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Chapter 1 Introduction 

ABSTRACT

The main aim of this dissertation is to explore methodological approaches to correlated 

binary data and to assess their suitability for the analysis of data on human fertility.

The dataset concerns a study of Artificial Insemination by Donor (AID). AID represents an 

unusual research opportunity to study both male and female fecundability simultaneously. 

In each attempt to conceive, artificial insemination is carried out in consecutive ovulatory 

cycles until conception or change of treatment. The probability of conception may differ 

between women, so that the data are discrete time survival data with censoring and 

between-subject heterogeneity. There is also potential heterogeneity between donors. Non- 

systematic allocation of the donor to recipient ensures that the same woman receives semen 

from several donors, This added heterogeneity as well as other cycle dependent covariates 

have to be taken into account. The analysis must also take account of covariates, most of 

them time-varying. Our dataset have a crossed hierarchical structure due to the presence of 

both, female and male factors. The rather complicated "design" calls for unit specific 

regression models. These models are presented as well as their lack of tractability except in 

some rather specific cases. The motivation for choosing Gaussian random effects in unit 

specific regression models is discussed. We demonstrate the use of an approximate 

inference method (Penalized Quasi Likelihood). This method is shown to be a useful and 

practical way of carrying out preliminary data analysis. Finally a Bayesian procedure 

(Gibbs sampling) provides validation and more accurate results despite the intensive 

computation it needs.

The main substantive finding of the analysis is the unexpectedly pronounced heterogeneity 

of donor fecundability, even after inclusion of conventional measures of sperm quality into 

the model. These measures were shown to be predictive at the donor level but not at the 

level of individual donation.



Chapter 1 Introduction 

INTRODUCTION

The main aim of this dissertation is to explore methodological approaches adapted to 

correlated binary data and to assess their suitability for the analysis of data on human 

fertility.

The dataset concerns a study of Artificial Insemination by Donor (AID). AID is a treatment 

for couples suffering from male infertility : the treatment consists of insemination with 

sperm from a donor, the husband being not fertile. The statistical unit will be the "cycle", 

also called ovulatory (or : "menstrual") cycle. An ovulatory cycle begins with menses and 

finishes either with menses or with a pregnancy in case of conception. In this dataset during 

each observed cycle an insemination takes place and thus the "cycle" can be considered as a 

trial resulting either in a success (if the conception occurs) or in a failure (if not). It is a 

binary process.

That study of artificial insemination by donor represents an unusual research opportunity to 

study both male and female fertility simultaneously. In "normal" couples, these aspects are 

nearly totally confounded, while in these data the non-systematic allocation of the donor to 

recipient allows the effect to be differentiated.

Women remain under observation until conception or change of treatment occurs and 

probability of conception may be different between women. Therefore data can be 

described as discrete time survival data with censoring and between subject heterogeneity. 

There is also a potential heterogeneity between donors in their ability to provide a "good" 

sperm. The non-systematic allocation of the donor to recipient allows a same woman to 

receive sperm from more than one donor. This added heterogeneity due to the donors as

8



Chapter 1 Introduction 

well as other cycle dependent covariates have to be taken into account in our analysis. 

Introduction of time dependent covariates at the subject specific level into discrete time 

survival data is one of the partly unresolved issue that will be discussed in this dissertation. 

Our dataset have a crossed hierarchical structure due to the presence of both, female 

(ovulatory cycles within woman) and male factors (inseminations within donors). This 

dissertation will alternatively focus on two types of models for heterogeneity, one for event 

occurrence data concerning the recipients and the other dealing with the overdispersion of 

success rates among donors. But after having done separate analyses, we will have to deal 

with the complete crossed hierarchy : this will be a second challenging characteristic of the 

AID problem.

After a rapid literature review (Chapter 1), and the presentation of our dataset (Chuter 2), 

a marginal model for discrete time survival data in heterogeneous population (Chuter 3) 

will be used to describe the decline of success rates (hazards) consecutively to the 

withdrawal of the more fertile women after their success and relate these hazards to the 

observed covariates. Then a more specific description of the manifestations of • 

heterogeneity among the women and among the donors will be done and the condition to 

introduce covariates into these overdispersion models will be presented (Chapter 4). The 

rather complicated design call for unit specific regression models. These models will be 

presented in Chapter 5 as well as their lack of tractability except in some rather specific 

cases. In the last Chapters the motivation for choosing Gaussian random effects in unit 

specific regression models will be discussed. We shall demonstrate the use of an 

approximate inference method (Penalized Quasi Likelihood approach) both, for a separate 

analysis of female and male hierarchies (Chapter 6), and for the analysis of the crossed 

hierachies —  female and male —  (Chapter 7). This approximate inference method will be
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shown to be a useful and practical way of carrying out preliminary data analysis. Finally a 

Bayesian procedure (Gibbs sampling) will provide validation and more accurate results 

despite the intensive computation it needs (Chapter 8). The last Chapter (Chapter 9) will 

presents briefly some additional aspects selected for their practical implications or as 

potential areas for further developments.

10



Chapter 1 Introduction

Chapter 1 Literature review and context

In this Chapter we shall only present an initial outline of the medical background to AID 

and of the statistical approaches in demographic literature. Throughout the following 

chapters further details will be given as necessary.

1. Medical background to AID

AID is a treatment for couples suffering from male infertility (Lansac, in Gray et al, 1993). 

In France, a network of 20 sperm-banks called CECOS (Centre for the study and 

preservation of Eggs and Sperm) has been established to serve the entire country. These 

centres collect donations and preserve the sperm for artificial insemination by donor.

Recipients

Only couples are accepted. Moreover, all evidence for a sterility of the women would be a 

contra-indication and thus the women involved in our study are considered as normally 

fertile. An added aspect of selection is related to the husband : The main reason for using 

AID is the infertility of the husband : either there are no spermatozoa in the husband's 

sperm or just a few which are barely mobile. This aspect of the selection will be discussed 

further.

Allocation o f donor to recipients

There is no systematic assignment of donor to recipient and sperm from several donors is 

used in the course of a treatment. Nevertheless, care is taken to avoid any difficulty with

11
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blood group incompatibility and with any visible evidence against paternity from the 

husband — colour of the skin and of hair, etc... (Gray et al., 1993).

The treatment

The treatment consists of successive ovulatory cycles with insemination until a pregnancy 

is obtained, but after 12 cycles of failure another treatment is proposed. The insemination 

applies the following rules : the optimal day for conception is determined using the basal 

body temperature (BBT) curve, and the clinical examination of the cervix. When it is time 

to perform the insemination, the straw containing the frozen sample is removed from the 

liquid nitrogen and allowed to thaw. The semen is slowly injected directly into the cervix 

or more rarely into the uterus (intra-uterine insemination).

The outcome

The ovulatory cycle with insemination is considered to be a success if the woman 

conceives. Some of the resulting pregnancies are interrupted by a miscarriage. In that case, 

but also after a successful birth of a child, another attempt of inseminations is proposed to 

obtain another pregnancy : a new series of ovulatory cycles with insemination is then 

observed, for the same woman.

Fecundability

Fecundability was originally defined as "the probability for a married woman to conceive 

during a month, in the absence of any Malthusian or neo-Malthusian practice intended to 

limit procreation" (Gini, 1924). The conception was later defined as the fertilization of an 

ovum by a sperm (United Nations, 1958). Since the definition has led to various 

interpretations, Bongaarts (1975) made the following definitions :

12
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- total fecundability (TF) is the probability that any conception occurs during an 

ovulatory cycle ; this includes non-implanted fertilized ova and conceptions 

aborted spontaneously before the end of the cycle.

- recognizable fecundability (RF) is the probability of a conception which is 

recognizable at the end of the conception cycle by the non-occurence of the 

menstruation.

- effective fecundability (EF) is the probability of a conception which will end 

in a live birth.

In the AID dataset the cycle of insemination is considered to be a success if the woman 

conceives, this diagnosis being based on 21 days of hyperthermia, or on biological or 

echographical evidence. The fecundability we considered here is therefore the recognizable 

fecundability.

Female and male "fecundability"

We should note that studies of artificial insemination by donor represent an unusual 

research opportunity to study both male and female fertility simultaneously. In "normal" 

couples, these aspects are nearly totally confounded, while in these data the non-systematic 

allocation of the donor to recipient allows the effect to be differentiated. For simplicity, in 

the following we will use the word "fecundability" for both female and male participation 

in the success of an ovulatory cycle with insemination.

Prognostic factors

Success rates are highest for women who are less than 35 years old, are married to 

azoospermie husbands and have no fertility problems (Gray et al, 1993, p 240). In the 

literature we have much evidence for a heterogeneity between the women (recipient) after

13
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controlling for observed (known) covariates : the success rates are considerably lower for 

women inseminated for a first pregnancy than for women seeking a second or third 

pregnancy (CECOS Federation and Lelannou, 1987).

Our data analysis, presented below , will confirm these accepted notions.

2. Statistical approaches of the fecundability in demographic 

literature.

Fecundability was defined by Gini (1924) and Henry (1961) at a "subject specific" level, 

that is to say in relation to a specific couple, rather than a group. In this Section we will 

present the long lasting interest of the demognq)hers in subject specific models but also the 

difficulty they encounter when they have to introduce covariates into these models.

Subject specijic models

Demographers and more generally people working on natural fecundability did pioneering 

work in statistical models taking account of the heterogeneity between couples ; Gini 

(1924) introduced the notion of the diversity of fecundability in human, Sheps (1964) gave 

a clear description of the mixtures of geometric distributions for discrete time models, and 

Vaupel et al (1979) denoted "frailty" the variation in the baseline hazard from subject to 

subject due to omitted covariates. The titles of successive books published in this field 

reflect the connection with other areas of statistics ; one of the last was precisely entitled 

"Demographic Applications of Event History Analysis" (Trussel et al, 1992).

14
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Mixture of the geometric distribution

Gini (1924) was the first to formulate conceptive delays analytically by use of mixtures of 

the geometric distribution. Couples attempting pregnancy are to be followed for up to a 

small number of menstrual cycles, or until pregnancy occurs. Aging of the members of the 

couple during the follow-up will have negligible effects on its fecundability : the 

conception probability for each couple is taken as constant over the time.

Models involving heterogeneous populations represent a closer approach to reality than do 

those that assume homogeneity. This was pointed out as early as 1924 by Gini. The first 

effort to combine the geometric distribution with some distribution for heterogeneity was 

made by Tietze et al (1959) who combined the geometric distribution with an arbitrary 

three-point distribution of fecundabilities, which he fitted by trial-and-error. Henry (1961) 

suggested substituting a type I curve (beta distribution) to represent the way fecundabilities 

vary among couples. Sheps (1964) investigated extensively the characteristics of rates of 

conception in a mixture of geometric distribution. Potter and Parker (1964), Majundar and 

Sheps (1970), Singh and Bhaduri (1972), Maruani and Schwartz (1983), Weinberg and 

Gladen (1986) and others developed moment methods or likelihood methods for estimation 

of less or more complicated extensions of the beta mixture of geometric distribution. More 

recently Heckman and Walker (1990) gave a new insight into this field. They demonstrate 

the following points : [i] there are some patterns of declining marginal fecundability which 

cannot be explained by a mixture of geometric distributions; [ii] if the fecundability is 

constant for each couple, the population distribution of fecundability can be consistently 

estimated either parametrically or as a mixture of a finite number of population with a 

given fecundability; [iii] it is possible to test non-parametrically for the presence of 

percentage of totally sterile women.

15
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Covariates

As will be shown later in this dissertation, it is rather difficult to include in a same model 

heterogeneity and covariates. Demographers propose various solutions to include 

covariates in their waiting time models. Two main directions have been considered: [i] 

introduction of the covariates in parametric models, extension of the beta-geometric model 

to study the effect of covariates on marginal conception rates (Weinberg and Gladen, 1986) 

— see Chapter 4 for more details — [ii] use of semi-parametric models. The latter 

approach has been motivated by the need to use a discrete time scale (the ovulatory cycle) 

and when time dependent covariates exist. In these circumstances,Weinberg et al, (1994) 

"prefer to abandon the parametric modelling approach in favour of 

semiparametric regression modelling of marginal hazards leading to a Cox's 

regression model for life tables in discrete time".

Continuous time scale

Avoiding the difficulties related to the discret time scale, some authors model the time as 

continuous, having then at their disposal other, parametric and semi parametric, models. 

For a fully parametric model they describe the heterogeneity among couples using the 

gamma distribution. They obtain a gamma-exponential model (e.g., Singh and Bhaduri , 

1972) ; Sheps and Menken, 1973; Boldsen and Schaunberg, 1990). In this approach, 

although the time scale is genuinely discrete, it is assumed that conception takes place in 

continuous time, i.e., that a woman can conceive at any time, not only once in each 

menstrual cycle.

Semi parametric models for delay until conception on continuous time scale are used when 

the delay to conception is calculated over long periods of time. They are closely related to

16



Chapter 1 Introduction 

frailty models for survival data and allow the covariates to change with time (change of 

"treatment status" during the course of the study) (e.g., Larsen and Vaupel, 1993).

None of these solutions are fully adequate in the present context where, the delay until 

conception being short, there is little justification for a continuous time scale. Very recently 

demographers have published some results obtained using a random effects model for cycle 

viability in fertility studies on discrete time scale, (Zhou et al., 1996). This is an 

application of the recent development of the random effect models in the literature.

3. Random effects models

The two aspects of heterogeneity in the AID dataset call for two different bodies of 

statistical literature ; Whereas the woman heterogeneity calls for (discrete time) survival 

data and "frailty" models, the principal end-point being the occurrence of conception, the 

donor heterogeneity calls for "overdispersion" models for binary data, the number of cycles 

per donor being considered as independent of the success rate of the donor. In our context 

it will be useful, for a better understanding, to generate these models by a "causal" 

hierarchical model.

The literature on survival models with frailty parameters has a long history (see reviews by 

Clayton, 1988; Andersen et al., 1992; Pickles, 1994). The need to introduce an extra 

random component into survival data was first formulated in the field of continuous 

bivariate survival time data (Clayton, 1978 ; Vaupel et al, 1979). This random component 

was introduced as a random multiplier on the hazard scale and termed "frailty". This will 

be discussed in detail in Chapter 5.

In the description of the overdispersion models for binary data the roles of fixed and 

random effects has been a challenging aspect. Williams (1982) pointed out the desirability 

of placing the "heterogeneity" as additive on the same scale as the fixed effect : this

17
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condition maintains the "unit-treatment additivity" (Cox, 1984). This will be discussed in 

Chapter 4. The specification of the distribution of overdispersion is still also an active area 

of research (Lee and Nelder, 1996). Nevertheless, analytical tractability and the flexibility 

to model real data are conflicting requirements (Clayton, discussion of Lee and Nelder, 

1996): : .

"conjugate distributions are rarely available and, even when they are, additivity 

of fixed and random effects on the same scale is often not possible if 

tractability is to be maintained"

The Normal distribution has a rather particular place in this area as distribution of the 

random factor(s). Normal random effect distributions allow one to model complex inter­

dependency between units. This will be discussed further in this dissertation (see Chapter 

6 and following).

Linear and non-linear hierarchical models (Goldstein, 1991) are currently an extremely 

active area of research in biostatistics : they provide a useful frame to model complex data 

such as AID data. Hierarchical models appear in the literature under a variety of titles. In 

sociological research, they are often refered to as multilevel linear models (e.g., Goldstein, 

1986, Mason, 1983). In biometric applications, the term mixed-effects models or random- 

effects model are common (e.g., Laird and Ware, 1982). In the statistical literature, they are 

often referred to as variance components models (e.g., Searle et al, 1992). As regression 

models for hierarchical data (or e.g., multiple measurements from several individuals) they 

are often presented as random intercept models.

A further step is to think of ways in which statistical techniques should take more 

completely the hierarchical structure into account including all connections and interactions 

between levels (Goldtein, 1986 ; Rasbash and Goldstein, 1994 ; Bryk and Raudenbush,

1992). These aspects will be discussed in Chapter 6 and 7.
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Chapter 2 The dataset

The dataset concerns the 1901 women treated from January 1985 to March 1994 at the 

Center for Study and Preservation of Eggs and Sperm (CECOS Department of Biological 

Reproduction, HCL, France, Pr J.C. CZYBA and Dr D. COTTINET), with Artificial 

Insemination with Frozen Donor semen (AID). We will first present the hierarchical 

structure of the dataset and the pregnancies. Then a general description of the 

characteristics of the women, donors and cycles will be made. Finally an analysis of the 

censoring process will be performed in order to study the extent to which it could distort 

the inference.

1. Hierarchical structure of the dataset

Female hierarchy

A total of 12100 cycles was observed in 2437 "attempts" by 1901 women. At each attempt, 

a woman is inseminated at each of a consecutive series of ovulatory cycles, until success 

or right censoring. No attempt is prolonged past 12 cycles. Successful women ask often 

(one third) for a new attempt. Moreover, despite unsuccessful attempts a part of the women 

ask for a new attempt some months or years later. Figure 1 A presents this hierachy.

Women (1901)

Attempts (2437)

Cycles
(12100)

Figure 1 A Female hierarchy

19



Chapter 2 The dataset

Selection o f the women

We have to deal with a very strong process of selection. Couples are "triply selected" 

(Leridon, 1984) : First, couples are selected by the time they have been waiting for a 

conception without any success. A second selection is made by the physician, who has 

decided which couples are good candidates for this specific treatment. The third selection 

is the self-selection determined by the couples themselves when they decide to see a doctor, 

and accept or refuse the treatment.

More specifically, [i] the sterility proportion among the women is a priori lower than in the 

general population because the infertility of the husband is primarily responsible for the 

sterility in AID, [ii] two different groups of woman can be identified : women whose 

husbands are sterile (no spermatozoa in sperm) and women whose husbands are hypofertile 

(just a few spermatozoa which are barely fertile). These two categories of women have 

different levels of fecundability. It was shown that women are globally less fertile if their 

husband are not sterile, among the patients recruited for AID.

In our data, about two thirds (1178/1901) of the husbands suffer from male sterility, while 

one third of husbands have just a few spermatozoa which are barely mobile. It will be 

important to introduced this distinction in the model specification. Moreover, the women 

whose husbands are not totally sterile could be more homogeneous having been selected as 

less fertile, and thus the residual heterogeneity would differ between groups. This will be 

investigated in Chapter 7.

20
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Male hierarchy

Sperm donations were made by 279 different donors. These donors have made a total of 1 

328 donations, collected over about a month's time from a single donor. Each donation is 

divided into a number of aliquots (about 20-30) which are separately frozen as straws 

which will be used for each insemination.

Figure 1 B shows the male hierarchy, and the Table 1 the number of donations per donor.

(12100)

Donations

Donors

Figure 1 B Male hierarchy 

Selection o f donors and donations

CECOS policy states that semen donation is an anonymous gift for which no payment is 

received. Only married men under the age of 55, who have one or more normal children 

and whose spouse consents, are accepted as donors. A selection is necessary to eliminate
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three types of donors. Firstly, infertile and subfertile donors are rejected : fatherhood may 

be regarded as a guarantee of the donor's fertility, the ultimate criterion, however, is semen 

analysis. Secondly, donors carrying an infectious disease which might present a risk to the 

recipient and/or the child are not accepted. Thirdly, men carrying a hereditary disease 

which might present a risk to any child that is conceived are also not accepted as donor: 

this can be easily eliminated by genetically screening donors, both with karyotype and 

family and personal histories. Donations of poor quality on initial testing are discarded and 

not used for insemination.

The number of inseminations per donor may be influenced by the knowledge the physician 

have of his success rate. The physician can decide to stop further use of sperm of a donor 

after a series of unsuccessful inseminations with semen of that donor. Chapter 4 will 

discuss this selection process and illustrate the resulting selection bias. Chapter 7 will show 

how a unit-specific model may help to correct for it.

Donations Donors (percentage)

1 21 (7.5)
2 23 (8.2)
3 32 (11.5)
4 47 (16.8)
5 59 (21.1)
6 44 (15.8)
7 29 (10.4)
8 12 (4.3)
9 6 (2.2)
10-13 6 (2.2)

Table 1 Number of donations per donor.

In about 97% of the cases less than 50 straws were frozen (in liquid nitrogen) per donation. 

Table 2 shows the number of straws per donations.
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Number of straws Donations (percentage)

2 - 9 96 (7.2)
10-19 453 (34.2)
20-29 460 (34.7)
30-39 214 (16.2)
40 -49 61 (4.6)
50-59 19 (1.4)
60-69 12 (0.9)
70-79 6 (0.5)
80-83 4 (0.3)
unknown 3

Table 2 Number of straws per donation.

In the majority of the cycles (84%), two inseminations were carried out. In 96.4% of these 

cases the second was timed in the 48 hours following the first one. And in every cases a 

same donation was used for both inseminations of a same cycle.

Crossed hierarchy

There is no systematic assignment of donor to recipients but some association as the result 

of the calendar time. We give a global overview of this through figures 1 to 3. Cycles are 

organized into two overlapping hierarchies as showed in Figure 1 C.

Figure 2 and Figure 3 show the relationship between donors and women, each point 

representing one insemination.
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Women

Attempts

a
Cycle

Donation

Figure 1 C The crossed hierarchical structure

Donors

I

56

Figure 2 Calendar time relationship on the "diagonal" : donor and recipient are 

contemporary. Donor and recipient numbers are their calendar order of registration.
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In Figures 2 and 3 the lower right part of the figure concerns recipients asking for more 

than one attempt or beginning late after their registration (the identification number is 

attributed at the date of the first visit). The upper left comer points can be read as allocation 

of "old sperm" to women registered later.

Y ear : 1985 Y ear : 1986 Y ea r: 19 8 7

■
Oonom

Y ea r: 1988

O 60 150 250

Y ear : 1991

Y ear : 1989

0 50 150 250

Y ear: 1992

t

Y ear : 1 9 9 0

Y ear : 1 9 9 3

Figure 3 Donor versus recipient rank by year of insemination

There is a lag of about 5 years between donations (1980-1990) and inseminations (1985-

1993). But there is a temporal relationship between ranks of recipients and donors.
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Table 3 shows the number of cycles per "pair" of woman-donor.

Cycles per "pair" woman-donor "pairs"

1 6 347
2 1 850
3 480
4 111
5 21
6 7
7 2
8 1

Table 3 Distribution o f number ^insemination cycles with the same woman-donor

pairing. Complete dataset.

Sperm from each donor was used for insemination of several women. However there is a 

small degree of association : the situations where the same woman receives sperm from a 

same donor was quite frequent. Intuitively, this coincidence is rather larger than might be 

expected under random allocation, analysing this association in detail would be a major 

computation exercice. The association is probably due to the fact that the number of donors 

being available at à given time is rather low. Additionally the necessity to avoid any 

difficulty with blood group and with visible evidence against paternity (colour of the skin, 

of hair, etc..) limits the choice slightly.

2. Pregnancies

909 / 1901 (47.8 %) women obtained a pregnancy withing the first series of ovulatory 

cycles -the first attempt. A total number of 1213 pregnancies was obtained when
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considering all attempts, either ending with the birth of a child or interrupted by a

miscarriage. Table 4 shows the distribution of these various outcomes.

Outcome Pregnancies

Normal 898
Miscarriage 146
Extra-uterine Pregnancy 9
Pathological events during pregnancy 7
Stillbirths 5
Elective termination 1
Unknown 147

Table 4 Outcome o f the 1 213 pregnancies.

The outcome of the pregnancy is known for 1 066 of the 1 213 pregnancies. The missing 

data are partly due to current pregnancies and partly due to loss to follow-up after the frrst 

trimester.

There is a suggestion that miscarriage or still-birth is more likely when the conception 

occurs in later cycle. During the first attempt, if the conception occurred at the first cycles 

only 8.5% of the pregnancies ended with a miscarriage, but if the conception occurs after 

the first cycle 15 % of the pregnancies result in miscarriage. However, most pregnancies 

have a favourable outcome and the main reason for repeated attempts is to achieve a larger 

family size. Table 5 provides for each of the successive attempts, the total number of 

ovulatory cycles —  with insemination — , the number of successes— pregnancies —  and 

the selection of women asking for a further attempt.
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Attempt Cycles Women Successes Failures Further

attempt

among

successful

Further

attempt

among

unsuccessful

1 9740 - 1901 909 992 362 70

2 1902 432 244 188 74 16

3. 378 90 54 36 11 2

4 69 13 6 7 1 0

5 11 1 0 1 -

Table 5 Attempts, successes and failures. Complete dataset.

84% (362/432) of the women beginning a second series have been successful during the 

first attempt and as such have demonstrated their fecundability. These women, after a fîrst 

success (conception), ask for another series of inseminations either because the conception 

was followed by a miscarriage (93, i.e., 26.7 %) or to have another child (255, i.e., 73.3 %). 

Table 6 shows a pronounced decrease in conception probability over time. It is not properly 

viewed as a time effect within woman, but as a selection effect in a heterogeneous 

population of women. The success rates appear to be higher during the second attempt.

This progressive selection of the women under study will be studied at length in Chapter 4.
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First attempt Second attempt

Cycle number Successes/cycles Success Rates Successes/cycles Success Rates

1 194/1538 0.1261 72/432 0.1667

2 136/1332 0.1021 40/337 0.1187

3 119/1176 0.1012 36/279 0.1290

4 101/1022 0.0988 28/223 0.1256

5 76/914 0.0832 19/172 0.1105

6 66/806 0.0819 13/138 0.0942

7 49/660 0.0742 10/102 0.0980

8 58/584 0.0993 13/85 0.1529

9 32/503 0.0636 10/61 0.1639

10 33/454 0.0727 2/37 0.0541

11 25/402 0.0622 1/24 0.0417

12 20/349 0.0573 0/12 0.0000

Table 6 Conception rates over time. First and second attempt.

3. Covariates

The data having been recorded in a prospective way, most of the known prognostic factors 

have been carefully registered. These covariates characterize the women, their cycles, but 

also the donors and their donations.
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Women and cycles

The 1901 women were registered between 1985 and 1994, as shown in Table 7.

Year Women

1985 478
1986 198
1987 184
1988 166
1989 170
1990 159
1991 185
1992 184

. 1993 144
1994 (3 months) 33

Table 7 AID. Complete dataset. 1901 women. Year o f first insemination.

For a number of reasons, including new treatments after 1985 (In Vitro Fertilization with 

sperm of donors or not) and lack of donors in the recent period, the recruitment of patients 

has decreased since 1985. Nevertheless this higher number of "frrst inseminations" in 1985 

is mainly a first sign of the left tmncated nature of the dataset; this phenomenon will be 

discussed later.

Table 8 shows the age of the women when they began the treatment, with the dramatic 

decrease after age 38. ,

Age (woman) Women

18 - 24 125
25 - 29 775
30 - 34 732
35 - 38* 246
39 - 43 23

Table 8 Age o f the women at their first insemination.
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* Generally, after age 38, insemination is not proposed to infertile couples, the probability 

of success decreasing and the risk of foetal abnormality being higher at that age.

These women are normally fertile. As shown by Table 9, about 97% of the women had 

evidence of ovulation before treatment. For the other 3% the basal body temperatures 

curves (BBT) was not relevant and the decision was made to consider the women as fertile.

BBT before treatment Women (percentage)

Correct 1472 (77.4)
Irregular cycles 365 (19.2)
Anovulatory 40 (2.1)
Non interpretable 24 (1.3)

Table 9 Basal body temperature (BBT) before treatment.

An overall judgement of the quality of the cycle was made at its end by the physician, 

based on the basal body temperature curve (BBT). This classification is presented in Table 

10. Nevertheless, in most of the cases these data were recorded by a physician who knew 

the outcome and thus must be interpreted with some care.

BBT curve Cycles (percentage)

Normal 11 197 92.5
Abnormal 718 6.0
Non-interpretable 185 1.5

Tdble 10 Characterization a posteriori of the BBT curve.

As shown in Table 11, about 2/3 of inseminations took place on the ovulation day, the day 

before or the day after. The "ovulation day" is the.estimated day of ovulation according to 

the basal body temperature and hormonal levels. It must be recalled that the length of the
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ovulatory cycles varies from cycle to cycle and between women and that this is the reason 

why the insemination cannot always be optimally timed.

Insemination day Insemination (percentage)
First insemination
- 5 or less 475 (3.9)
-4 391 (3.2)
-3 825 (&8)
-2 1 585 (13.1)
- 1 2 499 (20.7)
0 3 853 (31.8)
+ 1 1 631 (13.5)
+ 2 or later 841 (7.0)

Table 11 Day o f first insemination relatively to the "day of ovulation".

In 38.6% of inseminations the sperm was inserted directly into the uterus, either routinely

— some of the physicians prefer this procedure — or after one or more ovulatory cycles

exhibiting a mucus of poor quality index.

Situation of insemination Inseminations (percent)

Cervix 7 428 (61.4)
Intrauterine 4 672 (38.6)

Table 12 Situation o f the insemination.

The Insler score is partly related to the quality of the mucus, partly to the opening and 

aspect of the cervix. This score increases when the observation takes place closer to the 

ovulation, but also characterizes the ability of the cervix to produce a good mucus. Table 

13 shows that in about 85 % of the cycles the Insler score was acceptable (7 or more).
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Insler score Inseminations (percent)

5 or less 650 (8.8)
6 541 (7.3)
7 1 130 (15.2)
8 1943 (26.2)
9 3 164 (42.6)

Table 13 Insler score. Cervical inseminations (n =: 7428).

Donor and donations

As shown in Table 14, a majority of donors are between 30 and 39 years old (72 %)

Age (donor) Donors (percentage)

26 - 29 22 (7.9)
30 -34 97 (34.8)
35 - 39 104 (37.3)
40 -44 43 (15.4)
45 -53 13 (4.7)

Table 14 Age o f the donors

The "quality" of the donations is described by the number and mobility of the spermatozoa 

and also the "pusl-lhaw index". Despite Strong correlations between these three parameters 

they give independent information of the quality of the sperm and have long been 

considered to be reliable indicators.

Number of spermatozoa 
10*/ml

Donations (percentage)

7 -4 9 151 (11.4)
50 -99 532 (40.1)
100 - 149 351 (26.4)
150-199 164 (12.3)
200 - 249 62 (4.7)
250 - 299 30 (2.3)
300 - 349 24 (1.8)
350 - 399 6 (0.5)
400 - 449 6 (0.5)
450 - 500 2 . (0.2)

Table 15 Number of spermatozoa per aliquot.
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Percentage of mobile Donations (percentage)
spermatozoa__________________________________________________________ -
30 21 (1.6)
40 315 (23.7)
50 473 (35.6)
60 355 (26.7)
70 126 (9.5)
80_______________________________ 38____________________________ (2.9)

Table 16 Mobility of the spermatozoa.

All donations had a good percentage of mobility; as previously stated others were discarded 

and not used for insemination for evident reasons. The post thaw quality index is set on an 

ordinal scale and describes the number of mobile spermatozoa under the microscope after 

thaw (this verification being made once per donation).

Post thaw quality index Donations (percentage)

2 ' ' (02)
2 41 (3.1)
3 67 (5.0)
4 286 (21.5)
5 136 (10.2)
6 472 (35.5)
7 102 (7.7)
8 172 (13.0)
 9________________________________ 50________________________  (3.8)

Table 17 Post thaw quality index

4. Censoring and left trunctlon

Our data are discrete time survival data : women are recruited at their first ovulatory cycle 

with insemination and remain under observation until conception occurs. But some women
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were midway through an attempt when data collection commenced, in 1985. Moreover, 

some women were withdrawn from the cohort before occurrence of any conception.

Late entry - left truncation

There is some left truncation. The few left truncated cases are a consequence of the 

inclusion of women having been treated for a few months at the beginning of the study 

(1985).

These late entries do not create any selection "bias" if [i] they are registered as such with 

the correct position on the time scale — cycle rank —, [ii] there is no added process of 

selection, i.e., if they have the same probability of conception as the women they join. 

The entry time (cycle) is shown in Table 18.

Entry to study (cycle rank) Women (percentage)

1 1538 (80.9)
2 132 (6.9)
3 36 (1.9)
4 43 (2.3)
5 25 (1.3)
6 22 (1.2)
7 22 (1.2)
8 25 (1.3)
9 22 (1.2)
10 9 (0.5)
11 15 (0.8)
12 12 (0.6)

Table 18 Entry times First attempt.
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Right Censoring

In AID -discrete time scale- the censoring occurs between two cycles : the subsequent 

cycles will not be included in the analysis, but the result — conception or not — at the end 

of the previous cycle is known.

There is some right censoring, in a few cases due to an "interval pregnancy". Table 19 

shows the reasons for end of observation (first attempt).
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Cycle Pregnancy Interval

pregnancy

Other

treatment

(IVF)

Adoptions Medical

reason*

Decision 

to stop**

End

point

NA

1 194 1 3 1 4 1 13 14

2 136 1 5 2 5 2 11 12

3 119 . 1 15 0 5 3 16 9

4 101 2 3 0 4 5 10 14

5 76 3 7 0 5 5 7 16

6 66 1 34 3 13 13 9 8

7 49 1 10 1 7 10 6 7

8 58 2 11 2 8 5 5 8

9 32 0 9 2 4 5 7 5

10 33 1 4 1 4 9 5 18

11 25 0 4 4 4 8 7 23

12 20 2 4 2 1 315 0 0

TOTAL 909 15 109 18 64 381 150 134

Table 19 Reasons for end o f observation (First attempt).

Medical reasons are psychological (21) or physical (43).

Other decisions to stop were taken in common, physician + patient (323) or by the 
couple (58).

Are classified as censored consecutively to the end point the couples without 

insemination for less than two years and without record of the decision to stop the 
treatment.
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This censoring arises either because of the end of the study (end point), or because no more

inseminations took place or were registered in the dataset. The first case —  end point—

can be compared with a type I censoring (Kalbfleish and Prentice, 1980), where the

censoring time of each individual is fixed in advance. This censoring does not interfere

with the inference process, and thus can be ignored. The latter — no more inseminations

take place — depends arbitrarily during the course of the study on previous conceptions,

and on values of observed covariates : if bad prognosis factors are observed and no success

occur during the first cycles, not rarely a change of treatment is proposed before the twelfth

cycle, because of physician advice or of the impatience of the couple or their lassitude. It is

for example due to the decision to withdraw from the cohort the women being more

advanced in age, after a few cycles, and to propose to them another treatment. This

censoring process changes the distribution of the characteristics of the women under

observation during the further cycles without disturbing the relation between these

characteristics and the outcome. This selection process is ignorable.

A "selection bias" would be created if withdrawal process were related to future events!

"non-response is non-ignorable if it depends on an unobserved response" (Little 

and Rubin, 1987).

As we shall show below, interval pregnancies create such a selection !

Interval pregnancies

Sometimes, after one attempt and before commencing a subsequent one, a woman may 

conceive naturally. These quotes “interval pregnancies” are quite rare (15 interval 

pregnancies are registered). These are causes of censoring, not competitive events during 

an attempt. It is highly probable that the higher the probability to conceive under 

insemination the greater is also the chance to be withdrawn because of an interval
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pregnancy. These women are thus right censored because of indirect information about 

there fecundability and thus formally create a selection bias. This selection process is non- 

ignorable. Nevertheless, the quite low rate of these pregnancies allow us to ignore this 

phenomenon for practical purposes.

At the end of this chapter it appears that the AID dataset has potentially a very complex 

correlation structure resulting from repeated attempts to conceive by the same woman, and 

repeated use of sperm donors. After a conception occurs the woman is removed from 

observation at least for a few months : conception acts as a "selection process" (Leridon 

and Spira, 1984). The proportion of less fertile couples increases as the waiting time 

lengthens.

Moreover important explanatory variables change during the course of the study : Insler 

score, day of insemination and pharmacological stimulation (Clomiphen citrate) are all 

time-varying explanatory variables. Besides if bad prognosis factors are observed and no 

success occurred during the first cycles, quite often a change of treatment is proposed 

before the twelfth cycle and the woman is censored.

Nevertheless we have seen that, except for the very specific —  and rare —  case of interval 

pregnancy, the strong selection process at the origin of the dataset is compatible with the 

use of conditional inference.

39



Chapter 3 A marginal model for discrete time survival data

Chapter 3 Marginal models for discrete time survival data

Our data are censored discrete time survival data : women remain under observation until 

conception or censoring occurs. For simplicity in this Chapter we ignore male 

heterogeneity and the multivariate nature of the data and consider only the first attempt at 

pregnancy by each woman.

The models we consider in this Chuter are marginal models. These models are used to 

relate the marginal hazards to observed covariates. We point out two important facts. First, 

we show that, despite the introduction of observed covariates, a decrease of the baseline 

remains which may be interpreted as a sign of the presence of other, unobserved, 

prognostic factors. Second, the fact that the parameters of this marginal model have no 

interpretation at the subject level is stressed.

1. The logistic model for marginal rates

Let us define the discrete "hazard" at cycle t, as the probability of conception at cycle t, 

(successful insemination) conditional upon the fact that no conception occurred in previous 

cycles.

X,= Pi{T = ^ T > t- \ )

We choose to treat the time scale as discrete, because the menstrual cycle is a logical, 

physiological unit of time for the phenomenon under study. The time measurement 

represents the number of attempts required to conceive, an ordinal scale.
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Let us write A# as a function of prognosis factors in the following way,

i ° g j ^  = Po,+4Pi-

where, on a logit scale Pq, is an arbitrary location parameter corresponding to cycle t and

Pi are the vector of changes in the fraction of a positive response for a change of one unit 

in the corresponding covariates.

The marginal rates are modelled as a function of covariates without explicitly accounting 

for subject heterogeneity. The regression coefficients have interpretation for the population 

rather than for any individual and hence we will use the term "population-averaged" (PA) 

model in this case (Zeger et al, 1988).

2. Likelihood

The construction of the likelihood for censored failure time data on a discrete time scale 

will be progressive. Our final objective is to cover complex situations, including time 

dependent covariates and unobserved heterogeneity. This potential complexity calls for a 

unified method of presentation, with the drawback of the need to use a rather more 

technical notation than for a simpler situation where a simpler explanation would be 

sufficient. We will successively deal with the likelihood, formed as the product of 

conditional contributions, and the factorization of the likelihood in case of censoring and 

the existence of two equivalent ways to write the likelihood of censored data. Qiapter 4 

will add the modifications needed to cover the case of unobserved heterogeneity.

Following Gelfand and Smith (1990), distributions are denoted by brackets, so joint, 

conditional, and marginal forms, appear as [%,y],[%|y], and [X]. Multiplication of
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densities is denoted as a product [X, 7] = [X|y] [7]. The process of marginalization is

denoted by integration of the conditional distributinon such as [X] = J[X|7] [7] J7.

2.1 The likelihood, formed as the product of conditional contributions

The response (delay until conception) considered as polytomous, with 13 categories

Suppose that the response of each woman in the study is the delay until conception, T say, 

or the absence of conception during the first 12 months. Initially let us ignore the cases 

where some censoring lakes place before the \2lh Cycle.

In this case the response can be considered as polytomous, with 13 categories, 7=1,...12,13, 

the \3th for women having not conceived during the 12 cycles of insemination. Time of 

conception or censoring is thus integer valued within 1-13.

Let 7/be an indictor of T=t; 7^is the outcome of the fth insemination for one woman. 

Finally 7̂ /; wiU be used as a shorthand for (7; ,72 ,...,7, ) : Y(u) carries the same information 

as T.

Product of cycle contributions

The likelihood of these polytomous data is expressed as a product of cycle contributions. 

Let [7y ,72 ,...,7J be the related distribution of the time ordered random variable. Following 

rules of conditional probability, the multinomial distribution can be expressed as a product 

of factors, the conditional probabilities to conceive during each cycle, the conception 

having not taken place earlier.
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Thus the likelihood is formed as the product of conditional contributions, of the whole

study group, over successive cycles. The likelihood can now be written as

2.2 Factorization of the likelihood

Let us introduce now the censoring during the first 12 cycles. Q  representing censoring at 

the end of a cycle t, i.e., between two cycles (the woman was inseminated at cycle t but not 

at cycle t+1 and after), as before

C(t) will be used as a shorthand for (Cy, C2 Q  )

Let H  represent the complete history of conceptions, covariates, and censoring

ff(t]F(T(t),X(t),C(t))

The likelihood can be constructed as a product of the conditional terms.

The likelihood can now be written as

L = n
1

Note that following simple rules of probabilities

[y,. c, ,x ,]= [y, , X, |c, ,y„ x ,]

and thus the full likelihood factorizes into two parts (event process, censoring process)

L = n [Y . |H „ .„ ,X ,]ri[C .|H  Y..X,]
1 1
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Independence

Let us study the first factor on the right side :

If , X, ] = , X̂ ĵ] the censoring is said to be independent, because censoring

does not select women in regard to their specific probability of pregnancy. Under this 

assumption the distribution of Yt given the covariates is the same among censored and 

uncensored individuals; we can therefore drop C(t.i) from .

Unobserved heterogeneity could be a reason for non-independent censoring ! As stated in 

Chapter 2, a "selection bias" would be created if the withdrawal process both within and 

between different attempts selects women of higher or lower fecundability. The interval 

pregnancies are important to consider in this context: the censoring resulting from the 

withdrawal of women after an interval pregnancy excludes some highly fertile women, and 

thus, is a case of non-independent censoring. Nevertheless interval pregnancies are not 

numerous and we will ignore this fact in the rest of this dissertation.

Non-informative censoring

Let us study the second part of the likelihood equation, corresponding to the censoring

12

process H Yj,X,]

If this contribution does not depend on the parameter of interest, the censoring is non- 

informative. In the AID dataset the censoring depends arbitrarily on the prognosis factors 

observed during the previous ovulatory cycles : a woman having bad Insler scores, for 

example, can be excluded from AID cohort for that reason. The relations between these
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prognosis factors and the censoring process are not related to those existing between them

and the outcome, and thus there is no informative censoring in our dataset.

Factorization

The likelihood inference results solely from ratios of the likelihood function for various 

values of the parameter (Edwards, 1972). Under the assumption of independent censoring, 

inference may be based only on the observed part and remain consistent when the 

likelihood is limited to the first factor and fully efficient if the censoring process is non- 

informative.

Note that even in the case of informative censoring there will be an associated loss in 

efficiency but no bias.

2.3 Two equivalent ways to write the iikeiihood of censored data

We should note that two equivalent ways can be used to write the likelihood of our 

censored data.

First, as arising from one unit per woman : the likelihood contribution for a woman 

observed until cycle t is given by the marginal distribution function for uncensored 

observations or the marginal survivor function for right-censored observations :

f .  ‘

where 5= 1 if conception, and 5= 0 for censoring andfi and Ft are respectively Pr (T = t) 

and Pr (T>t).

Second, the likelihood may be writen as arising from one unit per cycle, the likelihood 

being formed as the product of conditional contributions, as stated in the previous Section. 

The likelihood contribution for a woman i (i=l,...,n) observed on cycle r is
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Since F, = I l ( l  ~ . these likelihood are equivalent and will be used interchangeably.
û t

This will have a renewed interest in subject-specific models, all cycles of a same woman 

sharing a common basal risk.

3. Logistic analysis of the data :

In this section we present the fit of the logistic model presented above. We include all 

observed covariates.

Note :

SAS PROC LOGISTIC was used to fit the model :

proc logistic;
model y= cycle2 cycleS cycle4 cycleS cycle6 cycle? cycleS 
cycles cyclelO cyclell cyclel2 
inscent numcent mobcent agewcent
J_3orles jpluslor clomiphen azoo deccent mobdec numdec;
where attempt=l;
run;

Metric covariates are standardized (it is for example the case for the covariate azoospermia 

: "azoo") to have unit standard deviation

This analysis concerns only the first series ("attempt") of cycles of the women.

Table 20 shows the results.
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Parameter Estimate . SE

Intercept -2.016 0.079

Woman level
Age of the woman -0.104 0.036
Azoospermia of the husband 0.090 0.036

Cycle level; female covariates
Insler Score 0.236 0.043
Early insemination(before Ovulation day minus 2) -0.139 0.042
Late insemination(after Ovulation day) -0.109 0.037
Stimulation of ovulation with clomiphene citrate -0.095 0.038

Cycle level; male covariates
Number of spermatozoa in the semen before freezing 0.135 0.033
Percent of mobile sperm, in the semen before freezingO. 182 0.037
Global Index of quality of the semen after thaw 0.120 0.039

Cycle rank
2 -0.253 0.120
3 -0.269 0.125
4 -0.285 0.132
5 -0.438 0.144
6 -0.486 0.151
7 -0.582 0.169
8 -0.318 0.160
9 -0.760 0.200
10 -0.628 0.198
11 -0.832 0.223
12 -0.945 0.245

- 2 log likelihood 5800.1

Table 20 First attempt. Logistic regression. With all observed covariates

The discussion of the effect of observed covariates is delayed until Chapter 7.

As previously said, the pronounced decrease of the base-line over time (-2.53,...,-0.945) is 

interpretable as a selection process in a heterogeneous population. This decrease of 

baseline despite the introduction of observed covariates, indicates the presence of other, 

unobserved, characteristics. Our population of women remains clearly heterogeneous 

despite the introduction of the observed covariates.
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4. Link function

For marginal models the choice of the link is mainly a matter of quality of fit and of 

interpretation of the parameters (log-odds for the logit link). In this dissertation the choice 

of the link function has a specific interest due to the fact that we will have to introduce both 

fixed and random effects, and we will look for mixing distributions with optimal 

properties. For this reason, we have to describe in more details the link functions which 

will be considered.

The following regression models relate cycle - and woman - "hazard" (which is a success in 

fecundability data), (i for woman and t for cycle) to possibly time dependent covariates

X it

log(-log(l -  A,,)) = j8„, + x lP  

for the complementary log-log or "proportional hazards" model

and

and

i o e - ^ ^ = P o ,+ 4 P

for the logistic regression model

logA„ = p^, +xlP  

for the log linear regression model

the last one having been proposed by Weinberg et al (1994), as providing for estimation of 

a "fecundability ratio" which is the ratio of the cycle-specific conception probability for
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exposed women, divided by that for unexposed women. This last model will not be

described later on. We prefer to focus on the logistic and the complementary log-log, both

being used in the following Chapter after some modifications to include random effects.

The complementary log-log model

The probability of failure varies as an exponential function among individuals :

This model can be obtained specifying that

-log(l -  Aj,) = -log(l -

i.e., to place the covariates as acting multiplicatively on the -log(l -  X) scale.

-  log(l -  Xq, ) is positive and thus can be written . It becomes

or, which is equivalent

1 -  A„ = exp(-exp(^„, + xlP))

or, '

log(-log(l -  A,,)) = Po, + x lP

this last form being at the origin of the name "complementary log-log model".

If either the base-line hazard or the covariates are fixed over time the model simplifies : 

for fixed base line

f:, = ( i - A o ) l r *
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for fixed covariates

F .,= F o.r ''^-

These formulae have the same aspect as the corresponding ones for the proportional hazard 

model for continuous time scale. This complementary log-log model will be considered 

again below (Chapter 5) with the introduction of a random multiplier or "frailty" to 

represent the specific risk of each woman.

The logistic regression model

An alternative discrete model specifying a linear log odds model for the hazard probability 

at each potential conception time has been used in the previous Section. The hazard for 

woman i at cycle t is given by

_ ^Ot ^xlP
l - X f j  1 -  A q,

Note that this model is multiplicative in —̂ — , which, being positive, can be written
1 - Ao,

ePo,

It becomes

A;,
1-A,,

ii —  gPot+̂ lP

or, which is equivalent

This is a linear logistic model with an arbitrary logistic location parameter corresponding to 

each cycle.
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Comparison

The base-lines, Aq, , -  log(l -  Aq, ) and — ^  are very similar for small values of Aq,
1 -

as shown in Figure 4. These similarities for low hazard rates are particularely interesting in 

our situation : pregnancy rates in AID data set are at about 10 p cent and thus these models 

are very similar in our context. Nevertheless, they have a different interest : it will be 

shown below that the complementary log-log model gives rise to some important 

simplification in calculations in our discrete time scale situation.

I —log(l —A)

1-A
in
c>

o
o

I

o

0.200.150.100.050.0

Figure 4 A graphical comparison o f the three link functions
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5. Interpretation of parameters of the Population Averaged model

It is wise to distinguish the size of the effect of the covariates on each subject's probability 

to conceive and the size of its effect on the "population" : in the presence of heterogeneity, 

these two effects are not equivalent (Zeger et al, 1988).

* "Subject-Specific" (SS) parameters, say, describe the effect of the

covariate on the probability of conception of each woman,

* "Population Averaged" (PA) parameters, say, describe the effect of the 

covariate in the global result when the two groups of women, having and not 

having the characteristic, are compared.

In the previous Section we have estimated pp^ . We have verified the absence of

interaction between time and each of the marginal effects. Now, a progressive selection of 

the less fertile women arise from the first to the twelfth cycle; therefore the absence of 

interaction means that the effect of the covariates does not vary with the underlying 

fecundability and thus our marginal results can be generalized.

The question of the interpretation of our estimates at the woman level arises naturally in 

our context : with regard to a specific woman what is the effect of the covariates? In the 

presence of heterogeneity, p ^  are higher than Pp^ : the random effects variability shrinks

the subject specific fixed effects parameters toward 0. The progressive selection of less 

fertile women modifies the relation between these two quantities! As a consequence the 

relationship between P^^ and Pp^ is not stable, except for a very specific distribution of

the heterogeneity — positive stable distribution (Hougaard, 1986) — for which the

marginal decrease of fecundability does not come along with decrease of its variance 

among the women.
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Thus, coefficients obtained using marginal models are interpretable as predictors of

marginal rates but not at the subject level. Perhaps it should be pointed out that these

coefficients might not be applicable in a different population with more or less

heterogeneity.

At the end of this chapter it may be said that the need to take account of the heterogeneity 

is clear. For the most part we shall use random effects models rather than marginal models 

for two reasons. Firstly, the correlation in the data must be taken into account when 

estimating standard errors of parameter estimates. In this application the correlation 

structure is too complicated to be taken into account using jackknife, bootstrap or Huber's 

formula, as a result of the presence of correlation not only within blocks but also between 

blocks (donor heterogeneity). Secondly, the magnitude of "unexplained" variance 

components is of at least as much interest as the covariate effects, most of which being 

already well understood. Finally we will prefer to use a "causal" hierarchical model —  or 

"subject" specific model —  in which the unobserved heterogeneity is explicitly specified 

and thus take directly account of the correlation structure of the data.
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Chapter 4 From the observation of overdispersion to the 

specification of a mixed model

Historically, the motivation for random effects models for binary data has been the 

observation that the variability among binary responses may exceed the variability which 

would be expected due to binomial variability alone. This overdispersion may be produced 

by correlation between binary responses or by cluster of observations with similar 

probability of success.

The idea of heterogeneity among women was the most likely explanation for the 

observation of a marginal decrease of the pregnancy rates (Gini, 1924). We shall present a 

further aspect of heterogeneity among women which is detected through the association 

between two waiting times to conception in successive attempts of the same women. 

Because of heterogeneity two processes corresponding to successive attempts of the same 

women "sharing a common basal risk" (Clayton, 1978) will resemble each other more than 

two other processes.

Donors being selected as fertile, the literature hardly discusses possible heterogeneity 

among them. In our dataset we observe however two manifestations of heterogeneity 

among donors : overdispersion of counts of successful fertilization by donors, and, rather 

unexpectedly, a marginal increase of success rates for donors whose semen has been 

previously used for a higher number of insemination.

In this chapter we will describe these manifestations of heterogeneity in our data set and 

then consider a way to specify models which takes them into account. For simplicity, we
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will study, heterogeneity between women ignoring male heterogeneity and conversely,

heterogeneity between donors ignoring female heterogeneity.

Note that the proportion of successful cycles obtained per woman in one attempt is not of 

the same nature as the proportion of successful cycles obtained per donor. For women, the 

numerator — number of pregnancy during one attempt, 0 or 1 if success—, and the 

denominator — number of cycles — are both random and related. Under the assumption 

that a woman has a constant conception probability, the distribution of the delay until 

conception is geometric -a special case of the negative binomial distribution. If T is the 

delay until conception and A the risk (probability of success) for each cycle

t-iPr(r = f) = A(l -  A)

Under the assumption of homogeneous conception probability ( among women and among 

donors) the number r of successes for a given donor is binomial. If is the number of 

successes, m the number of ovulatory cycles for which the semen of this donor has been 

used, and A the risk (probability of success) for each trial

r ~ Binomial(m,X)

fm \
Pr(/? = r)=  A % l- A r '

\ ^  )

Despite this apparent difference between these two points of view, presenting the 

observation by woman or by donor will lead to equivalent inferenees if inferenee is based 

on the likelihood. If f is the number of cycles observed and 6= 1 for conception and 5 = 0  

for censoring, the likehhood contribution for each woman is

Af(l-A) t - S
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This likelihood takes the "binomial" form despite the fact that the model is not a binomial

one.

As regards to the number of successes per donor, if the the process of conception and the 

censoring process -decision to stop using semen of a donor for further insemination- are 

independent and non-informative^ , the likelihood contribution for each donor is binomial.

r ( l-A ) '" '^

Thus the likelihoods have the same binomial "form" despite the fact that the model are 

different (Cox and Hinkley, 1974, p 40).

1. Manifestations of heterogeneity among the women

We shall present the first manifestation of heterogeneity, the marginal decrease of hazards, 

rather briefly since it was discussed in the previous Chapter. We shall then discuss in detail 

a second consequence of heterogeneity among women which is the association between 

waiting times to conception in successive attempts.

1.1 Marginal decrease of hazards

The observation of the marginal success rates (See Table 6) provides two results. Firstly, 

the sharp decrease of the hazards during the first attempt : the marginal conception rate 

falls from 13.9 % for the first cycle, to 5.7% on the twelfth (Mantel-Haenszel trend

’ Note : it will be shown later than m is informative concerning the process of conception in our data set Let 

us hrst ignore this fact.
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test =35.66; p<0.001). Secondly, the women attempting for a second series have better

results, respectively 16.7%, 9.4% and 0% (n = 12); this second trend is also significant:

adjusted on the cycle rank the pregnancy rates are higher at the second attempt (Mantel-

Haenszel trend test =16.13; p<0.001).

Under the assumption of stability of the fecundability over a short period of time, these two 

observations are strong arguments for the existence of an heterogeneity of the fecundability 

between the women : subjects with high fertility are likely to conceive earlier ; this in turn 

will result in removal from observation ; and thus the distribution of the fecundability in 

those remaining under study will be modified with a decreasing mean. On the contrary the 

mean fecundabity among the women asking for a second attempt is higher than the overall 

fecundabity rate observed on the first attempt, a high percentage of them being of proven 

fertility.

The first and the second observation are not of the same nature. The first selection process 

is directly related to the conception process, the woman being systematically withdrawn 

from the first attempt after a conception. The second, is not so systematic. 84% of the 

women beginning a second series of cycles had conceived during the first one.

1.2 Association

A  convenient way of studying the association follows from continuous bivariate survival 

time data (Clayton, 1978, Oakes, 1989).

Denoting the delay until conception in one attempt by S and the delay until conception in a 

subsequent attempt by T, we can measure association by the array of odds ratios.

^ _ Pr(5 = s,T  = t)'Pr{S >s,T>t)  
~ Pr(5 = j , r > r ) P r ( 5 > j , r  = 0
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0 ,, may be consistently estimated by the sample odds ratios in the 2 x 2  table formed by

cross-classifying all women observed at cycle s in the first attempt and at cycle t in the 

second attempt by whether or not they conceived at each of those cycles. Of course, there 

are many such statistics and there will be few data for estimation of most of them. If s and t 

can take values from 1 to 12, each pair of attempts constitutes 144 different tables. 

Empirical estimates of a constant 6 may be obtained using the method proposed by 

Clayton (1978).

Figure 5 exhibits a grid with in each cell pregnancies and censoring for the first two 

attempts, among women having had at least two attempts : this will be useful to calculate 

estimates of 6.

Cell s,t tabulates women whose observation ceased at cycle s of the first attempt and t of 

the second. The cell contains the 2*2 table filled by tabulating the reason for stopping 

(conception or censoring) at each attempt. It is wise to note that in case of left truncation - 

for the first attempt- we have nevertheless included the cycles from the beginning of the 

attempt.

Figure 6  presents a grid with each cell having to be read as the component of 0,, : estimators

of Pr(S=s,T=t) (upper left), Pr(S>s,T>t) (lower right), Pr(S=s,T>t) (upper right) and 

Pr(S>s,T=t) (lower left).

Figure 7 shows the estimated 0,, when they are available. Following Oakes (1989) let us

show how to obtain estimates of using the elements contained in Figure 5. Each cell of 

the Table corresponds to a possible pair of values (s,4) for (S,T) and displays the number of 

women according to their behavior at the particular pair of cycles. The upper left (nn(s,t)), 

upper right (nio(s,t)), lower left (noi(s,t)), and lower right (noo(s,t)) entrie in each cell count
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are, respectively, the double successes, censoring in T and success in S, Success in T and

censoring in S, and double censoring at (s,t).

To see how 6 may be estimated, define

r„, (s, t) = (s, () + % {tin (“. t) + «01 (“. 0 }
U>S

r,o (s, /) = «,„ {s, f) + X  {« ,, (J, v) + n,„ (j, v)}
V > t

roo(s,t) =  «oo(^.f) + Z {« o i(“.ï) +
u>s

+ Z { « io ( ' S . ’') +  « o o ( j ,v ) }
v > t

+Y, S  {«11 (“> W + «01 (“. v) +  n,o (u, v) + (u, v)}
u>s v>t

Second attempt, t

10 11 12

1

2

3

4 

«0 6 

f e

■ 7 

8 

9 

10 

11  

12

Figure 5 Pregnancies and censoring for the first two attempts, among women having

undergone at least two attempts
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S e c o n d  attem pt, t

10 1 2

IS 42 

26 261

6 36

30 201

4 26

24 161

3 23 

16 1»

O 18

10 77

13 41 

40 28:

2 37 

28 211

6 20

24 171

3 22 

21 14:

4 1612 11̂
6 30

32 21<

3 38 

22 171

3 26 

20 141

3 28 

16 114

O 10 

6 74

O 16 

6 82

6 31

28 17i

4 24

16 141

3 16 

17 121

8 12 

12 10(

6 24

10 144

O 16

17 104

2 18 

10 66

4 24

14 123

3 20 

O 66

3 17 

7 74

2 13 

11 60

3 10 

6 41

Figure 6 Two by two table prepared for calculating 9 ,̂

Second attempt, t 

1 2 3 4 5 e T a 9 10 11 12

O.M O 0.35 0.53

1.53 0.03

O.TO II 0 77

4 1.31 O 5.00

1.95 0.73

1.45 0.00 0.03 OJI7

1.13 0.35 0.47 O 1.13 3.35 0.33

0.84 0.77 1.03 1.01 0.05 1.05

a.a o a.53

0.50 0.43 I 1.37

Figure 7 9 ,̂ when they are available (i.e. non-zero denominator)
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The data from these tables (Figure 7) may be combined to give a single estimate of the 

common odds ratio using the Mantel-Haenszel (MH) procedure. In our case, between first 

and second attempt

^MH —

To test for heterogeneity the conventional Mantel-Haenszel procedure for one degree of 

freedom provides us with a solution, testing against the null hypothesis (0 = 1) :

=56.7

Despite the fact that one woman could contribute to all 144 tables this test remains valid, 

the contributions of each table being uncorrelated under the null hypothesis.

This quasi-independence of tables cannot be assumed when the null hypothesis does not 

hold and thus MH confidence intervals are not correct. As a conclusion, the association 

provides us with a second piece of evidence for heterogeneity among the women.

The same procedure was used to estimate the association between the first and the third

attempts — 0 ^  = 3.6 — and between the second and the third — 0 ^  = 1.6. These 

measures of association was estimated respectively over 432 women — between first and 

second — and over 90 women — between first and third, and second and third.

In the next Chapter, an interpretation of the size of the association under the gamma- 

geometric model will be proposed.
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2. Manifestations of heterogeneity among the donors

In this Section we shall describe the overdispersion among donor success rates and the 

marginal increase of success rates for donors whose semen has been previously used for a 

higher number of insemination.

2.1 Overdispersion

Under the assumption of homogeneity (among donors and among women), the mean and

variance of the number of successes under the binomial model are respectively
%

E(r) = mX

Var (r) = mX(l-X)

The maximum likelihood estimator of X is the simple overall mean

X =
I ' i
V=1
d
Ï

v=l

where r* and mt, are respectively the number of successes and inseminations for the tth of 

d , ( k =  l,...,d ) donors. The deviance with respect to a model in which each donor has its 

own probability of success is

D = - 2 %log
1 - - ^

\  ^ k j
*=1 f

\-x
\  J

=771, df=278
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The result may be compared with the upper bound of the %^95 % confidence interval,

318. This provide a goodness of fit test of the assumption of homogeneity, which is 

rejected. Some care must be taken in assuming deviance to be in this circumstance, 

since there is little information per donor (McCullagh and Nelder, 1989). Nervertheless the 

large difference between observed deviance and the upper bound provides an argument in 

favor of heterogeneity between donors. Heterogeneity among donors may be in part 

explained by heterogeneity among women. More precisely overdispersion among donors is 

expected from heterogeneity among women and heterogeneity may result from a non- 

random association between women and donors. We will see later that a part (but only a 

part) of this overdispersion can be explained by the observed covariates. The residual 

overdispersion will be considered as a consequence of the existence of other, unobserved, 

characteristics.

Rewriting the model to take account of this heterogeneity, we leave the mean unaffected 

and inflate the variance :

E(r) = M

Var(r) = cT^.m/i(l-/x)

= dispersion parameter * binomial variance 

where </ is independent of p. The dispersion parameter is the so-called scale factor of 

GLM models. This is a first model (very simple and perhaps not a good one) for 

overdispersion. The variance is now the product of the binomial variance, and a dispersion 

parameter <7 ̂ .

By equating the Pearson to the expectation of a%  ̂distribution having the same number 

of degrees of freedom, we obtain a moment estimation of C7̂  :
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5 = = - ! - t k r ^ = 2 . 5 4
d-\k=\  m^/i(l-ju)

X  being only asymptotically % d-i ,  the estimator (cr^, presented above) has a slight bias of

order 0(m^) (McCullagh and Nelder 1989 p i27). gives an idea of the size of the

variance of the number of successes per donor. Since it is more than twice the binomial 

variance this is good evidence of heterogeneity among donors.

A priori, donors are withdrawn from observation when there are no more aliquot : the 

donations are attributed to women while the stock lasts ; as a consequence, we do not 

expect any trend in marginal rates. Observation of the data set will partly change our mind 

about this last aspect.

2.2 Marginal increase of success rates

In the previous section, the rank of the cycles among the clusters (donors) was ignored.

Let us use this information. It provides another point of view to look at the heterogeneity.

A phenomenon of selection -less strong than for the Women, nevertheless- is observed 

when the successive cycles are ordered in the sequential order of the use of the sperm 

donations of a same donor. Table 21 shows the reality of this phenomenon.

Rank of the Insemination (per donor) Number of
Inseminations Successes

%
successful

0 - 9 2 445 242 9.9
10-19 2 508 228 9.1
20-29 2 207 213 9.6
30-39 1 821 169 9.3
40-49 1 356 130 9.6
50 - 59 883 109 12.3
60-69 535 75 14
70-79 217 32 14.7
80- 128 15 11.7

Table 21 Risk of pregnancy according to the sequential order of the sperm of each donor.
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The observed trend is significant : Mantel-Haenszel trend test =10.58; p<0.001. Several 

hypotheses can be proposed to explain this apparent "improvement of the quality of the 

sperm".

Relation between the number of aliquots and the fecundability
r ■ .

As a first reason for the relation between the "rank" of insemination and the success rate 

could be a relation between the number of aliquots obtained and the quality of the sperm : a 

donor whose donations can produce more aliquots could also provide better results.

This assumption is partly supported by the data, as shown Table 22 (Mantel-Haenszel 

trend test %^=9; p»0.03).

Calendar period effect

Sperm having being used for a higher number of inseminations could be sperm of the first 

period of donation, the more recent sperm donations having being used until now for a 

lower number of cycles. The better results with sperm having been used often could be due 

to an overall higher fertility of donors in the first period of donation (1978 - 1985 say) : this 

observation would be in favor of the current idea of a recent decrease of fertility. As can be 

seen from Table 23 this assumption is not validated by the data (Mantel-Haenszel trend 

test =sO.;p« 0.956).
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Number of aliquots Number of 
Cycles successes

%
successful

0 -9 469 42 9
10-19 3 082 260 8.4
20-29 4 212 413 9.8
30-39 2 609 322 12.3
40-49 984 101 10.3
50-59 298 28 9.4
60-69 226 2 0 8.8
70-79 143 15 10.5
80-89 77 12 15.6

Table 22 Success o f cycles according to the number o f aliquots o f each donation.

Complete data.

Year of recruitment of the donor Number of cycles Successes % successful

79 14 3 21.4
80 55 2 3.6
82* 274 2 0 7.3
83 481 48 10 .
84 1934 164 8.5
85 1 172 109 9.3
8 6 2 854 358 12.5
87 1 308 150 11.5
88 897 65 7.2
89 1258 124 9.9
90 1 800 166 9.2
91 33 3 9.0
92 2 0 1 5.0

Table 23 Success o f cycles according to the year o f recruitment o f the donor.

Complete data set.

* no donor was recruited in 1981 

Selection bias

The physicians suggested to us at least two other potential explanations, both able to create 

a selection bias- increase of the success rate with "rank" of insemination :

First, clinicians observing more successes with some donors give them the preference for 

further use! The heterogeneous nature of the group of donors justifies their method : the 

posterior probability of conception is higher for donors having had successful sperm.
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Second, the deliberate choice to allocate "old sperm" to potentially highly fertile women.

For example a woman asking for a second child after a rapid success, will receive semen

from a donor being no more currently "in use" : the physician expecting a rapid success for

this woman give her sperm, considered as "old", considering that whichever semen is given

the insemination will be successfull.

In the first case the selection is based on observation of the donor, in the second of the 

woman. In the second, it is noteworthy that the heterogeneity between women could create 

a difficulty when analysing donor effects. If later straws of some donors are donated to 

highly fertile women the good result could be attributed by mistake to the donor. In both 

case the marginal — PA — analysis is missleading. Chapter 6  will discuss this again and 

show how a subject specific analysis will correct the bias !

Finally we could propose a fifth hypothesis, the progressive improvement of the quality of 

the sperm of each donor when it remain frozen in liquid nitrogen. Some French biologists 

are fond of this assumption, having the opportunity to observe the same time improvement 

effect on wine... but our data does not support this hypothesis.

At the end of this Section we have a clear evidence for both female and male heterogeneity. 

In the next two Sections we will successively present the specification of a model for 

overdispersed binary data and then a mixed model, these Sections being a first attempt to 

introduce fixed and random effect in a same model.
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3. Specification of a modei for overdispersed binary data.

Two simple models aimed at the interpretation of the above described overdispersion will 

be presented : one describing the delay until conception — a mixture of geometric — , the 

other the number of successes among donors — a mixture of binomials.

We shall discuss first the consequence of this heterogeneity in describing it with the first 

two moments of the mixing distribution and in a second Section we shall see that 

specifying the mixing distribution can provide further insight into the problem of 

overdispersion.

3.1 Analysis of overdispersion without specifying the mixing distribution

Following Sheps (1964), T being the delay until conception, A the probability of conception 

of a specific woman at each cycle, we suppose that A varies from woman to woman, with 

E(A)=/i, and Var(X)=d.

P r(r = 1) = E(X) = p

Pr(r = 2) = £(A(1 -  A)) = £ (A )-  £(A*)

= p ( i - p ) - e

which shows that the probability of success at the second trial is less than it would be if A 

were constant and equal to p. Hence, a smaller proportion of the total group may be 

expected to conceive in the second month than would be the case for a homogeneous
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population and the decrease of hazards is directly related to the variance of the distribution

of fecundability among the women. The probability of success at the second trial given a

failure at the first may be written

Pr(r = 2) e
1-Pr(r = l) l - n  l - f i

From the observation of the success rate in the fîrst and second trial my and mj we can 

therefore estimate the first two moments of the distribution of the woman fecundability :

Ji = m,

§ = (m ,-m j)(l-m ,)

The estimation of the first two moments of the distribution of heterogeneity between the

women are respectively p  =0.13 and 0 =0.02 (standard deviation, = 0.145, high 

compared with the mean). Note that these estimations rely only on the data obtained on 

these first two cycles. Estimation of mean and variance of fecundability at successive 

cycles may be obtained using the same methods and are shown Table 24 which suggest that 

both mean and variance are decreasing. Although the estimations are rather crude the 

decrease of the variance between the first and second cycle seems to be very sharp. This 

observation may be a consequence of the high level of selection arising at the first cycle, 

interpreted as being a consequence of the presence of a subgroup of women having a high 

probability of conception. Later on, the distribution of heterogeneity among women is 

probably smoother and unimodal. Note that the heterogeneity among women at the rth 

insemination could be unchanging with t or not: the stability is obtained only for some 

specific distributions of this heterogeneity (Hougaard, 1986 b).
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Cycle (t) Number of inseminations 6

1 1 538 0.13 0 .0 2
2 1 332 0 .1 0 0 .0 0
3 1 176 0 .1 0 0 .0 0
4 1 0 2 2 0 .1 0 0.01
5 914 0.08 0 .0 0
6 806 0.08 0.01
7 660 0.07 -0 .0 2
8 584 0 .1 0 0.03
9 503 0.06 -0.01
10 454 0.07 0 .01
11 402 0.06 0 .0 0
12 349 0.06 -

Table 24 Estimation o f the mean and variance o f woman fecundability from two successive

cycles (first attempt).

Sheps (1964) proposed to estimate higher moments of the distribution, using the 

information conveyed by all the observed cycles. The distribution of marginal hazards can 

be written entirely in terms of the moments of the distribution of A in the initial population 

of inseminated women. Thus, for our AID data, this distribution can be reconstructed from 

its first 12 moments as soon as the sample size is large enough.

Overdispersion o f the number o f successes per donor

We shall discuss a two level hierarchical approach to analyse overdispersion of the number 

of successes per donor : at level I, Pr(R = r|A) ~ Binomial(m, A) and, at level II a

distribution for A among the donors, defined only through its mean p  and variance var(A). 

The marginal mean and variance of r, the number of successes are respectively

E(r ) = A)] = mp
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Var(r) = E[var(r| A)] + var[E(r|

= E[mX{\ -  A)] + var[E(r| a)]

= m£(A) -  mE( Â ) + var(A)

= mp{l -  p) + m(m - 1) var(A)

i.e. as the sum of two components one comming from the inter-individual variance and the 

other from intra-individual variance

Writing var(A) as a function of the mean, var(A) = 0/ (̂1 -  p) with 0  indepedent of p  we

can see that the overdispersion may be written = l + ( m - 1)0 

Williams (1982) proposed to estimate 0 through an iterated weighted least square 

algorithm, where the matrix of weights is diag[ 1 / ( 1  + (m̂  ̂- 1)0 ) ] and m* is the number of 

inseminations of the Mi of 5 donors. 0 is estimated by equating Pearson's to its 

expectation, writing

y i  y
*=' -  /*){* “  0 }]

More technically speaking, this iterative algorithm proposed by Williams (1982), can be 

characterized by the following scheme :

1 - Estimate p b y  a. preliminary estimator p ^̂ ,̂ assuming 0 = 0

2 - Estimate 0 by equating X^ to its expectation

3 - Using the weights from step 2, = 1/(1 + (m̂  -1 )0 ), reestimate p

by a weighted least square using these new weights. Treating the resulting 

estimation as a new preliminary estimator return to step 2. Iterate until 

convergence.
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Estimate of \L and Var(A) applying Williams' method to donor heterogeneity are

respectively /i =0.096 and Var(X) =0.003 (standard deviation : 0.057, quite high compared 

with the mean, but smaller than the same parameter concerning the women). Residual 

deviance =773.

This procedure provides a quasi-likelihood estimation of p  (Wedderbum, 1974; McCullagh 

and Nelder, 1983 and 1989) and an estimation of the variance var(A) which may be related 

to the so-called pseudo-likelihood approach.

Note .* Pseudo-likelihood

Pseudo-likelihood -PL- (Carroll and Ruppert, 1988; Davidian and Giltinan, 1995) :

Without a probabilistic model ML can not be used to estimate 0 . Therefore estimating 

equations for 0  are obtained by considering the residuals between the observed, y, and 

fitted, p , as normally distributed with zero mean and a variance which is defined by the 

relation between the variance and the mean (variance function). Pseudo-likelihood method 

corresponds to maximizing the normal log-likelihood evaluated at p , which lends the 

procedure its name; however, as is the case for the quasi-likelihood method for the 

estimation of p, PL may be regarded as an omnibus method for estimating variance 

components. Equating Pearson's with the number of degrees of freedom is a moment 

method based on the same approximation: residuals are supposed to have a Gaussian 

distribution and the variance parameter is obtained via a generalized weighted least-square 

algorithm.

3.2 Explicitely definition of the mixing distribution

We shall now use a fully specified mixing distribution. The probability of success for a 

given woman or a given donor will be distributed according to the beta distribution. This
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full specification of the model allows likelihood estimations of the mean but also of the

variance of the fecundability among women and among donors.

The beta-distribution takes on many shapes : the probability density fonction can be strictly 

increasing» strictly decreasing, U-shaped or unimodal (if v and t  are both greater than 1).

with E{X) = fi = —- — and, Viflr(A) = /x(l -  ju)-
V+T . V+T+1

The beta distribution is conjugate to the geometric distribution and to the binomial 

distribution.

If beta(v,r) is a prior for X among women, having observed t -1 unsuccessful cycles and 

then one success for a woman ;, since the likelihood is proportional to A(l -  the 

posterior distribution/(A, ) is

beta(v + l,T + ( r - l ) ) .

Concerning the donors, if beta(v,T) is a prior for A, having observed r  successful cycles 

over m insemination with a sperm donor j, since the likelihood is proportional to 

X’ (l -  A)"”'̂ , the posterior distribution f(Xj  ) is

beta(v + r,T + m -  r ) .

The mixtures are respectively the beta-geometric and the beta-binomial. Both will be 

presented now and applied to our data. This analysis will provide new estimations of the 

variance of the fecundability among women and among donors.
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The beta-geometric distribution.

r  being the delay until conception, the marginal probability function, Pr (T = t) is

Pr(T = f) =]f{X)X{\-X)" 'dX  
0

= (1 -  X )"' A(1 -  X T ' dX

which takes a closed fonn named the beta-geometric distribution (e.g. Weinberg and 

Gladen, 1986)

^ fl(v + lT  + f - l )
B(v,t)

i.e. a result similar to the one we would obtain in the binomial case, which remind us that 

the likelihood of binomial and geometric are the same. As previously stated after 

r - 1  unsuccessful cycles for a woman, the posterior distribution /(A |r  > r - 1) is 

beta (v, r  + ( t - 1)) and thus the marginal hazard ^  say is

4 > ' W - ' ‘. - 7 î î T S r( t-1 )

and Var|y,|r„_„) = / t , ( l - / t , )

Weinberg and Gladen pointed out the fact that the model implies a linear regression model 

for the reciprocal of the marginal hazard against cycle t.

n = ----------------
V + T + (r -1 )
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becomes

- L = I ± L t ( ! - 2 ) = l + l ( , - i )
fl, V /Z V

A generalized linear model (GLM) for the marginal response given (r -1) as explanatory 

variable may be defined to use a GLIM - type algorithm.

«(/i) = 1

V =Pù+Pt(‘ ~^) 

g( ) reciprocal link

Where g() is the link function, t] the linear component, V{fi) the variance function, and f t

and f t  respectively an intercept and a slope in the reciprocal scale. The model is Htted to 

the marginal pregnancy rates.

Note : SAS PROC GENMOD is used to fit the model :

proc genmod;
model success/trials=cyminl/dist=bin link=pow(-l); 
where atteirpt=l; 
run;

" su c ce ss"  and " t r i a l s "  are respectively observed number of successes per 

cycle and number of trials, i.e. inseminations, as presented in the Table 6 ;

"cym inl" represents t-1 where t is the cycle rank;

This analysis concerns only the first series ("a ttem p t") of cycles of the 

women.

We obtain the results presented in Table 25.
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Parameter Estimate SE

Intercept 8.35 0.43
Slope 0.71 0.13

Table 25 EsUmales o f  the regression parameter o f the reciprocal o f  the marginal hazards. 

Figure 8 presents these results graphically

g

3

g

g

Figure 8 Observed and fitted marginal hazards in first attempts to conceive

1 Q 1From Table 25 v = —  = 1.4 and T = ^ —  = 10.3 and thus the first two moments of
P. P.

f[X) are respectively 0 .1 2  and 0.008 (standard deviation 0.090). These results may be 

compared with those obtained above having defined /(A) only through the first two

moments respectively, 0.13 and 0.02 (standard deviation 0.145). They are not equal mainly 

because the latter where obtained using only the results of the two first cycle, with a rapid 

decrease of hazards. The likelihood estimation of the variance is lower.

As stated in Chapter 3 there are two equivalent ways to write the likelihood of censored 

data. We have modelled the delays, we will now, for illustration, write the likelihood as 

the product of conditional contributions of the whole study group over successive cycles :
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It is identical to a likelihood arising from a sequence of 12 binomial trials, one at each

cycle, where the binomial parameters are the number of women at risk and /x,.

Likelihood estimate may be obtained using an algorithm composed of three parts [i] the 

binomial likelihood is specified in terms of fit, [ii] fit is expressed in terms of v and t  and 

finally [iii] a minimization algorithm is used.

Note : S PLUS can be used to fit the model by maximum likelihood. The progam is shown 

below.

note /it is expressed in terms of v and T 
beta.geom < function(tr, log.nu, log.tau) { 

nu <- exp(log.nu) 
tau <- exp(log.tau) 
nu/(nu+tau+tr-1)

}

note the binomial likelihood is a specification in terms of /it 
note minimization function provided by S plus m s ()

bg <- ms(- 2* (D*log(D/N) + (N-D)*log(1-D/N)
- D*log(beta.geom(tr, log.nu, log.tau))
- (N-D) *log (l-)Deta.geom(tr, log.nu, log. tau) )) , 

start = list(log.nu= Ins, log.tau= les))
print(summary(bg))

Naturally, we obtained the same result as with the previous method.

The beta-binomial distribution

For the particular case of binary response data an early proposal for hierarchical modeling 

focused on this beta-binomial model (Sheltam, 1948 ; Chatfield, 1970 ; Griffiths, 1973 ; 

Crowder, 1995).
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Recall that we observed r successes among m inseminations with a sperm donor

r ~ Binomial{m,X)

X ~ Beta{Vyt)

and thus the marginal probability for r  is :

V' y

_ B{v + r,T + m -  r)
[ r )  B(v,t)

i.e. the beta-binomial distribution whose mean and variance of /( r )  are respectively

E(r) = mE(X) = m ^
V + T

and

Var{r) = m(m-  l)Var(A) + m£(AVl-  EiX)) = m
(v + t) (1 + v + t)

Likelihood estimate are v = 2.37 and f  = 22.23 and thus fi =0.096 and Var(A) =0.0034. 

Recall that Williams method results were respectively : 0.096 and 0.0032 . Thus for the 

donors the moment estimates —  QL and PL— are closer to likelihood estimates than it 

was the case for the women.

Note : Beta-geometric bivariate model

Here we just give the simple way through which a parametric distribution of the probability 

of conception enters in the bivariate case, as a complementary note to our previous short 

presentation of that topic. As above, S and T denote the delay until conception in one
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attempt and the subsequent attempts for a same woman. Recall that association may be

measured by the odds ratios

Pr(5 = ^,r = QPr(5'>5,r>0 
""Pr(5 = 5 ,r>r)Pr(5>J,r = f)

These conditional probabilities are presented below in a 2*2 table

Pr(S=s,T=t / S>s-l,T>t-l) Pr(S=s,T>t/ S>s-l.T>t-l) Pr(S=s/S>s-l,T>t-l)

Pr(S>s,T=t/ S>s-l,T>t-l) Pr(S>s,T>t/ S>s-l,'n>t-l) Pr(S>s/S>s-l,T>t-l)

1
Pr(T=t/S>s-l,T>t-l)

' $

Pr(T>t/S>s-l,T>t-l) Pr(S>s - l ,T>t - l )
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These probabilities are obtained using the following approach :

Pr(S >s,T>t)  = J Pr(S > r  > ^X)f(X)dX
X

= e [( i-A ) '( i-A ) ']

= 4 (1 -A )” ']

= 1 ( 1 - xy*'f{x)dx  

= J (1 -  - r ^ A '- V l  -  A)"‘̂ A

= —1—(A''-'(1-A)"""'aA

R(v,t + j  + x)
B(v,t)

Similar formulae being used for other components of 6„ expected values for each "cell" s,t 

may be obtained. These formulae provide a way to calculate predicted values of .

Second attempt, 

4 5 6 7 a  8  10 11 12

1

2

3
4 

CO 5 

^  6 

^  7
8

8

10

11

12

Figure 9 Predicted values o f 6„ based on the beta-geometric bivariate model, v and % 

being estimated for the 432 women observed at least during two attempts.
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Figure 9 shows the values of 0,, suggested by the beta-geometric bivariate model. For

practical purposes, 0 ,, may by regarded as constant, that is to say that the association

between the hazards (probability of success) on two successive attempts of each woman 

does not depend on the cycles rank.

4. The specification of a mixed modei

In Chapter 3 marginal regression models for discrete time censored data were presented : in 

these models observed covariates were introduced and considered to have fixed effects on 

the risk of conception (successful insemination).

So far, in the present Chapter, we have considered models in which the probability of 

conception was considered a random effect with a distribution^ which could correctly take 

into account the heterogeneity either among women or among donors but did not provide a 

natural way to take into account the fixed covariates.

We shall do so in the rest of this Chapter. Now we will consider a model containing both 

fixed and random effects. The expected risk of conception will be allowed to change 

between subgroups of women (or donors) sharing a common set of covariates (fixed 

effects). Moreover, an added heterogeneity, due to the existence of unobserved covariates 

(random effects), will be allowed between women (or donors) despite identity of observed 

covariates.

A question arises naturally at this point : what are the respective "positions" of these two 

types of effects ? For example, how may complementary log-log model or logistic models 

presented in Chapter 2, be modified to take account of the overdispersion due to 

unobserved heterogeneity ?
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4.1 Introduction of fixed effects in the beta-geometric modei

Recall that the beta-geometric model is based on the following hierarchy : the fecundability 

of each woman is supposed to be constant and thus the distribution of the delay until 

conception is geometric. Moreover, the distribution of the fecundability between women is 

a beta distribution. We have stated that fit being the marginal hazard, following the beta- 

geometric model, we have

—  =  — I— (t — 1)
Me M y

where fi is £(A), t is the cycle rank, the distribution of A among the women being a

1 1 beta(v,t) distribution. Let )3o = -— the intercept on the reciprocal scale and = — the

slope.

Weinberg and Gladen (1986) propose to compare populations having separate values of Po 

and Pi : the reciprocal of the marginal hazards of the populations are thus allowed to vary 

through the intercept and the slope component of a linear part of the regression model 

presented above.

The model of Weinberg and Gladen (1986) is expressed as a parametric model for cycle- 

specific hazard, fit, as follows

and ) = L  = (f _  1)

where tIq and 77, may vary from population to population according to a regression model
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'  ^0  ~  Poo P o i^

—  P \0

Table 26 shows the results of this analysis using azoospermia of the husband as covariate.

Model Parameter Estimate SE Deviance

I Intercept 8.35 0.43 25.2
Time 0.71 0.13

n Intercept 9.53 0.70 18.9
Time . 0.69 0.13

Azoospermia -1.73 0.71

m Intercept 8.88 0.80 17.1
Time 0.97 0.26

Azoospermia -0.86 0.95
Azoospermia * Time -0.37 0.29

Table 26 Models for azoospermia.

The introduction of the azoospermia decreases significantly the deviance. There is no 

further decrease of the deviance when introducing the interaction.

Weinberg's model describes eventually the marginal hazards and the changes in the average 

conception rate in the population when the covariates are modified. The parameters of the 

model have a "population averaged" interpretation, they do not describe how the 

conception probability would be modified for a given woman if she switches from a 

covariate category to an other. Moreover, they do not have a direct interpretation neither as 

the log of relative risks nor as log odds ratio.
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We can also think of the model as a model for the population distribution of the subject-

specific hazard. The parameters v ,t  of this beta distribution are related to Weinberg and

Gladen's linear predictors 770,77, by the relationships

1 j  77o 1V = —  and T = -------
Vo Vi

In terms of the mean and variance of the subject-specific hazard. A,

V 1mean(A) = u, = ------- = —
V + T 77o

and

Var(A) = -------- ^ ^ —
 ̂  ̂ (v  +  T ) >  +  T +  l)  7 j.+ n o

This model is rather unattractive. In particular it does not correspond, ever approximatively 

to a model in which heterogeneity and fixed effects combine additively at the subject level, 

Such model might be

I ' " ' "

so that, to first approximation

£(A) « — 
V

Var(A) = ^ V a r(e )
V

This does not correspond to the Weinberg and Gladen model, unless rather curious 

assumption are made about the relationship between Varie) and covariates.

84



Chapter 4 Overdispersion and mixed model 

An alternative approach might be to motivate a model for (v,t) using this approximate

subject level approach. For example, using a logit model

logY 3 j = »? + e

leads to, as a first approximation

E(X) = /X « Y

and

Var(X)- l f i{ i - f l fVar(e)

Assuming Var(e)=Constant, ( f  say, allows the parameters (v,T) to be expressed as sinq)le 

functions of 77 and (f. This approach does not seem to have been explored.

4.2 Introduction of fixed effects in overdispersion models for binary data

In Section 3.1 we have presented a first model proposed by Williams (1982). As an 

alternative model, Williams proposed to model directly the variance of the probability of 

success on the logit scale instead of doing it on the probability scale as it was the case for 

his first approach and for the modelling through the beta distribution.

\ogfi{X^) = xJP  + b̂

Var(b) = (f>
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where x j p  is the fixed part of the linear predictor, and b, bj,...bk,...bd, represents the

effect of unobserved characteristics of each of the d donors. The variance of the linear 

predictor is then independent of its expectation.

The advantage of this approch is that the fixed and the random part of the model add their 

effects on the same scale, the logit scale. This has been called the "unit treatment 

additivity" by Cox (1984). It can also be stated that "unit treatment additivity" is obtained 

if, on the scale where covariates are included additively, the variance due to the unobserved 

covariates does not depend on these observed covariates. Note that, in introducing 

covariates on the reciprocal scale in the beta-geometric model, this condition was not 

fulfilled. The logistic mixed model respecting the unit treatment additivity condition is 

particularely appropriate if we think that the random covariates are effects of unobserved 

covariates of the donors (or women).

Up to now we have not specified any distribution for b, that is for logit(A). As a matter of 

fact no distribution gives tractable solution for marginals! Later we shall consider that this 

distribution is normal. At this point it will be easy to introduce both the random effects of 

the women and donors! This will be discussed in the following Ch^ters.

At the end of this Chapter we have obtained evidence for heterogeneity among women and 

donors, which can be considered to some extent as the effect of unobserved characteristics. 

Modeling the marginal rates provides a first estimation of this heterogeneity.

It appears clearly, however, that in order to estimate correctly the components of the 

variance due to heterogeneity among women and that due to heterogeneity among donors 

we need a more complex model incorporating both and meeting the constraint of unit- 

treatment additivity.
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Chapter 5 Unit specific regression models

In the previous chapters we have observed that in this application the correlation structure 

of our data generated by a double hierarchical design is too complicated to allow regression 

models for marginal conception rates to be entirely satisfactory.

In this chapter, unit specific regression models for binary data will be presented. With these 

type of regression models, we are confronted to numerical integrations which renders their 

estimation difficult. An interesting family of random effect models for discrete survival 

data will be described. If the random part of the model is limited to only one parameter, 

this family of model allow the integration to be done analytically. The use of this approach 

will provide an interesing description of the woman heterogeneity.

1. General presentation of unit specific regression models

Here, each outcome is related to the observed covariates and to a "random effect" shared by 

all cycles for the same woman. The random effect is included in the linear predictor part of 

the model. The interpretation of the fixed effect in this model is different from that in the 

marginal model, since they now represent the effects of the covariates on each woman's 

probability to conceive. In contrast with marginal models, this approach will also permit 

the donor random effects to be incorporated in the model in the same way as the recipient 

effect. Note that, since there is no systematic assignment of donors to recipients, the donor 

heterogeneity parameter will generally change from cycle to cycle within each woman.
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7.7 Generalized linear mixed models

Unit-specific regression models for binary data may be described in the general framework 

of generalized linear mixed models (GLMMs), i.e. generalized linear models (GLM) which 

include one or more random effects.

Lety, (i = 1, ...,n) denote an observed response (result of each menstrual cycle with 

insemination) assumed to come from a binary process, with A as mean and variance 

Var(yi), X,<1- M

The mean responses are related via a link function, g( ), the logit or the complementary 

log-log link, to the elements of a linear predictor rj ; the linear predictor is given by a linear 

regression model involving a fixed part, x ^ p , and a random part, Formally

3', ~ Bemouilli(X^ ) 

g{Xi) =Vi

Vi = x fp + z(à .

Awhere g(A) = log   for logit link
1 — A

and

= log(-log(l -  A )) for the complementary log-log

and b are random effects drawn from some probability distribution,/^^) say. It is always 

possible to consider that the random parameter has fixed location — e.g., zero mean —

which will simplify the calculations. The parameters of the distribution of random effects 

will be denoded by 6.
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If a Gaussian distribution is assumed, 6 is a variance', for example :

b~N{0,D{e)),

whereD(0 ) — a^I  and8  = 

but other distributions may also be used, as will be stated later in this Chapter, For 

simplicity of notation D( 0) will be written as Z). Z is the design matrix with rows z f  ; Z

can either be simply a design matrix identifying the clusters (the model is then a "random 

intercept" model) or contain a direct product of the design matrix and of some or all of the 

colunms of X  (the model is in this case a "random intercept and random slope" model 

(Bryck and Randenbush, 1992 ; Goldstein, 1995). This formulation encompasses situations 

where the random effects are nested within subjects (multilevel models), and where they 

are not (more general mixed models).

1.2 Random multiplier : frailty

In the following, depending on the context, the fixed and random effects will be either 

presented as additive on a linear predictor or multiplicative on an other scale. Recall from 

Chapter 3 that A,,, the hazard for woman i at cycle t is given, respectively in the logistic 

A X T
model by — ^  in the complementary log-log model by

1 -  A,, 1 -  Aq,

-log(l -  A„) = -log(l -  XQf)e'‘̂  ̂ i.e ., these models are multiplicative, respectively in 

A
1 -A

and in -log(l -  A). The "mixed" version of these same models are now

.xIp
1 -A , 1 -A o / '

for the logistic model, and
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-16g(l -  A,,) = -log(l -

\

for the complementary log-log model, where . This unit specific effect § ,

introduced on the multiplicative scale is the commonly called "frailty". Note that on this 

scale (the frailty scale) the coefficient of variation of the risk is the standard deviation of 

Actually, for complementary log-log, for example,

var[-log(l -  A)] = [-log(l -  AoX"^^] var(^).

1.3 Application to our data set

Our data set has a crossed hierarchical structure, each hierarchy with 3 levels (see Figure 1) 

: menstrual cycles are the level I units ; the cross classification is at level II with 

respectively :

for the female hierarchy the attempts at level II and the women at level HI 

and for the male hierarchy the donations at level II and the donors at level m . 

Nevertheless it is wise to note that a same donation is not used for all cycles of an attempt 

and that conversely more than one woman share sperm of each donation.

To fit these data we will use a unit specific regression model. The fixed part of the linear 

predictor is X P . All the observed covariates, i.e. all explanatory variables whatever the 

level (cycle, attempt, woman, donation, donor) may be included in this "fixed" part. The 

random part of the linear predictor is . Each level of heterogeneity, either associated 

with the clusters (attempts, women, donations, donor) with the random effect of the 

covariates, may be taken into account through a random parameter in the random part of 

the model. The random part related to the clusters may be introduce writing
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Z = {A,F,D,M]

where a,f, d and m are respectively for attempt, female (woman), donation and male 

(donor) and A, F, D, M are "design" matrices assigning cycles to attempts, women, 

donations and donors, respectively. If, for simplicity of notation, we first ignore attempts 

and donation, for the ith cycle, the model may be written

X ~ Bemoulli{Xf)

«(A,) =Vi

where 77 = Xp + Ff + Mm 

whith X  representing all covariates related to the menstrual cycle (covariates concerning the 

woman, this cycle, and the donor), F f the random part corresponding to the woman and 

Mm the random part corresponding to the donor.

2. Inferential process

Three types of inference may be of interest : [i] Inference regarding fixed effects , p , 

(predictors of fecundability); [ii] inference regarding variance components, 6 , (conditional 

variance of the fecundability, among women or among donors) and [iii] inference regarding 

the random parameters.
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The usual inference strategy is to work in two steps : Estimate ^  and 0 by maximum

likelihood after integration [Data\p,0] «= \[Data\P,bJb\d]^ and then estimate the random 

effects b by empirical Bayes estimates b = E^b^Data,p,è^ i.e. the mean of the distribution

^b|f)ara, = jS, 0 = ê j «  = fi

In some models this likelihood may be obtained in closed form as will be discussed later m 

this Chapter.

The discussion of Chapter 3 concerning independent censoring must be revisited to take 

into account of the heterogeneity and the structure of the integrated likelihood. The 

contribution of each woman to the likelihood depends now on the unobservable parameter

b which has to be integrated on

A factorization under the integration sign shows the respective parts of the event and

censoring processes

L=

If we assume that the censoring is conditionally independent of the random effect, i.e.

L=nhK'«r-i]J

92



Chapter 5 Unit specific regression models

and, moreover, if the censoring is independent, i.e. 7 ZZ . ,6  = 7 7  . , X , , 6 1,L t\ t —i j |_ t — l t — l J

then inference based on the maximization of

is consistent. Similar considerations apply when considering the problem of selection for 

subsequent attempts within the multivariate failure time context. As stated in Chapter 3, 

interval pregancies violate the independent censoring assumption as does miscarriage, 

which increases the probability of a subsequent attempt and which is probably related to 

fecundability — since early conception seems to carry a lower risk of miscarriage than later 

conception.

However neither of these events are numerous and they will be ignored in subsequent 

analysis.

3. Discrete time analogues of Hougaard's results

In this section, a first category of mixed models is presented : models offering a closed 

form of marginals for censored discrete time survival data. Conoway (1990) discussed a 

gamma-binomial model for over-dispersed binomial data providing closed form of 

marginals for binomial data with covariates. In 1997, Clayton and Ecochard proposed a 

closely related gamma-geometric model for occurrence event time data on a discrete time 

scale. These models closely parallel the beta-binomial and the beta-geometric models 

presented in the Chapter 3, but allow time-varying covariates and the introduction of fixed 

and random effect on a same scale. More generally the complementary log-log mixed 

models have closed form of marginals for a range of distribution of the frailty parameter.
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These results are discrete time analogues of Hougaard's results. In the following we

consider only the woman random effect. The introduction of more than one random effect

wiU be postponed until Chapter 7.

Hougaard's results on continuous time scale

As previously stated for survival data on continuous time scale, models for heterogeneity 

have been proposed, for example by Clayton (1978) and by Vaupel et al (1979), who 

introduced an unobserved quantity, the frailty, to account for the fact that the prognosis 

depends usually on unobserved characteristics of the person. The hazard at time t for a 

person with frailty $ is assumed to be of the form

A(»;5) = |A ( 0  

The conditional survivor function given frailty is

\  O  J

5(r|^) = exp = exp (-^ (r))

where A(t) is the cumulative hazard. The population — marginal — survivor function S(t) 

can be written as

S{t) = J exp(-$A(f))/(()a( for all t.

Thus, the survivor function is an analogue of the Laplace transform of /({ ). Indeed, this 

Laplace transform is also the moment generating function of /({ ). Several authors,

including Vaupel et al (1979), have studied the continuous time model with gamma 

distributed frailties, which constitute a very convenient family for these models. Hougaard
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(1984 ; 1986) has extended these models to the entire class of non-negative exponential

families including the frailty parameter, as a canonical sufficient statistic.

Let /(^ )  denote the density of the frailty distribution. The exponential families we will 

consider are of the form

where m (^ is a function of ^ which does not depend on the parameters of the distribution. 

The gamma distribution is a member of this family having $ and log(^ as sufficient 

statistics for the parameters v and T. The inverse Gaussian distribution has $ and 1/$ as 

sufficient statistics and therefore is also a member of this family of distributions. These two 

distributions will be discussed in more details in this Section. Some closed forms of the 

MGF are available for them. As a consequence, the survivor function being the MGF of the 

distribution of ^ , closed forms of the marginal survival function are available.

_ 4>(v,t+A(0) 
0 (v,t)

Analogues of Hougaard's results on discrete time scale

Clayton and Ecochard (1997) introducing the frailty parameter as a multiplier of 

-  log(l -  A) made a connection between discrete and continuous survival function.
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The model relates cycle - and woman - specific hazard for woman A ,, to possibly time-

dependent covariates xu and random woman effect as follows

log(-log(l -  A,,)) = + log($,)

I.e.

- lo g ( l-A ,)  = {,g^*^

The are assumed i.i.d., drawn from an unknown distribution - the frailty distribution. 

Dropping the woman subscript, i, and writing T]^= xlP  the linear predictor at cycle m, the 

conditional probability of surviving until cycle t without conception given frailty ^ is

= l je x p H e x p n .)
W=1 M=1

= exp
r  t \
-Œ exp»).

V 11=1 J

Note that the unit-treatment additively is maintained : observed covariates and 

heterogeneity factor are multiplicative on the same scale. Moreover this model can 

incorporate time-dependent covariates because the frailty component factorizes with the 

cumulative hazard. The marginal survival probability is given by

f t  \  f t  \
Jexp -$% exp 77, dF{^) = M  -%exp77

\  «=1 /  \  11=1

where Af 0 is the moment generating function (MGF) of the frailty distribution. The 

likelihood contribution of a woman observed from cycle 1 to cycle t , when she is 

successful, is given by the marginal distribution function for uncensored observations

M
( /-I
-Z e x p n ,

\ W=1
-M -i^expTj,

V U=1
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while a woman who is unsuccessful for the first t cycles and is censored will contribute the

value of the marginal survivor function

(  ' ^
M  -X ex p n .

11=1 J

Denoting A(t) = -^exp?;^ , the marginal distribution and survivor function are
X l = l

respectively

M r f) ^(v.T+A(f-l)) 4»(v,T+A(t))
0 ( v,t) 0 ( v,t)

®(v,t + A(/)) being

The conditional distribution of$ is obtained through Bayes rule

P r(x = a r  > 0  = = 0

and

Thus distribution of Ç among women waiting for conception after t cycles is the same 

distribution with parameters v and T + A(t).

The mean of frailty distribution among conceptive and censored women are respectively
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E{E\T = r) = +1, T + A(r -1)) -  0(v, T + A(r))
0(v, T + A(r -1)) -  0(v, T + A(r))

and

The gamma and inverse Gaussian distributions

The gamma and inverse Gaussian distributions are members of non-negative exponential 

families having ^ as canonical parameter

The gamma density is of this form with

m

and the inverse Gaussian with

exp

V =  —  
2

m

0(v,T) = r(v)r'

0 ( v ,t ) =  e x p ( -4 v ^ )2 , T ^  0, > 0

As the waiting time lengthens there is a progressive selection of the women, the more 

fertile conceiving earlier. Thus, the marginal hazard decreases. But the selection process 

also modifies the distribution of heterogeneity. Except for some specific distributions of 

the frailty —  positive stable distributions (Hougaard, 1986)—  the population of women 

becomes progressively more homogeneous : the variance of the probability of success of 

the woman who have not yet conceived decreases as the waiting time lengthens. This 

selection process differs according to the distribution of the frailty. For the gamma 

distribution the mean and variance of the distribution of the risk of conception among

V Vwomen after t failures are, on the frailty scale, respectively and
t + a ( 0  [ t + a ( 0 ]
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and thus the coefficient of variation is stable, v ^, showing that the relative heterogeneity 

is independent of the cycle rank. For the inverse Gaussian frailty distribution, the

coefficient of variation, 2 + A(r)))  ̂ decreases with time thereby making the

population more homogeneous.

These differences could be useful to model situations where the gamma geometric model 

does not seem to fit the data correctly.

Further results for the gamma-geometric model 

The gamma distribution for ^ is

with E(() = — and Var{^) = and the corresponding MGF 
T T

M{s)

The gamma distribution being a member of non-negative exponential families the general 

formulae presented above may be applied directly and thus the marginal distribution and 

survivor function are respectively

1h— A (/— l) — 1h— A(f)
». T J  K r  j

and

r 1 V»'
1+ -A (r)
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t

In the absence of covariates, -]^exp7j^ = -r , the model reduces to a gamma-geometric

discrete survival time distribution. It follows that

Pr(r=<) = l i+ ^ 1  -fi+7
- V

and

P r(r> o  = f i + - |  
V T j

Application of the gamma geometric model to AID

Two different approaches may be used to fit this discrete survival model to our data set : 

either fit the model to marginal hazards, pregnancy rates at each of the successive cycles, 

using the discrete analogues of Hougaard's models presented above, or consider the cycle 

of each woman as clustered units, ignoring the cycle rank. We now present the first option. 

The second will be presented in the next Section.

We will first fit an "intercept" model and then include observed covariates 

Simple intercept modeU without any covariate

The likelihood contribution for a woman observed from cycle 1 to cycle t is given by

f - lY "  Y f " - 'the marginal distribution function for uncensored observations 11 H J - ^ 1  + —

or the marginal survivor function for right-censored observations ^1+—j  . We fit this

model to the data of the first attempt, modifying ^propriately the algorithm presented for 

the beta-geometric model and obtain the following results :

V = 1.4 
T = 10.5
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The results concerning heterogeneity may be provided on three different scales for the sake

of comparison with results obtained with other methods :

On the gamma distribution scale 
Var(Log(^)) On the linear component scale 

Var(X) On the hazard scale

In order to obtain estimations on these other scales two solutions may be used : either an 

exact method or an approximate one —  the delta method —

ML estimations of the mean and variance of { , i.e. on the frailty scale, are obtained easily, 

being the mean and variance of gamma{y,T) and thus calculated respectively as ^

a n d A .

On the complementary log-log scale the frailty parameter appears as log(^). The cumulant 

generating function K{s) is used to generate the first two moments of log(^).

The moment generating function is M(s) = f -̂7- ^ .  Thus
^  ^  J o  r(v) r(v)

= -jlogT  + logF(v + j ) -  logr(v) and the mean is -logT + 'P(v) and the variance 

y ( v )  where Y(v) is the derivative of the logarithm of the gamma function and 'F'(v) is 

the derivative of 'P . On the hazard scale the variance of X is obtained as the difference of 

the 2nd moment of A, ,and the square of the first, E{X). Note

that<5 = -lo g (l-A ) ~ gamma{v,r) . Thus E(X) = f ( l -  = 1 -  ^
r(v ) (1 + T)

.V

and£(A^) = l - 2 -  -  +
(l + T)' (2 + t)*
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The delta-method, sometimes called "propagation of error" method, may also be used, to

obtain an approximate variance for example to write the variance on the linear component 

scale as a function of the variance obtained on the hazard scale. Let A be the probability of 

success, drawn from some probability function. Suppose E(X) = p  and g( ) denotes, in 

our case, the link function.

If we want to estimate g(A), a first order Taylor expansion of g about p  would give us 

g(A) = g{fi) + g\X){X  -  /i) + Remainder. For our approximation we forget about the

remainder and obtain £(g(A)) « g{p) and Var(g(A)) « [g^(A)j Var(X). For example, if

g(A) = -log(l -  A), then Var(g(A))
1 V iflr(A )

(1 -A )

Note that the coefficient of variation of A and -log(l-X) are close, for small A, as shown 

Table 27 where the consequent parameter values are displayed. Indeed

Coeff.vai(-\og(l -  A)) « - ^ C o ^ .v a r ( A )
1 — A

Frailty scale
g

Hazard scale 
A

Complementary log log scale

Mean 0.133 0 .1 2 0 -2.41
Variance 0.013 0.008 1.02
Coefficient of variation 0.857 0.745 -

Table 27 Gamma geometric applied to first attempt AID data.

* The coefficient of variation would not have any signification on this scale, log(^) being 

not always positive.
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Introduction o f covariates

As an example and to compare with other models we fit the gamma-geometric model with 

one covariate, e.g. the presence of an azoospermia of the husband. The maximum 

likelihood estimates are displayed in Table 28, and the marginal hazards predicted in 

Figure 10. Note that fixed and random effets are both given on the same, multiplicative —  

frailty —  scale, as multiplier to the basal fecundability —  more precisely -  log(l -  X)

—  of women whose husbands are totally sterile.

Parameter Estimates

No Azoospermia (odds) 0.115
Azoospermia of the husband (odds ratio) 1.25
Donor frailties (Coefficient of variation) 0.831

Table 28 Gamma-geometric model applied to AID data, on first attempt, 

with azoospermia o f the husband as covariate.
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i

N o  A z o o o p o r m l a i  
A z o o s p e r m i a

d

i

8 .10 12A e2

C y d e

Figure 10 Marginal hazards observed and predicted by gamma geometric model, with 

(circles) or without (squares) azoospermia o f the husband.

We have introduce only one covariate, a time independent one, for illustration. More than 

one such covariate may be added without any difficulty.

4. Clustered units : use of a Poisson approximation to the 

binomial likelihood

The data will now be analysed using another option. For this second approach, in a two- 

level hierarchy, successive cycles of a same woman are considered as unordered units 

sharing a common frailty. This approach introduces the following Chapters, where the data 

will be considered as clustered binary data, more than as survival data. Gamma is not a
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conjugate of the binomial distribution. Nevertheless a Poisson approximation of the

binomial may be used,

leading to a good approximate likelihood method of estimation that may be implemented 

by use of an algorithm for log-linear Poisson regression model with random effect.

The likelihood contribution for each woman (see Chapter 3) may be written

where rii and Si are respectively the number of observed cycles and the result of the last one 

(^=7 for conception, and 6^=0 for censoring). Let us set

^iu = - lo g ( l -A ,J

where u is the cycle rank and thus, writing without indices for simplicity, the likelihood 

may be reparameterized using the relations 1 -  A = e“*

A = 1 — e~^

~4Î '

= ;r |l  -  + -gTT .̂.} = ;r{l - +  0 (;r)}

%
« ;ce  ̂ for small A, as is the case for 

fecundability data

The likelihood can thus be approximated by
 ̂ ^d

Tce ^ e
\ \  y

n-d
which is equivalent to

n  e  ̂ i.e., the Poisson likelihood
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Note that ;r = and ^ is gamma distributed. This situation leads to an approximate

negative binomial likelihood for the parameters of the mixing distribution if covariates are 

fixed over time (cycles). But time varying covariates may also be included and a log-linear 

regression be performed. In AID data we have introduced all observed covariates. The 

algorithm for log-linear Poisson regression model with random effect was written in 

STATA by D. Clayton and used for our data. The program works by alternating between 

maximum likelihood estimation of regression coefficients for fixed frailty variance, and 

estimation of frailty variance for fixed regression coefficients.

Table 29 shows the results.

Parameter Estimate (s.e.)
Intercept -2.185(0.062)
Woman :
Age (woman) -0.110(0.038)
Azoospermia (husband) 0.094(0.039)
Cycle :
Insler score 0.242(0.039)
Early insemination -0.128(0.037)
Late insemination -0.104(0.033)
Clomiphene citrate -0.101(0.035)
Donation :
Sperm count 0.135(0.028)
Sperm mobility 0.184(0.032)
Sperm quality 0.209(0.035)
Heterogeneity :
Between women 0 .6 6 6

-2  log likelihood (approximate) 4758.3

Table 29 First attempt. Gamma geometric model. Poisson approximation.

These results will be compared to those obtained with other methods in the following 

Chapters.

Despite the interest of this model, to date it has proved intractable for more complicated 

problems involving both hierarchies of AID data. Indeed we could imagine to include one

106



Chapter 5 Unit specific regression models 

or more other random effect on the same scale. Yashin and lachine (1995) have proposed

an additive decomposition of frailty components, each gamma distributed such that the

total frailty remains gamma distributed. Although an interesting approach, the fact that

random and fixed effects are not additive on the same scale is unappealing.

In this Chapter we have introduced unit specific regression models for discrete time 

survival data. Facing the difficulty to integrate the likelihood function we have limited our 

analyse to one random effect. Two likelihood methods have been used for inference. A 

first, based on closed form of marginals obtained in particular way using a gamma 

geometric model. The introduction of time varying covariates in this first method was not 

computationally simple. A second method, based on approximation of the likelihood 

allowed to fit the model to our data including all the covariates. This approach is 

satisfactory for the female hierarchy with only two levels, the cycles and the women. 

Nevertheless, AID data set is complicated by the presence of heterogeneity between donors 

and thus call for a more flexible unit specific regression model. The GLMM with Gaussian 

random effects will provide an appropriate solution. The next Chapter will present this 

model and an approximate method for inference (Penalized ()uasi-likelihood). PQL will be 

shown to be a useful and practical way of carrying out preliminary data analysis and Gibbs 

sampling will provide validation and more accurate results.
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Chapter 6 Approximate Inference methods for Gaussian 

random effects models

a the previous Chapters the delay until conception was modelled as geometric. This 

pproach has allowed the results for one attempt per woman to be described. The last 

ection of the previous Chapter has considered the successive ovulatory cycles of a same 

/Oman as repeated trials sharing a common probability of conception and ignored the 

ycle rank. Nevertheless the gamma geometric model is limited to one random effect and it 

; necessary to consider other options which could include both woman and donor random 

ffects and the corresponding hierarchies. The mixed Gaussian models is a natural way to 

iclude more than one random effect, and thus it will be described in this Chuter and the 

ext.

or binary data non linear models have to be used and the estimation procedure becomes 

ntractable. Approximate inference methods are available for exponential family 

istributions (Penalized Quasi Likelihood —  PQL —  Breslow and Clayton, 1993). A 

jecific software for multilevel models, MLn, (Rasbash et al, 1995; Goldstein, 1995) 

rovides a simple way to fit this model despite the large size of AID data. This Chapter 

resents the model and PQL. A first application to our data is devoted to an analysis of the 

iree levels of each hierarchy : woman-attempt-cycles for the female hierarchy and donor- 

onation-cycle for the male.
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1. Inferential methods for Linear Gaussian Mixed models

We first recall the principal aspects of the mixed Gaussian linear model. This Section is 

intended to provide enough background to understand subsequent application of the 

generalised linear mixed model for which approximate estimation methods are based on 

the same principles as those applied to the simple Gaussian linear model.

1.1 Mixed Gaussian linear modei

The models that underlie the analysis of variance can be viewed as special cases of the 

general linear model. In this model, y is a response vector; X  and Z are matrices of 

"regressors", is a vector of unknown parameters, which are called the fixed effects, 6  is a 

vector of random effects and e a vector of random errors.

y = XP + Zb + e.

The distribution of y given p  is normal with mean XP and variance V

y~N {X p ,V )

V being given by V = /? + ZDZ^, where the covariance matrices D = var(^), R = var(g), 

are functions of an unknown parameter vector 0  to be estimated from the observations 

together with fixed effects p. The mixed Gaussian model naturally includes more than one 

random effect and is an adequate method for describing the effects of unobserved 

covariates. In contrast a linear combination of independent random effects could not be
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included in a simple way in the models presented in the previous Chapters. The likelihood

function viewed as a function of the parameters P and V , with n as sample size, is

.-{y-XpYv-\y-XP)
u p ,v \y )  = - -------- ;— —

1.2 Inference

If V is known the ML estimator of p  is the generalized least square estimator

P = {X ^V -'X y 'x ^V -'y

The information matrix for p  is X^V '^X  from which we can obtain its precision by 

matrix inversion. The empirical Bayes estimates of 6  are obtained setting

b = DZ‘V

If V is unknown, R and D are estimated from the data as explained below, and introduced 

in the above equations to get an estimate of P and b.

The substitution of the estimates of fixed effects into the likelihood generates a profile log 

likelihood function for inference on 6, an unknown parameter defmning V.

To make degrees-of-freedom adjustment that account for the fact that p  rather than P 

2q)pears in the quadratic form, but also to protect the estimation of the variance against a 

mispecification of the fixed part of the model, we use in practice the REML (restricted
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maximum likelihood) version (Patterson and Thompson, 1971). REML is a genuine

likelihood for a projection of y into the space orthogonal to that generated by the colunms

of X. On these basis the REML allows the classical likelihood ratio test to be performed.

The REML equation for Gaussian linear model is

/R = - ^ ( y -X^)V-‘(y-Xj8)-|logll'|-log|x’'V-'x|

Following Harville (1977) we differentiate Ir with respect to the components of 6 to obtain 

estimating equations for the variance components

{ y - X p f v - ' ^ V - ' { y - X p ) - b -
de

=  0

where P = V~  ̂- V  * X V "*. The corresponding information matrix 7 has

components

ddj de^

1.3 Computational aspects

Closed form solutions being rarely available all these computations require the use of 

iterative numerical algorithms. A Newton-Raphson algorithm or an EM algorithm 

(Dempster et al, 1977; Lindstrom et al, 1988) may be used to optimize either the full (ML) 

or restricted (REML) likelihood function. In the case of AID data both these methods were 

inefficient because they did not take into account the particular structure of our sparse
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covariance matrix. The Iterative Generalized Least Squares estimation procedure - IGLS-

(Goldstein, 1986) provides an elegant solution for hierachilly nested random effect models.

A way to estimate the dispersion components is to choose suitable cross-products of

residuals and to equate the observed values of these residuals to their expectations as a

function of the parameters characterizing the variance. This is the basic idea of IGLS.

Goldstein (1986 appendix I) showed the equivalence of ML and this iterative generalized

least square (IGLS) assuming multivariate normality for 9 . We shall present this algorithm

using the specific notation proposed in Goldstein (1995).

Goldstein (1986) advocated the following iterative scheme :

(1) Estimation of fixed effect using generalized least square (GLS) : conditional on V the 

GLS of p  is given by

P = (X ^ V - 'x y 'x ^ V - 'y

The iterative process starts with V=I which corresponds to the ordinary least square.

(2) Conditional on P the variance components are estimated using the square of the 

residuals as response and a matrix derived from the design as regressor.

More formally speaking, conditional on p ,

vech{ŸŸ'^) = Z ’’e

where

the residual vector Y = y -  x p .

the vector vech^Y^^  is formed by stacking the columns of the lower triangle 

of the symmetric matrix ŸŸ^ under one another
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Z** is the design matrix relating vech( ŸŸ^)io  the variance components 0

i.e. vech^YY^^ is treated as a response vector and is regressed, using generalized least

squares, upon the columns of a matrix Z*‘ . The corresponding iterative reweighted least 

square equation is given by :

6 = 0  \r^)z**y  Z**^(V‘ 0

where 7** = vech{ŸŸ^^, and 0  denotes the direct Kronecker product of by itself, that

is an array of matrices which elements [V‘̂ ], being the element of Goldstein

took advantage of the block diagonal structure of the covariance matrx V to avoid its 

inversion. Each of the block of the expression

and (X^y-‘y ),

for the fixed effect, and the expression

Z“ ’' ( v '  ® V ' ) z “ and Z"’̂ (v' ® V ' ) r

for the random effect are treated separately needing only the inversion of a low dimension 

matrix. Then the result are added together to obtain the solution of the relevant equations.

113



Chapter 6 Approximate inference methods for Gaussian random effects models

2. An approximate inference method for Generalized Linear

Gaussian Mixed models

In the first Section of Chapter 5, we have emphasized the interest of unit specific models to 

model AID data. The Generalized linear Gaussian mixed model has been presented. But 

the presentation of the inferential methods was delayed, the second part of the fifth Chapter 

being devoted to the models having closed form of marginals. In this Chapter and the 

followings, we use the Generalized linear Gaussian models and study the respective 

benefits of approximated inference (next Sections and Chuter 7) and of Markov Chain 

Monte Carlo methods (Chapter 8). In the previous Section we have presented the Gaussian 

Linear Mixed Model. This linear model does not apply to AID situation where the response 

is binary. We need a model in which a function of the hazard to conceive is modeled as 

linearly related to fixed and random effects. The logit link function is used.

In order to be able to model more than one random effect we specify the random part as 

multivariate Gaussian.

Formally,

y ~ Bernouilli(X)

7? =XP + Z b  

Ag(A) =log
1 -A

b ~N{0,D(d))
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Two different approximate methods for inference has been proposed (Breslow and Clayton,

1993), Marginal Quasi Likelihood (MQL) and Penalized Quasi Likelihood (PQL):

The first method aimed at the evaluation of the effects of covariates on marginal pregnancy

rate, that is the evaluation of pregnancy rates in specific subgroup. The second method

proposes a unit-specific regression model and is based on an approximation of the

likelihood. We have emphasized the need for such models for AID data, in particular

because of the existence of censored observations. Marginal models are appropriate if

missing data are missing completely at random (MCAR). Stopping rules such as operate in

heterogeneous survival data violate this and random effect distributions change with

advancing cycle. As has been shown earlier, likelihood methods are applicable in such

cases, subject to assumption of independent censoring and censoring not dependent on

fiailty. Since PQL is an £q)proximation of the likelihood, it is to be prefered.

Thus PQL is the method of choice in our case and we will no longer consider MQL later in

this dissertation.

2.1 Motivation of PQL criterion

To obtain the unconditional likelihood we need to multiply the likelihood by the density of 

b and to integrate out the random effects :

L{P,e)

= \D \ilcxp (-K {p ,b ,e ))^  

where K{p,b,6)is -logL{P\b)+^b^D(0)b

A two-step approximation leads to the penalized likelihood for fixed effects

First, writing logL(j3|^)as its quadratic expension around the value b of b which 

minimizes -\ogL(^p\b)+^b^D{d)b we can write
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ex p |-g (6 )}

therefore, taking account of the fact that K"(b) = Z^WZ + D~̂

log L{p,e) = - i i o g j / + z ’'wzD(e)|+ log -^ b ^ D (e y 'E

where W is the diagonal matrix with diagonal terms being the GLM iterated weights,

A(l -  A) for the logit link case.

Assuming in a second step that the GLM iterative weights vary slowly as a function of the 

mean, we ignore the first term in the above expression we then have to maximize a 

penalized likelihood for ^  given 6 (Breslow and Clayton, 1993; Green ,1987)

losL{P,b)-^b^D-'b

Differentiation with respect to P and b leads, in the logit link case, to the following score 

equations for the mean parameters :

X ^(y-A ) = 0  

Z^(y-A ) = D- '6

These two sets of score equations will be used respectively to obtain an estimation of the 

fixed parameters P and the prediction of b.

2.2 Fisher scoring

Green (1987) developed the Fisher scoring algorithm for solutions of these two equations 

as an Iterated Weighted Least Square problem involving a working dependent variable Y 

and a weight matrix W that are updated at each iteration. Let us define the working vector Y
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to have components ï; = ryf + (y. -  A* )g' (A* ) ,where ryf is the fth component of the linear

predictor including the fixed and random effects, A* the corresponding hazard and g() the 

link function.

The solution to our estimating equations via Fisher scoring is equivalent to estimating 

iteratively p , given by

P = { X ^V - 'x y 'x ^V - 'Y

where V = W ' + ZDZ^, and then empirical Bayes estimates of b, obtained setting

b = D Z ^V -'(Y -xp )

It is wise to point out the similarity between these estimating equations and those being 

used for the linear mixed model presented in the previous Section. The difference consists 

of the change from y, the response vector, to 7, a working vector, with the corresponding 

modification of the variance matrix V, in order to incorporate the GLM iterated weights.

2.3 Variance components

The variance components, 0, are estimated through a modified profile likelihood. Indeed 

some further approximations (Breslow and Clayton 1993) motivate the use of standard 

estimating equations for variance component written in terms of the working vector 7  and 

the iterated weights W.

The estimating equations according to Harville* s can be written

(y - xpf V-' ̂ V"' {Y-Xpytr(~^^
de

P ——
V do j

=  0
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where P = V~̂  — X { X ^ V ~ ^ X * V ~ \ .  Again there is a close similarity with the linear

case, the modifiction concerning the working vector and the variance.

2.4 Utilisation of IGLS algorithm for PQL

The iterative IGLS algorithm for logistic mixed models uses the same iterative scheme as 

previously presented for the linear model, but now apply in terms of the working vector Y 

and iterated weights W. The estimate of the vector of fixed effects, P, is given by

and variance components are obtained solving iteratively the following equation

where Y  is the working vector, Z** the corresponding design vector, Y** the dependent 

vectors as defined Section 1, and V the current estimates of the covariance matrix.

Note: The "second order approximation” (Goldstein, 1995)

The Fisher scoring algorithms presented above, whose use to estimate the parameters of the 

logistic mixed model was justified by the fact that they provides estimates maximizing the 

penalized likelihood (Breslow and Clayton, 1993), may also be obtained through a first 

order approximation of the model function around the predicted value (Goldstein 1991). 

Using the fact that this linearization of the model around the predicted value may be
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replaced by a more accurate, quadratic, approximation, Goldstein proposed a "second order

approximation" method to correct for an eventual bias in the estimations obtained using

PQL. This interesting discussion will be pursued in the last Chapter as a solution to correct

the bias of PQL. Nevertheless PQL being approximately ML is prefered as a first approach.

The second order approximation has not, up to now, been shown to be based on any

obvious approximation to the likelihood. Although we would speculate that the resilience

of PQL to data dependent stopping rules will remain, the lack of an objective measure of fit

can be a disadvantage in some settings, as we shall see below.

3. A first example of use of PQL for AID data using MLn

MLn (Rasbash et al, 1995) is widely used software for multilevel modeling. This Section 

provides a first reason for using it in the present context. The next Chapter will show other 

useful features of this software. In this Section we present a first model including two 

random effects to account for the three-level nature of the female hierarchy .We do not limit 

the analysis to the first attempt per woman.

Let (yi,...,yn) represent the binary responses after each of the n cycles of insemination, 

where y,= 1 if the fth cycle of insemination ends with a pregnancy, and y,- = 0 if not, with i 

= 1,..., n.

We fit a three level logit model, obtained by assuming that, conditional on the fixed effects, 

on the woman random effect/, and on the attempt random effect a, the results y„ of each 

cycle are independent Bemouilli random variables with probabilities = Pr{y, = l} 

satisfying

logit(A) -X P  + F f + Aa
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where A is a vector of elements {A,}, XP is the fixed part of the linear predictor, F  is a

design matrix for the woman (or : female) random effect /and  A is a design matrix for the 

attempts random effect a. We assume that/have a normal distribution, iv(o,0y:/)and a a

normal distribution, N (0 ,6J)  . The length o f/is  the number of women (1901) and the 

length of a is the number of attempts (2437).

Note: The block diagonal structure o fV

Following Goldstein (1986), and Goldstein (1991) the block diagonal structure will be 

easily presented in the case of a this hierarchical model with three levels. Writing Y  for the

working vector and Y = Y -  XP for the vector containing the random variables, we have

?(??’■) = v

which is an (n x n) matrix where n is the sample size (that is, the number of cycles), and V 

is constructed in the following recursive fashion. Let V2 have the following block-diagonal 

structure:

^2 =  (% (2)y  +  ^2(2)7 )  =  % (2) +  ^2(2)

where 0  denotes the direct sum and = ^e^nj ~ ^a^nj with n/as the number

of observed cycles of the j t h  attempt, as an ( r i j X n j )  matrix of ones,6^ as the variance

within attempts and 6^ as the variance between attempts. The V matrices for higher level 

is constructed in a similar recursive fashion:
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where is in our example the design matrix for the women random coefficients and 6^

the variance between women. For each woman a block takes place on the diagonal of V. 

Figure 11 and Figure 12 provide its schematic aspect.

Figure 11 Schematic aspect ofVs. Each square o f various size on the diagonal represent a woma>

i.e. a block at level 111. Outside these blocks the matrix is filled with Os.
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e .+ d

Of+ô +ê

Figure 12 Representation o f one block. Example o f a woman, with 

two attempts, with respectively 6 and 9 cycles

Represents 6 ̂  (women)

Represents 6^ (attempts)

Represents 6^ (cycles)

We now present precisely how we specify the model using MLn.

Preparation o f the data

The data are read by MLn from an ASCII file. Each line corresponds to a cycle, identified 

by identifiers for units at each level : level I, cycles; level II, attempts; level III women. The 

data are first sorted with the level III and level II as major sort keys.
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Response variable and hierarchy

resp "PREGNANT"
iden 1 "CYCLEID"
iden 2 "WOMEN"
iden 3 "ATTEMPTS"
expl "ONEl" "0NE2

where "ONEl " is for a column of one to initiate the heterogeneity at level I, " ONE2 " is 

for a column of one to indicate a random intercept at level II and " ONE3 " is for a column 

of one to indicate a random intercept at level III.

setv 1 "ONEl"
setv 2 "ONE2"
setv 3 "ONE3"

to inform that there are three variance components, one for level I (between cycles) and the 

others for level II (between attempts) and level IE (between women). MLn informs the user 

of the model setting :

IDENt ifying codes 1-CYCLEID, 2-ATTEMPS 3-WOMEN
LEVEL 3 RPM 

ONE 3
CONS 1
LEVEL 2 RPM

0NE2
CONS 1
LEVEL 1 RPM

ONEl
BCONS 1
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Until now the model is a Gaussian linear mixed model

where A represents the hazard and , 6 2 0  and 6 , 0  denote respectively the random 

intercept at woman's level, attempt's level and the error at the cycle level.

Logistic link

The modifications of the procedure needed for non-linear models are obtained using the 

existing MACRO language of MLn : these macros transform adequately between each 

iteration the response variable and the explanatory variables.

Note that Goldstein uses a slightly different parameterization than that presented above. 

This justifies the need to use "working" explanatory variables (original covariates 

multiplied by the first derivative of the link function.

PQL and REML options proposed by the package the following procedures are choosed

set B12 1 note PQL

meth 0 note REML (or RIGLS)

MLn informs the user of the model setting :

NON-LINEAR SETTINGS

LINK FUNCTION(BIO) : LOGIT(0)
APPROXIMATION(BID : FIRST ORDER(l)
NINLINEAR PREDICTION(B12 ): FIXED+RESIDUALS: PQL 1)
VARIANCE FUNCTION(B14) : DISTRIBUTIONAL(0)
DATA STRUCTURE(B15) : UNIVARIATE ANALYSIS 1)
MIXED RESPONSE(B16) : NO(0)
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The underlying logistic mixed model equation is

logit(A) — 6 3 Q + 6 2 0  + 6 ,q

Introduction o f covariates in the model

Whatever be the level of the fixed covariates they have a comparable place in the linear 

predictor.

expl 1 "azoocent" "inscent"

where " a z o o c e n t  ", azoospermia of the husband is a characteristic of the woman (level 

n i) and " i n s c e n t  " the insler score (level I), characteristic of the cycle. This equivalence 

of the place of covariates whatever be their level is easily understood. We recall that the 

underlying mixed model equation is

logit(A) = + ^ 3 0  + ^ 2 0  + ^ 1 0

where A represents the hazard, xi and X2 correspond to observed covariates at level I 

(cycle) and level HI (woman), and and are the corresponding fixed coefficients, and 

^ 3 0  ’ ^ 2 0  ^nd 6 , 0  denote respectively the random intercept at the woman's level, attempt's 

level and the heterogeneity at the cycle level.
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Practical aspects

MLn was programmed for economical use of RAM  (Goldstein, 1986, Appendix 2). MLn 

evaluates elements block by block, as presented in Section 1, (a block size is fixed by the 

number of unit per cluster) and sums the results, saving time and memory spaces.

Standard variance component procedures (e.g. SAS Proc Mixed) incorporate ML 

estimation for normal response models. But this procedure does not exploit the diagonal 

structure of the variance matrix in hierarchical model. It does not use neither a specific 

algorithm for sparse matrices. Thus we did not succeed in implementing the mixed model 

for AID data in SAS (Macro Glimmix, 1992) : Despite the reduction of the dataset to two 

third of the cycles a Vax machine 3 600 was not able to converge within one week.

MLn was really successful with our data sets : a few minutes were enough to fit this three 

level model with 1901 women, 2437 attempts and a total of 12100 level 1 units (cycles), on 

a 75 MHz Pentium PC.

Results

Min provides the following results :

PARAMETER ESTIMATE S. ERROR(U) PREY. ESTIMATE
INTERCEP -2.163 0.03658 - 2 . 1 6 3
AZOOCENT 0.0815 0.03637 0.0815
INSCENT 0.2805 0.03918 0.2805
rand
LEV. PARAMETER (NCONV) ESTIMATE S. ERROR(U) PREV. ESTIM CORR.
3 0NE3 /0NE3 ( 1) 0.5207 0.07145 0.519 1
2 0NE2 /0NE2 ( 8) 0 0 0 1
1 ONEl /ONEl (10) 1 0 1 1

In may be pointed out that the heterogeneity between attempts is very low, presented as 

"0". This aspect will be discuss in Chapter 7. Since the variance at the base level, the cycle
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level, was supposed to be the binomial variance the scale factor is set to 1 in the

programme option as can be read on the results.

4. First analyses using the PQL approach

This Section presents the results of a separate analysis of female and male hierarchy 

including all three levels - woman-attempt-cycles for the female hierarchy and donor- 

donation-cycle for the male. We shall also examine how the introduction of the fixed effect 

in the model modifies the variance components.

Female hierarchy

Let us first fit a simple intercept model for first, second, and subsequent attempts, 

successively; the results of the estimation of the variance of the probability of conception 

among women are given in Table 30.

Attempt variance on the logit scale, 0 ^

First 0.43
Second 0.37
Subsequent 0.40

Table 30 Women at level II. No covariates

These first estimations of the variance on the logit scale obtained using PQL (Table 30) 

are lower than ML estimates obtained using the gamma geometric model presented in the 

previous Chapter, as shown Table 31.

Attempt variance on the complementary log-log scale

First 0.74
Second 0.49
Subsequent 0.89

Table 31 Gamma geometric model. ML estimates.
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The difference between these two sets of results are not entirely explained by the difference

of models : the logitic and complementary log-log links are quite similar for small

probability of conception per cycle. The bell-shaped gamma distribution is not so different

from the Normal distribution to explain such a discrepancy. Therefore considering that the

ML estimates of the gamma geometric model have good properties we must also accept

that the PQL underestimate the variance (Breslow and Lin, 1995).

Table 32 presents the results of an analysis including all the observed covariates

Parameter Estimate (s.e.)

Intercept -2.237(0.039)
Woman :
Age (woman) -0.105(0.037)
Azoospermia (husband) 0.080(0.037)
Cycle :
Insler score 0.260(0.039)
Early insemination -0.137(0.038)
Late insemination -0.084(0.033)
Clomiphene citrate -0.104(0.036)
Donation :
Sperm count 0.140(0.030)
Sperm motility 0.175(0.033)
Sperm quality 0.249(0.036)
Heterogeneity :
Between women 0.569(0.074)
Between attempts 0

Table 32 Complete data. Female hierarchy

These results obtained from the whole dataset and from a model including the three level 

of female hierarchy does not show any heterogeneity among attempts. This point will be 

discussed in the next Chapter. The variance of the probability of conception among 

women, estimated on the logit scale is no longer substantially different from the one 

obtained using a maximum likelihood method of estimation and the gamma geometric 

model (0.666, see Table 29; estimation based only on the cycles of the first attempt). The
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estimates of the fixed effects are also close to those obtained using a crude marginal model

(Chapter 3, Table 20) and those obtained using the gamma geometric (Chapter 5, Table 29)

for the data of the first attempt. Using the same data set, but without including the

covariates in the model the estimate of the variance between women decreases to 0.520

(0.071). Most of the fixed effect we observe are at the level I (ovulatory cycle) and their

distribution among women vary

extremely : this observation explains at least partly the absence of reduction of the 

variance between women after the introduction of fixed effects.

Donor hierarchy

The estimated variance of the probability of conception among donor (0.387) is very close 

to the one obtained in previous Chapters (beta-binomial model, ML estimate, estimated 

variance on the logit scale : 0.452). The PQL bias is therefore small.

Table 33 presents the results of an analysis including all the observed covariates. In this 

model we introduce the cycle rank and a dummy variable for attempts ( 0  if first, 1 if 

subsequent). This introduction of cycle rank and attempt rank give us a way to model 

marginally (population-averaged) with respect to women, but conditionally (subject- 

specific) with respect to the donors.
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Parameter Estimate (s.e.)

Intercept -2.067(0.077)
Woman :
Age (woman) -0.116(0.033)
Azoospermia(husband) 0.059(0.032)
Attempt:
Subsequent 0.266(0.077)
Cycle rank:
2 -0.312(0.103)
3 -0.276(0.107)
4 -0.320(0.115)
5 -0.474(0.126)
6 -0.500(0.135)
7 -0.548(0.149)
8 -0.307(0.144)
9 -0.676(0.175)
1 0 -0.676(0.189)
1 1 -0.918(0.217)
1 2 -0.960(0.238)
Cycle :
Insler score 0.253(0.038)
Early insemination -0.139(0.038)
Late insemination -0.078(0.033)
Clomiphene citrate -0.092(0.034)
Donation :
Sperm count 0.131(0.039)
Sperm motility 0.173(0.042)
Sperm quality 0.201(0.042)
Heterogeneity :
Between donors 0.230(0.046)
Between donations 0.031(0.047)

Table 33 Complete data.Male hierarchy

At the intermediate level of the hierarchy the variance between donations is estimated as 

close to zero. This suggest that donor more than donations are responsible for the success 

of a trial, or that all the covariates explain the variance of the donation. This will be 

discussed in the next Chapter. There is in addition a striking difference between these 

results and those obtained for the woman, which is the sharp decrease of the estimated 

variance when introducing the fixed effects (from 0.387 to 0.230).

130



Chapter 6 Approximate inference methods for Gaussian random effects models

Next Chapter will be devoted to the discussion of this complex variance structure and on 

its effect on the estimation of the fixed and random effect. Nevertheless these analysise 

shall be possible only after the introduction of the crossed hierarchical structure.
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Chapter 7 Extended MLn analysis

If we want to take into account simultaneously the male and female factors in a statistical 

model we are confronted with a crossed hierarchical structure since both factors are 

exerting their effect on the probability of conceiving at a given cycle through several levels 

of their respective hierarchy (cycle, attempt, woman; cycle, donations, donors).

In the previous Chapters we have avoided to take into account simultaneously these two 

hierarchies. In this Chapter both will be included in the model. A crossed random 

multilevel logistic model, taking account of this structure shall be presented. Moreover 

having taken into account properly the correlation between ovulatory cycles, an extended 

analysis of the dataset will be performed.

1. Crossed random multilevel logistic model

As previously stated the statistical complications arise from the doubly hierarchical 

structure of the dataset (see Chapter 2, Figure 1 C). This double hierarchy induces a 

complicated correlation structure and statistical methods which would ignore it will tend to 

underestimate the variance of the coefficient estimators. There is also considerable interest 

in the extent of extra variability attributable at all levels and to study the fixed effects 

taking account of their place in the hierarchies.

To face the problem of crossed design, solutions have been proposed by Raudenbush 

(1993), Rasbash and Goldstein (1994) and Goldstein (1995). Breslow and Clayton (1993) 

analysed the salamander mating data reported by Me Cullagh and Nelder (1989) using a
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crossed random multilevel logit model. Insemination with donor sperm dataset is globally

of the same type, with 3 levels instead of two: the cycles are the level I units; the cross

classification is at level II of the hierarchy assigning in a given "cell" the collection of

cycles belonging to the same attempt of the same woman and inseminated with the same

donation (Chapter 2, Table 3). Attempts to conceive are themselves nested within women

and sperm donations within sperm donors. However, in contrast with the salamander

mating data, the insemination data are totally unbalanced. Moreover, the majority of the

cells are empty, each woman receiving sperm from at most 1 2  donors ( 1 2  cycles is a

maximum per woman); there is rather rarely (about 6  % of the cells) more than two cycles

in each "cell", since there is no systematic assignment of donors to recipients.

The computations for models with crossed random effects are laborious. Breslow and

Clayton, discussing the analysis of the "salamander data" which involves two sets of 60

crossed random effects concluded that the size of this problem corresponds to the limit of

faisability for PQL computation; with larger probelms Markov Chain Monte Carlo

(MCMC) methods become attractive. In the present case we have 1901 women and 279

donors and the potential random effects of 2437 attempts and 1328 donations. It was

therefore nevessary to design a method of computation which can deal properly with such a

large dataset.

In the next Chapter an MCMC solution will be investigated. In this Chapter we apply the 

PQL approach to the insemination dataset, using an alternating EM  algorithm (Dempster et 

al 1977) to approach the serious computational difficulties involved in fitting models with 

large numbers of crossed random effects (women and donors).

Our solution to these difficulties derives from the fact that simple hierarchical random 

effect models, as stated in Chapter 6 , may be fitted extremely efficiently by exploiting the 

block diagonal structure of the matrices involved. Thus, random effect models for woman
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and attempt effects can be rapidly fitted as can similar models for donor and donation

effects. We simply use an EM algorithm which alternates between these two sets of rapid

computations.

Model

Let (Yi,...,Yn) represent the binary responses to a total of n cycles of insemination, where 

Y|=l if the ith cycle of insemination ends with a pregnancy, and Yi= 0  if not.

For simplicity of notation we will first ignore attempts and donations and allow for only 

recipient and donor effects. We propose a crossed random multilevel logit model which 

assumes that, conditional on a woman random e ffec t/ and on a donor random effect m, the 

result of each insemination , yi, are independent Bernoulli random variables with 

probabilities A, = pr{Y. = l} satisfying

logit(A) = X p + F f + Mm

where A is a vector of elements { A ,}, % is the matrix for the fixed effects P , with rows x ' ,

F  is the design matrix for the woman (or : female) random effect /a n d  M  is the design 

matrix for the donor (or : male) random effect m. X  represents cycle covariates but also 

covariates at higher levels, concerning women or donors and donations. We assume th a t/  

and m both have a normal distribution, respectively N (0 ,6^I)  and N (0 ,6 ^ I ) . The length

of/  is the number of women, and the length of m is the number of donors.

The conditional mean can be written : E[y\b) = h(Xp  + Zb) where h(.) is the logistic 

function

and Z = {F ,M } , with rows z ‘ , and b = ( /^ ,m ^ )^
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The integrated likelihood function is used to estimate p, 9 f and 9^

L {l} ,e f,0„ ) = n JJ L(y,\X{f,m ),}l>{d^,e^)dfdm

where L(y.|A(/,m ), ) denotes the conditional likelihood of y, given its mean andO ( ) the

multivariate normal density. As previously stated, its logarithm can be approximated 

following Breslow and Clayton (1993)

/(/J.0,.e„) = -liog|/+Z'\VZD| + / [ j3 | i ] -D D - lfc

where b is chosen to maximize the sum of the last two terms, that is to say as the empirical 

Bayes estimates (EB), and A = A (/,m j ; D  = 0 (9 ^ ,9 ^ ^  is the diagonal covariance matrix

of b and W  is the diagonal matrix with diagonal terms A, (1 -  A, ), the GLM  iterated 

weights.

An algorithm to maximize a "penalized" log likelihood of the form of above expression is 

the following.

1 ) Calculate the working vector and weights as in the familiar GUM  algorithm, using 

current ML estimates of p  and current EB estimates of b, and calculating "working" Y- 

values using a local linearization around A

1

where A, is the fitted value using both fixed and random terms in the model, 

logit(A, ) = x 'P  + z ‘b , and
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2 ) Iterate between

2a) Solve the mixed model equations for Gaussian linear mixed models, to yield 

approximate ML estimates of the fixed effects, p, and EB estimates of the 

random effects, b,

2b) Calculate maximum likelihood estimates of the variance components (the 

parameters which determine the matrix D), again under the assumption that 

the "working" Y-values are Gaussian. In the mixed logistic model this yields 

maximum pseudo-likelihood estimates.

For single and nested random effects this algorithm has been implemented efficiently in the 

MLn computer program (Rasbash and Woodhouse, 1995) as presented in Chapter 6 .

For crossed random effects, a more general program such as SAS PROC MIXED must be 

used to implement the algorithm. Unfortunately, however, the matrix inversions required in 

step (2 ) were not feasible for a dataset of the size considered here.

An alternative computational method has been proposed by Rasbash and Goldstein (1994), 

but this is only feasible for small datasets and problems in which the crossing of random 

effects is rather incomplete so that there are not too many groups of subjects sharing 

distinct pairs of random effects. This method too was not feasible in the present 

application. Instead we alternated between two EM  algorithms.

An alternating EM algorithm

If a feasible method for simultaneous computation of estimates of p  and b is not available, 

the EM  algorithm can be used. Here the solution is obtained by alternating between solving 

the equations for p  and b assumed known, and solving the equations for b with known p.

136



Chapter 7 Extended MLn analysis 

In our case, there are two sets of random effects, 6 = . Two EM  algorithms are

possible :

1. Solve for p  and m in the M-step, using empirical Bayes estimates of/(E -step) as 

"offsets", or

2. solve for p  and / i n  the M-step, using empirical Bayes estimates of m as "offsets"(E- 

step).

In fact we alternate between these algorithms since, by so doing, each "M-step" delivers the 

empirical Bayes estimates required for the alternative E-step. It is fairly straightforward to 

show that this algorithm will increase the penalized likelihood at each step. Thus, our 

alternating EM  algorithm will, for fixed estimates of the variance components, converge on 

correct estimates of p, m, and/.

This procedure solves the mixed model equations for the fixed and crossed random effects. 

The estimating equations for the fixed effects, p, are

E ^ l W , { Y , - x l p - z l b ) x \  = 0

where the expectation is taken with respect to the posterior distribution of b. The weights 

Wi are inversely proportional to the (residual) variance of 7, the "working" Y-value. Taking 

the expectation on the left hand side is equivalent to replacing the random effects, 6, with 

empirical Bayes estimates.

Estimation of variance components, 6  ̂and 6^, is more problematic. We propose to use

the estimates delivered by each half of algorithm. Nevertheless this will only yield the same 

estimates of variance components as would be obtained from fitting the full model under 

rather special circumstances. It may easily be shown that for the alternating EM  algorithm 

to yield the correct solution, the two sets of random effects must be a posteriori
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independent of one another. The equation for the ML estimate of 0 , ,  the between-

variance component, is

;  , - . w  L ,^ v y y ^ ^ . . - W O m a n

w here; indexes the women, My is the number of women and expectations and variances are 

taken with respect to the posterior distributions of /  A similar equation holds for the ML 

estimate of 6 ^. Our algorithm does not in general deliver estimates satisfying these

equations because the term Var{^fj j in the above equation is not estimated as it should.

For example, when computing the estimate of we assume the male effects to be known

(at m). Thus the posterior variance contribution in the equation for 6^ will be taken as the

conditional posterior v a r i a n c e V a r ( / . m  = fh) rather than V a r[f\D a ta ,p ) . If m ,/

are a posteriori independent, then these two variances will be the same, but this will only 

be true for balanced designs in which the likelihood for m and/factorizes. In other 

circumstances our algorithm will not deliver correct estimates.

Figure 2 (Chapter 2) demonstrates that, in this application, the assignment of donor to 

recipient is not balanced. However, donors and recipients are only associated as a result of 

the date of insemination; when the data are stratified by calendar year of start of treatment 

(Figure 3), the association between donor and recipient is largely removed.

We have verified that for AID data the estimates of variance components are nearly 

unchanged after such stratification, and conclude that use of the algorithm is justified in our

case.
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Computational aspects

The MLn algorithm uses the fact that Vhas a very special structure for nested random 

effect models to speed up the computations. While this matrix does not have this structure 

when both random effect included in the model it would have it if one random effect is 

fixed to the previous estimate.

For practical reasons, the algorithm proposed by Goldstein is applied to the working vector 

A(1 -  X)Y , the design matrices [X, Z] being replaced by [ A(1 -  X)Z , X(1 - X)Z ].
The logistic mixed model having being declared as in Chapter 6, the EM algorithm is 

implemented in the following way:

(0) Setting m to 0 as initial estimate, run MLn estimation for and calculate 

empirical Bayes estimates for f

n o te  Setting m to 0 as initial estimate 

n o te  C34 i s  a  colum n o f  0 

name C34 "OFFS" 

n o te  run MLn estimation for

s t a r t

n o te  calculate empirical Bayes estimates for/  

r c o v  0 

r l e v  2 

r e s i
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(1) Calculate the working dependent vector Y, and the « working » design matrices

[X { \ - X  )X, X (1-A  )Z],

Introduce the current estimation o f/as  offset 

Sort the dataset in donor blocks

Run an MLn estimation for p,6^  and calculate empirical Bayes estimates for m.

n o te  The w o rk in g  m a t r ic e s  a r e  u p d a te d  by  MLn m acros 

n o te  "OFFS" i s  u p d a te d  to  th e  v a lu e  o f  f .  

n o te  The d a ta  a r e  s o r t e d  in  d o n o r b lo c k s  

n o te  Run an MIji estimation for p,6^

id e n  2 "donor" 

s t a r t

n o te  calculate empirical Bayes estimates for m ; see (0)

(2) Calculate the working dependent vector Y and of the « working » design matrices

X (1-A  )Xand X (1-A  )Z,

Introduce the current estimation of m as offset 

Sort the dataset in women blocks

Run an MLn estimation for p.O^ and calculate empirical Bayes estimates fo r /  

Iterate between (1) and (2) until the convergence of the estimates of p ,6 f,6 ^

Note that the two MLn fits yield different standard errors at convergence. Both of these are 

incorrect since each ignores the fact that one set of random effects are estimated. The 

standard errors shown are based on the final MLn analysis which fixes the donor random 

effects and, as stated above, are misleading. In the case of linear least squares, exact

140



Chapter 7 Extended MLn analysis 

distributional results for the ordinary least square estimator may be derived and this theory

may be used to construct exact confidence intervals as long as the assumption of normality

holds. Even if the response is not normally distributed the estimator remains unbiased. In

the linear model, and 9 are asymptotically orthogonal so that var|^jêj converges to 

var^3|0 j . In non linear models, P and 6 are asymptotically correlated, and hence

inferences about p  must take into account uncertainty in ê . In the non linear model, it is 

no longer possible to obtain exact results even under the normal distribution with constant 

variance. When calculating estimation of fixed effects and empirical Bayes estimates of 

random effects, we make the assumption that the variance components are known. This 

strategy is acceptable for point estimation, but not for estimation of the variance of points 

estimators.

Significance of covariate effects is better assessed by tests based on (approximate) 

likelihood ratios. Excluding successively each parameter in turn, we reestimate the others 

and calculate the maximized log-likelihood, having constrained the variance components 

to their estimated values derived from the most complex model (McCuUagh and Nelder 

1989 p 91). The likelihood ratio test statistics are formed by calculating changes in (-2 log- 

likelihood).
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2. Results

We first fit a full intercept model, with three levels for female hierarchy (cycle, attempts, 

women) and three for the male hierarchy (cycle, donations, donors). Table 34 exhibits the 

results.

Parameter Estimate (s.e.)

Intercept -2.274
Heterogeneity :
Between women 0.446(0.069)
Between attempts 0
Between donors 0.377(0.058)
Between donations 0
-2 log likelihood (approximated) 7 028.0

Table 34 Complete data. Alternating EM algorithm.

Stability of this EM algorithm is obtained very rapidly for all the parameters shown in this 

Table. Four iterations are sufficient. In spite of multiple checks and verifications we do not 

obtain any evidence for an identifiable heterogeneity between attempts and between 

donations when both women and donor effects are in the model. From now on we consider 

that these intermediate levels have no practical implication and are discarded from the 

model, except in so far as they are relevant to the construction of "compositional" 

covariates..

Table 35 exhibits the full model with covariates.
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Parameter Estimate (s.e.)

Intercept -2.303
Woman :
Age (woman) -0,106 (0.036)
Azoospermia (husband) 0.080 (0.037)
Cycle :
Insler score 0.264 (0.039)
Early insemination -0.137 (0.038)
Late insemination -0.082 (0.034)
Cloniphene citrate -0.103 (0.036)
Donation :
Sperm count 0.130 (0.030)
Sperm motility 0.179 (0.034)
Sperm quality 0.217 (0.036)
Heterogeneity :
Between women 0.500 (0.072)
Between donors 0.222 (0.043)
-2 log likelihood (approximate) 6 880.6

Table 35 Complete data. Alternating EM algorithm. With covariates.

This table presents the values of the estimated fixed effects and the estimated variance of 

the random effects concerning the heterogeneity between women and between donors using 

the logistic mixed model and the double EM algorithm presented above. The results of this 

analysis do not change appreciably when stratified by year of treatment in an attempt to 

minimize association between donor and recipient, 0̂ . =0.505 and =0.226.

All the tests are based upon comparisons (ratios) of the approximate likelihood. Excluding 

successively each parameter we estimate again the others and the log-likelihood after 

having constrained the variances (in both hierarchies) to their estimation derived from the 

most complex model.
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Note that, to obtain the likelihood ratio test in this mixed model we fit the most complex

model and then exclude the tested parameter, having constrained the variance to its

estimation derived from the most complex model (McCullagh and Nelder, 1989, p 91).

Table 36 shows the results of this procedure, including the ratio test statistics formed by

substracting the values of -2 log likelihood. We do it in a backward fashion excluding the

parameters of smaller size (these are standardized regression coefficients) among the

parameters present in the sub-model.

Parameter being dropped out 
from the model

-2 log likelihood (approximate) L ratio test

(Full model) 6 880.6 -

Azoospermia (husband) 6 885.2 4.6
Late insemination 6 891.2 6
Clomiphencitrate 6 899.2 8
Age (woman) 6 908.4 9.2
Sperm count 6 919.4 11
Early insemination 6 930.4 11
Sperm motility 6 948.0 17.6
Sperm quality 7 003.2 55.2
Insler score 7 063.0 59.8

Table 36 Complete data. Alternating EM algorithm. Backward elimination o f parameters. 

Female and male variance components are constrained to their value of the more complex

model.

It may be noted that the residual deviance, after having dropped out all the covariates is 

higher than the deviance exhibited in the Table 34 where the variance parameters are 

unconstrained.

Among the 36 tested interactions between the fixed effects, only one was significant 

according to the likelihood ratio test —  that between age of the woman and the quality of 

the sperm after thaw (%^=8.6). This interaction was in the direction of decreasing benefit 

from "good sperm" with increasing age of the woman. However, since the number of 

tested interactions was l^ge and the was quite small, we have little evidence of any
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real interaction between the fixed effects. We have also verified the absence of any

significant variation of heterogeneity as a function of covariates by including interaction

between variance components and fixed parameters in the MLn model for variance

components estimation. In particule, there is no interaction between azoospermia and the

variance at woman's level. Thus the variance of the probability of conception does not

differ significantly between the two groups of women (sterile husband versus husband

having sperm of poor quality).

The fixed effects include covariates at the cycle level, the woman level, the donation level 

and the donor level. The conclusions of previous studies are summarized by CECOS 

Fédération and Lansac, in Gray et al.(1993) in the following words:

"Pregnancy rates are highest when the cervix is dilated, there is abundant cervical mucus, and spinnbarkheit 

10 [components of the Insler score]. A woman is more hypofeitile if she (...) is over 35 years old, or has a 

husband with good semen. The most useful predictor of male fertility is spermatozoa mobility. (...) The most 

predictive variable [concerning male factors] was post-thaw mobility."

Concerning day of insemination, Schwartz et al. (1979) reported a large decrease of

fecundability rates for inseminations taking place too early or too late, after the presumed

day of ovulation. Our findings confirm these results. The results provided for standardized

covariates are separately more easily interpretable as odds ratio : Age of the woman, (per 5

years) : 0.76; azoospermia of the husband : 1.18; Insler score, (per 1 unit) : 1.56; early

insemination : 0.58; late insemination : 0.83; number of spermatozoa, (per 50 10  ̂/ml) :

1.2; percentage of motile spermatozoa, (per 10 %) : 1.39 and the global index of quality,

(per 1 unit) : 1.30. All the covariates quoted above, together with stimulation of ovulation

by clomiphene citrate are significantly related to the success rate.

This last covariate could be partly a surrogate for dysovulation, this treatment being used in 

such cases. But clomiphene citrate is also known to be deleterious for the cervical mucus
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and as such could cause of low success rate. The distinction between these two origins of

low success rate when using clomiphene citrate is of interest. We can distinguish between

these two sorts of effects by including the covariate “clomiphene at first cycle” as an

indicator for low fertility. Additionally including the variable at the cycle level can be

interpreted as a direct effect. This is an example of “compositional covariate”. Table 37

shows the absence of reduction of deviance when adding the covariate "clomiphene citrate

on the first cycle" (18.8 percent of the women). Thus, we do not have any argument to

confirm the interest of this covariate as identifying less fertile women. Our observation

suggests the existence of a negative effect of citrate clomiphene on the success rate.

Parameter Estimate (s.e.)

Intercept -2.303 -2.303
Woman :
Age (woman) -0.107(0.036) -0.106(0.036)
Azoospermia (husband) 0.079(0.037) 0.080(0.037)
Cloniphene citrate at first cycle -0.036(0.044)
Cycle :
Insler score 0.264(0.039) 0.263(0.039)
Early insemination -0.136(0.038) -0.136(0.038)
Late insemination -0.082(0.034) -0.082(0.034)
Cloniphene citrate -0.086(0.042) -0.103(0.036)
Donation :
Sperm count 0.130(0.030) 0.130(0.030)
Sperm motility 0.179(0.034) 0.179(0.033)
Sperm quality 0.217(0.036) 0.217(0.036)
Heterogeneity :
Between women 0.505(constrained) 0.505
Between donors 0.222(constrained) 0.222

-2 log likelihood (approximate) 6 876.6 6877.2

Table 37 Complete data. Alternating EM algorithm. With covariates.

It has been previously stated that "The success rate was considerably lower for women inseminated for 

the first pregnancy than for women seeking a second or a third pregnancy. This suggests that the former group 

includes some hypofertile women". This Statement favors the existence of a heterogeneity of
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basal fecundability between the women. In our datasets the residual variance between

women is estimated at 0.5 and earlier analyses suggest it is probably rather larger. A much

clearer interpretation can be obtained if we recall that the exponential of the random

parameters i f  and m) can be interpreted as (log) odds ratios between the basal fecundability

of each woman (or donor) and the mean basal fecundability of the population of women

(donors). These parameters being distributed normally, 26 percent of women (donors) have

an odds ratio higher than e° . The size of the standard deviation of a random parameter can

in this way be compared with a fixed effect parameter's. For women, the variance is 0.5

(standard deviation 0.7) this heterogeneity factor is three times larger than the greatest

fixed effect (Insler score p  =0.264). For donors the estimate of residual heterogeneity is 

smaller than among women (standard deviation: 0.47). This heterogeneity remains after 

having introduced the parameters describing the semen, before and after thaw.

Table 38 presents an analysis of the conception rate according to the three male 

characteristics ([i] Number of spermatozoa [ii] Motility of spermatozoa and [iii] Quality of 

sperm after thaw) introduced in several different ways. We should recall that studies of 

artificial insemination by donor represent an unusual research opportunity to study both 

male and female fertility simultaneously. In "normal" couples, these aspects are nearly 

totally confounded, while in these data the non-systematic allocation of the donor to 

recipient allows the effect to be differentiated.

The large number of cycles with insemination by the same donor allows a more detailed 

analysis of donor fertility than for fertility of the woman. Table 38 compares the variance 

component concerning the donors with or without inclusion of the three male covariates. 

The first model (I) does not include the male covariates. The second (II) introduces them as 

was stated in Table 35, directly at the donation level. Their inclusion decreases
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significantly the deviance (%̂ = 35.6 for 3 df p<0.0001). The male residual heterogeneity

decreases from 0.382 to 0.222 when these covariates are included.

Regression parameters Model I
Estimates 
Model n Model n i

Donation level; male covariates
Number of spermatozoa - 0.130 -

Motility of spermatozoa - 0.179 -

Quality of sperm after thaw 
Donor level (means)

0.217

Number of spermatozoa r - 0.179
Motility of spermatozoa - - 0.175
Quality of sperm after thaw 
Donation level; male covariates 
(Centred on donor means)

0.366

Number of spermatozoa - - 0.059
Motility of spermatozoa T - 0.110
Quality of sperm after thaw 
Variance components

0.099

Women 0.460 0.500 0.504
Donors 0.382 0.222 0.220

-2 loglikelihood (approximated) 6916.2 6880.6 6861.6

Table 38 Complete data. Male covariates introduced at donation level (Model II) 

or as donor compositional covariates (Model III). The female covariate effects are not 

presented being nearly unchanged. ( identical in the first 2 decimal places)

Moreover Table 38 compares the model (H) with a model (IQ) in which the same three 

male covariates are no more included in their original form but as "compositional" 

covariates:

we include them in two parts (i) the mean for each donor, and (ii) the deviation of the 

measurement at each donation from this mean value. As an example, if we consider the 

quality of the sperm after thaw. The donor mean of üiis variable provides a global index of 

sperm quality from that donor, while the deviations measure whether sperm quality at any 

donation was good or bad for that donor. The table shows clearly a significant reduction of
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the residual deviance (%̂ = 19 for 3 df p<0.001). Thus, this new way of introducing the

variable carries more information. Moreover, the log-odds is originally 0.217 when

introduced as a single covariate. When introduced at both levels, it becomes 0.366 at donor

level and only 0.099 between donation. Analysis in this way clearly shows that the three

covariates (the number of spermatozoa, their motility and the score of quality of the sperm

after thaw) are more predictive when introduced at the donor level. In fact, the size of the

estimated effect of the donor mean is three times as big as the residual effect of the

deviation of each measurement from this mean.

More than one third of the heterogeneity between donors appears to be explained by these 

three covariates. Two explanations can be proposed : either their distribution among donors 

vary extremely and they act at the cycle level or more probably they are descriptors of the 

donors more than of each specific donation. Figure 13 illustrate the size of the overlapping 

between ranges of values observed in donations of each of th 279 donors.
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The figures suggest that large values were observed for all donors whatever their average

quality. This observation tends to reject the first explanation.

W iF

Figure 13 Range of values observed among donations of the 279 donors. The donors are

sorted by the lowest value of the range.

Thus, these three male variables would seem to represent imperfect measurements of the 

global fecundability of the donor rather than indicators of the specific fecundability of one 

donation. This observation was made in the past concerning the segmentation of the 

embryo after in vitro fertilization (Lomage, Mathieu 1989): the percentage of successes 

was quite the same with sperm having good or bad indexes (number, motility etc...) if the
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man had had, on average, good sperm in the past. On the other hand, if the man had past

bad indices, good sperm used for the fertilisation failed to give good results. Finally, the

very low variance (almost 0) obtained when we introduce donation as an intermediate

level between donor and cycles seems to argue in the same direction; the quality of the

donations of a same donor are very stable whatever the values of measured covariates. This

stability of the quality of sperm between donations has been observed in other species

(Goffaux 1978, Foote 1980). Our observation is not contradictory to the fact that all studies

of repeat semen samples show a large variability within subject : this observed

heterogeneity concerns the characteristics of the semen, not its fecundability; moreover in

AID case, donations have been collected from a single donor over about a month's time and

hence the heterogeneity may be reduced. A last analysis of this aspect shall be proposed in

the last Chapter.

Recall that marginally the success rate of a donor increases as the number of previous use 

of his semen rises (Chapter 4). The unit-specific regression model used in this Chuter 

allows to test for this effect avoiding the selection bias due to any specific allocation made 

by the physician. The selection process made by the physician selecting for more donations 

sperms having a "good past history of success" shall not create any bias in this conditional 

analysis.

Table 39 shows the result of this analysis.

Parameter Estimate (s.e.) A Estimate (s.e.) B

Intercept -2.328 (0.051) -2.325 (0.051)
Cycle :
Number of previous inseminations - 0.034 (0.032)
Heterogeneity :
Donors 0.382(constrained) 0.382 (0.059)
-2 log likelihood (approximated) 7 473.0 7 471.8

Table 39 Complete dataset. Donor at level II.
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This table provides no argument for an effect of the number of previous inseminations on 

the success rates. The subject specific model does not support the hypothesis of an 

improvement effect of time on the frozen sperm. We conlude that the effect we observed 

Chapter 4 was a consequence of a selection bias.

3. Conclusion

The data on Intra uterine insemination with donor’s sperm has a complex structure due to 

the overlapping of two hierarchies, one concerning female (recipient) factors (cycles 

within attempts within women), and the other concerning male factors (inseminations . 

within donations within donors). A crossed multilevel model, taking into account these 

aspects permits one to improve the estimation of the fixed effects and provides insights 

into the influence of them at each level (cycle level, woman level and donor level). The 

penalized likelihood method applied successively to each of the two stmctures (male and 

female) after introduction of the estimation of the opposite structure as offset permits 

efficient computation in multilevel modelling software. Unfortunately we cannot claim 

general applicability for this computational method as its justification depends on near 

orthogonality of the crossed classifications. Our experience of stratification by year of first 

treatment is reassuring and suggests that modest non-orthogonality may be tolerated. More 

experience of this will be necessary before a general recommendations can be made. In the 

meantime we would stress that, short of Markov chain Monte Carlo methods, no other 

algorithm was available to us which could fit a crossed random effect model of this size. 

We would also note that the circumstances in which this method will not work, that is 

strongly non-orthogonal designs, are precisely those in which the method of Rasbash and 

Goldstein (1994) can be applied. At the very least our method provides, very rapidly, an 

approximate solutions which could be refined, for example, by using MCMC methods. 

This will be investigated in the next Chapter.
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Chapter 8 A Gibbs sampling approach

In previous chapters we fitted the logistic Gaussian mixed model to our data set using 

approximate inference methods. This approximation was necessary to overcome the 

difficulty due to the need for high order numerical integration. Recent Bayesian procedures 

solve these problems by taking repeated samples from the posterior distribution using 

Gibbs sampling techniques; effectively Monte Carlo techniques are used to carry out the 

integration. In this Chapter, this approach will be presented and applied to our data set.

1. Bayesian formulation

In a Bayesian approach to analysing the logistic Gaussian mixed model, the parameters, P 

and 0 are random variables. Recall that the results of ovulatory cyclès in terms of success 

or failure are modelled as follow

y ~ Bemouilli{X)

g(^) = lo g Y ^ = î?

“H = Xp + Z b  

b ~N(O,D(0))

In the Bayesian setting, the important distinction is that between observable ( F , X and Z) 

and unobservable quantities ( p , D(9) and b ). No further classifications are necessary. In 

particular, both fixed effects and random effects are handled within the same general
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framework. The Bayesian model specification is completed with prior distributions. We

choose the following prior distributions

p ~ Normal(pQ,B)

0 = Y Ô ~ Gamma(Vy t)
0

The parameters of the distribution of random effects are conunonly termed 

"hyperparameters":

P are parameters and 0 is a "hyperparameter". Thus {Pq,B) and (v,t) are respectively 

called priors and hyperpriors.

Unobservables quantities are estimated using the distribution obtained by conditioning on 

all observables, and integrating over all other unobservables. Let p{pjD) represent the

joint prior distribution for p  and D{6) . The first objective of our analysis is to derive the 

posterior distribution, given by

]XJf{y:hP)8(b,\D)pip,D)3b,dfidD

i.e. conditioning on the data (y j  and integrating over other unobservables (6 j ,

where I  is the number of clusters (i.e. women). The second concerns the random 

parameters

I \ j /(y. K. f )&(<', 1̂ W .
^  jf{y,\b„P)g{b,\D)p(p,D)3b,dpdD

i.e. conditioning on the data [y. ) and integrating over other unobservables ( p  and D ). 

Numerical evaluation of either /(j8,D|y)or /(^, |y) is typically intractable. In the logistic 

Gaussian mixed model we seek the joint distribution [)3,D,fc|y] and its marginals [)3,D|y]
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and [6|y]. These posteriors are not directly available but may be obtained from

conditionals as will be shown now.

2. Gibbs sampling

The Gibbs sampler is a method for obtaining the marginals from a set of full conditionals 

This procedure avoids the need for numerical integration by taking repeated sampling from 

the posterior distribution.

Stochastic substitution

For clarity, let us limit the presentation to the case of 2 elements (rather than three), the 

generalization to more than two elements being straightforward (see Clayton, 1991). To 

draw a sample from the unavailable [m, v], if [v] is available, sample V from [v], then

sample f/~[M|v = 7], thus (f/, V) is a sample from [m ,v ]. If [v] is not available, argument 

by analogy with relaxation methods for the solution of linear simultaneous equations 

suggests a stochastic substitution method : starting from (î/°, we generate a sequence

, it=l,2,... sampling f/" ~ J and ~ Jv|m = Î/"J. Using theorems

reviewed by Gelfand and Smith (1990) it may be shown under rather weak conditions that 

the sequence, which is Markovian, converges to an equilibrium distribution which is the 

joint distribution [m ,v]

For more than two sets of variables, the basic idea of stochastic substitution may be 

extended in various ways according to the availability of conditional distributions.
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The most attractive is the Gibbs sampler algorithm of Geriian and Geman (1984) which

was initially constructed to generate random samples from the Gibbs distributions — a 

very large class of graphical models.

The graphical model

A partial ordering of subelements of our hierarchical model is obtained using a Directed 

Acyclic Graph (DAG, Figure 14). Conditionally independent submodels are then identified 

as illustrated on a conditional independent graph (Figure 15). The joint distribution of the 

system is proportional to the product of each independent part. Such a distribution is a 

Gibbs distribution.

Figure 14 describes the two level hierarchical model (women and cycles) through a 

directed acyclic graph connecting the hyperparameters, the parameters and the observed 

data. Pq represents the intercept, i.e. the basal fecundability supposed to be constant over

the short period of time covered by our study. P,̂  represents parameters corresponding to

fixed covariates whatever be the level (women or cycles). Finally,/represents random 

parameters and the hyperparameter. It appears clearly that the respective position of

parameters and hypeiparameters are not identical. A partition into conditionally 

independent submodels follows naturally.
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DATA

Figure 14 Female two level hierarchical model 

Directed acyclic graph

In Figure 14 the edges are directed and it is not possible just by following the direction of 

edges, to return to a node after leaving it. Thus, there is a partial ordering of the nodes : a 

natural Markov-type assumption on this partial ordering leads to a "directed Markov 

assumption" (Lauritzen, 1990), which simply states that the joint distribution of all the 

model parameters and data is given by the product of all the submodels exhibited on the 

conditional independence graph (Figure 15).
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DATA

Figure 15 Conditional independence graph

The conditional independence graph is an undirected g r^h  constructed so that 

if two variables, U and V, are connected only via a third variable W, then U and V are 

conditionally independent given W; if t/ and Vboth have directed links to W in the directed 

graph, then U and V must be joined in the (undirected) conditional independence graph. 

These independences lead to considerable simplifications as will be exemplified below.

The joint distribution, a product of each independent part described above is a Gibbs 

distribution. The Gibbs distribution is defined on the two "cliques" — set of nodes in 

which all pairs are connected.

Gibbs sampling

The Gibbs sampler (Gelfand and Smith, 1990; Casella and George, 1992) is a Monte Carlo 

method for estimating the desired posterior distributions. The model is first analysed 

adequately as shown above (Figure 14 and Figure 15). Given arbitrary starting values, the 

Gibbs sampler algorithm visits each node of the conditional independent graph and 

generates a value from the conditional distribution of the corresponding random variable
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given the current values of all its neighbours. Geman and Geman (1984) showed that,

under conditions similar to those for simple stochastic substitution, the algorithm

converges to a sample from the joint distribution. Gibbs sampling succeeds because it

reduces the problem of dealing simultaneously with a large number of intricately related

unknown parameters and missing data into a much simpler problem of dealing with one

unknown quantity at a time.

Example o f an application for the logistic Gaussian mixed model

As previously said we seek the joint distribution [j3,^,D|y] which can be obtained by 

sampling from the "fiill conditional distributions" and

. These conditional distributions simplify because of the conditional

independence argument :

becomes and becomes

We can then specify the simulation method for each node (Zeger and Karim, 1991), as 

follows.

W ‘'\y ]

Given the 's, the random effects model reduces to a GLM with offset z^b^^  ̂ for each

observation. Assuming a flat prior for p , the posterior is proportional to the likelihood.

To sample from this likelihood we can choose between two options :

either approximate it with a quadratic function in the neighborhood of 

or, a second solution, prefered in smaller samples, is to obtain a sample from 

the likelihood itself using a rejection/acceptance algorithm by sampling the 
distribution
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where c is selected so that the mode of this function and of the likelihood are 

equal and is the inverse of the information matrix

We have assumed that the bis are independent Gaussian(0,Dj random variables.

q+ l

The standard non-informative prior for D is |D| 2 where q is the number of random 

parameters. Then the posterior distribution of D'^ follows a Wishart distribution with 

parameters

8̂ “' aDd(I-q+l)df .

is obtained using again a rejection/acceptance algorithm with the function

cN{A,2*B)

A and B being respectively the Bayes estimate of b and its variance [Z^VZ + ) *.

Sampling successively from each of these three conditional distributions provides samples 

from the joint posterior distribution of the unknown quantities. Empirical summary 

statistics can be formed from these samples and used to draw inferences about their true 

values. Practical aspects concerning the convergence matters will be discussed below.
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3. BUGS

BUGS (Gilks, Thomas and Spiegelhalter, 1994; Spiegelhalter et al, 1995; Best et al, 1996) 

is the most well known software for "Bayesian inference Using Gibbs Sampling". BUGS 

Version 0.50 [i] decomposes the Directed Acyclic Graph -DAG- model into its 

components, the nodes, [ii] identifies the nature of parents and children of each node and 

thus the structure of their full conditional distributions, [iiijchoose the best method of 

sampling from full conditionals and provides the samples. Its presentation introduces a 

generalized approach of Gibbs sampling.

Decomposition of the Directed Acyclic Graph -DAG- model into its components, the nodes

The DAG model represents, as previously said, parameters, data (including missing) and 

constants as nodes in a directed graph. These nodes are reached by arrows which origines 

rom other nodes having a direct influence on their values (parents). Formally, the model 

represents the assumption that, given its parent nodes, each node v is independent of all 

other nodes in the graph except "descendants" of v (see BUGS Version 0.50 manual, 

Spiegelhalter et al, 1995). Nodes are of three types : [i] Constants, fixed by the design of 

the study, for AID data, the number of women, number of cycles,etc... [ii] Stochastic 

nodes, variables that are given a distribution. They may be observed (the data) or 

unobserved (parameters,missing data or unobserved due to censoring), [iii] Deterministic 

nodes, which are logical functions of other nodes.

Structure o f the full conditional distribution of each node 

(Best et al, 1996)
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The full joint distribution of all the quantities V in the model has a simple factorization in

terms of the conditional distribution p{y\parents[v^ of each node v given its parents (i.e. 

those nodes on whom v directly depends), i.e.

p(V) =  n  p(^\parents[v^
v e V

Thus we only need to provide the parent-child distributions to specify the model fully : the 

crucial idea behind BUGS is that this is all we need to provide for being ble to carry out the 

whole analysis. The Gibbs sampling algorithm successively samples from the conditional 

distribution of each node given all the others. For any node v the full conditional 

distribution is the product of all the terms in V containing v, and thus, has the form

p( v| parents[v^ x Y l  pW  pt^rents[w^
v e p a ra its [w \

or in other words "prior component * likelihood components arising from each child of v". 

"The full conditional distribution for any node depends only on the values of its parents, 

children and co-parents, where co-parents' are other parents of the children of v." (Best et 

al, 1996).

Choice of the best method of sampling from full conditionals

BUGS contains a small expert system for deciding the best method of sampling from full 

conditionals. The choices are, in decreasing order of preference

(1) Conjugates : BUGS identifies conjugacy and takes benefit of it

(2) Adaptative Rejection Sampling (Gilks and Wild, 1992) for log concave

densities, i.e. < 0 .
dx

(3) Other methods in case of non-log-concavity. BUGS manual proposes a 

solution in case of non log-concave distribution. It is possible to discretise it 

into a categorical variable which can be sampled by enumeration.

162



Chapter 8 A Gibbs sampling approach 

In further Sections we will present some results provided by BUGS for ATT) data.

4. Application to AID data set

In this Section we present a description of the specification of three models and the results 

of their fitting using BUGS. We shall present successively a model including a random 

effect for women, a model including a random effect for men, and finally a model 

including there two random effects and covariates.

Variance o f the probability o f conception among the women

Using the results of the ovulatory cycles of the first attempt, as it was done in the first 

Ch^ters of this dissertation, we analyse the variance of the probability of conception 

among the women. Recall that this variance may be partly related to the heterogeneity 

between the women and partly to the heterogeneity between the donors whose sperm has 

been used for the inseminations. In previous Chapters the variance has been estimated 

fitting various models to the data : a geometric model with overdispersion based on the 

conception rates of the first two cycles (Chapter 3), a beta-geometric model describing the 

delays until conception as a mixture of geometric (Chapter 3), a gamma-geometric model 

allowing to include fixed effects properly (Chapter 4). In this Chapter we fit a logistic 

Gaussian mixed model, mainly in order to be able to compare the results of these various 

approaches.

BUGS code for logistic Gaussian random intercept model :

Note that for computational reasons, the normal distribution is parameterized in terms of 

mean and precision, where precision is the inverse variance.

The symbol # denotes a comment.
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const
F=1901,
CYCLE=9740;

var
y [CYCLE], 
lambda[CYCLE], 
woman[ C Y C L E ] , 
randpar[F], 
deltaf, 
intercept, 
thetaf; 

data in "firstat.dat"; 
inits in "firstat.in";
{
for(k in 1:CYCLE) { 

logit(lambda[k]) <-
intercept+reindpar [woman [k] ] ;

y[k] - dbem(l£imbda[k] ) ;
}for(i in 1:F) {

reindpar[i] ~ dnorm(0.0, deltaf);

}
intercept- dnorm(0.0, l.OE-6); 
deltaf - dgamma(1.OE-3,1.OE-3);
thetaf < 1/deltaf;

}
update(1000) 
monitor(intercept) 
monitor(thetaf) 
update(3000)

# Number of women
# Number of cycles

# y, success or failure
# A, fitted value
# woman's identication
# f, random effect
# 5f, precision
# pof intercept
# Gf, the variance par.
# the data set
# Initial values

# losit{X) = XP + F f
# y~ BemouUi(X)

# /  ~ Normal

# Priors P ~ Normal{p
# Ô ~ Gamma(v,T)

1
# and

# Bum-in iterations
# To store all saitpled
# values for the nodes
# Carry out 3000
# iterations

The results and those obtained in the previous Chapters are showed Table 40 for 

comparison. Four methods of estimation are used : a moment method, a maximum 

likelihood method, an approximate likelihood (PQL) and the Gibbs sampling.

Model Estimation Method Variance on logit scale

Overdispersed geometric model Moment method* 1.564
Beta geometric model Likelihood 0.740
Logit Gaussian model Approximated likelihood(FGL) 0.431
Logit Gaussian model ------------------------------------- Gibbs sampling 0.895

estimated on the hazard scale and approximated on the logit scale using the delta method and thus slightly biased

Table 53 Two level models Women at level II First attempt
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The ML estimate of the variance on the complementary log-log scale, obtained fitting a

gamma-geometric model to the delays until conception is 1.02. The higher variance (1.564)

obtained using the marginal rates of the first two cycles may be interpreted in at least two

ways; either sampling variation or the existence of a small group of highly fertile women

conceiving during the first cycle. So far we do not have any added information to choose

between these two hypotheses. Likelihood and Gibbs sampling methods provide similar

results and PQL lower estimations. This can be interpreted as a downward bias of PQL

estimates.

Our Gibbs sampling results may also be slightly biased downward since we had a delayed 

convergence (Figure 16) and some difficulty to obtain stability (Figure 17).

In these figures we present the result of the series of iterations, with both a kernel density 

(on the left) and the complete series of values (on the right). Figure 17 represent the results 

of the same sampling but after having excluded the bum in iteration. A bimodal density of 

the sampled values reflect the lack of stability of the sampling process. Nevertheless this 

bimodal distribution could also be the true distribution !
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kernel density for Intercept trace of Intercept (4000 values)

mean — -2.33: a.d - 0.06036/ 
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6%  - 0 .1726  
0 6%  - 1.071

s
2
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o

o

2
O 1000 3000

var.women Iteration

Figure 16 Logistic Gaussian mixed model. Female hierarchy. First attempt. Gibbs

sampling
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Kernel aensiiy ror intercept trace of Intercept (3000 values)

-2.e -2.4 2.2
Intercept

kernel density for var.women

10OO 2000 3000 4000
Iteration

trace of var.wonien (3000 values)

CSÏ

O.e 0.8 1.0 1.2
var.women

10OO 2000 3000 4000
Iteration

Figure 17 Logistic Gaussian mixed model. Female hierarchy. First attempt. Gibbs

sampling

Variance of the probability o f conception among the donors

After having studied the variance of the probability of conception between women, we 

estimate the variance of the probability of success among donors. As it is the case for the 

women the variance is not reflecting only the heterogeneity between the donors. 

Nevertheless the number of recipients per donor being high the added variance due to them 

is possibly low.

We present the BUGS code used to fit a beta binomial model, r represents the number of 

success per donor, A is the probability of success, described as beta distributed.
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BUGS code for the beta binomial model

const
D =279; 

var

# Number of donors

r[D], # r,number of successes
m[D], # m, number of trials
lambda[D], # A, fitted value
eta,
tau;

# gamma parameters

data in "betabih.dat"; # The data set
inits in "betabin.in"; 
{
for(k in 1:D)

# Initial values

{r[k] - dbin(lambda[k],m[k]); # Bemouilli
} ,
for(i in 1: D)

{lambda[i] ~ dbeta(eta, tau);
}
eta- dunif(0,1000); 
tau - dunif(0,1000);
}
update(500)

# Beta distribution

# Flat priors

# Bum-in iterations
Monitor(eta) 
Monitor(tau)

# Store sangled values

update(3500) # 3500 iterations

Note that the convergence was obtained rapidly and that the stability was sufficient as 

shown Figure 18.
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Figure 18 Beta binomial model. Male hierarchy. Complete data. Gibbs sampling 

Table 41 shows the results concerning the the variance of the probability of success among 

donors, estimated on a same scale (logit scale), fitting different models with various 

inference methods.

Model Estimation Method Variance on logit scale

Overdispersed binomial model Williams method* 0.426
Beta binomial model Likelihood* 0.448
Beta binomial model Gibbs sampling* 0.423
Logit Gaussian model PQL 0.387
Logit Gaussian model ■*----------------------------------------- Gibbs sampling 0.448

estimated on the hazard scale and approximated on the logit scale using the delta method

Table 41 Two level models Donors at level 11 Complete data set

The various methods provide very similar results; in particular, the result obtained using 

PQL is only slightly lower than others, in contrast to the heavy downward bias observed in 

the analysis of the woman random effect.
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Logistic Gaussian model for crossed hierarchies : female and male

We now present the crossed random multilevel logistic model, taking account of the 

crossed hierarchical structure due to the coexistence of female factors and male factors. 

This model was applied to our data in the previous Chapter using an approximate inference 

method based on the PQL approach. We present below thé specification of the model in 

BUGS and the results.

BUGS code

const
F=1901, # Number of women
M=279, # Number of donors
CYCLE=12100; # Number of cycles

var
y [CYCLE], # y, success or failure
lambda[CYCLE], # k, fitted value
agewcent[CYCLE],jplus1er[CYCLE], # covariates
clomiphen[CYCLE],mobcent[CYCLE], #
numcent[CYCLE],inscent[CYCLE], #
jm3cries[CYCLE],deccent[CYCLE], #
azoo[CYCLE], #
donor[CYCLE], # donor's identication
womcin[CYCLE] , # woman's identication
randparwo[[F], # f ,  random effect
randpardo[M], # m, random effect
deltaf. « ôf, precision
deltam. # 5m, precision
intercept. # bo, intercept
betaagewcent,beta]pluslor. # other fixed effects
betaclomiphen, beteunobcent, #
betainscent,betanumcent, «
betajm3 orles,betadeccent,betaazoo, #
thetaf,thetam; # OfSuid 6m the variances

data in "wodocov.dat"; # the data set
inits in "wodocov.in"; ^ # Initial values
for(k in 1:CYCLE) {

logit (lambda [k] )’ <- # logit(A)-Xj8 + Z6
intercept+ #
be taagewcent * agewcent[k] + #
betajpluslor*jpluslor[k]+ #
betaclomiphen*clomiphen[k]+ #
beteunobcent *mobcent[k] + #
betainscent*inscent[k]+ #
betajm3orles*jmSorles[k]+ #
betadeccent*deccent[k]+ #
beteuiumcent *numcent [k] + #
betaazoo*azoo[k]+ «
remdparwo[woman[k]] +randpardo[donor

y[k] - dbern(lcimbda[k] ) ;
}
for(i in 1:F) {

# y ~ Bemoulli(X)
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randparwo[i] ~ dnorm(0.0, deltaf);
}
for(] in 1:M) {

randpardo[j] - dnorm(0.0, deltam);
)
intercept- dnorm(0.0, l.OE-6);
betaagewcent- dnorm(0.0, l.OE-6); 
betajpluslor- dnorm(0.0, l.OE-6); 
betaclomiphen- dnorm(0.0, l.OE-6); 
betamobcent- dnorm(0.0, l.OE-6); 
beteuiumcent- dnorm(0.0, l.OE-6); 
betainscent- dnorm(0.0, l.OE-6); 
betajm3orles- dnorm(0.0, l.OE-6); 
betadeccent- dnorm(0.0, l.OE-6); 
betaazoo- dnorm(0.0, l.OE-6);
deltaf - dgeunma(1.OE-3,1.OE-3) ; 
delteun - dgamma(1.OE-3,1.OE-3);
thetaf <- 1/deltaf;
theteun <- 1/delteun;
}

# f  ~ Normal{0,D{0

# m ~ Normal{p,D{p

# Priors ^ ~ Normal{j^Q^É)
#
#
#
#
#
#
#
#
#
# 8  ~ Gamma{y, t)
#

and 0  =  — 
8

It must be pointed out that this crossed model is close to the limit of feasability with 

current equipment: one hour was needed on a Pentium PC 75 for compilation and 1000 

updates took two days !

After these bum-in iterations, 3000 iterations was used to obtain the following results.

Parameter Estimate (s.e.)

Intercept -2.609(0.062)
Woman :
Age (woman) -0.136(0.043)
Azoospermia (husband) 0.096(0.043)
Cycle :
Insler score 0.297(0.044)
Early insemination -0.155(0.040)
Late insemination -0.089(0.035)
Clomiphene citrate -0.112(0.039)
Donation :
Sperm count 0.140(0.047)
Sperm mobility 0.203(0.048)
Sperm quality 0.237(0.048)
Heterogeneity :
Between women 0.993(0.146)
Between donors 0.335(0.062)

Table 42 Complete data.
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This Table has to be compared to the Table 35, which exhibits the results obtained fitting

the same model using PQL. All the fixed parameters were closer to 0 with PQL, and the

variance between women and between donors was also respectively 50% and 30% lower

than results presented Table 42. These results confirm the well known downward bias of

PQL.

At the end of this seventh Chapter, dealing with Gibbs sampling, we conclude first with 

two statements:

"From now on we can compare our data with the model that we actually want to use rather 

than with a model which has some mathematically convenient form".

(Clifford, discussions of Gilks ef a/., 1993)

Indeed, Gibbs sampling offers a solution to estimate fixed and random parameters in our 

hierarchical model whatever its complexity (more than two levels, crossed hierarchies,...) 

Since this method of estimation is based on empirical means and standard deviation of 

processes which are supposed to have converged to a limiting distribution it is very 

important to be able to check the convergence and other characteristics of the sample 

obtained. Therefore this method should be used with some caution (Spiegelhalter et al., 

1994).

It is necessary to check very carefully the adequacy of the posterior distribution sampling 

process before calculating resulting estimators, Moreover, there is a need for further 

research to speed up this samphng process and for further advances in computing 

technology. Nevertheless, this method provides an additional and promising tool for the 

analysis of data on conception delays.
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Chapter 9 Further topics, discussion, conciusion

In this dissertation we have emphasized some important aspects of the statistical treatment 

of AID data, but many related questions of interest were not treated or just outlined. This 

Chapter presents briefly some of them, selected for their practical implications or because 

they provide potential areas for further developments.

We have stressed that, using mixed models to describe our data, inference provides 

estimates of fixed effects, variance components and random effects. So far the calculation 

of empirical Bayes estimates of the latter was introduced only as a useful aid in the 

algorithm of estimation of the components of the variance but their properties as an 

estimate of the performance of a woman or of a donor were not considered; this will be 

discussed in the present Chapter. Then some open problems shall be outlined, including 

propositions made by some authors to improved methods, which rely on various 

approximations of the likelihood.

The advantage of random effects models in the statistical analysis of human fecundability 

data is emphasized. A rapid overview of potential benefit of their use in that field closes 

the dissertation.

1. Distribution of the random effects

We shall discuss successively the presence of some sterile women among the recipient and 

more generally the distribution of the random effects among the women and among the 

donors. In earlier Chapters we assumed that neither any woman nor any donor are totally
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sterile. Indeed both, recipient and donors are accepted for intra uterine insemination only if

there is a strong belief in their fertility. But a sizeable proportion of women being unable to

conceive is known to exist in any population (Leridon, 1977), and this status may be

unknown at the start of an attempt for fertilization.

Sterile recipients

All evidence for a sterility of the woman would be a contra-indication for AID : if any, the 

percentage of sterile women is probably very low. A way of estimating the percentage of 

stériles was proposed by Leridon from a comparison of rate of increase of the family at 

different parities. The mover-stayer model supposes that some women whose fecundability 

is effectively 0 are present in the dataset.

For such applications, the beta distribution (for example) could be considered to be 

contaminated by a distribution degenerated at 0 (Maruani and Schwartz, 1983; Weinberg 

and Gladen, 1986).

The distribution is then a mixture of a continuous function and a Dirac measure , 

concentrated at 0 : Under non-informative censoring the marginal hazards are a mixture of 

a proportion of sterile women and of women being progressively selected, the more fertile 

conceiving earlier. Denoting s the proportion of sterile women at the beginning of the 

study, ̂ A), the distribution of the probability of conception among the women is

where BQ denotes the beta distribution. For a woman of fecundability A, under a geometric 

model, the probability of conception at cycle t is A(l -  A)*~*. By integration we obtain the 

dishibution of the delay of conception, T  say, among the women
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Pr(r = r) =0.j  + ( l -5 )J  L

= (1 -  5) ^ , for (=1
V + T

= ( 1 - j )— — -  , for r>l  
V + TÎ=t V + T + M

and the probability of no conception up to cycle t

11=1 V + T + M — 1

Note that these expressions are not exactly identical to the published expressions (Maruani 

and Schwartz, 1983). Indeed Weinberg (1986) has pointed out some typographical errors in 

this paper.

If n(u) and c(u) denote respectively the number of women conceiving and being censored at 

the tth cycle, the log-likelihood may be written

/ = Z  {"(“) log[Pr(r = m)]+ c(u) log[Pr(r > m)]}
U=1

We fit this model to the results of the first attempt on our dataset, using S-Plus 

S-Plus Code

# nu and tau are the parameters of the beta distribution
# ss denotes s , the percentage of sterile women in the population
# g.maruani calculate P r(j = r|v,T,5) and G.maruani P r(j > r|v,T,j)
g.maruani function(tr, log.nu, log.tau,logit.ss)
{ nu <- exp(log.nu) 

tau <- exp(log.tau) 
ss<-(1+exp(-logit. ss) ) ''-I un.tr<-l:12
coit̂ <- ( (tau+un. tr-1) / (nu+tau+un.tr) ) 
prod.comp<-curaprod(comp)
c ((1-ss)*nu/(nu+tau),((1-ss)*(nu/(nu+tau))*prod,con©[(tr-1)]))

}G.maruani<- function(tr, log.nu, log.tau,logit.ss) { un.tr<-l:12 
nu <- exp(log.nu) 
tau <- exp (log. tau)
comp<-(tau+un.tr-1)/(nu+tau+un.tr-1) 
prod. coirp< - ciutprod ( coitp )
ss<-(1+exp(-logit.ss))^-1_____________________________________
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SS+ ( (1-ss) *prod.coitp[tr] )

}Inn <- log(2)
Int <- log(4) 
inits<--2bgiti <- ms(~ -( (event*log(g.maruani (tr, log.nu, log. tau, logit.ss) ) ) 

+ (censored*log(G.marucuii(tr, log.nu, log.tau,logit.ss)))), 
start = list(log.nu= Inn, log.tau= Int,logit.ss=inits))

The ML estimate of the percentage of sterile women is j  = 1.7e - 007 i.e. effectively zero, 

and the mean and variance of the probability of conception among the women are 

respectively 0.0946 and 0.0056 (0.767 on the logit scale).

Note that the results are slightly different from those obtained fitting the marginal hazards 

with the same model (mean and variance of A are respectively 0.12 and 0.008). We have 

actually underestimated the success rate in the present analysis because we have included 

attempts of women which were left truncated and considered them as complete 

observations.

Heckman et al (1990a and 1990b) presents nonparametric methods for testing the 

hypothesis of the existence of a mover-stayer model. We have not ^plied this approach to 

our dataset.

Non-parametric model for the distribution of the random effects

Non-parametric modelling of the distribution of the random effects is an attractive 

approach in that it allows for a bimodal (plurimodal) distribution. Doing that modelling we 

do not test for the presence of sterile women but more generally we describe the 

distribution of the random effects.

Let (Yi,...,Yn) represent the binary response to a total of n cycles of insemination, where 

Yi-1 if the ith cycle of insemination ends with a pregnancy, and Y i^  if not.The result of 

each insemination, y i, are independent Bernoulli random variables with probability 

A, = pr{Yi = 1} satisfying
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logit(A) = XP + Zb

Let us note /(y|j3,Z?) the logistic distribution, the In the previous Chapters the random

effects, 6, was described as drawn from a Normal density distribution. Now this 

distribution, H(b), is described as having K  masses located at points (k=l,...K) with 

probability mass pt.

Recently Aitkin (1996) presented a general maximum likelihood analysis of overdispersion 

in generalized linear models. The authors stress that their aim is not to estimate the 

distribution — noting that the non parametric ML estimate of this may be very poor — but 

to avoid possibly misleading inferences fi^om an in^propriate and unverifiable model 

assumption. Nevertheless we apply this method to our dataset, the approach providing 

complementary information on the diversity of probability of conception among the women 

and among the donors. The masses and mass-points are treated as unknown parameters.

The number K  of mass-points is also unknown but is treated as fixed, and sequentially 

increased until the likelihood is maximized. The likelihood is then written

It K

i k= l

where a* and pk are respectively the mass-points and the masses. The linear predictor in the 

Ml mixture component is

Thus oCk functions as an intercept parameter for the Mi component : it can immediately be 

estimated by including a component factor' in the model with K  levels instead of the 

variable a* •
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y  p  f  g/ Z^kPkJik

where is the posterior probability that observation y„ comes from component k \

and SikiP) is the j9-component of the score (the log-likelihood derivative with respect to p) 

for the observation i in component k. Equating the score to zero gives likelihood equations 

which are simple weighted sums of those for an ordinary GLM with weights w** . 

Alternately solving these equations for given weights and updating these weights from the 

current parameter estimates, is an EM algorithm. In each M-step the estimate of pk is 

obtained from the weights :

It may be shown that the transformation defined improves the likelihood at each iteration, 

which suggests iterating to convergence to obtain the maximum likelihood estimate. 

Model comparisons are carried out via the likelihood ratio test using differences of 

deviances. We apply this model and algorithm to our dataset using the GLIM4 

implementation provided by Aitkin et al (1995).

A logistic random intercept model is fitted to the data for first attempts. The results are 

summarized in Figure 19 and Table 42
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Figure 19 Non-parametric estimates o f the distribution o f hazard (on a logistic scale).

Women. First attempt.

Number 
of masses Deviance

Variance
logit(A)

1 6042.06 0.0
2 6016.31 0.735
3 6015.52 0.671
4 6015.09 0.737
5 6015.16 0.725
6 6015.18 0.735
7 6015.28 0.701

Table 42 Fitting non-parametric frailty distributions to the first attempt data

The convergence difficulties of the EM algorithm are apparent since the deviance does not 

decrease uniformly with the number of masses, Indeed, there is little to choose between any 

of the "solutions" with three or more masses. Nevertheless, this analysis gives a clear 

impression that the distribution of random effects is fairly symmetric on the logistic scale
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with variance of around 0.7. There is no evidence for a proportion of sterile women, nor for

a multimodal distribution of fecundability. This agrees quite closely with the variance

estimates of 0.740 obtained from the beta-geometric model (likelihood estimate) and of

0.801 obtained from the logistic Gaussian model (Gibbs sampling estimation).

The same model is fitted to the male hierarchy, with introduction of cycle rank and a

dummy variable for attempts (0 if first, 1 if subsequent). This introduction of cycle rank

and attempt rank give us a way to model marginally (population-averaged) with respect to

women, but conditionally (subject-specific) with respect to the donors. Before any

introduction of the sperm characteristics, the distribution of random effects shows the

existence of a percentage of rather infertile donors (Figure 20, first graph, on the left, about

lOplOO of mass on a mass-point at about 0.01). But observed covariates are able to identify

these donors as shown by the two other graphs , presenting respectively the estimated

distribution of residual heterogeneity between donors after introduction of covariates

(mobility, number and quality index) at donation level (about 5plOO of the women, at a

probability of success being lower then 0.01) and after introduction of these covariates at

donor level (no mass-point below 0.08 percent of success).
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Figure 22 Non-parametric estimates of the distribution o f hazard (on a logistic scale) 

Donors. Complet data set. Note that the fifth mass-point does not appear on the right hand 

graph the two lower mass-point being very close together at 0.081 and 0.0811
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Table 43 shows the numeric values of the estimated mass-points and masses for a five

point model including covariates at donor level.

Parameter Estimate (s.e.) Mixture proportions

Attempts:
Subsequent 0.265 (0.074)
Cycle rank: 
2 -0.306 (0.103)
3 -0.273 (0.107)
4 -0.315 (0.114)
5 -0.476 (0.125)
6 -0.498 (0.134)
7 ' -0.542 (0.148)
8 -0.286 (0.143)
9 -0.640 (0.174)
10 -0.631 (0.188)
11 -0.906 (0.216)
12 -0.931 (0.237)
Donor :
Average Sperm count 0.201 (0.041)
Average Sperm mobility 0.185 (0.035)
Average Sperm quality 0.349 (0.046)
Heterogeneity (Donors) :
Mass points on risk scale 
First 0.0810 0.0258
Second 0.0811 0.3529
Third 0.1745 0.3793
Fourth 0.1979 0.2090
Fifth 0.3515 0.0330

Deviance 7534.4

Table 43 Complete data. Non-parametric model for heterogeneity between donors

These results confirm those of the Chapter 7. The fixed effects of the characteristics of the 

donations explain an important part of the variance among donors : The mass of the lower 

mass-point of the distribution of residual heterogeneity decreases when the fixed effects are 

introduced in the model. Moreover when introducing the mean of these covariates over all 

donations of a donor in the model rather than the separate values of these characteristics for
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each specific donation this mass-point disappears : sterile donors are identified by the

covariates introduced in that way.

2. Empirical Bayes Estimates

In this Section we outline the question of the potential use of empirical Bayes estimates of 

the random effects in clinical practice. The prediction of breeding values has motivated 

numerous works on random effects models (e.g., Henderson, 1984; Gianola et al, 1986; 

Foulley et al, 1987; Foulley et al,1990). We can discuss the interest of similar approach for 

human.

Only donors with some evidence of fertility are accepted and they are not discarded after 

several failures since it is difficult to attribute the failure to the lack of fertility of their 

sperm rather than to the male fertility of the women for whom it was used. In addition 

insemination clinics have few donors available and drastic method of exclusion would be 

counter-productive. Nevertheless the broad range of the success rate per donor calls for a 

discussion (50 donors where systematically unsuccessful in all cycles, over 1 to 71 cycles). 

Some donors have so bad results that it would probably be better to discard them from the 

sperm bank for ethical and practical reasons. Knowing past bad results of some of them, 

the posterior probability of success in further trials is probably very low. Two propositions 

could be made. Either to discard donors having low estimates of posterior probability of 

success in regard to a threshold, or discard systematically a percentage of the less fertile 

donors. A parallel can be drawn between the comparisons between donors and the 

comparisons of Institutional performance' discussed recently by Goldstein and 

Spiegelhalter (1996). These authors point out the interest of 'adjusted comparison' of

183



Chapter 9 Further topics, discussion, conclusion 

organisations in Educational or Health systems, but also stressed the inevitable limitations

in making such comparisons.

We apply the two methods proposed in their paper to the donors. First following Goldstein 

(1995b) we present on the right hand side of Figure 23 the empirical Bayes estimates of the 

linear component for the 279 donors, with confidence intervals, which enable pairwise 

comparisons to be carried out while maintaining an average required type I error rate. This 

is achieved using as covariance matrix an estimation of the conditional covariance matrix

and writing the confidence interval for the ith donor as given by

( j  ■
hi ± , where is the average of — —— taken over all the pairs (ij). Za is the

C i + O j

normal deviate with a two tail probability, and<T,,(T  ̂ andcT  ̂ are respectively the standard 

deviation of both donors and of the difference between them.
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Figure 23. Empirical Bayes estimates of the success rate o f the donors. Left : Median ranks 

and 95% confidence intervals. Right : pairwise 95% overlap intervals. Logistic mixed 

model with the characteristics o f the donations as fixed effects and donors effects as 

random. In the two figures donors are sorted identically.

The rank of the estimated random effects are obtained fitting the logistic Gaussian mixed 

model using BUGS.

BUGS code is quite similar to that presented in the previous Chapter for logistic Gaussian 

mixed model plus the following lines (Spiegelhalter, 1995)

# Confute ranks : 
for (j in 1:D) {

for (k in 1:D) {greater.than[j,k] <-step(predict[k]-predict[j]);} 
rank[]]<-8um(greater.than[j,]); # remk of the donor j

}
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The median estimates and 95% confidence interval are displayed on the left hand side of 

Figure 23. The width of the intervals is noteworthy. There are obvious relations between 

MLn estimates and BUGS ranks. The same is true for intervals.

The question of optimal selection of donors having to be discarded from the sperm bank 

need to be investigated more completely. An optimal solution would take into account the 

limitation of the number of bom children per donor : for genetical reasons the French law 

limits to 5 the number of living children per donor. When a donor has being used for 5 

successful inseminations with live-birth his semen must be discarded from the bank. 

Despite the difficulty to recmit donors it is necessary to discuss some selection, because it 

would not be ethically acceptable to use sperm known to be inefBcient. This question of 

practical interest merits further investigation.

3. Open problems and discussion

In this Section we sketch some other open problems and conclude this dissertation 

stressing the interest of mixed models to analyse fecundity data.

Accuracy o f approximations

In the previous Chapters we have emphasized the difficult choice we had to make between 

the estimates of variance components obtained using PQL, this method providing results in 

a few minutes despite the large size of the dataset, and the probably better estimates 

obtained using Gibbs sampling but precluding quite absolutely to use them in the building 

model phase, the computing time being really too long.

PQL was clearly for ADD dataset the method of choice to build up the model, particularely 

thanks to the existence of a flexible software — MLn — allowing, for example, to test for
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the existence of interactions between fixed effects and variance components. But MCMC

methods were necessary to obtain corrected estimates, particularly of the variance

components. PQL bias of the variance of random effects estimate is larger when the

variance components are higher, Breslow and Lin (1995) have shown, using simulation

technics for a single random effect, the existence of a asymptotic bias of =-0.4 for standard

deviation of 1. In AID dataset we observe PQL estimated values of about 0.5 (Table 35) 

for the woman variance component, to compare with about 1 (Table 42) obtained using 

Gibbs sampling. The bias is smaller for donor variance component this variance being 

itself smaller than the woman's. A second reason of the difference of size of bias between 

female and male variance component could be the cluster size. Performance of PQL is less 

satisfactorily when the data are sparse (Breslow and Lin, 1995). In AID dataset the mean 

number of cycles per woman is 4.65 to compare with 31.65 for the donors. Moreover an 

added difficulty could be due to the censored nature of AID data. The number of success 

per woman and donor are respectively 0.48 and 3.26. The effect of censoring concerns 

mainly the woman. In AID dataset 52 % of the women did not conceive. For censored 

observations likelihoods for random effects are monotone (Clayton, in Discussion of Lee 

and Nelder paper, 1996) so that the Gausian approximation which underlies PQL will fail. 

A last reason for a bias can be the fact that women are removed from observation after 

conception. Considering PQL as a "Predicted" quasi-likelihood approach helps to explain 

this potential particular effect. PQL is a method of estimation based on a linearization of 

the link function around the predicted value. In the "delay to event" situation the cluster 

size depends heavily on the probability of success : higher is the probability of success, 

lower is the cluster size and thus more important is the shrinkage; empirical Bayes 

estimates may not be the better point of linearization in this case ? This last consideration 

needs more work to be confirmed.

187



Chapter 9 Further topics, discussion, conclusion 

Some authors have proposed solutions to improve approximations for multilevel models

with binary responses. Breslow and Lin (1995) propose a method to correct the bias in

generalized linear models with a single component of dispersion, but also for multiple

components (Lin and Breslow 1997) using a correction terms. Their simulations tends to

prove the interest of this approach. Kuk (1995) proposes a Monte Carlo method for

iterative bias correction. Recently Steele (1996) has proposed a modified EM algorithm for

estimation in generalized mixed models whose results seem promising.

Goldstein (1995) and Goldstein and Rasbash (1996) propose an other method based on the

addition of a second order term in the linearization of the link function. But the

justification in terms of approximation of the likelihood remain to be explored. This second

order approximation is proposed as an option in MLn. In Table 44 we present the effect of

this correction on the results obtained when fitting to our dataset a logistic Gaussian mixed

model with woman random effect. The estimations of the fixed effects and variance

components are both higher than those obtained using PQL (Table 32). The estimation of

the variance component is close to the one obtain fitting the data using Gibbs sampling.

Parameter First Order approximation Estimate (s.e.)Second Order Estimate (s.e.)

Intercept -2.237(0.039) -2.460(0.046)
Woman :
Age (woman) -0.105(0.037) -0.132(0.043)
Azoospermia (husband) 0.080(0.037) 0.089(0.044)
Cycle :
Insler score 0.260(0.039) 0.285(0.044)
Early insemination -0.137(0.038) -0.149(0.043)
Late insemination -0.084(0.033) -0.087(0.037)
Clomiphene citrate -0.104(0.036) -0.108(0.041)
Donation :
Sperm count 0.140(0.030) 0.153(0.033)
Sperm motility 0.175(0.033) 0.195(0.037)
Sperm quality 0.249(0.036) 0.267(0.040)
Heterogeneity :
Between women 0.569(0.074) 0.979(0.105)

Table 44 Complete data. Female hierarchy
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Table 44 shows the results of the same second order correction in the case of two random

effects, one for the women and one for the donors. Again the results are modified. They are

close to those obtained with Gibbs sampling (Table 35). As shown Table 45 this does not

decrease the approximated log-likelihood because these second order estimates do not

maximize the penalized quasi-likelihood. But it would be interesting to investigate this

method further.

Parameter First Order approximation estimate (s.e.) Second Order Estimate (se)

Intercept -2.303 -2.509(0.045)
Woman :
Age (woman) -0.106 (0.036) -0.131(0.042)
Azoospermia (husband) 0.080 (0.037) 0.090(0.043)
Cycle :
Insler score 0.264 (0.039) 0.287(0.044)
Early insemination -0.137 (0.038) -0.149(0.042)
Late insemination -0.082 (0.034) -0.085(0.037)
Cloniphene citrate -0.103 (0.036) -0.106(0.040)
Donation :
Sperm count 0.130 (0.030) 0.142(0.033)
Sperm motility 0.179 (0.034) 0.197(0.037)
Sperm quality 0.217 (0.036) 0.231(0.039)
Heterogeneity :
Between women 0.500 (0.072) 0.879(0.100)
Between donors 0.222 (0.043) 0.236(0.046)
-2 log likelihood (PQL approximate) 6 880.6 6986.8

Table 45 Complete data Alternating EM algorithm. With covariates.

Finally, approximation methods and MCMC methods can probably be used both in a same 

estimation method : approximate estimates can be rerined by sampling methods. This is a 

field for further research.

Analysis o f data on human fertility

In this dissertation we have explored methological approaches adapted to correlated binary 

data and assessed their suitability for the analysis of data on human fertility. Studies of
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intra-uterine insemination with donor’s sperm presents some of the most challenging

statistical aspects of fecundability studies:

[i] the delay until conception is subject to censoring since some women stop after a few 

cycles without success, choosing instead adoption or another treatment such as in vitro 

fertilization;

[ii] the heterogeneity of womens’ fecundability is the source of a marginal decrease of the 

success rate from cycle to cycle, the most fertile women conceiving earlier;

[iii] after a first success, with the conception and the birth of a child, a second series of 

inseminations can be attempted: indeed several such programmes have been attempted by 

the same woman;

[iv] insemination with sperm obtain from donors introduces dependence between the 

outcomes of inseminations in which sperm from the same donor has been used.

Other clinical situations in human fertility are simpler : except for in vitro fertilization with 

sperm from donor female and male components of the fecundity are confounded. Unit 

specific regression models with closed form of marginal presented in Chapter 5 are 

certainly the solution of choice for the largest part of the current studies on human fertility. 

The gamma-geometric model with the Poisson approximation of the likelihood provides a 

very interesting solution for these analyses. The rpoisson macro —  Personal 

communication, D.G. Clayton —  in STATA may be proposed for users. Other members of 

the family of distributions described in Chapter 5 can be used when necessary. Indeed, 

Heckman and Singer (1984) showed substantial changes in parameter estimates with small 

changes in mixing distribution specification. It would be interesting to study further the 

interest of the inverse Gaussian family of distribution in the context of fecundability data. 

Chapter 5 showed also the particular interest of the complementary log-log link function. 

Nevertheless other link functions may be investigated. Animal breeders use mixed models
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to separate fixed effects, for example age, breed or sex, from random genetic effects and

other source of variation. Binomial traits are sometimes regarded as resulting from

classifying an underlying normal variable into two classes relative to some threshold.

Gianola and Foulley (1983), Gilmour Anderson and Rae (1985) and others have

investigated these mixed models with probit link function. It could be useful to study the

applicability of these methods to human fecundity.

It would also be worth to explore the non-parametric method of Aitkin (1996) for crossed 

random effects and the Yashin and lachine (1995) "additive frailty components" approach. 

More than randomized trials, observational data analysis can profit from mixed models. 

Observational data are remarkable in that a lot of covariates have to be taken into account 

and that a careful examination of interactions and of possibly random effect of the 

covariates have to be studied. This is a reason to stressed the interest of models including 

more than one random effect. Logistic Gaussian mixed models with more than one random 

effect fitted using a PQL algorithm such as those provided by MLn is of a greatest interest 

in this field. It allows to take benefit of the whole knowledge of the structure of the dataset 

without the limitation of applications limited to one random effect 

In our experience, contruction of compositional covariates describing the mean value or 

other characteristics such as the variability of covariates in repeated measurement (e.g. 

cycles) of a same unit (e.g. woman or donor) provide an important tool for investigation of 

the potential reasons of successes and failures of insemination. Such method of regression 

has probably a great interest in clinical epidemiology. Also the "compositional covariates" 

results raise the problem of covariate measurement error (Carroll, Ruppert and Stefanski, 

1995). This methological problem has much in common with mixed effect models.

Such models provide potential areas for future work.
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Modeling of repeated measurement data such as AID data is not an enterprise that should

be undertaken lightly, but is clearly of considerable interest.
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