
Open Research Online
The Open University’s repository of research publications
and other research outputs

Stable Word-Clouds for Visualising Text-Changes Over
Time
Book Section
How to cite:
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Abstract. Word-clouds are a useful tool for providing overviews over
texts, visualising relevant words. Multiple word-clouds can also be used
to visualise changes over time in a text. This requires that the words in
the individual word-clouds have stable positions, as otherwise it is very
difficult so see what changed between two consecutive word-clouds. Ex-
isting approaches have used coordinated positioning algorithms, which
do not allow for their use in an online, dynamic context. In this pa-
per we present a fast word-cloud algorithm that uses word orthogonality
to determine which words can share the same space in the word-clouds
combined with a simple, but fast spiral-based layout algorithm. The eval-
uation shows that the algorithm achieves its goal of creating series of
word-clouds fast enough to enable use in an online, dynamic context.

Keywords: text analysis · visualisation · visual analysis · word-clouds
· optimisation.

1 Introduction

Word-clouds, such as Wordle [7], have long been used to generate overviews over
texts, visualising the most frequently occurring or most relevant words, generally
using font size to visualise the words’ frequency or importance and optionally
adding colour or transparency to visualise further attributes [17].

While word-clouds work well as overview visualisations for individual texts or
larger text corpora [8,22], one of the main limitations of basic word-clouds is that
they only show a static view of the text. In contrast to this, for text analysis
it is often desired to be able to visualise part of the text and then move the
visualisation window over the text to see how the text changes [18]. While it is
possible to generate individual word-clouds for each time-slice the user moves the
visualisation window to, the word locations in the word-clouds will change each
time, making it difficult to track changes. While algorithms such as Word Storm
[3] can generate multiple word-clouds that have relatively stable word locations,
the process of creating these coordinated word-clouds is time consuming.



The LERA1 tool provides an environment for this kind of inter-textual anal-
ysis. The user can select a range within the text and then gets a word-cloud
for that text range. They can then move the range through the text and ob-
serve the changes, which means that the word-clouds have to be generated very
quickly. While the text itself is static and thus would be amenable to using pre-
calculation of the word-clouds using the existing, slower algorithms, the user
is provided with a range of parameters to tune what exactly they see in the
word-cloud. The range of parameters make pre-calculation unfeasible, it is thus
necessary to have a fast word-cloud algorithm that generates stable word-clouds.

In this paper we present a novel algorithm for fast generation of coordinated
word-clouds in which all words have a completely fixed location. The remainder
of the paper is structured as follows: Section 2 discusses previous approaches to
creating comparable word-clouds, Section 3 provides an overview over the data
we are working with, Section 4 presents our algorithm for stable word-clouds,
which is evaluated in Section 5 and in Section 6 we conclude with future work.

2 Background

The most commonly used word-cloud algorithm is the Wordle algorithm [7]. It
positions words both horizontally and vertically and generally uses the word
frequency to scale each word’s size. When positioning the words, the algorithm
uses a very compact representation of each word’s outline, which ensures that
words do not overlap and are spaced out as little as possible. This creates a
very dense visualisation, but the use of vertical text and the placement of words
within the outline of other words can make reading the visualisations harder for
the user. In the algorithm presented here we thus only place text horizontally
and also utilise more white-space between individual words.

In addition to this relatively common word-cloud layout, there have been a
number of other layout approaches, including layouts for even less white-space
[12,19], the ManiWordle approach [13], rolled-out word-clouds [21], or TagPies
[10]. As will be described below, due to our focus on layout stability, we will use
a very simple spiral-based layout algorithm. However, this could in the future
be adapted to combine improved layouts with our high-performancy, stability-
focused algorithm.

The main limitation motivating the work presented here is that these algo-
rithms are static and are not designed to incorporate links between different
word-clouds. Work on integrating temporal aspects has generally focused on ap-
proaches such as the SparkClouds [15] or Fish-Eye Clouds [23], where additional
temporal information is integrated into the basic word-cloud layout. Alternatives
have also used word-clouds as part of a more complex visual interface [24] or de-
veloped alternatives for comparing changes between two time-slices [6]. However,
none of these address the requirement for adapting the actual word-cloud content
over time.

1 Locate, Explore, Retrace and Apprehend complex text variants https://lera.uzi.uni-
halle.de



One of the earliest approaches for coordinated word-clouds was the Parallel
Tag Clouds approach [4], which simplified the word-clouds‘ layout to a set of
vertical columns, one per word-cloud. By using just one dimension in the layout
algorithm and sorting the words alphabetically, Parallel Tag Clouds help the user
in comparing multiple word-clouds, particularly since interactive visual clues
were used to highlight the same word across all word-clouds. However, the word
locations are not stable across the individual clouds.

Cui et al. [5] demonstrate taking one word-cloud’s layout into account when
generating the next in their context-preserving dynamic word-clouds. Their ap-
proach combines a time-line graph with multiple word-clouds. Each word-cloud
uses a force-directed layout to factor in the layout from the previous word-cloud.
This ensures that their word-clouds are semantically coherent and word locations
are spatially relatively stable. However, the dynamic nature of the force-driven
layout cannot ensure complete layout stability, only that the rough layout is
preserved across word-clouds.

The Word Storm algorithm [3] produces coordinated word-clouds, by com-
bining an iterative placement algorithm that averages word locations across all
word-clouds with a gradient method inspired by multi-dimensional scaling that
compacts the locations generated by the iterative algorithm. This creates co-
ordinated word-clouds in which the word locations are very similar across the
clouds. The clouds are then placed in a grid structure to allow for compari-
son. The core concept is expanded in the Word Flock algorithm [14], where
not only exact words, but also semantic relatedness are used to place semanti-
cally similar words together. Instead of treating it as an optimisation problem,
the COWORDS algorithm [20] uses a probabilistic sampling approach to pick
a visual distribution that is both compact and retains stable word positions.
While the approach produces word-clouds that are just as compact [1] as those
in Word Storm, the probabilistic model allows for the integration of additional
constraints, making the system more flexible.

A different approach is taken in the ConcentriCloud visualisation [16], which
visualises the word-clouds in a set of concentric circles. In the inner-most circle
they place those words that appear in all word-clouds, while the outer circle has
those words that only appear in specific word-clouds. The circles inbetween show
words that appear in some, but not all word-clouds. This gives the user a good
overview over the shared and distinguishing concepts. However, it also limits the
number of word-clouds that can be compared, before the visualisation becomes
unreadable.

All of these approaches are focused primarily on generating word-clouds to
be shown together for comparison, a scenario in which small positional changes
between the layouts do not present an issue. However, in our use scenario the
system generates a large number of word-clouds that are shown sequentally and
where even small positional changes between consecutive word-clouds generate a
lot of visual noise, which would distract and potentially mask the actual changes.
Additionally, as stated above, the user has full control over a large number of
parameters (visualised segment size, which words to include, what statistics to



use for the word sizes, number of words to visualise, ...), thus pre-calculation is
not viable. The algorithm we developed is thus designed to create word-clouds
where the word locations are completely fixed and which can be generated very
quickly.

3 Project & Data

The work presented here was developed based on the requirements of the LERA
tool. The tool is used to support humanities researchers in the inter-textual
analysis of texts in a variety of contexts, with the aim of identifying similarities
and differences between multiple versions of the same text. To do this the tool
automatically segments and aligns the texts, the result of which can then be
manually modified and corrected if so desired [2].

To analyse the texts the tool provides three linked visualisations (Figure 1):
an overview visualisation that shows the identified segments and their align-
ment; the detailed text view that shows the actual text in each segment for all
texts, and the word-clouds that visualise the relevant words in a section of the
text. Multiple relevance metrics (frequency, Term-Frequency Inverse-Document-
Frequency [TFIDF], ...) and filters (word length, part-of-speech tags, number of
words to display, ...) can be applied to control what the word-clouds show.

Fig. 1. Screenshot of the LERA user-interface, showing the overview visualisation at
the top with a range of segments selected, the word-clouds below, and two versions of
the source text with differences highlighted at the bottom.

To visualise the words in the word-clouds, the user selects a range of seg-
ments in the overview and the word-clouds are immediately re-calculated for
the selection range. The user can then move the selection range across the full
length of the text and the word-clouds are updated in real-time to reflect the



content of the newly selected range. This allows the researcher to develop an
understanding of how the content of the text changes over the course of the
text. In order to support the researcher in correctly interpreting the changes, it
is necessary that the word locations remain stable as the selection range moves
and words are added, removed, or change in importance. Otherwise after each
step the researcher has to hunt for the changes.

The LERA system holds a number of different texts for analysis, the exam-
ples shown here are taken from a work by the nineteenth century author Karl
Gutzkow “Aus der Knabenzeit”. The text exists in two versions (1852 and 1873)
consisting of 81695 and 75941 tokens, respectively, which after alignment pro-
duce 236 aligned segments, with the length of each segment ranging from single
words to full paragraphs. For the word-cloud examples shown here we use the
most relevant words identified via TFIDF and filtered to only include nouns.
However, this filtering is undertaken before the data is passed to the word-cloud
algorithm and the word-cloud algorithm does not make any specific demands of
the tokens it is asked to visualise.

4 Stable Word-Clouds

To support the need for fast, stable word-clouds an initial naive approach was
implemented, based on which the novel algorithm presented here was developed.

4.1 Naive stable word-clouds

An initial fast, but naive approach was developed based around the fixed spiral
layout in Figure 2a. For the initial word-cloud the words are simply placed along
the spiral, with each word’s font size calculated from the word’s importance, as
in most word-cloud algorithms, and which depending on the user selection might
be based on pure frequency, TFIDF score, or any of the other metrics provided
by LERA. Then, as the user moves the selection, new words are placed into
available slots on the spiral. The big question is at what point to free up those
slots in the spiral for which the word that was originally placed there no longer
occurs in the word-cloud for the current selection and is thus no longer shown.
If no re-use is undertaken, then the spiral keeps expanding and the word-cloud
becomes very sparse and hard to read.

To address this, the algorithm tracks how many steps the slot has remained
empty. A step here is defined as the user moving the selection one segment.
Thus if a slot has been empty for five steps, this means that the word that was
originally placed there has not appeared as relevant in the last five segments. The
problem lies in how to determine the number of steps s after which to flag a slot
as free, so that it can be re-used with a different word. A low value drastically
reduces the word-cloud’s stability, as words first disappear and then re-appear
in different locations, as their original slot has been re-used for a different word.
At the same time a high value does not make good use of the available space, as
spaces are not re-used for a long period of time.



(a) (b)

Fig. 2. a) Fixed spiral-based layout used to position words in the word-cloud. b) Ex-
ample of a word-cloud that has degenerated into a very sparse display after the user
has moved the selection range a few times.

Due to its naive nature, the algorithm’s performance is very high and runs
in the browser without any pre-processing. However, after extensive experimen-
tation, we have concluded that the local-information approach is not able to
provide the kind of stable and compact clouds (see Figure 2 for an example of
how the word-clouds degenerate and become sparse) that are required.

4.2 Stable placement via pairwise orthogonality

As demonstrated by the existing work, the difficulty with finding stable word-
cloud configurations is the large number of potential word placements, from
which the most stable one needs to be selected. To circumvent this problem,
the approach presented here is not based on finding stable word placements,
but on determining which words never co-occur across the range of word-clouds
that are generated. The words that never co-occur are grouped together and
can then share the same location in the word-cloud. This allows us to re-use
the word spiral for the final placement of words, but at the same time make it
significantly more compact.

To determine which words can be grouped together the algorithm first con-
structs the word-segment occurrence matrix A, in which each row represents one
aligned segment and each column one word. The matrix values are then set to
the frequency with which a given word occurs in a given segment. Table 1 shows
an example matrix for four segments and six words taken from the full matrix for
the data-set. The columns are ordered by the increasing frequency with which
the words occur over the whole text.

To determine which words can be grouped together we test which columns are
pairwise orthogonal. Two columns a and b are orthogonal if their vector multipli-
cation results in the zero vector (Equation 1) and each such pair is a candidate
for grouping. In the example in Table 1 the columns “Herr” and “Baum”, “Herr”
and “Meister”, “Herr” and “Gott”, “Baum” and “Kind”, “Baum” and “Knabe”,
“Meister” and “Kind”, and “Meister” and “Knabe” are all pairwise orthogonal,
because they do not share any rows where they have values greater than zero.
Each of these pairs is thus a candidate for grouping together into a group.



Table 1. Example word-segment occurrence matrix A for the four segments with the
words “Knabe, Kind Gott” (#1), “Gott, Gott, Meister, Baum” (#2), “Knabe” (#3),
and “Knabe, Kind, Herr” (#4). In this example the user has selected to only include
nouns in the word-cloud.

Segment Herr Baum Meister Kind Gott Knabe

#1 0 0 0 1 1 1

#2 0 1 1 0 2 0

#3 0 0 0 0 0 1

#4 1 0 0 1 0 1

a · b> =
−→
0 (1)

Determining which columns to group together to minimise the total number
of groups is an NP-hard problem [11], thus we have developed the greedy Algo-
rithm 1 to determine which columns to group together. The algorithm iterates
over each column and, as long as the column has not already been assigned to a
group, is added to a new group (lines 4–6). Then a new group occurrence vector
is initialised with the current column’s occurrences (line 7). Next the algorithm
iterates over the remaining columns that have not yet been added to groups.
Each of these columns is first checked for whether it has already been merged
into another group (line 9) and then checked for orthogonality against the group
vector (line 10). If the two are orthogonal, then the column is assigned to the
current group, marked as merged, and the group’s vector is updated by adding
the column vector (lines 11–13). At the end of the outer loop each column has
been assigned to a group and each group has at least one column in it.

For the example in Table 1 the first group would initially contain the column
“Herr”. Then the algorithm would iterate through the remaining columns and
the first orthogonal column is “Baum”, which would be added to the group.
Next, the group would be compared to “Meister”, but while “Herr” is orthogonal
to “Meister”, the merged group no longer is, thus neither “Meister” nor any
of the other columns is not merged into the group. Table 2 shows how over
four iterations the algorithm greedily merges together the columns into groups,
adding the “Meister” and “Kind” group in the second iteration, while the words
“Gott” and “Knabe” each get their own group as they are not orthogonal to
each other.

The word-cloud visualisation generation then works based on the groups
(Figure 3), rather than on individual words, but still uses the spiral to generate
the placements. For the initial word-cloud the groups are placed along the spiral
as in the naive approach, with individual words’ font-size still determined by
each word’s relevance. The difference is that as the user moves the selection
range, when a word is no longer displayed, because it no longer occurs in the
selection range, that word’s slot can immediately be re-used and re-filled with
another word that has been allocated to the same group. This has two main
benefits. First, as the number of groups is generally smaller than the number of



1 merged columns = [ ]
2 groups = [ ]
3 for i in 0 . . | columns |
4 i f i not in merged columns
5 group = [ i ]
6 merged columns . push ( i )
7 group v = columns [ i ]
8 for j in i + 1 . . | columns |
9 i f j not in merged columns :

10 i f orthogona l ( group v , columns [ j ] )
11 merged columns . push ( j )
12 group . push ( j )
13 group v = group v + columns [ j ]
14 end
15 end
16 end
17 groups . push ( group )
18 end
19 end

Algorithm 1: Greedy algorithm that constructs the merged groups based on
the pairwise orthogonality of the individual columns. The algorithm’s worst-
case performance is O(n2 ·m) where n is the number of columns and m the
number of rows.

Table 2. Example of the greedy Algorithm 1 processing the example data-set from
Table 1. In each iteration one group is added, containing one or more word columns in
that group. The fourth iteration represents the final set of groups to visualise.

Iteration Groups Words Columns in the Group

1 1 “Herr”, “Baum”

2 1 “Herr”, “Baum”

2 “Meister”, “Kind”

3 1 “Herr”, “Baum”

2 “Meister”, “Kind”

3 “Gott”

4 1 “Herr”, “Baum”

2 “Meister”, “Kind”

3 “Gott”

4 “Knabe”



(#1) (#2) (#3) (#4)

Fig. 3. Four word-clouds generated for the four segments in Table 1, but using the
groups identified in Table 2 to place words on the spiral. Words in the same group
appear in the same location, as can be seen when comparing the words “Kind” and
“Meister” or “Herr” and “Baum”. Also visible is the scaling of the word “Gott” in the
word-cloud for the second segment in which the word appears twice

words, overall the word-clouds are more compact. Second, because the number
of groups is known before visualising, the visualisation as a whole can be scaled
to ensure that the word-cloud is always visible as a whole, regardless of where
the selection range is moved.

4.3 Multi-segment selection ranges

As the user is free to select ranges that cover multiple segments, the matrix A has
to be updated to represent the multi-segment selection. In the updated matrix
each row represents a series of segments and the matrix values are updated to
show the frequency of each word across all selected segments. Table 3 shows
the matrix A for a selection range of two segments. As the example shows, the
number of rows is reduced by |selectionrange| − 1, in this case to 3 segments.
This matrix is then fed into the grouping and layout algorithms as above.

Table 3. Example word-segment occurrence matrix A for the three two-segments-
selected segments derived from the four original segments “Knabe, Kind Gott”, “Gott,
Gott, Meister, Baum”, “Knabe”, and “Knabe, Kind, Herr”. The new segment #1
contains the words from the original segments #1 and #2, new segment #2 from the
original segments #2 and #3, and new segment #3 from the original #3 and #4.

Segment Herr Baum Meister Kind Knabe Gott

#1 0 1 1 1 1 3

#2 0 1 1 0 1 2

#3 1 0 0 1 2 0

5 Evaluation

As stated above, the two core requirements for our algorithm were positional
stability and high performance, both of which we evaluate here. A user-focused
evaluation is planned in the context of evaluating the LERA system as a whole.



5.1 Stability of the Layout Algorithm

Looking at the positional stability, we undertook a qualitative and technical
evaluation. For the qualitative we used ten-segment wide selection ranges and
then visually inspected the results to verify that slots were being consistently
filled and re-used. Figure 4 demonstrates the stability of the algorithm. For
the two selection ranges the words “Hand”, “Prinz”, and “Tod” occur in both
selections (highlighted in green) and stay in the same location. On the other hand
the words “Fähnrich” and “Mäßigung” (highlighted in blue) are orthogonal and
thus can share the same location.

Fig. 4. Word-clouds showing two sets of 10 segments, demonstrating the stability of
the positions for the words “Hand”, “Prinz”, and “Tod” (green) and the re-use of a
position for the words “Mäßigung” and “Fähnrich” (blue).

Additionally we manually tested a wide range of selection ranges and then re-
peatedly moved the selection range across the text length. In our naive approach
this would lead to the word-cloud degenerating as illustrated above (Figure 2b).
In our tests the novel algorithm always maintained a stable cloud and compact
word-cloud.

One recurring issue the testing identified is that the simple spiral layout in
some cases has issues with word-overlap in the final display (Figure 5). This
is because the spiral does not take into account the final, rendered size of the
words and instead uses static distances between the word centres, which assume
a relatively even size distribution. For future work there is thus a clear need to
improve this by using an overlap-free layout algorithm.

5.2 Performance

To test the algorithm’s performance we automatically generated word-clouds for
a range of selection sizes and measured the time needed for this. The algorithm
was implemented in Ruby 2.4.5 and run on an Intel Core i7-3770 CPU with 16
GB of RAM running a Sabayon Linux with Kernel version 4.4.39. Table 4 shows
the results from averaging ten runs of each configuration.



Fig. 5. Example of overlapping words in the final layout.

Table 4. Performance timings for a range of selection ranges. The number of groups is
deterministic, but the run-time is reported as average (standard deviation) calculated
from ten runs for each configuration displaying 100 words. The selection sizes have
been determined based on feedback from LERA users.

Selection size # Groups Time

1 146 6.35s (0.18s)

40 151 4.11s (0.28s)

70 121 3.65s (0.13s)

90 117 3.74s (0.17s)

The main results in Table 4 clearly show that the algorithm’s performance
allows for running it on-demand without any pre-calculation. As is to be ex-
pected, the slowest run-time is for the single-segment word-clouds, where gen-
erating 146 groups from 2552 unique words takes approximately 6.35 seconds.
For the largest practical selection size of 90 segments, run-time reduces to on
average 3.74 seconds. The most common selection scenario is for a size of 40 and
here the generation takes on average 4.11 seconds.

The other result is that through the orthogonality calculation the algorithm
can substantially reduce the number of groups from 2552 unique input words
to between 117 and 146 groups. As the examples show this number of groups
can easily be visualised, but we are also investigating other space-filling curves
[9] to create a denser layout that utilises all of the rectangular space and avoids
overlaps.

As part of the performance testing we also assessed an optimisation based
on the hypothesis that by reversing the direction of the inner loop (Algorithm
1, line 8–16), the overall performance would improve. The hypothesis behind
the optimisation was that by starting with a column from the beginning of A,
where the columns are generally sparse, and then trying to merge it with the
more dense columns at the end of A, determining when two columns were not
orthogonal would be faster, as it would take less row comparisons until a row
was found where both columns had values.



Table 5 shows the results of running the algorithm with the inner loop direc-
tion reversed. It shows that for selection sizes of 1 and 40 it has little impact on
the number of groups generated, but it does improve run time. In the case of a
selection size of 1, the improvement is over 1 second. However, for the larger se-
lection sizes, the performance is lower and it generates significantly more groups.
The results confirm our basic hypothesis that merging very sparse with dense
columns increases efficiency. However, when there are few sparse columns, as is
the case for the larger selection sizes, by not letting the algorithm merge medium
density columns first, the greedy approach is not as successful at reducing the
total number of generated columns.

Table 5. Performance timings for a range of selection ranges and reversing the order
of the inner loop. The number of groups is deterministic, but the time is reported as
average (standard deviation) calculated from ten runs for each configuration displaying
100 words. The selection sizes have been determined based on feedback from LERA
users.

Selection size # Groups +/- Time +/-

1 145 -1 4.99s (0.39s) −1.36s

40 153 +2 4.03s (0.53s) −0.08s

70 138 +17 3.86s (0.12s) +0.21s

90 128 +11 3.73s (0.12s) +0.01s

However, as the optimisation requires only minimal change to the algorithm,
it is possible to dynamically change the inner loop’s direction based on the
selection size. While the exact breakpoint where the increased number of groups
is no longer worth the time savings is likely to vary depending on the actual text,
this can be determined automatically and the algorithm can then dynamically
switch the inner loop’s direction.

6 Conclusion & Future Work

Word-clouds are a useful tool for visualising text changes over time, but the
generation of a series of word-clouds in which words remain in stable positions
and which are nevertheless compact, is a highly time-consuming process. In this
paper we have presented a novel word-cloud algorithm that uses word-occurance
orthogonality to determine which words never cooccur and can thus share a
location in the generated word-clouds. This compacts the clouds and allows the
use of a simple spiral-based layout algorithm to create the a series of positionally
stable word-clouds.

We have evaluated the algorithm and it successfully produces positionally
stable series of word-clouds fast enough (between 4 and 6 seconds for the tested
configurations) to allow for dynamic, online generation based on user selections.
After this initial build time, the user can then instantaneously scroll through the
generated word-clouds and easily see the changes over time.



For future work we propose further improvements in the performance and
quality of the final word-clouds. While for the texts that we have used in the
system dynamic generation is viable, for very long text further speed improve-
ments are likely required, in particular for the orthogonality calculation. Two
optimisations we are considering are the use of a heuristic that quickly deter-
mines whether it is at all possible for two columns to be independent, based on
keeping track of the number of rows a column has values in, as if the sum of the
number of non-zero rows of the two columns is greater than the total number
of rows, the columns cannot be independent. The other planned optimisation is
to use bitvectors to represent the columns, which would enable the use of fast
bit-wise operations to check for orthogonality, rather than the current row-wise
comparisons. Together these should allow the algorithm to scale to even very
large texts.

As shown above, the layout algorithm currently has issues with word-overlap.
To address this we plan to use a space-filling curve approach that takes into
account the maximum size required for all the words in a group. This should
only have a minimal impact on the generation time, but will further improve the
ease with which the word-clouds can be interpreted and with which changes in
the word-clouds can be visually tracked.

Finally, while the word-cloud algorithm has been deployed in the LERA sys-
tem and has been used successfully by researchers, we have not yet formally eval-
uated its usability. In particular there are questions concerning whether colour-
or animation-based cues are needed to indicate to users which words have ap-
peared, been replaced, or changed in importance. We are planning to conduct
such a user-study in the context of evaluating the LERA system as a whole.
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