spec(Olwh )† → (Y , E)) = ehF (ỹ).

In an affine neighbourhood Spec(B) of (x̃′h mod πwh) in X , (X ,D) has a

chart NJ → B given by sending the generator 1j to a local equation ωj of

the irreducible component Dj. Let uj be the Kato subcone corresponding to

Dj. Since F (ỹ) and b were chosen in the same partition subset and

F (f)∗(x̃
′
h) = F (ỹ′) = b,

there exists a =
∑

j ajuj ∈ F s
X(SpecN) such that F (x̃′h) ∈ F s

X(SpecN) and

F (f )∗(a) = F (ỹ), so

F (f )∗(eha) = F (Spec(Olwh )† → (Y , E)).

Then the log structure of Spec(k(wh))
† → (X ,D) should be defined by the

morphism of monoids

NJ → k(wh)
∗ ⊕ N, 1j 7→ (ϕ(ωj(x̃

′
h)), ehaj).
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The proof that this defines a commuting diagram of log schemes works as in

[LSS19, Proposition 6.1].

The next proposition [LSS19, Proposition 5.10 and Proposition 6.2] gives us

a modification of f (which was obtained obtained by pulling back along N−1

barycentric log blow-ups of Y) which will turn out to be optimal in the sense

that it is all we need to check arithmetic r-cycle-surjectivity.

Proposition 4.9. Let N be a positive integer. There is a log smooth modifi-

cation f ′ : (X ′,D′)→ (Y ′, E ′) of f with X ′ and Y ′ smooth, proper over Ok,S
and geometrically integral with the following property:

Let Y ′ be the generic fibre of Y ′ and E ′ be the generic fibre of E ′. For any

v /∈ S and each point y ∈ (Y \ E)(kv) = (Y ′ \ E ′)(kv) with 1 ≤ hY(y) ≤ N ,

hY ′(y) = 1 and its reduction in Y ′ is a smooth point of the reduction of E ′.

Now we can prove a sufficient criterion:

Proposition 4.10. Let v /∈ S and f ′ : (X ′,D′) → (Y ′, E ′) a log smooth

modification of f as in Proposition 4.9. If s0,r
f,ϑ′(v) = 1 for each generic point

ϑ′ of D′ (the generic fibre of D′), then f ×k kv is r-cycle-surjective.

Proof. Pick a rational embedding ι : X ′k(v) 99K PνY ′
k(v)

and let B = Φ(ι). Let

V ′ := X ′ \ E ′. It is enough to prove that the fibre over a point y ∈ V ′(kv) =

V (kv) has a zero-cycle Z of degree r with maxdegZ ≤ B. If the reduction of

y in Y is in V , we know that f ′−1(ỹ mod πv) ∩ U is non-empty smooth and

geometrically integral (by assumption on the generic fibre), so f−1(y) has a

zero-cycle of degree 1 with maximum degree less than B by the Lang-Weil

estimates.

Otherwise, assume that ỹ intersects E ′. By Proposition 4.8, we can restrict

ourselves to y with h(y) ≤ N .

Because of Proposition 4.9, ỹ intersects transversally a codimension 1 loga-

rithmic stratum Z of (Y ′, E ′). By Lemma 4.7 Irrmf is representable by a finite

étale cover over logarithmic strata. Hence by assumption of s0,r
f,ηZ

(v) = 1 and

Corollary 3.4, the fibre f ′−1(ỹ mod πv) is combinatorially r-cycle-split.
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The closure ỹ of y in Y ′ lies outside the Zariski closure of E ′sing (the singular

locus of E ′). Therefore f ′ is integral outside the closure of E ′sing by [Kat89,

Cor. 4.4(ii)]. Hence, the fibre product X ′y := (X ′,D′)×f ′,(Y ′,E ′),ỹ (SpecOkv)†,
taken in the category of Zariski log schemes, is fine. Its underlying scheme

agrees with the fibre product in schemes [Kat89, (1.6)]. Since ỹ intersects

E ′ transversally, it follows that ỹ : (SpecOkv)† → (Y ′, E ′) is a saturated

morphism as in [Tsu19]. Hence by [Tsu19, I.3.14], X ′y → (X ′,D′) is saturated

and so is X ′y [Tsu19, II.2.12]. Thus X ′y coincides with the fibre product taken

in the category of fs log schemes.

Log smoothness is stable under fs base change [GR18, Proposition 12.3.24],

so X ′y is log regular, being log smooth over the log regular base (SpecOkv)†

[Kat94, Theorem 8.2]. It follows that X ′y is Cohen-Macaulay and in particular

normal [Kat94, Theorem 4.1].

That f ′−1(y) = f−1(y) is r-cycle-split with a witness Z of maxdegZ ≤
B now follows from its reduction being combinatorially r-cycle-split and

Lemma 2.14.

The main result Theorem 1.2 reformulated for any r ∈ N is now an easy

corollary of Proposition 4.6 and Proposition 4.10.

Theorem 4.11. Let f : X → Y be a dominant morphism between proper,

smooth, geometrically integral varieties over a number field k with geometri-

cally integral generic fibre.

Then f is arithmetically r-cycle-surjective outside a finite set S, if and only

if for each modification f ′ : X ′ → Y ′ and for each codimension 1 point ϑ′ in

Y ′, the fibre f ′−1(ϑ′) is combinatorially r-cycle-split.

Remark 4.12. The above result cannot be applied directly to Conjecture 1.3,

which requires to prove that the exceptional set S in Theorem 1.2 is empty.

We can nevertheless say the following.

In contrast to the case of Theorem 1.1, the set S for which we prove Theo-

rem 1.2 does not depend on Lang-Weil estimates but only on the existence of

a sufficiently nice log smooth model of f as stated in Section 4.3. However,

27



the existence of such models remains open. As far as zero-cycles are con-

cerned, one may try to construct log smooth models by allowing alterations

of f instead of modifications and [Tem17] contains strong results in this di-

rection. Unfortunately, even those models do not suffice since the creation

of codimension 1 logarithmic strata is not controlled.

Remark 4.13. Because the criterion of the preceding main theorem is stable

under extensions of the ground field k, we could have also defined r-cycle-

surjective to mean the existence of a zero-cycle of degree r on each fibre over

closed points of Ykv (instead of fibres over kv-rational points as in Defini-

tion 1.5). The criterion of Theorem 4.11 then shows that either definition

leads to equivalent notions of arithmetic r-cycle-surjectivity.

While using closed points is arguably the more natural definition, we prefer

to keep Definition 1.5 in analogy with [LSS19].

Example 4.14. We give an example of a morphism for which one can show

that it is arithmetically cycle-surjective but not arithmetically surjective.

Let A = ⊕ni=1ki be a finite étale algebra over a number field k. Assume that

A is almost everywhere locally cycle-split but not pseudo-split (e.g. one of

the algebras in Examples 2.5 and 2.6). Then one can define the multinorm

torus R1
A/kGm through

0→ R1
A/kGm → RA/kGm

NA/k−−−→ Gm → 0

where the middle term maps to Gm via the norm maps.

The 1-parameter family of torsors for R1
A/kGm given by

NA/k(x) = t 6= 0

can be compactified to a proper, smooth, geometrically integral variety X

with a morphism f to P1
k.

It is easy to see that for all v /∈ S, all smooth fibres over kv-points have a

zero-cycle of degree 1. Hence, f is arithmetically cycle-surjective. On the

other hand, since A ⊗k kv is non-split for infinitely many v, it follows from
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[LS16, Lemma 5.4], that f is not arithmetically surjective.
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A
Foundations of logarithmic geometry

Logarithmic geometry (or short: log geometry) has been dubbed by K. Kato,

who together with P. Deligne, G. Faltings, J.-M. Fontaine and L. Il-

lusie is one of the founding fathers of the subject, the “magic powder” of

algebraic geometry. Its basic structure, the log scheme, is an enrichment of

the structure of classical schemes that, in vague terms, remembers informa-

tion on degeneration and by doing so allows us to treat non-smooth situations

almost as if they were smooth.

The aim of this appendix is to explain this statement and enable the reader to

follow the arguments in the main body of Part I. The experienced reader may

ignore the appendix and read the main body on its own. We will give a brief

overview of the foundations of log geometry without any proofs. The selection

will be idiosyncratic because we restrict ourselves to the tools needed in the

present work. More complete treatments can be found in [Ogu18, ACG+13,

GR18], as well as in the original sources [Kat89, Kat94, Niz06].
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A.1 Monoids and log schemes

In a similar way in which commutative rings are the local objects of scheme

theory, monoids underlie the local theory of log schemes.

Definition A.1. (i) A monoid is a set P with a commutative, associative

binary operation · and a neutral element 1 ∈ P . A morphism of

monoids is a map that preserves the binary operations and neutral

elements.

(ii) The group envelope P gp of a monoid P is the group

P gp = {(x, y) ∈ P × P |(x, y) ∼ (w, z) if ∃s ∈ P : sxz = syw}.

The functor which associates to P its group envelope is the left adjoint

functor to the inclusion functor of groups into monoids. There is a

natural map of monoids P → P gp.

The fundamental example of a monoid is P = N with addition as composi-

tion. Its group envelope is Z.

As for rings, one can develop a geometry of monoids.

Definition A.2. Let P be a monoid.

(i) An ideal of P is a subset I ⊆ P closed under the composition law.

(ii) A prime ideal of P is an ideal I ( P such that for all x, y ∈ P with

xy ∈ I, we have x ∈ I or y ∈ I.

(iii) The spectrum SpecP is the set of prime ideals of P . It is equipped

with a topology for which the closed sets are of the form

V (I) = {J ( P prime|I ⊆ J}

for some ideal I ⊆ P .

The spectrum of N consists of a generic point ∅ and a closed point N>0.

We define some basic properties of monoids.
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Definition A.3. A monoid P is

(i) integral, if P → P gp is injective. The functor which associates to P its

image P int in P gp is the left adjoint functor to the inclusion functor of

integral monoids in monoids.

(ii) saturated, if it is integral and for any p ∈ P gp and positive integer n,

pn ∈ P implies p ∈ P . The functor which associates to an integral mod-

ule P the monoid P sat = {p ∈ P gp : pn ∈ P} is the left adjoint functor

to the inclusion functor of saturated monoids in integral monoids.

(iii) fine, if it is integral and finitely generated (as a monoid).

(iv) fs, if it is fine and saturated.

(v) free, if it is isomorphic to a power of N.

Let q1 : P → Q1 and q2 : P → Q2 be morphisms of monoids. The pushout

Q1 ⊕q1,P,q2 Q2 exists in the category of monoids and is given by the quotient

of Q1 × Q2 by the smallest equivalence relation which is preserved by · and

contains (1, q2(x)) ∼ (q1(x), 1) for all x ∈ P . In general, the pushout is

not easy to compute and does not preserve the full subcategories of integral,

fine and saturated monoids. We will return to this latter problem in the

treatment of fibre products of log schemes.

Definition A.4. A Zariski (resp. étale) pre-log scheme is a scheme X together

with a log structure, i.e. a Zariski (resp. étale) sheaf of monoidsMX on X and

a structure morphism α :MX → OX . It is called a log scheme if α restricts

to an isomorphism on α−1(O∗X). (Thus, one can view O∗X as a subsheaf of

MX).

A morphism between pre-log structures M→ OX and M′ → OX is a mor-

phism M→M′ compatible with the structure morphisms.

A morphism of pre-log schemes f : (X,MX) → (Y,MY ) is a morphism of

the underlying schemes together with a morphism f−1MY →MX such that
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the following diagram commutes

f−1MY MX

f−1OY OX .
f#

A morphism of log structures (resp. log schemes) is defined as a morphism

of pre-log structures (resp. pre-log schemes).

We will work with Zariski log schemes. The pushout can easily be defined

for sheaves of monoids by taking the pushout in presheaves and sheafifying.

Using this construction, one can associate a log structure to a pre-log struc-

ture and this procedure yields a left adjoint functor ( )log to the inclusion of

log structures in pre-log structures.

Definition A.5. Let f : X → Y be a morphism of schemes and (Y,MY ) a

log scheme. We can define an inverse image functor by

f ∗(MY ) = (f−1(MY )→ f−1(OY )→ OX)log.

A direct image can be defined similarly. With the above definition in mind,

a morphism of log schemes f : (X,MX) → (Y,MY ) is nothing else but a

morphism of the underlying schemes together with a morphism f b : f ∗OY →
OX . We call f strict if f b is an isomorphism.

Intuitively, the sheaf of monoidsMX contains the elements of which we can

take logarithmic derivatives (and there is a way to make this precise). The

following examples are fundamental to the theory of logarithmic geometry.

Example A.6. (i) Every scheme X can be equipped with the trivial log

structure MX = O∗X ↪→ OX , an inital object among all log structures

on X. (There also is the terminal log structure MX = OX
id−→ OX ,

which in general however is not fine in the sense below and hence less

useful.)

(ii) For a monoid P and a commutative ring R, let R[P ] be the monoid

algebra. One can define a canonical log structure on X = SpecR[P ]
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given by the map PX → OX induced from P ↪→ R[P ] where PX is the

constant sheaf on X with values in P .

(iii) For a locally Noetherian scheme X and a divisor D ↪→ X with comple-

ment U = X \D j−→ X, the log scheme (X,D) is given by the divisorial

log structure α : j∗O∗U ∩ OX ↪→ OX . This is one of the prime sources

for logarithmic schemes that the reader should keep in mind. We will

return to this example throughout the appendix. A special case is the

divisorial log structure (SpecR)† on the spectrum of a local ring R

induced by its maximal ideal.

(iv) Let r ∈ N and let k be a field. A log point is the log scheme Spec k

with log structure

k∗ ⊕ Nr → k, (a, n1, . . . , nr) 7→ a · 0n1+...+nr

where by convention 00 = 1. If r = 1, we write (Spec k)† for the log

scheme and call it the standard log point.

To study the local constituents of log schemes, one uses so-called charts.

Definition A.7. Let P be a monoid and let (X,MX) be a log scheme. To

a morphism P → Γ(X,MX) we can associate a pre-log structure PX →
Γ(X,MX) → Γ(X,OX) → OX . The associated log structure P log has a

natural morphism toMX . We say that P → Γ(X,MX) is a chart subordinate

to P , if P log →MX is an isomorphism.

Equivalently, a chart is given by a strict morphism (X,MX)→ SpecZ[P ].

Using charts we can now define properties of log schemes.

Definition A.8. A (Zariski or étale) log scheme is coherent, resp. fine, resp.

fs if (Zariski or étale) locally, there exists a chart subordinate to a finitely

generated, resp. fine, resp. fs monoid.

There are left adjoint functors ( )fine and ( )fs to the natural categorical in-

clusions of fine and fs log schemes in coherent log schemes.

An important subtlety of log geometry which can cause great pain but is not

to be ignored is that the fibre product depends on whether we work in the
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category of coherent, fine or fs log schemes. The fibre product of coherent

log schemes is given by the fibre product of the underlying schemes together

with the pushout log structure. However, this does not preserve the fine and

fs properties, and so the fibre product of fine/fs schemes is given by applying

( )fine/( )fs to the fibre product in coherent log schemes. This can change the

underlying scheme!

A.2 Log regularity and log smoothness

After having set up the foundations of log schemes, we are in a position to

fulfil the promise of “magic powder” by defining log versions of regularity

and smoothness.

Definition A.9. An fs log scheme (X,MX) is log regular at x ∈ X, if with

I(x,M) ⊂ OX,x denoting the ideal generated by the image of MX,x \ O∗X,x,

(i) the ring OX,x/I(x,MX) is regular and

(ii) the equality

dimOX,x = dimOX,x/I(x,MX) + rk(Mgp
X,x/O

∗
X,x)

holds.

We call (X,MX) log regular if it is log regular at each point x ∈ X.

Over a field k, there is an equivalent characterisation which requires that the

completion of the local ring OX,x be isomorphic to a formal power series ring

k(x)[[P ]][[T1, . . . , Tr]] (defined by k[[P ]] = lim←−nR[P ]/(P \P×)nR[P ]) for some

chart subordinate to a torsion-free fs monoid P with trivial P×. The reader

may compare this to analogous results for regular schemes. Intuitively, log

regularity is thus “regularity up to the local monoid”. A scheme equipped

with the trivial log structure is log regular if and only if it is regular. One

also sees that if P is free, then the underlying scheme X is regular at x.
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A closely related, older notion is that of toroidal embeddings as introduced

by Kempf, Knudson, Mumford and Saint-Donat [KKMSD73].

Definition A.10. A toroidal embedding over a perfect field k is a variety X

over k together with a divisor D ⊂ X such that étale locally around every

point, there is an isomorphism of X to a toric variety such that D is identified

with the toric boundary.

There is a one-to-one correspondence between toroidal embeddingsand étale

log regular varieties over k. If we restrict to toroidal embeddings (X,D) such

that D is strict, i.e. each of its irreducible components is normal, we get an

equivalence to the category of Zariski log regular varieties over k. One can

always recover X \D as the maximal open subscheme of X on which the log

structure is trivial.

However, log regularity is more general in that it applies to schemes and not

just varieties. For example, a regular scheme equipped with the divisorial

log structure of a strict normal crossing divisor is log regular.

In analogy to toric varieties, one can attach a special notion of fan to log

regular schemes.

Definition A.11. (i) A Kato fan is a locally monoidal topological space

which has a cover by spectra of fs monoids. These spectra are also

called Kato cones. A morphism of Kato fans is a morphism of locally

monoidal spaces.

(ii) A Kato fan is smooth if it can be covered by spectra of free monoids.

(iii) To a log regular fs scheme (X,MX), we associate a Kato fan as follows.

The underlying set of points is

FX = {x ∈ X|I(x,M) ⊂ OX,x is maximal}.

We equip it with the inverse image of the topology on X and the inverse

image of the sheaf MX/O∗X .

(iv) If f is a morphism of log regular schemes, we write F (f) for the natural

morphism induced on the associated Kato fans.
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In the language of a toroidal embedding or strict normal crossing pair (X,D),

the points of the associated Kato fan are exactly the generic points of re-

peated intersections of the components of D.

If (X,MX) is a log regular scheme, there is a map cX : (X,MX/O∗X)→ FX

of locally monoidal spaces which gives rise to a stratification.

Definition A.12. Let (X,MX) be a log regular scheme. Then for x ∈ FX , the

preimage U(x) = c−1
X (x) is a locally closed subset of X called the logarithmic

stratum attached to x.

The logarithmic strata of a pair (X,D) as above are described easily. If

(Di)i∈I are the irreducible components of D, the logarithmic strata are given

by the connected components of(⋂
j∈J

Dj

)
\

 ⋃
j∈I\J

Dj


where J runs over all subsets of I. The points of the Kato fan are exactly

the generic points of the strata.

Given a morphism of smooth Kato fans x : SpecN → F , the closed point

N>0 is sent to the closed point of a unique Kato subcone SpecNr of F for

some suitable integer r.

Definition A.13. The height h(x) of the N-valued point x ∈ F (N) is defined

as the sum of the images of the generators of Nr under the map Nr → N
induced by x.

A particular source of N-valued points is as follows. If X is a flat, proper,

regular scheme over a discrete valuation ring R such that the special fibre is

a strict normal crossing divisor, the log scheme with the induced divisorial

log structure is log regular with a smooth Kato fan. Now a section x̃ ∈ X(R)

induces a point x ∈ FX(N) and the height h(x) is the intersection number of

x̃ with the special fibre.

By the preceding characterisation of log regularity, a log regular scheme with

a smooth Kato fan is regular in the classical sense. Thus the resolution of
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singularities for log regular schemes reduces to finding modifications such

that the Kato fan becomes smooth. This is achieved by subdivisions of the

Kato fan, in a way similar to resolution of singularities for toric varieties.

Definition A.14. A subdivision of a Kato fan is a morphism F ′ → F which is

surjective on the group enevelopes of stalks and injective on N-valued points.

A subdivision is called proper, if it has finite fibres and F ′(N) → F (N) is a

bijection.

One can show that a Kato fan always has a subdivision which is smooth.

The relationship of subdivisions to log schemes is as follows. If (X,MX) is

a log regular scheme and f : F ′ → FX a subdivision, then there exists a

morphism of log regular schemes (X ′,M′
X) → (X,MX) which induces the

morphism f on the associated fans. We call this the log blow-up of (X,MX)

along f . It is a birational morphism of schemes and proper if f is proper.

A particular type of subdivision on a smooth fan, which we only mention en

passant, is the barycentric subdivision [ACM+16, Example 4.10.(ii)]. On a

pair (X,D) it corresponds to iterated classical blow-ups of X in the proper

transforms of
⋂
j∈J Dj running over all J ⊂ I ordered by increasing dimen-

sion.

Arguably, the most surprising property of log blow-ups is that they are log

étale morphisms in the sense of the next definition.

Definition A.15. Let f : (X,MX)→ (Y,MY ) be a morphism of (Zariski or

étale) fs log schemes. Consider commutative diagrams of fine log schemes of

the form
(T0,M0) (X,MX)

(T1,M1) (Y,MY )

where T0 → T1 is a closed immersion defined by an ideal I with I2 = 0 and

(T0,M0) → (T1,M1) is strict. Then f is called log smooth (resp. log étale)

if
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(i) it is locally of finite presentation on the underlying schemes and

(ii) for each diagram as above, the following infinitesimal lifting property

holds: (Zariski or étale) locally on T1 there exists at least one (resp.

exactly one) morphism (T1,M1)→ (X,MX) making the diagram com-

mute.

There exists an analogue of a relative sheaf of logarithmic differentials Ω1
f

with a universal logarithmic derivation, which behaves similarly to relative

sheaves of differentials in the smooth case, but we will not need it. In the lan-

guage of toroidal embeddings, log smooth morphisms correspond to toroidal

morphisms.

From the lifting criterion of log smoothness, one deduces a logarithmic version

of Hensel’s lemma (see [Cao16] or [LSS19, §5.2]).

Lemma A.16. Let f : (X,MX) → (Y,MY ) be a log smooth morphism of

fs log schemes. Let R be a complete discrete valuation ring with residue field

k. Assume that we have a commutative diagram

(Spec k)† (X,MX)

(SpecR)† (Y,MY )

where the left vertical arrow is the natural inclusion map. Then there exists

a lift (SpecR)† → (X,MX) making the diagram commute.

The relation between log smoothness and log regularity is as expected: An

fs log scheme with a log smooth map to a log regular scheme is itself log

regular. In particular, a log smooth scheme over a field k with the trivial log

structure is log regular, and the converse is true if k is perfect.

We end the appendix with a powerful, modern development outside the clas-

sical foundations of log geometry. The notion of log smoothness would be of

limited (but of course still valuable) use, were it not for the next theorem by

D. Abramovich and K. Karu [AK00], who show that after a modification,
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we can always get ourselves in a log smooth situation. Of course, the same

statement would fail terribly for classical smoothness.

Theorem A.17. Let f : X → Y be a dominant morphism of integral vari-

eties over an algebraically closed field of characteristic 0. Let Z ⊂ X be a

proper closed subset. Then there exist a modification f ′ : X ′ → Y ′ of f and

strict normal crossing divisors D′ ⊂ X ′ and E ′ ⊂ Y ′ such that

(i) the preimage of Z in X ′ is strict normal crossing and contained in D′,

(ii) f ′−1(Y ′ \ E ′) = X ′ \D′ and

(iii) f induces a log smooth morphism of log regular varieties (X ′, D′) →
(Y ′, E ′).

A later version of Abramovich-Karu-Denef [ADK13] shows that the assump-

tion that k be algebraically closed can be dropped. On the other hand, the

characteristic of the field is used in the construction in an essential way.

However, work by Illusie–Temkin [IT14] and Temkin [Tem17] has proved a

generalisation for schemes in mixed characteristic: Let S be the set of all

primes appearing as the characteristic of residue fields of points in Y . Then

one can still achieve log smoothness if instead of a modification, one allows

an alteration of degree d where d is only divided by primes in S.
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Part II

Mazur’s Conjecture and an

Unexpected Rational Curve on

Kummer Surfaces and Their

Superelliptic Generalisations

41



5
Introduction

In the study of the distribution of rational points on varieties, two methods

are frequently used to generate new points from existing ones: One can apply

automorphisms defined over the ground field, e.g. arising from a group law

on an elliptic curve. Or one can look for rational subvarieties that will be

guaranteed to have many rational points. Often, a combination of both is

needed. The prevalence of these methods is paramount to the whole subject.

A famous, successful example is Elkies’ solution to Euler’s conjecture on

A4 + B4 + C4 = D4 [Elk88]. In this part of the thesis, we consider another

example given by Kuwata and Wang in [KW93]. Let A be an abelian

variety which is the product of two elliptic curves E1 and E2 over Q. Assume

that E1 and E2 do not both have equal j-invariants 0 or 1728. Let

E1 : y2
1 = x3 + ax+ b =: g(x)

E2 : y2
2 = t3 + ct+ d =: f(t)

be affine equations for the elliptic curves in Weierstrass form (in particular

a = b = 0 and c = d = 0 are excluded). The assumption on the j-invariant

excludes exactly the cases a = c = 0 and b = d = 0. An affine model of the
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Kummer surface K associated to A is given after setting y = y1/y2:

K : (t3 + ct+ d)y2 = x3 + ax+ b.

On this surface, [KW93, §1] constructs a parametric curve C as the scheme-

theoretic image of the morphism

σ : P1 → K, u 7→ (x, y, t)(u) :=

(
du6 − b
a− cu4

, u3,
du6 − b

u2(a− cu4)

)
.

Using this curve, one can prove the following theorem:

Theorem 5.1. [KW93, Theorem 3] The set of rational points on K is dense

in the Zariski and real topologies.

This verifies, for the surfaceK, Mazur’s conjecture on the topology of rational

points: For any smooth variety V over Q, if the rational points are Zariski

dense in V , then their topological closure in the real locus V (R) of V is a

union of real connected components of V (R) [Maz92, Maz95]. It has been

shown by a concrete counterexample [CTSSD97] that Mazur’s conjecture

does not hold without further assumptions on the variety, although refined

versions have been proposed that so far have resisted attempts at disproving

them.

The same curve C or rather its preimage C ′ on A was also independently

found by Mestre in [Mes92] and used to prove that there are infinitely many

elliptic curves over Q of rank at least 2 with a fixed j-invariant.

The appearance of C is somewhat surprising and mysterious, given that the

construction of K starts with two generic elliptic curves and a priori there

is not much reason to expect a rational curve over Q on it apart from the

obvious ones.

The discovery that prompted the present results is that the curve C found by

Mestre and Kuwata-Wang arises from a rather simple equation, which

generalises to a wider class of surfaces. The precise statements and appli-

cations are contained in Sections 6-7, containing to the author’s knowledge
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the first known case of Mazur’s conjecture dealing with a class of quadratic

twists of an elliptic curve by a quartic polynomial in Theorem 7.5.

The last section does not utilise the curve C and exhibits a proof of Mazur’s

conjecture for the Kummer surface K without any assumptions on the j-

invariants.

For the questions discussed in Part II, it is not necessary to have projective

models. We will thus mostly work with affine models that yield a dense

open subvariety of the respective surface or curve. In our terminology, an

affine, not necessarily geometrically irreducible curve has genus 0 if it has a

birational map to a projective curve whose desingularisation has genus 0. A

rational curve will always be an integral genus 0 curve with a smooth rational

point over the ground field.

After the publication of Part II, the author was kindly informed by M. Ulas

that the curve considered in Theorem 6.1 had previously been discovered by

him [Ula07, Lem. 2.1].
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6
A Rational Curve on K and

Superelliptic Generalisations

Theorem 6.1. Let D1 and D2 be two superelliptic curves over a field with

arbitrary characteristic of the form

D1 : yk1 = xn + ax+ b

D2 : yk2 = tn + ct+ d,

with a or b nonzero and c or d nonzero. The group µk of k-th roots of unity

acts diagonally on D1 ×D2. Let

X = (D1 ×D2)/µk.

An affine equation of X is given by

(tn + ct+ d)yk = xn + ax+ b.
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Then there exists a genus 0 curve C on X which is the closure of the subva-

riety of X cut out by the affine equation

(ct+ d)yk = ax+ b.

Moreover, if a and c are not both equal to 0, C has a rational component. If

k and n are coprime, b 6= 0 and andn−1− bn−1cn 6= 0, then C is geometrically

irreducible.

The condition andn−1 − bn−1cn 6= 0 excludes the cases when there is an

isomorphism between D1 and D2 that is compatible with the µk-action.

For k = 2 and n = 3, this recovers Mestre’s and Kuwata-Wang’s curve

on K. In this special case, these equations already appear in [Sat01] (cf.

Section 6.1.1 below).

Proof. We derive an alternative affine model of C after which a brief analysis

of the geometrically irreducible components yields the desired results. A

transformation of the equations for C gives

ax+ b

ct+ d
=
(x
t

)n
,

yk =
(x
t

)n
.

Setting r := x/t, the first equation is equivalent to

tr(crn−1 − a) = b− drn

which defines a plane curve C̃ in the variables (r, t). Note that this equation

is linear in t. We distinguish three different cases:

(i) There exists no point (r0, t0) ∈ C̃ with r0(crn−1
0 − a) = 0: In this case

π : P1 → C̃ : r 7→ (r, (b− drn)/(r(crn−1 − a))

defines a birational map, hence C̃ is a rational curve parametrised by

r.
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(ii) There exist points (r0, t0) ∈ C̃ with r0(crn−1
0 − a) = 0, and neither

a = c = 0 nor b = d = 0: If r0 = 0, we must have b = 0. If

crn−1
0 − a = 0, we must have rn0d = b and thus andn−1 − bn−1cn = 0.

The map π is from above is non-constant and yields a component of

C̃ parametrised by r. However, additional components with r = r0

appear, onto which π does not map dominantly.

(iii) a = c = 0 or b = d = 0: If a = c = 0, then yk = rn = b/d and thus

C decomposes into components with constant y and r. If b = d = 0,

then C has three components cut out by rn−1 = a/c, x = y = 0 and

x = t = 0 respectively.

From now on, assume that we are in one of the first two cases and let C̃1

be the closure of the image of π in C̃. Since C is obtained from C̃ by the

affine equation yk = rn and r is locally constant outside C̃1, we only have to

consider C̃1.

Let p be the characteristic exponent of the ground field. Let s be the p-

primary part of the greatest common divisor of k and n, so that k = spik′

and n = spin′ where (k′, n′) = 1. Then geometrically, C decomposes into

components

Cζ : (yk
′ − ζrn′)pi = 0

where ζ runs over all s-th roots of unity. For ζ = 1, we get a reduced,

geometrically irreducible component

C1 : yk
′
= rn

′

defined over the ground field since it is fixed by the Galois action. The

curve C1 is well-known to be rational and a parametrisation is given by

θ 7→ (r, y)(θ) := (θk
′
, θn

′
). The other Cζ are Galois twists of C1 and so have

genus 0 too.

If k and n are coprime, i. e. spi = 1, then C coincides with the geometrically

irreducible component C1.

A direct computation gives:
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Theorem 6.2. A parametrisation of C1 is given by:

σ : P1 → C1, u 7→ (x, y, t)(u) =

(
dukn − b
a− cukn−k

, un,
dukn − b

uk(a− cukn−k)

)

6.1 Further Remarks

6.1.1 Geometric Considerations involving P1×P1. The original example by

Mestre has been studied by P. Satgé in [Sat01]. There, he utilises the

natural map from K to P1×P1 together with the Riemann–Hurwitz theorem

to develop a combinatorical criterion for when the preimage of a rational

curve on the latter surface yields a rational curve on the former. Amongst

the low-degree examples he retrieves with the help of this criterion is the

Mestre curve.

6.1.2 Geometric Considerations involving A. A new different approach that

we mention for geometric insight is to first understand the preimage C ′ on

A = E1×E2. In what follows, we show how to derive that C has genus 0 by

such arguments in the case of two generic elliptic curves, i. e. with distinct

j-invariants and without complex multiplication.

Let O1 and O2 be the points at infinity of E1 and E2. The Néron-Severi

group of E1 × E2 is given by Zh⊕ Zv where

h := E1 × {O2}, v := {O1} × E2.

By Bézout’s theorem, the intersection numbers of C ′ (cut out of A by a

quadric in each of the factors of an embedding E1 ×E2 ⊂ P2 × P2 by Weier-

strass equations) with h and v are both 6, therefore the class of C ′ in the

Néron–Severi group is 6h+ 6v. Hence by the adjunction formula we deduce

pa(C
′) = 37. We can compute the singularities of C ′: (O1, O2) is a singularity

with multiplicity 4,

{(p1, p2) ∈ E1[2] \O1 × E2[2] \O2}
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is a set of 9 singularities with multiplicity 2 and V (x = t = 0) is a set of 4

singularities with multiplicity 3. All singularities are ordinary and C ′ does

not pass through other torsion points than the ones mentioned. Hence C ′

has geometric genus 10.

We now use the Riemann-Hurwitz theorem. Before applying it to the double

cover C ′ → C, we first have to blow up the torsion points which are singular

to get non-singular ramification points. If such a point P has multiplicity mP ,

then in the resolution we will have mP points of ramification index 2. Indeed,

after doing this, in the case j(E1) 6= j(E2), Riemann-Hurwitz substitutes to

18 = 2g(C ′)−2 = 2(g(C)−2)+
∑
P∈C̃′

(eP−1) = 2(g(C)−2)+(1·4+9·2)(2−1)

and thus g(C) = 0.

6.1.3 Degenerate cases. In the cases of geometrically isomorphic D1 and D2

(i.e. andn−1−bn−1cn = 0 and in particular a = c = 0 or b = d = 0), C acquires

geometric components which are the graphs of isomorphisms between D1 and

D2.

6.2 Twists of Superelliptic Curves

As a corollary of Theorem 6.1, we obtain similarly to [KW93, Thm. 3]:

Corollary 6.3. Let D1 and D2 be superelliptic curves over a number field L

of the same form as in Theorem 6.1. Assume that we are not in one of the

cases a = c = 0 or b = d = 0. Then there exist infinitely many [l] ∈ L∗/(L∗)k

such that the twists of D1 and D2 by [l] both have an L-rational point.

By twist by [l], we mean in the case of D1 the curve given by lyk1 = xn+ax+b

for a representative l in the class [l], and analogously for D2. Up to L-

isomorphism, it does not depend on the chosen representative. In the special

case of k = 2, n = 4 and k = n = 3, the theorem is a statement about genus

1 models.
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Proof. This proof follows the same idea as Kuwata-Wang but uses the

newly found curve C on X. Let x(u), y(u), t(u) be as in Theorem 6.2. For

a superelliptic curve D, denote by Dl the twist by l(L∗)k. Using C gives

us infinitely many points (x, y, t) such that Dtn+ct+d
1 and Dxn+ax+b

2 have a

rational point. Because (tn + ct + d)yk = xn + ax + b, these are isomorphic

to twists by the same class. We thus have a map

[φ] : L∗ → L∗/(L∗)k, u 7→ (t(u)n + ct(u) + d)(L∗)k = (x(u)n + ax(u) + b)(L∗)k

such that D
[φ](u)
1 and D

[φ](u)
2 have a rational point.

Let φ(u) := t(u)n + ct(u) + d. It remains to show that [φ] does not have

finite image. Suppose the image of [φ] is finite. Then there exists a finite

set S of places of L such that k | v(φ(u)) for all u ∈ L, v /∈ S. This

means by continuity that v(φ(u)) ≡ 0 mod k for all u ∈ Lv. However, since

φ /∈ (L(u)∗)k as a rational function (just by computing its numerator and

denominator), there exists a point P ∈ P1
L such that φ has multiplicity m

prime to k at P . Let L(P )/L be the residue field extension of P . There are

infinitely many places of L that split completely in L(P ), so pick one v /∈ S
amongst them and denote by w an extension of v to L(P ). Now φ has a zero

or pole P of multiplicity m in P1
L(P )w

= P1
Lv

and in a neighbourhood of P ,

v(φ(u)) cannot be divisible by k, yielding a contradiction.
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7
Further Generalisations

The equation for C in Theorem 6.1 gives rise to rational curves on an even

wider class of surfaces where the exponents of x and t are chosen differently.

Some of these curves have genus 0 but do not contain a rational point. We

give a few interesting examples and applications.

7.1 Elliptic Curves with j-invariant 1728

Let E be an elliptic curve with j-invariant 1728 over a field F of characteristic

6= 2, 3. Let

E : y2 = x3 + ax

be an affine model of E in Weierstrass form, in particular a 6= 0, and f(t) :=

t4+ct+d a polynomial with rational coefficients. Assume c, d 6= 0. Quadratic

twisting by f(t) yields an elliptic pencil Ef(t). The situation at the degenerate

fibres is irrelevant for our purposes.

Theorem 7.1. The surface over F which is the total space of the pencil Ef(t)

contains a curve C given by (ct + d)y2 = ax with an irreducible component

C1 given by x = y = 0 and another rational irreducible component C2.
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Proof. The proof method is similar to that of Theorem 6.1 and we only sketch

the steps. In an affine model, a transformation of the equations for C gives

ax

ct+ d
=
x3

t4
,

y2 =
x3

t4
.

Setting r = x/t2 and y2 = y/t, this becomes

a

ct+ d
= r2,

y2
2 = r3.

Because of our assumption that c 6= 0, the first line is equivalent to

t =
a

cr2
− d

c

and defines a plane rational curve C̃ in the variables (r, t) parametrised by

r. The component C2 then is a cover of C̃ given by y2
2 = r3, so is itself

rational.

A direct computation gives:

Theorem 7.2. A parametrisation of C2 is given by:

σ :P1 → C,

u 7→ (x, y, t)(u)

=

(
(d2/c4)u8 − 2dau4 + c4a2

u6
,
(−d/c4)u4 + a

u
,
(−d/c)u4 + c3a

u4

)

In what follows we fix the parametrisation σ above.

Lemma 7.3. Assume F = Q. The set of u ∈ Q such that σ(u) has infinite

order in its fibre Ef(t(u)) is dense in R.

Proof. Define E ′u : f(t(u))y2 = g(x), a family of elliptic curves parametrised

by u. It has a section σ′(u) := (x(u), y(u)). After a finite base change
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k(
√
f(t(u)))/k(u), this family becomes trivial and σ′ is pulled back to the

section σ′′ : u 7→ (x(u), y(u)
√
f(t(u))). We infer that σ′′ is not a torsion

section since it intersects the identity section for u = 0 but distinct torsion

sections on elliptic surfaces have to be disjoint at smooth fibres ([Huy16, Rem.

11.3.8] – compare to the similar argument in [Mir89, VII.3.2] for singular

fibres). Hence, σ′ is not torsion either. Now the specialisation theorem

([Sil94, III.11.4]) says that for almost all u, σ(u) is not torsion in its fibre.

From this, one immediately deduces Zariski density of rational points:

Corollary 7.4. Assume F = Q. Infinitely many fibres of Ef(t) have positive

rank. More precisely, there is a set of W ⊂ Q, which is dense in the half-

interval (−d/c,∞) if ac > 0, respectively dense in (−∞,−d/c) if ac < 0,

such that the Ef(t) has positive rank for all t ∈ W .

Proof. The respective half-intervals given above are the images of u 7→ t(u).

Now use Lemma 7.3.

Note that density of the positive rank fibres in Ef(t) over a non-empty open

interval should be true if E is any elliptic curve over Q and f is any polyno-

mial with a real zero of odd order by a result of Rohrlich [Roh93, Thm. 2],

conditional on the parity conjecture.

We deduce a new special case of Mazur’s conjecture applied to elliptic pencils

[Maz92, Conj. 4].

Theorem 7.5. Let E be an elliptic curve over Q with j-invariant 1728 and

let f(t) = t4 + ct + d be a quartic polynomial over Q. Assume that c, d 6= 0

and f(t) is non-negative for all t ∈ R. Then the set of t ∈ Q with rkEf(t) > 0

is dense in R.

A result by Rohrlich [Roh93, Thm. 3] settled the case of f being a

quadratic polynomial using similar ideas as [KW93] for cubic polynomi-

als. Theorem 7.5 complements Kuwata and Wang’s quartic example (t4 +

1)y2 = x3− 4x [KW93, p. 121] which they derived from the work by Elkies

mentioned in the introduction. A recent preprint by Huang [Hua18] deals
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with d(t4 +1)y2 = x3−x for some d. By entirely different methods and under

some additional assumption, [HS16, Prop. 1.1] proves Mazur’s conjecture for

the Kummer quotient associated to the product of non-trivial 2-coverings of

elliptic curves.

Proof. View Ef(t) as a genus 1 pencil Ex with respect to projection to x. A

priori, the fibres do not have rational points but there are infinitely many

which do. Namely, Ou := (x(u), y(u), t(u)) and O−u := (x(u), y(−u), t(u))

are two (generically distinct) rational points in their fibre Ex(u).

Now by the same argument as in Lemma 7.3, for some choice of u0 ∈ Q the

point (x0, y0, t0) := O−u0 has infinite order in Ex0 with respect to the identity

chosen as Ou0 ∈ Ex0 , as well as infinite order in Ef(t0). Using the group law

on Ex0 , we spread O−u0 to get a dense set T in a connected component

of Ex0(R). By Mazur’s torsion bound [Maz78] the rational points (x, y, t)

that are torsion in their fibre Ef(t) lie in a proper Zariski-closed subset S of

the total space. The intersection Ef(t0) ∩ S is finite because otherwise, one

would have Ef(t0) ⊂ S but O−u0 ∈ Ef(t0) \ S. It follows that T ′ := T \ S
is dense in a connected component of Ex0(R). But by assumption on f ,

connected components of Ex0(R) project surjectively to t so that the image

of T ′ projects densely to t.

7.2 Elliptic Curves with j-invariant 0

Let E be an elliptic curve with j-invariant 0 over a field F of characteristic

6= 2, 3. Let

E : y2 = x3 + b

be an affine model of E in Weierstrass form and f(t) := t6+ct+d a polynomial

with rational coefficients. Assume b, c 6= 0. Quadratic twisting by f(t) yields

an elliptic pencil Ef(t). Once again, the situation at the degenerate fibres is

irrelevant for our purposes.

Theorem 7.6. The surface which is the total space of the pencil Ef(t) con-

tains a curve given by (ct+ d)y2 = b with a rational irreducible component.
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Proof. The proof method is similar to that of Theorem 6.1 and we only sketch

the steps. In an affine model, a transformation of the equations for C gives

b

ct+ d
=
x3

t6
,

y2 =
x3

t6
.

Setting r = x/t2, this becomes

b

ct+ d
= r3,

y2 = r3.

Because of our assumption that c 6= 0, the first line is equivalent to

t =
b− dr3

cr3

and defines a plane rational curve C̃ in the variables (r, t) parametrised by

r. The rational component postulated in the theorem then is a cover of C̃

given by y2 = r3.

A direct computation gives:

Theorem 7.7. A parametrisation is given by:

σ :P1 → C,

u 7→ (x, y, t)(u)

=

((
d2

b2c2
u12 − 2db5

c2
u6 +

b12

c2

)
/u10, u3/b3,

(
b7

c
− d

c
u6

)
/u6

)
.

In what follows we fix the parametrisation σ above. We can then prove an

analogue to Corollary 7.4.

Lemma 7.8. Assume d 6= 0 and F = Q. Then infinitely many fibres of Ef(t)

have positive rank. More precisely, there is a set W ⊂ Q which is dense in

the half-interval (−d/c,∞) if ac > 0, respectively dense in (−∞,−d/c) if

ac < 0, such that Ef(t) has positive rank for all t ∈ W .
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Proof. By clearing denominators, the coefficients a, b and d can be assumed

integral. We want to show that σ(u) is non-torsion for a dense set of u. Set

u := k/l with coprime k, l ∈ Z and s := ck6. Then an integral model of

Ef(t(u)) is given by:

y′2 = x′3 + s24f(t(u))d

where y′ = s12f(t(u))2y and x = s8f(t(u))x. For l large enough y′(u) =

s12f(t(u))2y(u) is not integral and thus by the Lutz-Nagell criterion [Sil09,

VIII.7.2], σ(u) cannot be a torsion point.

The respective half-intervals given above are the images of u 7→ t(u).
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8
Proof of Mazur’s Conjecture

for the Kummer Surface of a

Product Abelian Surface

In [KW93, Thm. 3’], a sketch was given that extends Theorem 5.1 to a

proof of Mazur’s conjecture for all j-invariants. It has to proceed along lines

different from Theorem 5.1 because the parametric curve is not available in

the cases of equal j-invariants 0 or 1728. The strategy was to rely on the two

elliptic pencils given by projections to x and t to spread rational points using

the group laws. As communicated between the author and M. Kuwata, it

is not clear whether this method is sufficient to get density in the real locus.

We thus give a first proof.

Theorem 8.1. Let K be the Kummer surface associated to the product of

two arbitrary elliptic curves E1 and E2 over Q. Assume the rational points

are Zariski dense in K. Then they are dense in the real topology of K.
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Proof. Recall that an affine equation of K was given in Chapter 5 by

f(t)y2 = g(x).

Let Kt and Ky be the fibrations given by projections to the respective co-

ordinates. Note that only the first comes equipped with a section and thus

a natural group law. The fibres of Ky are cubic curves and may not have a

rational point.

Let t1 ∈ R be arbitrary. If we show that for any ε > 0, there exists an

approximating t′ ∈ Q with |t′ − t1| < ε such that the topological closure

Kt′(Q) is Kt′(R), then we are done.

Let S be the Zariski closure of the set of rational points on K that are

torsion in their fibre Kt or torsion in their fibre Ky with respect to any

of the inflection points chosen as identity. (The latter does not depend on

the chosen inflection point since 3[I1] = 3[I2] in Pic(Ky) for any inflection

points I1, I2 ∈ Ky(C) where [·] denotes the class of a divisor modulo linear

equivalence.)

Claim: S 6= K. Assume Q = (x, y, t) ∈ S(Q) is torsion in its fibre Kt. Then

by Mazur’s torsion bound, Q lies in a proper closed subset S1 of K.

Now assume Q = (x, y, t) ∈ S(Q) is torsion in its fibre Ky with respect to

some inflection point I ∈ Ky(C). Then by Merel’s torsion bound [Mer96] for

the number field k(I), there is a bound N (only depending on the uniformly

bounded degree of the residue field k(I)/Q) such that nQQ = I for some

positive nQ < N . This can again be expressed by some necessary algebraic

relations so that Q lies in a proper closed subset S2 of K. This proves the

claim since S ⊂ S1 ∪ S2.

By assumption of Zariski density, there exists a point P = (x0, y0, t0) ∈
K(Q) outside of S. Because S is algebraic, we know that Ky0 ∩ S is finite.

Otherwise, one would have Ky0 ⊂ S which is impossible since P ∈ Ky0 \ S.

In the same way, we conclude that Kt0 ∩ S is finite.

Multiples of P with respect to the group law on Kt0 are dense in the identity
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component of Kt0(R), which maps surjectively to the y-coordinate. Therefore

we can replace P without loss of generality by one such multiple (x0, y0, t0)

which is not in S with arbitrarily small |y0|. Using this we may make two

assumptions about P :

(i) We can assume |y0| is sufficiently small such that Ky0(R) is connected.

To see this, after setting u := 3
√
y0 ∈ R and τ := tu2, we can write

Ky0(R) as:

τ 3 + cτu4 + du6 = g(x).

This is a family of curves parameterised by u which is smooth in a

neighbourhood of u = 0. By Ehresmann’s lemma, for small |u| (and

hence small |y0|) its fibre is homeomorphic to the real curve τ 3 = g(x),

which in turn is homeomorphic to the connected real curve v = g(x),

where we set v := τ 3.

(ii) Moreover, if g(x) has three real roots, we define m < 0 and M > 0 as

local minimum and maximum of g(x) and assume that |y0| is sufficiently

small such that

m < f(t1)y2
0 < M,

where t1 ∈ R is as in the beginning of the proof.

Choose some inflection point I0 ∈ Ky0(C) as identity for the group law on

Ky0 . Then by Lemma 8.2 below,

T := {(3n+ 1)P |n ∈ Z} ⊂ Ky0(Q).

By Assumption ((i)), Ky0(R) is isomorphic to the real Lie group R/Z and

T is dense in it since P is not torsion in Ky0 . Let T ′ := T \ S. Because

(T ∩ S) ⊂ (Ky0 ∩ S) is finite, the set of rational points T ′ is also dense in

Ky0(R).

We distinguish two cases to finish the proof of the theorem:

g(x) has only one real root: Then Kt(R) is connected for all t ∈ R. We

have to find a non-torsion point in Kt′(Q) for some t′ ∈ Q with |t′ − t1| < ε.
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The set T ′ is dense in Ky0(R) and the projection from Ky0(R) to the t-

coordinate is surjective. Hence the image of T ′ under this projection is dense

in R and we can find (x′, y0, t
′) ∈ T ′ with |t′ − t1| < ε.

g(x) has three real roots: Then Kt(R) has two connected components for

all t ∈ R and we denote its non-identity component by Nt(R). It remains to

show the existence of a rational point P ′ ∈ Nt′(R) of infinite order in Kt′ for

some t′ ∈ Q with |t′ − t1| < ε.

Observe that Ky0(R)∩Kt1(R) is the intersection of the elliptic curve Kt1(R)

with the line {y = y0}. By Assumption ((ii)), this intersection consists of

three points, of which exactly two lie in the oval component Nt1(R). As Ky0

is connected and T ′ dense in Ky0(R), for any of these two intersection points

(x, y0, t1) ∈ Nt1(R) we can find P ′ = (x′, y0, t
′) ∈ T ′ such that |t′ − t1| < ε

and P ′ ∈ Nt′(R).

In classical geometric terms, the following lemma spreads rational points

using secants and tangents without the need of a group law defined over the

ground field.

Lemma 8.2. Let E be a plane cubic curve over a field F and let P ∈ E(F ).

Let F ′/F be a finite field extension and let I ∈ E(F ′) be an inflection point.

Equip EF ′ with the group structure with I as neutral point. Then for all

n ∈ Z, the multiple (3n+ 1)P is F -rational.

Proof. Denoting by H ∈ Pic(E) the class of a hyperplane section and by [·]
the class of a divisor modulo linear equivalence, we have that

D := (3n+ 1)[P ]− nH

has degree 1, so there exists a point Q ∈ E(F ) with [Q] = D. Then:

(3n+ 1)([I]− [P ]) = [I] + nH − (3n+ 1)[P ] = [I]− [Q].

Remark 8.3. Relating the proof in the last section to the rest of Part II, it
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should be mentioned that there is no possibility of applying the method of

using several elliptic fibrations to cases beyond K3. Only K3 and abelian

surfaces can contain distinct elliptic fibrations with sections [SS10, Lem.

12.18]. In particular, the case of quintic f is out of reach.
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Part III

On the Transcendental Brauer

Group
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9
Introduction

Let X be a smooth, projective, geometrically integral variety over a number

field K. The (cohomological) Brauer group

Br(X) := H2
ét(X,Gm,X)

has been a fundamental object of study in the area of rational points since

Y. Manin [Man71] realised that its elements can often obstruct the Hasse

principle or weak approximation on X. More recently, conjectures by A. Vá-

rilly-Alvarado [VA17] have focused on analogies between the Brauer

group of K3 surfaces and the torsion group of elliptic curves over number

fields.

It is thus an interesting question to be able to determine the Brauer group.

To develop and apply methods that achieve this is the aim of this part of the

thesis.

Let us briefly summarise the state of the art in computing the Brauer group.

A first step in understanding its structure is the natural filtration

Br0(X) ⊆ Br1(X) ⊆ Br(X)
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whose terms are defined as follows. The subgroup of constant Brauer classes

Br0(X) is the image of the canonical map

Br(k)→ Br(X).

Constant classes never provide an obstruction and so one is usually interested

in the quotient Br(X)/Br0(X). If X is isomorphic to a projective space, a

smooth quadric hypersurface or smooth complete intersection of dimension

≥ 3, then Br0(X) = Br(X).

The algebraic Brauer group Br1(X) is the kernel of the canonical map

Br(X)→ Br(X),

where X = X ×K K is the base change of X to an algebraic closure K/K.

Since all elements of Br(X) are defined over the ground field K, the image of

Br(X) in fact lies in the Galois invariant part Br(X)Γ where Γ = Gal(K/K).

Examples with Br(X) = Br1(X) are curves, cubic surfaces or more generally

geometrically rational varieties.

From the Hochschild-Serre spectral sequence

Hp(Γ,Hq
ét(X,Gm,X)) =⇒ Hp+q

ét (X,Gm,X)

we derive the exact sequence

Br k → Br1(X)→ H1(Γ,Pic(X))→ H3(Γ, k
×

).

Since the last term vanishes for number fields, we get an isomorphism

Br1(X)/Br0(X) ∼= H1(Γ,Pic(X)).

In the case that Pic(X) is explicitly known as a finitely generated Galois

module split over a finite extension of K, this isomorphism can be effectively

computed. Nowadays there are various examples for this in the literature,

most notably M. Bright’s classification of the algebraic Brauer group of

diagonal quartic surfaces [Bri02] (but see also [KT04, KT08, LM19, CN18]).
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Hence, the main open problem is to get hold of the transcendental part.

We solve this task for X with torsion-free Pic(X) by dividing it into three

challenges:

(a) Determine the action of Γ on the geometric Brauer group Br(X) and

its invariants Br(X)Γ. In certain cases Br(X)Γ is finite and indeed, we

will see that this is the case for the varieties we treat.

(b) Determine the image im(Br(X) → Br(X)Γ). In general, there is no

reason why this map should be surjective. Indeed, an argument in

homological algebra will characterise those Galois invariant geometric

Brauer classes that come from Br(X).

(c) If the output of (b) is such that Br1(X) ( Br(X), the last challenge is

to determine the extension

0→ Br1(X)/Br0(X)→ Br(X)/Br0(X)→ Br(X)/Br1(X)→ 0.

This will involve a hypercohomology argument in derived categories.

Recall that the determination of the algebraic Brauer group as sketched above

required knowledge of Pic(X). In order to make our methods work, we re-

quire additional information. Namely, to be able to implement (a) we need

an understanding of the Galois action on the transcendental cycles. For (b)

and (c), the structure of the geometric Picard group and the transcenden-

tal cycles as Galois modules as well as their relation to each other via the

discriminant group has to be understood.

Under the assumption that this understanding is available, Chapter 10 de-

velops a framework for determining Br(X)/Br0(X). We refrain from calling

it “algorithmic” since it is not presented in a formalised way but it is rea-

sonable to expect that our methods be applicable to a wide class of varieties.

The first successfully implemented case is that of diagonal quartic surfaces in

joint work by the author [GS19] where the following main result was proved.

(In the original statement of (i), it was assumed that all coefficients are in

Q but an argument similar to Lemma 12.18 shows that this assumption can

be dropped.)

65



Theorem 9.1. (i) Let X be a diagonal quartic surface over Q(i). Then

Br(X)[2∞] ⊂ Br1(X),

unless X is isomorphic to the surface given by

x4 + y4 + 2z4 + 8w4 = 0,

in which case the extension in (c) becomes

0→ Z/2× Z/4→ Z/4× Z/4→ Z/2→ 0.

(ii) Let X be a diagonal quartic surface over Q. Then

Br(X)[2∞] ⊂ Br1(X)

unless X is isomorphic to one of the surfaces given by

x4 + y4 + 2z4 − 2w4 = 0

or

x4 + y4 + 8z4 − 8w4 = 0,

in which case the extension in (c) becomes

0→ Z/4→ Z/8→ Z/2→ 0.

The necessary information about the Galois action on transcendental cycles

can sometimes be obtained in the presence of complex multiplication when

Γ acts through Größencharacters. This is the case in Chapter 11 where we

give a complete description of the integral cohomology of weighted diagonal

hypersurfaces.

The final Chapter 12 combines these results to classify the Brauer group of

degree 2 K3 surfaces

XA,B,C : y2 = Ax6 +By6 + Cz6 ⊂ P3
K(3, 1, 1, 1)
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over K = Q or Q(
√
−3) with A,B,C ∈ K×. These are double covers of the

projective plane ramified in a diagonal sextic. These surfaces have previously

been studied by Bouyer-Costa-Festi [BCF+19] and Corn-Nakahara

[CN18]. In conjunction with [CN18], we are able to show in Corollary 12.11

that degrees do not capture the Brauer-Manin obstruction for K3 surfaces

answering a question in an article by B. Creutz and B. Viray [CV18].

The main results of this part, which rely on Magma computations [BCP97,

Gvi19b], are as follows. We call XA,B,C and XA′,B′,C′ equivalent, if we can

obtain one from the other by permuting the variables x, y, z and multiplying

each coefficient with sixth powers in Q× and −27 (which is a sixth power in

Q(
√
−3)). This is an a priori stronger notion than isomorphy over Q(

√
−3).

Theorem A Let K = Q(
√
−3) and

X = XA,B,C : y2 = Ax6 +By6 + Cz6 ⊂ P3
K(3, 1, 1, 1)

with A,B,C ∈ K×.

(i) We have Br(X)[2∞] = Br1(X)[2∞] unless X is equivalent to

(I) : X−2c41c
4
2,−8c21,−8c22

or (II) : X−2c41,8c
2
1c

5
2,−c2

for some c1, c2 ∈ K×. In these two cases

(Br(X)/Br1(X))[2∞] = (Z/2)2.

(ii) We have Br(X)[3∞] = Br1(X)[3∞] unless X is equivalent to

(III) : X−9c31c2,3c
3
1c

4
2,−c2

for some c1, c2 ∈ K×. In this case

(Br(X)/Br1(X))[3∞] = (Z/3)2.
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Theorem B Consider the surface

X = XA,B,C : y2 = Ax6 +By6 + Cz6 ⊂ P3
Q(3, 1, 1, 1)

with A,B,C ∈ Q×.

(i) We have Br(X)[2∞] = Br1(X)[2∞] unless X ×Q Q(
√
−3) is equivalent

to a surface of type (I) or (II). In this case,

(Br(X)/Br1(X))[2∞] = Z/2.

(ii) We have Br(X)[3∞] = Br1(X)[3∞] unless X ×Q Q(
√
−3) is equivalent

to a surface of type (III). In this case,

(Br(X)/Br1(X))[3∞] = Z/3.

For step (c), instead of listing all the exceptional cases, which differ in their

algebraic Brauer groups, we give a general structure theorem for the extension

0→ Br1(X)/Br0(X)→ Br(X)/Br0(X)→ Br(X)/Br1(X)→ 0.

Supplement to Theorem A Let K = Q(
√
−3) and ` = 2, respectively 3.

Let X be one of the exceptional surfaces in Theorem A.(i), respectively (ii).

Then Br1(X)/Br0(X) is an `-group and writing

Br1(X)/Br0(X) =
k⊕
i=1

Z/`ni

with ni ≤ nj for all 1 ≤ i < j ≤ k, we have

Br(X)/Br0(X) =
k−2⊕
i=1

Z/`ni ⊕ Z/`nk−1+1 ⊕ Z/`nk+1.

Supplement to Theorem B Let K = Q and ` = 2, respectively 3. Let X

be one of the exceptional surfaces in Theorem B.(i), respectively (ii). Then
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Br1(X)/Br0(X) is an `-group and writing

Br1(X)/Br0(X) =
k⊕
i=1

Z/`ni

with ni ≤ nj for all 1 ≤ i < j ≤ k, we have

Br(X)/Br0(X) =
k−1⊕
i=1

Z/`ni ⊕ Z/`nk+1.

Comparing with Theorem 9.1, we notice some similarities and differences:

• Like in Theorem 9.1, the results in step (c) point to a difficulty in lifting

elements of the transcendental part to the full Brauer group. A 2- or

3-torsion element of the transcendental part will generally only lift to

a 4-, 8- or 9-torsion Brauer class.

• As seen in Theorem 9.1.(iii), it is not the case that all diagonal quartic

surfaces over Q which are descended from the exceptional case over Q(i)

have a nontrivial transcendental Brauer group. In fact, only those with

coefficients 1, 1, 2,−2 and 1, 1, 8,−8 have a nontrivial transcendental

2-torsion Brauer class. This result stands in contrast to Theorem B.

• Unlike Theorem 9.1, there isn’t a finite list of surfaces with nontrivial

transcendental 2- or 3-torsion. Instead, the exceptional cases appear in

families.

Upcoming work by the present author will also study other members of Festi’s

family using the main theorem of complex multiplication for K3 surfaces due

to J. Rizov [Riz05] and D. Valloni [Val18].

We end this introduction by returning to the original motivation of computing

the Brauer-Manin obstruction. A remaining problem in relating our results to

rational points is that our cohomological framework only outputs the Brauer

group as an abstract group. In order to compute the obstruction presented by

Brauer classes, one would like to find a representation as Azumaya algebras.
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At the moment, we are not able to do this. On the other hand recent work

by A. Várilly-Alvarado and J. Berg [BVA18] has demonstrated that

the obstruction can sometimes be computed by a geometric argument.

Regardless of this caveat, experience shows that the transcendental part is

usually much smaller than Br(X)Γ and very often trivial, in which case there

obviously is no Brauer-Manin obstruction by transcendental elements. Up-

coming joint work by the present author uses this fact to give asymptotic

results on the Brauer-Manin obstruction for the family of K3 surfaces con-

sidered in Chapter 12.

Conventions. All tensor products are over Z unless stated otherwise. The

leftmost term of complexes as written down is in degree 0.
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10
A framework for computing

the Brauer group

This chapter explains a cohomological framework to determine the full Brauer

group of varieties over number fields with torsion-free Picard group (up to

constant Brauer classes). In the next chapters we will apply the method

successfully to weighted diagonal surfaces. The framework upgrades an ar-

gument in spectral sequences from [CTS13] to an argument in derived cat-

egories as was done for surfaces in [GS19], following the mantra of derived

categories to take cohomology as late as possible. This upgrade is essen-

tial as it allows us to complete step (c) using hypercohomology whereas the

spectral sequence argument only returns the graded pieces of the filtration

Br0(X) ⊆ Br1(X) ⊆ Br(X).

10.1 Cohomological tools

10.1.1 The following lemma in homological algebra is proved in [CTS13].

Lemma 10.1. Let G : A → B be an additive, left exact functor of abelian
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categories. Let

0→ A→ B → C → 0

be a short exact sequence in A. Let B• be an injective resolution of B.

Then there exists a complex E• concentrated in degrees 0 and 1 and mor-

phisms

(τ [1,2]G(B•))[1]
e1←− E•

e2−→ [R1G(C)→ R2G(A)]

where τ [1,2] denotes natural truncation and [1] shift to the left, with the fol-

lowing properties:

(i) On cohomology, e1 induces an isomorphism in degree 0 and the natural

map

coker(R1G(C)→ R2G(A))→ R2G(B)

in degree 1.

(ii) On cohomology, e2 induces the natural map

R1G(B)→ ker(R1G(C)→ R2G(A))

in degree 0 and an isomorphism in degree 1.

Proof. The complex E• with these properties is constructed in the proof of

[CTS13, Lemme 3.2].

10.1.2 We now want to apply Lemma 10.1 to our problem of computing the

Brauer group. Let p : X → SpecK be an n-dimensional smooth, projective,

geometrically integral variety over a number field K. Fix an embedding

K ⊂ C. Let Γ = ΓK = Gal(K/K) be the absolute Galois group of K and

X = X ×K K. Assume that Pic(X) is torsion-free.

The goal is to arrive at a complex representing the derived object

(τ [1,2]Rp∗(Gm,X))[1]

(or a complex closely related to it) where [1] denotes shift to the left. This
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will be enough, as the following lemma shows.

Lemma 10.2. There is a natural isomorphism from Br(X)/Br0(X) to the

hypercohomology H1(Γ, τ [1,2]Rp∗(Gm,X)[1]).

Proof. The derived functor of H0(Γ, ·) applied to the distinguished triangle

τ [0]Rp∗(Gm,X)→ τ [0,2]Rp∗(Gm,X)→ τ [1,2]Rp∗(Gm,X)

yields the short exact sequence

Br(K)→ Br(X)→ H1(Γ, (τ [1,2]Rp∗(Gm,X))[1])→ H3(Γ, K
×

)

and the last term vanishes for any number field K [NSW08, 8.3.11(iv)].

10.1.3 We set A = D(X), the bounded below derived category of étale

abelian sheaves on X, and B = D(K), the bounded below derived category

of étale abelian sheaves on SpecK, or equivalently of Γ-modules. Then the

functor G = p∗ is an additive, left exact functor between A and B.

Looking, for any positive integer n, at the Kummer exact sequence

0→ µn → Gm,X
()n−→ Gm,X → 0

of étale sheaves on X, we get from Lemma 10.1 a diagram of complexes

(τ [1,2]Rp∗(Gm,X))[1]
e1←− E•

e2−→ [Pic(X)→ H2
ét(X,µn)].

Induced from the Kummer exact sequence is the exact sequence

K
× → K

× → H1
ét(X,µn)→ Pic(X)

·n−→ Pic(X).

Because we assumed Pic(X)tors = 0, it follows that H1
ét(X,µn) = 0 for any

positive integer n. Therefore, e2 is a quasi-isomorphism. In D(K) we obtain

a morphism

[Pic(X)→ H2
ét(X,µn)]→ (τ [1,2]Rp∗(Gm,X))[1].
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On cohomologies, it induces the isomorphism nPic(X)
'−→ Pic(X) in degree

0 and the natural inclusion Br(X)[n]→ Br(X) in degree 1.

Taking the inverse limit over all powers of ` of

[Pic(X)→ H2
ét(X,µln)]→ (τ [1,2]Rp∗(Gm,X))[1]

and then taking the sum of these limits in D(K) over all primes ` yields the

morphism

β : [Pic(X)⊗Q→ H2
ét(X,Q/Z(1))]→ (τ [1,2]Rp∗(Gm,X))[1]

where

H2
ét(X,Q/Z(1)) =

⊕
`

H2
ét(X,Q`/Z`(1)) =

⊕
`

H2
ét(X,Z`(1))⊗Z` Q`/Z`

and (1) denotes the Tate twist.

The morphism β induces an isomorphism in degree 0 and induces the natural

inclusion Br0(X)→ Br(X) in degree 1. Here Br0(X) is the maximal divisible

subgroup of Br(X).

Proposition 10.3. Let p : X → SpecK be a smooth, projective, geometri-

cally integral variety over a number field K. Assume that Pic(X) is torsion-

free.

Then

β : [Pic(X)⊗Q→ H2
ét(X,Q/Z(1))]→ (τ [1,2]Rp∗(Gm,X))[1]

induces the natural inclusion Br0(X)/Br0(X)→ Br(X)/Br0(X) on first hy-

percohomologies where Br0(X) is the preimage of Br0(X) under Br(X) →
Br(X).

Proof. By [Gro68][(8.9)], there is a short exact sequence

0→ Br0(X)→ Br(X)→
⊕
`

H3(X,Z`(1))tors → 0,
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yielding a distinguished triangle

[Pic(X)⊗Q→ H2
ét(X,Q/Z(1))] → (τ [1,2]Rp∗(Gm,X))[1]

→ [0→
⊕
`

H3(X,Z`(1))tors].

Applying hypercohomology and Lemma 10.2 we get an injection

H1(Γ, [Pic(X)⊗Q→ H2
ét(X,Q/Z(1))]) ↪→ Br(X)/Br0(X)

since H0(Γ, [0→
⊕

` H3(X,Z`(1))tors]) = 0. Looking at the Cartan-Eilenberg

resolution computing the hypercohomology, we see that an element in

Br(X)/Br0(X)

lies in the image of this injection if and only if its image in

H1((τ [1,2]Rp∗(Gm,X))[1]) = Br(X)

lies in the subgroup H1([Pic(X)⊗Q→ H2
ét(X,Q/Z(1))]) = Br0(X).

10.1.4 There is an isomorphism between the groups Pic(X) and Pic(XC)

and between their maximal divisible subgroups Pic0(X) ∼= Pic0(XC). Let

NS(X) = Pic(X)/Pic0(X)

be the Néron-Severi group, a saturated subgroup of H2(XC,Z).

When n = 2, Pic(X)tors = 0 implies

0 = NS(X)tors = H2(XC,Z(1))tors = H3(XC,Z)tors

where the last equality follows from Poincaré duality. Hence for surfaces, our

assumptions imply that Br0(X) = Br(X) and β is a quasi-isomorphism.
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10.2 Transcendental cycles

10.2.1 Following [CTS13, §4.1], we can improve the complex of Proposi-

tion 10.3 further using transcendental cycles.

Let N(XC) be the subgroup of algebraic cycles in H2n−2(XC,Z(n − 1)). It

naturally carries an action of Γ. To avoid issues of torsion in the construction,

we assume that H2n−2(XC,Z(n − 1)) is torsion-free and N(XC) is primitive

in H2n−2(XC,Z(n−1)). (Otherwise, one has to replace N(XC) with a certain

“saturation” as done in [CTS13, ibid.] but after doing so, the results of this

section still apply.)

The cup product defines a non-degenerate bilinear pairing

H2(XC,Z(1))× H2n−2(XC,Z(n− 1))→ H2n(XC,Z(n)) = Z

inducing an isomorphism

H2(XC,Z(1)) ∼= Hom(H2n−2(XC,Z(n− 1)),Z).

This defines a short exact sequence

0→ Pic(XC)→ Hom(N(XC),Z)→ ∆→ 0

and we call the hereby defined quotient ∆ the discriminant group of X.

Definition 10.4. The group of transcendental cycles T (XC) ⊂ H2(XC,Z(1))

(resp. S(XC) ⊂ H2n−2(XC,Z(n−1))) is the orthogonal complement to N(XC)

(resp. Pic(XC)) under the cup product.

From primitivity, we deduce short exact sequences

0→ Pic(XC)→ H2(XC,Z(1))→ Hom(T (XC),Z)→ 0

and

0→ S(XC)→ H2(XC,Z(1))→ Hom(N(XC),Z)→ 0.

Since Pic(XC) → Hom(N(XC),Z) is injective, it follows that Pic(XC) ∩
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S(XC) = 0.

10.2.2 Applying the snake lemma to the commutative diagrams with exact

columns
0 0

Pic(XC) Hom(N(XC),Z)

Pic(XC)⊕ S(XC) H2(XC,Z(1))

S(XC) S(XC)

0 0

and
0 0

S(XC) Hom(T (XC),Z)

Pic(XC)⊕ S(XC) H2(XC,Z(1))

Pic(XC) Pic(XC)

0 0

we get that

∆ ∼= Hom(N(XC),Z)/Pic(XC) ∼= H2(XC,Z(1))/(Pic(XC)⊕ S(XC))

∼= Hom(T (XC),Z)/S(XC).

10.2.3 For any prime `, there are comparison isomorphisms

H2(XC,Z(1))⊗ Z` ∼= H2(X,Z`(1))
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between singular and `-adic cohomology, compatible with the cup product

and cycle class maps. Thus we can define T (X)` and S(X)` analogously to

their complex counterparts such that

T (XC)⊗ Z` ∼= T (X)`, S(XC)⊗ Z` ∼= S(X)`

and obtain a short exact sequence of Γ-modules

0→ Pic(X)⊗ Z` ⊕ S(X)` → H2(X,Z`(1))→ ∆[`∞]→ 0.

After tensoring this with Q`/Z`, we arrive at

0→ ∆[`∞]→ Pic(X)⊗Z` Q`/Z` ⊕ S(X)` ⊗Q`/Z` → H2(X,Q`/Z`(1))→ 0.

This gives rise to a commutative diagram of Γ-modules with exact rows

∆[`∞] S(X)` ⊗Z` Q`/Z` Hom(T (X)`,Z`)⊗Q`/Z`

Pic(X)⊗Q`/Z` H2(X,Q`/Z`(1)) Hom(T (X)`,Z`)⊗Q`/Z`

·(−1) ∼=

which after summing over all primes ` becomes

∆ S(XC)⊗Q/Z Hom(T (XC),Q/Z)

Pic(XC)⊗Q/Z H2(XC,Q/Z(1)) Hom(T (XC),Q/Z).

·(−1) ∼=

10.2.4 At this point, the reader should keep in mind that while S(XC) and

T (XC) are not equipped with Galois actions,

S(XC)⊗Q/Z and Hom(T (XC),Q/Z)

are indeed Galois modules owing to the comparison isomorphisms.
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10.2.5 Another commutative diagram of Γ-modules with exact rows is given

by

Pic(XC) Hom(N(XC),Z) ∆

Pic(XC) Pic(XC)⊗Q Pic(XC)⊗Q/Z

In conclusion, we realise that there is an isomorphism of complexes in D(K)

[Hom(N(XC),Z)→ S(XC)⊗Q/Z] ∼= [Pic(X)⊗Q→ H2
ét(X,Q/Z(1))].

In particular, it becomes clear that Br0(X) ∼= Hom(T (XC),Q/Z) as Γ-

modules and both are isomorphic to (Q/Z)b2(XC)−rk Pic(XC) = (Q/Z)rkT (XC)

as abstract groups, where b2(XC) is the second Betti number of XC.

Moreover, we can reformulate Proposition 10.3 as follows.

Proposition 10.5. Let X be a smooth, projective, geometrically integral

variety over a number field K. Assume that Pic(X) is torsion-free.

Then

H1(Γ, [Hom(N(XC),Z)→ S(XC)⊗Q/Z]) ∼= Br0(X)/Br0(X).

10.2.6 When n = 2, we have that Pic(XC) = N(XC) and T (XC) = S(XC)

and all our assumptions are satisfied. Therefore, we have a quasi-isomorphism

[Hom(Pic(XC),Z)→ T (XC)⊗Q/Z] ∼= (τ [1,2]Rp∗(Gm,X))[1]

recovering [GS19, Proposition 1.2].

We recover a theorem of [CTS13].

Corollary 10.6. Let X be a smooth, projective, geometrically integral variety

over a number field K. Assume that Pic(X) is torsion-free.

Then im(Br0(X)→ Br0(X)) is equal to the kernel of the map

δ : H0(Γ,Br0(X))→ H2(Γ,Pic(X))
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which is obtained from the 2-extension of Γ-modules

0→ Pic(X)→ Hom(N(XC),Z)→ S(XC)⊗Q/Z→ Br0(X)→ 0.

10.2.7 Since the morphism δ in Corollary 10.6 is the composition of natural

maps

H0(Γ,Br0(X))→ H1(Γ,∆)→ H2(Γ,Pic(X)),

it follows that for any ` - #∆, we have

Br0(X)[`∞]Γ = (Br0(X)/Br1(X))[`∞].

In particular, step (b) and (c) in our framework are only relevant for `|#∆.

10.2.8 We derive the following corollary.

Corollary 10.7. Let X and Y be two smooth, projective, geometrically inte-

gral surfaces over a number field K with torsion-free geometric Picard groups.

Assume that there is an isomorphism

H2(XC,Z) ∼= H2(YC,Z)

which respects the cup products and induces an isomorphism of Hodge struc-

tures as well as an isomorphism of Galois modules on `-adic cohomology (by

the comparison theorem of singular and `-adic cohomology) for all primes `.

Then

Br(X)/Br0(X) ∼= Br(X)/Br0(X).

Proof. The left hand side is computed by the hypercohomology of the com-

plex

[Hom(Pic(XC),Z)→ T (XC)⊗Q/Z]

and the same is true for the right hand side after replacing X by Y . Because

of our assumption,

H2
ét(X,Q`/Z`(1)) ∼= H2

ét(Y ,Q`/Z`(1)).
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Since Pic(XC) ∼= Pic(YC) by the Lefschetz (1, 1)-theorem and Pic(X)⊗Z` ∼=
Pic(Y ) ⊗ Z`, we have Pic(X) ∼= Pic(Y ). The same holds for the duals and

`-adic orthogonal complements. Thus, the two complexes of which we take

the hypercohomology are isomorphic.

10.3 Reduction to a finite computation

10.3.1 In order to make the hypercohomology with respect to the infinite

profinite group Γ amenable to calculations, we would like to replace Γ by a

finite group.

However, while the Galois action on Pic(XC) and N does factor through a

finite quotient, the action on S(XC)⊗Q/Z and Hom(T (XC),Q/Z) does not

do so in general, as predicted by the Tate conjecture. Another perspective

to think about this issue is that as one takes larger algebraic extensions

L of K, the group Br0(X)Gal(L/L) will continue to grow, until it eventually

encompasses the whole Hom(T (XC),Q/Z) when L = K.

10.3.2 Hence, we will adapt our method to compute

BrB(X) ⊂ Br(X)/Br0(X),

the preimage of a finite Γ-submodule B ⊂ Br0(X).

In all our applications, we will have Br(X) = Br0(X), and once we fix the

ground field K, the Galois invariant part Br(X)Γ will be finite. In such

a situation, if we take B to be a finite submodule containing Br(X)Γ, our

cohomological machinery indeed outputs the full group

Br(X)/Br0(X) = BrB(X).

10.3.3 Of course, substituting Γ by a finite quotient changes some of the

group cohomologies. However, the resulting hypercohomology is unaffected

as the following proposition shows.
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Proposition 10.8. Let X be a smooth, projective, geometrically integral

variety over a number field K. Let B be a finite Γ-submodule of

Br0(X) ∼= Hom(T (XC),Q/Z).

Let SB be the preimage of B under S(XC) ⊗ Q/Z → Hom(T (XC),Q/Z).

Let ΓKB ⊂ Γ be the finite index subgroup which is the kernel of the action

morphism

Γ→ Aut(N(XC))× Aut(SB).

Define the finite extension KB = (K)ΓKB /K and set GB = Gal(KB/K).

The following statements hold.

(i) The image of BrB(X) under the natural map Br(X)/Br0(X)→ Br(X)

is equal to the kernel of the map

δB : H0(GB, B)→ H2(GB,Pic(X))

obtained from the 2-extension of GB-modules

0→ Pic(X)→ Hom(N(XC),Z)→ SB → B → 0.

(ii) The group BrB(X) is isomorphic to

H1(GB, [Hom(N(XC),Z)→ SB]).

Proof. (i) The 2-extension is indeed well-defined since the action of Γ on

all terms factors through GB. We get a commutative diagram

BΓ H2(Γ,Pic(X))

BGB H2(GB,Pic(X)).

δ

δB

inf

By Corollary 10.6, the image of BrB(X) in BΓ is given by ker(δ). How-
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ever, the inflation-restriction exact sequence implies that

ker(inf) = H1(ΓKB ,Pic(X)) = Hom(ΓKB ,Pic(X)) = 0

since the profinite Galois group ΓKB acts trivially on Pic(X). Hence

ker(δ) = ker(δB).

(ii) This is a combination of the first item and Proposition 10.5.

If B = Br0(X)[n] for some integer n, we will also write SB = Sn, KB = Kn

and GB = Gn.

10.3.4 In practice, instead of considering the connecting map

H0(GB, B)→ H1(GB,∆)→ H2(GB,Pic(X)),

which requires the computation of second cohomology, it is often easier to

use the exact sequence

H1(GB,Hom(N(XC),Z))→ H1(GB,∆)→ H2(GB,Pic(X)).

Then ker(δB) is the preimage of

im(H1(GB,Hom(N(XC),Z))→ H1(GB,∆))

under the connecting map H0(GB, B)→ H1(GB,∆).

10.4 Finiteness of the Brauer group

This section collects a few results on the finiteness of the Brauer group. In

particular, as remarked before, if Br(X)Γ ⊂ Br0(X)[n] for some integer n,

we can apply Lemma 10.8 to determine Br(X)/Br0(X).

83



10.4.1

Definition 10.9. A K3 surface is a smooth, projective, geometrically integral

variety X with trivial canonical bundle, satisfying H1(X,OX) = 0.

Together with abelian varieties, K3 surfaces provide a higher-dimensional

analogue of elliptic curves. A standard reference is [Huy16].

The Hodge diamond of a K3 surface X over C is known to be

1

0 0

1 20 1

0 0

1

so that rk Pic(X) can take values between 1 and 20. Furthermore, Pic(X) is

torsion-free. The Tate conjecture is known for K3 surfaces in all characteris-

tics [Mad15, KM16].

Proposition 10.10. Let X be a K3 surface over a number field K. Then

the groups Br(X)Γ and Br(X)/Br0(X) are finite.

Proof. See [SZ08].

10.4.2

Definition 10.11. A variety dominated by a product of curves (DPC variety)

is a smooth, projective, geometrically integral varietyX such that there exists

a dominant rational map from a product of smooth, projective, geometrically

integral curves to X.

In fact, the dominant rational map in the above definition can be chosen to

be generically finite [Sch96, Lemma 6.1]. Many properties of DPC varieties
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can be proved inductively starting with the curve case. For example, the

Tate conjecture is known for DPC varieties [Tat94, Section 5].

Proposition 10.12. Let X be a DPC variety over field K which is finitely

generated over Q. Then the groups Br(X)Γ and Br(X)/Br1(X) are finite.

Proof. Since Br(X)/Br1(X) ⊂ Br(X)Γ, it suffices to show that Br(X)Γ is

finite.

Let Y =
∏n

i=1 Yi be a product of smooth, projective, geometrically integral

curves over K and let Y 99K X be a dominant, generically finite, rational

map. Due to the general behaviour of the Brauer group under products of

varieties (see [SZ14, Theorem A]), the cokernel of

n⊕
i=1

Br(Y i)
Γ → Br(Y )Γ

is finite. Because the Brauer group of a smooth, projective, geometrically

integral curve over an algebraically closed field is trivial by Tsen’s theorem,

this implies that Br(Y )Γ is finite.

We now find a resolution of the indeterminacy locus of Y 99K X, i.e. a

smooth, projective geometrically integral variety Y ′ over K with a birational

morphism Y ′ → Y and a dominant generically finite morphism Y ′ → X.

The Brauer group is a birational invariant, hence Br(Y
′
)Γ = Br(Y )Γ.

Let K(X) be the function field of X and analogously for K(Y ′). We have

restriction and corestriction maps

Br(K(X)) Br(K(Y ′))
res

cores

and cores ◦ res equals multiplication by [K(Y ′) : K(X)]. Because Br(X) ↪→
Br(K(X)) is injective [Gro68, Corollaire 1.10], it follows that the kernel of

Br(X) → Br(Y ) is annihilated by [K(Y ′) : K(X)], hence finite. The same

holds for Br(X)Γ → Br(Y
′
)Γ and the result follows.

Corollary 10.13. Let X be a variety over a number field K such that Pic(X)

is finitely generated. Then Br1(X)/Br0(X) is finite.
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Proof. We have Br1(X)/Br0(X) = H1(Γ,Pic(X)) and the latter is finite

because Pic(X) is finitely generated.

Combining the finiteness of the geometric and algebraic Brauer group, we

obtain:

Corollary 10.14. Let X be a DPC variety over a number field K such that

Pic(X) is finitely generated. Then Br(X)/Br0(X) is finite.
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11
Cohomology of weighted

diagonal surfaces

The aim of this chapter is to develop a full description of the middle co-

homology of smooth weighted diagonal hypersurfaces. By “full”, we mean

an explicit understanding of the integral singular cohomology including the

cup product, the Hodge cohomology, the Galois action on `-adic cohomology

and the comparison isomorphisms between those. We will build on previ-

ous work by Pham, Looijenga, Weil, Shioda, Ulmer and Gvirtz-

Skorobogatov.

One beauty of the subject that the reader will surely be able to appreciate is

how rather different branches of mathematics come together. While Pham’s

work is very topological in nature and works with explicit singular chains, the

famous work by Weil on counting points of diagonal hypersurfaces over finite

fields is purely arithmetic. Nevertheless they lead to the same combinatorial

structures. It is unknown to the author whether Pham and Weil, who

published their results during the same time period, were aware of each

other’s work.
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11.1 Setup

11.1.1 Fix an embedding Q ⊂ C and set ζm = e2πi/m.

Let q = (q0, . . . , qn) ∈ Nn+1. We define the group

µq = µq0 × · · · × µqn+1

where µqi = 〈ti〉 is the group of qi-th roots of unity with generator ti.

Definition 11.1. The weighted projective space Pn+1
Q (q) is the (n+ 1)-dimen-

sional projective scheme

ProjQ[x0, . . . , xn+1]

where the grading of the polynomial ring is given by deg(xi) = qi.

Alternatively, Pn+1
Q (q) can be defined by the quotient

πq : Pn+1
Q → Pn+1

Q (q)

of n-dimensional projective space by the µq-action for which ti multiplies the

i-th coordinate of Pn+1
Q with ζqi . It is easy to see that every weighted projec-

tive space is isomorphic to one satisfying gcd(q) = 1. We assume this holds

and write shorthand P = Pn+1
Q (q). (Indeed, every weighted projective space is

isomorphic to a normalised one satisfying gcd(q0, . . . , qi−1, qi+1, . . . , qn+1) = 1

for all i = 0, . . . , n+ 1, but not so linearly [Dol82, 1.3.1].)

11.1.2 Let d be a positive integer such that qi | d for all 0 ≤ i ≤ n + 1. To

ease notation, we write ε = ζd. We set di = d/qi.

Definition 11.2. We define the weighted diagonal hypersurface of multidegree

(d0, . . . , dn+1) to be

F = F(d0,...,dn+1) ⊂ P : xd00 + · · ·+ x
dn+1

n+1 = 0.

By the coprimality assumption on q, we know that d = lcm(d0, . . . , dn+1).
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There is a natural quotient map

πq : Fd = F(d,...,d) → F

from the Fermat hypersurface of degree d and dimension n to the weighted

quotient.

11.1.3 The singularities of F have been analysed by Y. Goto in [Got96,

§2]. He proves that F is smooth if and only if gcd(qi, qj) = 1 for all i 6= j

between 0 and n+ 1.

Otherwise, under the assumption that P is normalised, the singularities of

F coincide with those of P and are cyclic, hence their resolution is explicitly

described by a Hirzebruch continuous fraction. We will however assume

smoothness for the rest of this chapter.

11.1.4 Another computation in [Dol82, Theorem 3.2.4, Theorem 3.3.4] shows

that Hi(F,OF ) = 0 for 1 < i < n and that the dualising sheaf of F is

ωF = OF (d− q0 − q1 − · · · − qn+1). In the case of n = 2, this implies a finite

list of weighted diagonal surfaces whose minimal resolution is K3, of which

two cases, with degrees (4, 4, 4, 4) and (2, 6, 6, 6), are smooth.

Moreover, the analogue of the Lefschetz hyperplane theorem holds [Dol82,

Corollary 4.2.2]:

Hi(FC,C) ∼= Hi+1(PC,C), i 6= n

For this reason, our interest lies in the middle cohomology, and as far as the

transcendental Brauer group is concerned, in surfaces.

11.1.5 It is known since Shioda and Katsura [SK79, Theorem I] that Fer-

mat hypersurfaces are dominated by a product of Fermat curves, thus the

same is true for weighted diagonal hypersurfaces. In particular, Proposi-

tion 10.14 is applicable. Many properties of Fermat hypersurfaces can be

shown inductively using the DPC structure. For example they have com-

plex multiplication, i.e. the Mumford-Tate group is abelian [Dol14, Example
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14.12]. We will however not use this fact.

11.1.6 The group µd0×· · ·×µdn+1 acts on FC. Namely, if we write µdi = 〈ui〉,
then ui multiplies xi with ζdi . This action restricts trivially to µd where µd

acts via

ε 7→ (εq0 , . . . , εqn+1).

Let G = (µd1 × · · · × µdn+1)/〈(u1 . . . un+1)d0〉. There is an isomorphism

G ∼= (µd0 × · · · × µdn+1)/µd

that identifies u0 with (u1 . . . un+1)−1. Thus, the action of G on FC can be

described in a coordinate-symmetric or asymmetric way, depending on which

is more convenient.

11.1.7 We define polynomials

φi(x) := 1 + x+ x2 + · · ·+ xdi−1

for later use.

11.1.8 Set n′ = bn/2c. Poincaré duality induces a unimodular bilinear form

on the singular cohomology

H = Hn(FC,Z(n′)).

It is symmetric for even n and antisymmetric for odd n. Our first goal is to

describe H together with its cup product.

One feature of the weighted ambient space is that coordinate hyperplane

section classes differ depending on the chosen coordinate. The following

lemma clarifies the situation.

Lemma 11.3. Assume n is even. Let l ∈ H2(FC,Z) be the saturation of any

hyperplane section class. Then L = ln/2 ∈ Hn(FC,Z) has self-intersection

dq := d/
∏n+1

j=0 qj.
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Proof. Let li be the class given by the hyperplane xi = 0. Then the inter-

section product of l
n/2
i and l

n/2
j is qiqjd/

∏n+1
j=0 qj by the weighted version of

Bézout’s theorem Lemma 11.4 below for all 0 ≤ i ≤ n+1. By the coprimality

assumption on q, there exists a linear combination l such that L = ln/2 has

self-intersection d/
∏n+1

j=0 qj. It follows that the image of L under the pullback

map

π∗q : Hn(FC,Z)→ Hn((Fd)C,Z),

is the hyperplane section class of (Fd)C, which is saturated. Hence L is

saturated.

Lemma 11.4 (Weighted Bézout’s Theorem). Let F1, . . . , Fn+1 be hypersur-

faces in P. Then

deg(F1 . . . Fn+1) =
degF1 . . . degFn+1

q0 . . . qn+1

where deg is the weighted degree function.

Proof. [EH99, Theorem 3.6].

11.1.9 It turns out that it is easier to first determine the primitive cohomol-

ogy of F which is defined as follows.

Definition 11.5. The primitive cohomology P = Pn(FC,Z(n′)) ⊆ H is the

kernel of the intersection pairing with a hyperplane section class.

One finds that P is the orthogonal complement to L if n is even, and equal

to H if n is odd.

If M is a Z-lattice, we write M∗ = Hom(M,Z) for the dual. We have that

P ∗/P ∼= Z/dq for even n by Lemma 11.3. Since G fixes L, we know that P

is a Z[G]-module.
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11.2 Homology of affine diagonal hyper-

surfaces

11.2.1 Let Z ⊂ F be the hyperplane section x0 = 0. Its complement U =

F \ Z is the affine diagonal hypersurface in An+1
Q given by

xd11 + · · ·+ x
dn+1

n+1 = −1.

We recall a topological description of the singular middle homology of UC

due to V. Pham [Pha65].

11.2.2 Define a simplex e as follows. Let

∆n = {z ∈ Rn+1 : z1 + · · ·+ zn+1 = 1, zi ≥ 0,∀i = 1, . . . , n+ 1}

be the standard n-simplex. Then set

e : ∆n → F (C)

(z1, . . . , zn+1) 7→ (ζ2d1z
1/d1
1 , . . . , ζ2dn+1z

1/dn+1

1 )

where the roots of the zi are chosen to be positive real numbers.

Note that this definition differs from Pham’s because we introduced a minus

sign on the right hand side of the affine equation of U so that the real

structure of FC is preserved.

Then

e = (1− u−1
1 ) . . . (1− u−1

n+1)e

is a cycle and generates Hn(U,Z) as a Z[G]-module. Again, our defini-

tion of e differs from Pham’s cycle, but only by the element (−1)n+1u0 =∏n+1
i=1 (−ui)−1 which is invertible in Z[G].

Pham now shows that the Z[G]-module morphism

Z[G]→ Hn(UC,Z), x 7→ xe
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is surjective and its kernel is the ideal

I = (φi(ui) : i = 1, . . . , n+ 1) ⊂ Z[G].

This identifies the middle homology of UC with the group algebra quotient

R = Z[G]/I.

11.2.3

Definition 11.6. For an abelian group M with a bilinear form Q and an action

of G on M preserving Q, i.e. Q(x, y) = Q(gx, gy) for all x, y ∈ M, g ∈ G,

define the sesquilinear extension

M ×M → Z[G]

x, y 7→ x ∗ y :=
∑
g∈G

Q(x, gy)g ∈ Z[G].

Here, sesquilinearity means that g(x ∗ y) = gx ∗ y = x ∗ g−1y.

Note that Q(x, y) can be recovered from x ∗ y by looking at the constant

coefficient. The sesquilinear extension of the intersection product (·, ·) on

Hn(UC,Z), which is invariant under G, is then characterised in [Pha65] as

follows:

e ∗ e = (−1)n(n+1)/2(1− u0)(1− u1) . . . (1− un+1).

This value determines ∗ completely by sesquilinearity.

11.2.4 Complex conjugation induces an involution τ on the singular (co)ho-

mologies of UC and FC, which anti-commutes with the action of G. One

checks that τ sends e to (u1 . . . un+1)−1e and thus

τ(e) =
(1− u1) . . . (1− un+1)

(1− u−1
1 ) . . . (1− u−1

n+1)
(u1 . . . un+1)−1e = (−1)n+1e.
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11.3 Primitive cohomology of weighted pro-

jective diagonal hypersurfaces

11.3.1 The Gysin sequence in homology of the smooth pair (F,Z) yields an

exact sequence:

0 → Hn+1(FC,Z)→ Hn−1(ZC,Z)→ Hn(UC,Z)

→ Hn(FC,Z)→ Hn−2(ZC,Z)→ 0.

As in [Loo10, §2], one obtains the following short exact sequence

0→ Pn−1(ZC,Z)→ Hn(UC,Z)→ Pn(FC,Z)→ 0,

where the outer terms denote primitive homology, i.e. the kernel of the in-

tersection pairing with a hyperplane class. This realises Pn(FC,Z) as the

maximal non-degenerate quotient of Hn(UC,Z). We write e′ for the image of

e in Pn(FC,Z).

Lemma 11.7. The maximal non-degenerate quotient of R is

R′ := R/(φ0(u0)).

Proof. Since (1 − ui) is invertible in R for i = 1, . . . , n + 1 (cf. the later

Lemma 11.13), we find

AnnR((1− u0)(1− u1)(1− u2) . . . (1− un+1)) = AnnR(1− u0) = φ0(u0).

This shows that the kernel of the intersection product is generated by φ0(u0).

11.3.2 The cap product with the fundamental class [F ] ∈ H2n(FC,Z) gives

a Poincaré duality isomorphism

Hn(FC,Z) ∼= Hn(FC,Z),
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which identifies the intersection product on homology and the cup product

〈·, ·〉 on cohomology. The isomorphism sends a multiple of a hyperplane class

to a multiple of a hyperplane class and thus restricts to an isomorphism

of primitive homology with primitive cohomology. Furthermore, since the

action of G preserves [F ] and τ sends [F ] to (−1)n[F ], this is an isomorphism

of Z[G]-modules which (anti-)commutes with τ .

11.3.3 Finally, to take the Tate twist by Z(n′) into account, note that there

is an isomorphism

Hn(FC,Z) → H

x 7→ x(n′) := (2πi)n
′
x

The twisted action τ(n′) of complex conjugation on H is thus given by the

product of τ and complex conjugation acting on the coefficients C:

τ(n′)(e′(n′)) = τ((2πi)n
′
)τ(e′) = (−1)n

′+n+1+ne′(n′)

= −(−1)n
′
e′(n′).

This is a good point to clarify the relation between three different “complex

conjugations” on Hn(FC,C) as described in [Del79]. The “complex conjuga-

tion” τ (or F∞ in the notation of [Del79, 0.2.5]) is induced by the involution

on the points F (C). The second “complex conjugation” is induced by the ac-

tion of complex conjugation on the coefficients. Each of these actions swaps

the Hodge spaces Hp,q(FC) and Hq,p(FC) (see [Sil89, I.2.4] for the latter) and

their composition is the “complex conjugation” induced by the comparison

isomorphism Hn(FC,C) ∼= Hn
dR(FC) ⊗R C, which hence preserves the Hodge

spaces Hp,q(FC) [Del79, Proposition 1.4, Corollaire 1.6].

11.3.4 The above discussion shows:

Proposition 11.8. There is an isomorphism of Z[G]-modules

P ∼= R′ = Z[G]/ (φi(ui) : i = 0, . . . , n+ 1)
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which sends e′(n′) to 1. Under this isomorphism,

τ(n′)(g) = −(−1)n
′
g−1

for all g ∈ G.

The sesquilinear extension ∗ of the cup product is induced by

e′(n′) ∗ e′(n′) = (−1)n(n+1)/2(1− u0)(1− u1) . . . (1− un+1).

11.4 Structure as a Z[G]-module

The presence of the Z[G]-module structure on P is a crucial tool to relate

the singular, Hodge and `-adic cohomologies of F to each other. We thus

have to understand it first.

11.4.1 Let E = Q(ε), the d-th cyclotomic field. We write

Ĝ = Hom(G,C×) =

{
a ∈ (q1Z/d× · · · × qn+1Z/d) : d0 |

n+1∑
i=1

ai

}

for the group of complex characters on G. In the symmetric notation,

Ĝ ∼=

{
a ∈ (q0Z/d× · · · × qn+1Z/d) :

n+1∑
i=0

ai = 0 ∈ Z/d

}
.

A tuple (a1, . . . , an+1) ∈ q1Z/d× · · · × qn+1Z/d corresponds to the character

χ(ul11 . . . u
ln+1

n+1 ) = εa1l1+···+an+1ln+1 .

Attached to χ is an element

αχ = αa1(u1) . . . αan+1(un+1) ∈ E[G]
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where

αi(u) =
1

d

d−1∑
j=0

ε−ijuj.

The family (αχ)χ∈Ĝ is an orthogonal basis of idempotent eigenvectors: it

satisfies αχαρ = δχ,ρ where δ is the Kronecker delta. One easily checks that

gαχ = χ(g)αχ for all g ∈ G,χ ∈ Ĝ.

The classical representation theory of finite groups now gives that after ex-

tending the base to E, the Z[G]-module Z[G] decomposes into a sum of

1-dimensional eigenspaces Vχ = 〈αχ〉:

E[G] =
⊕
χ∈Ĝ

Vχ.

By Proposition 11.8, P ⊗ E is the quotient of E[G] by the ideal

I ′ = (φi(ui) : i = 0, . . . , n+ 1).

We find that

φi(ui)E[G] =
⊕
χ∈Si

Vχ

for i = 0, . . . , n + 1, where Si is the set of all characters χ ∈ Ĝ restricting

trivially to the factor µdi . Thus

P ⊗ E =
⊕
χ∈S

Vχ

where S = Ĝ \
⋃n+1
i=0 Si. In other words S comprises the characters cor-

responding to (a0, . . . , an+1) ∈ {1, . . . , d − 1}n+2 such that qi | ai for all

i = 0, . . . , n+ 1 and d |
∑n+1

i=0 ai.

11.4.2 The following lemma shows that our idempotent basis is orthogonal

with respect to the cup product.

Lemma 11.9. Set Ξ = Re (the real part) for even n and Ξ = Im (the
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imaginary part) for odd n. For all χ, ρ ∈ S,

〈αρ, αχ〉 = (−1)n(n+1)/2

n+1∏
i=0

qi
2

dn+1
Ξ((1− εa1) . . . (1− εan+1))δρ−1,χ

where χ corresponds to (a1, . . . , an+1).

Proof. Using the bilinearity of the cup product, we find that

〈αρ, αχ〉 = 〈1, αρ−1αχ〉.

From the idempotency property, it follows that 〈αρ, αχ〉 = 0 if χ 6= ρ−1. If

χ = ρ−1, then

〈αχ−1 , αχ〉 = 〈1, α2
χ〉 = 〈1, αχ〉

is the coefficient of 1 in the expression

(−1)n(n+1)/2αχ−1(1− u0) . . . (1− un+1) ∈ E[G],

which evaluates to

n+1∏
i=0

qi
(−1)n(n+1)/2

dn+1

(
n+1∏
i=1

(1− εai) + (−1)n
n+1∏
i=1

(1− εai)

)
.

11.5 Hodge structure

11.5.1 Due to our chosen twist, P carries with it a pure Hodge structure of

weight 0 for even n, respectively weight 1 for odd n. It is preserved by the

action of G. For a character χ given by (a1, . . . , an+1), define

q(χ) = b
∑n+1

i=1 ai
d

c − n′ =
∑n+1

i=0 ai
d

− 1− n′
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In [Gri69], Griffiths describes the Hodge structure of a smooth projective hy-

persurface (see also [Voi03, Theorem 6.10]). This is generalised by Dolgachev

in [Dol82, §4.2] to the weighted projective case.

Theorem 11.10. Let q ∈ Z. The graded piece of the Hodge filtration

F (n mod 2)−qP/F (n mod 2)−q−1P

has a basis given by the differential forms

ResF ResP

(
n+1∏
i=0

xaii

)
dx0 ∧ · · · ∧ dxn+1

(xd00 + · · ·+ x
dn+1

n+1 )q+1

where (a0, . . . , an+1) runs over all tuples in {1, . . . , d − 1} such that qi | ai
and q + 1 + n′ = 1

d

∑n+1
i=0 ai.

Proposition 11.11. The Hodge summand P p,q is the direct sum of Vχ such

that q(χ) = q.

Proof. From Theorem 11.10, we deduce that G acts on P p,q via those χ ∈ S
with q(χ) = q.

The Hodge structure on P can also be recovered from the one on Pn((Fd)C,Z)

via the quotient map πq but then the determination of the Hodge structure

of Fd would use the classical Griffiths theorem.

11.5.2 Let us briefly assume that n = 2. The transcendental lattice T (FC)

is the smallest saturated sublattice of P such that P−1,1 ⊂ T (FC) ⊗ E. In

particular Vχ ⊂ T (FC)⊗ E for all χ with q(χ) = 1. The group Gal(E/Q) =

(Z/dZ)× acts on P ⊗E via the second factor so that an element t ∈ (Z/dZ)×

sends αχ to αχt . Hence Vχ ⊂ T (FC)⊗E for all χ ∈ S whose Gal(E/Q)-orbit

contains χ′ with q(χ′) = 1. Denote this subset of S by ST .

It follows that:

Lemma 11.12.

T (FC) = P ∩
⊕
χ∈ST

Vχ.

99



11.5.3 We conjecture that ∆, the discriminant of the transcendental or al-

gebraic cycles on F , always divides a power of d. In particular, this would

imply that

Br(F )[`∞]→ Br(F )[`∞]Gal(K/K)

is always surjective for ` - d by Section 10.2.7.

The conjecture is known for the Fermat surface F(d,d,d,d) where d ≤ 4 or

gcd(d, 6) = 1 because in this case, lines generate Pic(FC) [Deg15] and the

discriminant of the lattice they span is known to divide d9(d−1)(d−2)+4−3(d mod 2)

[SSvL10, Corollary 3.2].

11.6 Recovering full cohomology

11.6.1 When n is even, the task remains to recover the full cohomology

lattice. We have shown in Lemma 11.3 that the saturation L of the (n/2)-

fold power of any hyperplane section class has self-intersection dq. Since H

is unimodular and ZL and P are orthogonal, saturated sublattices of H, we

get

P ∗/P ∼= H/(P ⊕ ZL) ∼= (ZL)∗/ZL ∼= Z/dq.

The group (ZL)∗/ZL is generated by the class of the linear map 〈 1
dq
L, ·〉. We

deduce that H/(P ⊕ ZL) is generated by 1
dq

(L + ξ) for some ξ ∈ P . The

integrality of the cup product requires that 〈ξ, P 〉 ⊂ dqZ. Note that ξ is only

uniquely determined in P/dqP . Our aim is to determine one of the many

possible lifts to P .

11.6.2 We need the following easy identities involving the polynomial func-

tions

φ(x) =
d−1∑
i=0

xi, ρ(x, y) =
∑

0≤l≤m≤d−2

ylxm.

Lemma 11.13. (i) (1 − y)φ(xy) = (1 − x)(1 − y)ρ(x, y) inside the ring

Z[x, y]/(xd − 1, yd − 1).
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(ii) (1 − x)ρ(1, x) = d inside the ring Z[x]/(φ(x)), in particular (1 − x) is

invertible in Q[x]/(φ(x)).

(iii) φ(xy) = (1− x)ρ(x, y) inside the ring Z[x, y]/(φ(x), φ(y)).

11.6.3 Recall that there is a quotient map

πq : Fd → F(d0,...,dn+1).

Let Λ ∈ Hn((Fd)C,Z) be the homology class of the linear subspace given by

x0 = ζ2dx1, x2 = ζ2dx3, . . . , xn = ζ2dxn+1.

Because the intersection number of Λ with a hyperplane section Ld of Fd is

1, it follows that Λ generates Hn((Fd)C,Z) modulo primitive homology.

Proposition 11.14. Let

c = (1− u0)−1φ(u0u1)(1− u2)−1φ(u2u3) . . . (1− un)−1φ(unun+1)

= ρ(u0, u1)ρ(u2, u3) . . . ρ(un, un+1) ∈ Pn((Fd)C,Z).

Then 1
d
(Ld + (−1)n(n+1)/2c) = Λ.

Proof. The intersection product (·, ·) on Hn((Fd)C,Z) is non-degenerate, hence

we only need to show that the images of 1
d
(Ld + (−1)n(n+1)/2c) and Λ in

Hn((Fd)C,Z)∗ are equal. It is clear that

(Λ, Ld) = 1 =
1

d
(Ld, Ld) = (

1

d
(Ld + (−1)n(n+1)/2c), Ld)

and (1
d
(Ld + (−1)n(n+1)/2c), x) = 1

d
((−1)n(n+1)/2c, x) for all x ∈ Pn((Fd)C,Z).

Degtyarev and Shimada have computed in [DS16, p. 12, Proof of Part

(a) of Theorem 1.1] that the image of Λ under the map

ev : Hn((Fd)C,Z)→ Z[(µd)
n+1], x→

∑
g∈(µd)n+1

(x, g)g
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is given by ψ := (1 − u1)(1 − u3) . . . (1 − un+1)φ(u2u3) . . . φ(unun+1). So it

remains to show that ev(c) = (−1)n(n+1)/2dψ.

Using the (µd)
n+1-invariance of the intersection product on Fd, we get

ev(h) =
∑

g∈(µd)n+1

(h, g)g =
∑

g∈(µd)n+1

(1, gh−1)g =
∑

g∈(µd)n+1

(1, g)gh = ev(1)h

for all h ∈ (µd)
n+1 and by bilinearity of the intersection product, the same

equation holds for h ∈ Pn((Fd)C,Z).

Recall that by Proposition 11.8 ev(1) = (−1)n(n+1)/2(1 − u0) . . . (1 − un+1).

Thus (−1)n(n+1)/2ev(c) equals

(1− u0)(1− u1) . . . (1− un+1)ρ(u0, u1)ρ(u2, u3) . . . ρ(un, un+1)

= (1− u1)(1− u3) . . . (1− un+1)φ(u0u1)φ(u2u3) . . . φ(unun+1)

= (1− u1)(1− u3) . . . (1− un+1)φ(u2 . . . un+1)φ(u2u3) . . . φ(unun+1)

= (1− u1)(1− u3) . . . (1− un+1)dφ(u2u3) . . . φ(unun+1) = dψ.

11.6.4 The image of 1
d
(Ld + (−1)n(n+1)/2c) under the pushforward map

(πq)∗ : Hn((Fd)C,Z)→ Hn(FC,Z)

is
1

dq
L+

1

d
(−1)n(n+1)/2c.

Here we use that (πq)∗(πq)∗ equals deg πq =
∏n+1

j=0 qj. As a consequence,

we infer that ξ = 1∏n+1
i=0 qi

(−1)n(n+1)/2c ∈ P is a possible choice such that

H/(P ⊕ ZL) is generated by 1
dq

(L+ ξ).
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11.7 Twisting and Galois representation

11.7.1 Let k be a number field containing E with integer ring Ok and let

` be a prime number. We write k for an algebraic closure of k, and for a

variety X over k, we write X = X ×k k. We fix an embedding k ⊂ C.

For an (n+ 1)-tuple (c0, . . . , cn+1) with values in k×, we consider the hyper-

surface in Pk given by

c0x
d0
0 + · · ·+ cn+1x

dn+1

n+1 = 0.

Without loss of generality we assume that c0 = 1 and denote this hypersurface

by Xc where c = (c1, . . . , cn+1). The “untwisted” hypersurface F is given as

X(1,...,1) and Xc is obtained from F by twisting with the 1-cocycle which is

the image of c under the composition of natural maps

(k×)n+1 →
n+1∏
j=1

(k×/k×
dj) = H1(Γk, G)→ H1(Γk,Autk(F )).

In particular, FC ∼= (Xc)C and the previous discussion of the Betti and de

Rham cohomologies also applies to XcC, except that the action of τ has to

be twisted by the above 1-cocycle.

11.7.2 The absolute Galois group Γk = Gal(k/k) acts on Hn
ét(Xc,Z`(n′)).

The comparison isomorphism between `-adic and singular cohomology iden-

tifies Hn
ét(Xc,Z`(n′)) and Hn((Xc)C,Z(n′)) ⊗ Z`. Because the action of Γk

preserves hyperplane classes, Γk also acts on the primitive `-adic cohomology

P` = P ⊗ Z` ∼= Pn
ét(Xc,Z`(n′)).

We write P`,F in the case Xc = F . Furthermore, if Q(c) ⊂ R, Xc can

be naturally defined over R and the comparison isomorphism identifies the

induced action of complex conjugation on Xc with the action of τ(n′) [Del79,

0.2.5].
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Let O be the ring of integers of E. Let λ be a prime of O lying above `. We

have that

P` ⊗Z` Eλ =
⊕
χ∈S

Vχ ⊗E Eλ

and because the action of G commutes with the action of Γk, this decompo-

sition is preserved by Γk. By the Chebotarev density theorem, to determine

the action of Γk on P , it suffices to determine the action of Frobp ∈ Γk for

all prime ideals p ⊂ Ok such that p - d`.

If p is such a prime, we let Fp be the residue field, of characteristic p with

N(p) elements. We define the multiplicative character ψ : F×p → µd by the

condition that

ψ(x) mod p = x(N(p)−1)/d.

From this discussion, the relation between the Galois representations on the

`-adic cohomologies of F and Xc is as follows.

Lemma 11.15. Let χ = (a1, . . . , an+1) ∈ S. Let h(χ) be the eigenvalue by

which Frobp acts on

Vχ ⊗E Eλ ⊂ P`,F .

Then the eigenvalue of Frobp on

Vχ ⊗E Eλ ⊂ P`

is given by
h(χ)∏n+1

j=1 ψ(cj)aj
.

11.7.3 Fix a p-th root of unity ζ.

Definition 11.16. Let r ∈ Z/d. The Gauss sum g(r) ∈ Q(ε, ζ) is the element

g(r) =
∑
x∈F×p

ψ(x)rζTrFp/Fp (x).

Let χ ∈ Ĝ correspond to (a0, . . . , an+1). Define the Jacobi sum Jp(χ) ∈ OE
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by

Jp(χ) =
∑

x1+···+xn+1=1

ψ(x1)a1 . . . ψ(xn+1)an+1

=
g(a1) . . . g(an+1)

g(a1 + · · ·+ an+1)
= N(p)−1ψ(−1)g(a0) . . . g(an).

The equalities in the above definition of Jp(χ) follow from [IR82, Chapter 8,

Theorem 3 and Corollary 1].

11.7.4 In [Wei49], A. Weil has shown that the eigenvalues of Frobp acting

on P`,F are exactly (ψ(−1) N(p)−n
′
Jp(χ))χ∈S. It remains to match these to

the known eigenspace decomposition under the action of G. In the classical

projective Fermat case, this was done by D. Ulmer [Ulm02, 7.6] but the

statement goes back to Shioda.

It is however possible to give a short and simple proof using the Fourier

transform on G. The inspiration comes from the equivariant Lefschetz trace

formula by Deligne and Lusztig [DL76, p. 119].

Proposition 11.17. Let λ be a prime of E = Q(µd) above `. Let p be a prime

not dividing d`. Then for all χ ∈ S, the action of Frobp on Vχ ⊗ Eλ ⊂ P`,F

is multiplication by

ψ(−1) N(p)−n
′
Jp(χ).

Proof. We define two functions h1, h2 : Ĝ→ Eλ and show that their Fourier

transform agrees.

Let h1(χ) = ψ(−1) N(p)−n
′
Jp(χ).

Let h2(χ) be the eigenvalue by which Frobp acts on Vχ⊗Eλ for χ = (a1, . . . , an+1) ∈
S and let h2(χ) = 0 for χ ∈ Ĝ\S. For arbitrary (c1, . . . , cn+1) ∈ G, we choose

preimages c̃i ∈ Fp under the multiplicative character ψ.

By Lemma 11.15, the hypersurfaceXc̃ has eigenvalues h2(χ)/(ψ(c̃1)a1 . . . ψ(c̃n+1)an+1).

The Lefschetz trace formula thus gives

#Xc̃(Fp) = #P(Fp) + (−1)nf(c) N(p)n
′
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where

f(c) =
∑
χ∈Ĝ

h2(χ)/(ψ(c̃1)a1 . . . ψ(c̃n+1)an+1) =
∑
χ∈Ĝ

χ(−c)h2(χ).

According to [Wei49], the same holds true with h2 replaced by h1 in the

formula for f . Hence, the inverse Fourier transform gives

h1(χ) =
1

#G

∑
c∈G

χ(c)f(c) = h2(χ)

11.7.5 Up to a unit, Jacobi sums can be computed using Stickelberger ele-

ments.

Definition 11.18. Let σt be the image of t ∈ (Z/dZ)× under the isomorphism

(Z/dZ)×
'−→ Gal(E/Q). For x ∈ Q, let 〈x〉 = x − bxc be the fractional part

of x.

For an integer a, define the Stickelberger element

θ(a) =
∑

t∈(Z/dZ)×

〈
ta

d

〉
σ−1
−t ∈ Q[Gal(E/Q)],

where t is a lift of t to Z.

For a character χ = (a0, . . . , an+1) ∈ S, define

ω(χ) =
n+1∑
i=0

θ(a)−
∑

t∈(Z/dZ)×

σt =
∑

t∈(Z/dZ)×

⌊
n+1∑
i=1

〈tai
d
〉

⌋
σ−1
−t ∈ Z[Gal(E/Q)].

Weil shows in [Wei52]:

Proposition 11.19. Let χ ∈ S. Then the following equality of ideals holds:

(Jp(χ)) = ω(χ)(p).
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11.7.6 The explicit determination of Gauss and Jacobi sums including their

sign is in general a difficult subject. The case d = 4 was treated by Swinnerton-

Dyer in [PSD91] and Chapter 12 will treat the case d = 6. The following

property of Gauss sums will be helpful.

Lemma 11.20. We have g(r)g(−r) = ψ(−1)r N(p).

Proof. See for example [IR82, Exercise 10.22(d)].

In the case of regular primes p however, we can say more. First, we define a

notion of primary elements in cyclotomic rings as found in the statement of

Eisenstein reciprocity.

Definition 11.21. We call x ∈ O primary, if it is congruent to a rational

integer (i.e. an element in Z) modulo (1− ε)2.

For every element x ∈ O, there exists a unit u ∈ O× such that ux is primary.

Proposition 11.22. Assume that d is prime and does not divide the class

number h = h(Q(ε)). Let p be a prime not dividing d`. Let x be a primary

generator of the principal ideal ph. Then Jp(χ) equals up to sign an h-th root

of ±ω(χ)(x). If n is even and h is odd, the sign is positive.

Proof. From Proposition 11.19, we infer that (Jp(χ))h = ε(p)(ω(χ)(x)) for

some unit ε(p) ∈ E×. However, the usual argument gives |Jp(χ)h|2 =

N(p)nh = N(ω(χ)(x)). This is true for all Galois conjugates of p and so

by a theorem of Kronecker ε(p) = Jp(χ)h/ω(χ)(x) is a root of unity εi for

some 0 ≤ i ≤ d− 1. We want to show that ε(p) = ±1.

To do so, notice that Jp(χ)h ≡ 1 mod (1−ε)2 [Lem00, Lemma 11.6]. Further-

more, ω(χ)(x) is primary since Galois conjugates and products of primary

elements are primary. Therefore, ε(p) is a primary root of unity but the only

primary roots of unity are ±1.

More precisely, if x ≡ z mod (1− ε)2 for some z ∈ Z, then

ω(χ)(x) ≡ ω(χ)(z) ≡ zn(d−1)/2 mod (1− ε)2.

If n is even, it follows that ω(χ)(x) ≡ 1 mod (1− ε)2 and so ε(p) = 1.
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11.7.7 Unfortunately, we are not able to descend the Galois action to K = Q
unless E is a quadratic number field. To do so would require determining

the Galois action of lifts of automorphisms σ ∈ Gal(E/Q) to ΓQ. One can

formally imitate our approach to the action of complex conjugation by sub-

stituting ζ2di with σ(ζ2di) in the definition of e. This yields a potential

candidate for the missing action.
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12
Diagonal surfaces of degree

(2, 6, 6, 6)

In the notation of Chapter 11 we now restrict to n = 2, d = 6 and q =

(3, 1, 1, 1). We work over the Eisenstein numbers

k = E = Q(ζ6) = Q(ζ3) = Q(
√
−3)

and write O = OE for their ring of integers. Note that O is a principal ideal

domain. Explicitly, we consider the surface

F : x2
0 + x6

1 + x6
2 + x6

3 = 0

in Pn+1
Q (3, 1, 1, 1).
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The set S then equals the 21-element set

{(1, 1, 1), (5, 5, 5),

(1, 3, 5), (1, 5, 3), (3, 1, 5), (3, 5, 1), (5, 1, 3), (5, 3, 1),

(2, 2, 5), (2, 5, 2), (5, 2, 2),

(4, 4, 1), (4, 1, 4), (1, 4, 4),

(2, 3, 4), (2, 4, 3), (3, 2, 4), (3, 4, 2), (4, 2, 3), (4, 3, 2),

(3, 3, 3)}.

12.1 Explicit transcendental lattice

12.1.1 By Lemma 11.12, we have that

T (FC) = P ∩ (V(1,1,1) ⊕ V(5,5,5))

Lemma 12.1. We have T (FC) = Zw1 ⊕ Zw2, where

w1 = 24
√
−3(εα(1,1,1) + ε2α(5,5,5))

w2 = 24
√
−3(ε2α(1,1,1) + εα(5,5,5))

Furthermore,

〈w1, w1〉 = 〈w2, w2〉 = 24

and

〈w1, w2〉 = 〈w2, w1〉 = 12.

Proof. Clearly, T (FC)⊗Q = Qw1 ⊕Qw2.

We calculate from Lemma 11.9

〈α(1,1,1), u
α
1u

β
2u

γ
3〉 = 〈u−α1 u−β2 u−γ3 α(1,1,1), 1〉

= 〈ε−(α+β+γ)α(1,1,1), 1〉 =
1

36
ε−(α+β+γ)
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and similarly

〈α(5,5,5), u
α
1u

β
2u

γ
3〉 =

1

36
εα+β+γ.

Thus,

〈w1, u
α
1u

β
2u

γ
3〉 =

24
√
−3

36
(ε−(α+β+γ−1) + εα+β+γ+2)

=
2√
3

Im(ε−(α+β+γ−1))

and similarly

〈w1, u
α
1u

β
2u

γ
3〉 =

2√
3

Im(ε−(α+β+γ−2)).

Therefore, if sw1 + tw2 ∈ H for some s, t ∈ Q, then s, t ∈ Z. However, H

was the direct sum of P and an algebraic class πq∗Λ. Because 〈wi, P 〉 = Z
and 〈wi, πq∗Λ〉 = 0 for i = 1, 2, we get that 〈wi, ·〉 ∈ H∗. By unimodularity

of H, this means wi ∈ H, hence

Zw1 ⊕ Zw2 = H ∩ (T (XC)⊗Q) = T (XC).

The formula for the cup product follows directly from Lemma 11.9.

12.1.2 The group µ6 acts on T (FC) and T (FC) ⊗ E via u1, u2, or u3 and

the preceding proposition shows that it does not matter which of the three

variables we pick. Denote the action of x ∈ µ6 by [x]. We have that

[x]α(1,1,1) = xα(1,1,1) and [x]α(5,5,5) = x−1α(5,5,5), hence

[ε]w1 = w2, [ε]w2 = w2 − w1.

The free O-module T (FC) is thus (non-uniquely) isomorphic to O itself send-

ing w1 to 1 and w2 to ε. The intersection product under this identification

is given by 〈x, y〉 = 12 TrE/Q(xy). Because 12 TrE/Q(1/(12
√
−3)) = 0 and

12 TrE/Q(ε/(12
√
−3)) = −1, it follows that the dual lattice of O is 1

12
√
−3
O.
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The exact sequence

0→ T (FC)→ T (FC)∗ → ∆→ 0

then becomes

0→ O 12
√
−3−−−−→ O → O/12

√
−3→ 0

12.1.3 We recover the fact that ∆ = O/12
√
−3 = Z/12Z×Z/36Z, as shown

in [CN18, 3.1] with explicit divisors.

12.2 Explicit Galois representation in the

untwisted case

12.2.1 Let ` be a prime number and let λ be a prime in k above `. Let π ∈ O
be a prime element not dividing d`. The multiplicative character ψ becomes

the sextic residue character (·/π)6.

12.2.2 We will require a very particular notion of primary generators of prime

ideals due to Eisenstein [Lem00, 7.3]. This notion is a strengthening of the

cubic notion of primary primes so that we can apply sextic reciprocity.

Definition 12.2. We call x = a+ bε ∈ O primary, if 3|b and
a+ b ≡ 1 mod 4, if 2|b

b ≡ 1 mod 4, if 2|a

a ≡ 3 mod 4, if 2 - ab.

Every prime ideal in O has a primary generator.

Theorem 12.3. Let x, y ∈ O be primary and relatively prime. Then(
x

y

)
6

= (−1)
N(x)−1

2
N(y)−1

2

(y
x

)
6
.

112



Proof. This is a combination of cubic reciprocity and a quadratic reciprocity

law for O, see [Lem00, Theorem 7.10].

12.2.3

Proposition 12.4. Let p ⊂ O be a prime ideal generated by a primary

element π. Let λ ⊂ O be a prime ideal over the rational prime `. Assume p

does not divide d`.

Set ζπ = (−4/π)6. Then for χ ∈ S, the eigenvalue µ of Frobp ∈ Γk on

Vχ ⊗k kλ is as follows:

If χ is (3, 3, 3) or a permutation of (1, 3, 5), then µ = 1.

If χ is a permutation of (2, 3, 4), then µ = ζ3
π.

If χ is a permutation of (2, 2, 5), then µ = ζπ.

If χ is a permutation of (4, 4, 1), then µ = ζπ.

If χ = (1, 1, 1), then µ = π/π.

If χ = (5, 5, 5), then µ = π/π.

Proof. We treat each item individually via Proposition 11.17 which states

that µ is given by N(p)−1
(−1
π

)
6
Jp(χ).

If χ is (3, 3, 3) or a permutation of (1, 3, 5), we find by Lemma 11.20 that

g(3)2 =

(
−1

π

)3

6

N(p) =

(
−1

π

)
6

N(p) = g(1)g(5)

from which it follows that g(3)4 = g(3)2g(1)g(5) = N(p)2.

If χ is a permutation of (2, 3, 4), we find by Lemma 11.20 that

g(2)g(4) = (−1/π)2
6 N(p) = N(p)

from which it follows that

N(p)−2g(3)2g(2)g(4) =

(
−1

π

)3

6

=

(
(−4)3

π

)
6

=

(
−4

π

)3

6

.
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If χ is a permutation of (2, 2, 5), we find by [BEW98, Theorem 3.1.1] that

g(1)g(2)

g(3)
=

(
42

π

)
6

g(2)2

g(4)
.

Now N(p)2
(−1
π

)
6

(g(4)g(5))−1 = g(1)g(2), hence

N(p)2

(
−4

π

)
6

= g(3)g(4)g(5)
g(2)2

g(4)
= g(2)2g(5)g(3).

If χ is a permutation of (4, 4, 1), this is the conjugate case to (2, 2, 5).

If χ = (1, 1, 1), we find by [BEW98, Theorem 3.1.1] that

g(1)g(2)

g(3)
=

(
−4

π

)
6

g(1)2

g(2)
.

Hence

J(χ) =

(
−4

π

)−1

6

(
g(1)g(2)

g(3)

)2

.

But now applying [BEW98, Theorem 3.1.1] in combination with [BEW98,

(3.1.6)], yields

g(1)g(2)

g(3)
= ±

(
4

π

)−1

6

π.

The result follows as (4/π)3
6 = 1.

If χ = (5, 5, 5), this is the conjugate case to (1, 1, 1).

12.2.4

Corollary 12.5. The element Frobp ∈ Γk acts on T (FC) ⊗ Z` as multi-

plication by π/π. Complex conjugation (the generator of Gal(Q/Q ∩ R))

acts on T (FC)⊗Z` as the usual complex conjugation under the identification

T (FC) ∼= O.

Proof. In Lemma 12.1, T (FC) = Zw1 ⊕ Zw2 was identified with O as an

O-module such that [ε]w1 = w2. By Proposition 12.4, Frobπ acts with eigen-

value π/π on α(1,1,1)Oλ and with eigenvalue π/π on α(5,5,5)Oλ. Therefore,
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the matrix representing the action of Frobπ in the basis (w1, w2) is given by

multiplication with π/π.

12.3 Galois invariant part of the Brauer

group

12.3.1 We work over the ground field K = k = Q(ζ6) or K = Q and write

Γ = ΓK . Let XA,B,C be the Galois twist of F given in P3
K(3, 1, 1, 1) by

w2 = Ax6 +By6 + Cz6

where A,B,C ∈ K×. Note that this differs from the convention used in

Chapter 11 by multiplying A, B and C with −1.

12.3.2 Using Corollary 12.5, we can bound and compute the Galois invariant

part of the geometric Brauer group of XA,B,C .

Proposition 12.6. The exponent of Br(XA,B,C)[`∞]Γ is at most 4 if ` = 2,

at most ` if ` ∈ {3, 5, 7}, and 1 if ` ≥ 11.

Proof. Since Frobπ acts as multiplication by xπ/π where x ∈ µ6, for the

group Br(XA,B,C)[`m] with π - ` to be Γk-invariant, we require that

xπ ≡ π mod `m

or equivalently `m|(xπ − π). Set π = 3ε − 1 so that N(π) = 7. Then a

calculation shows that the set of maximal rational prime powers that divide

(xπ − π) is {4, 3, 5}. Doing the same for π = 3ε − 4, so that N(π) = 13,

yields {4, 3, 5, 7}.

One may compare Proposition 12.6 with the bounds obtained in [Val18,

Example 11.2].
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12.3.3

Proposition 12.7. Let k = Q(ζ6). The group Br(XA,B,C)[`∞]Γk equals

• ` = 2 :


O/4, if ABC/16 ∈ k×6

,

O/2, if ABC/16 ∈ k×3 \ k×6
,

0, otherwise.

• ` = 3 :


O/3, if − ABC ∈ k×6

,

(1 + ε)Z/3Z, if − ABC ∈ k×2 \ k×6
,

0, otherwise.

• ` = 5 :

O/5, if − 5ABC ∈ k×6
,

0, otherwise.

• ` = 7 :

O/7, if ABC/7 ∈ k×6
,

0, otherwise.

• ` > 7 : 0.

Proof. We use the Sextic Reciprocity Theorem 12.3 throughout in order to

express π/π as Dirichlet characters with respect to the chosen modulus.

• ` = 2: We have(
−16

π

)
6

=

(
−1

π

)
2

(
16

π

)
2

(
16

π

)−1

3

= (−1)(N(π)−1)/2

(
2

π

)2

3

≡ (−1)(N(π)−1)/2π2 ≡ N(π)−1π2 ≡ π/π mod 4.

So for primary π, Frobπ acts via
(

16/ABC
π

)
6
. Thus if ABC/16 is a

sixth power, then
(

16/ABC
π

)
6
≡ 1 mod 4, so all of O/4 is invariant. If

ABC/16 is a third but not a sixth power, then the sextic residue symbol

assumes the value the −1 for some π by Chebotarev density, so the

invariants areO/2. In all other cases, the sextic residue symbol assumes
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the value ζ3 for some π. The invariants of O/4 under multiplication by

ζ3 are trivial.

• ` = 3: We have

π/π ≡ 1 mod 3.

So for primary π, Frobπ acts via
(
−1/ABC

π

)
6
. Thus if −ABC is a

sixth power, then
(
−1/ABC

π

)
6
≡ 1 mod 3, so all of O/3 is invariant.

If −ABC is a square but not a sixth power, then the sextic residue

symbol assumes all values in µ3 infinitely often by Chebotarev density,

so the invariants are Z/3(1 + ε). In all other cases, the sextic residue

symbol assumes the value −1 for some π. The invariants of O/3 under

multiplication by −1 are trivial.

• ` = 5: We have(
5

π

)−1

6

=
(π

5

)−1

6
≡ π−4 ≡ π/π mod 5.

So for primary π, Frobπ acts via
(
−1/(5ABC)

π

)
6
. Thus if −5ABC is a

sixth power, then
(−5ABC

π

)
6
≡ 1 mod 5, so all of O/5 is invariant. In all

other cases, the sextic residue symbol assumes a nontrivial value in µ6

for some π. The invariants of O/5 under multiplication by nontrivial

x ∈ µ6 are trivial.

• ` = 7: We have 7 = θθ where θ = −1 + 2ε. Furthermore −7 is primary

and N(−7)− 1 = 48, hence(
−7

π

)
6

=

(
π

−7

)
6

=
(π

7

)
6

=
(π
θ

)
6

(
π

θ

)
6

=
(π
θ

)
6

(
π

θ

)−1

6

≡ π/π mod 7.

So for primary π, Frobπ acts via
(

7/ABC
π

)
6
. Thus if ABC/7 is a sixth

power, then
(
ABC/7

π

)
6
≡ 1 mod 7, so all of O/7 is invariant. In all

other cases, the sextic residue symbol assumes a nontrivial value in µ6
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for some π. The invariants of O/7 under multiplication by nontrivial

x ∈ µ6 are trivial.

We can express the conditions of Proposition 12.7 in terms of Q by the

following easy lemma.

Lemma 12.8. Let k = Q(ζ6) and x ∈ Q. Then x ∈ k×6
if and only if either

x ∈ Q×6
or x ∈ (−27)Q×6

; x ∈ (k×)3 if and only if x ∈ Q×3
; x ∈ k×2

if and

only if either x ∈ Q×2
or x ∈ (−3)Q×2

.

Proof. One direction is clear, since −3 is a square in k. For m ∈ {2, 3, 6},
the inflation-restriction sequence yields

H1(Z/2, µm) ∼= ker(Q×/Q×m → k×/k×
m

).

Since the Herbrand quotient of finite coefficient modules is 1, we deduce that

#H1(Z/2, µm) = #H0(Z/2, µm) equals #µ2 = 2 if m = 2, 6 and #µ1 = 1 if

m = 3.

12.3.4 Incorporating the action of complex conjugation into the picture, we

get the following.

Proposition 12.9. The group Br(XA,B,C)[`∞]ΓQ equals

• ` = 2 :



1
4
Z/O, if ABC/16 ∈ (−27)Q×6

,

(1 + ε)Z/4Z, if ABC/16 ∈ Q×6
,

Z/2, if ABC/16 ∈ Q×3 \Q×6
,

0, otherwise.

• ` = 3 :


1
3
Z/O, if − ABC ∈ Q×6

,

(1 + ε)Z/3Z, if − ABC ∈ (−3)Q×2
,

0, otherwise.
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• ` = 5 :


1
5
Z/O, if − 5ABC ∈ Q×6

,

(1 + ε)Z/5Z, if − 5ABC ∈ (−27)Q×6
,

0, otherwise.

• ` = 7 :


(1 + ε)Z/7Z, if ABC/7 ∈ Q×6

,

1
7
Z/O, if ABC/7 ∈ (−27)Q×6

,

0, otherwise.

• ` > 7 : 0.

Proof. Complex conjugation acts as the usual complex conjugation on O
followed by multiplication with the sextic character 6

√
−ABC/τ( 6

√
−ABC).

The cases follow from a simple computation of the invariants of

Br(XA,B,C)[`∞]Γk

under this additional automorphism.

This completes step (a) of our framework.

12.3.5 In [CV18], Creutz and Viray ask which Brauer classes can obstruct

the Hasse principle on K3 surfaces. More precisely, they ask whether degrees

capture the Brauer-Manin obstruction in the following sense.

Definition 12.10. Let X be a smooth, projective, geometrically integral va-

riety over a number field. We say that degrees capture the Brauer-Manin

obstruction on X if for every globally generated ample line bundle of degree

δ on X, the following implication holds.

X(A)Br(X) = ∅ =⇒ X(A)Br(X)[δ∞] :=
⋂

β∈Br(X)[δ∞]

X(A){β} = ∅.

Here X(A) are the adelic points of X and X(A)B is the Brauer-Manin set

relative to B for any subset B ⊂ Br(X), i.e. the set of adelic points which

pair trivially with any element of B.
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We can answer their question negatively for K3 surfaces by giving a coun-

terexample.

Corollary 12.11. Degrees do not capture the Brauer-Manin obstruction for

the surface X = X−3,97,97·28·8.

Proof. The surface X is a degree 2 K3 surface. It was shown in [CN18] that

Br1(X) = Z/3 and the generator of this group obstructs the Hasse principle.

Now it follows from Proposition 12.7 that (Br(X)/Br0(X))[2∞] = 0, so the

2-primary Brauer classes cannot obstruct.

12.4 Determining the transcendental Brauer

group

12.4.1 We can now apply Proposition 10.8 in order to compute the transcen-

dental Brauer group of XA,B,C over K = k or K = Q. It suffices to treat the

preimages of Br(X)[`∞] separately for each ` ∈ {2, 3, 5, 7}. By Section 10.2.7,

(Br(X)/Br1(X))[`∞] = Br(X)[`∞]

for ` = 5, 7. Thus, only the cases ` = 2, 3 remain to be treated.

Lemma 12.12. Let L = k( 6
√
A, 6
√
B, 6
√
C).

(i) The action of ΓL on Pic(X) factors through Gal(L(ε,
√
−1, 3
√

2)/L).

(ii) One has S2 = SBr(X)[2] = O/24
√
−3 and the action of ΓL on O/24

√
−3

factors through Gal(L(ε,
√
−1, 6
√

2)/L).

(iii) One has S3 = SBr(X)[3] = O/36
√
−3 and the action of ΓL on O/24

√
−3

factors through Gal(L(ε,
√
−1, 3
√

2, 3
√

3)/L).

(i) This is immediately clear from Proposition 12.4 since −4 is a sixth

power in this finite extension.
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(ii) The first claim is clear. We have that π/π acts trivially on O/24
√
−3

if and only if π ≡ π mod 24
√
−3 if and only if π ∈ Z + 12

√
−3Z.

Thus the Galois group Γk(Z+12
√
−3Z) corresponding to the ring class

field k(Z+ 12
√
−3Z) of the non-maximal order Z+ 12

√
−3Z ⊂ O acts

trivially on O/24
√
−3. It can be checked that

k(
√
−1,

6
√

2) = k(Z + 12
√
−3Z).

(iii) Analogous to the previous case.

Note that (i) recovers the splitting field of Pic(F ) found in [CN18]. Coinci-

dentally, k(
√
−1, 3
√

2) is the ring class field of the order Z + 6
√
−3Z ⊂ O.

Proposition 12.13. Let B2 = Br(XA,B,C)[4] and B3 = Br(XA,B,C)[3]. Then

(Br(XA,B,C)/Br1(XA,B,C))[`∞] is isomorphic to

im[H1(G`,Hom(Pic(XA,B,C)∗,Z))→ H1(G`,∆)]

∩ im[H0(G`, B`)→ H1(G`,∆)].

Proof. Since Br(XA,B,C)[`∞]Γ ⊆ B`, it follows that

Br(XA,B,C)/Br1(XA,B,C)[`∞] = BrB`(XA,B,C)/Br1(XA,B,C).

The right hand side now equals the preimage of

im[H1(G`,Hom(Pic(XA,B,C)∗,Z))→ H1(G`,∆)]

∩ im[H0(G`, B`)→ H1(G`,∆)]

under the connecting map H0(G`, B`)→ H1(G`,∆) induced by

0→ ∆→ S`
·12
√
−3−−−−→ B` → 0.

Since 12
√
−3 annihilates S`, H0(G`, B`)→ H1(G`,∆) is an injection and the

proposition follows.
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12.4.2 We can now complete step (b) using Magma [BCP97]. In order to

list all possible cases how Γ can act on

[Pic(XA,B,C)∗ → SBr(Vs)[`]],

we employ the moduli viewpoint taken in [Bri02, 3.3] for the classification of

the algebraic Brauer groups of diagonal quartic surfaces.

The fine moduli space of diagonal hypersurfaces in P of degree (2, 6, 6, 6) is

isomorphic to the space

M : A3
A,B,C,Q \ {ABC = 0}.

It carries a universal family

V : y2 = Ax6 +By6 + Cz6 ⊂ P×QM.

Let η = SpecQ(A,B,C) be the generic point of M. Define Q(A,B,C)-

algebras

APic = Q[
6
√
A,

6
√
B,

6
√
C, i,
√
−3,

3
√

2],

A2 = Q[
6
√
A,

6
√
B,

6
√
C, i,
√
−3,

6
√

2],

A3 = Q[
6
√
A,

6
√
B,

6
√
C, i, 6

√
−3,

3
√

2]

and consider the schemes

MPic : Spec(APic) \ {ABC = 0},
M2 : Spec(A2) \ {ABC = 0},
M3 : Spec(A3) \ {ABC = 0},

which are finite Galois covers of M. We can pull back the universal family

V along these covers and get families VPic = V ×MMPic, V2 = V ×MM2

and V3 = V ×MM3.

From Lemma 12.12, it is clear that these covers trivialise the Galois action

on the fibres of V in the following sense. Let s ∈ MPic be a point with
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residue field k(s) and let (VPic)s be the fibre of VPic → MPic over s. Then

the Galois group Γk(s) acts trivially on Pic((VPic)s). Furthermore, for ` = 2, 3

and s ∈M`, Γk(s) acts trivially on Pic((V`)s) and SBr((V`)s)[`].

12.4.3 We will now use the Galois theory of schemes as presented in [Gro63,

V.1-2]. The reader may compare this with the theory of decomposition

groups in classical Galois theory over Q.

For • = Pic, 2, 3, we have associated generic Galois groups of the covers

G• = Gal(k(A•)/k(η))

where k(A•) denotes the field of fractions of A•.

These groups are easily described as semidirect products of the abelian sub-

groups

Gab
Pic = Gal(k(

6
√
A,

6
√
B,

6
√
C,
√

3,
3
√

2)/k(A,B,C)) ∼= (Z/6)3 × Z/2× Z/3,

Gab
2 = Gal(k(

6
√
A,

6
√
B,

6
√
C,
√

3,
6
√

2)/k(A,B,C)) ∼= (Z/6)3 × Z/2× Z/6,

Gab
3 = Gal(k(

6
√
A,

6
√
B,

6
√
C,

6
√

3,
3
√

2)/k(A,B,C)) ∼= (Z/6)3 × Z/6× Z/3

with the subgroup Z/2 = 〈τ〉 where the generator τ leaves ( 6
√
A, 6
√
B, 6
√
C)

fixed and acts as complex conjugation otherwise.

12.4.4 The actions of Γk(η) on Pic(Vη), SBr(Vη)[2] and SBr(Vη)[3] factor through

the respective generic Galois groups.

For any other point s ∈ M, the action of Γk(s) on Pic(Vs), SBr(Vs)[2] and

SBr(Vs)[3] will factor through the decomposition group

Hs = Gal(k(s′), k(s)) ⊂ G•

where s′ ∈M• is a point over s and • = Pic, 2, 3 as appropriate.
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We can thus list all possible cases of Galois actions on the complex

[Pic(XA,B,C)∗ → SBr(Vs)[`]]

by iterating over the subgroups of G`. Each action then arises by restriction

of the G`-action to a subgroup. We call two subgroups equivalent if they

coincide up to conjugation and the S3-action permuting A, B and C. It

suffices to list the subgroups up to equivalence. This yields a complete list

of cases for BrBr(X)[`](X).

12.4.5 Concretely, we represent subgroups H ⊆ G` as follows. Define Hab =

H∩Gab
` , the abelian part of H. One can represent Hab by a matrix with each

row a generator of Hab. If H = Hab, we are done. Otherwise, H/Hab = Z/2
and a lift to H of the generator of this quotient will have the form τh for

some h ∈ Gab
` .

12.4.6 The equivalence classes of subgroups induce an “arithmetic stratifi-

cation” on the points of M. We would like to associate conditions on the

coefficients A, B and C to the decomposition groups.

Let s ∈ M be a closed point of M and Hs ⊂ G` its decomposition group.

Then for ` = 2,

k(s) = Q(i,
√
−3,

6
√

2) ∩ k(A2)Hs

while for ` = 3,

k(s) = Q(i, 6
√
−3,

3
√

2) ∩ k(A3)Hs .

Moreover, the following holds.

Lemma 12.14. Let H ⊂ G` be a subgroup and s ∈ M. Then H ⊇ Hs if

and only if the fibre over s of

(Spec(AH` ) \ {ABC = 0}) =M`/H →M`/G` =M

contains a k(s)-point.
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12.4.7 Hence, in order to compute conditions on the coefficients of XA,B,C so

that the corresponding point s ∈ M satisfies H ⊇ Hs for a given subgroup

H ⊆ G`, we need to characterise points

Spec k(s)→ Spec(AH` ).

The invariants AH` can be computed by the following three easy lemmas.

Lemma 12.15. (i) The action of G2 on A2 decomposes into a sum of

G2-modules

A2 =
⊕

Q(ε)
6
√
A
r1 6
√
B
r2 6
√
C
r3√

3
r4 6
√

2
r5

where r1, r2, r3, r5 run from 0 to 5 and r4 runs from 0 to 1.

(ii) The action of G3 on A3 decomposes into a sum of G3-modules

A3 =
⊕

Q(ε)
6
√
A
r1 6
√
B
r2 6
√
C
r3 6
√

3
r4 3
√

2
r5

where r1, r2, r3, r4 run from 0 to 5 and r5 runs from 0 to 2.

Proof. The action of G2 on any element of the form

6
√
A
r1 6
√
B
r2 6
√
C
r3 6
√

3
r4 3
√

2
r5

as above multiplies it with a power of ε. The same works for G3.

Lemma 12.16. Let x be an element of the form

6
√
A
r1 6
√
B
r2 6
√
C
r3√

3
r4 6
√

2
r5

resp.
6
√
A
r1 6
√
B
r2 6
√
C
r3 6
√

3
r4 3
√

2
r5

as in Lemma 12.15. Then (Q(ε)x)H
ab

equals Q(ε)x if Hab fixes x and 0

otherwise.

Proof. The action of Hab commutes with multiplication by ε, so Q(ε)x is a

free Q(ε)-module with a compatible Hab-action. It is fixed under Hab if its

generator is fixed, otherwise (Q(ε)x)H
ab

= 0
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Lemma 12.17. Let x be an element of the form

6
√
A
r1 6
√
B
r2 6
√
C
r3√

3
r4 6
√

2
r5

resp.
6
√
A
r1 6
√
B
r2 6
√
C
r3 6
√

3
r4 3
√

2
r5

as in Lemma 12.15. Assume H/Hab = Z/2 and choose h ∈ Gab
` such that

τh ∈ H \Hab.

If hx = εjx, then (Q(ε)x)τh = Q(1 + ε)−jx.

Proof. We have

τh(1 + ε)−jx = τ(1 + ε)−jεjx = τ(
1 + ε

ε
)−jx = (1 + ε)−jx.

Since τh anti-commutes with ε, the invariant space over Q is one-dimensional.

It is now easy to compute (A2)H , which will be spanned as a Q-algebra by

generators of the form

6
√
A
r1 6
√
B
r2 6
√
C
r3√

3
r4 6
√

2
r5

(1 + ε)r6

where r1, r2, r3, r5, r6 run from 0 to 5 and r4 from 0 to 1, and similarly for

(A3)H . A k(s)-point is given by a morphism

(A2)H → k(s)

which is determined by the images of the generators in k(s). We thus get

conditions of the form

6
√
A
r1 6
√
B
r2 6
√
C
r3√

3
r4 6
√

2
r5

(1 + ε)r6 ∈ k(s)

or

Ar1Br2Cr327r42r5(−27)r6 ∈ k(s)×
6
.

It follows that every case can be realised with rational coefficients, or more

precisely:
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Lemma 12.18. Let ` = 2 or 3 and let l be a number field. Let

XA,B,C : y2 = Ax6 +By6 + Cz6 ⊂ P3
l (3, 1, 1, 1)

with A,B,C ∈ l×. Then one can find A′, B′, C ′ ∈ Q× such that there is an

isomorphism of complexes of Γl-modules

[Pic(XA,B,C)→ SBr(XA,B,C)[`]]
∼= [Pic(XA′,B′,C′)→ SBr(XA′,B′,C′ )[`]

].

12.4.8 We are now ready to complete the classification of the Brauer group

over K = Q and K = Q(ε). The cases ` 6= 2, 3 we have previously completed

in Propositions 12.7 and 12.9 by Section 10.2.7.

A Magma computation shows that there are:

• 7486 equivalence classes of groups Hs ⊂ G2 with k(s) = k. Of these,

60 cases have nontrivial (Br(X)/Br1(X))[2] and they are precisely the

subcases (i.e. subgroups Hs′ ⊂ Hs with k(s′) = k) of 2 exceptional

cases, which we call (I) and (II).

• There are 34966 equivalence classes of groups Hs ⊂ G2 with k(s) = Q.

Of these, 386 have nontrivial (Br(X)/Br1(X))[2] and they are precisely

the subcases (i.e. subgroups Hs′ ⊂ Hs with k(s′) = Q) of 8 exceptional

cases.

There are exactly 4 equivalence classes of groups Hs ⊂ G2 with k(s) =

Q whose abelian part is equivalent to (I) and the same is true for (II).

Taken together, they are precisely the 8 exceptional cases mentioned

in the preceding statement.

• 18448 equivalence classes of groups Hs ⊂ G3 with k(s) = k. Of these,

38 cases have nontrivial (Br(X)/Br1)[3] and they are precisely the sub-

cases of one exceptional case, which we call (III).

• 71264 equivalence classes of groups Hs ⊂ G3 with k(s) = Q. Of these,

196 cases have nontrivial (Br(X)/Br1)[3] and they are precisely the

subcases of 2 exceptional cases. There are exactly 2 equivalence classes
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of groups Hs ⊂ G2 with k(s) = Q whose abelian part is equivalent to

(III) and they are the 2 exceptional cases mentioned in the preceding

statement.

Furthermore, one can see that the 60 cases in the first item all have cohomol-

ogy H1(Γ,Pic(X)∗) of exponent 2. Thus, it follows from Proposition 12.13

that there is no transcendental 4-torsion and

(Br(X)/Br1(X))[2] = (Br(X)/Br1(X))[2∞].

Since Br(X)[3∞]Γ = Br(X)[3], we also have

(Br(X)/Br1(X))[3] = (Br(X)/Br1(X))[3∞].

Taken together, our computations yield Theorems A and B.

12.5 Determining the full Brauer group

In order to complete step (c) for the exceptional cases of Theorems A and B,

we use a partial Cartan-Eilenberg resolution of

[Pic(X)∗
φ−→ SBr(X)[`]]

and compute the first cohomology of the total complex.

More precisely, let Z1(M) denote the space of 1-cocycles for a group module

M . Then we construct the complex

0

Z1(Pic(X)∗) Z1(Br(X)[`])

Pic(X)∗ Br(X)[`] 0

h01

φ

v00 v10
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where h01 is the map induced by φ and the vertical maps v00 and v10 are the

differentials of the standard resolution. Then

H1(G`, [Pic(X)∗
φ−→ SBr(X)[`]])

∼=
ker((h01,−v10) : Z1(Pic(X)∗)⊕ Br(X)[`]→ Z1(Br(X)[`]))

im((v00, φ) : Pic(X)∗ → Z1(Pic(X)∗)⊕ Br(X)[`])
.

The rest is linear algebra.

After implementing this functionality in Magma, we verify the Supplements

to Theorems A and B.
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