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Abstract  1 

The cause of the end-Cretaceous mass extinction is vigorously debated due to the presence of 2 

two smoking guns near the boundary: a very large bolide impact and flood basalt volcanism. 3 

Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms 4 

and the timing of volcanogenic outgassing relative to impact and extinction. Here we constrain 5 

the timing of volcanogenic outgassing through model-data comparisons using carbon cycle 6 

modeling and paleotemperature records. We find support for major outgassing beginning and 7 

ending distinctly prior to the impact, with only the impact coinciding with mass extinction and 8 

biologically amplified carbon cycle change. A second major outgassing event following the 9 

impact is also possible because extinction-related changes in the carbon cycle can mask the Earth 10 

system effects of post-impact volcanism. 11 

 12 

Introduction  13 

Sixty-six million years ago two planetary-scale disturbances occurred within a geologically brief, 14 

less than one million-year-long, interval. At the boundary between the Cretaceous and the 15 

Paleogene (~66 Ma), an asteroid of more than 10 km in diameter collided with the Yucatan 16 

Peninsula producing the ~200 km wide Chicxulub impact crater (1-3). Impact markers in 17 

hundreds of sites globally co-occur with the deposition of the Cretaceous-Paleogene (K/Pg) 18 

boundary clay/impact ejecta and include elevated abundances of siderophilic elements such as 19 

iridium, osmium, and nickel, and tektites and shocked quartz (1, 4, 5). During the K/Pg 20 

boundary-spanning magnetochron C29r (65.688-66.398 Ma (6), although see (7)), an estimated 21 

123,000 km3 of lava flooded across much of India and into the deep sea in a large igneous 22 

province (LIP) known as the Deccan Traps (8, 9). Deccan volcanism was, like most flood basalts 23 

(8, 10), highly episodic with flows deposited in pulses throughout the ~710,000 years of 24 

magnetochron C29r (11, 12). That both planetary-scale events occurred, and did so within 25 

several hundred thousand years of the K/Pg boundary, is now beyond reasonable doubt (4, 11, 26 

12). What remains fiercely debated, however, is the relative timing and magnitude of volcanic 27 

effects on the biosphere (12, 13), the relationship between impact and volcanism (12, 14), and 28 

whether impact or volcanism act as the sole, primary, or joint drivers (4, 8, 15). 29 

 30 
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The case for the Chicxulub impact as a driver of K/Pg mass extinction includes processes 31 

hypothesized to operate during the days to decades following the collision. The bolide impact 32 

injected an estimated >50,000 km3 of ejecta (16), and ~ 325 Gt of sulfur and ~425 Gt CO2 and 33 

other volatiles (17) into the atmosphere from the marine carbonate and anhydrite target rock of 34 

the Yucatan Peninsula (4). The combined effects of an expanding impact fireball and the re-entry 35 

of molten ejecta from the skies (18) may have raised temperatures to the point of spontaneous 36 

combustion near the impactor and caused severe heat stress and even death many thousands of 37 

km away from the impact site in the minutes to days after impact (19). In the day to years that 38 

followed, nitrogen and sulfur vapors reacted to form nitric and sulfuric acids and, with CO2 39 

gases, may have acidified the oceans (20, 21). Finally, models and empirical evidence suggest 40 

that the combination of dust and aerosols precipitated a severe impact winter in the decades post-41 

impact (22-25).  42 

 43 

Significant though these environmental effects may be, some experts question whether the 44 

Chicxulub impactor acted as the sole (or even main) driver of the K/Pg mass extinction for three 45 

primary reasons. First, no single kill mechanism appears to explain the extinction patterns: 46 

acidification (26) and primary productivity decline (27) (due to darkness and cold (24)) are 47 

favored in the marine realm, whereas heat exposure and/loss of productivity (due to darkness and 48 

cold (24)) are favored in the terrestrial realm (28, 29). Second, asteroid and comet impacts occur 49 

throughout the history of life, but no other major mass extinction is unambiguously linked to 50 

such a collision (30). In contrast, flood basalt volcanism can be deadly – the third objection to an 51 

impact-only driver. Flood basalt volcanism is strongly implicated as the driver of two of the 52 

greatest mass extinctions in the last half billion years (the Permian-Triassic [P/T] and Triassic-53 

Jurassic [T/J]), leading many to favor a similar role for Deccan volcanism in the K/Pg  (e.g., 31). 54 

However, most episodes of flood basalt volcanism after the T/J produced no discernable increase 55 

in extinction rates (27). This is possibly attributable to important earth system changes that 56 

dampened the effects of flood basalts post-P/T: increased oxygen levels (32) and potentially 57 

some combination of the breakup of Pangea (33) and changes in the biological pump (34, 35) 58 

may have reduce the risk of marine anoxia, and, after the T/J, pelagic calcifiers rose to 59 

dominance, changing the carbon cycle’s response to exogenous perturbations (36-38).  60 

 61 
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For the K/Pg mass extinction, the role of Deccan volcanism is questionable because of a lack of 62 

solid evidence for a volcanogenic driver. In spite of considerable advances in chronology, the 63 

timing of the most voluminous Deccan eruptions relative to the K/Pg boundary remains unclear 64 

because of uncertainties in estimating flow volumes from partially eroded and obscured terrains. 65 

Many have argued that most of the Deccan flood basalts (>85%) were emplaced in a relatively 66 

short interval (~140,000 years) before the K/Pg starting around the C29r/C30n boundary (~66.39 67 

Ma) and ending well before the K/Pg impact (10, 11). In contrast, using updated numerical ages 68 

and volumetric estimates, Renne et al. (2015) proposed that the vast majority of Deccan basalts 69 

were emplaced after the impact (12, 39), and Schoene et al. (2019) proposed major pulses of 70 

emplacement just before and just after the impact (40). Pre- and post-impact scenarios are 71 

debated in part because they are tied to different environmental disruption scenarios. Pre-event 72 

volcanism may have acted in concert with the impact to drive K/Pg extinctions (8), whereas post-73 

event volcanism suggests a role for volcanism in the delayed recovery of biodiversity (12). For 74 

the environment and life, however, the main environmental effects of LIPS are attributed to 75 

volatile release (41-43), not lava emplacement, and the magnitude of volcanic outgassing is not 76 

necessarily linked directly to the volume of erupted lava. In the case of flood basalt volcanism, 77 

early eruptive phases typically have higher volatile concentrations (41), so it is possible that most 78 

volatiles could be released before the impact even if most of the lava was emplaced after (39). 79 

 80 

Here we provide a new constraint on Deccan Trap outgassing by comparing new, exceptionally 81 

resolved and temporally expanded ocean drilling records, and global temperature records, with 82 

four modeled end-member scenarios for timing, magnitude, and composition of outgassing (44). 83 

These comparisons allow for a detailed consideration of the relative effect of Deccan Trap 84 

outgassing and bolide impact on the marine carbon cycle and biological change. 85 

 86 

Marine environmental record of outgassing 87 

Deccan Trap degassing released a mix of volatiles including sulfur dioxide (SO2), chlorine (Cl), 88 

and carbon dioxide (CO2), with sulfur having perhaps the greatest direct effect on ecosystems 89 

through environmental acidification and pronounced global cooling (>4.5°C) (42). The 90 

environmental effects of sulfur dioxide, however, would have been relatively short-lived (years 91 

to centuries at most) -time scales that are difficult, or even impossible, to detect in most slowly 92 
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accumulating deep-sea sediments. Instead, the influence of CO2 emissions should be detectable 93 

in marine sediments as a global warming event paired with a carbon isotope anomaly (38). We 94 

use this fingerprint of CO2 emissions as a proxy for the timing of potentially disruptive 95 

outgassing of sulfur (and other noxious gasses).   96 

 97 

We investigate the timing of Deccan Trap outgassing by modeling the effects of CO2 and sulfur 98 

emissions on long-term global temperatures using the geochemical box model LOSCAR (Long-99 

term Ocean Sediment CArbon Reservoir v. 2.0.4) (45). All volcanic outgassing scenarios assume 100 

the same (i) initial climatic and oceanographic conditions: 600 ppm pCO2 and climate sensitivity 101 

of 2-4°C per CO2 doubling (38), LOSCAR Paleocene continental configuration, and marine 102 

[Mg2+] of 42 mmol/kg and [Ca2+] of 21 mmol/kg; (ii) K/Pg impact-related volatile release (325 103 

Gt S; 425 Gt CO2)(17); (iii) upper and lower end-estimates for total volcanic outgassing volumes 104 

(4091-9545 Gt C and 3200-8500 Gt S (8, 11)) (44); and iv) extinction related changes in the 105 

marine carbon cycle (38, 46) (here estimated as 50% reduction in organic carbon export, 42.5% 106 

reduction in carbonate export, 22% increase in shallow water remineralization, Table 1) that 107 

taper back to pre-event values over 1.77 Myr following the extinction (47). Guided by competing 108 

hypotheses in the literature, we tested four major Deccan Trap emissions scenarios. These differ 109 

in the timing of volatile release: (i) Case 1: Leading, majority (87%) of degassing pre-K/Pg 110 

boundary (ii) Case 2: 50/50, half of degassing prior to and half following the K/Pg boundary; 111 

(iii) Case 3: Lagging, majority (87%) of degassing post-K/Pg boundary; and (iv) Case 4: 112 

Spanning, emissions released throughout magnetochron C29r (Table 1).  113 

 114 

Two features of the global temperature compilation are used to consider the likelihood of 115 

different volcanic emissions scenarios (Fig. 1) (44). First, a late Maastrichtian warming event 116 

occurs in marine and terrestrial records (Figs. S1-S16), and is similar in magnitude and timing to 117 

other well-documented records of the event (48, 49). Late Maastrichtian warming of ~2°C on 118 

average is constrained to the Cretaceous portion of C29r (over ~250 kyrs) and shows cooling to 119 

pre-event temperatures about 50 kyrs prior to the K/Pg boundary clay (Fig. 1). Second, the 120 

earliest Danian has comparable temperatures to the late Maastrichtian prior to the warming 121 

event. The earliest Danian is ~0.5°C warmer than the latest Maastrichtian on average for the first 122 

~500,000, with distinct differences between the relative temperatures recorded in terrestrial 123 
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(cooler) and marine (warmer) archives (Figs. S13-S14). By ~600,000 years after the impact, a 124 

gradual warming trend led to temperatures to be, on average,  >1°C warmer than the latest 125 

Maastrichtian (Fig. 1). Benthic foraminifera typically track changes in global mean temperatures 126 

and these archives show both temperature features (Fig. 1, 2, S13a), as do most other archives 127 

(Figs. S1-S16). Two exceptions, bulk carbonate records and fish teeth phosphate records from El 128 

Kef (Fig. S10c, S11, S12), likely do not track global temperature for extinction-related reasons 129 

(44) and were excluded from the calculation of global mean temperatures in Fig. 1.  130 

 131 

Two of the modeled scenarios differ distinctly in the predicted pattern of temperature change, 132 

and are considered unlikely to represent the true outgassing history. Case 3 (Lagging) fails to 133 

reproduce the late Maastrichtian warming and Case 4 (Spanning) creates a muted warming that 134 

continues to increase up to the K/Pg boundary, unlike the empirical record (Fig. 1). Only two 135 

outgassing scenarios produce modeled temperatures like the proxy records: Cases 1 (Leading) 136 

and 2 (50:50), thus they are considered most likely to represent Deccan Trap outgassing. 137 

 138 

In Case 1 (Leading), the majority of CO2 and sulfur dioxide degassing occurs in the latest 139 

Maastrichtian and leads to global warming and subsequent cooling prior to the K/Pg, followed 140 

by relatively consistent early Paleocene temperatures with a gradual warming over the 600kyrs 141 

following the impact. A volcanic CO2 driver for late Maastrichtian warming (48) is supported by 142 

new and existing high-resolution records from the open ocean (Figs. 2, S17-S18). Our new 143 

multiproxy, astronomically tuned record from the North Atlantic J-Anomaly Ridge Site (50), 144 

with an exceptionally complete Maastrichtian sequence and an intact mm-thick tektite layer at 145 

the K-Pg boundary (Figs. 3, S17-S19), documents eruption-driven warming in the latest 146 

Maastrichtian as an excursion to lower values in both d18O and d13C recorded in bulk sediments, 147 

coincident with a decline in osmium isotopes (Fig. 3). Similar patterns occur in records from 148 

sites at South Atlantic Walvis Ridge and North Pacific Shatsky Rise (Figs. 2, S18) (48, 51). 149 

Volcanogenic warming evidenced by d18O and d13C recovers to pre-warming event like values in 150 

the very latest Maastrichtian. 151 

 152 

Case 2 (50/50) also presents a good match to the empirical temperature data (Fig. 1). Although 153 

the Late Cretaceous warming differs between Case 2 and Case 1 due to reduced volcanic 154 
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outgassing in the Late Cretaceous in Case 2, uncertainty regarding climate sensitivity (52) and 155 

total Deccan Trap emissions (8, 11) has a greater effect on modeled temperatures than the 156 

difference in outgassing volume between Case 1 & 2 (Fig. 1).   157 

 158 

Remarkably, the climatic effects of a major pulse (50%) of Deccan outgassing immediately 159 

following the impact, as in Case 2, is readily masked by extinction-related changes to the carbon 160 

cycle, primarily attributable to the reduction in CaCO3 export to the seafloor. Marine CaCO3 161 

export indirectly affects atmospheric CO2 by changing the distribution of carbon and alkalinity 162 

between the surface and deep-ocean, and the removal of CO2 from the system via CaCO3 burial. 163 

The difference between Case 1 and 2 is almost imperceptible—Case 2 has slightly warmer 164 

(~0.25°C) early Danian temperatures than Case 1. 165 

 166 

Our results inform several important boundary debates. First, the ~50 kyr lag between the onset 167 

of late Maastrichtian warming in the empirical records and our models (Fig. 1) suggests that this 168 

major phase of outgassing more likely began ~300 kyr rather than 358 kyr prior to impact. 169 

Second, if the timing of volcanic emplacement proposed by Schoene et al. (2019) is correct, with 170 

a large pulse of emplacement just 20-60 kyrs prior to the impact (40), then most CO2 outgassing 171 

(and associated environmental impacts) must have preceded this pulse of lava emplacement by 172 

several hundred thousand years – prior to eruption of the most voluminous  stages of Deccan 173 

volcanism (i.e., pre-Wai subgroup) as modeled for Case 1 and 2 (Fig. 1). We were unable to find 174 

an emission and weathering scenario allowing for synchronous proportional outgassing and 175 

emplacement with the timing of the Schoene et al. (2019) scenario (Figs. S36-37), given the 176 

volume of total outgassing hypothesized, the shape of the d13C curve just prior to impact, and the 177 

coincidence of the Ir and Os isotope anomalies (expanded discussion in (44)). Third, while 178 

roughly equal pre- and post-impact volcanic degassing is possible (i.e., Case 2, Fig. 1), our 179 

results are not consistent with the majority (>75%) of volcanogenic degassing post-impact (i.e., 180 

outgassing more similar to eruptive volumes in refs. 12, 39), because modeled warming is too 181 

muted in the Cretaceous and too pronounced in the early Paleocene (i.e., Case 3) as compared to 182 

empirical records (Fig. 1). Fourth, boundary impact-related volatile release has a negligible 183 

climatic effect (Fig. S29), so is unlikely to account for the dramatic warming indicated by fish 184 

teeth d18O in the first 100 kyr (53). Instead, the fish tooth d18O record likely predominately 185 
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reflects changes in fish biology rather than environmental temperatures. Fifth, biotic recovery 186 

can account for the apparent gradual early Danian warming as observed in marine records if it 187 

begins at or shortly after impact and occurs over >1.5 myr. This biotic recovery scenario 188 

reproduces the general pattern of change in d13C gradients (Fig. 2, S35), carbonate saturation 189 

state (Fig. 2c, S35) and temperature, but is distinct from existing biological recovery hypotheses 190 

that posit a delay in the onset of biological recovery for ~ 500kyr or more (e.g., 44, 54; Fig. S35). 191 

 192 

No marine evidence for joint cause, but joint delay is possible 193 

The fossil record indicates no lasting, outsized, or cascading affects of the late Maastrichtian 194 

warming event on marine ecosystems of the sort that might predispose them to mass extinction 195 

by impact. First, there is no evidence for elevated extinction rates in the latest Cretaceous in 196 

marine taxa (Table S1). Indeed, in the Cretaceous portion of magnetochron C29r, the notable 197 

scarcity of biostratigraphic datums signifies a conspicuous lack of extinction in widespread 198 

species from clades including planktonic foraminifera, nannoplankton, radiolarian, and 199 

ammonites (6). Second, late Cretaceous outgassing does not have a lasting effect on the 200 

community structure of well-fossilized taxa. Although range and community shifts coincide with 201 

warming, there is a shift back to pre-warming event like communities prior to impact (see Table 202 

S1). Third, marine carbon cycle indicators (d13C and carbonate deposition) show that there was 203 

no discernable effect of late Maastrichtian outgassing and warming on a major ecosystem 204 

function: the export and cycling of carbon. The d13C anomaly size is consistent with a 205 

volcanogenic driver (Fig. 2: ~0.5‰ in both pelagic and benthic carbonates, Figs. S30, S32: ~0.2-206 

0.8 ‰ in simulated excursions depending on outgassing volume and climate sensitivity) given 207 

the magnitude of warming, without biological amplification.  208 

 209 

There is, in contrast, major and enduring change to ecosystems coincident with the K/Pg impact 210 

and boundary clay deposition. In deep-sea records, impact markers coincide with the abrupt mass 211 

extinction of >90% planktonic foraminifera and 93% of nannoplankton species (Fig. 2). In some 212 

groups without evidence of elevated extinction, such as small fishes, there is a permanent change 213 

in community structure (55). Planktonic foraminifers and nannoplankton also exhibit rapid 214 

turnover and high dominance in community composition for the first 500 kyrs of the Paleocene 215 

(56, 57), an interval where bulk carbonate d18O likely reflects community composition rather 216 
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than surface ocean temperatures (Figs. 3, 4, S20). At the same time, tracers of the marine carbon 217 

cycle indicate a profound change in marine ecosystem function. The d13C composition of 218 

surface-dwelling planktonic foraminifera and nannoplankton falls to or below that of benthic 219 

foraminifera with the deposition of the iridium anomaly (Figs. 2-4)(47, 49). The loss or inversion 220 

of the d13C gradient typically maintained by the biological pump is unmatched in the fossil 221 

record of pelagic calcifiers (~150 million years), and indicates that the K/Pg boundary impact 222 

had an outsized impact on the marine carbon cycle.  223 

 224 

After the impact, an already altered marine carbon cycle is needed to counteract the CO2 emitted 225 

by a major post-impact pulse of outgassing as in Case 2 (Fig. 1) to avoid a warming event of the 226 

same magnitude as the Late Cretaceous warming event. This suggests that the major ecological 227 

change of the KPg mass extinction must have occurred prior to any major post-impact 228 

volcanism. Intriguingly though, our modeling does support a scenario in which Deccan 229 

volcanism could have contributed to the aftermath of the impact and mass extinction as in (12), if 230 

environmentally destructive gases like SO2 or sulfate aerosols contributed to (or drove) the 231 

persistence of unusual marine communities for the first ~500 kyrs of the Paleocene. To date, no 232 

study has documented acidification coupled to extreme cold snaps in the earliest Paleocene as 233 

predicted by this hypothesis, and no study has provided an explanation for why SO2 would have 234 

greater biotic effects in the very well-buffered early Danian oceans than in the latest 235 

Maastrichtian oceans (Fig. S1-S32), but few have tried.  236 

 237 

By combining climatic, biotic, and carbon cycle records with modeled impact and outgassing 238 

scenarios, we find support for a bolide impact as the primary driver of the end-Cretaceous mass 239 

extinction. In doing so, we provide evidence for a pronounced decoupling between CO2 240 

outgassing and lava flow emplacement given new age estimates for the Deccan Traps (39, 40). 241 

The Late Cretaceous warming event attributed to Deccan degassing is of a comparable size to 242 

small warming events in the Paleocene and early Eocene that are not associated with elevated 243 

extinction or turnover (49, 58), similar to what we find here. We thus argue that impact and 244 

extinction created the initial opportunity for the rise of Cenozoic species and communities, but 245 

Deccan volcanism might have contributed to shaping them during the extinction aftermath. 246 

 247 
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 424 
 425 

Figure 1. Global temperature change across the Cretaceous-Paleogene boundary as 426 

compared to four scenarios for Deccan Trap outgassing.  Four Deccan Trap outgassing 427 

scenarios include (a) Case 1 (Leading): most outgassing prior to impact, (b) Case 2 (50/50): 50% 428 

outgassing prior to and 50% post impact, (c) Case 3 (Lagging): most outgassing post impact, and 429 

(d) Case 4 (Spanning): outgassing throughout magnetochron C29r (Table 1). Each model 430 

scenario is represented by four lines (bounding a shaded region) delineating different 431 

combinations of climate sensitivity and volcanic outgassing: high degassing (9545 GtC and 8500 432 

GtS) & 3°C/doubling (solid line); high degassing & 4°C/doubling (dotted line), low degassing 433 

(4090 GtC and 3200 GtS)  & 3°C/doubling (short dashed line), and low degassing & 434 

2°C/doubling (long dashed line), and compared to a 60pt fast Fourier transform smoother of 435 

global temperature change (red line) from the records shown in (e). New and existing empirical 436 

temperature records from marine sediments (d18O of foraminifera, TEX86), shallow marine 437 

carbonates (clumped isotopes of mollusk carbonate), and terrestrial proxies (leaf margin analysis, 438 

biomarkers, clumped isotopes of mollusk carbonate) in (e) were aligned to common age model 439 

(Table S2 and S3) and normalized to Late Cretaceous temperature within each record. Data are 440 

provided in Table S4-S12 and a detailed proxy symbol legend in Fig. S16.  441 

  442 

  443 
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 444 
Figure 2. K/Pg boundary dynamics at the best-resolved deep-sea sites globally: Shatsky 445 

Rise, Walvis Ridge, and J-Anomaly Ridge. High resolution carbon (a) and oxygen (b) isotope 446 

dynamics in benthic foraminifera (transparent lines) and bulk carbonate (discrete points), and 447 

sediment composition (c, weight % coarse fraction), at Shatsky Rise (blue), Walvis Ridge (grey), 448 

and J-Anomaly Ridge (red), compared to (d) global records of nannofossil (grey) and 449 

foraminifera (blue, from (59)) species richness. Deccan Trap emplacement interval indicated at 450 

left by the black bar. Data is from new and published records as described in ref. 44.  451 

  452 
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 453 
Figure 3.  Late Cretaceous warming and early Paleocene record of environmental and 454 

biotic change at IODP Site U1403, J-Anomaly Ridge, Newfoundland.  A negative carbon 455 

isotope anomaly (a) coincides with late Cretaceous warming in d18O (b), and osmium isotope 456 

evidence for volcanism (a) at IODP Site U1403. The collapse in surface ocean d13C values (a) 457 

coincides with iridium anomaly (b), and step change in fish tooth accumulation (c). Earliest 458 

Paleocene d18O values of bulk carbonate appear to be strongly influenced by vital effects driven 459 

by rapid turnover in the dominant calcareous nannofossil taxa (d). Data in Tables S12, S16, S17, 460 

S29. 461 

  462 

  463 
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 464 
Figure 4.  Records from ODP Site 1209, Central Pacific support patterns and inferences 465 

from IODP Site 1403.   The K/Pg boundary coincides with a collapse (to inversion) in (a) the 466 

carbon isotopes of bulk carbonate (red) and planktonic foraminifera (grey, blue) relative to 467 

benthic foraminifera (black), a d13C gradient typically maintained by the biological pump. In (b) 468 

the relative stability of benthic foraminiferal (black) and planktonic foraminiferal (grey and blue) 469 

d18O (b) support the inference that earliest Paleocene of bulk carbonate (red) d18O values are 470 

strongly influenced by vital effects reflecting the rapid turnover in dominate nannofossil taxa (c) 471 

Data from Tables S11, S18 and refs. (56, 60). 472 

  473 
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Table 1.  Model parameters for four main Deccan outgassing scenarios tested in LOSCAR. 474 

 475 
 Case 1: Leading Case 2: 50/50 Case 3: Lagging Case 4: Spanning 

Volcanic Outgassing      

Pulse 1 (Pre): Volume 
87% of total 

high: 8305 Gt C, 7395 Gt S 
low: 3559 Gt C, 2784 Gt S 

50% of total 
high: 4773 Gt C, 4250 Gt S 
low: 2045 Gt C, 1600 Gt S 

13% of total 
high: 1241 Gt C, 1105 Gt S 

low: 532 Gt C, 416 Gt S 

100% of total 
high: 9545 Gt C, 8500 Gt S 
low: 4091 Gt C, 3200 Gt S 

Timing Starts: -358 kyr 
Ends: -218 kyr 

Starts: -358 kyr 
Ends: -218 kyr 

Starts: -358 kyr 
Ends: -218 kyr 

Starts: -358 kyr 
Ends: 355 kyr 

Pulse 2 (Post): Volume 
13% of total 

high: 1241 Gt C, 1105 Gt S 
low: 532 Gt C, 416 Gt S 

50% of total 
high: 4773 Gt C, 4250 Gt S 
low: 2045 Gt C, 1600 Gt S 

87% of total 
high: 8305 Gt C, 7395 Gt S 
low: 3559 Gt C, 2784 Gt S 

 

Timing Starts: 0 kyr 
Ends: 355 kyr 

Starts: 0 kyr 
Ends: 355 kyr 

Starts: 0 kyr 
Ends: 355 kyr 

 

     

Impact Outgassing     

Volume 100% of total 
115 Gt C, 325 Gt S 

100% of total 
115 Gt C, 325 Gt S 

100% of total 
115 Gt C, 325 Gt S 

100% of total 
115 Gt C, 325 Gt S 

Timing Starts: 0 kyr 
Ends: 0 kyr 

Starts: 0 kyr 
Ends: 0 kyr 

Starts: 0 kyr 
Ends: 0 kyr 

Starts: 0 kyr 
Ends: 0 kyr 

     

Biotic Change      

Organic ExportFlux D 50% reduction 50% reduction 50% reduction 50% reduction 

CaCO3 Export Flux D  42.5% reduction 42.5% reduction 42.5% reduction 42.5% reduction 
Intermediate-depth Corg 

remineralization fract. D 
22% increase 22% increase 22% increase 22% increase 

Timing 
Starts: 0 kyr 

immediately begins taper 
Ends: 1770 kyr 

Starts: 0 kyr 
immediately begins taper 

Ends: 1770 kyr 

Starts: 0 kyr 
immediately begins taper 

Ends: 1770 kyr 

Starts: 0 kyr 
immediately begins taper 

Ends: 1770 kyr 

 476 
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Materials and Methods 
 
Sites and materials 

Here we present highly resolved, multiproxy records from three ocean drilling localities: J-

Anomaly Ridge, North Atlantic (Integrated Ocean Drilling Program [IODP] Site U1403), 

Shatsky Rise, North Pacific (Ocean Drilling Program [ODP] Site 1209, Deep Sea Drilling 

Program [DSDP] Site 577), and Walvis Ridge, South Atlantic (ODP Site 1262 & 1267). 

This is the first detailed study of Cretaceous-Paleogene (K/Pg) sediments from IODP Site 

U1403, which was drilled on the flank of the J-Anomaly Ridge in 2012 at 39°56.60′N by 

51°48.20′W and a present water depth of 4,949 m (1). Shipboard scientists immediately 

recognized that the two K/Pg spanning holes (U1403A and U1403B) were remarkably complete, 

with an intact ejecta layer and all nannofossil biozones present (2). The results presented here 

include a highly resolved bulk carbonate stable isotope record sampled shipboard at a resolution 

varying from ~20 cm in the Danian, to 2 cm across the boundary, and ~10 cm in the late 

Cretaceous (Table S12). This bulk carbonate carbon and oxygen isotope record is the longest 

highly resolved record of its sort across the K/Pg boundary (Fig S17), spanning the last 2.5 

million years of the Cretaceous and the first 3 million years of the Paleocene. Additional samples 

for complementary measurements (i.e., sedimentology, magnetostratigraphy, biostratigraphy, 

cyclostratigraphy, iridium measurements, faunal and organic geochemistry analyses) were 

sampled during the post-cruise sampling party and in subsequent sampling requests and are 

detailed below in the relevant subsections. 

We also present new K/Pg records from two of the best studied deep sea K/Pg boundary 

localities, Walvis Ridge and Shatsky Rise, while leveraging existing resources from these sites.  

Shatsky Rise sites include the well-studied ODP Site 1209 on the Shatsky Rise (3, 4) at 

32°39.1001′N by 158°30.3560′W and 2,387 m current water depth and DSDP Site 577 at   

32°26.5′N by 157°30.4′W and 2,685 m current water depth (5). Walvis Ridge sites include ODP 

Site 1262 at 27°11.15′S by 1°34.62′E and 4,759 m current water depth (6) and ODP Site 1267 at 

28°5.89′S by 1°42.66′E and 4,355 m current water depth (7). ODP Sites from Shatsky Rise and 

Walvis Ridge have been used along with the deep-sea sediments outcropping in Zumaia, Spain, 

to develop and refine a complete astrochronological age model for the Paleocene and latest 

Cretaceous (8-12). With a biostratigraphically complete K/Pg boundary section, and a globally 

aligned cyclostratigraphic age model spanning from the very latest Cretaceous through the 
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Paleocene, ODP Site 1209 and the nearby ODP Sites 1210 and 1211 have been extensively 

studied across the boundary, with existing studies including a resolved benthic foraminiferal and, 

in the Cretaceous, bulk carbonate stable carbon and oxygen isotope record (13-15), community 

dynamics across the boundary in nannoplankton (16-21), foraminifera (22-24), and fish (25), 

productivity change (26), environmental change (27, 28), extinction drivers (29), and in global 

compilations of boundary sections and dynamics (30). The new high-resolution records 

presented here include a highly resolved boundary record of bulk carbonate oxygen and carbon 

isotopes (shown in part in: 22) (Table S11), complementary records of early Paleocene 

foraminiferal oxygen and carbon isotopes (Table S11), and a resolved earliest Danian record of 

nannoplankton community composition (Table S18). These new and existing records from ODP 

Site 1209 allow us to test the generality of patterns and explanations derived from Site U1403 

records in the context of the much broader body of work from Shatsky Rise, including studies on 

the historic DSDP 577 holes (e.g., 5, 31-40) at the same location. The same is true of Walvis 

Ridge. From Walvis Ridge we present a new resolved bulk isotope record (Tables S9) and 

weight percent coarse fraction record from ODP Site 1267 (Table S13), to test the generality of 

these existing resources from ODP Site 1262 (41), with the underlying records published here for 

the first time Tables S10, S14). 

The high-resolution records at J-Anomaly Ridge, Shatsky Rise, and Walvis Ridge are 

shown in Fig. 2.  The data in this figure is provided in Tables S9-S15 and refs. (13-15, 22, 41-44) 

and age models are from (12, 45, 46). 

Together these records (Fig. 2 and S18), are the most temporally resolved and finely 

sequenced records of the K/Pg boundary and they offer the opportunity to finely detail the 

temporal sequence of change in open ocean sites relatively far from the impactor: the central 

equatorial Pacific (ODP Site 1209, DSDP Site 577), the mid latitude North Atlantic (IODP Site 

U1403), and the South Pacific (ODP Sites 1262 and 1267). Distance from the impactor was an 

important criterion because proximal sites in the Caribbean and in some locations along the 

eastern seaboard of North America are stratigraphically complex, and include some combination 

of the following: expanded ejecta deposits, tsunami deposits, mass wasting deposits, and hiatuses 

(30, 47-53). Part of the historic debate on the timing of boundary related events in open marine 

sediments, and the possibility of multiple impacts or impacts asynchronous with the boundary, 

has arisen from studies that interpret the depositional history (in particular, the timing of 
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deposition) in proximal sites as if they reflected processes and rates typical of normal marine 

sedimentation (54-56). Our study focuses on records from the relatively open ocean basins in the 

latest Cretaceous (the Atlantic and Pacific) in order to capture the open ocean response to the 

events of the K/Pg boundary. 

 
Age model overview  

Two main types of age models are used in this study: cyclostratigraphic age models and bio- 

or magnetostratigraphic age models. Data from the three high resolution localities (J-Anomaly 

Ridge: IODP Site U1403, Shatsky Rise: ODP Sites 1209 & 1210, and Walvis Ridge ODP Sites 

1262 & 1267) are shown in the geologic time domain using cyclostratigraphic age models. For 

Site U1403 we combined a completed cyclostratigraphic age model for the Maastrichtian (57) 

with a new cyclostratigraphic age model for the Danian (detailed below). The Site U1403 age 

model is tied to a K/Pg boundary age of 66.022 Ma to be consistent with the boundary used by 

Dinarès-Turell et al. (2014) in other cyclostratigraphic age models for this interval for Walvis 

Ridge and Shatsky Rise (12, 14, 15, 45, 46). This boundary age differs from the most recent 

radiometric ages for the K/Pg boundary of 66.016 ± 0.05 Ma (58) for U-Pb and 66.052 ± 0.008 

Ma (59) for 40Ar/39Ar, but falls within the error bounds for those estimate (including systematic 

error). We use the existing cyclostratigraphic framework for the K/Pg boundary sections at Sites 

1209, 1210, 1262, and 1267 from Dinares-Turrell et al. (2014) (12), with its extension further 

into the Maastrichtian by Woelders et al. (2017) (44). 

GTS 2012 (K/Pg boundary age 66.04 Ma) forms the framework for the other age models 

used in this study and shown in the compilation Figure 1 (60). The data in Figure 1 are a 

compilation of temperature estimates from marine and terrestrial sites around the world (Fig. S1-

S16), updated to a common timescale (primarily) by updating the bio- and magnetostratigraphic 

marker ages to match those of GTS 2012. In order to construct GTS 2012-compliant age models 

for all localities (detailed below and shown in Tables S2-S4), the records from Sites U1403, 

1209, 1210, 1262, and 1267, which were on the Dinarès-Turell et al. (2014) (12) age model, 

were shifted to match the K/Pg boundary age in the global compilation. 

 

Cyclostratigraphic age model for U1403 
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The Maastrichtian to Danian interval of Site U1403 was analyzed by XRF-scanning (X-Ray 

Fluorescence) in the MARUM XRF Core Scanner Lab in Bremen, Germany. The AVAATECH  

instrument, serial no.11, with an Oxford Instruments 100W Neptune Rh X-Ray tube and a 

Canberra X-PIPS Silicon Drift Detector (SDD, Model SXD 15C-150-500) was set to a step-size 

of 15 mm, a slit down-core of 10 mm, and a slit cross-core of 12 mm. A first run was applied 

with 10Kv, 1.0 mA, for 20 s, and a second run at 50 Kv, 0.2 mA, for 20 s. The data were 

processed with WIN AXIL batch software using a 10Kv_Cl-Rh model and a 50Kv model, 

respectively. Outliers as a result of an uneven core surface were removed. The Danian XRF 

record is presented in Supplemental Table S21and compliments the already published 

Maastrichtian record (57).  

Two holes were drilled at IODP Site U1403: Holes U1403A and U1403B.  A shipboard 

splice, subsequently updated slightly by Batenburg et al. (57), was used to generate a common 

depth scale between these two holes (classically known as meters composite depth [mcd] but 

called CCSF [core composite depth below sea floor] at Site U1403). The K/Pg impact ejecta 

layer was not used as an anchor point in building the composite splice between these two holes. 

Because of the highly resolved sampling across the K/Pg boundary, this omission created 

numerous issues with regards to building an accurate relative stratigraphy of the event for the 

samples that were collected off the main splice in the boundary cores (342-U1403A-26X, 342-

U1403B-28X) due to a 20cm CCSF offset between the ejecta layer in the two holes on the CCSF 

scale. To address this problem in the relative depth scale and age model, we adjusted the splice 

to include the impact ejecta layer as the tie point between the boundary cores at the two sites. 

The secondary tie point linked the K-Pg boundary in Hole B (which is not in the splice) with 

247.7 rCCSF (revised CCSF) in Hole A. We then recalculated the CCSFs for Hole B, Core 28 by 

a linear interpolation between the boundary and the neighboring splice tie points. Only the coarse 

fraction, fish teeth and iridium records contain samples that required a CCSF revision as 

described above. The effect of this adjustment is shown in Table S22. 

To obtain detailed age control for the Danian interval of U1403, we correlated the iron 

record and the sedimentary banding pattern to the existing cyclostratigraphic framework of Site 

1209(12). A direct cyclostratigraphic interpretation of the interval above the K/Pg at U1403 is 

hampered by the relatively short length of the record and the complex nature of orbitally forced 

sedimentation patterns directly following the K/Pg, which is documented in records worldwide 
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(12, 61). A detailed comparison of Site U1403 to Site 1209 was made using the banding patterns 

in the core photographs and the Fe counts from XRF analysis (expressed as log Fe, Fig. 7), 

supported by variations in magnetic susceptibility(62). In addition, a bandpass filter was applied 

using AnalySeries (63) to the log Fe record, centered at 2.2 m with a bandwidth of 1.7 to 3.3 m 

(Fig. S22). The 2.2 m filter follows the oscillations of the log Fe record and the sedimentary 

banding patterns, with maxima in the bandpass filter coinciding with groups of dark bands, likely 

representing maxima in the 405-kyr cycle of eccentricity-modulated precession. An age model 

for the Danian of U1403 was constructed by assigning ages of long-eccentricity (405 kyr) 

maxima and minima in the La2011 eccentricity solution (64) to levels in U1403 corresponding to 

interpreted 405-kyr extremes in Site 1209 (12). An additional cyclostratigraphic investigation of 

Site 1209 (61) proposes the same number of interpreted long-eccentricity cycles post-K/Pg and a 

similar interpretation of the position of 405-kyr cycle extremes, except for the placement of the 

second 405-kyr maximum above the K/Pg boundary. The age model for the Danian of U1403 

was combined with the existing Maastrichtian cyclostratigraphic age model (Table S23, Fig. 

S22). The resulting age model is broadly consistent with shipboard based nannofossil 

biostratigraphy in the Maastrichtian (57), updated Danian nannofossil biostratigraphy (Tables 

S24 & S25), and osmium isotope stratigraphy (see below). 

The comparison of bulk isotope records from J-Anomaly Ridge, Shatsky Rise, and Walvis 

Ridge highlight the relative certainty in the age models for the three sites (Fig. 2). IODP Site 

U1403 on J-Anomaly Ridge is relatively poorly constrained in the latest Maastrichtian due to 

lack of magnetostratigraphic control (see below) and changes in sedimentation rates within long 

eccentricity cycles. At ODP Site 1209, the latest Maastrichtian is likewise disturbed by drilling.  

These uncertainties and offsets show in differences in the timing of the peak d18O excursion in 

the Cretaceous portion of C29R. At Shatsky Rise, the minimum in d18O of benthic foraminifera 

precedes that at Walvis Ridge by ~87 kyrs, although this offset is primarily due to a single 

anomalously low d18O value at Shatsky Rise. In bulk isotope space, the minimum values at 

Walvis Ridge precede those at J-Anomaly Ridge by ~37 kyrs. In the early Danian, the agreement 

between the three sites generally seems better (Fig. 2), although slight differences in the relative 

timing of peaks and troughs in bulk carbonate d18O attest to the uncertainty in current time 

constraints and provide a new tool for evaluating age models in this contested interval. 
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Bio- and Magnetostratigraphy at Site U1403 

The construction of cyclostratigraphic age models depends on reliable indicators of 

geologic time like geological boundaries (i.e., the impact markers used to align the boundary 

cores between U1403A and U1403B), biostratigraphically important datum levels, 

magnetochron boundaries, and chemostratigraphically important events. For Site U1403, 

nannofossil biostratigraphy, osmium isotope stratigraphy, and light stable isotope stratigraphy 

provided additional constraints for the construction and/or testing of the cyclostratigraphic age 

model.  

Although the sedimentary weight percent carbonate at Site U1403 is typically above 50% in 

the late Maastrichtian, the sediments are devoid of planktonic foraminifera –a common 

biostratigraphic marker. Calcareous nannoplankton, however, are abundant in the upper 

Maastrichtian and lower Danian and provided critical constraints on the Maastrichtian 

cyclostratigraphic age model (1, 57) (Figs. S23). With minor updates to the shipboard 

biostratigraphy (Tables S24 & S25), the nannofossil datums in the Danian are generally 

consistent with the cyclostratigraphic age model (Figs. S22). Other taxa were not well-enough 

preserved to be of use in biostratigraphy. Silica was not well preserved during this time period 

(1), and radiolarian datums were not provided or used in shipboard age models for sediments 

older than ~63 Ma. Organic matter preservation was similarly poor, so no dinocyst or 

palynomorph zonation was possible (Table S26). 

Shipboard pass-through magnetometry during Expedition 342 failed to collect reliable 

magnetochron data for the late Maastrichtian to early Paleocene of Site U1403. Discrete, high-

resolution paleomagnetic samples were collected during the post-cruise sampling party in order 

to attempt to identify the highly important magnetochron spanning the K/Pg boundary 

(magnetochron C29R). Seventy-two discrete samples were taken from the splice in XCB cores 

between U1403A25X1-124cm (233.97 m ccsf) and U1403B30X2-84cm (271.09 m ccsf). 

Samples were obtained ~0.30 m (excepting a disturbed interval around 254 m ccsf) from the split 

core sections by pressing 7 cm3 plastic cubes into the sediment in the least disturbed, central 

region of the core. All magnetic measurements were performed at CEREGE (Aix-en-Provence, 

France) using a SQUID cryogenic magnetometer (2G Enterprises, model 755R, with noise level 

of 10−11Am2) with an attached automatic alternating field 3-axis degausser system (maximum 

peak field 170 mT) placed in a magnetically shielded room (field of ~nT). The natural remanent 
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magnetization (NRM) was measured and samples were demagnetized using step-wise alternating 

field (AF) up to 60 mT. All discrete sample data were volume corrected (7 cm3). Data 

visualization and analysis were realized using Paleomac software (65) and correlated to the 

magnetic polarity timescale (GTS 2012) (60). 

A small overprint (< 10-15 mT), possibly due to viscous remanent magnetization (VRM) or 

an isothermal remanent magnetization (IRM), was removed by using a progressive alternating 

field to isolate only one component of magnetization (or Characteristic Remanent Magnetization, 

ChRM). For 42 samples, a normal or reverse polarity was attributed using the direction of the 

ChRM because of their unequivocal behavior. For 13 samples, a polarity was tentatively 

assigned, although some caution should be taken because of their behavior upon AF treatment 

(large alpha95 and/or low intensity). The 17 remaining samples were excluded for the final 

interpretation because of their ambiguous or erratic behavior upon AF (alpha 95>20).  In the end, 

ChRM inclination allowed us to define 7 magnetozones (Fig. S24). 

 Paleomagnetic data from the discrete analyses unfortunately failed to provide additional 

time constraint around the K/Pg boundary. Overall, the polarity sequence appears sound for the 

Paleogene magnetochrons C27R to C29N, where a continuous normal and reverse polarity scale 

was established. However, magnetochron C29R, the short chron bracketing the K/Pg boundary 

and spanning the Deccan trap eruptions (66, 67),  could not be defined due to unclear 

paleomagnetic results (Table S27, Fig. S24). Similar issues (lower NRM intensities, possibly 

disturbed sediments) continued in the Cretaceous portion of the core where chrons C30N and 

C30R were only tentatively attributed.  

 

Osmium isotope geochemistry 

Osmium isotope chemostratigraphy provides a useful geochronometer around the K/Pg 

boundary because of two globally recognized features in the osmium isotope record: a drop of 

~0.13 187Os/188Os beginning around the C30N/C29R magnetochron boundary and a drop of 

~0.25 187Os/188Os coincident with the K/Pg boundary iridium anomaly (68-70). These two 

osmium isotope events are attributed to the onset of Deccan volcanism and the extraterrestrial 

impact, respectively, as has been discussed at length in the literature (e.g., 68, 69-71).   

An osmium isotope record spanning the uppermost Cretaceous through lowermost 

Paleocene was generated for IODP Site U1403 on the leachable osmium following the method of 
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Ravizza 2007 (72) (Fig. S25). Leached osmium (from clays) was favored over the bulk digest 

methods (e.g., 69) to minimize contamination from abundant detrital components. This choice, 

combined with the low Os content, a blank correction of 0.02-0.03, and an unquantified Re 

contribution, combine to mean that the Site U1403 record presented here (Fig. S26, Table S16) 

can be interpreted in terms of the relative shape of the osmium profile but likely does not 

accurately capture the absolute values, although the values are similar to those obtained from 

other sites (Fig. S26a). The large uncertainty (≈ ± 2.5%) in 187Os/188Os compared to previously 

reported Os isotope records is mainly the result of low concentration of leachable Os in these 

samples, and the associated  correction for procedural blank, which can reach up to 10% of total 

analyte. 

The osmium record at IODP Site U1403 is very similar to other existing K/Pg boundary 

records from Bottacione Gorge, Shatsky Rise, Walvis Ridge, and Maud Rise (Fig. S26). Namely, 

osmium isotope ratios decline in the upper Cretaceous, plateau during magnetochron C29R, and 

then drop again the K/Pg boundary before settling into a lower Paleocene baseline than occurs in 

the Cretaceous. Unfortunately, IODP Site U1403, like the Walvis Ridge record, does not show a 

stable Cretaceous baseline or abrupt transition to declining osmium values coincident with the 

C30N/C29R boundary as in ‘classic’ records like Bottacione Gorge and Shatsky Rise. This 

means that osmium at Site U1403, like the magnetochron boundary, provides a poor time 

constraint. Even so, the current cyclostratigraphic age model extends the relative duration of the 

upper Cretaceous plateau in osmium (highlighted in green in Fig. S26b) as compared to other 

sites. This pattern would suggest that the current age model is overestimating the amount of time 

in this interval. 

 
 Iridium geochemistry 

Iridium was measured across the U1403 K/Pg boundary using laser-ablation inductively 

coupled plasma–mass spectrometry as described and published in Loroch et al. 2016 (73). 

 

Oxygen and carbon isotope geochemistry 

We generated resolved and temporally expanded records of stable carbon and oxygen 

isotopes to consider the relative role of Deccan volcanism and impact in marine extinctions. This 

section discusses the methods used to collect new stable isotope data (carbon and oxygen) from 



 
 

10 
 

carbonates at IODP Site U1403 and ODP Sites 1209, 1262 and 1267. We discuss published 

stable isotope records (shown in Fig. 1) in the section ‘Temperature proxy compilation’ below, 

including new d18O records from stable carbon isotope data published for Sites 1210, 1262, 

1267, and 465 (i.e., records in Tables S5-S9)(29). 

For IODP Site U1403 we generated a high resolution, ~5 million year long record of bulk 

carbonate stable carbon and oxygen isotopes comprising 646 measurements across four 

laboratories as indicated in Table S12. The Maastrichtian bulk samples from Site U1403 were 

analyzed at the Goethe-University Frankfurt (Germany) using a Finnigan MAT 253 coupled 

online to a Gasbench II or at Kanazawa-University (Japan) using a Finnigan Delta V Advantage 

coupled with Gasbench II (for details see (74)) and were published in Batenburg et al. 2017 (57).  

K/Pg boundary samples were analyzed at the Yale Analytical and Stable Isotope Center using a 

Thermo DeltaPlus XP and Paleocene sample were analyzed at the Friedrich-Alexander 

Universität Erlangen-Nürnberg with a Gasbench II connected to a ThermoFinnigan Five Plus 

mass spectrometer.  All isotope values are reported in ‰ relative to the Vienna Peedee belemnite 

standard (VPDB). For all systems used, the analytical precision of replicates of standard 

measurements is better than 0.06 and 0.08 ‰ for carbon and oxygen, respectively. At Yale, 

weight percent carbonate (Table S19) was calculated by the deviation of the measured signal 

intensity from that predicted for a pure carbonate of the same mass, as determined by in-house 

standards. These weight percent carbonate measurements were combined with shipboard 

measurements of weight percent carbonate (1), to calculate a weight % carbonate record (shown 

in Fig. 2) from XRF measurements of Ca and Fe (Table S20). The sedimentary weight % coarse 

fraction (i.e., the mass proportion of the sample greater than 38 µm in size) was also determined 

for Site U1403 (as shown in Fig. 1), during sample preparation at Yale University (Table S15). 

For ODP Site 1209, four new isotope records are presented in Table S11for bulk carbonate, 

bulk foraminifera, Praemurica, and Woodringina.  Each are described in turn. The bulk 

carbonate record from ODP Site 1209 was generated with a Thermo-Finnigan MAT 253 mass 

spectrometer coupled to a Kiel Device at the University of California Santa Cruz, with analytical 

precision (1s) of ± 0.05 ‰ for d13C and ± 0.08 ‰ for d18O based on repeated analyses of in-

house standards. The boundary portion of this record was published in part previously in Hull et 

al. 2011 (22), but the data is provided here for the first time. To isolate the potential cause of the 

high amplitude d18O dynamics in the bulk carbonate in the early Paleocene, we generated a novel 
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type of ‘bulk’ record: bulk foraminifera. Bulk foraminifera were analyzed as a homogenized 38-

125 µm size fraction, a size fraction dominated by immature and microperforate planktonic 

foraminifera (22, 75). For the same time interval (the earliest Paleocene) we also analyzed 

Woodringina and an evolutionary series of Praemurica. The bulk foraminifera and Woodringina 

records were analyzed at the MARUM (the Center for Marine Environmental Sciences) at the 

Universität Bremen on a Thermo-Finnigan MAT 251 mass spectrometer coupled to a Kiel 

Device. The MARUM lab analytical precision (1s) for carbonate mass spectrometry is ± 0.05 ‰ 

for d13C and ± 0.07 ‰ for d18O, based on replicate analysis of in-house and international 

standards. The Praemurica series was generated at the Scripps Institution of Oceanography using 

a Caroussel-48 automatic carbonate preparation device and a common acid bath (i.e., a Fairbanks 

device) coupled to a Finnigan MAT 252 mass spectrometer, with an analytical precision (1s) of  

± 0.04 ‰ for d13C and ± 0.09‰ for d18O, respectively. 

 

Organic geochemistry 

The targeted analysis of aliphatic hydrocarbons in selected samples from Site 1403 across 

the K/Pg boundary provides qualitative information about the sources and preservation of 

organic matter in these sediments. Most algal steranes and bacterial hopanes were present below 

the limit of detection, while the signal of detected biomarkers was close to, or slightly above 

laboratory blanks and background contamination. This observation is consistent with the overall 

low total organic carbon (TOC%) of samples near the K/Pg boundary (0-0.3%;(1)). Thermal 

maturity indices based on the stereochemistry of algal steranes and bacterial hopanes indicate a 

degree of thermal alteration that ranges between early and peak oil window (Table S29). 

However, the elevated degree of thermal maturity obtained from biomarkers is inconsistent with 

the low thermal alteration inferred from the burial history of the Newfoundland sediment drifts. 

Indeed, older, organic-rich sediments across the Cenomanian-Turonian boundary in site 1407 

contain organic matter that is thermally immature and relatively well preserved, as shown by 

high hydrogen indexes and low Tmax values (2). Given the low TOC% near the K/Pg boundary, 

it is likely that the prevalent organic matter preserved in these sediments is dominated by 

previously fossilized, thermally mature, allochthonous organic matter derived from the erosion 

of source rocks on the continent, similar to previous reports across the K/Pg in Stevns Klint, 

Denmark (76) and in Quaternary sediments (77). Furthermore, although we did not measure the 



 
 

12 
 

functionalized precursors of steranes and hopanes, our result is consistent with the lack of 

functionalized lipids such as archaeal glycerol dialkyl glycerol tetraethers (GDGTs) in the same 

samples. Thus, given the low abundance of hydrocarbon biomarkers detected across the K/Pg 

boundary in site 1403, and because of their non-indigenous source, they are not reliable 

indicators of changes in biological sources and environmental conditions in the overlying water 

column during this time. 

Lipid Extraction and Analysis: Metal tools were rinsed with organic solvents, while all 

glassware, aluminum foil, silica, quartz wool and quartz sand were combusted at 500ºC for 12 

hours to remove any organic contamination. About 5-10 g of powdered sample was extracted 

with a Dionex ASE 250 using DCM:MeOH (9:1 v/v). 100 ng of d4 C29 ααα (20R)-

ethylcholestane was added as an internal standard before extraction. Elemental sulfur was 

removed using acid-activated copper powder for 12 hours. Asphaltenes were removed (3x) by 

precipitation in 10-40 ml of hexane at ~4ºC overnight, following centrifugation at 2500 rpm for 

30 min. Aliphatic hydrocarbons were separated from the maltene fraction on a silica gel column 

using n-hexane (3/8 dead volume). Samples were analyzed by gas chromatography – mass 

spectrometry in full scan and metastable reaction monitoring (GC–MRM–MS) modes on a 

Micromass AutoSpec Ultima mass spectrometer interfaced to an Agilent 6890 N gas 

chromatograph at the Massachusetts Institute of Technology as described elsewhere (78). MRM-

MS is a sensitive analytical technique that provides an elevated signal to noise ratio for the 

identification of compounds that are normally unresolved, co-eluting, or present in very low 

abundance.  

 

Temperature proxy compilation 

In order to assess the similarity of the LOSCAR model run temperatures with global 

temperature change across the K-Pg boundary, we compiled relatively resolved records of 

temperature across this time interval and updated the temperature calculation and age model as 

needed. Although our compilation represents the most comprehensive database (Table S4) of 

temperature estimates across the K-Pg boundary, and allows us to examine the relative similarity 

of temperature dynamics across sites and proxy types, in does not include every record ever 

published in the Maastrichtian and Paleocene nor does it attempt to estimate a global-absolute 

temperature through this interval. We choose to include records with relatively high temporal 
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resolution in order to assess a relative temperature change across the K-Pg boundary. 

Temperature records from a small portion of the compilation time frame (i.e., the Paleocene) 

were not included because we were not able to calculate a temperature relative to the latest 

Cretaceous in such instances (e.g., some low-resolution foraminiferal isotope records). So while 

there are more published paleotemperature proxy records around this time (e.g., 79, 80), they 

were excluded if they lacked the temporal resolution around the boundary needed to express 

these data in this way with confidence. Furthermore, our compilation and analyses are based on 

relative temperature change because our focus is on understanding relative change in 

temperatures through time. The use of absolute temperatures from sites with different starting 

temperatures would obscure the detection of changes in temperatures (i.e., 2-4°C warming is less 

the differences in temperature expected with latitude, across the marine/terrestrial divide, and 

across proxy types). Temperature change within each dataset is calculated relative to the latest 

Cretaceous values, rather than the mean of a time frame, in order to minimize the effect of sparse 

or changing sampling densities across intervals of interest. Finally, global temperature change 

through time is estimated using a 60-pt fast Fourier transform smoother across all datasets. With 

aligned age models and updated temperature estimates (in some cases), we hope this compilation 

serves a starting point for future work on global temperature dynamics across this time interval. 

Data and transformations include:  

- Benthic foraminiferal δ18O measurements from Shatsky Rise ((13, 33), and this study: 

Table S5), Hess Rise (this study: Table S7) in the low-latitude Pacific, Walvis Ridge in 

the mid-latitude South Atlantic  (81, 82), and this study: Tables S6 & S8), Maud Rise in 

the high-latitude South Atlantic (83), and Blake Nose (84), J-Anomaly Ridge (85), and 

Bass River (86) in the North Atlantic. For details of the revised age models used for each 

site, see Tables S2-S4. Temperatures were calculated via the equation of ref. (87) with 

species offsets, where necessary, taken from ref. (88), after (13). For these calculations, 

we assume an ice-free mean ocean seawater value of -1.2 ‰. We note though that since 

we are considering relative changes in temperature rather than absolute values, the 

assumptions should have a minimal biasing effect on data interpretation.  

- Planktonic foraminiferal δ18O measurements from Walvis Ridge in the mid-latitude 

South Atlantic (82, 89), Maud Rise in the high-latitude South Atlantic (90, 91), and Blake 

Nose (84) and Bass River (86) in the North Atlantic. For details of age models, see 
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Tables S2-S4. As with benthic foraminiferal data, we use the δ18O-temperature 

calibration from ref. (87), assuming ice free conditions.  

- Palaeosol carbonate δ18O measurements from continental USA (92, 93). We use ref. 

(93) option 2 for calculated temperatures, as preferred by the original authors. Sample 

ages are assigned according to a comprehensive new age model for this formation 

derived from biostratigraphy, magnetostratigraphy and geochronology from ref. (94). 

- Bivalve and gastropod carbonate δ18O measurements from Seymour Island, Antarctica 

(95) omitting those samples with evident trace metal contamination indicated by Sr, Mn 

and Fe concentrations. Data shown are averages of several measurements for each time 

interval. Ages are assigned based on linear interpolation between magnetochron 

boundaries (95), updated to the 2012 geological timescale (60). 

- Clumped isotope measurements from bivalves from Hell Creek, USA (96) and 

brachiopods from Seymour Island, Antarctica (97). Note we bin clumped isotope data as 

in the original studies, and omit those samples with evident trace metal contamination 

indicated by Sr, Mn and Fe concentrations. We also omit gastropod and carbonate vein 

measurements from ref. (96), as they display more signs of diagenetic alteration/thermal 

resetting. Age models for Hell Creek and Seymour Island data are based on linear 

interpolation between magnetostratigraphic reversals from refs. (95, 98). 

- TEX86 measurements from the New Jersey Margin (99) and Brazos River (100) in the 

USA, and Bajada del Jagüel, Argentina (44). Datapoints flagged as displaying high BIT 

index (> 0.3) were omitted. Age models for ref. (99) were constructed using 

dinoflagellate biostratigraphic datums (99, 100), while for Bajada del Jagüel ages are as 

published (44). At Bass River (101), ages are assigned according to the age model of ref. 

(86) 

- Leaf Margin analyses from the Williston Basin, continental USA (91, 102-106). Where 

necessary, temperatures were recalculated using the temperature calibration and 

uncertainty model of ref. (107). Age models for these floras are based on 

magnetostratigraphic tie points (108) with ages reassigned according to ref. (60). 

- Mg/Ca temperatures from Bass River, New Jersey Margin (44). Temperatures are as 

calculated by the original authors, omitting those from the bioturbated interval around the 

K/Pg boundary. Ages are assigned according to the age model in ref. (86). 
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In addition, in a few cases not all data provided in a given study was included in the 

compilation here, when very poor preservation, reworking, or a lack of stratigraphic control 

affected a part of the record. However, it should be noted that these exclusions have no visible 

effect on the estimates of global temperature change. In the case of Bass River (44), the 

uppermost 15cm of the Maastrichtian is heavily bioturbated (109). For this reason we do not 

include Mg/Ca or δ18O data from the uppermost 15cm of the Cretaceous in our composite, 

following Woelders et al. (44). In addition, Woelder et al.’s earliest TEX86 data point (at 18cm 

below the K-Pg boundary) is anomalously high, which could also be the result of sediment 

mixing. As such we also exclude this data point from our compilation.  

We also omit some New Jersey Margin data from ref. (86). Specifically, we do not plot the 

anomalously light data from the indurated or heavily reworked sections at Bass River at and 

above the K-Pg boundary. In addition, we do not plot data from the shallower Ancora hole from 

the same study, at which the uppermost Maastrichtian cooling seen elsewhere on the New Jersey 

margin appears to be missing. This, we suggest, may be the result of a fall in sea level of ~50 m 

in the very latest Maastrichtian C29r, as indicated by benthic foraminiferal assemblages and 

planktic:benthic foraminiferal ratios (109-111) at the downslope Bass River site. Since prior to 

this sea level fall the estimated water depth at Ancora was ~45m (86), it is likely that such a 

sizeable sea level change would have exposed Ancora to erosion, especially since rip-up clasts at 

many New Jersey margin sites at this time suggest the area may have been subject to tsunami or 

megastorm events (109). The absence of a discrete spherule bed at Ancora despite its presence at 

Bass River downslope (110) supports this interpretation.  

Finally, as already discussed in the main text, two proxy types (fish teeth d18O and bulk 

carbonate d18O) record dynamics unique to that proxy type for reasons that we suspect are due to 

biological responses of the living organisms to life in the early Paleocene Ocean (Fig. S10c, S11, 

S12), and are thus excluded from the global temperature compilation. In the case of the d18O of 

fish teeth, this proxy alone (from a single site) indicates an average warming of up to 4-5°C 

during the first 100,000 years of the early Paleocene as compared to background values of the 

uppermost Cretaceous (Fig. S10c). This would be an extraordinarily large and prolonged 

warming event to miss in other proxies, especially given the exceptional preservation of 

carbonate (for instance) in the earliest Paleocene (112), and would be similar in magnitude to the 
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largest known global warming event of the Cenozoic –the Paleocene Eocene Thermal 

Maximum– which is readily detected across a range of temperature proxies and sites (113). In 

addition, faunal analysis of dinoflagellates from the very same locality suggest the occurrence of 

cold-water taxa multiple times over the same interval (114), contradicting the fish tooth d18O 

signal, although this signal might also reflect biology (high-latitude origins) more than 

temperature. Thus, we suspect that fish shifted their depth habitat shallower on average in the 

earliest Paleocene in response to changing environmental conditions. There is also a change in 

the dominant fish tooth types making up ichthyolith debris in open ocean sites across the K/Pg 

boundary (115) and a wholesale turnover in near coastal taxa (116, 117), and the new dominant 

taxa may have simply occupied a different depth habit than the former dominants.  

Similarly, bulk carbonate records show unique dynamics (i.e., high amplitude oscillations in 

d18O; Fig. S11-S12) during an interval with large amplitude oscillations in the nannoplankton 

species comprising the majority of deep sea carbonate oozes (e.e., Figs. 3-4).  Although bulk 

carbonate d18O oscillations are coherent across sites (Figs. 2, S11-S12), and generally correspond 

to turnover in the dominant nannoplankton taxa present (Figs. 3 & 4) and do not match 

temperature dynamics in any other temperature proxy (Figs. S1-S16). This and the conflict with 

stable d18O values in planktonic foraminifera from the same time period and locations (including 

species specific records and bulk foraminiferal records, Fig. 4), further suggests that bulk 

carbonate is not a reliable temperature proxy at this time. We therefore suspect this dynamic 

reflects the changing composition of the carbonate ooze (although it is perplexing to see the 

oscillations more strongly expressed in d18O than in d13C), rather than a temperature signal not 

capture by single (and bulk) records of planktonic foraminifera from the same time and place.  

For these reasons, both fish teeth and bulk carbonate d18O values were excluded from estimates 

of global temperature change. 

 Four records are provided here for the first time as part of this global compilation and 

include benthic foraminiferal d18O records from ODP Site 1210 (Table S5), ODP Site 1262 

(Table S6), DSDP Site 465 (Table S7), and benthic foraminiferal and bulk carbonate d13C and 

d18O records from ODP Site 1267 (Table S8). The carbon isotope records from the first three 

sites (Tables S5-S7) were published in Alegret et al. 2012 (29). The data from ODP Site 1267 is 

being published here for the first time, and was generated at the University of California Santa 

Cruz, after the methods described in Alegret et al. 2012 (29).  This record (also shown in Fig. 
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S1c) is expanded across the very earliest Danian, as is also apparent from XRF core scanning 

comparisons of ODP Site 1267 vs. 1262 in Westerhold et al. 2008 (8). 

 

 

 

LOSCAR earth system modeling  

We use the LOSCAR (Long-term Ocean-Sediment CArbon Reservoir, v 2.0.4 (118)) carbon 

cycle model to investigate the range of pCO2 change caused by several possible scenarios of 

Deccan volcanic degassing of carbon and sulfur volatiles, in combination with pelagic calcifier 

extinction and organic carbon export reduction at the K/Pg boundary.  

The Paleogene configuration of LOSCAR featuring a Tethys ocean basin (118) was 

employed, incorporating the modifications detailed in (112) and described briefly here as 

follows. Equilibrium constants for carbonate chemistry calculations were determined for K/Pg 

seawater [Mg2+] and [Ca2+] using Hain et al’s MyAMI-based corrections (119). A [Mg2+] of 42 

mmol/kg and [Ca2+] of 21 mmol/kg were used for all simulations. Seafloor bathymetry was more 

finely subdivided into 100m depth intervals, increased from the standard 500m interval. The 

exponential constant (nSi) used in the silicate weathering feedback equation (after Walker and 

Kasting (120)) was 0.6 in all simulations, which is the strongest weathering feedback considered 

by Uchikawa and Zeebe (121). We used this strong silicate weathering feedback to reflect the 

presence of easily-weathered Deccan basalt exposure at low latitudes during our interval of 

interest. A pre-event baseline pCO2 of 600 ppm was used after Henehan et al. (112).  

SO2 degassing from Deccan volcanism (and the impact) is thought to be converted to 

sulfuric acid in the atmosphere (H2SO4) and subsequently rain out onto the Earth’s surface (122). 

The portion falling into seawater would have rapidly dissociated to sulfate anion (SO42-). This 

addition of an anionic salt reduces the negative charge deficit of the conservative salts, i.e., total 

alkalinity (TA). Since neither sulfur nor sulfate is a tracer in LOSCAR, we simulate the 

acidification of the oceans through sulfate addition by prescribing an equivalent reduction in 

total alkalinity (TA, which is a tracer in LOSCAR) as 2 mol TA for every mol S emitted, as 

sulfate is a divalent anion. This TA reduction is applied to the surface ocean reservoirs only, but 

is subsequently mixed throughout the ocean due to vertical mixing and thermohaline circulation 
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in LOSCAR. A similar approach was taken by Tyrrell et al. (123) when modelling the influx of 

bolide-derived SO2 release at the K/Pg boundary.  

Three aspects of the LOSCAR modeling were poorly constrained by the available empirical 

data (biological change, outgassing volume, climate sensitivity) and we addressed this 

uncertainty by modeling a range of scenarios in each case. We discuss each aspect in turn. 

In order to include the biological effects of the mass extinction of many marine taxa and 

most marine pelagic calcifiers at the K/Pg boundary on the marine carbon cycle, we had to 

specify a percentage change in the export of organic carbon and of carbonate from the surface to 

deep ocean and in the rate of organic matter recycling in the water column. Although it is widely 

recognized that the K/Pg mass extinction affected all three aspects of the marine carbon cycle 

(i.e., 124), the amount and duration of change in each continues to be an area of active research 

(26, 29, 86, 89). As a result, we decided to explore the effects of varying each of these 

parameters on observed changes in temperature, the surface-to-deep d13C gradient, and on 

carbonate saturation state in the ocean for each volcanic emission scenario. During the 

exploration of varying combinations of biological change, we assumed a climate sensitivity of 

3°C/doubling (consistent with early Paleogene proxy estimates, as in 125), a high Deccan trap 

total outgassing volume (9545 Gt C, 8500 Gt S), and an immediate gradual taper back to pre-

event conditions over 1.77 myr beginning in the earliest Paleocene.  

We began our parameter exploration focusing on Case 1 outgassing (Leading: 87% prior to 

impact) and exploring a range of changes in pelagic organic carbon export (50-70% decrease) 

and carbonate export (15-25% increase in the ratio of CaCO3:Corg, resulting in a 35-65% 

reduction in pelagic CaCO3 export flux) (Fig. S27). These were coupled to an increase in shallow 

water remineralization (the fraction of organic carbon export that is remineralized in the 

intermediate ocean reservoirs rather than the deep) from 78% prior to the K/Pg impact to 95% 

following the K/Pg impact. A parameterization of -50% Corg, +15% CaCO3:Corg rain ratio (i.e., a 

42.5% reduction in total carbonate export), with 95% shallow water remineralization post-impact 

produced early temperatures similar to empirical records (Fig. 1, S27). While this combination 

had relatively modest effects on the carbonate saturation state of the deep ocean (Fig. S27), it 

failed to fully collapse the d13C gradients between the surface and deep waters as is observed in 

empirical records (Fig. 2) even accounting for biological change (89).  Notably, variation in 

remineralization rate had a relatively minimal effect on CO2, although more remineralization did 
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help decrease the d13C gradient and a 95% post-K/Pg remineralization rate was used in all 

subsequent simulations (Fig. S28). With this parameter exploration in hand (Fig. S27-S28), we 

choose a Case 1 (Leading) biological parameterization -50% Corg, +15% CaCO3:Corg rain ratio) 

with 95% shallow remineralization (Fig. 1). 

All Deccan Trap outgassing scenarios explored in this research (i.e., those in Fig. 1) assume 

an additional K/Pg boundary impact degassing of 325 Gt S and 425 Gt CO2 (126). We explored 

whether this impact degassing accounted for the small boundary spike in atmospheric pCO2 in 

our models by running our favored Case 1 biological scenario with and without impact degassing 

(Fig. S29).  Due to its very small volume, impact degassing has an almost negligible effect on 

atmospheric CO2 concentrations, and the most significant boundary feature in all our models is a 

result of the instantaneous collapse of the biological pump (similar feature simulated by 

biological pump change in Beerling et al. (127)). One boundary phenomenon not included in our 

modeling is the loss and regrowth of the terrestrial biosphere (128).  Estimates for the duration of 

this vary but are on the scale of several thousand years to 10,000 years (128, 129). The short end 

estimates are very short relative to our model duration and time step, and the resolving power of 

most of our empirical records, and would have been be removed from the model in few time 

steps after being introduced. As a result, the very rapid loss and regrowth of the terrestrial 

biosphere was excluded from our simulations to avoid model integration issues. A second 

boundary phenomenon not included in our modelling is the hypothesized dissociation of gas 

hydrates  (130, 131) as a result of the continental shelf slope failure (47-49). Gas hydrates were 

excluded because the carbon emission estimates are relatively small (300-1300 GtC (130)). At 

the lower end estimate, these emissions match that of the boundary impact degassing which had 

no discernable effect on model behavior (Fig. S29). At the upper end, they would effectively 

increase the post-impact CO2 release in a Case 2-like scenario by 25-60% should result in visibly 

elevated temperatures given the short time scale of release. As this is not generally observed in 

the empirical temperature estimates (Fig. 1), we considered the lower end estimates for methane 

hydrate release as more likely and, hence, we did not included this factor in the modeled 

scenarios which were evaluated primarily on the global temperature change record in Fig. 1. That 

said, a shortcoming of the current series of LOSCAR model simulations (Fig. S27-S35) is that 

none of the simulations fully collapse the surface to deep carbon isotope gradient without 

oversaturating carbonates throughout the water column (i.e., see 70% Corg reduction scenario in 
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Fig. S27). While this could reflect the low vertical spatial resolution of the model (i.e., similar 

model parameters do collapse carbon isotope gradients in cGENIE), even a small contribution of 

dissociated methane hydrates could fully collapse the carbon isotope gradient in LOSCAR (130). 

Because we use a global temperature compilation as our primary test to distinguish amongst 

Cases 1-4,  we explore the effect of the extreme ends of Deccan trap outgassing scenarios (4090-

9545 Gt C and 3200-8500 Gt S (66, 132, 133)) and climate sensitivity from 2°C/doubling to 

4°C/doubling, with 3°C/doubling consistent with early Paleogene proxy estimates (125) (Fig. 

S30). The temperature range for Case 1 under differing combinations of total outgassing volume 

and climate sensitivity in Fig. S30 is the same as that shown in Fig. 1. 

For Case 2 (50/50), we began the biological parameter exploration around the best Case 1 

outgassing scenario exploring a range of Corg change (-25 to -60%) and CaCO3:Corg rain ratio 

change (no change up to +40%) (Fig. S31). To our surprise, the best scenario was identical to our 

Case 1 exploration: -50% Corg, +15% CaCO3:Corg rain ratio, with 95% shallow water 

remineralization.  As in Case 1, we then explored the effect of the extreme ends of Deccan trap 

outgassing and climate sensitivity on this scenario (Fig. S32), with the temperature range in Fig. 

S32 for Case 2 the same as that shown in Fig. 1. For Case 3 and 4, we simply used the best-case 

biological scenario from Case 1 & 2 and explored the effect of changing outgassing and climate 

sensitivity in Figs. S33 and S34 respectively. 

To simplify the model exploration and minimize the danger of overfitting, we assumed the 

same time scale of biological change for all modeled scenarios: an instantaneous biological 

change at the K/Pg boundary tapering back to the pre-extinction levels of organic carbon and 

inorganic export (and rates of remineralization) over the subsequent 1.77 myr.  There are 

multiple possible timescales indicated by the empirical records, including i) a ~400 kyr low 

followed by a ~400 kyr taper back to pre-event levels based on the duration of the peak 

abundance of the coarse fraction (i.e., planktonic foraminifera fraction) and subsequent recovery, 

as in Hull et al. (22) (Fig. 2); or ii) a ~800 kyr to million year recovery similar to changes in the 

relative deposition rates of nannoplankton (Fig. 2); or iii) several million years similar to 

carbonate deposition rates (8, 124), or iv) 1.77 million years based on the most recent estimate 

for the timing of biological pump recovery (89).  To choose among these different scenarios, we 

simulated multiple recovery scenarios and timescales (Fig. S35) and found that a protracted 
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recovery of the biological pump, combined with an instantaneous onset of the biological 

recovery, led to temperature changes most consistent with the empirical records (Fig. 1).  

 

 

LOSCAR Modelling and the Schoene et al Timing of Deccan Trap Emplacement  

As our initially modelling was being finalized, Schoene et al. (58)  published a new 

hypothesis for the timing of Deccan Trap emplacement. The Schoene et al. emplacement 

scenario is similar to the 50/50 Case 2 scenario, in that there are roughly equal volumes of lava 

emplaced prior to and following the KPg impact, but differs from traditional hypotheses 

regarding the timing of emplacement. Namely Schoene et al. show (in Schoene et al. 2019, Fig. 

2) that the highest pre-impact emplacement occurred just 20-60 kyrs prior to the impact and most 

post-impact emplacement occurred within several hundred thousand years post impact and 

hypothesize that this emplacement coincided with the degassing (and environmental impacts) of 

the Deccan volcanism. As Schoene et al. (58) recognized, without a commiserate increase in 

terrestrial weathering, this scenario results in appreciable warming of 2°C (Fig. S36), that does 

not appear in any of the compiled temperature records (Figs. S1-S16). In addition, it leaves far 

too little CO2 to drive the late Cretaceous warming event of 2°C given current estimates of total 

outgassing (Fig. S36), and although increasing total outgassing would solve this issue, it would 

result in an even greater estimated temperature change just prior to impact. Increasing terrestrial 

weathering in-step with volcanic degassing and emplacement would negate the warming effect 

of Deccan volcanism (Fig. S37) as hypothesized by Schoene et al., but should be detectable in a 

negative carbon isotope excursion in the surface and deep ocean just prior to impact, with is not 

observed (Fig. S37 vs. Fig. 2).  One line of evidence Schoene et al. point to for the plausibility of 

increased weathering in the latest Cretaceous prior to impact is the decline in osmium isotopes 

just prior the boundary (58). Although this decline in osmium isotopes has classically been 

attributed to the impact, with downcore smearing due to bioturbation, Schoene postulated it 

could be reflect increased weathering in-step with very latest Cretaceous Deccan Trap volcanism 

(58).  We find this explanation unlikely. The osmium isotope record declines exactly in-step with 

the iridium (and osmium) anomaly (69), a coincidence only possible if both are emplaced in 

sediments at the same time. If the osmium isotope decline began prior to the impact (and iridium 

emplacement) then the osmium isotope decline should appear to extend further back into the 
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Cretaceous than the iridium anomaly, given that both are mixed by sediment mixing (134), but 

this is not observed (69). In short, although we find the Case 2 scenario plausible (Fig. 1), we do 

not find the timing or mechanisms proposed by Schoene et al. to be feasible given the data 

explored here. 

 
Biological change quantification 

We considered the relationship between Deccan volcanism and impact and the ecological 

and evolution of marine species in one of three primary ways: i) indirectly through tracers of the 

carbon cycle (i.e., d13C, carbonate deposition, carbonate preservation, etc.) at Sites U1403 and 

1209; ii) directly through microfossil records at Sites U1403 and 1209; and iii) directly through a 

literature search of biological dynamics from the latest Cretaceous through earliest Paleocene 

(Table S1).  In this section we discuss the methods used to collect new microfossil records from 

IODP Site U1403 and ODP Site 1209. 

Sedimentary preservation at Site U1403 favored the preservation of calcareous nannofossils, 

benthic foraminifera and ichthyoliths over other microfossil groups. Silica preservation was 

generally poor during this interval thus precluding detailed study of radiolarian or diatom 

dynamics (1). The same was true of organic matter preservation, ruling out dinoflagellates (Table 

S26) and meaningful biomarker analysis (Table S28). Prior to the K/Pg impact and throughout 

much of the Paleocene, carbonate preservation was also poor enough to dissolve nearly all 

planktonic foraminifera, precluding detailed faunal studies of planktonic foraminifera, due to the 

depth of the carbonate compensation depth relative to Site U1403. Ostracods were not studied in 

detail at Site U1403, but at the nearby Site U1407 a study of late Cretaceous through Paleocene 

faunal dynamics reveled no increase in extinction rates across the K/Pg boundary relative to 

background rates (135). 

Of the three potential groups at Site U1403 for detailed biotic study (calcareous 

nannoplankton, benthic foraminifera, and ichthyoliths), we investigated two: calcareous 

nannoplankton and ichthyoliths. Calcareous nannoplankton provide key biostratigraphic control 

on Site U1403 due to the preservation and abundance. Large amplitude oscillations in bulk 

carbonate d18O in the earliest Danian at IODP Site U1403 and ODP Site 1209, an interval known 

for rapid faunal change in both nannoplankton and foraminifera, led us to ask whether the d18O 

signal might simply reflect the dominance and turnover of successive nannoplankton clades. To 
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test this, high resolution nannoplankton assemblage counts were carried out as described by 

Bown (20) at the University of College London (Site U1403; Table S17) and Penn State 

University (Site 1209; Table S18). Namely, for each sample listed at least 300 nannoplankton 

were counted from successive, randomly chosen, fields of view of smears slides. At Site 1209, 

additional diversity scans of 50-fields of view were carried out to account for rare taxa, which 

are indicted with an ‘x’ in Table S18. Characteristic taxa at Site U1403 are show in Figure S23.  

Because different workers collected the data at Site 1209 (JS, Penn State) and Site U1403 (HK 

and PB, at University College London) there are slight differences in taxonomy (e.g., 

Coccolithus cavus and Coccolithus pelagicus are grouped at Site 1209), although every effort 

was made to minimize differences in taxonomic concepts and naming.  In both sites, reworking 

across the boundary (and downcore) was noted by a comparison of Cretaceous, Survivor and 

Incoming taxa and of the biostratigraphic age of rare down-smeared individuals (at Site 1209: 

Fasciculithus, Sphenolithus primus, and Cruciplacolithus edwardsii).  

We also generated new records of the mass accumulation rate of ichthyoliths at Site U1403 

as follows. Bulk samples were dried, weighed, and digested with 5% acetic acid. All ichthyoliths 

in the >106 µm size fraction were subsequently picked to determine the ichthyoliths per gram 

sediment (methods as detailed in 136). The mass accumulation rate of ichthyoliths was then 

determined using the new cyclostraigraphic age model (i.e., Table S29) and a constant (1.08 

g/cm3) or variable dry bulk density (linearly interpolated from shipboard measurements). 

Ichthyolith mass accumulation rates were relatively insensitive to the dry bulk density used 

(Table S29), and the constant dry bulk density calculation is figured in Fig. 3. 
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Supplementary Discussion 
 

Biological change in the Ocean 

Deccan Trap outgassing in the latest Cretaceous is notable for the biological impacts it 

did, and did not, have on marine biota (Table S1). Biogeographic range changes in the late 

Cretaceous includes the extension of tropical and subtropical plankton to higher latitudes during 

peak warming (137). At the same time, open ocean calcareous phytoplankton community 

structure suggests increased oligotrophic conditions (138). In our records, fish tooth abundance 

increased at Site U1403 in step with warming (Fig. S21, Table S29) and decreased at the K/Pg 

boundary. In contrast to abundant evidence for ecological responses to Deccan Trap outgassing 

in the marine realm, there is no evidence for increased extinctions in the widespread open ocean 

taxa used for biostratigraphy (e.g., foraminifera, coccolithophores, dinoflagellates, ammonoids, 

ichtyolitahs, etc) as us apparent from the scarcity of biostratigraphic markers. In planktonic 

foraminifera, the single marker during this period is a short-lived species (Plummerita 

hantkeninoides) that originates in C29R and goes extinct at the K/Pg boundary. Given the intense 

interest pertaining to the timing and consequences of volcanism in the K/Pg boundary extinction, 

increasing age control around the boundary is a top priority. If Deccan volcanism caused 

significant extinctions, these would provide greater biostratigraphic control during this key time 

interval, and the lack of markers based on last occurrences is thus notable and underscores the 

minimal effect of the late Cretaceous warming on the viability of species. It has been argued that 

a mass extinction did occur in the shallow water marine fauna of Seymour Island (95), but more 

extensive records do not support this (139). In addition, the relatively modest decline in marine 

d13C during late Maastrichtian warming is of the magnitude expected for a volcanogenic driver 

(Figs. 2-4, S27-S35), without appreciable feedbacks from the marine carbon pump (organic 

and/or inorganic). Some studies have argued on the basis of observed ecological changes that 

Deccan volcanism has destabilizing effect on communities (140), particular in terrestrial 

communities (141, 142), but the rapid rebound of marine plankton ranges and community 

structure within the latest Cretaceous and the lack of pronounced carbon cycle feedbacks in d13C 

suggest otherwise for the ocean.  

The K/Pg boundary differs by coinciding with extensive evidence for marine extinctions, 

including the extinction of ammonites and mosasaurs (143, 144) and the near complete 
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extinction of planktonic foraminifera and coccolithophores (>95% species-level extinction) (39, 

145-147). At Site U1403, only the coccolithophores could be analyzed throughout the uppermost 

Cretaceous and lowermost Paleocene due to preservation, but a striking reduction in 

nannoplankton abundance, the disappearance of most Late Cretaceous species (there is some 

cross-boundary reworking; reworked specimens identified by criteria as in (19, 20)), and the first 

appearance of small, abundant calcispheres (calcareous dinoflagellates) all clearly coincide with 

the spherule layer (Fig. 3,4, Tables S17, S24, S25). The near-complete extinction of 

coccolithophorids likely accounts for the ~500,000 year interval in the earliest Paleocene when 

bulk carbonate d18O records (typically a tracer of mixed-layer temperatures by coccolithophores) 

diverge from all other marine temperature estimates at Sites 1209, 1262, 1267 and U1403 (Figs. 

3, 4, S11, S12). At Sites 1209 and U1403, the incoming Cenozoic taxa form a succession of 

acmes, with miniscule early forms (<3 µm) quickly replaced by larger taxa within the same 

lineages (e.g., Cruciplacolithus, Prinsius, Coccolithus), with the termination of rapid biotic 

succession coinciding with the stabilization of the bulk d18O values, similar to the rapid 

succession of foraminiferal taxa in the same interval (Fig. S20) (20, 22, 40, 148). 

Following the impact, the collapse in d13C between planktonic and benthic species was so 

extraordinary when first observed that a total cessation of marine productivity was hypothesized 

(the Strangelove Ocean hypothesis) (149). Although more modest changes in the biological 

pump are now thought to account for the pattern (26, 37, 38, 86, 89, 150), this collapse to 

reversal in carbon isotope gradients stands out as the largest carbon cycle perturbation in the 

pelagic carbonate fossil record for over 150 million years. Following the impact, surface to deep 

ocean d13C gradients recovered to ~75% of pre-extinction values within ~500,000 years, 

coinciding with the first major change in plankton community structure (39). Notably, the timing 

of d13C gradient collapse and partial recovery occurs in step with changing carbonate 

preservation conditions in the Atlantic and Pacific Oceans  (Fig. 2, (38)) and major changes in 

plankton community structure (39). In the Late Maastrichtian, Site U1403 appears perched just 

above the carbonate compensation depth (i.e., the maximum depth below which carbonate is not 

preserved in sediments). Moderately well-preserved coccolithophores are abundant but the 

relatively dissolution-prone planktonic foraminifera are almost entirely absent (Figs. 3, 5)(1) 

until the earliest Paleocene when sediments go from nearly barren to ~30% planktonic 

foraminifera by weight. The pronounced change in carbonate preservation at Site U1403 reflects 
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a global phenomenon, with distinct improvement in the quality of carbonate preservation in the 

deep-sea and a 1-2 km deepening of the CCD in the earliest Paleocene (112). However, the wt % 

coarse fraction dynamics differs among the three best resolved sites (Fig. 2), possibly due to 

orbitally paced changes in circulation.  

 

Exceptions to the Global Temperature Compilation 

The global temperature compilation documents fairly stable, roughly Cretaceous-like 

temperatures in the earliest Paleocene.  There are three exceptions to this statement that 

necessitate discussion: very brief excursions, the Dan-C2 event, and the long-term warming 

trend.  

The time-integrated nature of most of the samples in the compilation mean that they do 

not capture very short-term excursions including the impact winter and warming rebound.  A 1-

cm thick interval at most deep sea sites in the early Paleogene spans several thousand years due 

to low sedimentation rates, and up to 10,000 years when one includes sediment mixing (134). 

Recent modeling work has emphasized the severity of the impact winter due to sulfur (151) and 

soot (152) in the years following the impact. This modeling work is generally consistent with 

empirical evidence from (TEX86) for impact winter in the months to decades following the 

impact in highly expanded, coastal sections (99, 100). The same studies provide evidence of a 

warming overshoot of first few thousand years following the impact winter (99, 153). This few 

thousand year-long warming of ~1-2°C is consistent with a biospheric driver (like the loss and 

regrowth of biomass). Interestingly, bulk carbonate records of d13C appear to have a two-step 

decline in values after the K/Pg impact, with the first step lasting a few thousand years (Figs. 3,4, 

S38) consistent with a short-lived perturbation like the loss and regrowth of terrestrial biomass. 

However, planktonic foraminifera from the same sites do not show this two-step d13C drop (Fig. 

4), either because foraminiferal records are less temporally resolved (with individuals carried 

beyond their stratigraphic range due to mixing (134)) than bulk carbonate or because the bulk 

carbonate record reflect changes in the composition of carbonate fine fraction rather than the 

global carbon cycle (75). Similarly, TEX86 records from shallow coastal locations must be 

interpreted with caution due to the confounding effects of different environmental factors on the 

distribution of archaeal GDGTs , and the possibility of terrestrial sources of GDGTs not captured 

by the BIT index (154, 155), like oxygen concentration (156) and ammonia oxidation rate (157) 
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both of which can vary widely in shallow water settings. Regardless, if a brief post-impact 

warming of a few thousand years did occur as in (99, 153), it cannot be attributed to Deccan 

degassing and subsequent weathering feedbacks because the rate at which the warming signal is 

removed (less than one thousand years) is far too fast for the weathering feedbacks that typically 

drawdown volcanogenic CO2 inputs. This point is important because it also means that it is very 

unlikely that any very short warming burst was driven by Deccan Trap volcanism. 

The Dan-C2 event (recognized on the basis of a carbon isotope excursion in some 

localities) is hypothesized to be an earliest Paleocene global warming event that occurs ~250,000 

years after the K/Pg boundary (84, 158). The magnitude and duration of the Dan-C2 event would 

be consistent with a Deccan volcanism related driver if outgassing were delayed relative to the 

impact as previously hypothesized (159), although the evidence for global warming during the 

Dan-C2 remains scant. This is an intriguing possibility, and would tie Deccan volcanism to the 

recovery of biotic diversity rather than the loss, as this event occurs near a turning point in many 

geochemical and assemblage records from the open ocean, as they begin to return to pre-impact 

like values and diversities. The appeal of this idea is that volcanic outgassing from a large 

igneous province is hypothesized to drive some later hyperthermal events (like the PETM (160)).  

However, as we show in our modeling here, extensive changes to the carbon cycle due to the 

K/Pg mass extinction should mask and/or mute the climate effect of volcanic degassing during 

the earliest Paleogene (Fig. 1, S31-S33).  However, it is possible that if Deccan outgassing 

occurred over a relatively shorter time interval than we modeled, and at a turning point in the 

strength of the biological pump, that it would have the carbon cycle effects attributed to the Dan-

C2, with the relatively muted (or non-existent) evidence for coincident global warming that is 

observed (84, 158).  

Finally, perhaps the most unexpected finding of our modeling regards the gradual long-

term warming trend in the early Paleocene (Fig. 1) of about 1°C over the first 600,000 years. Our 

modeling demonstrates that the recovery of the biological pump in the aftermath of the K/Pg 

extinction results in a gradual increase in atmospheric pCO2.  In fact, this effect was so strong, 

that many of the scenarios for the timing of biological pump recovery results in far too sudden 

(and pronounced) warming in the earliest Paleocene (Fig. S35).  The immediate, gradual, and 

prolonged pump recovery (starting immediately in the K/Pg impact aftermath and continuing 

over 1.77 million years) was overall the best scenario for the warming trends observed. The 
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difference in amongst biological pump recovery scenarios in the pattern of ocean saturation state, 

pCO2, and temperature change (Fig. S35), suggest a clear path forward for advancing our 

understanding of the timing of marine carbon cycle recovery after the K/Pg impact. 
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B. 

 
C. 

 
 
Fig. S1. 
Temperature records from Walvis Ridge sites: (A) DSDP Site 525 (82), (B) DSDP Site 528 (81), 
and (C) ODP Site 1267 (this study), on unified age models and a common d18O-temperature 
equation. 
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C. 

 
 
Fig. S2. 
Temperature records from Walvis Ridge sites: (A) ODP Site 1262 (42), (B) ODP Site 1262 (this 
study), and (C) ODP Site 1262 (89), on unified age models and a common d18O-temperature 
equation. 
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B. 

 
C. 

 
 
Fig. S3. 
Temperature records from Shatsky Rise sites: (A) DSDP Site 577 (33), (B) ODP Site 1209 (13), 
and (C) ODP Site 1210 (this study), on unified age models and a common d18O-temperature 
equation. 
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Fig. S4. 
Temperature records from Shatsky Rise, ODP Site 1209 (A) bulk foraminifera, i.e., 
homogenized 38-125µm sieve size fraction material (this study), and (B) mixed Woodringina 
species (this study), on unified age models and a common d18O-temperature equation. 
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Fig. S5. 
Temperature records from (A) Blake Nose, ODP Site 1049 (84), (B) J-Anomaly Ridge, DSDP 
Site 384 (85), and (C) Hess Rise, DSDP Site 465 (this study), on unified age models and a 
common d18O-temperature equation. 
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Fig. S6. 
Temperature records from Maud Rise ODP Site 690 (A) (83), (B) (161), and (C) (91), on unified 
age models and a common d18O-temperature equation. Note for data in panel A, ∆Temperature is 
calculated relative to a measurement of Nuttallides truempyi at the K-Pg boundary from ref. (91). 
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Fig. S7.  
Temperature records from (A) the Williston Basin leaf margin data set (91, 102-105), (B) from 
Hell Creek, clumped isotopes of mollusks (96), and (C) Dawson Creek d18O of paleosols (92, 
93), on unified age models. 
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Fig. S8. 
Temperature records from Bass River (A) d18O of foraminifera (86), (B)TEX86 (99), and (C) 
mixed proxies (101), on unified age models and a common d18O-temperature equation. 
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Fig. S9. 
Temperature records from (A) Bajada del Jaguel (44), and (B) Brazos River (100), on unified 
age models. 
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Fig. S10. 
Temperature records from Seymour Island, Antarctica (A) d18O of mollusks (95) and (B) 
clumped isotopes of mollusks (162), and fish teeth at El Kef (163), on unified age models. 
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Fig. S11. 
Temperature records from bulk carbonate at (A) IODP Site 1403 (this study), (B) IODP Site 
1262 (41, 89), and (C) IODP Site 1267 (this study), on unified age models and a common d18O-
temperature equation. 
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Fig. S12. 
Temperature records from bulk carbonate at (A) ODP Site 1209 (this study), on unified age 
models and a common d18O-temperature equation. 
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Fig. S13. 
Comparison of all foraminiferal temperature datasets (shown individually in Figs. S1-S12) 
versus the global temperature composite, including (A) benthic foraminifera d18O based 
temperature estimates, and (B) planktonic foraminifera d18O based temperature estimates, on 
unified age models and a common d18O-temperature equation. 
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Fig. S14. 
Comparison of all (A) mollusk temperature proxy data, (B) TEX86 temperature proxy data, and 
(C) terrestrial temperature estimates, versus the global temperature composite (as shown 
individually in Figs. S1-S12), on unified age models and a common d18O-temperature equation. 
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Fig. S15. 
Examination of proxies likely not tracking temperature in the earliest Paleocene due to extinction 
related changes in communities including (A) bulk carbonate d18O, and (B) fish tooth apatite 
d18O (163),  on unified age models and a common d18O-temperature equation. 
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Fig. S16. 
Global temperature composite across the K/Pg with a 60pt fast Fourier transform for (A) the full 
time window, and (B) the K/Pg boundary proper.  Data as in Fig. S1-S12, but shown by dataset 
and proxy type, and excluding bulk carbonate d18O and fish teeth d18O which are unlikely to be 
tracking regional temperature change (as shown in Fig. S15). Note that the smoothing approach 
used naturally weights to the most data-dense records although most individual records of 
various proxy types do show the major features of the compilation (Figs S1-S12), and it does not 
account for differences in temporal or paleotemperature proxy uncertainty. 
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Fig. S17. 
A long, high-resolution Cretaceous baseline at IODP Site U1403 evidences the unusually 
large perturbation of the Cretaceous-Paleogene impact. Multiproxy records from IODP Site 
U1403 provide the first expanded (~3 million year) Cretaceous paleoceanographic  baseline with 
centimeter scale resolution from a site with an intact K/Pg boundary spherule layer include (a) 
CaCO3 mass accumulation rate (green) and wt % CaCO3 (blue) inferred from XRF core scanning 
of Ca and Fe and calibrated with shipboard and mass-spec based measurements of wt % CaCO3 
(light blue), (b) wt % course fraction record from washed core samples (blue) with the interval 
barren to intact planktonic foraminifera indicated in brown and iridium concentrations in yellow, 
and (c) d13C of bulk carbonate (green). The light orange band indicates the K/Pg boundary and 
the pale indigo bar indicates the interval of Deccan Trap emplacement. Data in Tables S12, S15, 
S19, S20, S21. 
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Fig. S18. 
New and published (13-15, 41, 42, 89) high resolution bulk carbonate and benthic foraminiferal 
carbon and oxygen records and weight percent coarse fraction records across the K/Pg boundary 
at the three focal sites (J-Anomaly Ridge, Shatsky Rise, and Walvis Ridge), focused on the last 
1.5 million years of the Cretaceous and first 2 million years of the Paleocene. 
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Fig. S19. 
Iridium anomalies and the d13C gradient collapse in the North Atlantic and Central 
Pacific.  Iridium anomaly (red) and d13C excursion (green) at (a) Site U1403, Newfoundland, 
aligned to core photo of the impact layer, and (b) Shatsky Rise in the North Pacific (iridum 
anomaly from DSDP Site 577; d13C from ODP Site 1209).  
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Fig. S20. 
Early Paleocene carbon and oxygen isotopes in carbonates versus community turnover in 
nannoplankton and planktonic foraminifera at IODP Site 1209.  Planktonic foraminifera data 
from Hull et al. (22). 
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Fig. S21. 
IODP Site U1403 K/Pg boundary records from Figs 2,3 with ichthyolith accumulation rate 
records (far right). 
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Fig. S22. 
Correlation of Site U1403 to Site 1209, based on iron counts from XRF scanning (depicted as 
log Fe) and sedimentary banding patters, supported by magnetic susceptibility (Mag. sus.) 
variations. In the lower panel, red bars indicate strongly expressed bands interpreted as long-
eccentricity maxima and green and red numbers mark interpreted short-eccentricity (~100 kyr) 
extremes (12). Black dashed lines indicate the tie-points used for the construction of the age 
model, grey dashed lines indicate additional correlation features. K/Pg: Cretaceous-Paleogene 
boundary. 
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Fig. S23. 
Calcareous nannofossils from IODP Site U1403. 
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Fig. S24. 
Magnetostratigraphy defined for the late Cretaceous to early Paleogene period, covering the K/Pg 
boundary. All three main types of data obtained to define the magnetostratigraphy are represented, 
for each one the Zijderveld plot, the stereographic projection and the magnetization versus 
alternating field are given. 
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Fig. S25 
Osmium isotope record from IODP Site U1403, with 95% confidence intervals. 
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Fig. S26 
Osmium isotope record from Site U1403 relative to published records used for isotope 
stratigraphy (68-70), on absolute (a) and floating (b) scales. 
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Fig. S27 
Biological scenarios explored for Case 1. All tests assume enhanced remineralization rates after 
the K/Pg (95% shallow water remineralization post-K/Pg and 75% prior to the K/Pg), impact 
degassing, and a Case 1 outgassing scenario with high Deccan emissions and a climate 
sensitivity of 3°C/doubling.  Biological scenarios explored include a 50-70% reduction in 
organic carbon export and somewhere between no change and a 25% increase in the CaCO3 to 
Corg export ratio. Even though we explored only increases in the CaCO3 to Corg export ratio (to 
minimize the oversaturation of the deep ocean) these scenarios resulted in dramatic declines in 
the total export flux of carbonate to the deep sea due to the reduction of organic carbon (between 
42.5% and 62.5% reduction in CaCO3 export). The best scenario in terms of minimizing the 
increase in deep sea carbonate saturation and the decrease in earliest Paleocene temperatures was 
a 50% reduction in Corg with a 15% increase in the CaCO3:Corg rain ratio (42.5% CaCO3 export 
reduction). 
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Fig. S28 
Exploration of the effect of changes in shallow water remineralization (the fraction of sinking 
organic carbon that is remineralized in the intermediate ocean reservoirs, as opposed to the deep) 
on Case 1.  All tests assume impact degassing, a Case 1 outgassing scenario with high Deccan 
emissions and a climate sensitivity of 3°C/doubling, and a biological change scenario of a 50% 
reduction in Corg with a 15% increase in the CaCO3:Corg rain ratio. The effect of shallow water 
remineralization on the early Paleocene marine carbon cycle in LOSCAR was explored by 
holding remineralization constant across the boundary at 78% (‘No shallow remin. forcing’), 
increasing shallow water remineralization to 86% (‘Half shallow remin. forcing’), 95% 
(‘Shallow remin forcing’), and 99% (‘99% Shallow remin forcing). Because of the relatively 
minimal effect of this factor, our initial scenario (and increase from 78% to 95% at the K/Pg) 
was used in all other modelling scenarios. 
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Fig. S29 
Effect on including or excluding K/Pg boundary emissions of 325 Gt S and 425 Gt CO2 (126) 
from impact degassing on Case 1. Case 1 conditions shown here include a Case 1 outgassing 
scenario with high Deccan emissions and a climate sensitivity of 3°C/doubling, and a biological 
change scenario of a 50% reduction in Corg, a 15% increase in the CaCO3:Corg rain ratio, and an 
increase in shallow water remineralization from 78% to 95% at the K/Pg. Impact degassing has a 
negligible effect on the simulation behavior, and is included in all other model simulations 
explored in this study. 
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Fig. S30 
Effect of volcanic outgassing volume and climate sensitivity on Case 1 simulation behavior. 
Case 1 conditions shown here include a Case 1 outgassing scenario and a biological change 
scenario of a 50% reduction in Corg, a 15% increase in the CaCO3:Corg rain ratio, and an increase 
in shallow water remineralization from 78% to 95% at the K/Pg. High and low Deccan 
outgassing scenarios assume upper and lower end-estimates for total volcanic outgassing 
volumes of 4090 (low) versus 9545 (high) Gt C and 3200 (low)  and 8500 (high) Gt S (66, 132)), 
with climate sensitivities (°C/doubling) as described in the legend. 
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Fig. S31 
Biological scenarios explored for Case 2. All tests assume enhanced remineralization rates after 
the K/Pg (95% shallow water remineralization post-K/Pg and 75% prior to the K/Pg), impact 
degassing, and a Case 2 outgassing scenario with high Deccan emissions and a climate 
sensitivity of 3 ˚C/doubling.  Biological scenarios explored include a 25-60% reduction in 
organic carbon export and somewhere between no change and a 25% increase in the CaCO3 to 
Corg export ratio. Even though we explored only increases in the CaCO3 to Corg export ratio (to 
minimize the oversaturation of the deep ocean) these scenarios resulted in dramatic declines in 
the total export flux of carbonate to the deep sea (between 13.75% and 57.5% reduction in the 
CaCO3 export flux) due to the reduction of organic carbon. The best scenario in terms of 
minimizing the increase in deep sea carbonate saturation and the decrease in earliest Paleocene 
temperatures was a 50% reduction in Corg with a 15% increase in the CaCO3:Corg rain ratio 
(42.5% reduction in CaCO3 export flux). 
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Fig. S32 
Effect of volcanic outgassing volume and climate sensitivity on Case 2 simulation behavior. 
Case 2 conditions shown here include a Case 2 outgassing scenario and a biological change 
scenario of a 50% reduction in Corg, a 15% increase in the CaCO3:Corg rain ratio, and an increase 
in shallow water remineralization from 78% to 95% at the K/Pg. High and low Deccan 
outgassing scenarios assume upper and lower end-estimates for total volcanic outgassing 
volumes of 4090 (low) versus 9545 (high) Gt C and 3200 (low) and 8500 (high) Gt S (66, 132)), 
with climate sensitivities (°C/doubling) as described in the legend. 
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Fig. S33 
Effect of volcanic outgassing volume and climate sensitivity on Case 3 simulation behavior. 
Case 3 conditions shown here include a Case 3 outgassing scenario and a biological change 
scenario of a 50% reduction in Corg, a 15% increase in the CaCO3:Corg rain ratio, and an increase 
in shallow water remineralization from 78% to 95% at the K/Pg. High and low Deccan 
outgassing scenarios assume upper and lower end-estimates for total volcanic outgassing 
volumes of 4090 (low) versus 9545 (high) Gt C and 3200 (low)  and 8500 (high) Gt S (66, 132)), 
with climate sensitivities (°C/doubling) as described in the legend. 
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Fig. S34 
Effect of volcanic outgassing volume and climate sensitivity on Case 4 simulation behavior. 
Case 4 conditions shown here include a Case 4 outgassing scenario and a biological change 
scenario of a 50% reduction in Corg, a 15% increase in the CaCO3:Corg rain ratio, and an increase 
in shallow water remineralization from 78% to 95% at the K/Pg. High and low Deccan 
outgassing scenarios assume upper and lower end-estimates for total volcanic outgassing 
volumes of 4090 (low) versus 9545 (high) Gt C and 3200 (low)  and 8500 (high) Gt S (66, 132)), 
with climate sensitivities (°C/doubling) as described in the legend. 
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Fig. S35 
Biological recovery timescales explored as detailed in the plot legend. All tests assume enhanced 
remineralization rates after the K/Pg (95% shallow water remineralization post-K/Pg and 75% 
prior to the K/Pg), impact degassing, and a Case 1 outgassing scenario with high Deccan 
emissions, a climate sensitivity of 3°C/doubling, a 50% reduction in organic carbon export, and a 
42.5% reduction in CaCO3 export flux.  
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Fig. S36 
Effect of volcanic outgassing volume and climate sensitivity on outgassing scenarios following 
lava emplacement in Schoene et al. (58), using the same weathering feedback common to all 
other simulations. The Schoene degassing timing and volumes are as follows: 20% of emissions 
between 290 and 110kyr before the boundary, 35% of emissions between 60 and 20kyr before 
the boundary, 35% of emissions between 80 and 170 kyr after the boundary, and 10% of 
emissions between 390 and 430kyr after the boundary.  All other factors are as in other 
simulations: a biological change scenario of a 50% reduction in Corg, a 15% increase in the 
CaCO3:Corg rain ratio (a 42.5% CaCO3 export flux reduction), an increase in shallow water 
remineralization from 78% to 95% at the K/Pg, and high and low Deccan outgassing scenarios 
assuming upper and lower end-estimates for total volcanic outgassing volumes of 4090 (low) 
versus 9545 (high) Gt C and 3200 (low)  and 8500 (high) Gt S (66, 132)), with climate 
sensitivities (˚C/doubling) as described in the legend. 
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Fig. S37 
Effect of volcanic outgassing volume and climate sensitivity on outgassing scenarios following 
lava emplacement in Schoene et al. (58), with silicate weathering doubled during the latest-
Cretaceous Deccan pulse to negate warming during that interval. The Schoene degassing timing 
and volumes are as follows: 20% of emissions between 290 and 110kyr before the boundary, 
35% of emissions between 60 and 20kyr before the boundary, 35% of emissions between 80 and 
170 kyr after the boundary, and 10% of emissions between 390 and 430kyr after the boundary.  
All other factors are as in other simulations: a biological change scenario of a 50% reduction in 
Corg, a 15% increase in the CaCO3:Corg rain ratio (a 42.5% CaCO3 export flux reduction), an 
increase in shallow water remineralization from 78% to 95% at the K/Pg, and high and low 
Deccan outgassing scenarios assuming upper and lower end-estimates for total volcanic 
outgassing volumes of 4091 (low) versus 9545 (high) Gt C and 3200 (low)  and 8500 (high) Gt S 
(66, 132)), with climate sensitivities (˚C/doubling) as described in the legend. 
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Fig. S38 
Evidence for the double drop in d13C  in the earliest Paleocene is apparent in the published bulk 
carbonate records of Alegret et al (29), shown above on the age scale used in that paper. 
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Table S1.  
Diagnosing a mass extinction requires identifying an exogenous trigger, linking that trigger to a 
(set of) environmental effects, and linking those environmental effects to extinction. Here we 
provide an overview of some of the relevant literature regarding the timing, environmental 
effects, biotic effects of Deccan volcanism and the Chicxulub impact and the ties between these 
events and the K/Pg mass extinction. This is not a comprehensive review of all literature 
published on the latest Maastrichtian and earliest Paleocene. 
 
Realm Evidence for… Paper Topic Citation Ref. 

Eruptions Deccan: 
Volcanism 

Vast majority of Deccan flows dated to magnetochron 
C29R using U-Pb dating (Schoene et al 2015, 2019), 
K-Ar dating (Chenet et al. 2007), and Ar-Ar dating 
(Renne et al. 2015; Sprain et al. 2019). Early estimates 
of a <1myr duration coinciding with C29R based on 
paleomagnetics, palynology and K-Ar dating 
(Courtillot et al. 1986), were subsequently debated 
(Duncan and Pyle 1988, Courtillot et al. 1988, and 
many others) and only recently confirmed with 
advanced absolute dating techniques in Schoene et al. 
2015, 2019, Renne et al. 2015, and Sprain et al. 2019. 
Notably, earlier idea of three pulses of volcanism (i.e., 
Chenet et al. 2007) not supported by recent U-Pb and 
Ar-Ar work. 

Duncan & 
Pyle 1988; 
Chenet et al. 
2007; 
Courtillot et 
al. 1986, 
1988; Renne 
et al. 2015; 
Schoene et al. 
2015, 2019; 
Sprain et al. 
2019 

(58, 
66, 
67, 

164-
168) 

 

 Magnetochron C29r dated to last ~587 ka (Sprain et al. 
2018) using Ar-Ar dating, overturning shorter 
estimates of Sprain et al. 2014, but within error of the 
GTS 2012 estimate. Key ages from Sprain et al. 2018 
include C30n/C29r reversal ~66.311 Ma, K/Pg ~66.052 
Ma, C29r/C29n ~65.724 Ma. Accordingly, the C29R 
Cretaceous duration is ~259+/-52 kyr and Paleocene 
duration is ~328+/-15kyr (Sprain et al. 2018) 

Sprain et al. 
2014, 2018; 
Gradstein et 
al. 2012 

(59, 
60, 

169) 

  Paleomagnetic secular variation pins short duration of 
individual flows, increasing environmental potential 

Chenet et al. 
2008 (170) 

 
 Outgassing potential calculations of Deccan traps for 

SO2, CO2, Cl 

Chenet et al. 
2009; Self et 
al. 2006, 2008 

(132, 
171) 
(172) 

 
 Hypothesized link between impact and major Deccan 

eruptions based on eruptive volumes; new eruptive 
volume estimates provided 

Richards et al. 
2015 (159) 

 
 Constrain majority of Deccan volcanism to post-K/Pg 

using Ar-Ar dating (Renne et al. 2015; Sprain et al. 
2019) 

Renne et al. 
2015; Sprain 
et al. 2019 

(67, 
168) 

 
 Constrains majority of Deccan volcanism to two pulses 

(one ~30kyr pre-K/Pg, the second ~100 post-K/Pg) 
using U-Pb dates and lava volume estimates  

Schoene et al. 
2019 (58) 

Weathering Deccan: 
Volcanism 

Decrease in Sr isotope ratios (87Sr/86Sr) coincident with 
�18O anomaly in the Cretaceous interval of C29R; 
attributed to Deccan related increase in weathering 

Vonhof and 
Smit 1997; 
Olsson et 
2002 

(110, 
173) 

 

 Declines in osmium isotope ratios in magnetochron 
C29r in sites globally suggestion large scale change in 
terrestrial weathering with Deccan flood basalt 
volcanism 

Ravizza & 
Peucker-
Ehrenbrink 
2003; Paquay 

(68, 
69, 
71) 
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et al. 2008; 
Robinson et 
al. 2009 

  Erosional history of Deccan Traps from structure of 
Western Ghats 

Widdowson & 
Cox 1996 (174) 

 
 Mercury anomaly in Bidart, France, coincides w/pre-

K/Pg cooling interval (w/evidence for dissolution of 
foraminifera); and see subsequent discussions 

Font et al. 
2016a,b; Smit 
et al. 2016 

(175-
177) 

 

 Increased Sr/Ca ratios in latest Maastrichtian (last 200 
kyr) perhaps due to increased chemical weathering 
during Late Maastrichtian warming & cooling in Elles, 
Tunisia 

Stüben et al. 
2003 (178) 

Pre-K/Pg Deccan: 
Environment effect 8°C summer temp decrease (Montana) Tobin et al. 

2014 (96) 

  7°C temp rise & fall (North Dakota) Wilf et al. 
2003 (91) 

  Clay mineralogical evidence for aridity and alkaline 
conditions (Deccan volcanic sediments) 

Samant et al. 
2014 (179) 

  ‘Mock aridity’ due to volcanically influence local 
climate (Deccan sedimentary sequence) 

Khadkikar et 
al. 1999 (180) 

  Intense precipitation inferred from geochemistry of 
inter-basaltic bole beds (Deccan Traps) 

Ghosh et al. 
2006 (181) 

 

 Longer warm interval (>2 myr span) pre-K/Pg 
suggested by Seymour Island flora; cool early 
Paleocene suggested by flora directly countered by 
evidence of no K/Pg temperature change in organic 
geochemical proxies 

Bowman et al. 
2014; Kemp et 
al. 2014 

(182, 
183) 

  High latitude warming (Southern Ocean) coincident 
with Cretaceous interval of C29r 

Tobin et al. 
2012 (95) 

 

 Antarctic sea ice indicator (dinoflagellate species) 
present in Maastrichtian is significantly reduced during 
last ~2 myr before the K/Pg (indicative of significant 
climatic warming; matches longer interval of warmth 
in Seymour Island plants as well) 

Bowman et al. 
2013; 
Bowman et al. 
2014 

(182, 
184) 

 

 Warming (or low oxygen) in Nye Klov, Denmark 
inferred from bryozoan colonial morphology; matches 
stable carbon and oxygen records. In both cases the 
warming occurs right up to boundary (no cooling)  

O’Dea et al. 
2011; Barrera 
and Keller 
1994 

(185, 
186) 

 

 

Regional evidence (biomarker, geochemical and 
benthic foraminiferal assemblage) towards anoxia in 
NW Pacific, New Zealand, and a few Tethyan sections 

Kajiwara & 
Kaiho 1992; 
Kaiho et al. 
1999; Alegret 
& Thomas 
2005; 
Mizukami et 
al. 2013 

(187-
190) 

 

 

Late Cretaceous warming in magnetochron C2r of ~2-
3°C (also called the ‘Brazos Event’) 

Henehan et al. 
2016; 
Westerhold et 
al. 2011; Li 
and Keller 
1998; Barnet 
et al. 2018, 
2019 

(13, 
42, 
43, 
82, 

112) 
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  Increased oligotrophy suggested by nanoplankton 
assemblage structure (North Pacific and other sites) 

Thibault & 
Gardin 2010 (138) 

 

 Deep sea carbonate undersaturation; minor surface 
ocean acidification based on fragmentation and wt % 
CaCO3 records coincident with warming in open ocean 
sites (Henehan et al. 2016); dissolution in Dameron et 
al at Shatsky Ruse begins far earlier (~68-66.Ma) due 
to local changes in water masses 

Henehan et al. 
2016; 
Dameron et al. 
2017 

(112) 

 

 Surface ocean acidification based on robust tests and 
fragmentation during pre-K/Pg cooling two Tethyian 
sites (Punekar et al. 2016) (i.e., opposite signal as in 
Henehan et al. 2016; Dameron et al. 2017) 

Punekar et al.  (191) 

 

 Decrease in detrital magnetite in Bidart, France section 
hypothesized to be consequence of acid rains during 
Deccan volcanism Phase 2 (i.e., the Late Cretaceous 
warming interval 

Font et al. 
2014 (192) 

 
 Late Cretaceous warming of similar scale to Paleocene 

warming events; all (including Late Cretaceous 
warming) hypothesized to be linked to LIPs  

Barnet et al. 
2019 (43) 

Post-K/Pg Deccan: 
Environment effect 

No warming or cooling detected with general timing 
(discussed in Sprain et al. 2019; shown here) in global 
compilation (but see fish teeth; MacLeod et al. 2018) 

This study; 
Sprain et al. 
2019; 
MacLeod et 
al. 2019 

(163, 
168) 

Pre-K/Pg Deccan: 
Biotic change 

Plant immigration & increased diversity (North 
Dakota) 

Wilf et al. 
2003; Wilf & 
Johnson 2004 

(91, 
106) 

  Minor mammalian changes w/climate (body size, 
relative abundance, evenness) (Montana) 

Wilson 2005, 
2014 

(142, 
193) 

  Declining evenness and diversity in salamander & 
salamander-like species, Hell Creek Formations 
(Montana) 

Wilson et al. 
2014 (141) 

 

 
Palynoflora community turnover (Deccan volcanic 
sediments; pre- vs. intertraps) 

Samant & 
Mohabey 
2009; Samant 
& Bajpai 2005 

(194, 
195) 

  Molluscan diversity may have decline in the late 
Maastrichtian (Bay of Biscay) 

Marshal & 
Ward 1996 (196) 

 

 
Local extinction in Antarctic Seymour Island Section 
of marine macro-invertebrates coincident with C29R 
warming; but subsequently debated (Witts et al. 2016; 
Tobin 2017 

Tobin et al. 
2012; 
Zinsmeister et 
al. 1989; Witts 
et al. 2016; 
Tobin 2017 

(95, 
139, 
197, 
198) 

 
 Pole-ward migration of warm water planktic 

foraminifera into shelf setting at Bass River section 
coincident with C29R warming  

Olsson et al. 
2001 (199) 

  Morphological changes in bryozoans at Nye Klov; 
inferred link to environmental change 

O’Dea et al 
2011 (185) 

 

 Upper most Maastrichtian very low diversity shark 
faunas at Stevns Klint (not extinction, species reappear 
in the Danian) attributed to regional environmental 
change (sea level postulated) 

Adolfssen and 
Ward 2014 (200) 
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 Calcareous nannoplankton assemblage change (North 
Pacific and other sites); peaks with temperature 
anomaly & recovers before K/Pg boundary 

Thibault & 
Gardin 2010; 
Thibault and 
Husson 2016 

(138, 
201) 

 

 Geographic range extensions (poleward migration) in 
planktonic foraminifera; recovers before K/Pg 
boundary 

Olsson et al. 
2001; Kucera 
& Malmgren 
1998 

(137, 
199) 

 
 Increased ichthyolith (fish teeth and scale) 

accumulation rates at one site (Site U1403) and 
possibly Gubbio but not others (Sites 596, 886, 1209) 

this study; 
Sibert et al. 
2014 

(25) 

 

 

Reduced population abundance of deep dwelling 
planktonic foraminifera in coastal sites; widespread 
dwarfing of planktonic foraminifera during warming 
event 

Abramovich 
and Keller 
2003; Keller 
and 
Abramovich 
2009; 
Abramovich et 
al. 2010 

(202-
204) 

 

 

Coastal assemblages of planktonic foraminifera 
dominated by species thought to be opportunistic 
and/or tolerant of low oxygen during warming event; 
reduced diversity in Tethys  

Abramovich 
& Keller 
2002, Keller 
2003, Keller 
and Pardo 
2004; Pardo 
and Keller 
2008; 
Abramovich et 
al. 2010 

(202, 
205-
208) 

  Low diversity in Tethys but for longer interval 
(>1million years of latest Maastrichtian) Keller 2004 (209) 

Post-K/Pg Deccan: 
Biotic change 

The immediate aftermath of the K/Pg mass extinction 
is similar to that of many extinctions with low diversity 
(e.g., Coxall et al. 1998), high dominance and turnover 
communities (e.g., Hull et al. 2011; Bown 2005), 
unusually functioning ecosystems (D’Hondt et al. 
1998, Henehan et al. 2016) persisting for hundreds of 
thousands to millions of years (e.g., Hull 2015). 
Although this interval is often attributed the loss of 
species and the time to re-evolve species and functional 
communities (Hull 2015), the duration could be paced 
by volcanic  outgassing (as is hypothesized for the 
P/T). At present, there is not clear tie (or mechanism) 
for this in the early Paleocene but few studies have 
looked. 

Coxall et al. 
2006; Hull et 
al. 2011; 
Bown et al. 
2005; 
D’Hondt et al. 
1998; 
Henehan et al. 
2016; Hull 
2015 

(39) 
(20, 
22) 
(37) 
(112) 
(210) 

Pre-K/Pg Deccan: 
Elevated extinction No, not elevated in mammals Wilson 2005, 

2014 
(142, 
193) 

  No, not elevated in turtles Holroyd et al. 
2015 (211) 

 

 

No, not elevated (nor gradually declining in the Late 
Cretaceous) in dinosaurs 

Pearson et al. 
2002; 
Fastovsky et 
al. 2004; 
Wang & 
Dodson 2006; 

(212-
216) 
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Sheehan et al. 
1996; 2000 

 

 Gradual decline in dinosaur richness (in the last several 
million years in Barrett et al. 2009; so longer than 
Deccan volcanism); disputed and countered by analysis 
of Brusatte et al (2015) 

Archibald 
2012; Barrett 
et al. 2009; 
Brusatte et al. 
2015 

(217-
219) 

 

 No evidence from rudists; counters earlier 
interpretations based on different stratigraphic 
interpretations and patterns in the mostly incomplete 
carbonate platform sequences 

Steuber et al. 
2002; Schlüter 
et al. 2008; 
Steuber & 
Schlüter 2012 

(220-
222) 

 

 

No evidence in nannoplankton 

Bown 2005; 
Pospichal 
1994, 1996; 
Thibault and 
Husson 2016 

(145, 
201, 
223, 
224) 

 

 

No evidence in foraminifera 

this study; 
Arenillas et al. 
2000a,b, 2002; 
Norris et al. 
1999; Huber 
et al. 2002; 
MacLeod et 
al. 2007 

(225-
230) 

 

 Various single site studies of planktonic foraminifera 
have reported elevated extinctions prior to the impact 
(Tunisia: Keller 1988; Keller and MacLeod 1996; 
Keller 1998; Site 525: Li and Keller). The local nature 
of these patterns (regardless of whether they reflect 
local extinctions or local stratigraphic biases) have 
subsequently been revealed by other studies by the 
same set of authors (Punkar 2014) that show 
survivorship up to the K/Pg boundary of the same 
species at other sites; and by studies of sample biasing 
by other authors on the same site (Arenillas et al. 
2000a,b; Tunsia) showing sudden and catastrophic 
extinction. 
 
Keller et al. 2018 discusses local extinctions (and large 
scale faunal changes) but not global extinctions prior to 
the K/Pg boundary; in line with the discussion 
provided here. 

Keller 1988; 
Keller and 
MacLeod 
1996; Keller 
et al. 2018; 
Punekar et al. 
2014 

(140, 
231-
235) 

Impact Chicxulub: 
Impact 

Reviews of K/Pg impact tracers (many hundreds of 
sites) 

Smit 1999; 
Claeys et al. 
2002; Schulte 
et al. 2010; 
Hull et al. 
2011 

(30, 
53, 
134, 
236) 

  Iridium & osmium anomaly at the K/Pg boundary 
(North Dakota, Hell Creek and Fort Union formations) 

Johnson et al. 
1989; Moore 
et al. 2014 

(237) 
(238) 

  Minerological evidence (shocked quartz & stishovite) 
for impact at the K/Pg boundary (Western Interior, US) 

Bohor et al. 
1984; 

(239, 
240) 
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McHone et al. 
1989 

  Hiatuses common across shallow water K/Pg boundary 
sections (attributed to tsunami, slumping, and others) 

Smith et al. 
1996; Olsson 
et al 2002; 
Meyers & 
Peters 2011 

(51, 
110, 
241) 

  Tsunami deposits around Gulf of Mexico Bourgeois et 
al. 1988; Smit 
et al. 1996, 
Tada et al. 
2002 

(50-
52) 

  Iridium layers in multiple sections coincident with 
K/Pg boundary 

Bourgeois et 
al. 1988; 
Miller et al. 
2010 

(52, 
242) 

  Minerological evidence (shocked quartz) for impact at 
the K/Pg boundary (global) 

Bohor et al. 
1987 (243) 

  
Mass wasting deposits in the Caribbean and along the 
Gulf Coastal Plain, triggered by impact associated 
ground motion (i.e., earthquakes) at the K/Pg boundary 

Bralower et al. 
1998; Norris 
et al. 2000; 
Denne et al. 
2013 

(47, 
49, 

244) 

  

Impact ejecta (a few examples) at the K/Pg boundary 

Schulte et al. 
2010; 
Sigurdsson et 
al. 1997; 
Norris et al. 
1999; 
MacLeod et 
al. 2007 

(30, 
228, 
230, 
245) 

  

Osmium anomalies at the K/Pg boundary 

Ravizza et al. 
2003; Paquay 
et al. 2008; 
Robinson et 
al. 2009 

(68, 
69, 
71) 

  

Iridium anomalies (a few examples) at the K/Pg 
boundary 

Alvarez et al. 
1980; Michel 
et al. 1981; 
Alvarez et al. 
1990 

(246-
248) 

  K/Pg boundary ashes and impact markers (tecktites) 
dated via Ar-Ar dating to be synchronous within error 

Renne et al. 
2013 (249) 

 Chicxulub: 
Environment effect 

Possible paleobotanical evidence for impact winter 
(Wyoming) (disputed in McIver 1999 among others) Wolfe 1991; (250) 

  Paleobotanical evidence for ecosystem turnover 
coincident with boundary (Saskatchewan, Canada) McIver 1999 (251) 

  
Paleobotanical evidence for ecosystem turnover 
coincident with boundary (Western Interior, US); 
including fern spike 

Tschudy et al. 
1984; Nichols 
1990 

(252, 
253) 

  

All early Danian deposits in the western interior in 
‘coal-bearing, fluvial or paludal deposition 
settings’(Nichols 1990), with strong evidence for 
increased ‘wetness’ (Sweet and Braman 1992) across 
the boundary 

Nichols 1990; 
Sweet and 
Braman 1992 

(253, 
254) 
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  Impact winter suggested by TEX86, with sea surface 
cooling of as much as 7°C in Brazos River, Texas 

Vellekoop et 
al. 2014 

(100) 

  
Decrease in export productivity suggested along New 
Jersey margin 

Esmeray-
Senlet et al. 
2015 

(86) 

  

Decreased oxygenation in northwestern Pacific (sulfur 
isotopic evidence) and some localities in the Tethys 

Kajiwara & 
Kaiho 1992; 
Coccioni and 
Galeotti 1994 

(188, 
255) 

  Tsunami deposits in Caribbean and Gulf coast  Smit et al. 
1996 

(51) 

  Biological selectivity suggestive of impact-associated 
ocean acidification 

Alegret et al. 
2012 

(29) 

  

Multiple lines of evidence (carbonate geochemistry, 
other productivity proxies, and biomarkers) for a 
decline productivity or the efficiency of the biological 
pump (estimates of the magnitude, geography, and 
timing vary) 

Zachos et al. 
1989; 
D’Hondt et al. 
1998; 
Sepulveda et 
al. 2009; Hull 
& Norris 2011 

(26, 
37, 
38, 
76) 

  Prolonged (>500,000 yr) alkalinity pulse  Henehan et al. 
2016 

(112) 

 Chicxulub: 
Biotic change 

Extinction selectivity in mammals (against large 
carnivores and herbivores) suggest loss of primary 
productivity; recovery fueled by immigration 

Sheehan and 
Hanson 1986; 
Robertson et 
al. 2013; 
Wilson 2013 

(256-
258) 

  
Wide-spread evidence for floral turnover at the 
boundary, including a fern spike throughout the 
western interior  

 

Tschudy et al. 
1984; Nichols 
1990; Fleming 
and Nichols 
1990; Sweet 
and Braman 
1992 

(252-
254, 
259) 

  Persistent (>2 million year) shift in floral ecological 
strategies (North Dakota) 

Blonder et al. 
2014 

(260) 

  Drastic turnover in leaf miners (insect trace fossils) & 
decouple leaf to miner diversity (western interior N. 
America) 

Donovan et al. 
2014; Wilf et 
al. 2006 

(261, 
262) 

  

Recovery of plant community structure in phases. 
Initial communities of opportunistic ‘bloom’ taxa (i.e., 
fern/spore spike) replaced by pioneer communities, and 
then by diverse communities including new taxa. 

Vajda & 
Bercovici 
2014; Nichols 
and Johnson 
2008 

(263, 
264) 

  

(Note: temporal resolution is too low to distinguish 
Late Maastrichtian warming from impact at boundary.) 
As summarized in Kiessling & Baron-Szabo (2004): 
corals dominate reefs in Paleocene in contrast to Late 
Cretaceous (Kiessling et al. 1999); greater percentage 
of corals are reef associated in Paleocene; K/Pg mass 
extinction event is only mass extinction with a major 
drop in reefal carbonate at the stage level (Fluegel & 
Kiessling 2002); geography and timing of earliest 
Paleocene reefs indicates latest first appearance in 
Caribbean (although data is sparse) closer to impact 

Fluegel & 
Kiessling 
2002; 
Kiessling et al. 
1999; 
Kiessling & 
Claeys 2001; 
Kiessling & 
Baron-Szabo 
2004; 

(265-
268) 
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site (Kiessling & Claeys 2001); numerous survivor 
clade through early Danian (i.e., prolonged turnover). 

  Increase in epifaunal echinoderm fecal pellet 
abundance in New Jersey and Turkey 

Miller et al. 
2010 

(242, 
269) 

  
Mollusk ecological trait change suggestive of low-
productivity driven extinction and uncoordinated 
recovery of functional diversity (Western Argentina) 

Aberhan et al. 
2007 

(270) 

  Dwarfing in Danian echinoderms (sister taxa 
comparison) 

Smith and 
Jeffery 1998 

(271) 

  

Persistent shift in molluscan community functional 
ecology across the K/Pg: increase in deposit feeding & 
increase in predators and predator-resistance post-K/Pg 
(Aberhan & Kiessling 2015); basic patterns of 
functional turnover reflected in high southern latitudes 
as well (Stilwell 2003) 

Aberhan & 
Kiessling 
2015; Stilwell 
2003 

(272, 
273) 

  

No change in the proportion of the two main clades of 
incrusting bryozoans in US and Danish sections 
suggesting no long-term crash in productivity or 
inadequate understanding of the inter-clade differences; 
also no dwarfing in zooids or colonies 

Sogot et al. 
2013; Sogot et 
al. 2014 

(274, 
275) 

  

Regional benthic ‘dead zones’ with low abundance 
and/or benthic impoverished faunas. Known from 
Danish and Caribbean sections. 

Hakansson 
and Thomsen 
1999; Hansen 
et al. 2004 

(276, 
277) 

  

Calcareous red algae in Pyrenean Basin show 
prolonged/delayed recovery of species richness 
extending until the early Thanetian; shallow water 
(tropical affinity) species had greatest extinction rates 
and the clades dominating immediately post-K/Pg in 
reef assemblages typically occur in deep water/cryptic 
habitats today. Depth selectivity of extinctions 
observed across sites (i.e., Aguirre et al. 2000). 

Aguirre et al. 
2007; Aguirre 
et al. 2000 

(278, 
279) 

  Changed pelagic community structure (relative 
abundance amongst microfossil taxa) 

Hull et al. 
2011; Sibert et 
al. 2014 

(22, 
25) 

  Blooms of aberrant planktonic foramnifera in Tunsia in 
early Danian 

Arenillas et al. 
2018 (280) 

  
Low richness, short-lived successive communities in 
planktonic foraminifera and nannoplankton (global, 
early Danian) 

Gerstel & 
Thunell 1986; 
Gerstel et al. 
1987; Jiang et 
al. 2010; 
Fuqua et al. 
2008, 
Pospichal 
1996 

(16, 
17, 
32, 
40, 

224) 

  Dominance of ‘disaster’ or ‘opportunistic’ taxa in the 
earliest Paleocene (global) 

Jiang et al. 
2010 (17) 

  
Turnover in benthic community structure suggesting 
regional heterogeneity in detrital flux to the benthos  
(increased in some regions, declined in others) 

Alegret & 
Thomas 2005, 
2007, 2009; 
Alegret 2007 

(24, 
190, 
281, 
282) 

  Siliceous plankton bloom (New Zealand) Hollis et al. 
1995 (283) 
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  Low latitude incursions of high latitude dinoflagellates; 
dinoflagellate community turnover 

Brinkhuis & 
Zachariasse 
1988; 
Vellekoop et 
al. 2015 

(114, 
284) 

  

Short (~1,000-10,000 years) reduction in primary 
productivity (Sepulveda et al. 2009, 2019), with longer 
term (>1 myr) changes to the biological pump 
(D’Hondt et al. 1998, Zachos et al. 1989, Hull et al. 
2011; Esmerary-Senlet et al. 2015; Birch et al. 2016 

Sepulveda et 
al. 2009, 
2019; Zachos 
et al. 1989; 
D’Hondt et al. 
1998; Hull et 
al. 2011; 
Esmeray-
Senlet et al. 
2015; Birch et 
al. 2016 

(26, 
37, 
38, 
76, 
86, 
89, 

285) 

 
Chicxulub 

Impact: 
Elevated extinction 

Review: dinosaur extinction coincident with impact (no 
support for Cretaceous decline in diversity) 

Brusatte et al 
2015 (219) 

  
Dinosaur extinction coincident with KPg impact 

Sheehan et al. 
1991; Sheehan 
et al. 2000 

(286, 
287) 

  Mass bird extinction at KPg boundary (western N. 
America) 

Longrich et al. 
2011 (288) 

  Mass snake & lizard extinction at the KPg (N. 
America) 

Longrich et al. 
2012 (289) 

  75% Mammalian extinction in Hell Creek Formations 
across the KPg (Montana) Wilson 2014 (142) 

  22% species-level extinction in salamander & 
salamander-like species across the KPg,  Hell Creek 
Formations (Montana) 

Wilson et al. 
2014 (141) 

  30% (palynological) to 57% (megafloral types) floral 
extinction across the KPg (North Dakota) 

Wilf & 
Johnson 2004; 
Johnson 1992 

(106, 
290) 

  Elevated extinction of specialized and moderately 
insect trace fossils across the KPg boundary 

Labandeira et 
al. 2002 (291) 

 

 ~75% species extinction in shelly marine invertebrates Jablonski 
1991; 
Barnosky et 
al. 2011 

(292, 
293) 

 

 45% extinction in scleractinian corals, with particularly 
high extinction levels in photosymbiotic, colonial 
(particularly with high corallites), and narrow ranged 
taxa 

Kiessling & 
Baron-Szabo 
2004 

(265) 

 
 36% generic-level extinction in sea urchins, with 

selectivity by clade, feeding strategy, and endemic 
regionality (in narrow-ranging clades) 

Smith and 
Jeffery 1998 

(271) 

 

 63% generic-level bivalve extinction; with molluscan 
extinction intensity declines with latitude if rudists are 
considered (high latitudes have less extinction) 

Raup & 
Jablonski 
1993; Vilhena 
et al. 2013 

(294, 
295) 

 
 Rudist bivalve extinction (100%) consistent with 

catastrophic extinction coincident with K/Pg boundary 
in stratigraphically complete sections. 

Steuber et al. 
2002; Schlüter 
et al. 2008; 

(220-
222) 
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Steuber & 
Schlüter 2012 

 

 34% generic/45% species-level extinction in 
Neoselachian sharks with greater losses in shallow 
water species. Greater extinction amongst skates and 
rays. 

Kriwet & 
Benton 2004 

(117) 

 

 

Mass extinction (100%) of all ammonites at, or just 
above, the K/Pg impact layer (global) 

Ward and 
Kennedy 
1993;Landma
n et al.; Miller 
et al. 2010 

(242, 
296) 

 

 

~90% extinction in calcareous nannoplankton 
coincident with impact ejecta at the K/Pg boundary 
(global), with reworking (evidence by borrow counts 
and coeval iridium spread) spreading extinct taxa up-
section 

Bramlette & 
Martini 1964; 
Bown et al. 
2004; Bown  
2005; 
Pospichal 
1990, 1994, 
1996, Hull et 
al. 2011 

(20, 
134, 
145, 
146, 
224, 
297, 
298) 

 

 

~90% extinction in planktonic foraminifera coincident 
with impact ejecta at the K/Pg boundary (global) 

Smit & 
Hertogen 
1980; 
D’Hondt et al. 
1996; 
Arenillas et al. 
2000 

(147, 
226, 
299) 

 
 Estimated 45% extinction of coral species; greater 

extinction amongst photosymbiotic species & colonial 
species; large number of failed survivors 

Kiessling & 
Baron-Szabo 
2004 

(265) 

  70% species-level extinction in red calcareous algae Aguirre et al. 
2000 

(300) 

 

 No elevation in extinction rates of fish teeth in open 
ocean sediments (Sibert et al. 2014), but major 
turnover in fish community structure (Sibert & Norris 
2015; and morphological radiation amongst spiny 
finned teleosts (Friedman 2010) following 
ecomorphologically selective neritic extinctions 
(Friedman 2009) 

 Friedman 
2009, 2010; 
Sibert et al. 
2014; Sibert & 
Norris 2015;  

(25, 
116, 
301, 
302) 

 

 

No elevation in extinction rates in benthic foraminifera 

Culver 2003; 
Thomas 2007;  
Alegret & 
Thomas 2009 

(24, 
303, 
304) 

  No elevation in extinction rates in ostracods Elwa 2002 (305) 

  No elevation in extinction rates in radiolarians Hollis et al. 
2003 (306) 

 

 

No elevation in extinction rates in dinoflagellates 

Brinkhuis & 
Zachariasse 
1988; 
Brinkhuis et 
al. 1998 

(284, 
307) 
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Table S2.  
Details of age models used for foraminiferal data in global compilation (Fig. 1) from deep-sea 
drill cores. 

 
Site Reference 

for data 
Type of data Age Model Details 

ODP 1209, 
Shatsky Rise 

(13), this 
study 
 

Planktonic and 
benthic δ18O 

In the Danian, ages are interpolated between positions of short 
eccentricity cycles from ref. (12). In the Maastrichtian, we use the 
age model of Westerhold et al. (13), Age option 3, adjusted by         
-0.028 Ma to fit Dinarès-Turell et al.(12) K-Pg boundary of 66.022 
Ma. 

ODP 1210, 
Shatsky Rise 

This study Benthic δ18O In the Danian, ages are interpolated between positions of short 
eccentricity cycles from ref. (12). In the Maastrichtian, beyond the 
age model of ref. (12), ages are tuned to long Westerhold et al. 
(13)’s Age Option 3 at Site 1209. These were then transposed to 
1210 using tie points from ref. (8), and adjusted by -0.0028 Ma to 
fit Dinarès-Turell et al.(12) K-Pg boundary of 66.022 Ma. 

DSDP 577 (33) Benthic δ18O Uses linear interpolation between magnetochrons from ref. (308), 
noting the updated composite splice of ref. (309). 

DSDP 465, 
Hess Rise 

This study Benthic δ18O Interpolation between foraminiferal and nannofossil 
biostratigraphic markers from (310, 311), with absolute ages for 
datums taken from (81). 

DSDP 528, 
Walvis 
Ridge 

(81) Benthic δ18O Sedimentation rate based on thickness of Cretaceous portion of 
magnetochron C29r, reported by refs. (312, 313), and length of time 
in Cretaceous C29r from (60). 

ODP 1262, 
Walvis 
Ridge 

This study, 
(42, 89) 

Planktonic and 
benthic δ18O 

Age model is take from Dinarès-Turell et al. (12), with the 
Cretaceous extension of Woelders et al. (44). 

ODP 1267, 
Walvis 
Ridge 

This study Benthic δ18O Age model is take from Dinarès-Turell et al. (12). 

DSDP 525, 
Walvis 
Ridge 

(82) Planktonic and 
benthic δ18O 

Sedimentation rate based on thickness of Cretaceous portion of 
magnetochron C29r, reported by ref. (312), and length of time in 
Cretaceous C29r from (60). 

ODP 690, 
Maud Rise 

(83, 90, 91) 
 

Planktonic and 
benthic δ18O 

Linearly interpolated between published magnetochron boundaries 
(314), nannofossil biozones (146), and the K-Pg Ir spike (315) 
using updated ages for each event from GTS2012 (60). 

ODP 1049, 
Blake Nose 

(84) Benthic δ18O Linearly interpolated between magnetochrons and planktonic 
foraminiferal biozones from (316). C30n/C29r boundary from ref. 
(316), with C29r/C29n boundary placed at Dan-C2 event by 
analogy with other Dan-C2 sections elsewhere (84).  

DSDP 384, 
J-Anomaly 
Ridge 

(85) Benthic δ18O Uses integrated magneto-biostratigraphy of ref. (317), updating age 
tie points to GTS2012 (60). 

ODP 174AX, 
Bass River 

(86, 101) Planktonic and 
benthic δ18O 
and Mg/Ca 

Uses age model from Esmeray-Senlet et al. (86). 
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Tables S3-S30 are found in a separate file 
 
Table S3.  
Age tie points and dates used to create new age models (via linear interpolation) for already 
published deep sea isotope data for global compilation. Five deep sea sites are tuned in (or to) the 
latest astronomical age model of Dinarès-Turell et al. (2014): Sites U1403, 1209, 1210, 1262, 
and 1267, which has a K/Pg boundary age of 66.022 Ma. Age models for all other sites (deep sea 
and otherwise) were generated using bio- and magnetostratigraphic tie points with ages from the 
Geological Timescale 2012, with a K/Pg boundary age of 66.04 Ma. To plot these data together, 
we use ages relative to the K/Pg boundary when plotting all data together.   
  
Table S4.  
Global compilation of temperatures across the K/Pg boundary, with updated age models and 
DTemperatures for comparisons across realms and latitudes. Six major data types were mined to 
compile the first global temperature compilation spanning magnetochron C29r, and the events of 
the K/Pg boundary. These data types are listed adjacent to one another as slightly different 
column headers are needed to describe the data. They are, from left to right: Foraminiferal d18O 
data, TEX86 data, Paleosol d18O data, Leaf margin data, Clumped isotope data, d18O shell data, 
Bulk Carbonate d18O, Mg/Ca, and d18O teeth data. Although some of this temperature data is 
freely available from the primary sources listed, we provide the data here on updated age models 
(with tie points relative to GTS 2012, or, where possible, D-T et al. 2014) and as ∆Temperature 
(see Methods), in order to examine the change in temperature across the late Cretaceous 
warming event and the K/Pg boundary. Also note that in 'Foraminiferal data: Sample Type', 
'benthic' refers to benthic foraminifera and 'Planktonic' refers to planktonic foraminifera. For the 
'Leaf margin data', note that the relative temperatures are calculated relative to the mean of 66.03 
& 66.09 Ma data points.  Since not all stratigraphic tie points lend themselves to conversion to 
Dinares-Turrel et al. (2014)'s age model, age is also given relative to the K-Pg, and temperatures 
calculated using Erez and Luz (1983) and a +0.35‰ vital effect for N. truempyi. Biostratigraphic 
markers for TEX86 data come from the original papers. In calculating global average temperature 
we excluded data from bulk carbonate d18O and the d18O of fish apatite because these values did 
not appear to track temperature in the extinction aftermath, likely due to the biotic discussion 
(see supplementary text). We have included them here for completeness.     
 
Table S5.  
Stable oxygen isotopes from ODP Site 1210 analyzed by L.A. and E.T. at the University of 
California Santa Cruz, Yale University and the University of Michigan. Matching  
carbon isotope data published in Alegret et al. (2012). 
 
Table S6.  
Stable oxygen isotopes from ODP Site 1262 analyzed by L.A. and E.T. at the University of 
California Santa Cruz, Yale University and the University of Michigan. Matching  
carbon isotope data published in Alegret et al. (2012). 
 



 
 

79 
 

Table S7.  
Stable oxygen isotopes from DSDP Site 465 analyzed by L.A. and E.T. at the University of 
California Santa Cruz, Yale University and the University of Michigan. Matching 
carbon isotope data published in Alegret et al. (2012). 
 
Table S8.  
Stable oxygen isotopes from ODP Site 1267 analyzed by L.A. and E.T. at the University of 
California Santa Cruz. 
 
Table S9.  
Stable carbon and oxygen isotopes from bulk carbonate at ODP Site 1267 analyzed E.T. at the 
University of California Santa Cruz. 
 
Table S10.  
Stable carbon and oxygen isotopes from benthic foraminifera and bulk carbonate at ODP Site 
1262 generated by Kroon et al (2007) and previously figured in part in Kroon et al. 2007, Barnet 
et al. 2017, 2019, and Birch et al. 2016, and published in part by Woelders et al. 2017. 
 
Table S11.  
Stable carbon and oxygen isotopes from ODP Site 1209 analyzed across three laboratories 
(Bremen=MARUM, Universitaet Bremen; SIO=Scripps Institution of Oceanography; 
UCSC=University of California, Santa Cruz). Four types of sample material were processed: 
bulk foraminifera (i.e., homogenized 38-125mm sieve size fraction), bulk (i.e., homogenized 
bulk sediment sample), genus-level (i.e., Woodringina), and species-level (species include 
Pramurica taurica, P. pseudoinconstans, P. inconstans, P. uncinata, and Morozovella angulata). 
Bulk and species-level data was originally collected by P.M.H. under the supervision of R.D.N. 
during her PhD (with UCSC samples run in the lab of J.C.Z.) and additional bulk foraminifera 
and Woodringina samples were added in collaboration with B.D., U.R., and T.W. to investigate 
the bulk carbonate dynamics. Source indicates the lead during these two phases of sample 
collection. Note that sample rmcd and rmcd adj is from Westerhold and Röhl 2006 and the age 
model is from Dinarès-Turell et al. (2014). 
 
Table S12.  
Bulk carbonate stable carbon and oxygen isotope analyses from Site U1403 collected by A.B. at 
Friedrich-Alexander Universität Erlangen-Nürnberg (AB), P.M.H. at Yale University (PMH), 
O.F. at the Goethe-University Frankfurt (OF), and K.M. at Kanazawa-University. Carbon and 
oxygen stable isotopes are reported relative to the Vienna Peedee belemnite standard (VPDB). 
Depths at Site U1403 are reported relative to one (or more) of three scales: the primary sample 
ID, the meters below seafloor of the sample (historically called msbf; but known as CSF-A at 
Site U1403), or the revised meter composite depth scale (historically called rmcd, but known as 
rCCSF at Site U1403) from Batenburg et al. 2017. The column 'A/W' denotes samples from the 
archive (A) versus working (W) half of the core. Samples listed with an age of 'NA' fell outside 
the applicable range of the age model, and of the figures, but are provided here without an age 
model for others to use in future work. 
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Table S13.  
Weight percent coarse fraction (>38mm sieve size fraction) of ODP Site 1267 samples prepared 
at Wesleyan University by E. T. 
 
Table S14.  
Weight percent coarse fraction (>63mm sieve size fraction) of ODP Site 1262 samples generated 
by Kroon et al (2007) and previously figured therein. 
 
Table S15.  
Weight percent coarse fraction (>38mm sieve size fraction) of Site U1403 samples prepared at 
Yale University. Depths at Site U1403 are reported relative to one (or more) of three scales:  
the primary sample ID, the meters below seafloor of the sample (historically called msbf; but 
known as CSF-A at Site U1403), or the revised meter composite depth scale (historically called 
rmcd, but known as rCCSF at Site U1403) from Batenburg et al. 2017 as described in the 
methods section. 
 
Table S16.  
Osmium isotope data from Site U1403 generated by G.E.R. at the University of Hawaii at 
Manoa. Depths at Site U1403 are reported relative to one (or more) of three scales: the primary 
sample ID, the meters below seafloor of the sample (historically called msbf; but known as CSF-
A at Site U1403), or the revised meter composite depth scale (historically called rmcd, but 
known as rCCSF at Site U1403) from Batenburg et al. 2017. The column 'A/W' denotes samples 
from the archive (A) versus working (W) half of the core. 
 
Table S17.  
Resolved nannoplankton assemblage counts at IODP Site U1403, carried out by HK and PB at 
the University College London. 
 
Table S18. 
Resolved nannoplankton assemblage counts at ODP Site 1209, carried out by J.S. and T.B. at 
Penn State.  
 
Table S19.  
Weight % carbonate as calculated from mass spectrometer voltage intensity for the Site U1403 
bulk carbonate samples measured at Yale University. In house standards were used to calibrate 
the relationship between the absolute mass of calcium carbonate and the intensity of the signal 
measured in mV.  For a pure carbonate, intensity scaled as the mass (mg) * 22.683. With the 
relationship, we predicted the intensity for each sample ('Predicted Intensity (mV) as equal to  
the 'Weight (ug)' * 22.683). The difference between the actual intensity measured by the mass 
spectrometer ('Measured Intensity (mV')) and the predicted intensity was used to calculate the 
weight % carbonate of the bulk sediment. Depths at Site U1403 are reported relative to one (or 
more) of three scales: the primary sample ID, the meters below seafloor of the sample 
(historically called msbf; but known as CSF-A at Site U1403), or the revised meter composite 
depth scale (historically called rmcd, but known as rCCSF at Site U1403) from Batenburg et al. 
2017. 
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Table S20.  
XRF-based weight % carbonate (calc. wt % CaCO3) and CaCO3 mass accumulation rates for 
IODP Site U1403.  XRF counts of Ca were linearly correlated to mass spectrometry inferred 
measurements of weight % carbonate (from Table S12) and discrete shipboard measurements 
(Norris et al. 2014). This correlation was used to calculate the 'calc. wt % CaCO3' shown below 
for all XRF measurements of Ca. This calculated wt % carbonate was used in combination with 
linear sedimentation rates and linearly interpolated dry bulk density measurements (interpolated 
from shipboard measurements in Norris et al. 2014) to calculate the carbonate mass 
accumulation rates below. 
 
Table S21.  
XRF data for Danian of IODP Site U1403 collected by O.F., A.B., S.J., and I.M. at the IODP 
Bremen Core Repository. Depths at Site U1403 are reported relative to one (or more) of three 
scales: the primary sample ID, the meters below seafloor of the sample (historically called msbf; 
but known as CSF-A at Site U1403), or the revised meter composite depth scale (historically 
called rmcd, but known as rCCSF at Site U1403) from Batenburg et al. 2017. 
 
Table S22.  
Visualization of the adjustment to the off-splice boundary core (Core U1403B-28) relative to the 
CCSF used to calculate an appropriate relative depth for the sample sets collected off-splice in 
this section (coarse fraction, fish teeth and iridium records). 
 
Table S23. 
Cyclostratigraphic age model for Danian to Maastrichtian of Site U1403 generated by S.B. Age 
model combines new tie-points in the Danian with the Maastrichtian tie-points of Batenburg et 
al. 2017. Depths at Site U1403 are reported relative to one (or more) of three scales: the primary 
sample ID, the meters below seafloor of the sample (historically called msbf; but known as CSF-
A at Site U1403), or the revised meter composite depth scale (historically called rmcd, but 
known as rCCSF at Site U1403) from Batenburg et al. 2017. 
 
Table S24. 
Updated nannofossil biostratigraphy from Hole U1403A of Paleocene species, revised by P.B. In 
'Nanno event' B=bottom and T=top; in 'Preservation'  G=good, M=moderate,P=poor (after Norris 
et al. 2014); in 'Nannofossil abundance' A=abundant, C=common, R=rare, F=frequent, 
SA=somewhat abundant, and numbers indicate absolute numbers observed (after Norris et al. 
2014); in species counts '?' indicates uncertainty in an absence (-) or abundance (A,C,F,R, SA).  
Depths at Site U1403 are reported relative to one (or more) of three scales: the primary sample 
ID, the meters below seafloor of the sample (historically called msbf; but known as CSF-A at 
Site U1403), or the revised meter composite depth scale (historically called rmcd, but known as 
rCCSF at Site U1403) from Batenburg et al. 2017.  
 
Table S25. 
Updated nannofossil biostratigraphic tiepoints from Hole U1403A, revised by P.B. Depths at 
Site U1403 are reported relative to one (or more) of three scales: the primary sample ID, the 
meters below seafloor of the sample (historically called msbf; but known as CSF-A at Site 
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U1403), or the revised meter composite depth scale (historically called rmcd, but known as 
rCCSF at Site U1403) from Batenburg et al. 2017. 
 
Table S26. 
Samples from Site U1403 checked for organic-walled fossils by K.K.S. Samples were barren 
with the exception of a single dinocyst and two questionable palynomorphs. Depths at Site 
U1403 are reported relative to one (or more) of three scales: the primary sample ID, the meters 
below seafloor of the sample (historically called msbf; but known as CSF-A at Site U1403), or 
the revised meter composite depth scale (historically called rmcd, but known as rCCSF at Site 
U1403) from Batenburg et al. 2017. 
 
Table S27. 
Paleomagnetic data used for the final interpretation of the magnetozones at site U1403. Sample 
ID, rCCSF(m), mean declination, mean inclination of the ChRM and its corresponding 95% 
confidence angle are given. Samples collected by C.C. and P.L. and analyzed by C.C. at 
CEREGE (Aix-en-Provence, France) using a SQUID cryogenic magnetometer (2G Enterprises, 
model 755R, with noise level of 10−11Am2) with an attached automatic alternating field 3-axis 
degausser system (maximum peak field 170 mT) placed in a magnetically shielded room (field of 
~nT). 
 
Table S28. 
IODP Site U1403 samples selected for organic geochemistry analysis via GC-MRM-MS by 
J.W., J.S. and R.S. Thermal maturity indices (expressed as %) based on the stereochemistry of 
algal steranes and bacterial hopanes compared to a laboratory blank. 1: ratio of C27 diasteranes 
and regular desmethyl cholestanes;  2: ratio of C27 abb and aaa desmethyl cholestanes; 3: ratio 
of C27 aaa S and R desmethyl cholestanes; 4: ratio of C31 S and R hopanes. 
 
Table S29. 
Ichthyolith mass accumulation rates at Site U1403 collected by E.S. at the Scripps Institution of 
Oceanography (University of California San Diego). 
 
Table S30. 
LOSCAR model output for all Deccan and extinction simulations. Each scenario for the timing 
of Deccan outgassing was run with both low (3200 GtS, 4090 GtC) and high (8500 GtS, 9545 
GtC) emission volumes, and across a range of climate sensitivities of 2, 3, and 4 degrees C per 
doubling of CO2. For each run, timesteps are expressed both in model time (beginning at t=0, 
390kyr before the K/Pg boundary) and as years relative to the K/Pg boundary. Surface 
temperature refers to the low-latitude surface Pacific Ocean, but does not differ significantly 
between oceans.  
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