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ABSTRACT 

During life, cardiac muscle is capable of remodeling in response to an increased 

hemodynamic demand through cardiac hypertrophy. However, in most cases, if the stress 

stimuli become chronic the initially compensatory hypertrophic response evolves towards 

a pathological condition and heart failure. In this scenario, a therapeutic approach capable 

of reducing pathological cardiac hypertrophy could be beneficial.  

Growth differentiation factor 11 (GDF11) is circulating factor able to reduce cardiac 

hypertrophy in mice. It is a member of TGF-β family, and it shares a high level of homology 

with myostatin (MSTN) a well-studied protein that regulates skeletal muscle mass and 

apparently minimal activity on cardiac mass.  

Our data showed different protein levels between cardiac and skeletal muscle tissues 

revealed a higher abundancy of type I TGF-β receptors (ALK4/5/7) in the heart samples. 

Moreover, ALK7 receptor knockout induced a significant reduction in SMAD3/4 signaling 

only after GDF11 treatment. These results showed a differential quantity and use of ALKs 

receptors, possibly explaining the higher GDF11 sensitivity of cardiomyocytes compared to 

skeletal myocytes. 

Using a model of pressure overload-induced cardiac hypertrophy it was possible to further 

confirm the anti-hypertrophic activity of GDF11. Interestingly, even if with lower potency, 

this effect was recapitulated also by MSTN, demonstrating that both peptides have 

overlapping effects on cardiac tissue. Furthermore, aiming to reduce controversies 

regarding GDF11 and MSTN serum quantifications, we contributed to develop a novel assay 

based on mass spectrometry that can discriminate and quantify reliably both proteins. 

Using this method, it was also possible to identify an age-dependent reduction of both 

GDF11 and MSTN ligand in mice. 

In conclusion, GDF11 and MSTN share a common cardiac anti-hypertrophic activity that 

was not previously expected. Modulation of GDF11/MSTN signaling pathway can be 

considered for development of novel therapeutic strategies and new biotherapeutics. 
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1. INTRODUCTION 

1.1. Aging pressure on world population 

For thousands of years, people have struggled to go beyond childhood, reach adult age 

and, if they survived wars, famine or diseases, die into their 50s or 60s. A progressive, 

constant improvement in life conditions accompanied by major achievements in the 

medical field, has drastically changed this perspective in the last decades with people in 

developed country able to commonly reach their 80s and 90s. This phenomenon is deeply 

changing the demographics of the world. At the beginning of this century there were 

already more people aged 60 years or older than 5 years or younger (UaH, 2012) and by 

2050 there will be more than 2 billion people older than 60 (United Nations, 2015). In the 

European Union, according to Eurostat projection, by 2060 almost one third of the 

population will be over 65 years (European Commission, 2015). A similar trend can be 

observed in the United States where, in 2014, one person out of seven was older than 65 

and, furthermore, the total number of elderly people is estimated to be more than double 

by 2060 (Administration of Aging, 2015). These projections indicate a strong demographic 

shift that countries have to take into consideration to reduce their impact on population 

and economy. Indeed, a 2015 United Nation report, stated “public policies are needed to 

mitigate the upward pressure on national health care budgets exerted by the rising costs 

of health care services, and the longer lifespans and increasing numbers of older persons.” 

(United Nations, 2015). It is important to notice that medical progresses have been able to 

extend the lifespan of individuals. However, such extension could generate patients with 

poor quality of life and with extensive health care needs. Thus, a simple reduction of health 

expenses will not be enough to balance the economic burden of chronic diseases (Harper, 

2014). To sensibly reduce healthcare costs, it is crucial to extend the “healthspan” by 

promoting the healthy aging of the population. Thus, it will be possible to confine the 

insurgence of severe illness or disabilities in the natural last part of life, improving patients’ 

quality of life and reducing health care system expenses (Seals and Melov, 2014). 

 

1.2. Impact of aging on tissue function 

Aging is a time-dependent progressive decline of cell and tissue functions that decrease the 

organism fitness, increase its susceptibility to chronic disease and death (Oh et al., 2014) 
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and represents a major risk factor in the developed world (Harman, 1991). Humans, once 

they reach the adult age, experience slow but progressive physiological changes and 

functional impairments (Mitnitski et al., 2001), that during a lifetime result in an 

exponentially increased incidence of major chronic disease like cardiovascular diseases, 

neurodegenerative disease, cancer and influenza-associated hospitalization (Fig. 1) 

(Thompson et al., 2009). 

 

  
 

 

Figure 1: Age-dependent incidence increase of major chronic disease. 
Cardiovascular diseases are represented by blue squares, cancer by red diamonds, Alzheimer disease 
by grey squares and influenza-associated hospitalization by green triangles. Image from (Rae et al., 
2010). 

 

The demographic shift described in paragraph 1.1 combined with the increased susceptibly 

of aged people to chronic and debilitating diseases represent the perfect recipe for a 

worrying future scenario where chronic disease could reach pandemic proportion. It has 

been predicted that by 2030, 40% of the population in United States will suffer of at least 

one form of cardiovascular disease (CVD) (Heidenreich et al., 2011). In parallel, by 2050, 

neurodegenerative diseases like Alzheimer and Parkinson disease will afflict a significant 

portion of United States’ population with an estimated patient number of 13.8 and 1.3 

million respectively (Hebert et al., 2013; Kowal et al., 2013). According to these predictions, 

 Cardiovascular diseases 

 Cancer 

 Alzheimer disease 

 Influenza-associated hospitalization 
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health care expenses for chronic disease will double or triple. Furthermore, the indirect 

cost of chronic diseases, due to productivity loss of the affected population, is estimated in 

an extra-cost spanning from 20% to 30% of the previous value. (Hebert et al., 2013; 

Heidenreich et al., 2011; Kowal et al., 2013). 

Effective preventive strategies and treatments able to delay or reduce the deleterious 

effects of aging are strongly needed to avoid a global aging crisis and to improve quality of 

life of single individuals. 

 

1.3. Aging and cardiovascular diseases 

CVDs are the leading cause of death around the world, responsible of almost 50% of total 

deaths from non-communicable diseases (World Health Organization, 2014). Aging 

increases the risk by prolonging the exposure time to deleterious events, but also acting as 

one of the most important risk factors for developing CVD (North and Sinclair, 2012) (Fig.2). 

 

Figure 2: Percent of all deaths due to CVD by age groups (United States, 2008). 
Data from (National Heart Lung and Blood Institute, 2012). 

 

In order to understand why CVD and aging are so intertwined, it is important to identify 

which are the main actors involved, and how those players can exert their deleterious 

effects in the pathophysiology of the aging heart. It is also important to mention that those 

players are not working alone; the cardiovascular system is a complex machine with several 
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compensatory mechanisms that usually prevent its critical failure. While these 

compensatory events may provide a beneficial effect in the short term, a prolonged 

exposure to pathological stimuli may produce a vicious circle that ultimately determines 

heart failure. An overview of changes induced by aging on cardiovascular system is 

important to understand the magnitude of the problem and to develop strategies to 

prevent or reduce the burden of age-related CVD. 

 

1.4. Cardiac aging 

Normal cardiac aging is characterized by a number of changes at structural and functional 

levels. A significant increase in cardiomyocyte size accompanied by a decrease in myocyte 

number secondary to apoptosis together with deposition of extracellular matrix and 

functional changes at the cellular level can be observed with normal aging (Lakatta and 

Levy, 2003), contributing to the increased prevalence of cardiovascular diseases in the 

aging population. 

 

1.4.1. Structural changes with aging 

A number of studies on healthy subjects have shown that, even in the absence of classic 

cardiovascular risk factors, aging is associated with a marked increase in left ventricular (LV) 

hypertrophy (Gerstenblith et al., 1977; Lakatta and Levy, 2003) (Fig. 3), as shown in both 

the Baltimore Longitudinal Study on Aging and the Framingham Heart Study (Dai and 

Rabinovitch, 2009). Aging seems to redistribute asymmetrically muscle tissue within the 

heart with a more pronounced wall thickness on the interventricular septum compared to 

the free wall; these structural modification influence its own shape, changing from elliptical 

to sphere-like shape (Hees et al., 2002). 

Aging is also associated to a progressive reduction of cardiomyocyte replication rate 

(Bergmann et al., 2009; Olivetti et al., 1995). Interestingly, cardiomyocyte apoptosis rate is 

not affected by aging, but men have a basal apoptosis rate approximately 3-folds higher 

than women (Mallat et al., 2001). Age-dependent changes in extracellular matrix 

deposition are another hallmark of the aging heart: interstitial fibrosis, collagen deposition, 

fibers crosslinking and fibers diameter increase in an age-dependent manner and 

eventually determine an increase in cardiac stiffness (Gazoti Debessa et al., 2001; Lakatta 

and Levy, 2003). 
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Figure 3: Left ventricular wall thickness increases with age. 
Data obtained using M-mode echocardiography in healthy men and women. Data shown as  

mean  SEM. Figure data were obtained from (Gerstenblith et al., 1977). 

 

1.4.2. Age-dependent decrease of LV diastolic function 

While systolic function is generally maintained with aging, after twenty years old, a slow 

and progressive reduction of the LV diastolic filling rate can be observed already as early as 

age 20 years in humans; this decline continues until it reaches, in the last part of life, the 

50% of the initial filling rate (Fig. 4A) (Schulman et al., 1992; Swinne et al., 1992).  

The mechanisms that determine this decrease in function are mainly the maladaptive 

remodeling of the left ventricle and the prolonged contraction of cardiomyocyte induced 

by the inefficient re-uptake of Ca2+ ions. The net effect is a delay of the early filling of the 

left ventricle that is compensated by an increased atrial contraction that produces a late 

diastolic filling and atrial hypertrophy (Swinne et al., 1992).  

Impaired ventricular filling is reflected by a shift in the E/A ratio measured by doppler. In 

healthy condition, the peak E correspond to the early filling of the ventricle and it is 

responsible for 70/75% of total ventricle filling whereas the peak A, is produced by atrial 

contraction and it is responsible for the remaining 20/25% of ventricle filling. Aging process 

impair early ventricle filling and increase active atrial filling of the ventricle shifting the E/A 

ratio as shown in fig. 4A-C (Lakatta and Levy, 2003). 
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Figure 4: Changes in diastolic filling with age. 
(A) Early diastolic left ventricular filling decreases with age. 
(B) Late diastolic left ventricular filling induced by atrial contraction increases with age.  
(C) E/A ratio declines with age and is associated to decrease of cardiac function.  
Figures data were obtained from (Okura et al., 2009). 
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1.4.3. Heart failure (HF) 

Aging is defined as the progressive loss of functionality of cells and organs to maintain 

proper homeostasis. As described above, age-associated structural and functional changes 

in the cardiovascular system challenge the cardiac reserve capacity and stress the system 

until it is not able to provide an adequate blood supply to the body. With time, even mild 

pathologic stimuli may compromise cardiac function and produce signs and symptoms of 

HF. HF is ”a complex clinical syndrome that results from any structural or functional 

impairment of ventricular filling or ejection of blood” as defined  by the American Heart 

Association (AHA) (Yancy et al., 2013). In western world, around 1% of the population with 

more than 50 years is affected by HF and its incidence increase progressively with age 

(Redfield et al., 2003). HF diagnosis is often associated to a poor prognosis as it has been 

defined "More malignant than cancer”, showing a 25% of survival rate after 5 years from 

first hospitalization (Stewart et al., 2001). Even if mortality remains high, especially in newly 

diagnosed patients, new approach and drugs have improved HF prognosis, both in men and 

women (Levy et al., 2002; McMurray et al., 2019; Mehta et al., 2009). Traditionally, HF has 

been associated to an exhausted heart that is unable to pump enough blood during systole 

to satisfy organism needs. This type of HF with systolic dysfunction is called HF with reduced 

ejection fraction (HFrEF), defined by a LV ejection fraction lower than 40% (McDonagh et 

al., 1997; Yancy et al., 2013). More recently, a growing epidemic of HF with apparently 

normal systolic function has been observed. This form of HF is characterized by diastolic 

dysfunction and has been defined as HF with preserved ejection fraction (HFpEF) 

(Aurigemma et al., 1995; Lam et al., 2007). This condition has a normal sized left ventricle, 

often but not always with hypertrophy. Approximately 50% of patients hospitalized for 

heart failure have HFpEF, and similar mortality risk of patients diagnosed with HFrEF. Aging 

produce a number of changes that challenge the diastolic filling properties of the LV thus 

contributing to the epidemic of HFpEF (Borlaug and Paulus, 2011; Gottdiener et al., 2012). 

 

1.4.4. HFpEF 

HFpEF is a clinical condition characterized by signs and symptoms secondary to the 

impairment of diastolic properties of the left ventricle accompanied by an ejection fraction 

higher than 50% (Yancy et al., 2013). Diastolic dysfunction may occur as a consequence of 

changes that are associated with normal aging like cardiomyocyte hypertrophy, impaired 
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intracellular calcium handling and cardiac fibrosis. Furthermore, patients with HFpEF are 

more likely women, obese, affected by hypertension, diabetes, and renal disease, 

suggesting that multiple pathophysiological mechanisms may be responsible for the onset 

of HFpEF (Boonman-de Winter et al., 2012; Gottdiener et al., 2012; Shioi and Inuzuka, 

2012).  

 

1.4.4.1. Molecular mechanism of HFpEF: LV hypertrophy 

Cardiomyocytes hypertrophic response: 

Cardiomyocytes occupy approximately 75% of ventricular myocardial volume even if they 

represent about one-third of the total heart cell number (Nag, 1980; Popescu et al., 2006). 

Cardiomyocytes are terminally differentiated cells that lose the capacity to proliferate soon 

after birth, thus postnatal increased heart size is mainly accounted by cardiomyocyte 

enlargement (Bernardo et al., 2010; Soonpaa et al., 1996). In LV, cardiomyocytes are 

organized with a spiral orientation to maximize cardiac pump efficiency. Mechanical 

resistance and coordinated contraction are allowed by intercalated discs presents at both 

ends of cardiomyocytes providing electrically coupling and strong cell-cell adhesion (Vermij 

et al., 2017). Cardiomyocyte hypertrophy can be seen as an adaptive process in response 

to an increased workload; in order to match the needed pumping force, cardiomyocytes 

have to increase their contraction machinery. Sarcomere is the basic contractile unit of the 

cardiac muscle and is formed by repeated and extremely organized cluster of actin and 

myosin proteins (thin and thick filaments, respectively) (LeWinter et al., 2007). Depending 

on the initiating stimulus, sarcomeres could be added in series, increasing the 

cardiomyocyte length, or in parallel, increasing cardiomyocyte width. The former process 

is associated to an eccentric hypertrophy, characterized by increased cardiac mass and 

chambers volume and the latter is associated to an increased wall thickness and small 

reduction or no change in chambers volume (Bernardo et al., 2010). Interestingly, both 

eccentric and concentric hypertrophy are associated to both physiological and pathological 

cardiac hypertrophy (Bernardo et al., 2010). 
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Physiological and pathological hypertrophy 

Laplace’s law (Fig. 5) provides a mathematical formula to explain why thickening of LV wall 

is beneficial in case of mechanical load increment. 

 

 

Figure 5: Mathematical representation of Laplace’s equation.  
Figure generated using http://www.hostmath.com/. 

 

Depending on a great variety of extrinsic and intrinsic stimuli, cardiomyocytes can develop 

two different types of LV hypertrophy, described as physiological and pathological LV 

hypertrophy (Frey and Olson, 2003). 

Physiological hypertrophy is an adaptive remodeling of the heart as a consequence of 

increased demand in endurance training athletes and in pregnant women (Eghbali et al., 

2006; Maron and Pelliccia, 2006). Physiologic remodeling is characterized by harmonic 

increase of cardiac walls and internal chambers volume, absence of fibrosis or increased 

cardiomyocytes deaths and improved cardiac function (Heineke and Molkentin, 2006).  

Pathological hypertrophy is a maladaptive cardiac remodeling secondary to a series of 

pathological stimuli and is present in patients affected by HFpEF (Melenovsky et al., 2007). 

While sharing some central hypertrophic pathways with physiological remodeling, 

pathological hypertrophy is accompanied by the presence of fibrosis, increased 

cardiomyocytes deaths and cardiac dysfunction (Heineke and Molkentin, 2006). In 

addition, in pathological remodeling a transcriptional shift that induces expression of the 

fetal gene program can be observed; that includes among others atrial natriuretic peptide 

(ANP), brain natriuretic peptide (BNP), α-skeletal actin and β-myosin heavy chain (β-MHC) 

(Frey and Olson, 2003).  

While one of the differences between pathological and physiological hypertrophy could be 

found respectively in chronic or intermittent increased workload exposure (Bernardo et al., 

2010), the intrinsic nature of the mechanical stress could represent the driving force that 

determine the insurgence of different forms of cardiac hypertrophy (McMullen et al., 2004; 

Perrino et al., 2006).  
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Pathways involved in cardiac hypertrophy: 

Heart growth is the final event of an extremely complicated mechanism where deeply 

intertwined and regulated pathways interact to regulate cardiac size. Generation and 

characterization of transgenic and knock-out (KO) animals have helped to understand the 

responsible pathways and regulators involved. In the following sections the main biological 

pathways involved in development cardiac hypertrophy will be described. However, is 

important to mention that differences in hypertrophic stimuli, presence of compensatory 

responses from redundant proteins isoforms, different localization of overexpressed 

proteins or dissimilar response among KO and dominant negative mutants, have hindered 

a complete understanding of the mechanisms involved and some findings need further 

studies to be clarified (Bernardo et al., 2010). 

• IGF-1/PI3K/AKT/GSK3 pathway  

The insulin like growth factor 1 (IGF-1) pathway, summarized in table 1A-B, aside its 

central role in the aging process, is one of the main regulator of physiological 

hypertrophy response (Kim et al., 2008; Noh et al., 2015; Shioi et al., 2000). However, 

exaggerate activation of this pathway can rapidly exhaust the heart and lead to HF 

(Delaughter et al., 1999). 

Proper pathway regulation is crucial to modulate myocardial adaptation in response to 

mechanical stress, balancing physiological and pathological remodeling. 

Several protein isoforms, activated by the same upstream protein, could lead to 

complete different type of cardiac hypertrophy. For example phosphoinositide 3-kinase 

PI3K (p110α) is involved in physiological hypertrophy, instead PI3K (p110γ) plays a role 

into pathological hypertrophy (Bernardo et al., 2010; McMullen et al., 2003; Oudit and 

Kassiri, 2007). Furthermore, glycogen synthase kinase 3 (GSK3)-α and GSK3-β are both 

phosphorylated by AKT, but the former phosphorylated protein is protective against 

pressure overload induced hypertrophy, instead the latter phosphorylated protein has 

the opposite effect in response to the same stimuli (Matsuda et al., 2008). Understand 

the exact mechanism of these interactions and how they are modulated by other 

signaling cascade is an area of intense research. 
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• Calcium-related pathways: Calcineurin/NFAT and CaMKII signaling 

Calcium-related pathways are summarized in table 2A-B. Their activation is strongly 

associated to a rapid development of cardiac hypertrophy and fibrosis and progress 

towards HF (Molkentin et al., 1998; Wilkins et al., 2004). Indeed, impaired calcium 

handling not only affects heart contractility and relaxation but also induces calmodulin 

activation that, in turn, stimulate both calcineurin and Ca2+/calmodulin-dependent 

protein kinase II (CaMKII). 

The former seems to play a central role in hypertrophic pathways, leading to nuclear 

factor of activated T cells (NFAT) activation that can modulate other transcription factors 

as GATA4, myocyte enhancer factor 2 (MEF2) (Molkentin et al., 1998). Changes in the 

activity of the above-mentioned transcription factors can affect expression of numerous 

cardiac genes, inducing epigenetic modification via histone deacetylase (HDAC) and 

promoting the reactivation of the fetal gene program (Dirkx et al., 2013). Interestingly, 

calcineurin/NFAT signaling seems to be involved only in pathological hypertrophy, but 

further studies are required to clarify the role of myocyte-enriched calcineurin 

interacting protein 1 (MCIP1). MCIP1 inhibit calcineurin activity, but seems to modulate 

cardiac hypertrophy differently according to nature of hypertrophic stimulus (Rothermel 

et al., 2001; Vega et al., 2003). 

The latter is another important mediator of cardiac hypertrophy in presence of overload 

stimuli (Backs et al., 2009). Cardiac specific overexpression of both CaMKIIδ B and C 

isoforms showed profound cardiac hypertrophy in mice, fetal gene program expression 

and calcium handling impairment, although each one shows a different mechanisms 

(Zhang et al., 2002; Zhang et al., 2003). Interestingly, hyperphosphorylation of 

phospholamban (PLN) induced by CaMKIIδ C seems to be insufficient to compensate the 

decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) and 

aberrant function of hyperphosphorylated ryanodine receptor 2 (RyR2) (Zhang et al., 

2003).  

 

• G protein-coupled receptors (GPCRs) in hypertrophic signaling 

GPCRs are receptors with seven transmembrane α-helices that are extremely important 

in signal transduction of external stimuli. When an agonist binds a GPCR, the G protein 

heterotrimeric complex dissociate in two subunits, Gα and Gβγ, and both can initiate 
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the signaling cascade. In particular, Gαq/Gα11, Gαs and Gαi are the most important 

subunits for cardiac hypertrophic response (Frey and Olson, 2003). 

Angiotensin II (Ang-II) receptor, endotelin-1 (ET-1) receptor, α-adrenergic receptors  

(α-ARs) and β1-ARs transduce their activation through Gαq/Gα11, whereas β2-ARs 

coupled to Gαs and Gαi (Bernardo et al., 2010). Effects of activation of these receptors 

are summarized in table 3. 

The activation of the adrenergic cascade seems to activate an adaptive cardiac 

hypertrophy response to counteract the increased mechanical overload mainly through 

β1-AR. However, prolonged β1-AR stimulation is detrimental for the heart (Engelhardt et 

al., 1999). Of note, reduction of β-AR desensitization seems to restore a more 

physiological state and improve cardiac function in presence of severe 

cardiomyopathies (Rockman et al., 2002). 

The role of Ang-II receptors in cardiac hypertrophic seems to be of secondary 

importance when compared to their role in fibrosis development (Billet et al., 2008). 

Finally, although ET-1 receptors blockade in vitro and in vivo has showed protecting 

results against cardiac hypertrophy, clinical trials revealed that this approach is 

associated to frequent side effects (Bernardo et al., 2010). 

 

• Mitogen activated protein kinase (MAPK) pathways 

MAPKs are an evolutionary family of serine/threonine kinase that are involved in 

numerous steps of organism development and cell homeostasis. Indeed, MAPKs are 

functional nodes that collect and transduce signals from a great variety of stimuli as 

growth factors, GPCR, cytokine and cellular stress (Rose et al., 2010). 

MAPK family could be divided into three subfamilies called: extracellular signal-

regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK (Rose et al., 2010). 

How these subfamilies are able to affect cardiac hypertrophy is summarized in  

table 4 A-B.  

Briefly, despite some contrasting results, ERK pathway seems not to be critical for 

cardiac hypertrophy progression, however ERK2 inhibition seems to be stimulate in 

eccentric hypertrophy usually associated to endurance exercise (Kehat et al., 2011; Ulm 

et al., 2014). Interestingly also another ERK protein, ERK5, is involved in eccentric cardiac 

hypertrophy development (Nicol et al., 2001). On the other hand, ERK5 null mice show 
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reduction of pressure overload-induced cardiac hypertrophy probably due to MEF2 

downregulation. (Kimura et al., 2010). 

JNK role in cardiac hypertrophy is less clear, probably different nature of hypertrophic 

stimuli and redundancy of JNK isoforms are the main reason for this lack of consistence 

among studies (Rose et al., 2010). Indeed, a single deletion of JNK 1/2/3 show no change 

in cardiac hypertrophy progression (Tachibana et al., 2006). However, JNK activity is able 

to antagonize calcineurin/NFAT pathway increasing NFAT phosphorylation and blocking 

its transcriptional activity (Liang et al., 2003). 

Similarly to JNK, p38 MAPK has numerous contrasting results that reflect mechanism 

complexity. Cardiac-specific expression of dominant negative p38 MAPK,  

MAPK/ERK kinase 3 (MEK3) and MEK6 showed increased cardiac hypertrophy in 

response to hypertrophic stimuli, suggesting a protecting role of p38 MAPK (Braz et al., 

2003). On the other hand, in a second study, increased activity of MEK3 and MEK6 

strongly activated p38 MAPK resulting in cardiac hypertrophy but associated to marked 

remodeling and fibrosis (Liao et al., 2001). Furthermore, p38 MAPK inhibition seems to 

be have a part into cardioprotective effects induced by estrogen in patients with HF 

(Satoh et al., 2007). Taken together, these results do not show a pivotal role of p38 

MAPK activation in cardiac hypertrophy, but they are more involved in cardiac 

remodeling, fibrosis and HF progression. 
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1.4.4.2. Molecular mechanism of HFpEF: increased myocyte stiffness 

Role of titin in myocyte stiffness 

Titin is an enormous protein, with a canonical isoform of almost 4MDa, and it is a major 

determinant of myocyte stiffness (LeWinter and Granzier, 2010). This protein mechanically 

links Z disk to the M band of sarcomere and, thanks to its spring-like function, creating 

passive tension in the cardiomyocytes. Within the I region of the sarcomere, there is a titin 

N-terminal region that contains several tandem repeats of immunoglobulin-like domains 

working as the functional structure of this molecular spring (Helmes et al., 1999). Titin 

stiffness is modulated by protein phosphorylation, for example activity of protein kinase A 

(PKA) and cGMP-dependent protein kinase (PKG) decrease stiffening (residue S469 of N2B 

sequence), while phosphorylation by protein kinase C (PKC) increase passive stiffness 

(S1178 of PEVK sequence) (LeWinter and Granzier, 2010). Of note, increase of S1178 

phosphorylation and decrease of S469 phosphorylation have been found in patients 

affected by HFpEF but not in hypertensive patients suggesting that titin alterations are 

involved in HFpEF development (Zile et al., 2015). 

 

1.4.4.3. Molecular mechanism of HFpEF: changes in myocardial interstitium 

Healthy myocardial interstitium 

In a normal state, cardiac interstitium organizes cardiac muscle fibers providing mechanical 

support and allowing cardiomyocytes to develop electrical coupling and maintains contact 

with microvasculature (Berk et al., 2007). Interstitial collagen-based cardiac matrix network 

is not a simple cell scaffold but it is important for efficient cardiac function. Tensile strength 

is conferred by thick fibers of type I collagen whereas type III collagen has thin fibers that 

maintains network elasticity. Type I and type III collagen are, respectively, the 85% and the 

11% of the total heart collagen (Weber, 1989). It is important to remember that in addition 

to collagens, the extracellular matrix (ECM) contains numerous glycosaminoglycans and 

glycoproteins that could interact and stores a significant amount of latent growth factors 

and proteases (Ignotz and Massague, 1986; Rifkin et al., 1999). 

Cardiac fibroblasts are most abundant interstitial cell type in the adult mammalian heart 

and are the main responsible for ECM production and maintenance (Eghbali et al., 1989).  

After birth, the total number of fibroblasts increase markedly probably due to the increase 
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mechanical stress by elevated LV pressure (Banerjee et al., 2007), but after this period, 

during the young adult phase of life, fibroblast enter in a quiescent state showing no 

proliferation or inflammation activation. Less important in number but crucial for cardiac 

health are another group of cells present in the cardiac interstitium as vasculature cells 

(endothelial cells, smooth muscle cells, pericytes) and immune system cells (mast cells and 

macrophages) (Banerjee et al., 2007; Gersch et al., 2002). 

Myocardial interstitial fibrosis 

As already described in paragraph 1.4.1, aging increases myocardial interstitial fibrosis and 

this process is a major contributor to cardiac stiffness and diastolic dysfunction.  

Systolic and diastolic function are impaired by fibrosis at several levels: 

• Mechanical:  increased heart stiffening forces the cardiac muscle to perform stronger 

contractions promoting LV hypertrophy. In addition, myocardial elasticity 

reduction impacts on diastolic function and on passive coronary blood 

flow, respectively reducing the total volume ejected for each stroke and 

reducing the volume of blood that perfuses the heart (Kong et al., 2014).  

• Electrical: collagen deposition can disrupt the electrical coupling between 

cardiomyocytes, increasing the risk of developing a non-coordinated 

heart contraction, arrhythmias and formation of re-entry circuits (Brown 

et al., 2005). 

• Physiological:  collagen deposition around intracoronary arterioles reduces oxygen 

diffusion towards myocytes increasing cardiomyocytes apoptosis rate. 

After death, cardiomyocytes are replaced by fibroblasts that increase 

ECM deposition and fuel a detrimental loop that furtherly exacerbate 

reduction of coronary reserve and myocyte health (Brown et al., 2005; 

Galiuto et al., 2006). 

Cardiac fibrosis is the final result of an excess of matrix protein deposition due to ECM 

turnover alteration. On one side, collagen and fibronectin production, regulated by several 

growth factors, in particular by transforming growth factor-β (TGF-β) (Ignotz and 

Massague, 1986), increases with age; on the other side aging reduces ECM proteolytic 

degradation that is regulated by the balance of matrix metalloproteinases (MMPs)/tissue 

inhibitor of metalloproteinases (TIMPs) (Kong et al., 2014).  
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Fibroblasts are the major regulators of ECM, controlling protein secretion and degradation. 

With aging, injury or cardiac hypertrophy, fibroblasts transdifferentiate into myofibroblasts 

with a more pronounced secretory phenotype (Chen and Frangogiannis, 2010). TGF-β 

stimulation seems to have a central role in myofibroblasts transdifferentiation 

(Desmouliere et al., 1993).  Myofibroblasts are characterized by α smooth muscle actin  

(α–SMA) expression and they control several aspects of cardiac remodeling and 

inflammatory response. Indeed, myofibroblasts show a marked increase in ECM protein 

and cytokines secretion and elevated susceptibility to chemokine induced migration 

compared to normal fibroblast (Baum and Duffy, 2011). 

MMPs and TIMPs plasma levels also change with aging: MMP-2, MMP-7, TIMP-1, TIMP-2 

and TIMP-4 increase and MMP-9 levels decrease. Increased TIMPs concentration is 

sufficient to inhibit MMPs activity resulting in environment prone to ECM protein 

accumulation (Bonnema et al., 2007). Indeed, increased TIMP-1 serum levels are associated 

to increased LV mass and wall thickening in humans and are is a major risk factor for 

cardiovascular diseases (Hansson et al., 2009). 

 

1.4.4.4. Molecular mechanism of HFpEF: Ang-II and TGF-β signaling pathways 

Ang-II is a key factor for cardiac fibrosis, and it is a part of the renin-angiotensin-aldosterone 

system (RAAS). Ang-II is processed and activated by renin and angiotensin converting 

enzyme (ACE), both enzymes are produced from activated macrophages and fibroblasts 

(Kong et al., 2014). Ang-II acts in an autocrine and paracrine manner stimulating fibroblast 

proliferation, collagen deposition and cardiomyocyte hypertrophy through AT1 activation 

(Crabos et al., 1994; Sadoshima and Izumo, 1993). Furthermore, Ang-II directly stimulates 

TGF-β expression and potentiates its signaling (Sadoshima and Izumo, 1993). Blockage of 

AT1 and ACE-inhibitors treatments were beneficial in pressure-overload hypertrophy 

models and in HFpEF patients, underlining the importance of this pathway for reducing 

fibrosis and mortality (Fu et al., 2012; Regan et al., 1997). 

TGF-β is one of the most important factors for fibroblast activation and ECM accumulation. 

TGF-β is markedly associated to cardiac fibrosis indeed, it is responsible for myofibroblast 

transdifferentiation, increased synthesis of ECM proteins, protease inhibitors like TIMPs or 

plasminogen activator inhibitor-1 (PAI-1) and decreased expression of MMPs (Desmouliere 

et al., 1993; Ignotz and Massague, 1986; Kong et al., 2014).  
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TGF-β is normally present in the ECM in its latent form and, as reviewed in (Annes et al., 

2003), the latent complex itself could be described as a sensor that regulates TGF-β release 

in response to several stimuli like ECM degradation, oxidative stress or acidic environment.  

TGF-β ligand binds exclusively a tetramer receptor composed by a first homodimer of TGF-

β receptor type II (TGFβRII) and second homodimer of TGFβRI (also known as activin-like 

receptor kinase 5 (ALK5)). After receptor formation and ligand binding, the canonical TGF-

β pathway is activated by type I receptor that phosphorylates SMAD2/3 that recruit SMAD4 

and translocate in the nucleus to modulate expression of hundreds of genes (Leask, 2015).  

Canonical TGF-β pathway seems play an important role into fibrotic process. Indeed,  

TGF-β neutralizing antibody shows marked reduction in ECM deposition and improved 

wound healing (Shah et al., 1994) and SMAD3 KO mice show marked fibrosis reduction 

although density of infiltrated myofibroblast at injury site was significantly increased (Bujak 

et al., 2007). SMAD3-KO-dependent reduction in cardiac remodeling is probably due to 

lower cytokine, chemokine expression and decrease in fibroblast production of collagen 

and tenascin-c (Bujak et al., 2007). Interestingly, TGF-β canonical pathway could be 

modulated by crosstalk of non-canonical pathways as ERK, AKT, TGF-β activated kinase 1 

(TAK1)/JNK/p38 MAPK affecting the outcome of fibrosis process (Leask, 2015). 

However, non-canonical pathways have not been extensively studied in cardiac fibrosis 

and, probably due to elevated system complexity, some proteins have contrasting results. 

As example, TAK1 has been considered cardioprotective from Liu group (Li et al., 2015), but 

results from Schneider group show that TAK1 activation after pressure-overload result is 

sufficient to induce HF (Zhang et al., 2000). Probably, age of animals, different promoter 

and treatment timing could be the explanation for these results discrepancy. 

  

1.4.4.5. Molecular mechanism of HFpEF: Oxidative stress and aged mitochondria 

Heart and vasculature have an increase of oxidative stress during aging (Judge et al., 2005; 

Ungvari et al., 2007). Oxidative stress is caused by unbalanced production and degradation 

of reactive oxygen species (ROS) that are able to interact and damage all type of cellular 

macromolecules. Mitochondria are main cellular source of ROS and reducing mitochondrial 

ROS exposure overexpressing mitochondrial targeted catalase has proved to prolong mice 

life span, improving diastolic function and reducing cardiac fibrosis (Dai et al., 2009; 

Schriner et al., 2005). Furthermore, ROS can interact with mitochondrial DNA (mtDNA) 
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causing random point mutation and deletion leading to an accelerated aging process and 

impaired respiratory chain function (Trifunovic et al., 2004; Vermulst et al., 2008).  

Similarly in humans, dysfunctional mitochondria and mtDNA mutations accumulate with 

age (Corral-Debrinski et al., 1992). Dysfunctional mitochondria have inefficient respiratory 

chain electron transfer that simultaneously decrease oxidative phosphorylation and 

increase ROS production through electron leakage as reviewed by (Dai et al., 2012). 

Heart is an extremely active organ and cardiomyocyte need elevated and constant ATP 

concentration mitochondria. Thus, damaged mitochondria has to be removed and replaced 

in a continuous turnover to grant adequate energy levels and low ROS production but 

efficient macroautophagy decrease with age (Dai et al., 2012; Rubinsztein et al., 2011). As 

explained in the mitochondrial-lysosomal axis theory of aging, if damaged mitochondria 

are not repaired properly could undergo to clonal expansion and displace the healthy 

mitochondria population (Terman et al., 2010). In this scenario, cardiomyocytes are 

gradually left with an increasing number of dysfunctional mitochondria that are not able to 

provide enough energy for contraction and homeostasis exacerbating cardiomyocyte stress 

and promoting cardiac hypertrophy and HF as reviewed in (Goffart et al., 2004). 

Furthermore, increased oxidative stress is also associate with increased activation of MMPs 

and decrease collagen expression (Siwik et al., 2001). Increased ECM degradation is not the 

only effect of activated MMPs on cardiac remodelling: their protease activity could activate 

others signalling precursors or indirectly, could release cytokine and growth factors 

entrapped in ECM as described in (Lu et al., 2011). 

One of these factors entangled in ECM is TGF-β and it play an important role in regulating 

fibroblast oxidative stress. Indeed, TGF-β signalling stimulates expression of NADPH 

oxidase 4 (Nox4) and its superoxide production in cardiac fibroblast (Cucoranu et al., 2005). 

Nox4 increase intracellular oxidative stress and modulate long-term phosphorylation of 

SMAD 2/3 inducing irreversibly fibroblast to myofibroblast transdifferentiation (Cucoranu 

et al., 2005). Interestingly, Nox4-induced cardiac remodelling and hypertrophy seems to be 

modulated through AKT/mTOR and NFκB pathways activation (Zhao et al., 2015).  

 

1.4.4.6. Molecular mechanism of HFpEF: Calcium signalling and diastolic relaxation 

As already mentioned in paragraph 1.4.2 diastolic dysfunction is associated to an impaired 

LV filling and reduced coronaries perfusion, principally because the heart is unable to relax 
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properly. Impaired calcium reuptake, together with cardiac stiffening, are the main reasons 

for reduced and delayed cardiomyocytes relaxation.  

Cardiomyocytes, as other muscular cells, undergo through contraction when Ca2+ is 

released from sarcoplasmic reticulum activating myosin-actin interaction and force 

generation. Subsequently cytoplasmic Ca2+ concentration has to decrease rapidly allowing 

fibers to slide back and assume relaxed position before another contraction cycle could 

start. SERCA and Na+/Ca2+ exchanger (NCX) are the main channel responsible for 

cytoplasmic Ca2+ clearance, the former confine the Ca2+ into the sarcoplasmic reticulum 

restoring its Ca2+ content necessary for successive contractions and the latter transport Ca2+ 

extracellularly and Na+ intracellularly (Loffredo et al., 2014). 

Age-dependent impaired calcium handling could be, at least partially, due to age-

dependent decrease of cardiac SERCA2a protein (Cain et al., 1998) although some other 

groups affirm that there is no age-dependent decrease (Isenberg et al., 2003). Besides 

SERCA2a amount, its pumping activity is modulated by a second protein called 

phospholamban (PLN) (Loffredo et al., 2014). It is known that unphosphorylated PLN can 

interact with SERCA2a decreasing its affinity for Ca2+ ions. However, PLN phosphorylation 

by PKA or CaMKII is thought to alter this interaction stimulating and increasing SERCA pump 

activity as reviewed in (MacLennan and Kranias, 2003). Age-dependent changes affect also 

PLN regulator, indeed both PKA activation and CaMKII (δ-isoform) amount seems to 

decrease with age increasing the unphosphorylated/phosphorylated PLN ratio and 

decreasing SERCA activity (Jiang et al., 1993; Xu and Narayanan, 1998). Increasing SERCA 

levels or restoring SERCA/PLN balance has been proved to be beneficial for diastolic 

function confirming SERCA involvement in age-related diastolic dysfunction (Pathak et al., 

2005; Schmidt et al., 2000). Interestingly, even reduction of oxidative stress could directly 

improve SERCA activity and improve diastolic function (Qin et al., 2013). 

Differently from SERCA, studies on NCX channels show more contrasting results. NCX 

protein amount seems to increase, remain constant or decrease with age (Lim et al., 1999; 

Schmidt et al., 2000; Walton et al., 2016). However, the prevailing hypothesis is that 

increased activity of NCX compensate for an increased Ca2+ cytoplasmic concentration due 

to reduced SERCA activity and increased activity of L-type calcium channels (Janczewski and 

Lakatta, 2010; Piacentino et al., 2003). 
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1.4.4.7. Mouse model of pressure overload-induced cardiac hypertrophy  

Transverse aortic constriction (TAC) is a surgical procedure that induces a stable pressure 

overload stress in animal hearts leading to cardiac hypertrophy (Rockman et al., 1991). TAC 

consists in physical bandage of the aorta that reduces its normal diameter (deAlmeida et 

al., 2010). This alteration increases both LV stress and cardiac hypertrophy recapitulating 

the effects of aortic stenosis and, if prolonged in time, can progress into HF (deAlmeida et 

al., 2010).  

 

1.5. Blood factors modulate the aging process 

Since ancient times, blood was considered essential for life and modulating its composition 

was thought to be a way to recover from a disease. With that in mind, for centuries, 

physicians and surgeons performed bloodletting with the aim of removing “evil humors” 

from blood. This approach was used to treat almost every kind of diseases and it is easy to 

imagine that often these treatments did more harm than good to patients. 

However, from the last century, researchers went towards a more scientific and rigorous 

approach to investigate blood properties of young and old animals. Heterochronic 

parabiosis is the most direct and easy experimental approach that allows a shared 

circulation between two animals with different age (Lunsford et al., 1963). This technique 

consists in joining surgically two animals, at different ages, in order to allow a shared blood 

circulation. Indeed, the technique’s name derives from Greek and it means literally “life 

alongside with different ages” (Scudellari, 2015). 

The first time this technique was performed in an aging study, it recovered bone weight 

and density in the aged rats exposed to a young circulation (McCay et al., 1957). Further 

heterocronic parabiosis experiment showed that shared circulation might also increase life 

span of animals and improve functionality of aged progenitor cells (Conboy et al., 2005; 

Ludwig and Elashoff, 1972). These initial studies confirmed the fact that blood carries 

factors that may modulate tissue aging, however in few cases they have been identified 

and their mechanism explained. In the following years, an intense research was done in the 

aging field and, to date, only few of these circulating factors have been identified and 

characterized, among them growth differentiation factor 11 or GDF11. 
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1.5.1. Growth differentiation factor 11 (GDF11) 

1.5.1.1. Identification as an aging modulator factor 

GDF11 was identified, by comparing the abundance in serum of young and old mice using 

an aptamer-based approach, as a circulating factor that decreases with aging and reverses 

age-related cardiac hypertrophy (Loffredo et al., 2013). Further experiment confirmed that 

heterocronic parabiosis increased GDF11 levels in the old parabiont of the pair when 

compared to the old isochronic control animal (Loffredo et al., 2013). Daily 

supplementation of recombinant GDF11 recapitulated some of the effects produced by 

heterochronic parabiosis in heart, skeletal muscle and brain of aged animals (Katsimpardi 

et al., 2014; Loffredo et al., 2013; Sinha et al., 2014).  

 

1.5.1.2. Protein structure and maturation  

GDF11 is a protein member of the activin/inhibin subfamily of the TGF-β superfamily.  

TGF-β superfamily proteins are produced as pre-pro-proteins that become active after 

protease cleavage on the C-terminus that releases the ligand, a disulphide linked homo- or 

heterodimer (Weiss and Attisano, 2013). Indeed, GDF11 is initially translated as a pre-pro-

protein and probably the signal peptide is cleaved co-translationally as in other TGF- β 

proteins (Gentry et al., 1988). During protein synthesis, the prodomain is important for the 

proper folding of protein in order to obtain a correct maturation of the final dimeric ligand 

(Gray and Mason, 1990; Harrison et al., 2011). Post-translational modifications are another 

crucial step: pro-protein sequence contains several cysteines, two N-glycosylation signals 

and two additional protein cleavage sites. In mature C-terminal region nine cysteines are 

present forming four intra-chain disulphide bonds plus an extra-chain disulphide bond that 

assembly the antiparallel homodimer (Walker et al., 2017). A N-glycosylation site is present 

in the prodomain region of GDF11 (Nakashima et al., 1999) and, at present, there are no 

studies linking glycosylation to bioactivity of GDF11. Indeed, GDF11 mature protein has no 

glycosylation sites while proteins belonging to the same subfamily of GDF11, like Inhibin A 

and Inhibin B, have bioactivity affected by N-glycosylation (Makanji et al., 2008). The two 

endoproteases sites are processed by two different class of protease: furin-like proteins 

and BMP1/Tolloid like (TLD) metalloproteinases, respectively at C-terminus and  

N-terminus. Furin cleavage site has a RSRR consensus sequence and allows a physical 

separation between prodomain and mature protein (Walker et al., 2017). This post-
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translational modification occurs mainly in the trans Golgi network (Takahashi et al., 1995; 

Walker et al., 2016), but it is know that it could also occur after secretion, in the 

extracellular space (Cotton et al., 2018; Walker et al., 2017). It is known that similarly to 

other TGF-β proteins, GDF11 prodomain once cleaved stays bound to the mature peptide 

through noncovalent interactions (Ge et al., 2005). This complex, called inactive latent 

complex, blocks the physical interaction between GDF11 mature peptide and the 

receptors, inhibiting GDF11 bioactivity. In order to release GDF11 protein and increase its 

bioactivity, an additional post-translational modification has to occur: extracellularly, the 

BMP1/TLD metalloproteinases cleaves the GDF11 prodomain. This cleavage results in a 

destabilization of GDF11 inactive latent complex that release the active GDF11 dimer and 

leads to prodomain degradation (Ge et al., 2005; Poggioli et al., 2016). 

 

1.5.1.3. Protein function and tissue expression 

GDF11 is crucial during mammalian development, it is expressed in several tissues and it 

regulates organs formation and anterior/posterior patterning (McPherron et al., 2009; 

McPherron et al., 1999). The importance of GDF11 is furtherly recognized by the effects of 

GDF11 absence, indeed GDF11 KO mice quickly dies within 24 hours after birth with several 

abnormalities (McPherron et al., 1999).  

GDF11 is expressed in the primitive streak and tail bud formation, and it plays an important 

role in mesodermal cells formation during the early phase of mouse embryogenesis (Gamer 

et al., 1999; McPherron et al., 1999). Lack of GDF11 dysregulates Hox genes spatial 

expression, causing a more caudally shifted expression of those genes compared to wild-

type (WT) animals (McPherron et al., 1999). Hox gene cluster contains genes responsible 

for the proper growth and morphogenesis of the embryo and theirs fine-tuning is crucial 

for a normal development (reviewed in (Favier and Dolle, 1997)).  

GDF11 affects some Hox genes through SMAD2 pathway activation, this change seems to 

be responsible for altered axial patterning that results in several skeletal and neural 

alterations especially in the posterior region of the body (Liu, 2006). Indeed, the total 

number of both thoracic and lumbar vertebrae increases with an inverse GDF11 dose-

dependent trend, with the GDF11-/- mice showing the most severe abnormalities and 

GDF11+/- showing a milder phenotype (Table 5) (McPherron et al., 1999).  
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         Genotype     

  Mstn   +/+ +/+ +/+ +/- +/- +/- -/- -/- -/- 

  Gdf11   +/+ +/- -/- +/+ +/- -/- +/+ +/- -/- 

N° of thoracic vertebrae  N° of animals  

  13   10 - - 10 - - 10 1 - 

  14   - 10 - - 10 - - 9 - 

  15   - - - - - - - - - 

  16   - - - - - - - - - 

  17   - - - - - - - - - 

  17+18   - - 1 - - - - - - 

  18   - - 8 - - 7 - - - 

  18+19   - - - - - 1 - - - 

  19   - - 1 - - 2 - - 1 

  19+20   - - - - - - - - 1 

  20   - - - - - - - - 11 

  20+21   - - - - - - - - 4 

N° of lumbar vertebrae   N° of animals   

  5   3 - - 3 - - - - - 

  5+6   1 - - - - - - - - 

  6   6 10 - 7 10 - 10 9 - 

  6+7   - - - - - - - - - 

  7   - - 1 - - 1 - 1 - 

  7+8   - - 1 - - - - - - 

  8   - - 5 - - 5 - - - 

  8+9   - - 2 - - - - - - 

  9   - - 1 - - 3 - - - 

  9+10   - - - - - 1 - - - 

Table 5: Total number of thoracic and lumbar vertebrae of newborn mice with different 
combination of Mstn and Gdf11 genotype. 
Some mice displayed rib asymmetry of the most posterior thoracic and lumbar vertebrae. The + sign 
between two numbers represents the different number of ribs on each body side. Table adapted 
from (McPherron et al., 2009). 

 

In addition, lack of GDF11 activity induces abnormalities in the rostrocaudal patterning 

affecting spinal cord and in motoneurons formation (Liu, 2006). GDF11 is also important 

for organ and tissue formation: olfactory epithelium, retina, kidney, pancreas, stomach and 

spleen are all affected by changes in GDF11 protein activity. In olfactory epithelium, GDF11 

cause cell cycle arrest in immediate neuronal precursors and it inhibits the development of 

progenitor cells responsible for olfactory receptor neurons formation (Wu et al., 2003). 

Differently, in retina, GDF11 regulates differentiation of retinal progenitors through 
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precisely time-regulated expression of genes responsible for cell fate determination (Kim 

et al., 2005). Most of GDF11-/- mice showed complete renal agenesis, showing that GDF11 

plays an important role for ureteric bud formation a crucial step for kidney formation 

(Esquela and Lee, 2003).  

In pancreas development, GDF11 absence decreases the total pancreas cell number, it 

induces an increase of NGN3+ islet progenitor cells and it seems to stimulate β-cells 

differentiation (Harmon et al., 2004). However, contrasting results on pancreas 

development rose from another paper: they claim that GDF11-/- mice are characterized by 

hypoplasia of exocrine pancreas rather than a hyperplasia of endocrine pancreas and that 

there is no change in ratio between α- and β-cells (Dichmann et al., 2006). Furtherly, 

absence of GDF11 lead to alteration of gastric wall thickness, gastric fold characteristics 

and impaired spleen development (Harmon et al., 2004). 

GDF11 may plays also a role in erythroid maturation, in β-thalassemia overexpression of 

GDF11 induces a block of terminal differentiation in thalassemic erythroblasts. Decreasing 

GDF11 levels or inhibiting its receptor reduce immature erythroblasts number and improve 

disease conditions in mouse model (Dussiot et al., 2014). More recent data shows that 

however GDF11 KO does not improve or reduce the activity of a erythroid maturation agent 

(Luspatercept) (Guerra et al., 2019).   

In adult age, GDF11 functions are less characterized: postnatally, GDF11 continue to be 

produced by spleen, kidney, olfactory epithelium and skeletal muscle (Poggioli et al., 2016; 

Wu et al., 2003). While some reports have shown an age dependent decrease of circulating 

GDF11 in mouse, rat, horse and sheep (Loffredo et al., 2013; Poggioli et al., 2016), this age-

dependent decrease seems not to be retained in humans (GDF11 serum concentration 

ranging from 224 to 841 pg/mL) (Schafer et al., 2016). 

In the last years, several studies were performed in order to investigate the effects of 

elevated GDF11 concentration in mice serum and to measure GDF11 levels in human 

populations. Most relevant GDF11’s findings are listed in the following table. Contrasting 

results could be explained by different experimental approaches used by investigators such 

as: mice strain, animals age, recombinant GDF11 protein dose and GDF11 detection system 

(Harper et al., 2016; Schafer et al., 2016; Walker et al., 2016). 
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Target Approach/Detection method Phenotype 

Heart 

Injection of recombinant GDF11 
protein (0.1 mg/kg/day, but it 
might be different (Poggioli et al., 
2016) for 28 days. 

Reverses age-related cardiac 
hypertrophy but does not prevent 
cardiac hypertrophy induced by 
pressure overload (Loffredo et al., 
2013). 

Heart 
Injection of recombinant GDF11 
protein (0.1-0.5-5 mg/kg/day) for 
14 days. 

GDF11 was able to reduce cardiac 
hypertrophy and fibrosis induced by 
pressure overload in mice (Harper 
et al., 2018). 

Heart 
Injection of recombinant GDF11 
protein (0.1-0.2-0.5-1 mg/kg/day) 
for 9 days. 

Induces atrophy of cardiac muscle in 
young and old animals. Significant 
decrease in cardiac mass only for 
concentration higher than 0.5 
mg/kg/day (Poggioli et al., 2016). 

Heart 
Injection of recombinant GDF11 
protein (0.1 mg/kg/day) for 28 
days. 

GDF11 treatment does not rescue 
age-related cardiac hypertrophy 
and it has no effect on cardiac 
function (Smith et al., 2015). 

Heart 
AAV8-GDF11 with α-antitrypsin 
promoter (estimated serum 
concentration ~60 mg/mL). 

Induces atrophy of cardiac muscle 
(Hammers et al., 2017). 

Heart 
Stable expressing CHO cells were 
intramuscularly injected in nude 
mice for 13 days. 

GDF11 reduces cardiac mass and 
cardiomyocyte size (Zimmers et al., 
2017). 

Skeletal 
muscle 

Stable expressing CHO cells were 
intramuscularly injected in nude 
mice for 13 days. 

GDF11 treatment decreased 
skeletal muscle mass and strength 
(Zimmers et al., 2017). 

Skeletal 
muscle 

AAV8-GDF11 with α-antitrypsin 
promoter (estimated serum 
concentration ~60 mg/mL). 

Induces atrophy of skeletal muscle 
(Hammers et al., 2017). 

Skeletal 
muscle 

Injection of recombinant GDF11 
protein (0.1 mg/kg/day 
published, but it might be 
different (Poggioli et al., 2016)) 
for 28 days and an additional 7 
days of GDF11 treatment post 
injury or 14 days following 
transplantation. 

GDF11 treatment in aged mice leads 
to: increased function and health of 
satellite cells, improved skeletal 
muscle repair, physiology and 
physical function (Sinha et al., 
2014). 

Skeletal 
muscle 

Systemic hydrodynamic injection 
of GDF11 DNA, uptaken and 
expressed by the liver. 

GDF11 induced a 11-18% of weight 
loss in gastrocnemius skeletal 
muscle (Jones et al., 2018). 
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Target Approach/Detection method Phenotype 

Skeletal 
muscle 

Injection of recombinant GDF11 
protein (0.3 mg/kg/day) for 3 
days and an additional 14 days of 
GDF11 treatment post injury. 

GDF11 treatment in 16-months old 
mice leads to inhibition of muscle 
regeneration and satellite cells 
expansion (Egerman et al., 2015). 

Skeletal 
muscle 

Injection of recombinant GDF11 
protein (0.1-0.5-5 mg/kg/day) for 
14 days. 

GDF11 induces severe atrophy on 
skeletal muscle tissue mimicking the 
effects observed by high levels of 
MSTN (Harper et al., 2018). 

Body weight 
Injection of recombinant GDF11 
protein (0.1-0.2-0.5-1 mg/kg/day) 
for 9 days. 

Induces reduction of total body 
weight in young and old animals. 
Old animals were sensitive to lower 
doses, however treatment at  
1 mg/kg/day induces significant 
weight loss in both young and old 
mice (Poggioli et al., 2016). 

Body weight 
Injection of recombinant GDF11 
protein (0.1 mg/kg/day) for 28 
days. 

GDF11 treatment does not induces 
changes in body weight (Smith et al., 
2015). 

Body weight 
AAV8-GDF11 with α-antitrypsin 
promoter (estimated serum 
concentration ~60 mg/mL). 

Induces reduction of body weight 
(Hammers et al., 2017). 

Body weight 
Injection of recombinant GDF11 
protein (0.1-0.5-5 mg/kg/day) for 
14 days. 

GDF11 induce a marked body 
weight reduction associated to liver, 
kidney and spleen weight loss 
(Harper et al., 2018). 

Body weight 
Systemic hydrodynamic injection 
of GDF11 DNA, uptaken and 
expressed by the liver. 

GDF11 produces reduced food 
intake, anorexia and severe loss of 
body weight (Jones et al., 2018). 

Body weight 
Stable expressing CHO cells were 
intramuscularly injected in nude 
mice for 13 days. 

GDF11 treatment reduces 
significantly body weight and organ 
weight (liver and kidney) (Zimmers 
et al., 2017) 

Endothelium 
AAV2-GDF11 and recombinant 
GDF11 protein (0.1 mg/kg/day) 
for 28 days. 

Improved endothelial dysfunction, 
decreased endothelial apoptosis, 
inflammation and atherosclerotic 
plaques formation (Mei et al., 
2016). 

Humans 

GDF11/MSTN detection was 
performed with SOMAscan 
aptamer-based method from 
patients’ serum sample. 

Higher GDF11/MSTN levels were 
associate to a lower risk of 
cardiovascular events or death 
(Olson et al., 2015). 
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Target Approach/Detection method Phenotype 

Humans 
GDF11 detection was performed 
using a LC-MS/MS assay from 
patients’ serum sample. 

Higher GDF11 levels are associate 
with frailty, comorbidities and 
negative outcome (Schafer et al., 
2016). 

Humans 
GDF11 detection was performed 
using an ELISA method. 

Higher GDF11 levels were 
associated to a lower mineral 
density in postmenopausal Chinese 
women (Chen et al., 2016). 

Table 6: Schematic representation of GDF11 findings from in vivo experimentations and studies 
on human population. 
 

1.5.1.4. Receptor usage and pathway activation 

GDF11 dimer is able to signal using specific transmembrane serine/threonine kinase 

receptors of the canonical TGF-β pathway (reviewed in (Yadin et al., 2016)). GDF11 binds 

type II receptor dimers like activin receptor kinase IIA (ACVR2A) and ACVR2B and by type I 

receptor dimers ALK4, ALK5 and ALK7 (Andersson et al., 2006). The exact mechanism of 

this interaction has not been clarified yet, but it seems that the initial interaction could be 

started from type II receptor dimer that allow a first ligand stabilization. Subsequently, a 

type I receptor dimer completes the receptor creating an active hetero-hexameric complex 

that phosphorylate SMAD2/3 (Yadin et al., 2016). Downstream cascade of SMAD2/3 in  

TGF-β pathway involves a relative low number of effectors but it has an enormous number 

of targets even with opposing effects. Indeed, the final outcome of these effects depends 

on the cell type and cell conditions as reviewed in (Massague, 2012). An example of that 

was published recently showing as GDF11 induces a different SMAD2/3 activation in 

presence of different type I TGF-β receptors. Additionally, myostatin (MSTN, also known as 

GDF8) a protein that share more than 90% of homology with GDF11, showed a different 

behavior in presence of the same receptors (Walker et al., 2017). These results confirm the 

complexity of TGF-β pathway and how different combination of receptors could induce 

different responses in presence of the same ligand. 

GDF11-dependent modulation of cardiac and skeletal muscle mass appears to be 

secondary to two separate events both induced by SMAD2/3 activation. SMAD2/3 

activation was already known to reduce skeletal muscle mass and myocyte cross-sectional 

area in adult mice (Sartori et al., 2009). Furthermore, new studies on neonatal rat 

cardiomyocytes highlighted that GDF11-depended SMAD2/3 activation was controlled by 
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an increased intracellular Ca2+ due to IP3 pathway activation and that this effect was able 

to contrast hypertrophic stimuli (Duran et al., 2018). In addition, among the targets of 

activated SMAD2/3 cascade, GDF15 expression was increased by GDF11. GDF15, which is 

also capable to activate SMAD2/3, is associated to lower food intake, higher insulin 

sensitivity, lipolysis and oxidative metabolism (Chung et al., 2017; Jones et al., 2018). 

Moreover, GDF15 overexpression was able to contrast the hypertrophic response due to 

pressure overload in mice and was found protective in case of ischemia/reperfusion injury 

(Kempf et al., 2006; Xu et al., 2006).  

However GDF11 signaling is not only relying on SMAD2/3 cascade, indeed GDF11 has been 

shown also to activate SMAD 1/5/8 cascade (Zhang et al., 2016), typical of BMP factors, and  

to signal through  non-SMAD pathway, such as ERK, JNK, and p38 MAPK (Egerman et al., 

2015). 

To summarize, GDF11 signaling depends on multiple, pleiotropic and promiscuous 

pathways which are difficult to isolate and with a balance that is different in each cell type. 

It is clear that GDF11 targets many tissues and organs and its therapeutic potential requires 

a better understanding of its mechanism of action together with a fine regulation of its 

potency. 

 

1.5.1.5. GDF11 extracellular inhibitors 

GDF11 activity is limited by the inactive latent complex, indeed increasing the 

concentration of GDF11 prodomain has been linked to increased skeletal muscle mass, 

counteracting the sarcopenic effects of GDF11 and MSTN (Jin et al., 2019). In addition to its 

own prodomain GDF11 has also several other extracellular inhibitors shared with other 

TGF-β ligands. These antagonist are follistatin (FST), FST288, FST-like 3 (FSTL3), GDF 

associated protein 1 (GASP1) and GASP2 (Hill et al., 2002; Hill et al., 2003; Lee and Lee, 

2013; Sidis et al., 2006). 

FST and FST related proteins contain a N-terminal domain able to mimic a universal type I 

TGF-β receptor motif blocking the direct interaction between ligand and receptor 

(Thompson et al., 2005). X-ray crystal of GDF11 bound to an FST inhibitor confirm strong 

similarities with other activin ligands. GDF11 is recognized and bound by FST288 

surrounding the protein. In fact, the N-terminal domain FST288 occupies the site for type I  

receptor and, on the opposite side, the follistatin domains 1 and 2 interact overlapping the 
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type II receptor site (Walker et al., 2017). In the mechanism of FST-mediated inhibition it is 

important to keep in consideration that different FST related genes showed different 

affinity in binding the activin ligand (Thompson et al., 2005). Additionally, it is important to 

consider the differential peptidoglycan binding preference of these FST related genes. 

Presence of heparin binding site on FST can create an isoform compartmentalization 

between different tissues possibly influencing biological functions and ligand degradation 

(Cash et al., 2009; Lerch et al., 2007; Schneyer et al., 2004). However, not all FST related 

proteins have the same properties, indeed FSTL3 does not contain a heparin binding 

domain and it should not be influenced by the presence of glycan on the cell surface (Sidis 

et al., 2005). 

GASP1 and 2 proteins contain multiple protease inhibitor domains and they are also known 

as WAP Follistatin/Kazal Immunoglobulin Kunitz and Netrin Domain Containing 2 

(WFIKKN2) and WFIKKN1 (Hill et al., 2003). Besides their protease-inhibitor domains, they 

contain also a 10 cysteine repeat, typical of FST domain, that is primarily responsible for 

binding and inhibiting the mature protein of GDF11 (Kondas et al., 2008; Shimasaki et al., 

1988). Notably, GASP1 and GASP2 show different binding affinity for GDF11 and different 

tissue-specific expression (Trexler et al., 2002; Walker et al., 2017) (Hill et al., 2003). 

Another interesting aspect of GASP proteins is to understand if the direct MSTN prodomain 

binding by the netrin like domain of GASP1/2 is conserved also in GDF11 prodomain 

(Kondas et al., 2008).  

In summary, GDF11 mature protein can be bound by several inhibitors that are 

differentially expressed among tissues, they can be differentially localized according to 

glycan composition of cell membrane and each of these antagonists can bind different 

other proteins, adding ligand competition issues to a mosaic expression of inhibitors. 

Indeed, in Walker et al. (Walker et al., 2017) similar proteins (GDF11 and MSTN) in presence 

of the same class of inhibitors (FST or GASP) can exhibit profound difference in 

ligand:antagonist interactions, underlying the need of extremely controlled experiments 

with side-to-side comparison in order to produce reproducible results. 

 

1.5.2. Myostatin (MSTN) 

In order to clarify some controversy regarding unique/shared functions between GDF11 

and MSTN, in the following chapter MSTN biology is described.  
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1.5.2.1. Protein structure and maturation 

MSTN is a protein of the activin/inhibitin subfamily that belongs to TGF-β superfamily. 

MSTN is produced as other members of TGF-β superfamily as already described for GDF11 

in paragraph 1.5.1.2. Post-translational modifications are also similar to GDF11: four 

intramolecular and one transmolecular disulphide bonds assembly the antiparallel 

homodimer (Walker et al., 2017). As GDF11, MSTN is cleaved at C-terminus and N-terminus 

respectively by furin-like proteases and BMP1/TLD metalloproteinases (Walker et al., 

2016), process that could occur intracellularly and extracellularly (Lee, 2010; McFarlane et 

al., 2005). Similarly to GDF11, MSTN prodomain binds to mature peptide creating the 

inactive latent complex, even if the prodomain is physically separated from mature peptide 

(Gleizes et al., 1997; Lee and McPherron, 2001). Specific region of MSTN prodomain are 

required to maintain the inactive latent complex stability. These prodomain inhibitory 

regions are conserved also in GDF11 prodomain and they consist in three separate 

elements: the α1-helix, the fastener and the latency lasso (Walker et al., 2018).   

Interestingly, these MSTN prodomain structures remain stable after FURIN cleavage but 

not after BMP1/TLD cleavage. Furthermore, even after tolloid activity, BMP1-cleaved 

prodomain is still able to maintain the inactive latent complex assembly. However, 

prodomain:ligand interface stability is deeply affected and this instability primes complex 

dissociation and the release of the mature ligand (Le et al., 2018). MSTN prodomain  

α1-helix can modify prodomain conformation and re-create this complex instability, even 

without BMP1-TLD cleavage, and enhance ligand release (Walker et al., 2018). In addition, 

MSTN prodomain has also a N-glycosylation site but it seems not essential, indeed it is not 

necessary for prodomain inhibitory activity nor protein production (Jiang et al., 2004). 

 

1.5.2.2. Protein function and tissue expression 

MSTN was identified as a protein expressed in developing and adult mice skeletal muscle 

(McPherron et al., 1997). During embryogenesis, MSTN is expressed in myotomes of 

developing somites, starting from rostral area, and later in developing skeletal muscle 

(McPherron et al., 1997). Abolishment of MSTN expression in mice does not lead to skeletal 

alteration as in GDF11 KO mice, even if these proteins share high level of homology (Gamer 

et al., 1999; McPherron et al., 1997, 1999). However, crossings that generate a double 

MSTN and GDF11 mutant mice enlighten some redundant function between these two 
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proteins (McPherron et al., 2009). MSTN-/- GDF11-/- mice presents more pronounced axial 

skeleton transformation with additional alteration not observed in the GDF11-/- mutant as 

an extra bone emerged from shoulder, a third limb and extra digit formation in normal 

forelimbs (McPherron et al., 2009). The increased transformation level of the double 

mutant seems to be due to simultaneous expression of both GDF11 and MSTN in the 

posterior primitive streak (Amthor et al., 2002). This transient expression of MSTN can 

slightly reduce the axial skeletal alteration induced by lack of GDF11 expression during 

embryonic development, probably acting on the same receptors (McPherron et al., 2009).  

In adult animals, MSTN continues to be expressed by several skeletal muscles even if the 

total mRNA produced is different among muscle type. In all other tissues, except for 

adipose tissue, it was not possible to detect MSTN expression (McPherron et al., 1997).  

MSTN-/- animals were viable and fertile although they showed an abnormal body shape and 

heavier compared to WT animals (McPherron et al., 1997).  Phenotype was explained by a 

significant increase of skeletal muscle mass (2-3 folds compared to WT) due to both 

hyperplasia and hypertrophy of myofibers (McPherron et al., 1997). These observations 

suggest that MSTN acts as postnatal negative regulator of skeletal muscle growth 

(McPherron et al., 1997). MSTN function is evolutionary conserved, indeed inactivating 

MSTN mutations lead to similar hypermuscular phenotype among mammals, humans 

included. (Gu et al., 2016; McGivney et al., 2012; McPherron and Lee, 1997; Mosher et al., 

2007; Schuelke et al., 2004). MSTN is involved in muscular fiber type switch, where loss of 

MSTN is associated to reduction of oxidative and endurance fibers (type I and type IIA) and 

increment of fast glycolytic fibers IIB (Hennebry et al., 2009). However, downstream of 

MSTN signaling, fiber switch is furtherly modulated by JNK activity that regulates SMAD2 

phosphorylation between canonical SMAD2 pathway and JNK-SMAD2-linker pathway 

(Lessard et al., 2018). 

In addition, MSTN deficient mice showed resistance to obesity and type 2 diabetes 

confirming MSTN role in adipogenesis and glucose metabolism (McPherron and Lee, 2002). 

Interestingly, these metabolic protective mechanisms induced by lack of MSTN depend on 

skeletal muscle and not on adipose tissue (Guo et al., 2009) suggesting that myokines 

secreted during muscle growth or increased skeletal muscle glucose uptake are the 

effectors of adipose tissue mass reduction (Guo et al., 2009; Pedersen and Febbraio, 2012). 

Of note, MSTN signaling inhibition induces browning of white adipose tissue (WAT) 
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stimulating energy expenditure, fatty acid oxidation and increasing expression of 

peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and irisin 

(Dong et al., 2016). On the other hand, MSTN is overexpressed in skeletal muscle and 

adipose tissue of obese mice and humans showing that metabolism alteration and 

increased fat deposition can induce mechanism that reduces muscle growth helping the 

obesity state to persist (Allen et al., 2008; Hittel et al., 2009).  

Aside from an extended and coherent literature describing MSTN effects on skeletal muscle 

or adipose tissues, few works investigated MSTN activity on cardiac muscle as reviewed by 

Springer (Springer et al., 2010). Among the available publications, MSTN cardiac-specific 

overexpression was able to reduce cardiac mass in healthy and HF conditions (Biesemann 

et al., 2014; Heineke et al., 2010) but conversely, cardiac specific MSTN KO was not 

affecting cardiac mass (Cohn et al., 2007). In order to clarify and characterize the MSTN 

effects on the heart, further studies are required. 

 

1.5.2.3. Receptor usage and pathway activation 

MSTN active ligand can bind serine/threonine kinase receptors of canonical TGF-β pathway 

(reviewed in (Yadin et al., 2016)), mechanism of interaction and SMAD2/3 pathway 

activation have been described in paragraph 1.5.1.4. MSTN recognizes type II receptor 

dimers ACVR2A and ACVR2B and then it binds type I receptor dimers ALK4 and ALK5 

(Rebbapragada et al., 2003). Differently from GDF11, ALK7 binding seems not to be 

recapitulated by MSTN, but results are not conclusive (Walker et al., 2017).  

MSTN effects on skeletal muscle tissue can be explained by SMAD2/3 decrease of  

AKT / mTOR signaling pathway reducing the total protein synthesis and promoting 

expression of several genes involved in de-differentiation (Amirouche et al., 2009; 

Trendelenburg et al., 2009). Involvement of AKT/mTOR pathway seems to be confirmed 

because treatment with IGF-1, that reactivate AKT protein, can block MSTN effects on 

myocytes (Trendelenburg et al., 2009). 

On the other hand, the pathway that confers MSTN mediated protection from obesity and 

insulin resistance in mice has not been clarified yet (Guo et al., 2009). An indirect effect of 

the increased muscle mass itself or the increased myokines secretion could partially explain 

the increased insulin sensitivity as reviewed in (Demontis et al., 2014). 

MSTN signaling inhibition could also alter hormones levels or nutrients availability that will 
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directly or indirectly act on the central nervous system altering behaviors like food intake 

(Guo et al., 2012; Henry and Clarke, 2008). Furthermore, MSTN is able to activate signaling 

pathways different from SMAD like RAS/MEK/ERK pathway, TAK1/MEK4/JNK pathway and 

TAK1/MEK3-6/p38 MAPK (Biesemann et al., 2015; Huang et al., 2007; Yang et al., 2006). 

These pathways, also modulated by GDF11, are involved in fibrosis, cardiac hypertrophy 

and myocytes differentiation underling how much these pathways are intertwined and 

complex to modulate. 

 

1.5.2.4. MSTN extracellular inhibitors 

Most of circulating MSTN (>70%) is bound to its prodomain regulating protein bioactivity 

(Hill et al., 2002). As for GDF11 this prodomain binding regulate the activity of MSTN ligand 

through inactive latent complex formation. Thus, several results confirmed that increasing 

the amount of circulating MSTN prodomain can lead to muscle hypertrophy in a similar 

extent as obtained with MSTN neutralizing antibodies (Latres et al., 2015; Yang et al., 2001). 

Recent findings have shown that GDF11 prodomain is able to inhibit MSTN activity (Jin et 

al., 2019). In addition to GDF11 and MSTN prodomain, MSTN activity is regulated by several 

other extracellular inhibitors as FST, FST288, FSTL3, GASP1, GASP2 (Amthor et al., 2004; Hill 

et al., 2003; Sidis et al., 2006). These inhibitors are shared with GDF11 and properties and 

mechanism of these factors have already been described in paragraph 1.5.1.5. 

Another MSTN inhibitor is DECORIN a small leucine-rich glycosylated protein (Miura et al., 

2006). DECORIN is often bound on collagen fibers and can play an important role in cell 

growth modulating bioactivity of growth factors as epidermal growth factor (EGF) and  

TGF-β (Iozzo, 1999; Santra et al., 2002; Schonherr et al., 1998). Interestingly, 

glycosaminoglycan removal from DECORIN does not affect binding of MSTN, probably 

because glycan are involved only in DECORIN-ECM interaction and not in growth factor 

binding (Iozzo, 1999; Miura et al., 2006). 

 

1.5.3. GDF11/MSTN therapeutic avenues 

MSTN and its pathway have been extensively investigated as a possible therapeutic target 

while GDF11 pharmacological applications are still debated. MSTN KO mouse shows a 

hyper-muscular phenotype and MSTN inhibition is an attractive strategy for numerous 

therapeutic conditions associated to muscle wasting (Smith and Lin, 2013). Overexpression 
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of MSTN prodomain, soluble ACVR2 receptors, inhibition of MSTN extracellular maturation 

and usage of neutralizing antibodies are all strategy successfully attempted to increase 

muscle mass in healthy and several muscle wasting models (Latres et al., 2015; O'Connell 

et al., 2015; Pirruccello-Straub et al., 2018; Yang et al., 2001). However, few of these 

treatments were really MSTN-specific and most involved also GDF11 and other TGF-β 

ligands. Surprisingly, positive results obtained in pre-clinical studies were not recapitulated 

as expected by clinical trials results as listed in table 7 where only few treatments were 

capable to increase muscle mass in humans without inducing adverse effects. Together, 

results from all these clinical trials suggest that unspecific blocking of circulating MSTN and 

GDF11 or not-finely regulated ACVR2A/B signaling, probably because of promiscuity of 

ligands and inhibitors, is not sufficient to treat muscle wasting conditions and is associated 

to several adverse effects.  

On the other hand, modulation of GDF11/MSTN signaling may be considered to induce a 

reduction of muscle mass. More specifically, GDF11 has been suggested as a drug that can 

reverse age-related cardiac hypertrophy or other forms of pathological cardiac 

hypertrophy. This approach is still in its preliminary phase if compared to MSTN blocking 

strategy but is intensively investigated (Harper et al., 2016; Walker et al., 2016). GDF11 can 

indeed reverse cardiac hypertrophy but can also induce sarcopenia and cachexia and thus 

a more specific characterization is needed (Harper et al., 2016). Fine GDF11 circulating 

levels modulation could be exploited to have milder but more specific SMAD2/3 pathway 

activation only in cardiac tissue reducing undesired systemic side effects (Walker et al., 

2017). Moreover, ligand activity could be furtherly modulated by injection of recombinant 

inactive latent complex, as a novel therapeutic agent. Indeed, several previous in vivo 

experiments used commercially available GDF11 recombinant protein that consisted in 

pure mature and active form (listed in table 6). For MSTN ligand, the difference in potency 

between mature protein and its inactive latent complex is in the order of hundred-fold 

difference (Cotton et al., 2018). It easy to speculate that this difference could be applied to 

GDF11 and that lower potency will allow a more gradual and less intense SMAD2/3 

activation that could limit adverse effects. 

Aside of treatments aiming to increase GDF11 serum levels, GDF11 was also investigated 

as novel marker for several conditions but more studies are necessary to clear the divergent 

conclusion. Indeed, high serum GDF11 concentration has been linked to higher risk of 
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rehospitalization and comorbidity (Schafer et al., 2016) but from a previous study enrolling 

almost 2 thousand patients, higher GDF11/8 concentration levels were protective against 

cardiovascular events (Olson et al., 2015). Considering both results, on one hand Schafer et 

al. were more specific than Olson et al. using mass spectrometry to differentiate circulating 

GDF11 from MSTN. On the other hand, Schafer quantification analyzed a relatively small 

number of patients already suffering from heart conditions (55 men and 41 women) and 

data obtained from this cohort may not be representative for the entire healthy 

population. Moreover, the simple association between increased GDF11 serum 

concentration and frailty in cardiovascular patients does not clarify if GDF11 is a causative 

or protective factor in end-stage valvular heart disease (Schafer et al., 2016).  

Aiming at evaluating GDF11 therapeutic potential, future studies must be carefully 

designed to quantify and compare GDF11 and MSTN circulating levels, to assess their side 

effects and to observe the changes on the cardiovascular system (McPherron, 2013). 

 

Name Target Muscle-related effects Clinical trial conclusions 

LY2495655 
anti-MSTN 
antibody 

No changes in muscle 
mass or muscle 
function. 

Phase 2 clinical trial was 
terminated prematurely 
because treatment was not 
conferring clinical benefits in 
pancreatic cancer patients 
(Golan et al., 2018). 

LY2495655 
anti-MSTN 
antibody 

Some muscle physical 
performances were 
improved. 

Phase 2 clinical trial increased 
lean body mass and muscle 
performance in older weak 
fallers (Becker et al., 2015). 

ACE-031 
ACVR2B 
soluble 

receptor 

Positive trend of lean 
body mass and bone 
mineral density. 

Phase 2 clinical trial, on 
patients affected by Duchenne 
muscular dystrophy, was 
terminated prematurely 
because of non-muscle related 
adverse (Campbell et al., 
2017). 

Bimagrumab 

Competitive 
antagonist 

for 
ACVR2A/B 

No significative changes 
in 6 minutes walking 
distance test or muscle 
strength. 

Phase 2 clinical trial on patients 
with inclusion body myositis 
showed good safety profile to 
Bimagrumab treatment 
(Hanna et al., 2019). 
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ACE-083 

Follistatin-
based 

inhibitor for 
TGF-β family 

ligands 

ACE-083 induce 
significant muscle 
growth in targeted 
muscles. No changes in 
muscle strength was 
registered. 

Phase I clinical trial was well 
tolerated in healthy women 
(Glasser et al., 2018). Phase II 
clinical trial is ongoing (clinical 
trial identifier: NCT03943290). 

Sotatercept 
ACVR2A 
soluble 

receptor 
Non investigated. 

Phase 2 clinical trial on patients 
with myelodysplastic 
syndromes. Treatment was 
well tolerated and improved 
anemia condition (Komrokji et 
al., 2018). 

Luspatercept 
ACVR2B 
soluble 

receptor 
Non investigated. 

Phase 2 clinical trial on patients 
affected by β-thalassemia 
showed improved 
erythropoiesis (Piga et al., 
2019). 

Table 7: List of clinical trial aimed to neutralize circulating GDF11/MSTN or inhibit ACVR2A/B 
receptors activity. 
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2. MATERIALS AND METHODS 

2.1. Materials 

2.1.1. Chemical and cell culture reagents 

Unless otherwise stated, general chemicals and cell culture reagents were purchased from 

Sigma-Aldrich, Merck, Honeywell, Diapath, InvivoGen, Thermo Fisher Scientific (Life 

Technologies, Gibco, Invitrogen, Applied Biosystems, Novex) and Corning.  

 

2.1.2. Standard solutions 

All the solutions are described in the text, except for the following: 

• PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM NaH2PO4, pH 7.4. 

• TBE: 89mM Tris base, 89 mM Boric acid, 2 mM EDTA, pH 8.3. 

• TBST: 50 mM Tris base, 150 mM NaCl, 0.1% tween, pH 7.4. 

• LB medium (1 liter): 10 g Tryptone, 10g NaCl, 5g yeast extract, pH 7.0, sterilized by 

autoclaving. 

• CBFHH: NaCl (136 mM), Hepes (20 mM), Glucose (5.55 mM), KCl (5.36 mM), MgSO4 

(0,81 mM), KH2PO4 (0.44 mM), NaH2PO4 (0.34 mM), pH 7.4. 

• HBS 2X: NaCl (280 mM), KCl (10 mM), Na2HPO4 (1.5 mM), dextrose (12 mM), 50 mM 

HEPES, pH 7.13, sterilized by 0.22 µm filtration. 

• PFA 4% (1 liter): 40 g of Paraformaldehyde (PFA) in PBS, pH 7.4, 0.45 μm filtered. 

• Binding Buffer (0.5 liter): 6 mL of NaH2PO4 (0.2 M), 44 mL of Na2HPO4 (0.2M),  

50 mL of NaCl (5M), pH 7.4, H2O to volume, 0.22 μm filtered. 

• Elution Buffer (0.1 liter): 1.2 mL of NaH2PO4 (0.2 M), 8.8 mL of Na2HPO4 (0.2M),  

10 mL of NaCl (5M), 10 mL of Imidazole (5M, BioUltra, Sigma-Aldrich), pH 7.4, H2O 

to volume, 0.22 μm filtered. 

 

2.1.3. Synthetic oligonucleotides 

Small synthetic DNA oligonucleotides (<80 bp) used for PCR and cloning purposes were all 

purchased from Sigma-Aldrich. 

Larger synthetic DNA fragments were synthetized by Genewiz cloned in pUC plasmid. 

  



Materials and methods 
 

45 
 

2.1.4. Commercial proteins 

All commercial proteins used in this work are listed in the table below. 

Protein name: Code Supplier 

GDF11 120-11 PeproTech 

MSTN 120-00 PeproTech 

MSTN Prodomain 1539PG RnD 

TGF-β1 100-21 PeproTech 

BSA 10735086001 Sigma-Aldrich 

Cytochrome C C3131 Sigma-Aldrich 

Table 8: List of commercial recombinant proteins. 
 

2.1.5. Plasmids  

pZac 2.1 plasmid (gently donated by Prof. Giacca’s laboratory), containing CMV promoter 

and AAV ITR were used for transient transfection and AAV6/9 vector production. A 

modified version of pZac2.1, capable of expressing sgRNAs under the control of U6 

promoter, was gently donated by Dr. Elena Chiavacci from Prof. Giacca Laboratory.  

In order to obtain stable eukaryotic clones, selected ORF were cloned in pcDNA 3.1+ 

(Invitrogen) containing Puromycin, Geneticin or Zeocin resistance. WT GDF11 and  

WT MSTN ORFs were modified by site-directed PCR mutagenesis.  WT signal peptides were 

substituted with BM40 signal peptide (MRAWIFFLLCLAGRALA) in order to allow efficient 

protein expression and secretion (Mayer et al., 1993). Then, downstream to BM40 signal 

peptide, an hexa histidine tag (His6) and three glycines were added to the protein for 

subsequent purification (Kimple et al., 2013).  

All CAGA12 reporter plasmid were developed from a pGL3-Basic (Promega) vector. 

For AAV8-hAAT vectors productions a pGG2 plasmid was used, gently donated by  

Prof. Muro’s Laboratory. pGG2 plasmid contained ITR regions and a human anti-trypsin 

promoter that granted sustained and elevated expression in hepatocytes (Bortolussi et al., 

2014). 

 

2.1.6. Enzymes 

All enzymes used in this work were purchased from New England Biolabs (NEB), unless 

otherwise stated. 
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2.1.7. Antibodies 

All antibodies used in this work are listed in the table below showing target, usage 

conditions and supplier. 

Target Application Dilution Code Supplier 

GDF11/MSTN WB 1:1000 ab124721 Abcam 

MSTN WB, Co-IP 1:2000 BAF788 RnD 

GDF11 WB, Co-IP 1:1000 MAB19581 RnD 

His6-Tag WB 1:1000 ab18184 Abcam 

HSC70 WB 1:1000 1B5 
Enzo Life 
Sciences 

MSTN Prodomain WB 1:2000 AF1539 RnD 

Activin A Receptor Type 
IB/ALK-4 

WB 1:1000 ab109300 Abcam 

TGF β Receptor I/ALK-5 WB 1:1000 ab31013 Abcam 

Activin A Receptor Type 
IC/ALK-7 

WB 1:1000 ab77051 Abcam 

Sarcomeric Alpha Actinin IF 1:400 ab9465 Abcam 

Mouse Immunoglobulins, 
HRP 

WB 1:2000 P0447 Agilent 

Rabbit IgG (H+L), HRP WB 1:5000 31460 
Thermo Fisher 
Scientific 

Sheep IgG (H+L), HRP WB 1:5000 31480 
Thermo Fisher 
Scientific 

Rat IgG (H+L), HRP WB 1:2000 31470 
Thermo Fisher 
Scientific 

Rabbit IgG (H+L), Alexa 
Fluor 488 

IF 1:500 A-11034 
Thermo Fisher 
Scientific 

Table 9: List of antibodies. 

 

2.1.8. Adeno Associated Virus (AAV) 

All viral vectors used in this work were produced by the AAV Vector Unit (AVU) at 

International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste 

(https://www.icgeb.org/avu-core-facility/). 
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2.2. General molecular biology techniques 

2.2.1. PCR 

PCR technique was performed on plasmid DNA, amplicons and genomic DNA following 

GoTaq DNA Polymerase (Promega) or Pfu DNA Polymerase (Promega) manufacturer’s 

instruction. DNA template amount was in a range from 0.1 to 10 ng for plasmids and 

amplicons, 50/500 ng in case of genomic DNA. Annealing temperature was determined 

according to the lower melting temperature (Tm) calculated from the 3’ 20 bp for each 

primer. Elongation time was calculated according to DNA amplificated length divided by 

polymerase speed (bp/min). Standard PCR cycles were used for most cloning purpose, 

whereas for genotyping analysis protocol is described in detail in paragraph 2.9.2.  

 

2.2.2. DNA extraction from cultured cells 

Cultured cells were washed with PBS, detached using trypsin and centrifuged (5 min, 100 g). 

Supernatant was removed and cells were washed again with pbs and re-centrifuged (5 min, 

100 g). For a 24 well, 50/100 µL of NaOH (50 mM) was added to cellular pellets and heated 

for 10 min at 85°C. Then, 5/10 µL Tris-HCl (1M, pH 8.5) were added and obtained solution 

could be directly used for PCR or stored at -20°C. 

 

2.2.3. RNA extraction protocol 

2.2.3.1. RNA extraction from cell culture 

Cultured cells were washed with PBS and then RNA TRIzol was added into the well/plate 

for 5 minutes on a rocking plate. Then chloroform extraction was performed according to 

manufacturer. DNase/RNase free water was used to resuspend pellet and stored at -80°C. 

RNA concentration and quality was evaluated using Nanodrop 1000 Spectrophotometer 

(Thermo Fisher Scientific) and agarose gel electrophoresis. 

 

2.2.3.2. RNA extraction from animal tissue 

Tissues were weighted and 1 mL of TRIzol (Invitrogen) was added to every 100 mg of tissue. 

Maximum weight of tissue processed was 150 mg. Mechanical sample homogenization was 

achieved using “Lysing Matrix D” (MPBio), for two 30 seconds cycles (6500 speed units) 

using a MagNA Lyser (Roche). Between cycles, samples were chilled in ice, and after 
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homogenization, samples were always kept on ice unless stated otherwise. Supernatant 

was separated from tissue debris and phenol/chloroform extraction was performed. 

 

2.2.4. cDNA synthesis 

cDNA was obtained using “High-Capacity cDNA Reverse Transcription Kit with RNase 

Inhibitor” (Applied Biosystem) according to manufacturer’s instructions. cDNA samples 

were diluted 1:10/1:20 with DNase/RNase-free water and used for qPCR analysis. 

 

2.2.5. qPCR 

Diluted cDNAs were used for quantitative assessment of RNA expression of selected genes 

and results were normalized by the expression of housekeeping genes. TaqMan (Applied 

Biosystem) system was used to quantify levels of gene expression using TaqMan probes 

listed in the table 10 and following manufacturer’s instruction. For each experimental 

condition, at least three biological replicates and two technical replicates were used. Fold 

change between control and treated samples was identified with 2–ΔΔCT method. 

Gene target Probe ID 

Acvr1b (Alk4) Mm00475713_m1 

Tgfbr1 (Alk5) Mm00436964_m1 

Acvr1c (Alk7) Mm03023957_m1 

Gapdh Mm99999915_g1 

Table 10: List of TaqMan probes. 

 

2.2.6. Protein extraction protocols and protein lysates quantification 

2.2.6.1. Conditioned cell culture medium harvesting 

Cultured transfected cells have been used to produce and secrete protein of interest in 

culture medium. In order to avoid confounding effects due to fetal bovine serum (FBS) 

presence, after 16/24h since transfection, cells were washed with PBS and medium was 

replaced with serum free Optimem (Gibco) medium. When needed, 4 mM NaB (Sigma-

Aldrich) or 100 µM biotin (Sigma-Aldrich) were added to Optimem medium. The former is 

a histone deacetylase inhibitor capable of enhancing protein production (Palermo et al., 

1991) and the latter was used to induce protein biotinylation through BirA system 

(Predonzani et al., 2008). In case of neonatal rat cardiomyocytes cultures Optimem medium 
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was not used but the neonatal rat cardiomyocytes medium (described in paragraph 2.5) 

was modified adding 0.1% FBS. Medium was harvested and centrifuged at 4°C for 15 min 

at 15600 g. Supernatant was transferred in a new tube and used for following studies or 

stored at -80°C. 

 

2.2.6.2. Protein extraction from cell culture 

RIPA buffer was prepared and chilled before starting protocol. 5X RIPA buffer (Cell Signaling 

Technologies) was supplemented with “PhosSTOP” (Roche), “cOmplete, Mini, EDTA-free 

Protease Inhibitor Cocktail” (Roche) and PMSF according to manufacturer instruction. 

Cultured cells were washed with PBS, plate was positioned on ice and then 1X RIPA buffer 

was added to the well/plate (400 µL for a 10 cm dish or 107 cells). Cells were kept 10 min 

in cold room on a rocking plate, then detached using a cell scraper. Samples were sonicated 

and stored at -80°C or used for further analysis.  

 

2.2.6.3. Protein extraction from animal tissues  

RIPA buffer was prepared as described in previous paragraph. Harvested tissues were 

weighted and 1 mL of 1X RIPA buffer was added to every 100 mg of tissue. Maximum weight 

of tissue processed was 150 mg. Mechanical sample homogenization was achieved as 

described in paragraph 2.2.3.2.  Samples were chilled on ice between cycles, and, after 

homogenization, were always kept on ice unless stated otherwise. Then samples were 

centrifuged at 4°C for 10 min at 15600 g and transferred in a new tube, sonicated and 

stored at -80°C or used for further analysis.  

 

2.2.6.4. Estimation of protein lysate concentration 

Protein sample concentration was determined by Bradford Protein Assay Dye Reagent 

Concentrate (Bio-Rad) according to manufacturer instructions. Standard curve was 

prepared at each measurement with various amount of commercial BSA. 

 

2.2.7. SDS-PAGE and western blot 

2.2.7.1. SDS-PAGE 

SDS-PAGE is an electrophoresis method used for protein separation by mass. Pre-cast 

gradient polyacrylamide gels “Bolt 4-12% Bis-Tris Plus” (Life Technologies) were used in this 
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work for protein analysis. Protein samples were prepared adding “Bold Loading Dye” (Life 

Technologies) and β-mercaptoethanol (Sigma-Aldrich) at 5/20 and 1/20 fractions of total 

volume, respectively. Samples were denatured for 10 min at 70°C and loaded onto a gel. In 

order to estimate protein size, “Prestained Protein Ladder (10 - 180 kDa)”  (Abcam) or 

“SeeBlue Plus2 Pre-stained Protein Standard” (Invitrogen) were loaded in parallel with 

samples. For samples obtained from cell or tissue lysate, 20 to 35 µg of total protein were 

loaded in each line. Conditioned medium was normalized by volume, as for serum samples 

where 1 µL of serum was diluted in 20 µL of loading volume. Gels were run in 1X “Bolt MES 

SDS Running Buffer” (Life Technologies) for initial 5 min at 150V constant, then 200V 

constant until desired separation was obtained. Once run was terminated gel was either 

stained with Coomassie staining or transferred on PVDF membrane.  

 

2.2.7.2. Coomassie staining 

SDS-PAGE gels were stained with Coomassie in order to visualize and quantify separated 

proteins. BSA and Cytochrome c proteins were prepared and loaded in order to compare 

samples to known amount of proteins.  

In this work two different Coomassie were used: 

• In-house prepared Coomassie: 

100 g ammonium sulfate, 5 mL of Coomassie Brilliant Blue G250 (6%, aqueous 

solution), 30 mL of phosphoric acid (85%, aqueous solution), 200 mL of ethanol and 

550 mL of deionized water. Gel was stained ON, then destained with water until 

background was transparent. 

• Commercial Coomassie:  

“InstantBlue” (Expedeon) was used according manufacturer’s instructions.  

 

2.2.7.3. Western blot 

Proteins into polyacrylamide gel were transferred on “Amersham Hybond P 0.2 PVDF 

membrane” (GE Healthcare) using the “Mini Blot Module” (Invitrogen) system. PVDF 

membrane was activate in pure methanol, then washed in water and transfer buffer before 

transfer process. Transfer buffer was prepared according manufacturer’s instruction, “Bolt 

Transfer Buffer (20X)” was diluted with water to final volume after addition of 10% 

methanol (Sigma-Aldrich), 0.1% Bolt Antioxidant. 3MM Chr (Whatman) paper was used for 
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sandwich gel assembly. Transfer process used a constant 20V tension for 60 min. Once 

transfer was completed, protein transfer was checked using Ponceau Ruby Protein Gel 

Stain (Invitrogen) and then membrane was cleaned by repeated washing with TBST. 

Subsequent membrane blocking step was executed at RT with 5% Non-Fat Dry Milk (NFDM) 

or 5% BSA in TBST for 60 to 90 min on a tube roller and incubated with selected antibody 

(diluted in the appropriate blocking solution) ON at 4°C on a tube roller. The day after, 

membranes were washed 5 times for 6 min with TBST and incubated with the 

corresponding secondary antibody for 60 min. A second round of 5 washes (6 minutes each) 

was performed and HRP chemiluminescence was produced using “ECL Western Blotting 

Analysis System” (Ge Healthcare) or “Clarity Max Western ECL Substrate” (Bio-Rad), in case 

of normal or faint bands, respectively. Signal detection was achieved using “Amersham 

Hyperfilm ECL” (Ge Healthcare) photosensitive films or with “ChemiDoc Touch” Imaging 

System (Bio-Rad). Intensity band quantification was assessed using ImageJ or Image Lab 

(Bio-Rad) software. 

 

2.2.7.4. Membrane stripping 

Occasionally membrane was stripped from previous incubated antibodies and re-probed 

with a new antibody. Briefly, a stripping solution composed by 20 mL of Tris (pH 6.8), 5 mL 

of SDS 10% and 175 µL of β-mercaptoethanol was prepared and heated at 60°C. Membrane 

was incubated in stripping solution for a time ranging from 10 to 20 min at 60°C in a rocking 

plate. Then, blocking and antibody incubation was performed as described in the previous 

paragraph.  

 

2.3. Bacterial culture procedures 

2.3.1. General bacterial handling 

The E. coli XL10-Gold strain was used in this study for cloning and plasmid amplification 

purposes. Bacteria were grown, at 37°C, in Luria Bertani (LB) medium in liquid culture or 

solid agar plate (if 15 g/L of agarose was added to LB medium recipe). For selection, 

ampicillin or kanamycin was added to growth medium at a final concentration of 100 µg/mL 

or 50 µg/mL, respectively. Colonies on agar plate were maintained at 4°C for short term 

conservation, but for long term storage glycerol bacterial stocks were prepared mixing 
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bacterial culture (600 μL) and sterile glycerol (400 μL) then stored at -80°C and used for 

future inoculations. 

 

2.3.2. Competent XL10-Gold cell preparation 

Bacterial competent cells were prepared in-house following the protocol described by 

Sambrook (Sambrook and Russell, 2006). Briefly, a glycerol stock of XL10-Gold was 

inoculated into a fresh culture medium. After 12/16h, 4 mL of culture medium were added 

to 400 mL of fresh LB, with no antibiotics, and grown until OD600 reached a value of 0,4. 

Then bacteria were chilled on ice and centrifuged (4°C, 2000 g for 15 minutes). Supernatant 

was discarded and pellet was resuspended with 80 mL of sterile, ice-cold CaCl2 0.1 M. 

Bacteria solution was incubated at 4°C for 30 min and centrifuged again as described 

before. Pellet was resuspended in 15/20 mL of sterile, ice-cold CaCl2 0.1M with 15% of 

glycerol and aliquoted (200/400 μL) in ice cold tubes and stored at -80°C. Bacteria 

competence was checked by performing transformation with 0.1 ng of a control plasmid. 

 

2.4. Cloning procedures 

2.4.1. DNA restriction endonuclease digestion 

DNA endonuclease digestion was performed following manufacturer’s instructions. 

Enzymes’ buffer compatibility was determined using the NEBCloner tool 

(https://nebcloner.neb.com/). For analytical digestions 500 ng of plasmid DNA were 

digested for 30/60 min (37°C) with 5 U of specific restriction enzymes. For preparative 

digestions 2 µg of plasmid or PCR amplificated were digested for 2/3 hours (37°C) with 10U 

of specific restriction enzymes. 

 

2.4.2. Site-directed mutagenesis by PCR 

In order to expand cloning possibilities, DNA fragment were modified using PCR 

overhanging and/or overlapping primers designed to contains new restriction sites or 

change short DNA sequence. Briefly, modified DNA template was amplificated by Pfu DNA 

Polymerase and purified from agarose gel. DNA was digested using restriction enzymes or 

used as target to perform a novel round of site-directed mutagenesis.  
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2.4.3. DNA inserts ligation into plasmid vectors 

Plasmid ligation was performed using T4 DNA ligase (NEB) that catalyzes the formation of 

a phosphodiester bond between 3’ hydroxyl and 5’ phosphoryl DNA extremities using ATP. 

Briefly, 25 ng of digested backbone plasmid were added to 1:3 or 1:6 molar ratio of purified 

digested DNA fragments (insert). Plasmid+Insert solution was supplemented with  

1X T4 DNA ligase buffer and 0.5/1U of T4 DNA ligase, as stated in NEB’s instructions. 

Negative control reaction (linearized plasmid backbone + water + T4 DNA ligase) was 

always carried out in order to determine the number of self-ligating plasmid events. 

Reaction was carried out at RT for 1h to 3h (sticky ends ligation) otherwise at 16°C ON 

(blunt ends ligation). Occasionally, small synthetic ds oligonucleotide (<80 bp) were also 

used as DNA insert. In this scenario, Calf Intestinal Phosphatase (CIP) (NEB) was used to 

remove plasmid 5’ phosphate group and reduce the chance of self-ligating plasmid event. 

Furthermore, several molar ratios were attempted ranging from 1:25 to 1:250 molar ratio 

between linearized backbone plasmid and synthetic insert, then, ligation proceeded as for 

blunt end ligations. 

 

2.4.4. Enzyme free DNA ligation into plasmid vectors (AQUA cloning) 

Aiming to clone a multicistronic plasmid, as in the case of pGL3-CAGA12+PuroR-P2A-

hRenilla-T2A-EGFP standard cloning procedure were not feasible because of absence of 

unique restriction site. In order to overcome these difficulties AQUA cloning method was 

performed. Protocol is described by Beyer and colleagues (Beyer et al., 2015), briefly,  

12 ng of linearized plasmid backbone and DNA fragment were incubated at RT for 1h in a 

10 μL volume (1:3 molar ratio, if occurred, water was added to volume) and then used for 

bacterial transformation. The only requirement needed was the necessity of a sequence 

homology region (16-32bp) present in both plasmid backbone and insert. Ligation events 

was totally mediated by competent cells intrinsic ability to process linear DNA fragments. 

 

2.4.5. Transformation of XL10-Gold bacterial competent cells 

Competent cells were thawed slowly in ice and divided in several ice-cold tubes (45 μL 

each). Competent cells received 5 μL of the previously obtained DNA ligation reaction and 

competent cells/DNA mixture was incubated in ice for 15/30 min. After this first incubation 

step, cells were heat-shocked at 42°C for 60 sec in a water bath and re-incubated for  
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5 minutes on ice. Transformed bacteria were occasionally plated immediately or they were 

added with 200 μL of LB and kept for 60/120 min at 37°C before plating. Transformed 

competent cells were spread on LB-agar plates containing the selected antibiotic, and 

grown ON at 37°C. 

 

2.4.6. Small- and large-scale plasmid DNA preparation 

Colonies obtained after transformation process were expand in LB medium + antibiotics. 

Single colonies were picked using a sterile disposable inoculating loop (Nunc) and bacteria 

were inoculated into 6 mL of LB medium and incubated ON. After ON culture growth,  

small- or large-scale plasmid DNA purification protocols were performed. 

 

2.4.6.1. Small-scale plasmid preparation 

Bacterial cultures (5/6 mL) were centrifuged at 5000 g for 15 min to aggregate bacterial 

cells into a pellet. “Wizard Plus SV Minipreps DNA Purification System” (Promega) kit was 

used following manufacturer’s instructions. Plasmid DNA were checked by restriction 

enzyme digestion and sequence. 

 

2.4.6.2. Large-scale plasmid preparation 

Bacterial culture (1/3 mL) was inoculated ON in 200/400 mL of LB medium at 37°C. On the 

following day, bacterial culture was pelleted as in previous paragraph. Then large-scale 

plasmid preparation was performed using “NucleoBond® Xtra Maxi” (Macherey Nagel) kit 

following manufacturer’s instructions. Plasmid DNA were checked by restriction enzyme 

digestion. 

 

2.4.7. Sequencing service for cloning purposes 

DNA sequence analysis was performed after each cloning procedure. Briefly, at least 2 

small-scale plasmid preparation was obtained from each ligase reaction and tested by 

restriction enzyme digestion. If digested DNA fragments were matching the DNA fragments 

expected sizes, 15 μL of mini-prep plasmid DNA (50/100 ng/μL) were added with 2 μL of 

desired sequencing primers (10 μM) according to “Mix2Seq kit” (Eurofins) protocol.  

 

 



Materials and methods 
 

55 
 

2.4.8. Generation of CAGA12 reporter constructs 

2.4.8.1. pGL3-CAGA12 reporter construct 
CAGA12 reporter construct was cloned according to Dennler et al. (Dennler et al., 1998). 

Briefly, a dsDNA oligo containing 12 times the “AGCCAGACA” sequence (CAGA box) 

interspaced by “AAA” or “TTT” every other time and followed by Adenovirus 2 Major Latent 

Promoter (MLP) was synthetized by Genewiz. Below the full synthetized sequence can is 

shown with NheI and HindIII restriction sites in bold, the CAGA box highlighted in yellow 

and the MLP underlined: 

TGCTAGCCCGGGAGCCAGACAAAAAGCCAGACATTTAGCCAGACAAAAAGCCAGACATTTAGCCAG

AAAAAAGCCAGACATTTAGCCAGACAAAAAGCCAGACATTTAGCCAGACAAAAAGCCAGACATTTA

GCCAGACAAAAAGCCAGACACTCGAGATCTGGGCTATAAAAGGGGGTGGGGGCGCGTTCGTCCTCA

CTCTCTTCCAAGCTTGGCATT 

After preparative digestion, synthetic DNA insert was cloned in the multicloning site of 

pGL3-Basic (Promega) using respective restriction sites.  

 

2.4.8.2. pGL3-CAGA12-NeoR reporter construct 
In order to create a stable reporter cell line, an antibiotic resistance gene was inserted. 

Neomycin resistance (NeoR) gene, its SV40 promoter and its SV40 PolyA were amplificated 

using PCR, adding desired restriction sites at the extremities, from pcDNA 3.1+ construct. 

Digested PCR products was cloned in a linearized (BamhI-SalI) pGL3-CAGA12 reporter 

construct. 

 

2.4.8.3. pGL3-CAGA12-PuroR-P2A-hRenilla-T2A-EGFP construct 
In order to create stable cell lines expressing also the luciferase hRenilla normalizator and 

EGFP to accelerate the selection process, a new pGL3-CAGA12 reporter construct was 

cloned. Briefly, the insert was obtained by several steps of PCR amplification:  

• SV40 promoter and Puromycin resistance (PuroR) gene were amplified from  

pcDNA 3.1+ vector adding a pGL3, 32bp, homology region its 5’ and partial P2A 

sequence at its 3’ 

• hRenilla sequence was amplified from psi-CHECK2 vector (Promega) and modified 

at 5’ and 3’ with partial P2A and T2A sequences, respectively. 
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• EGFP gene and SV40 polyA were amplified from pZac-EGFP construct (gently 

offered by Prof. Giacca Laboratory) with partial T2A sequence at its 5’ and a pGL3, 

32bp, homology region its 3’. 

A unique 3 kb PCR amplicon was generated using the 3 templates and it was inserted in a 

linearized (BamhI-SalI) pGL3-CAGA12 reporter construct using AQUA cloning method. P2A 

and T2A sequences were obtained from the Liu et al. published work (Liu et al., 2017). 

 

2.4.9. Generation of sgRNAs constructs 

In order to generate sgRNAs able to target specific receptor an informatic prediction tool 

“CHOPCHOP” was used (https://chopchop.cbu.uib.no/). Best score hits were furtherly 

screened using ENSEMBL database to choose sgRNA targeting the most upstream and 

common sequence among all gene isoforms. Presence of SNP was also checked, in case of 

SNP presence the relative sgRNA was discarded. For each targeted receptor 2 different 

sgRNAs were selected and, for each sgRNA, two 25bp ssDNA oligonucleotide were 

synthetized. Annealing of ss DNA oligonucleotides in a dsDNA oligonucleotide with 

overhanging ends compatible for sticky end ligation was performed using thermocycler 

starting from a 95°C denaturation step and decreasing progressively to 25°C in a period of 

20 minutes. Backbone plasmid pZac2.1-U6sgRNA-CMV-ZsGreen was digested with BbsI, 

then 50 ng of linearized plasmid were ligated with 2 μL of annealed oligonucleotide mixture 

(10 μM) as described before in paragraph 2.4.3. 

 

2.5. Cell culture procedures 

2.5.1. General cell culture conditions 

In this work, several cell lines were cultured according to the following conditions: 

• HEK-293T: cells were cultured in Dulbecco’s modified Eagle’s medium, high glucose 

(DMEM-HG, Gibco) supplemented with 10% FBS, and penicillin/streptomycin (P/S, 

100 U/mL and 100 g/mL) unless stated differently. 

• NIH/3T3: cells were cultured in DMEM-HG supplemented with 10% FBS, and P/S 

unless stated differently. 

• A204: cells were cultured in McCoy's 5a Medium Modified supplemented with 10% 

FBS, and P/S unless stated differently. 
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• CHO: cells were cultured in Ham's F-12 Nutrient Mix supplemented with 10% FBS, 

and P/S unless stated differently. 

• HL-1: cells were cultured in Claycomb Medium supplemented with 10% FBS, 

glutamine 2mM and P/S unless stated differently. “Primaria” (Corning) plates were 

required for cell adhesion. 

• Neonatal rat cardiomyocytes: cells were cultured in DMEM-HG supplemented with 

5% FBS, B12 vitamin (2 mg/L) and P/S unless stated differently. “Primaria” (Corning) 

plates were required for cell adhesion. 

All cell lines were maintained in a humidified environment at 37°C and 5% CO2. 

 

2.5.2. Isolation of neonatal rat cardiomyocytes: 

Ventricle from 1-2 days old Wistar rats were separated from the atria, minced into small 

pieces and digested at RT using CBFHH buffer supplemented with Trypsin (1.75 mg/mL) and 

DNase I (10 µg/mL). Ventricular cardiomyocytes were detached through pipetting and 

collected in supernatant, then cells were centrifuged and re-suspended in neonatal rat 

cardiomyocyte medium.  Recovered primary cells were passed through a cell strainer  

(40 µm) and then seeded onto standard plastic dishes and incubated for 2h. After this pre-

plating steps, most fibroblast adhered to plastic surface and cardiomyocytes were collected 

from supernatant. Then cardiomyocytes were counted and seeded at desired density on 

“Primaria” plates (Corning). 

 

2.5.3. Transfection protocols 

In this work, several cell lines were transfected according to the following protocols: 

• HEK-293T: cells were transfected using calcium phosphate method described by 

Jordan (Jordan et al., 1996). Briefly, when cellular confluence reached 40-60%, 

culture medium was replaced with fresh medium and after 1/2h transfection mix 

was prepared. For 5*105 cells, 2.5 µg of plasmid DNA was added to sterile water to 

a final volume of 90 µL and supplemented with 10 µL of CaCl2 (2.5 M). After mixing, 

solution was added to an equal volume of HBS 2X and vortexed vigorously for 45 

sec. Shortly after, transfection mix was added drop by drop to culture medium. Cells 

were left growing ON and medium was replaced on the following day.  
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• NIH/3T3: cells were transfected following Lipofectamine 2000 (Invitrogen) 

manufacturer’s protocol. Briefly, when cellular confluence reached 70-80%, culture 

medium was replaced with 50 µL of fresh Optimem without antibiotics (96-well) 

and transfection mix was prepared. 25 µL Optimem-Lipo2000 mixture was prepared 

(100:1 or 50:1 ratio), and after 5 minutes, 25 µL of Optimem-DNA (from 10 to 40 

ng/µL) was added and incubated for 20-30 minutes. After this step, transfection mix 

was added to cells and incubated for 4-6h. Finally, medium was removed and 

replaced with fresh medium without antibiotics. 

• A204: cells were transfected following a using Lipofectamine 2000 manufacturer’s 

protocol as already described above (NIH/3T3 cells). 

• CHO: cells were transfected following Lipofectamine 2000 manufacturer’s protocol 

as already described above (NIH/3T3 cells). 

• HL-1: cells were transfected following FuGENE HD (Promega) manufacturer’s 

protocol. Briefly, when cellular confluence reached 70-80%, culture medium was 

replaced with 95 µL of fresh medium (96-well) and transfection mix was prepared. 

4.5 µL of Optimem-DNA mixture (20 ng/µL) were supplemented with 0.5 µL of 

FuGENE HD, mixed and incubated for 10 minutes. After this step, transfection mix 

was added to cells and incubated ON. 

• Neonatal rat cardiomyocytes: cells were transfected following Lipofectamine 2000 

manufacturer’s protocol as already described above (NIH/3T3 cells). 

In each transfection process, EGFP- or mCherry-transfected cells were used as positive 

control for transfection. 

 

2.5.4. AAV infection protocols 

In this work, HL-1-CAS9 and HEK-293T were infected using AAV9 or AAV6 vectors at a 

concentration of 5*104 GC/cell. Briefly, cell’s medium was removed and fresh medium 

supplemented with desired viral titer was added for 24/48h. Infectivity could be enhanced 

by MG132 supplementation as described in Nonnenmacher work (Nonnenmacher and 

Weber, 2012). Successful transduction was checked using EGFP-expressing AAVs.  
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2.5.5. Generation and selection of stable clones 

Stable clones were generated from an initial mix of transfected cells with a plasmid  

co-expressing an antibiotic resistance gene. After transfection, cells were re-plated and 

exposed to single or to a combination of different antibiotics (InvivoGen) at the following 

concentrations: Geneticin (1 mg/mL), Zeocin (0.75 mg/mL), Puromycin (5 µg/mL). After 1 

week, cells were detached and subjected to limiting dilution as shown in fig. 6. Briefly, 

approximately 4000 cells were plated in “A1” well (96-well plate), then sequential 1:2 

dilutions were performed in each well of the first column. Subsequently, using a multi-

channel pipette, a second series of 1:2 serial dilution was performed from row 1 to row 12. 

Following days wells were carefully checked and wells with only a single colony were 

selected. 

In one case, HEK-293T-CAGA12-hRenilla-EGFP clones, selection process was remarkably 

accelerated using a fluorescence activated cell sorting (FACS) with cells co-expressing an 

EGFP transcript in frame with a P2A peptide and the antibiotic resistance gene.  

 

Figure 6: Schematic representation of cell limiting dilution protocol. 

 

2.6. CAGA12-luciferase assay 

2.6.1. Assay settings 

Stable reporter cells or transient transfected cells grew until they reached an average 

confluency of 80-90%, then complete medium was removed, and cells were washed with 

PBS to remove FBS contaminations. Serum-free Optimem medium was added to each well 

for a period of 8h before inducing signaling with recombinant proteins. Recombinant 

proteins were thawed in ice and diluted in serum-free Optimem medium in order to have 

desired concentration for recombinant protein stock solution. This stock solution was then 

serially diluted by 1/3 factor in order to cover a wide range of tested conditions. When 

GDF11 or MSTN activity was investigated, dilutions were performed using serum-free 

Optimem medium, but in case of prodomain bioactivity testing, dilutions were performed 
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using serum-free Optimem medium supplemented with a fixed amount of GDF11/MSTN.  

At the end of the incubation time, stock solutions and/or diluted treatments were then 

added to each well ON (n=2-3). On the following day, SMAD3/4 activity was measured as 

described in the next paragraph. 

 

2.6.2. Firefly and Renilla luciferase measurements 

Luciferase assays were performed according to manufacturer’s instruction of Glo-Lysis 

buffer (Promega) followed by ONE-GLO or DUAL-GLO Luciferase Assay System (Promega).  

ONE-GLO system was used in case of stable CAGA12 reporter cell line, whereas DUAL-GLO 

system was used in case of transient CAGA12 transfection or in case of HEK-293T-CAGA12-

hRenilla-EGFP stable cell line. Briefly, cells were washed with PBS and then 50 µL of  

Glo-Lysis buffer were added to each 96-well and incubated for 10 minutes. Then lysate was 

recovered and mixed in a 1:1 ratio with respective GLO-luciferase substrates and after 10 

minutes luciferase activity was detected with a EnVision Multilabel Plate Reader 

(PerkinElmer, 1 second integration signal). Results obtained were expressed as fold change 

over control treatment. EC50 and IC50 values were calculate importing the luciferase 

activity data into GraphPad Prism software and using a non-linear regression curve fit with 

a variable slope (four parameters). 

 

2.7. Protein purification procedures from culture medium 

2.7.1. Inactive latent complex purification through streptavidin beads 

“Streptavidin Mag Sepharose” beads (GE Healthcare) were used in the preliminary studies 

to purify protein from small volume of medium.  Briefly, biotinylated proteins were 

produced through BirA system (Predonzani et al., 2008) and secreted into conditioned 

culture medium. Excess of biotin was removed from culture medium using a centrifugal 

filtering unit (10 kDa cutoff). Then, 2 to 6 mL of filtered culture medium were incubated 

with equilibrated streptavidin beads (from 40 to 100 µL) for 3 h, at 4°C on a roller tube. 

Beads were washed 3 times with ice-cold PBS and treated with different denaturing 

conditions for 1 h, at 4°C on a roller tube. After incubation, supernatant was collected for 

further quantification and beads were washed 3 times with PBS. Streptavidin beads were 
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recovered and loaded as control to quantify the amount of mature protein still entrapped 

in the inactive latent complex. 

 

2.7.2. Immobilized metal affinity chromatography (IMAC) protein purification 

Protein purification process from medium volumes larger than 50 mL was performed by 

IMAC. HiTrap Chelating HP IMAC 5 mL columns (GE Healthcare) were loaded with NiSO4 

(0.1 M) using an ÄKTA FPLC system (GE Healthcare). Conditioned medium was prepared as 

described in paragraph 2.2.6.1, supplemented with NaCl (0.5 M final concentration), 

filtered (0.22 µm) and adjusted to a pH of 7.4.  

A small fraction of filtered medium was stored for further analysis (Input), the rest was 

loaded into equilibrated HiTrap 5mL column at 2.5 mL/min. Flow-through (FT) was 

collected until all medium was loaded on the column (FT1), then column was washed using 

binding buffer until UV absorption reached baseline (FT2). Elution was performed with an 

elution buffer gradient and fractions were collected according to λ280 absorption. 

Subsequently, fractions were investigated for protein of interest presence using WB. 

Fractions showing the highest purity and protein concentration were mixed together and 

concentrated using centrifugal filter units: Amicon Ultra-0.5 (10 kDa cutoff, Sigma-Aldrich) 

or Vivaspin 6 (10 kDa cutoff, Sartorius). Concentrated samples were then quantified using 

Coomassie staining. 

 

2.7.3. HPLC C4 reverse phase protein purification 

Protein samples obtained from previous IMAC purification were equilibrated with 0.1% 

trifluoroacetic acid (TFA) and loaded into an equilibrated Jupiter 5 µm C4 300 Å, LC Column 

250 x 4.6 mm, (Phenomenex) using an Agilent 1100 HPLC system (Agilent Technologies). 

Liquid phase composition was changed with a linear gradient from 0.1% TFA in water to a 

0.1% TFA in acetonitrile (ACN) in 60 min (1 mL/min). UV absorption at 280 nm was 

constantly measured during the separation process and it was used to identify and collect 

protein peaks eluting from the column. Eluted fractions were then frozen on dry ice and 

sublimated using SpeedVac SC110 (Savant). Lyophilizated proteins were then resuspended 

in an appropriate volume of PBS 4mM HCl and used for further analysis or stored at -80°C. 
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2.8. Histology 

2.8.1. Periodic Acid Shift (PAS) stain and cross-section area measurement 

PFA fixed tissues were washed for two consecutive days with a solution of 50% ethanol, in 

H20 at 4°C. Tissues were embedded in paraffin following manufacturer’s protocol using an 

Automatic Tissue Processor TP1020 (Leica). Staining for PAS was performed as described in 

PAS staining system (Sigma-Aldrich).  

PAS-stained heart and tibialis muscles sections images were acquired using a Leica ICC50W 

microscope (HI Plan 20×/0.40 NA objective, Leica), and cross-sectional area was measured 

using ImageJ software (NIH). Both procedures were performed by an operator that was 

blinded. For each tissue, three consecutive sections taken at a distance of 150/200 µm from 

each other were analyzed. Among these sections, a minimum of 150 cells per sample were 

selected and measured. 

 

2.9. In vivo experimental procedures 

2.9.1. Animal housing and mice strains used 

Housing and handling of mice were performed in accordance to institutional guidelines and 

all the experimental procedures were approved by International Centre for Genetic 

Engineering and Biotechnology (ICGEB) board, with the full respect of the EU directive 

2010/63/EU for animal experimentation. The study was authorized by the Italian Ministry 

of Health, “ICGEB PPR n. PPR2/14”. Animals were kept in the ICGEB Bio-experimentation 

Facility in a temperature-controlled environment with a 12/12 hours light-dark cycles. All 

animals received a standard chow diet and water ad libitum. 

 

In this work two different mice strains were used: 

• C57Bl/6 WT strain: initially purchased from Envigo (exact strain name: C57BL-

6JOlaHsd), mice were interbred to expand the colony. Females did not undergo 

through more than 4 delivery. 

• Myh6-Cas9-C57Bl/6 strain: gently donated by Prof. Mauro Giacca laboratory (exact 

strain name C57-Myh6-Cas9-2A-TdTomato, described in Carrol published work 

(Carroll et al., 2016)). Mice were crossed with C57Bl/6 WT mice to expand and 
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maintain the colony. Females did not undergo through more than 4 delivery. 

 

2.9.2. Animals genotyping from tail biopsies 

In order to genotype animals, tail biopsies were performed to obtain genomic DNA. 

Approximately 5mm of tail was processed according “Extract-N-Amp Tissue PCR Kit” 

(Merck) manufacturer’s protocol. Primers used for PCR amplification are listed in table 11, 

amplification conditions are illustrated in fig. 7. PCR products were separated and analyzed 

after run in a 1% agarose gel. Expected transgenic band was 689 bp, WT animals genomic 

DNA was not amplified. 

Primer Name: Sequence (5’-3’):  

Td-Tomato Fw ACATGGCCGTCATCAAAGA 

Td-Tomato Rev CTTGTACAGCTCGTCCATGC 

Table 11: List of primers used during genotyping process. 

 

 

Figure 7: Schematic representation of genotyping PCR protocol. 

 

2.9.3. Surgical anesthesia and post-surgery analgesia 

Animals undergoing invasive procedures (minor or major surgeries) were always 

anesthetized using a mixture of oxygen gas and isoflurane. A 2% to 4% isoflurane 

concentration was used to induce, within 2-3 minutes, a non-responsive state in mice. Then 

mice were moved to surgical plane and a nose cone or endotracheal tube was positioned 

to maintain anesthesia by gas mixture inspiration. Mice pain-awareness was checked by 
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tail-pinch method. Animal temperature was maintained using a heating pad at 37°C. Once 

surgical procedure was finished, mice received 0.1 mg/kg/12h buprenorphine 

subcutaneous injection and recovered in a heated (37°C) clean cage. Post-surgery analgesia 

was maintained for 24h in case of minor surgery or 48h in case of major surgery (0.1 mg/kg 

buprenorphine every 12 hours). 

 

2.9.4. AAV vector injections and animals’ follow-up 

Investigation using AAV vector administration were performed using two different injection 

methods: 

• Intramyocardial delivery: two separate injections (20 µL each) were performed 

directly into the left ventricle anterior wall and locally delivered a total of 1011 

GC/animal. For this approach 2 months old, male, WT C57Bl/6 animals were used.  

• Intravenous delivery: a single retro-orbital sinus venous injection (50 µL of volume) 

was performed using up to 2*1012 GC/animal. In this case, 3 months old, male, WT 

C57Bl/6 animals were used. Dose finding studies were performed using untreated 

animals. In case of experiments using the pressure overload mouse model, AAV 

injection was performed 1 week after the TAC procedure. 

Both injections methods were performed using an insulin syringe (30 gauge). Control 

treatments were performed using AAV-GFP vector or PBS. All treatments were 

administered by a blinded operator on randomized animals. 

During the experimental period, animals were weighted twice a week and its percentual 

body weight change was calculated according to their initial weight before the AAV 

injection or surgical procedure. If percentual body weight reduction was more than 25%, 

animals were euthanized, and tissue harvested. 

 

2.9.5. Blood withdrawal procedures 

Blood samples were collected at different timepoints during experimental procedures. 

Submandibular bleeding or terminal bleeding were performed as described by Golde and 

Parasuraman respectively (Golde et al., 2005; Parasuraman et al., 2010). Blood was 

collected in 1.5 mL tubes, clotted at RT for 1 hour and centrifuged 10 min at 5000g. Serum 

was stored at -80°C for future analysis. 
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2.9.6. Sacrifice and tissue harvesting 

At the end of the experimental period, animals were anesthetized and sacrificed by 

intravenous injection of potassium chloride (150 mg/kg) or by cervical dislocation. Terminal 

blood withdrawal was performed at this point, then skin was incised, and organs harvested. 

Each organ was weighted before further processing. Heart was cut in 3 different parts that 

were used respectively for RNA isolation, protein extraction and histology. Liver quadrate 

lobe was used for RNA/protein extraction and the remaining was fixed for histology. Tibialis 

anterior, gastrocnemius and quadriceps femoris were identified, isolated and harvested. 

All tissues designed for histology were fixed in PFA 4% ON. All tissues for RNA and protein 

extraction were immediately frozen in liquid nitrogen after harvesting. Tibia length was 

measured for normalization purposes. All sacrifice procedures were performed by two 

blinded operators. 

 

2.9.7. Transverse aortic constriction (TAC) 

Mice underwent either a sham operation or were subjected to pressure overload induced 

by TAC. The transverse aortic arch was ligated (6-0 silk) between the innominate and left 

common carotid arteries with an overlying 27-gauge needle, and then the needle was 

removed. TAC pressure gradients were determined by Doppler echocardiography to 

exclude from the study mice with a right carotid/left carotid flow ratio (Hartley et al., 2008). 

All surgical procedures were performed by a single operator blinded to the experimental 

conditions. 

 

2.9.8. Echocardiography 

Trans-thoracic two-dimensional echocardiography was performed one day before animals’ 

sacrifice. Mice were anesthetized using 1-2% isoflurane and imaged using a Vevo 2100 

Ultrasound (VisualSonics), equipped with a 30-MHz linear array transducer. M-mode 

tracing was used to measure ejection fraction, fractional shortening, left ventricular 

anterior wall thickness, left ventricular posterior wall thickness and internal chamber 

diameter at end-systole and end-diastole. All echocardiography imaging and data analysis 

was performed by a single operator blinded to the experimental conditions. 
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2.9.9. Terminal hemodynamic assessment   

Mice that underwent to TAC or Sham operated mice were subjected to a terminal 

hemodynamic study as previously described (Pacher et al., 2008). A 1.4F, high-fidelity, 

manometer-tipped catheter (SPR-839, Millar Instruments) was introduced into the left 

ventricle through the right common carotid artery. Data was acquired at steady states and 

during acute inferior vena cava occlusions (variable loading conditions). Data analysis was 

performed by PVAN software (AD Instruments, Inc). The end-systolic and end-diastolic 

pressure-volume relationships during inferior vena cava occlusions were used to calculate 

end-systolic and end-diastolic stiffness (slope of linear fit of end-diastolic pressure-volume 

relationship). Measurement of the diastolic properties of the left ventricle were also 

estimated from indices such as the maximal rate of pressure decay (dP/dtmin), or isovolumic 

relaxation constant (Tau). 

 

2.10. GDF11/MSTN quantification from culture medium and serum 

In this study, GDF11/MSTN quantification from serum or culture medium samples was 

achieved following two different protocols: 

 

2.10.1. Western blot  

Western blot was used prevalently to estimate GDF11 and MSTN concentrations in culture 

medium and in serum samples. Western blot protocol is described in paragraph 2.2.7. 

Primary antibody was the Rb MAB antiGDF11/8 (Abcam, code: ab124721). This antibody 

was able to bind both GDF11 and MSTN recombinant proteins with the same affinity as 

showed in fig. 8A. Other, more specific antibody against GDF11 or MSTN were also used: 

anti-GDF11 antibody (RnD, code MAB19581) or anti-MSTN antibody (RnD, BAF788). 

However only the former was adequately specific, the latter showed a 10-15% of cross 

reactivity with GDF11 protein (Fig 8A). 

For our purposes, the Rb MAB antiGDF11/8 was selected for the quantification method 

because it is able to compare directly GDF11 and MSTN without bias of affinity but cannot 

distinguish the two proteins. 
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2.10.2. Mass spectrometry  

Unspecific GDF11/MSTN detection represents a major issue that has been addressed by 

Schafer and colleagues by developing a highly specific liquid chromatography tandem mass 

spectrometry (LC-MS/MS) assay to quantify GDF11 and MSTN concentration in human 

serum (Schafer et al., 2016). In collaboration with Dr. Olga Shevchuk (Leibniz Institut für 

Analytische Wissenschaften, ISAS Campus, Dormund) we have developed a parallel 

reaction monitoring (PRM) LC-MS/MS based assay combined with immunoprecipitation 

where, using stable isotope labeled (SIL) peptides, we could reliably distinguish MSTN, 

GDF11 and also determine their endogenous concentrations in murine serum. The 

development of the assay was entirely performed by Dr. Olga Shevchuk while we 

developed the immunoprecipitation steps and provided murine serum. 

 

2.10.2.1. GDF11/MSTN immunoprecipitation (IP)  

Previous analyses have shown that MSTN and, in particular, GDF11 are present at very low 

concentration in human serum (Schafer et al., 2016). We performed IP of GDF11 and MSTN 

from serum of WT mice before mass spectrometry analysis. This step is not crucial for the 

method itself, but it is necessary if GDF11 and MSTN concentration are lower than 

detection limits. Indeed, in paragraph 4.5.1 after AAV infection, GDF11 and MSTN enriched 

serum samples do not required IP step and they were directly measured as described in 

the following chapter. 

Briefly, antibody biotinylation of anti-GDF11 antibody (RnD, code MAB19581) was 

performed following manufacturer’s instructions of “Biotin Conjugation Kit (Fast, Type B)” 

(Abcam). Biotinylation process does not affect its binding capacity (Fig. 8A). IP was carried 

out starting from 50 µL of C57Bl/6 WT serum. Samples (S1) were incubated with 5 µg of 

selected biotinylated antibody ON, at 4°C on a tube roller. On the following day, 

“Streptavidin Mag Sepharose” beads (GE Healthcare) were equilibrated and added (40 µL) 

to each serum sample for an additional 20 min at 4°C on a tube roller. Immunoprecipitated 

serum (S2) was collected for subsequent WB analysis. Recovered beads were gently 

washed with ice-cold PBS (400 µL) for three times and washing solutions were collected for 

further analysis (W1, W2, W3). The elution was performed twice with 10% SDS solution (25 

µL) at 95°C for 3 min (E1, E2) or twice with 20 µL of 0.1M glycine followed by neutralization 

with 40 µL of ammonium bicarbonate buffer, in case of WB or LC-MS/MS analysis 
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respectively. Eluted beads (B1) were recovered and loaded as control for complete elution 

(Fig. 8B-C). 

 

Figure 8: Immunoprecipitation of GDF11 and MSTN from mouse serum.  
(A) Comparison of GDF11/MSTN detection specificity and threshold of commercial antibodies. 
Binding capacity of unlabeled and biotinylated antibodies were compared. GDF11 and MSTN 
recombinant protein are marked as “G” or “M”, respectively.  
(B, C) IP from mouse serum: both anti-GDF11 (B) and anti-MSTN (C) were able to precipitate GDF11 
and MSTN from serum. Lanes legend is described in paragraph 2.10.2.1. 

 

2.10.2.2.  Trypsin digestion of C57Bl/6 WT serum 

Serum digestion was performed starting from 5 μL of fresh C57Bl/6 WT serum, 28.7 μL of 

50 mM ammonium bicarbonate buffer and 20 μL of 10% sodium deoxycholate. Then 

solution was supplemented with 20 μL of 50 mM TCEP and incubated at 60°C for 30 min. 

Reduced proteins were alkylated using 20 μL of 100 mM iodoacetamide (IAA) at 37°C for 

30 min, followed by supplementation with 20 μL of 100 mM dithiothreitol (DTT) to quench 
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the unreacted IAA (37°C for 15 min). Trypsin (Promega, enzyme:substrate ratio of 1:10) 

digestion was performed at 37°C for 16h in agitation and blocked by addition of TFA to a 

final concentration of 1%. Serum peptide digestion was then vortexed and centrifuged at 

18000g for 5 min. Supernatant was recovered and collected in LowBind tubes (Eppendorf) 

and desalted using C18 solid phase extraction cartridges (SPEC, 4 mg, Varian) following 

manufacturer’s instructions. Eluted digestions were lyophilized using the SpeedVac system 

and resolubilized in 0.1% TFA. 

 

2.10.2.3. Generation of calibration curves with SIL peptides in digested serum 

In order to perform GDF11 and MSTN quantification from serum a ten-point response 

calibration curve was generated using three distinct unique isotope labeled peptides. More 

in detail, GDF11 or MSTN specific SIL-peptides are enlisted in table 12 and represented in 

fig. 9 on their respective ligand aminoacidic sequence. 

Protein Peptide Precursor Charge Isotope Label Type Precursor Mz 

GDF11 
IPGMVVDR 2 Light 443.7444 

IPGMVVDR 2 Heavy 448.7485 

MSTN 

DFGLDCDEHSTESR 3 light 556.5583 

DFGLDCDEHSTESR 3 heavy 559.8943 

IPAMVVDR 2 light 450.7522 

IPAMVVDR 2 heavy 455.7563 

Table 12: Peptides and precursor selected for the assay. 

 

 
Figure 9: Schematic representation of GDF11 and MSTN aminoacid sequences and of the selected 
peptides used in the assay.  
Only mature protein sequence is represented. Amino acid difference between the two ligands are 
represented in bold. Selected peptides are highlighted in blue (GDF11) or in red (MSTN). 
 

Briefly, serial dilutions of each SIL-peptides were performed in a digested serum matrix 

prepared as described in 2.10.2.2 paragraph. Multipoint calibration curve had 
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concentration of SIL peptides starting from 3.33 nM to 1 pM, diluted progressively in the 

same serum matrix (200 ng each sample). Peptide samples were then separated on an 

Ultimate 3000 Rapid Separation Liquid Chromatography (RSLC) nano system (Thermo 

Scientific) with ProFlow flow control device coupled to a Q Exactiv HF mass spectrometer 

(Thermo Scientific). Data obtained from this calibration curves allowed to identify the 

optimal amount of SIL-peptide (2 fmol corresponding to 0.13 nM of each peptide) to add 

in each serum sample for a reliable GDF11/MSTN quantification.  

In order to further optimize the method and assess its sensitivity, new calibration curves 

with lower SIL peptides concentration and with both light and heavy SIL peptides are going 

to be performed and evaluated.  

 

2.10.2.4. (PRM) LC-MS/MS of GDF11/MSTN IP samples from C57Bl/6 WT serum 

For each IP eluate, 30 µL of sample were reduced using 10 mM DTT at 56°C for 30 min, 

alkylated using 20 of 30 mM iodoacetamide (IAA) at 37°C for 30 min followed by ethanol 

precipitation (1:10 ratio using ice cold ethanol). After 60 min at -80°C, samples were thawed 

during centrifugation (4°C, 20000 g for 40 min) and supernatant discarded. Pellet was 

resuspended in 30 µL of digestion buffer (0.2 M guanidinium chloride, 50 nM ammonium 

bicarbonate buffer, 2 mM CaCl2 and 100 ng of trypsin) and incubated at 37°C for 16h in 

agitation and blocked by addition of TFA to a final concentration of 1%. Samples were 

spiked with 2 fmol of each SIL peptide and analyzed using an Ultimate 3000 RSLC system 

coupled to a Q Exactive HF orbitrap (Thermo Scientific). Raw data were analyzed with 

Proteome Discoverer 2.2 (Thermo Scientific) using Mascot 2.6 as search algorithms. MS/MS 

spectra were searched against murine UniProt database with a fragmented ion tolerance 

of 0.02 Da. 

 

2.10.2.5. (PRM) LC-MS/MS of GDF11/MSTN serum samples from AAV treated animals 

Animal with supraphysiological levels of GDF11 or MSTN do not required an 

immunoprecipitation step to increase their ligand concentration in the serum samples. 

Indeed, serum sample of animals described in paragraph 4.5 were digested and 

resuspended as described in paragraph 2.10.2.2. After resuspension, samples were spiked 

with 2 fmol of SIL peptides and quantified as described in the previous paragraph. 
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2.11. Statistical analysis 

All the results are expressed as mean ± standard deviation. Student’s T-test, one-way 

ANOVA or two-way ANOVA tests were calculated using GraphPad Prism 6 (GraphPad 

Software, La Jolla California USA). Student’s T-test was used to compare two groups, one-

way ANOVA followed by Dunett’s multiple comparison was used to compare multiple 

sample groups with one control, two-way ANOVA was used to compare multiple 

measurements of distinct sample groups. Statistical significance against control treatment 

was highlighted with “*” symbols as listed in table 13. EC50 and IC50 values were calculated 

using nonlinear regression curve with variable slope (four-parameter) in GraphPad  

Prism 6. 

Statistical significance Symbol 

P > 0.05 n.s. 

P ≤ 0.05 * 

P ≤ 0.01 ** 

P ≤ 0.001 *** 

P ≤ 0.0001 **** 

Table 13: Schematic representation of statistical significance thresholds and their respective 
symbols. 
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3. AIMS OF THE STUDY 

GDF11 and MSTN share 90% structural homology and receptor use, however, overlapping 

and unique effects are still unclear, limiting their use as pharmacologic targets. Indeed, 

GDF11 has shown a more potent effect in reversing cardiac hypertrophy when compared 

to MSTN. 

 

Aim 1. To test the hypothesis that GDF11 and MSTN are redundant in activating SMAD2/3 

in cardiomyocytes and the differential effect can be explained by differences in potency. 

In this part of the thesis we will produce recombinant proteins, test their bioactivity and 

perform in vitro experiments by selectively knocking out type I TGF-β receptors in 

cardiomyocytes.  

 

Aim 2. To test the hypothesis that cardiac specific increase of GDF11 and MSTN levels using 

an AAV vector can reverse pathological cardiac hypertrophy in vivo without systemic 

adverse effect. 

In this part of the thesis we will perform in vivo studies to evaluate the effect of targeting 

specifically cardiomyocytes by AAV vectors. We will also evaluate the dose-dependent 

effect of both GDF11 and MSTN in reducing cardiac mass in physiological conditions and in 

a model of pathological cardiac hypertrophy. Finally, we will evaluate if reversal of 

pathological cardiac hypertrophy translates in improvement of diastolic function. 
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4. RESULTS 

4.1. Regulation of GDF11/MSTN production and signaling  

In order to understand the differences between GDF11 and MSTN signaling in 

cardiomyocytes, we decided to investigate how these two proteins activate their canonical 

pathway using several immortalized cell lines. Activation of canonical TGF-β pathway 

involves nuclear assembly of different proteins: SMAD2, SMAD3 and SMAD4, that form a 

heterotrimeric complex able to regulate gene expression (Yang et al., 2015). In order to 

study this pathway, we took advantage of the CAGA12 luciferase reporter system 

developed by Dennler and colleagues (Dennler et al., 1998), that is sensitive to SMAD3/4 

activation. Luciferase measurements allowed us to quantify GDF11 and MSTN bioactivity, 

potency and how their signaling is modulated by respective prodomains.  

 

4.1.1. GDF11/MSTN transfected HEK-293T conditioned media do not 

increase SMAD3/4 signaling 

GDF11 and MSTN are both secreted proteins. Our first approach to study their properties 

was obtaining conditioned media from transiently transfected HEK-293T cells. HEK-293T 

were transfected using standard calcium phosphate method and, after 24 hours, cells were 

placed in serum free medium for 48 hours. Then, conditioned medium was harvested for 

bioactivity experiments. 

In parallel, a second set of experiments using HEK-293T co-transfected with CAGA12 

reporter plasmid and renilla luciferase plasmid were used to quantify GDF11 and MSTN 

conditioned media bioactivity. As shown in fig. 10A, both GDF11 and MSTN conditioned 

media did not produce any significant change in luciferase activity when compared to 

control medium. 

Interestingly, the concentration of GDF11 mature ligand in conditioned medium, detected 

by western blot (Fig. 10B), was estimated in the range of 1-5 nM. This concentration would 

have been sufficient to induce the activation of CAGA12 reporter when compared to a 

parallel CAGA12 assay obtained using GDF11 recombinant protein (Fig. 10C, EC50: 0.11 

nM). We speculate that the presence of the prodomain was preventing GDF11 and MSTN 

activity. 
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Figure 10: Biological activity of GDF11 is controlled by post-translational processing in HEK-293T 
conditioned media.  
(A) CAGA12 luciferase assay does not reveal significant difference among GDF11/MSTN conditioned 

media when compared to GFP conditioned media. A C-terminus, 3 kDa Myc-Flag-tag, above 

mentioned as “Tag” was used in the initial part of the studies aiming to discriminate the transfected 

GDF11/MSTN proteins from the endogenous produced ligands. Activity assays revealed that Tag 

protein was inactivating both GDF11 and MSTN and thus this strategy was no longer pursued. 

(B) WB analysis showed that HEK-293T conditioned media used in CAGA12 assay contains GDF11 

and MSTN mature proteins. Estimated rGDF11 concentration is between is 1-5 nM. Abcam 

GDF11/MSTN (ab124721) was used as primary antibody. GDF11 recombinant protein (Ctr, 5 ng) 

were added as reference for quantification.  
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(C) CAGA12 luciferase assay performed with commercial recombinant protein. EC50: 0.11nM.  

(D) CAGA12 luciferase assay performed with different amounts of recombinant GDF11 added to 

fresh medium (Ctr), GFP conditioned medium or GDF11 conditioned medium. GDF11 conditioned 

medium spiked with 411 pM GDF11 showed a lower SMAD3/4 activation when compared to fresh 

medium of GFP conditioned medium.  

(E) Co-transfection of GDF11 and BMP1 (represented by letter “B”) with or without FURIN 

(represented by letter “F”) increased SMAD3/4 activation in GDF11 conditioned medium. 

Data are representative of two separate experiments with n=2/3 biological replicates. Data shown 

as mean  SD. 

 

4.1.2. GDF11 conditioned medium but not GFP conditioned medium can 

blunt GDF11 signaling 

In order to test the hypothesis that HEK-293T conditioned media contains some 

unidentified factor that could inhibit GDF11 signaling I performed an additional experiment 

where I spiked the following media with commercial recombinant mature GDF11:  

control medium (Optimem), GFP-transfected conditioned medium and to GDF11-

transfected conditioned medium (Fig. 10D). The results of this experiments show that 

conditioned medium from GDF11 transfected cells was significantly decreasing the activity 

of exogenously added GDF11 when compared to control medium and GFP medium. We 

confirmed that the presence of the prodomain was responsible for the inhibitory effect 

observed. Indeed, co-transfection with BMP1, the protease that by cleaving the prodomain 

releases the mature protein of GDF11 from the inactive latent complex, was sufficient to 

significantly increase signaling (Fig. 10E). Because of the issues observed with conditioned 

medium we changed our strategy and moved to produce and purify GDF11 and MSTN using 

a eukaryotic expression system (paragraph 4.1.4). When possible, commercial recombinant 

GDF11 and MSTN proteins were used in parallel to furtherly confirm our findings. 

 

4.1.3. Development of stable SMAD3/4 luciferase reporter cell lines 

In order to overcome the variability that derives from transient reporter plasmid 

transfections, we generated stable CAGA12 reporter cell lines using HEK-293T, NIH/3T3 and 

A204 cells. All these three stable cell lines were obtained as described in the paragraph 

2.5.5 and they were used in the following experiments. As shown in fig. 11A-C, GDF11 was 

able to activate the reporter in a dose dependent manner with a EC50 that was 0.39 nM, 

0.52 nM, 0.41 nM, for NIH/3T3, A204 and HEK-293T respectively. We also tested the activity 

of MSTN and a reliable EC50 was obtained only when using HEK-293T cells (Fig. 11C, 2.71 
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nM). Indeed, the range of MSTN used was not sufficient to reach the plateau phase when 

using NIH/3T3 and A204. As expected, GDF11 is more potent than MSTN in activating the 

SMAD3/4 signaling. As previously reported, A204-CAGA12 cells did not show luciferase 

activity in response to rTGF-β1 ligand at the concentration tested (Fig. 12) because of the 

lack of TGFβRII (Zhu et al., 2004). This feature makes this reporter cell line particularly 

useful to study GDF11/MSTN signaling removing the possible confounding effects induced 

by the more potent TGF-β1 ligand. 

 
Figure 11: Comparison of GDF11/MSTN dose response curves in NIH/3T3, A204 and HEK-293T 
CAGA12 stable clones. 
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(A, B, C) In all three stable reporter cell lines recombinant GDF11 was more potent than MSTN with 
HEK-293T clone presenting the higher sensitivity to MSTN signaling. 
Data are representative of two separate experiments with n=2/3 biological replicates. Data shown 

as mean  SD. 

  
Figure 12: A204 CAGA12 reporter cells do not respond to TGF-β1.  
A204, as expected, is the only cell line that is unresponsive to TGF-β1 stimulation (2.73 pM). 
Data are representative of two separate experiments with n=2/3 biological replicates. Data shown 

as mean  SD. 
 

4.1.4. Development and optimization of recombinant protein production 

strategy 

Preliminary results using conditioned media and the CAGA12 assay showed that it is 

possible to produce bioactive proteins and to measure their biological activity. However, 

the intrinsic variability of the conditioned media obtained from transiently transfected cells 

was a critic point and was a hurdle to characterize GDF11 signaling and regulation in vitro. 

Moving our strategy towards an approach based on recombinant proteins allowed us to 

obtain more controlled and reproducible experimental condition together with a higher 

concentration and purity of the factors involved.  

 
4.1.4.1. GDF11 and MSTN proteins are not produced at the same levels in vitro 

The analysis by western blot of conditioned medium shows that the amount of MSTN was 

consistently higher when compared to GDF11. The average difference in protein 

concentration was about 5-folds, a considerable difference considering their high 

homology and that they share the same experimental conditions (Fig.13A-B, lanes 1 and 2). 

GDF11 and MSTN share 90% of homology in their mature protein while only 52% in their 

prodomain (Walker et al., 2016). We hypothesized that this was sufficient to explain the 

differences in protein production and to test our hypothesis we developed chimeras of 

both GDF11 and MSTN (Fig. 13C). We also speculated that codon optimization may be 
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relevant in increasing GDF11 protein production (Fig. 13D-E). This strategy allowed us to 

understand biology of these two homologous proteins and to optimize recombinant 

protein production. 

 

4.1.4.2. MSTN prodomain significantly improves GDF11 protein synthesis  

To test our hypothesis, we generated two different constructs: GDF11-chimera  

(GDF11-Chim) and MSTN chimera (MSTN-Chim), by swapping the prodomains. The former 

is formed indeed by MSTN prodomain and GDF11 mature protein, the latter has GDF11 

prodomain and MSTN mature protein (Fig. 13C). 

The two wild type constructs and the two chimeras were tested in HEK-293T. Cells were 

co-transfected with a Furin expressing plasmid to improve intracellular processing. After 

transfection, cells were switched to serum free medium and after 48h conditioned media 

was harvested and used for western blot quantification. Different volumes of conditioned 

media were used in each well in order to improve comparison between samples. 

As shown in fig. 13A-B switch of prodomains is associated to strong changes in protein 

production of both GDF11 and MSTN. While MSTN prodomain increases GDF11 production 

about 7 folds when compared to WT GDF11, GDF11 prodomain produced a decrease in 

MSTN production of approximately 5 folds when compared to WT MSTN. 

 

4.1.4.3. Development of stable clones for protein productions 
The complexity of TGF-β family members biology, including post-translational processing 

and promiscuity of ligands, receptors and inhibitors, is a major limitation for the use of 

conditioned media. Thus, our strategy moved and focused on production and purification 

of recombinant proteins. Our initial strategy was based on transient transfection of the 

construct of interest in HEK-293T. However, in order to scale up protein production, we 

moved to selecting high-expressing stable clones using CHO cells. Both GDF11 and MSTN 

proteins are characterized by two biologically active parts: the inhibitory prodomain and 

the active mature protein. While the recombinant prodomain can be successfully produced 

in eukaryotic systems, the mature protein requires the presence of the prodomain for 

efficient synthesis and proper folding (Walker et al., 2016). 

Our approach for recombinant expression of prodomains is shown in fig. 14 and yielded 

standard, single, stable transfected clones. In the case of recombinant mature proteins, a 
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full-length propeptide-expressing vector was required. Furthermore, in order to enhance 

GDF11/MSTN post-translational processing, that requires the presence of furin activity, we 

first developed a Furin expressing stable CHO clone (Fig. 14). This clone was used 

afterwards to develop stable clones transfected with using the full-length propeptide-

expressing vectors, named double stable transfected clones.  
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Figure 13: GDF11 and MSTN protein production is regulated by prodomain sequence. 
(A) Different volumes of conditioned media were loaded. Abcam GDF11/MSTN (ab124721) was used 
as primary antibody. GDF11 prodomain is associated with poor protein production of GDF11 mature 
protein, however efficient protein production can be recovered if GDF11 prodomain is substituted 
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with MSTN prodomain. In line with these observation, MSTN protein production was decreased by 
GDF11 prodomain.  
(B) Western blot quantification. Bands intensity was measured using ImageJ software.  
(C) Schematic representation of GDF11 and MSTN chimera.  
(D) Same volumes of GDF11-WT and GDF11-Opt HEK-293T conditioned media were compared side 
by side. GDF11 mature protein production was enhanced by codon optimization process but 
surprisingly, codon optimization was less effective than MSTN prodomain chimera.  
When necessary different amounts of GDF11 recombinant protein (Ctr, ng) were added as reference 
for quantification. Data are representative of two separate experiments with n=2/3 biological 

replicates. Data shown as mean  SD.  
 

 

Figure 14: Schematic representation of protein production strategy.  
Single transgene expressing clones were used for prodomain production. In case of full-length 
protein production, double transgene expressing clones were used to increase Furin post-
translational processing. 
 

• Single stable transfected clones 

Single stable transfected clones were developed to produce proteins that do not 

require further post-translational processing. This was the case of GDF11 and MSTN 

prodomains.  Stable transfected clones were generated using selection antibiotics, 

isolated in single clones using the limiting dilution approach and screened for their 
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protein production levels by western blot (Fig. 15A-B). The clone identified as the 

highest producer was isolated and expanded for future application and in order to 

further optimize clone-specific protein production protocols. The selection of the 

highest expressor was performed by evaluating media harvesting timing and sodium 

butyrate (NaB) media supplementation (Palermo et al., 1991) (Fig. 15C-D). 

 

Figure 15: Single stable clone selection and protein production optimization.  
(A, B) Screening for high expressing clones for GDF11 and MSTN prodomain, respectively. When 
available, 10 ng of recombinant protein was used as positive control (Ctr).  
(C, D) Comparison of protein production methods between CHO selected clones. NaB 
supplementation was effective to increase MSTN prodomain production but not GDF11 prodomain. 
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• Double stable transfected clones 

As mentioned before both GDF11 and MSTN proteins needed Furin processing to 

improve protein maturation. To do so, a Furin stable expressing clone was developed, 

and clones were screened for their GDF11-Chim cleavage activity (Fig. 16). Once 

identified the most efficient Furin expressing clone, it was used for subsequent 

double stable clones development of GDF11-WT, MSTN and GDF11-Chim transgenes. 

Similar as performed in the previous paragraph, the highest producing clones were 

identified, and their protein production was optimized for harvesting timing and NaB 

supplementation (Fig. 17). 

 

Figure 16: Furin stably expressing clone selection.  
Stable clones were indirectly screened for Furin expression by evaluating their post-translational 
processing. Clone 6 was selected as the most efficient in processing GDF11 and used for 
development of double stable clones. GDF11 recombinant protein (5 ng) was used as control (Ctr). 
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Figure 17: Double stable clone selection and protein production optimization. 
(A, B, C) Screening for high expressors clones for GDF11-WT, MSTN AND GDF11-Chim, respectively.  
(D) Comparison of protein production methods between CHO selected clones. NaB supplementation 
(4 nM) was effective in increasing MSTN and GDF11-Chim but not WT GDF11. 
GDF11 recombinant protein (1 or 5 ng) was used as quantification control (Ctr). 
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4.1.5. Recombinant His6-tagged proteins can be recovered from culture 

media using IMAC  

One of the most common and simple strategy for protein purification consists of cloning a 

purification tag at the carboxi- or amino-terminus of the protein of interest. Our 

purification strategy employed a His6 tag at the amino-terminus of both GDF11 and MSTN 

prodomains and full-length constructs. CHO stably expressing prodomains were harvested 

at 48/72h, centrifuged, filtered and loaded on a nickel purification column as described in 

paragraph 2.7.2. Production and purification efficiency were evaluated comparing the 

amount of recombinant protein obtained to the volume of the conditioned medium used. 

In this analysis, GDF11 prodomain production and purification resulted more efficient than 

MSTN prodomain with a yield of 70/80 μg/L, vs. 40/50 μg/L, respectively (Fig. 18). 

 

4.1.6. GDF11 and MSTN prodomains inhibitory activity is not limited to their 

respective ligands 

In order to evaluate the biological activity of the recombinant prodomains we tested their 

ability to inhibit GDF11 and MSTN activity using the A204-CAGA12 reporter cell line. It has 

been shown that GDF11 and MSTN prodomains can inhibit their respective ligands activity 

by forming the inactive latent complex (Ge et al., 2005; Lee and McPherron, 2001). Our 

hypothesis was to confirm that prodomains inhibiting activity is not confined to their 

respective ligands, but, due to their high level of ligand homology, can be extended also to 

their opposite ligands. As shown in fig. 19A-B each recombinant prodomain is biologically 

active and able to inhibit both recombinant GDF11 and recombinant MSTN mature ligands. 

Interestingly, GDF11 prodomain shows higher inhibitory activity for both GDF11 and MSTN 

signaling when compared to MSTN prodomain. Calculated IC50 showed a difference of 

approximately 10-fold between GDF11 prodomain and MSTN prodomain in inhibiting both 

GDF11 and MSTN ligands. Commercial recombinant MSTN prodomain was used as a 

control showing an activity comparable to recombinant MSTN prodomain purified in our 

laboratory. Commercial recombinant GDF11 prodomain is not available and thus we could 

not perform this additional control.  
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Figure 18: GDF11 and MSTN prodomains production and purification.  
(A, B) IMAC chromatogram during elution phase of, respectively, GDF11 and MSTN prodomains. 
(C, D) Western blot of eluted fractions obtained during conditioned media purification. Both  
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GDF11 (C) and MSTN (D) prodomains were detected by the same antibody recognizing His6 tag 
(anti-His6, ab18184). Fractions showing the highest purity and concentration of recombinant 
protein were combined and concentrated. 
(E, F) Concentrated fractions with GDF11 (E) and MSTN (F) prodomains were tested for 
quantification and purity by Coomassie staining. Arrows on the side of the gels indicate GDF11 (E) 
and MSTN (F) prodomains with an expected molecular weight of 31.3 kDa and 28.7 kDa, 
respectively. Fraction 4 for GDF11 prodomain and fraction 5 for MSTN prodomain were used for 
bioactivity assays. Figure F was digitally cropped to remove 9 lanes of an unrelated experiment 
without altering the migration pattern. 
 

 

Figure 19: GDF11 prodomain is more potent than MSTN prodomain in inhibit both GDF11 and 
MSTN ligands.  
(A, B) A204-CAGA12 reporter cell line was placed in serum free medium for 8h, then the medium 
was changed adding serum free medium containing rGDF11 (1 nM) or rMSTN (10 nM). For each 
ligand, it was also added a separate 8-point dilution curve (1/3 serial dilutions, starting from 90 nM 
for MSTN prodomain or 30 nM for GDF11 prodomain) and incubated for 14h. Subsequently, 
luciferase activity was measured and GDF11 prodomain showed a higher inhibitory potency 
compared to MSTN prodomain. Commercial MSTN prodomain inhibitory activity was comparable 
with our purification of MSTN prodomain furtherly demonstrating that our method maintained 
prodomain biological activity.  
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Data are representative of two separate experiments with n=2/3 biological replicates. Data shown 

as mean  SD. 
 

4.1.7. Simultaneous purification of GDF11/MSTN prodomain and mature 

ligand can be achieved exploiting the inactive latent complex formation 

The presence of prodomains is required for proper folding and maturation of mature 

proteins for both GDF11 and MSTN (Walker et al., 2016), forming a non-covalently bound 

latent complex. Thus, our strategy was to exploit the presence of the latent complex to 

copurify both prodomain and mature protein through the N-terminus His6 tag. Of note, we 

performed a small experiment to evaluate the efficiency of a different approach by 

replacing the His6 tag with a Biotin Acceptor Peptide sequence (BAP) tag, capable of the 

extremely stable biotin-streptavidin binding (Kimple et al., 2013; Predonzani et al., 2008). 

The data confirmed the stability of the latent complex even in mildly denaturing conditions 

proving feasibility of latent complex purification (Fig. 20). However, because of difficulties 

in removing the unbounded biotin from large volumes of medium, the scaling up process 

was pursued using a His6 tag approach.  

 

Figure 20: Latent inactive latent complex purification.  
Conditioned media containing biotinylated GDF11 and GDF11-Chim were collected after 48h and 
processed to remove not-bound biotin (lane 1). Streptavidin beads were added to the processed 
culture media and incubated for 2h at 4°C. Supernatant was removed (lane 2) and beads were 
incubated in mild denaturing condition. Beads were incubated for 2h in PBS, pH 2.7 or in 1% NP40 
and beads (respectively lanes 3, 4, 5) were separated from supernatant (lanes 6, 7, 8), showing that 
GDF11 mature protein was not released. Black arrows indicate ink-marker signs corresponding to 
49 kDa and 38 kDa of SeeBlue Plus2 Pre-stained Protein Standard ladder.Data are representative of 
two separate experiments with n=2/3 biological replicates. GDF11 recombinant protein (5 ng) was 

used as control (Ctr). Data shown as mean  SD. 
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4.1.7.1. N-terminus His6-tag latent complex purification from transiently transfected  

HEK-293T media 
In order to produce and purify GDF11 and MSTN mature protein, HEK-293T were 

transiently transfected with GDF11-Chim or MSTN. WT GDF11 construct was not used 

because of its in vitro low protein production efficiency (Fig. 13A-B). We have previously 

shown that MSTN prodomain can efficiently bind mature GDF11 thus we hypothesized that 

using the GDF11 chimera construct can be a suitable approach (Fig. 20). 48h/72h post 

transfection medium was harvested, processed and loaded on a nickel purification column 

as described in paragraph 2.7.2. Both GDF11-Chim and MSTN purification where subjected 

to identical purification steps and they are shown side by side (Fig. 21). Fractions containing 

the latent complex showing the highest purity and protein concentration were pulled 

together, concentrated through centrifugation using size exclusion columns and 

subsequently quantified by Coomassie staining (Fig. 21C). Since our purification strategy 

was targeting the entire inactive latent complex, both mature protein and His6-tagged 

prodomain are visible. Quantification of mature ligands revealed that, for both GDF11-

Chim and MSTN, final recombinant protein yield was in a range of 70-90 μg per liter of 

conditioned medium.  

In order to separate the inactive latent complex components, a further purification step 

requiring HPLC was performed and described in the following paragraph. 
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Figure 21: GDF11-Chim and MSTN inactive latent complex purification.  
(A) IMAC chromatogram during elution phase of GDF11-Chim and MSTN full length proteins, 
respectively. Fractions collected during elution are represented with distinct brackets and named 
progressively (“E1-6”). All collected fractions were screened for the protein of interest using WB. 
(B) Both GDF11 and MSTN mature proteins were detected by the same antibody recognizing both 
GDF11 and MSTN ligands. GDF11’s “E3” and MSTN’s “E2” fractions appeared to have the highest 
amount of purified recombinant protein among all the collected samples. Further analysis showed 
a low presence of unspecific proteins in MSTN’s “E3” sample. For this reason, “E3” fraction was 
pooled with MSTN’s “E2” sample and processed as unique sample called “Elution 2+3”. 
(C) “Elution 3”, GDF11 and “Elution “2+3”, MSTN, analyzed by Coomassie staining, contain relatively 
pure prodomain (~28 kDa) and mature protein (~12.5 kDa). Arrows on the side of the gels indicate 
the two proteins of the inactive latent complex. Prodomain is indicated by a black arrow and has an 
expected molecular weight of 28.7 kDa. GDF11/MSTN mature forms are both indicated by a red 
arrow and both have an expected molecular weight of 12.4 kDa. In both gels is possible to observe 
a high amount of unspecific proteins present in “Elution 1” indicating that the purification protocol 
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can be still significantly improved. Further eluting steps improved purity and thus “Elution 3” and 
“Elution 2+3” of respectively, GDF11 and MSTN inactive latent complex were subsequent purified as 
described in the following paragraph.Different amounts of recombinant GDF11 (Ctr, ng), BSA and/or 
Cytochrome c proteins were used as reference for quantification. 
 

4.1.7.2. Mature protein and prodomain separation using reverse-phase HPLC 
In order to isolate the two peptides forming the inactive latent complex, we took advantage 

of a previously published method used to purify MSTN ligand (Lee and McPherron, 2001). 

This method is based on reverse-phase C4 HPLC column that elute the proteins with an 

ACN gradient in 0.1% TFA. Considering the high level of homology between GDF11 and 

MSTN we tested if this method could be adapted also for GDF11 ligand purification.  

IMAC fractions containing GDF11-Chim (“E3”) or MSTN (“E2+E3”) were loaded in a reverse-

phase C4 HPLC column and samples were separated as described in paragraph 2.7.3.  

UV absorption at 280 nm was constantly measured during the separation process and it 

was used to identify and collect protein peaks eluting from the column. In fig. 22A, it is 

possible to observe a side to side comparison between GDF11-Chim and MSTN HPLC 

chromatogram. Fraction samples were lyophilized using a Speedvac apparatus and then 

resuspended in acidic 4mM HCl PBS to improve solubilization. Coomassie staining after 

HPLC fractionation (Fig. 22B) showed two or three different protein peaks that were 

respectively mature protein, BSA (if previously added to improve stability) and prodomain 

in both GDF11-Chim and MSTN purified samples. Retention time of the mature protein was 

shorter (29-30 minutes) than prodomain (30-32 minutes) allowing proper separation. 

Coomassie bands were also used to evaluate the amounts of purified peptides (mature 

protein and prodomain) obtained after HPLC separation and identify their recovery ratio 

comparing to the total sample input loaded into the C4 column. Known amounts of BSA 

and cytochrome c that have a similar MW to prodomain and mature protein respectively, 

were used to determine a more precise concentration of the proteins and reduce the bias 

due to size differences. Quantification results showed that both protein samples have quite 

low recovery rate that is approximately 5-15% of the initial input, with GDF11-Chim 

performing more efficiently than MSTN (Fig. 22B). 
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Figure 22: Reverse phase HPLC separates GDF11-Chim and MSTN prodomain and mature protein. 
(A) Detail of HPLC chromatogram showing eluted fractions (“E#”).  
(B) Eluted fractions were lyophilized and protein quantification was performed by Coomassie 
staining. Arrows on the side of the gels indicate the prodomain (black arrow) and mature protein 
(red arrow) separated from each inactive latent complex. “Elution 1” and “Elution 4” containing 
GDF11 and MSTN mature proteins, respectively, were used in the bioactivity assay described in the 
following paragraph. 
Different amounts of recombinant BSA and/or Cytochrome c proteins were used as reference for 
quantification. 
 

4.1.7.3. Both GDF11 and MSTN separated by HPLC are biologically active 
In order to test whether GDF11 or MSTN mature protein maintained their biological activity 

after HPLC purification, both peptides were tested using A204-CAGA12 reporter cell line, 
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as described before in paragraph 2.6.1. Commercial rGDF11 and rMSTN were used as a 

control in a range from 2 pM to 100 nM (Fig. 23A). 

Our data indicate that both GDF11 and MSTN are biologically active, with GDF11 showing 

a EC50 of 1.42 nM, comparable to commercial rGDF11 (1.03 nM). Unfortunately, the lower 

yield of MSTN and its intrinsic lower potency did not allow to calculate the EC50 (Fig. 23B).  

 

Figure 23: GDF11 and MSTN mature proteins purified by HPLC are biologically active. 
(A) Commercial GDF11 and MSTN proteins were used as control.  
(B) Biological activity of purified GDF11 was not statistically different from bioactivity of 
commercially recombinant protein. MSTN low yield did not allow a full dose-response curve.  
 

4.1.8. Specific mutations in GDF11 and MSTN prodomain can modulate 

protein bioactivity 

Recent data have shown that specific mutations on hydrophobic residues of the α-1 helix 

prodomain of both human GDF11 and MSTN can lead to weak latent complex formation 

and higher ligand potency (Fig. 24A), independently from BMP1/TLD metalloproteinase 

processing (Walker et al., 2018). On the other hand, mutations that disrupt BMP1/TLD 

recognition site reduce GDF11 and MSTN potency. However, it is not known whether these 

findings can be translated in a murine system. This is particularly important considering 
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that this approach may facilitate in vivo delivery using AAV vectors (paragraph 4.4.1) by 

modulating local availability without affecting BMP1 maturation. For this purpose, we 

designed two different constructs introducing the L74E and the I57E mutations in murine 

codon optimized GDF11 and in MSTN ORFs respectively. We also introduced D120A and 

D100A mutations in murine GDF11 and MSTN to produce BMP1 protease resistant 

mutants. In order to improve in vitro HEK-293T-CAGA12 reporter cell line were co-

transfected with Furin and each of the six different constructs and luciferase activity was 

measured. As shown in fig. 24B, mutations that reduce the affinity of the latent complex 

(L74E and I57E), respectively of GDF11-Opt and MSTN, can significantly increase ligand 

activity approximately by a factor 10 when compared to WT protein. Mutations that disrupt 

BMP1 cleavage site did not significantly reduce bioactivity of both GDF11 and MSTN, 

possibly because of the low BMP1 processing activity in this an in vitro assay.  

 
Figure 24: Single mutations in GDF11 and MSTN prodomain can control biological activity of 
mature proteins.  
(A) Graphical representation of Mus musculus conserved residues involved in bioactivity regulation 
of GDF11 and MSTN proteins. Residues mutation on hydrophobic residues (highlighted in bold) of 
α1-helix are associated with increased biological activity of GDF11 and MSTN even without BMP1 
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cleavage. On the other hand, BMP1 cleavage site can be eliminated by D to A mutation in proximity 
of α2-helix conserved residues. Residues marked in yellow were tested in this thesis. Figure adapted 
from (Walker et al., 2018).  
(B) CAGA12 assay using GDF11 and MSTN mutated proteins. Both L74E and I57E mutations on 
GDF11 and MSTN prodomains, respectively, were able to increase biological activity of mature 
proteins without BMP1 co-transfection. Lower, but not statistically significant activity was detected 
in BMP1-resistent mutants (D120A and D100A) but further experiments in different conditions are 
required to characterize their biological activity. 
Data are representative of two separate experiments with n=2 biological replicates. Data shown as 

mean  SD. 

 

4.2. GDF11/MSTN type I TGF-β receptors analysis in vitro and  

in vivo 

After producing and testing bioactivity of different constructs, as described in the previous 

section of this thesis, we next focused our attention on elucidating the mechanisms that 

are responsible for the effect of GDF11 and MSTN on cardiac and skeletal muscle tissue, in 

particular evaluating the role of differences in TGF-β receptors. 

  

4.2.1. TGF-β receptors mRNA and protein expression in cardiac and skeletal 

muscle tissue 

GDF11 and MSTN activate TGF-β/SMAD signaling pathway binding TGF-β type I and type II 

receptors, however displaying different relative affinity (Walker et al., 2017). In order to 

test our hypothesis that a differential representation of TGF-β type I receptors in cardiac 

and skeletal muscle tissue may contribute to tissue specificity of GDF11 and MSTN, we 

analyzed gene expression and protein levels of ALK4, ALK5 and ALK7.  

Both tissues, cardiac and skeletal muscle, showed a similar pattern of expression, with Alk4 

transcript most expressed, followed by Alk5 mRNA and lastly Alk7 (Fig. 25A). Comparing 

Alk receptors expression levels in cardiac muscle and skeletal muscle showed that, while 

Alk4 mRNA level are not statistically different, Alk5 expression levels in cardiac tissue are 

2-fold higher than in skeletal muscle and conversely, Alk7 expression levels are 4-fold lower 

when cardiac muscle is compared to skeletal muscle (Fig. 25B). However, RNA expression 

analysis does not properly match with receptors quantification obtained by WB. Indeed, 

ALK4 and ALK7 are significantly more abundant in cardiac tissue than in skeletal tissue, 

whereas ALK5 show a similar trend, but it is not statistically significant (Fig. 25C). 
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All together, these data showed that cardiac tissue has more ALK receptors than skeletal 

muscle. This tissue-dependent difference could lead to a distinct signaling activation in 

response to GDF11 or MSTN stimulation, however further experiments are required to 

understand the biological relevance of these findings.  
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Figure 25: Differential expression and protein levels of TGF-β type I receptors (ALK4, ALK5, ALK7) 
in cardiac and skeletal muscle tissue.  
(A) Intra-tissue comparison of relative mRNA expression levels among Alk4, Alk5 and Alk7.  
(B) RNA expression levels of different TGF-β type I receptors in cardiac and skeletal muscle tissue. 
(C) Western blot of cardiac and skeletal muscle tissue lysate. Quantification of band intensity was 
performed using Image Lab software. Discrepancies between gene expression and protein levels 
may be secondary to post-transcriptional processing and requires further evaluation.  
Data are representative of two separate experiments with n=2/3 biological replicates. Results are 
represented as fold change compared to Alk4 mRNA expression (A) or compared to cardiac  

tissue (B, C). Data shown as mean  SD. 
 

4.2.2. CRISPR/Cas9 strategy to induce single type I TGF-β receptor KO 

In order to investigate the role of type I TGF-β receptors in determining the differential 

effect of GDF11 and MSTN on cardiomyocytes we took advantage of CRISPR/Cas9 strategy 

to induce specific KO of target receptors.  We used a mouse atrial cardiomyocyte cell line 

with a stably integrated construct able to express Cas9 endonuclease under the control of 

a doxycycline promoter (HL-1-Cas9). This cell line was a kind gift of Dr. Hashim Ali from the 

Molecular Medicine Laboratory at ICGEB.  

In order to direct Cas9 cleavage two different sgRNAs were selected for each gene target. 

Selection was carried out using in silico prediction methods and aimed to gene KO as 

described in paragraph 2.4.9 and by Zhou et al. published work (Zhou et al., 2014). Indeed, 

double sgRNAs strategy should increase the amount of INDEL induced in each target thus 

leading to higher probability to obtain missense mutations and/or to disrupt the proper 

protein translation (Fig. 26A). 

 

4.2.2.1. Selected sgRNAs couples targeting specific type I TGF-β receptor can induce 

double strand DNA breaks (DSB) at both targeted sites 

In order to verify in silico design of sgRNAs, selected sgRNAs were tested for their ability to 

induce DSB at targeted sites in HL-1-Cas9 cells. Doxycycline-treated cells were transduced 

with AAV6 vectors carrying two sgRNAs for each receptor and subsequently, DNA was 

analyzed by PCR to evaluate the presence of cleavage. As shown in fig. 26B, amplicons 

showed that sgRNAs can produce specific deletion in the selected receptors. Expected size 

of PCR-amplicons is showed in fig. 26C.  
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Figure 26: sgRNAs can targeted specifically TGF-β type I receptors and induce DSB. 
(A) Schematic representation of CRISPR/Cas9 strategy for single gene KO and detection by PCR. For 
each targeted receptor two sgRNAs were simultaneously transfected/transduced into desired cells 
with a 1:1 ratio. Cas9 endonuclease activity results in DSB that are corrected by non-homologous 
end joining (NHEJ) mechanism. NHEJ repair process is prone to error by inserting or deleting a 
variable number of bases. Frameshift mutations likely generate non-functional proteins.  
(B) Detection of genomic deletion induced by simultaneous sgRNAs cleavage in HL-1-Cas9 cells.  
HL-1-Cas9 were transduced with AAV6 carrying 2 sgRNAs targeting Alk4, Alk5 or Alk7 receptors. 
Agarose gels images are showing specific cleavage of the receptor only where the corresponding 
sgRNAs were used.  
(C) Table of expected PCR-amplicon sizes for each receptor.  
 

4.2.2.2. HL-1-Cas9 are sensitive to both GDF11 and MSTN recombinant proteins 

In order to investigate HL-1-Cas9 sensibility to GDF11 and MSTN signaling a CAGA12 assay 

with recombinant proteins was performed. 
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As in previous analysis, GDF11 was more potent than MSTN in activate SMAD3/4 

phosphorylation (Fig. 27A), however treatments concentration used for MSTN ligand (up 

to 100 nM) was not enough to induce a clear plateau state in order to calculate its 

respective EC50. 

 

4.2.2.3. ALK7 KO reduces GDF11 but not MSTN signaling in vitro in HL-1-Cas9 cells 

In order to investigate the direct effect of type I TGF-β receptor KO in modulating SMAD3/4 

signaling induced by GDF11/MSTN in cardiac cells, we stimulated HL-1-Cas9 cells with 

GDF11 or MSTN upon transduction with sgRNAs to induce specific KO of Alk4, Alk5 or Alk7.  

We have performed preliminary experiments showing, as expected, a different sensitivity 

of HL-1 cells to stimulation with GDF11 and MSTN. 

In order to obtain similar levels of SMAD3/4 activation, different concentrations of GDF11 

(6 nM) and MSTN (30 nM) were tested using CAGA12 luciferase assay. As shown in fig. 27B, 

all three couples of sgRNAs (specific for Alk4, 5 and 7), were able to reduce SMAD3/4 

signaling after GDF11 stimulation significantly when compared to untreated controls. 

Down-regulation of ALK4 and ALK5 produced a similar and statistically significant reduction 

in luciferase activity in both GDF11 and MSTN treated HL-1-Cas9 cells, with ALK5 that 

appeared to be the most relevant receptor to induce SMAD3/4 signaling for both ligands. 

Interestingly, down regulation of ALK7 significantly reduced SMAD3/4 activation in GDF11 

treated cells but not upon MSTN stimulation. This difference in signal induced by Alk7 KO 

was suggesting the possibility that ALK7 receptor may be relevant for GDF11 activity in 

cardiac cells. Different combination of sgRNAs targeting simultaneously different ALK 

receptors were also tested, but no significative difference among these groups were 

detected. 
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Figure 27: GDF11 but not MSTN signalling is reduced in Alk7 KO cells.  

(A) A 12-point dose-response curve for both recombinant GDF11 and MSTN was performed using 

CAGA12 luciferase assay on HL-1-Cas9 cell line. As expected, GDF11 is more potent when compared 

to MSTN. In order to have similar SMAD3/4 activation level different amounts of GDF11 (6 nM) and 

MSTN (30 nM) were selected for subsequent investigations on HL-1-Cas9.  

(B) HL-1-Cas9 cells were transduced with control sgRNAs or distinct couples of sgRNAs targeting 

TGF-β type I receptors. Two days after transfection cells were transfected with CAGA12 reporter 

plasmid. On the following day, cells were placed in serum free medium for 8h, then stimulated with 

constant concentration of rGDF11 (6 nM), Mstn (30 nM) or control (PBS). After 14h luciferase activity 

was evaluated. Alk7 KO significantly reduced SMAD3/4 activation only after GDF11 stimulation. 

Data shown as mean  SD. 

 

4.2.2.4. Selected sgRNAs targeting specific type I TGF-β receptors can down-regulate  

type I TGF-β receptors in vivo at cardiac level 

To further confirm sgRNAs ability to KO specific receptor and set the basis for further 

investigation, an in vivo sgRNAs validation was performed. We used C57Bl/6-Myh6-Cas9-

2A-TdTomato mice, a transgenic strain expressing Cas9 endonuclease constitutively in 

mature cardiomyocytes (Carroll et al., 2016). Mice were randomized to receive a single 

administration of 1012 GC of an AAV9 vector carrying sgRNAs that specifically target Alk4, 

Alk5 or Alk7 genes and compared to the PBS injected group. No phenotypical alterations 

were observed over 35 days when the animals were sacrificed and heart harvested for 

further processing. As shown in fig. 28A-B, sgRNAs were able to induce a trend in reduction 

of total amount of ALK proteins in cardiac tissue when compared to control, however, only 

Alk4 sgRNA produced a significant effect. Considering the modest results of Alks KO, 

improvement in AAV delivery and new silencing methods are now under investigation. 
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Figure 28: Systemic delivery of sgRNAs in mice have modest effects on ALKs protein levels. 
Western blots of PBS treated mice (Control) and sgRNAs treated mice. Three distinct antibodies 
recognizing ALK4, ALK5 and ALK7 proteins were tested on tissue lysate of control and treated 
animals. Quantification of band intensity was performed using Image Lab software.  

Data are representative of one experiment with n=3 biological replicates. Data shown as mean  SD. 
 

4.3. Effect of GDF11 and MSTN in vivo 

As described in paragraph 4.1.5 and 4.1.7, we have been successful in producing 

recombinant GDF11 and MSTN and their prodomains.  Because of technical issues, in 

particular the low yield, we were not able to perform in vivo experiments. The optimization 

and scale up of recombinant protein production are ongoing but this goes beyond the 

scope of this thesis. ICGEB has a long-time experience in production of AAV vectors. We 

changed our strategy and took advantage of the ICGEB AAV facility to produce vectors and 

deliver GDF11 and MSTN in vivo in mice and study their role and their differences in 

regulating cardiac mass. We also evaluated the possibility of delivering GDF11 and MSTN 

to cardiomyocytes to reduce side effects of systemic administration. 
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4.4. AAV delivery of GDF11 and MSTN in vivo 

We have developed two different approaches targeting two different districts: the heart 

and the whole body. The former strategy, described in paragraph 4.4.1, was aiming to 

increase GDF11 and MSTN concentration directly and only at cardiac level, reducing 

possible systemic side effects and maximizing its activity on cardiac tissue. The latter 

strategy, described in paragraph 4.4.2, consisted in using the liver as a protein factory to 

increase serum concentration of GDF11 and MSTN using AAV vectors with a liver specific 

promoter. This second approach should grant a more intense and constant GDF11 

exposition, but at price of losing cardiac specificity.  

 

4.4.1. Cardiac-localized transduction with AAV9-CMV-GDF11 has no effect 

on cardiac mass 

Our first in vivo strategy consisted in increasing GDF11 concentration at cardiomyocytes 

level using an intraventricular injection of AAV9 expressing a Gdf11 WT and Gdf11-Chim 

ORF under control of a human cytomegalovirus (CMV) promoter. Localized heart 

transduction was obtained by taking advantage of AAV9 serotype tropism for the cardiac 

muscle (Zacchigna et al., 2014) and by a precise and confined intramyocardial virus 

injection. 2 months old male C57Bl/6 mice were randomized to receive 1011 GC/animal 

through two injections in the left ventricle free myocardial wall (n=5 per group) and 

compared to AAV9-GFP as a control (Fig. 29A). As shown in fig. 29B, we could not detect 

any significant difference in changes in heart weight/tibia length ratio (HW/TL) or heart 

weight/body weight ratio (HW/BW) after 28 days. AAV9 had successfully transduced 

cardiomyocytes as shown in fig. 29C thus we moved to investigate the possibility that 

GDF11 and MSTN processing in cardiomyocytes was not efficient. 
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Figure 29: AAV9-GDF11 intramyocardial delivery does not reduce cardiac mass because of 
inefficient post-translational processing in cardiomyocytes.  
(A) Schematic of the experiment.  
(B) Heart weight is unchanged 28 days after AAV9-GDF11 intramyocardial delivery when compared 
to control. Normalization was performed by tibia length and body weight.  
(C) Frozen sections of control hearts infected with AAV9-GFP show GFP positive cardiomyocytes 
indicating efficient AAV9 transduction. The scale bar represents 50 µm. 
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Data are representative of a single experiment with n=5 biological replicates per group. Data shown 

as mean  SD. 
 

4.4.1.1. AAV9-CMV vectors can produce recombinant GDF11 and MSTN in HEK-293T cells 

While we could demonstrate that AAV9-CMV was able to transduce cardiomyocytes 

effectively by analyzing the expression of GFP, it was not clear whether the constructs 

carrying our protein of interest were functional. HEK-293T cells were transduced using 

AAV9 vectors expressing GDF11 or MSTN. As shown in fig. 30A all constructs were able to 

produce and secrete their mature protein. As expected, FURIN overexpression induced a 

higher degree of mature protein production compared the control. Together, these results 

showed that AAV9 were functional but GDF11/MSTN protein maturation still remained a 

bottleneck even in case of AAV transduction.  

 

4.4.1.2. Cardiomyocytes can produce GDF11 and MSTN propeptide but FURIN processing 

is a limiting factor for ligand maturation 

In order to assess if GDF11/MSTN maturation was efficiently performed in cardiomyocytes, 

neonatal rat cardiomyocytes were co-transfected using GDF11/MSTN transgenes from our 

in vivo experiment, with or without FURIN. We did not use AAV9 because neonatal 

cardiomyocytes are resistant to transduction with this serotype. As shown in fig. 30B, most 

of the secreted GDF11 and MSTN were in the form of the immature and inactive 

propeptide, suggesting that furin-like activity to process and produce the active mature 

protein was inefficient in cardiomyocytes. Co-transfection with Furin increased post-

translational processing as indicated by the detection of the 12.5 kDa band in conditioned 

media. This experiment indicate that cardiomyocytes are able to produce GDF11 and MSTN 

propeptides, but at the same time they had a suboptimal protein maturation that resulted 

in low mature protein production in WT conditions. Since protein maturation process is 

crucial for GDF11/MSTN bioactivity as described in paragraph 4.1.2, we can speculate that 

inability of cardiomyocyte in processing GDF11 and MSTN is a major limitation for local 

delivery.  
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Figure 30: Furin post translational processing of GDF11 and MSTN increases ligand production. 
(A) GDF11 and MSTN can be detected in conditioned media of HEK-293T cells infected with AAV9 
vectors. Co-transfection of Furin enhances post-processing.  
(B) Neonatal rat cardiomyocytes transfected with GDF11 and MSTN constructs show very low post-
translational GDF11/MSTN processing that can be rescued by Furin co-transfection.  
Data are representative of two separate experiments with n=2 biological replicates. GDF11 
recombinant protein (1 or 2 ng) was used as control (Ctr). 

 

4.4.2. High dose AAV8-hAAT-GDF11 or MSTN systemic delivery can reduce 

cardiac mass in mice after 10 days 

In order to evaluate the differential effect of GDF11 and MSTN on cardiac mass, we 

performed experiments using AAV8 vectors and increase systemic levels of our protein of 

interest. We developed AAV8 vectors, a serotype that exhibit liver tropism (Zacchigna et 

al., 2014), together with a human α-1-antitrypsin (hAAT) promoter (Kramer et al., 2003) 

that grants hepatocyte-specific expression. Liver presents also higher RNA and protein 

expression levels of FURIN when compared to cardiac tissue (The Human Protein Atlas, 

2019) suggesting a more efficient GDF11/MSTN maturation (Hammers et al., 2017).  
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In order to prove feasibility of this approach C57Bl/6 3 months old male mice were 

randomized to receive single intravenous injection of 2*1012 GC/animal (from now on also 

referred as “High Dose (HD)” (Table 14), n=5/6 per group) of AAV8 carrying GDF11-WT, 

GDF11-Opt, GDF11-Chim, MSTN or PBS as negative control (Fig. 31A).  

Animals weight was measured twice a week from injection until sacrifice, planned 4 weeks 

later. However, we observed a progressive and severe body weight loss in animals that 

received GDF11 treatments and thus sacrifice was anticipated at day 10 post-injection. 

In all groups treated with GDF11 we observed significant body weight loss when compared 

to control while MSTN did reduce body weight without reaching significance (Fig. 31C). 

Cardiac mass expressed as HW/TL ratio was significantly reduced in all GDF11-HD 

treatments (Fig. 32A). We could translate this finding to cellular level as indicated by the 

significant reduction in cardiomyocytes cross-sectional area (Fig. 32B). Interestingly,  

MSTN-HD reduced cardiac mass, although not significantly, independently of body weight 

reduction, revealing a potential cardiac effect of MSTN. Another interesting observation is 

the loss of statistical significance for cardiac mass reduction when normalized by body 

weight (Fig. 32A), implying that GDF11-mediated reduction of cardiac mass may also be 

secondary to a profound and diffuse change in body mass. We also estimated circulating 

levels in the different groups by performing western blot analysis on serum harvested at 

sacrifice. As shown in fig. 31B we could observe a significant increase in both GDF11 and 

MSTN after AAV8 treatment except for GDF11-WT. As previously shown in our in vitro 

experiments, codon optimization and the presence of MSTN prodomain increased GDF11 

production when compared to GDF11-WT. 

 

4.4.2.1. AAV8-hAAT-GDF11/MSTN-HD did not reduce skeletal muscle mass after 10 days 

MSTN is the most important negative regulator of skeletal muscle mass and its 

overexpression has already been linked to skeletal muscle atrophy (Walker et al., 2018). In 

order to investigate if this effect is shared with GDF11, tibialis muscle weight normalizated 

on tibia length (TW/TL) and body weight (TW/TL) were evaluated. Interestingly, despite 

high systemic levels of both GDF11 and MSTN, we did not observe any significant change 

in tibialis mass when compared to control (Fig. 32C), suggesting that cardiac muscle and 

skeletal muscle have different time dependent sensitivity to the effect of GDF11 and MSTN.  
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Figure 31: Systemic AAV8 vectors with liver-specific hAAT promoter increase circulating levels of 
GDF11 and MSTN and is associated to body weight loss. 
(A) Schematic of the experiment.  
(B) Circulating levels where evaluated by western blot using 1 µL of serum collected at sacrifice.  
(C) Increased circulating levels of GDF11 but not MSTN are associated to significant body weight 
loss when compared to PBS control group.  
Data are representative of a single experiment with n=4/6 biological replicates per group.  
Western blot quantification was performed with Image Lab using a known amount of recombinant 
GDF11 (n=2/3). GDF11 recombinant protein (1, 3 or 10 ng) was used as quantification control (Ctr). 

Data shown as mean  SD. 
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Figure 32: Increasing circulating levels of GDF11 is associated to reduced cardiac mass after 10 
days.  
(A) Graph representing the HW/TL and HW/BW 10 days after AAV8 injection. The HW/TL was 
significantly lower in mice injected with AAV8-GDF11 compared to control. A trend towards lower 
HW/TL can be observed in the MSTN group.   
(B) Periodic acid Schiff (PAS) staining of left ventricles. Cardiomyocyte cross-sectional area results 
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are based on the average of a minimum of 150 myocytes per animal from 4 animals per group.  
The scale bar represents 25 µm. 
(C) No change in skeletal muscle mass was observed 10 days after AAV8 injection when compared 
to control.  
Data are representative of a single experiment with n=4/6 biological replicates. Data shown as 

mean  SD. 
 

4.4.3. GDF11-Opt dose response study showed that concentration higher or 

equal than 2*1011 GC/animal are associated to poor body conditions 

Our previous in vivo experiment (paragraph 4.4.2) indicated that high levels of GDF11 

produced by AAV8-hAAT treatments, although effective in reducing cardiac mass, were 

associated to systemic and detrimental changes, specifically a significant body weight loss. 

In order to determine the optimal dose of AAV8 vector that produces an increase in 

systemic levels of GDF11 without affecting systemic conditions, we performed a pilot study 

to evaluate the effect of different viral titers and to determine GDF11-Opt treatment safety 

rage. We also performed a similar study for AAV8-hAAT-MSTN. Survival, body weight 

reduction and heart mass reduction were the major endpoints evaluated during these 

studies. Since numerous and different AAV8-hAAT-treatment titers were tested, we 

arbitrarily associated virus titer to specific doses ranging from D1 to D7, as described in 

table 14. We also assigned a Low to High value to specific titers (see table, right column). 

The results obtained from these dose-effect experiments are critical to compare different 

titers of AAV8-GDF11-Opt and AAV8-MSTN to modulate GDF11/MSTN serum 

concentration in mice according to therapeutic needs. 

Doses 
Corresponding 

AAV8-hAAT-titer 

Second 
Short Name 

D1 2*109 GC/animal  

D2 2*1010 GC/animal  

D3 6*1010 GC/animal  

D4 1.2*1011 GC/animal Low Dose (LD) 

D5 2*1011 GC/animal Medium Dose (MD) 

D6 6*1011 GC/animal  

D7 2*1012 GC/animal High Dose (HD) 

Table 14: List of AAV8 doses and their corresponding titers. 
 

Three months old C57Bl/6 male mice were injected with 5 different doses, from D1 to D5 

(Table 14) and compared to PBS as a control (Fig. 33A). Animals where followed for 35 days, 

measuring body weight twice a week. Dose D5 produced significant body weight loss that 
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required euthanasia at day 14 (Fig. 33C). D5 dose was the only one to require premature 

sacrifice and we could observe a dose dependent effect on body weight loss. The increase 

of circulating levels of D2, D3, D4 treatments were confirmed by western blot as shown in 

fig. 33B. 

 
Figure 33: Systemic AAV8-GDF11 produce a dose dependent increase in circulating levels of GDF11. 
(A) Schematic of the experiment. Three months old male mice were injected intravenously with 
increasing doses of AAV8-GDF11-Opt and sacrificed after 35 days. Because of poor body conditions, 
mice that received the high dose (D5) where sacrificed on day 14. 
(B) Western blot analyzing 1 µL of serum collected at sacrifice showing a dose dependent increase 
in circulating GDF11 after AAV8 injection. 
(C) GDF11 delivered with a AAV8 vector carrying a liver specific promoter reduces body weight in a 
dose dependent manner.  
Data are representative of a single experiment with n=4/6 biological replicates. GDF11 recombinant 

protein (1, 3 or 10 ng) was used as quantification control (Ctr). Data shown as mean  SD. 
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4.4.4. GDF11 delivered by AAV8 produces a dose dependent reduction in 

cardiac mass in mice 

We next sought to evaluate the effect of our treatments on cardiac mass, one of the major 

endpoints of the AAV8-hAAT-GDF11-Opt dose finding experiment.  As shown in fig. 34A, 

GDF11-Opt-D4-treated mice showed a significant reduction in HW/TL (7.46±0.66 mg/mm 

vs. 8.60±0.80 mg/mm) when compared to control without major deterioration of systemic 

body conditions. These results were showing that by modulating the dose of delivered 

vectors, and thus circulating GDF11, the treatment is safe and could be used in the setting 

of pathologic hypertrophy. On the other hand, as previously shown in 4.4.2 paragraph, 

GDF11 effects are not confined to cardiac tissue. Indeed, TW/TL of GDF11-Opt-D4 

treatment was significantly lower than control group (Fig. 34B), and we observed significant 

reduction in body weight, a major limitation for systemic delivery (Fig. 33C). 

 
Figure 34: Systemic AAV8-GDF11 produce a dose dependent reduction in cardiac mass. 
(A) Graph showing the effect of different doses of GDF11 on cardiac mass calculated as ratio 
between heart weight and tibia length or body weight.  
(B) The effect of GDF11 was not limited to cardiac mass and is associated to a dose dependent 
decrease in skeletal muscle mass.  
Data are representative of a single experiment with n=4/6 biological replicates per group. Data 

shown as mean  SD. 
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4.4.5. MSTN-D7 (HD, 2*1012 GC/animal) was safe and showed a trend in 

HW/TL reduction 

We also evaluated, in parallel with GDF11, safety and the effect on cardiac and skeletal 

muscle mass, of elevating systemic MSTN through AAV8-hAAT-MSTN delivery at different 

doses. Our data has shown that high levels of MSTN (MSTN-D7 treatment, 2*1012 

GC/animal), were not associated to significant side effects, with no impact on mortality and 

body condition deterioration after 10 days (paragraph 4.4.2). Thus, we performed a new 

experiment where we evaluated the effect of different doses of MSTN by modulating the 

titer of vectors that were delivered (D7, D6, D5, D3 corresponding to 2*1012, 6*1011, 2*1011 

and 6*1010 GC/animal, respectively, n=4 mice per group, table 14). 

As for our previous experiments, the major endpoints that we evaluated were body 

condition, body weight reduction, effect on cardiac and skeletal muscle mass (Fig 35A). 

After 35 days from vectors delivery, all the animals were in good body condition, suggesting 

a higher safety profile of MSTN compared to GDF11. We also observed a dose-dependent 

decline in body weight that however appears more gradual and less severe when compared 

to equal doses of GDF11 (Fig. 35B-C).  

We also observed a trend towards a dose dependent reduction in cardiac mass (Fig. 36A). 

We speculate that in the setting of pathological cardiac hypertrophy this could be relevant. 

As observed for GDF11 treatments, elevating systemic levels of MSTN was associated to a 

significant reduction of skeletal muscle mass (Fig. 36B). We also confirmed the elevation of 

serum levels of MSTN by western blot, that appears to be higher than GDF11, suggesting 

and confirming the difference in potency of these two proteins (Fig. 35B). The exact 

quantification of circulating levels, as for the other experiments, is at the moment under 

investigation using mass spectrometry (see paragraph 2.10.2). These observations, 

together with our previous results, showed that GDF11 and MSTN may have overlapping 

effects on cardiac tissue, skeletal muscle and body weight, that can be explained by the 

different potency. To further characterize therapeutic application and ligand potency of 

these two peptides, we evaluated the effect in a model of pathologic hypertrophy, by 

producing pressure overload in mice.  
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Figure 35: Systemic AAV8-MSTN produce a dose dependent increase in circulating levels of MSTN. 
(A) Schematic of the experiment. As for GDF11, 3 months old male mice were injected intravenously 
with increasing doses of AAV8-MSTN and sacrificed after 35 days. 
(B) Western blot analyzing 1 µL of serum collected at sacrifice showing a dose dependent increase 
in circulating MSTN after AAV8 injection. 
(C) MSTN delivered with a AAV8 vector carrying a liver specific promoter reduces body weight in a 
dose dependent manner.  
Data are representative of a single experiment with n=4 biological replicates. GDF11 recombinant 

protein (1, 3 or 10 ng) was used as quantification control (Ctr). Data shown as mean  SD. 
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Figure 36: Systemic AAV8-MSTN produce a dose dependent trend in reducing cardiac mass. 
(A) Graph showing the effect of different doses of MSTN on cardiac mass calculated as ratio between 
heart weight and tibia length or body weight. MSTN produced a dose-dependent trend in lower 
HW/TL when compared to control. 
(B) MSTN is associated to a significant dose dependent decrease in skeletal muscle mass when 
normalized to tibia length.  
Data are representative of a single experiment with n=4 biological replicates per group. Data shown 

as mean  SD. 

 

4.5. GDF11 and MSTN can prevent pathological cardiac 

hypertrophy induced by pressure overload in mice 

Our data indicate that GDF11 can reduce cardiac mass in a dose-dependent manner in basal 

conditions. MSTN, although the data was not significant, has shown a similar trend. While 

the initial findings have shown that GDF11 is able to reduce cardiac hypertrophy, new 

studies indicate a powerful effect of GDF11 in reducing cardiac mass also in young animals, 

possibly by activating atrophy pathways (Hammers et al., 2017). GDF11 has also shown to 

prevent cardiac hypertrophy after transverse aortic constriction, a common mouse model 

of pressure overload, however at the expense of a cachectic state that required euthanasia 



Results 
 

115 
 

(Harper et al., 2018). We hypothesize that by finely modulating GDF11 systemic levels it is 

possible to achieve a therapeutic effect without significant side effects. We also 

hypothesize that MSTN, which in our previous experiment has shown a broader and safer 

therapeutic window, may have a similar effect.  

3 months old C57Bl/6 male mice were randomized to undergo TAC or sham surgery  

(Fig. 37A). To confirm successful ligation of the transverse aorta, two days after surgery 

animals were subjected to Doppler assessment of flow velocity of right and left common 

carotid arteries. Only mice with a right carotid/left carotid flow ratio > 5 where included in 

the study. One week after surgery mice that were assessed for successful TAC were 

furtherly randomized to receive AAV8 intravenous injection or PBS. The experimental 

groups were: GDF11 low dose (LD) and medium dose (MD), GDF11-Chim-LD, and MD and 

high dose (HD) of MSTN (Table 14). Sham operated animals were injected only with PBS. 

Mice were weighted twice a week and monitored until sacrifice. Twenty-five days post 

AAV8-treatment, mice were subjected to a full echocardiographic evaluation. 

Subsequently, invasive hemodynamic assessment by left ventricular pressure-volume loop 

analysis was performed prior sacrifice. GDF11 and MSTN serum concentration was 

evaluated after animal sacrifice by western blot (Fig. 37B). GDF11/MSTN quantification was 

also carried out using a specific mass spectrometry assay (described in paragraph 2.10.2)  

(Fig. 37C). The group that was receiving the medium dose of GDF11 was sacrificed earlier 

(day 18 after AAV delivery) because of poor body conditions, characterized by significant 

and severe body weight loss (Fig. 38A). As expected, HW/TL was significantly higher in TAC 

animals that received PBS when compared to sham operated mice  

(11.59±1.97 vs. 8.08±1.24 mg/mm) (Fig. 38B). GDF11 prevented the onset of pathological 

cardiac hypertrophy in a dose-dependent manner (Fig. 38B). Interestingly, despite a shorter 

exposure to circulating GDF11, HW/TL in the GDF11-MD was significantly smaller than PBS 

treated animals (6.95±1.89 vs. 11.59±1.97 mg/mm) (Fig. 38B). We speculate that batch to 

batch variability of AAV vectors, different infectivity, additional stress due to TAC procedure 

may have contributed to deteriorate body conditions in this group. Our data indicate that 

GDF11-LD was also effective in preventing cardiac hypertrophy after TAC when compared 

to PBS (8.10±1.92 vs. 11.59±1.97 mg/mm), with a less severe impact on body weight  

(Fig. 38A-B). Similarly to GDF11-LD, also GDF11-Chim-LD treatment prevented cardiac 

hypertrophy after TAC (8.66±1.53 vs. 11.59±1.97 mg/mm). Interestingly, MSTN showed a 
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dose dependent effect in preventing cardiac hypertrophy after pressure overload. The high 

dose of MSTN significantly reduced cardiac mass after TAC when compared to PBS 

(8.96±1.10 vs. 11.59±1.97 mg/mm), without affecting body condition (Fig. 38B). These data 

confirmed the anti-hypertrophic effect of GDF11 in pathological conditions, and, for the 

first time in a side by side comparison, that this effect is shared with MSTN, although at 

different doses.  

Interestingly, statistical significance of GDF11-LD and -MD were maintained even after 

body weight normalization, suggesting that, in pathological conditions, GDF11 is capable of 

inducing a mass-reducing-effects on cardiac tissue independently from body weight loss. 

We also evaluated if the morphometrical changes in cardiac mass translated at the cellular 

level by measuring cardiomyocyte cross-sectional area and our data confirm our previous 

finding (Fig. 39). Together, all these data support the hypothesis that GDF11 and MSTN 

have similar anti-hypertrophic effect on cardiomyocytes, however displaying a different 

potency. Furthermore, MSTN does not induce cachexia at the doses investigated. Further 

investigations are ongoing to explain the different mechanism.  We next sought to 

investigate whether reduction of pathological cardiac hypertrophy was associated with an 

improvement of cardiac function. Animals were subjected to echocardiographic 

examination and invasive hemodynamic assessment prior sacrifice. As shown in fig. 40A, 

both GDF11-LD and MSTN-HD reduced cardiac mass when compared to PBS  

(133.18±26.89 and 142.78±22.59 mg vs. 182.62±31.55 mg, respectively).  

As expected, TAC was associated to deterioration of diastolic parameters when PBS  

is compared to sham surgery (dP/dtmin: -7522±2819 vs. -8629±1289 mmHg and  

Tau: 8.01±2.67 vs. 5.15±1.19 msec) (Fig. 40B). Surprisingly, both GDF11 and MSTN failed to 

improve parameters of diastolic function. We speculate that the persistence of the gradient 

because the mechanical obstruction is not removed upon treatment in the TAC model may 

in part explain these negative results requiring additional models of pathological cardiac 

hypertrophy. 
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Figure 37: Circulating levels of GDF11 and MSTN after AAV8 treatment in a model of pathological 
cardiac hypertrophy. 
(A) Schematic of the experiment. 3 months male mice were randomized to receive TAC or sham 
operation. TAC was confirmed by Doppler analysis on common carotid arteries. One week later mice 
were furtherly randomized to receive systemic AAV8 vectors or PBS. Mice were sacrificed at day 18 
or 25 post injection. 
(B) Western blot quantification using the same volume of serum (1 µL, terminal blood withdrawal) 
was performed in each treatment group (n=4). Exact quantification of these bands is challenging 
because of low signal intensity and system does not discriminate GDF11 and MSTN proteins. 

(C) Quantification using LC-MS/MS assay. Data shown as mean  SD. 
For each treatment group n=3/5 biological replicates were analyzed, to date, the remaining animals 
are still under analysis. GDF11 recombinant protein (0.5, 1, or 3 ng) was used as control (Ctr). 
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Figure 38: GDF11 and MSTN prevent pathological cardiac hypertrophy after TAC. 
(A) Randomized, vehicle controlled, dose-dependent study of GDF11 and MSTN therapy in mice 
subjected to pressure overload shows a significant reduction in cardiac mass after GDF11 and with 
high doses of MSTN.  
(B) Graphs representing HW/TL and HW/BW. As expected, both GDF11 and MSTN induce a dose 
dependent weight loss that was more severe with high GDF11. Because of poor body conditions 
mice that received GDF11-MD were sacrificed earlier (day 18 post injection).  
Data are representative of a single experiment with n=8/10 biological replicates per group. Data 

shown as mean  SD. 
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Figure 39: GDF11 and MSTN therapy after TAC reduces cardiomyocyte cross-sectional area. 
(A) PAS staining of left ventricles after TAC surgery. Cardiomyocytes of TAC mice exposed to 
supraphysiologic levels of GDF11 and MSTN are smaller compared to PBS injected controls.  
(B) Graph representing cardiomyocyte cross-sectional area measured after PAS staining in mice 
subjected to TAC. 
Data are representative of a single experiment with n=5/6 biological replicates per group. 

The scale bar represents 25 µm. Data shown as mean  SD. 
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Figure 40: GDF11 and MSTN reduce cardiac mass but do not improve diastolic function after TAC. 
(A)Echocardiographic evaluation confirmed a significant reduction in LV anterior wall thickness and 
LV cardiac mass upon treatment with GDF11 and MSTN.  
(B) Graphs showing the maximal rate of pressure decay in the left ventricle (dP/dTmin) and the 
exponential decay of the ventricular pressure during isovolumic relaxation or isovolumic relaxation 
constant (Τau), measured by invasive hemodynamic assessment. An increase in diastolic function or 
an increase in relaxation causes increased dP/dtmin during isovolumic relaxation and decreased Tau. 
GDF11 and MSTN fail to improve both parameters of diastolic function after TAC. 
Data are representative of a single experiment with n=8/10 biological replicates per group. Data 

shown as mean  SD. 

 

4.5.1. GDF11 and MSTN treatments were associated to skeletal muscles 

atrophy 

We also evaluated the effect on skeletal mass of treatments with GDF11 and MSTN. We 

evaluated changes in weight of three different hindlimb skeletal muscles (tibialis anterior, 

quadriceps femoris and gastrocnemius). As expected, both GDF11 and MSTN significantly 

reduced skeletal muscle mass when compared to PBS treated animals (Fig. 41).  
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These observations confirmed again our previous findings where GDF11/MSTN-induced 

muscular atrophy is associate to a systemic body weight loss. 

 
Figure 41: GDF11 and MSTN are associated to skeletal muscles atrophy after TAC. 
Graphs showing tibialis anterior, quadriceps femoris and gastrocnemius weights normalized to tibia 
length.  
Data are representative of a single experiment with n=8/10 biological replicates per group. Data 

shown as mean  SD. 
 

4.6. Circulating GDF11 and MSTN decline with aging in mice 

As previously shown, circulating levels of GDF11 and MSTN can affect cardiac mass in a 

dose dependent manner. However, the high sequence homology between GDF11 and 

MSTN mature proteins has contributed to generate conflicting data on circulating levels 

and their effects on cardiac tissue. Most of these studies were relying on nonspecific 

detection methods that were not effectively able to discriminate GDF11 and MSTN. 

(Egerman et al., 2015; Loffredo et al., 2013; Poggioli et al., 2016). 
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In order to provide an accurate GDF11 and MSTN quantification, we collaborated with  

Dr. Olga Shevchuk (Leibniz, Institut für Analytische Wissenschaften, ISAS Campus, 

Dormund) to develop a LC-MS/MS-based assay to quantify GDF11 and MSTN in serum. This 

method was previously used to assess GDF11 and MSTN circulating levels in humans 

(Schafer et al., 2016). These studies have shown that GDF11 levels were not significantly 

altered by aging in humans while MSTN levels decrease throughout life in men (Schafer et 

al., 2016). Changes in circulating levels in mice has not been assessed yet by using a specific 

assay. We applied our newly developed assay to measure serum levels of GDF11 and MSTN 

in young (2 months old, n=6) and old (30 months old, n=6) C57Bl/6 female mice. 

As shown in Fig 42, both GDF11 (0.0673  0.0138 vs. 0.0446  0.0171 ng/mL) and MSTN 

(26.489  5.621 vs 13.190  5.860 ng/mL) significantly decrease with aging in mice. To our 

knowledge, no other study has evaluated yet circulating GDF11 and MSTN in mice using a 

specific quantitative nanoLC-high resolution mass spectrometry approach. Interestingly, in 

WT mice, GDF11 circulating levels are around 2 order of magnitude lower than circulating 

MSTN and ten times lower than values measured in humans (Schafer et al., 2016; Semba 

et al., 2019). Further investigations are required to understand the biological relevance of 

these finding. The results of this study have been submitted for publication to the journal 

“Proteomics” (Wiley-VCH). 

 
Figure 42: GDF11 and MSTN circulating levels decrease with aging in mice.  
Data derived from LC-MS/MS assay show a significant reduction in circulating levels of GDF11 and 
MSTN in female WT C57Bl/6 30 months old mice when compared to young 2 months old mice. 
Data are representative of a single experiment with n=6 biological replicates per group. Data shown 

as mean  SD. 
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Figure 43: MSTN and GDF11 peptides can be properly resolved using LC-MS/MS method.  
Comparison of the two peptides used to discriminate and quantify MSTN and GDF11 in serum 
samples. Peptides are differing of 1 single amino acid as showed in the lower table. IPAMVVDR 
(MSTN) and IPGMVVDR (GDF11) were efficiently resolved thanks to different retention time, unique 
precursor m/z and fragmentation ions pattern. Figure was adapted from Camparini et al. (in 
revision). 
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5. DISCUSSION 

5.1. Recombinant proteins production as a tool to study GDF11 

and MSTN biological differences 

Until recently GDF11 has been mainly known for its role in embryonic development while 

its function during adult life has been poorly characterized. In 2013 GDF11 emerged as a 

circulating factor that declines with aging that reverse cardiac hypertrophy of aged animals 

(Loffredo et al., 2013; Walker et al., 2016).  

This finding has attracted a lot of attention from the scientific community, raising 

controversies and contradictory results.  Part of this conflicting data resides indeed in the 

homology (>90%) with MSTN. Due to their high similarities, GDF11 and MSTN have been 

pictured as two ligands with overlapping and distinct functions. This thesis aimed to clarify 

at least part of these controversies, and to increase the understanding of GDF11 and MSTN 

role in SMAD3/4 signaling and in regulating cardiac mass in vivo. 

Our initial data were obtained using conditioned media enriched with GDF11 or MSTN 

secreted protein. These initials experimentation allowed us to understand the importance 

of the inactive latent complex in regulating GDF11/MSTN bioactivity and to discover that 

GDF11 and MSTN prodomains were associated to different mature protein yields.  

These new findings were directly applied towards the optimization of recombinant protein 

production and purification. The proteins purified during this step were crucial to perform 

in vitro studies regarding GDF11 and MSTN prodomains or mature forms.  

Recombinant GDF11 and MSTN prodomains purification was successfully achieved and 

their biological activity was tested against respective and opposite ligand. Results were in 

line with previously published work (Jin et al., 2019; Thies et al., 2001) where both MSTN 

prodomain and GDF11 were able to inhibit both ligands respectively. However, our data 

were obtained from a side by side comparison of GDF11 and MSTN prodomains, showing 

a more potent inhibitory activity of GDF11 prodomain. The biological relevance of this 

finding is not clear; however, this finding may be important for a better understanding of 

GDF11 and MSTN differential kinetic and translated in possible therapeutic approaches 

that require a potent inhibition of both GDF11 and MSTN like in cachexia. 

Production and purification of recombinant GDF11/MSTN inactive latent complexes and 

mature proteins was also proved to be feasible and furtherly confirmed the higher potency 
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of GDF11 when compared to MSTN. However, unfortunately, because of technical issues, 

yield was not sufficient to reach the order of milligrams necessary for in vivo 

experimentation. An intense work of protein purification process optimization could have 

been performed, but in order to overcome these technical limitations and to focus our 

efforts on in vivo studies, investigations were continued using AAV transducing full length 

GDF11 and MSTN.   

This approach had also some advantages compared to daily recombinant protein 

injections, because GDF11/MSTN mature proteins are immediately active and their activity 

is not regulated by inactive latent complex formation. Conversely, transduction of  

full-length proteins lead to secretion of inactive latent complex that reduces GDF11/MSTN 

ligand activity. Considering the possible deleterious effects of exaggerated GDF11 signaling, 

in this case, a lower treatment potency could be desired especially because they are easier 

to modulate. Furthermore, administration of purified mature proteins could lead to 

different treatment tropism and/or different ligand antagonism from other GDF11/MSTN 

inhibitors in serum compared to administration of inactive latent complexes. 

5.2. Type I TGF-β receptor comparison between cardiac and 

skeletal muscle tissue showed marked difference in ALK4 and ALK7 

receptors 

We also performed a series of experiments aiming at understanding signaling in heart and 

skeletal muscle that could explain differences in the effect of GDF11 and MSTN. An 

interesting result shows that cardiac tissue is enriched of all ALK4/5/7 receptors when 

compared to skeletal muscle tissue. This may explain why cardiomyocytes are more 

sensitive than skeletal myocytes to the effect of GDF11. Our data indicate that ALK7 plays 

a more relevant role in GDF11 signaling than MSTN in atrial cardiomyocytes, suggesting 

that part of GDF11 cardiac activity may be secondary to the use of this receptor.  We 

acknowledge that this data was obtained in HL-1 cells, that may not recapitulate perfectly 

the cardiomyocytes receptors expression ratio. sgRNAs are not able to induce a complete 

KO of targeted proteins and, given the promiscuity of the pathway, SMAD3/4 signaling 

could be modulated by secondary pathways differentially active between HL-1 cells and 

cardiomyocytes.  

In order to overcome these limitations, we are performing experiments in 3D cardiac 
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organoids by selectively silencing ALK4/5/7 receptors. These results will guide our future  

in vivo studies using transgenic mice to induce a cardiac specific KO of these receptors. 

 

5.3. Intramyocardial injection of AAV9 does not induce changes in 

cardiac mass 

An interesting observation came from the attempt to induce a sustained cardiac specific 

expression of GDF11 and MSTN. Limiting GDF11 activity to cardiac tissue could be 

beneficial, indeed several studies demonstrated how systemic elevated GDF11 circulating 

levels are associated to skeletal muscle atrophy and severe body weight loss (Hammers et 

al., 2017; Harper et al., 2018). Our negative data may be explained by the poor post-

translational processing of GDF11 in cardiomyocytes, probably because of insufficient furin 

activity. Our data limit the possibility of using GDF11 as a cardiac paracrine therapy.  

  

5.4. Systemic supraphysiological GDF11 circulating levels can 

reduce cardiac mass in healthy mice, but they are associated to 

dose-dependent reduction of body weight 

Our data confirm the results of previous studies indicating that elevated systemic levels of 

GDF11 induce reduction in heart mass but are associated to significant body weight loss 

and skeletal muscle atrophy.  We also show that by modulating GDF11 levels a reduction 

in cardiac mass can be achieved with negligible systemic side effects. These data suggest 

that a more precise knowledge of GDF11 pharmacokinetic is crucial to perform in vivo 

studies and possibly develop a therapeutic approach. Interestingly, no safety concerns 

emerged from MSTN dose ranging studies revealing a trend in cardiac mass reduction 

associated to a better therapeutic index.  

 

5.5. GDF11 and MSTN can reduce cardiac mass in TAC mice, but 

they do not improve diastolic function 

Our dose-response studies were crucial in identifying the correct AAV8 titers for GDF11 and 

MSTN delivery in vivo and were propaedeutic to studies using animal models of 

pathological cardiac hypertrophy, allowing to gain a view on their possible anti-
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hypertrophic therapeutic potential. Indeed, in order to treat cardiac hypertrophy, novel 

treatments are required. Current pharmacological interventions are more focused on 

symptoms management than act directly on cardiac hypertrophy progression (Marian and 

Braunwald, 2017). However, cardiac hypertrophy is a heterogenous condition in which 

augmentation of cardiomyocytes area is only a part of the big picture. Indeed, 

cardiomyocyte hypertrophy is often accompanied by increased fibrosis and oxidative stress 

that may lead to ventricular stiffness and impairment of diastolic function. Assessing if 

GDF11 and MSTN treatments were able to reduce cardiac mass and improve cardiac 

function were two primary endpoints in order to evaluate their role as a novel therapeutic 

approach. Our in vivo results showed that both GDF11 and MSTN are able to reduce cardiac 

mass in a dose dependent manner, highlighting an overlap of functions on cardiac tissue 

that has not been shown before in a side to side study. GDF11 showed higher potency 

compared to MSTN in reducing cardiac mass, as shown in previous in vitro experiments 

based on SMAD3/4 activation. This observation could suggest that GDF11 and MSTN can 

exert their effect on cardiac mass through TGF-β signaling modulation, a hypothesis already 

described in skeletal muscle tissue (Sartori et al., 2009). In order to prove that these 

findings can be extended to cardiac tissue further experiments are required and are now 

ongoing. GDF11/MSTN signaling pathways will be investigated in order to identify possible 

pathway responsible for the anti-hypertrophic effect observed. Subsequently, results will 

be evaluated in vitro using 3D cardiac culture systems, where receptor agonist and chemical 

inhibitors will be used to furtherly test our hypothesis.  

Unfortunately, GDF11/MSTN-dependent cardiac mass reduction in mice subjected to 

pressure overload was not accompanied by diastolic function improvement. The timing of 

the experiment limited to 4 weeks, the TAC model where the mechanical obstruction is not 

removed upon treatment and the lack of long term-survival data are major limitations that 

require further studies to elucidate the functional effect of GDF11 and MSTN. 

A second important limitation for future therapeutic applications is that the dose of GDF11 

and MSTN to reduce cardiac mass is still associated to body weight loss and skeletal muscle 

atrophy, a major concern for elderly people, the population that may benefit more from 

the anti-hypertrophic effect. This limitation could be overtaken by a better understanding 

of the pathways that are involved in both cardiomyocyte reversal of hypertrophy and 
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unwanted systemic side effects. A finer pharmacokinetic regulation by personalizing dose 

may also limit adverse effects. 

 

5.6. Concluding remarks 

In summary, our data indicate that the effect of supraphysiologic levels of GDF11 and MSTN 

on cardiomyocytes phenotype is similar suggesting that differences that have been 

observed may be secondary to differential potency of the two proteins. Our in vitro data 

confirm that GDF11 is more potent than MSTN in activating SMAD3/4 in cardiomyocytes 

and part of this difference can be attributed to differential use of type I TGF-β receptors, in 

particular Alk7. Our in vivo results suggest also that cardiac tissue is more sensitive than 

skeletal muscle to the effect of both proteins and we speculate that the enrichment of  

type I TGF-β receptors in the heart may be responsible for this effect. Additional studies 

aiming at understanding the precise molecular mechanisms of these differences are 

required and are currently ongoing using engineered heart tissues. Our data also confirmed 

that both GDF11 and MSTN can reduce body weight in mice in a dose-dependent manner 

while only GDF11 can induce a cachectic state. Interestingly, both GDF11 and MSTN can 

prevent pathological cardiac hypertrophy in mice and our data indicate that MSTN presents 

a safer profile when compared to GDF11. However, both GDF11 and MSTN failed in 

improving diastolic function in our model of pathological cardiac hypertrophy. Diastolic 

dysfunction after pressure overload is a multifactorial process and the prevention of 

cardiac hypertrophy may not be sufficient to restore cardiac function. We acknowledge 

that further in vivo studies using different models and different timing are required to 

clarify this aspect. Part of the controversies involving GDF11 are also related to the lack of 

specific assays that can distinguish it from MSTN. Aiming at understanding the role of 

changes in circulating levels of GDF11 and MSTN during physiologic and pathologic 

conditions in humans, we have also contributed to develop a novel assay based on mass 

spectrometry that can measure reliably both proteins. Interestingly, our preliminary data 

confirm the initial finding indicating an age-dependent decline of GDF11 in mice. In 

conclusion, GDF11 and MSTN have more overlapping effects on cardiac tissue than 

anticipated indicating that both proteins must be considered when modulation of their 

activity, both inhibitory and stimulatory, may be suggested for therapeutic uses.  
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