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Abstract

This is a thesis in two parts. In Part I, we will study the shear response of confined

vortices. In Part 2, we will study light and matter interactions in photonic crystal

fibres. Whilst the approaches of each are completely different, they both have the

same central theme: solitons.

In the first part of this thesis we study the static and dynamic properties of vortices

within a Type-II superconductor, confined within a channel. The channel comprises

a collection of pinned vortices, which form the perfect triangular lattice in the bound-

ary, and rows of “free” particles which are driven via an external force. We provide

two main results within this system. First we calculate the potential stemming

from the boundary, and derive (under certain approximations) the phenomenolog-

ically accepted result for the critical shear dependence on the system width. We

then study a novel system in which a defect is placed in a deformable potential;

specifically a system comprised of two channels where one or both channels have

a defect. This system provides a mechanism for the proliferation of kink/kink and

anti-kink/anti-kink pairs as the defect binds to a local excitation in the form of a

“breather”. We observe and explain what appears to be an action at a distance style

interaction between excitations.
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In Part II, we will utilise the nonlinear effects of a Bose condensate and the unique

optical properties of a photonic crystal fibre to demonstrate there are nonlinearly

stable configurations which exist in the vicinity of an optical mode with a cut-off.

These are solitary waves, whose relative composition of atoms and photons may be

changed via altering the detuning of light from an atomic transition and Feshbach

resonances.
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Chapter 1

Introduction to Part I

Motivation

The strength of crystalline materials is of paramount importance. The structure of

a material greatly impacts its elastic and plastic response to external forces, such as

shearing. The effects become more pronounced on the microscopic level. We try to

understand shearing, and the motion of defect on a fundamental level. We identify

novel dynamics in the shear response of crystalline vortex structures confined in a

narrow superconducting channel [1].

Historically, it was long known that materials had much lower shear modulus than

was theoretically expected, and so there is great interest in the response of materials

to shear [11]. The basic question is, when a shear force is applied to, for example,

a crystal lattice, what are the mechanisms that allow the system to respond? First

considered in the context of dislocation motion in metals [12], the phenomena is now

studied in a host of physical systems including 2π rotations in coupled pendula [13],

crowdion motion within lattice structures [14] and fluxon mobility in Josephson

junctions [15, 16].

3
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In Part I of this thesis, we study the dynamics of defects within sheared lattice

geometries. More specifically, we investigate the changes to defect motion in the

presence of a mobile neighbouring chain. While the mechanism for shear in bulk

systems is understood, we are concerned with systems where the defect is placed

into a deformable potential. The interplay between deformations in the potential

and the defect itself provide a rich physical picture. We identify a novel regime

in which a defect self-localises. The range of this localisation is dependent on the

shearing force applied to the underlying lattice. This work was originally motivated

by understanding the “slip” mechanism of sheared neighbouring chains with different

densities [17, 18] or with a position dependent force [19,20].

Both P. H. Kes et al. [17] and R. Besseling et al. [18] consider the the shear response

of a mobile lattice with variable density within a modulated confining potential.

They both consider the point at which the “free” lattice becomes mobile against a

“fixed” background; the so-called critical shear point. Both observe sharp peaks in

the critical shear, as a function of density, when the density matches that of the

modulated potential. The sharp peaks in the shear response of driven channels

in [18] are found by R. Besseling et al. to occur when the channel density is com-

mensurate with the substrate potential. The authors also relate the value of these

critical shear peaks, FC
w, to the phenomenologically accepted equation

FC
w =

2Ac66

w
, (1.1)

where w is the channel width, A encapsulates the microscopic details of the sys-

tem and c66 is the is the shear modulus as defined in [21]. D. V. Tkachenko et

al. numerically studied the dynamics of colloids in two-dimensional narrow channels

with a nonuniform shearing force [19]. Among other things, the authors identified

that the transition between the elastic (or rigid-body) and plastic regimes of mo-
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tion occurred at higher driving forces when the relative density of each chain was

closer matched. Similarly, C. Reichhardt et al. study the rigid body to plastic tran-

sition when only one chain experiences a driving force [20]. The decoupling of each

chains is found to occur at higher drives for chains with commensurate densities.

In this thesis, we investigate the “slip” mechanism which occurs in the plastic regime.

These numerical studies, [17–20], primarily focus on the integrated properties of

each chain, with motivation from the experimental results. The integrated prop-

erties of a chains dynamics can be inferred from experimental measurements, for

example the mobility of a superconducting chain of vortices can be inferred from

resistance measurements as shown by C. F. Hempstead and Y. B. Kim [22]. The

recent real-time observation of microscopic colloidal dynamics by M. P. N. Juniper

et al. [23] has opened up the studying the underlying mechanisms of defects in con-

fined channels.

The theoretical backdrop to this work is the Frenkel-Kontorova (FK) model. In

this thesis we provide an overview of the FK model so that the non-trivial de-

formable background potential system may be partially cast within that framework.

This remarkably simple model is commonly used to study the static and dynam-

ical properties of excitations in discrete one-dimensional systems with competing

length scales. In this thesis, we use it to understand the “slip” mechanism. An addi-

tional benefit of the FK model is that in the continuum limit it transforms into the

sine-Gordon equation, as was shown by [24]. The sine-Gordon equation has exact

solutions which can be related to the excitations observed in discrete systems.

The specific physical system in which we study the FK model is a narrow type

II superconducting channel, displayed in figure 1.1. Not only is the narrow su-
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Figure 1.1: Schematic plot of the the narrow superconducting channel geometry, both a
three dimensional (left) and two dimensional (right) representation. The circles represent
vortices, and the light/dark grey shading indicates different superconductors. The applied
magnetic field acts out of the plane. The pinned channel edges have been aligned with the
a lattice vector. A similar channel geometry was experimentally studied in [1].

perconducting channel an FK-type system in the classical limits we consider but

its versatility means the channel can be geometrically tailored to the specific re-

quirements [1]. One can tune the channel density by varying the externally applied

magnetic field. The pinned vortices which confines the mobile channel can also be

fabricated to a host of designs [25].

These systems are expensive to study experimentally. We therefore use molecular

dynamics to model the type II superconducting channels, in which the repulsive vor-

tices are treated like point-like particles. This gives us access to long term molecular

simulations at the cost of observing phenomena such as vortex/anti-vortex annihila-

tion. Determining the confining force from the channel edges becomes numerically

taxing in large systems. To reduce this, we employ Poisson summation to find an

alternative representation for the potential stemming from the channel edges.

Originally motivated by the reduction in simulation time, the rapid convergence

of the Fourier form of the substrate potential allows us to perform some analytical

calculations on registered channels, where each well contains exactly one particle,

channel systems. We are able to derive equation 1.1 for the registered, which is

phenomenologically accepted by most experiments. We also use the Fourier form to
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investigate the onset of shearing in registered channels and compare the profile of

the transverse confining potential to a commonly applied discrete boundary with im-

posed cut-off length to the interaction force, as used in [26]. The rapid convergence

also means we can verify the applicability of the FK model for the superconducting

channel. Previous experiments have accepted this form without identifying its ap-

plicability analytically [18].

After studying and approximately analytically solving the registered system as a

function of width, we move on to more complex systems. We first summarise the

existing literature (illustrated with our own numerics) on a single defect in a fixed

potential, before we move on to study a defect within a deformable potential. With

an exact solution and good background from simpler systems, we are able to under-

stand an “action at a distance” style interaction which first motivated our interest

in this system.

Overview

In Part I of this thesis we investigate the dynamics of kinks within the FK model.

To do so we numerically model a narrow superconducting channel. Chapters 2 and

3 discuss the relevant background material required for us to model this system.

The specifics of the simulation are discussed in Chapter 4. Chapters 5 and 7 are

a combination of a literature review with novel results within. Chapters 6 and 8

contain original material.

In Chapter 2 of Part I, we present the Frenkel-Kontorova model which underpins

this thesis. Following the methods in [2], we present this model and review some of

the applications, as well as the extensions considered such as impurities, long-range
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interaction and transverse motion. We then discuss the continuum limit solution,

the sine-Gordon equation, and define the form of two of the excitations it supports,

the kink and the breather. We go on to introduce the different types of ground

state phases observed in these channels; the commensurate and incommensurate

structures as well as channels with discommensurations (kinks). As kinks play a

significant role in this thesis, we review some of their known features such as energy

and interaction.

Type II superconductors are the subject of the Chapter 3. Among other things,

we review the Ginzburg-Landau approach in order to determine the properties of

the narrow superconducting channel. We present the numerical implementation of

the superconducting channel in Chapter 4, the methods in this chapter have been

verified by previous work within this group: J. S. Watkins [27] and A. A. Tomlin-

son [28]. Also in Chapter 4 we outline methods used to reduce the simulation time.

Motivated from both a mathematical and numerical standpoint, in Chapter 5 we

employ Poisson summation to determine an alternative representation for the po-

tential stemming from a pinned Abrikosov lattice. Originally believed to be novel

work, we later found that this had already been achieved by T. Dröse et al. [29].

We apply the Fourier form of the boundary potential to derive the critical shear

in registered channels. Our novel approach allows us to derive the phenomenolog-

ically accepted formula 1.1. The deviation of the 1/w dependence of the critical

shear on the channel width employs three approximations (detailed later). When

these approximations are not employed (via either exact numerical investigations or

analytics), we identify a small, but finite, correction term to the phenomenological

equation. To the best of our knowledge, this contribution has gone unnoticed both
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experimentally and numerically.

The use of the Fourier boundary provides an excellent representation of the bound-

ary, allowing us to perform more precise molecular dynamics (MD) than before,

along with exact calculations. We go on to show that the velocity profile of the crit-

ical shear, which is derivable for a one-dimensional chain in the FK model, is scale

invariant. Additionally we qualitatively discuss the impact of including temperature

and transverse motion on the critical shear, as observed from our simulations.

The primary objective of this thesis is to study the properties of defects in wide

channels, as presented in Chapter 8. In order to deduce the phenomena observed

in wide channels, we first complete a rigorous study of the static and dynamical

properties of defects in single channels, in Chapter 7, with the support of an ex-

tensive literature. Finally, we investigate the response to the shear of defects in

superconducting channels in a deformable potential, which in this context amounts

to a channel system with two free rows, one of which contains a defect. We observe

a novel self-localising mechanism in which the defect is bound to a finite region of

the channel. We identify that this effect is caused by the perturbations the defect

induces in the neighbouring chain, where the perturbation experiences drive depen-

dent asymmetry. We use this mechanism to explain the interaction of defects in

separate chains, originally motivated by “action at a distance”.
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Chapter 2

The Frenkel-Kontorova Model

In this chapter, we outline the key features of the Frenkel-Kontorova model that

underpin the research in this thesis. For a more detailed presentation of this model

see [2] and [30]. We begin by motivating the Frenkel-Kontorova model as a useful

tool in evaluating the critical shear of a bulk lattice. We then discuss some of

the other physical systems in which it has proven to be useful. In section 2.2, we

derive the equation of motion for the Frenkel-Kontorova model and solve it for low

amplitude displacements. In section 2.3 we discuss the continuum limit form of the

Frenkel-Kontorova model, which is applicable for strong interactions. We explicitly

state the known expressions for the excitations of the continuum limit as they will

be useful in later chapters. The ground state structure of the Frenkel-Kontorova

has an extensive set of phases, these phases are discussed in section 2.4. As we

investigate the dynamics of defects in this thesis, considerable attention is paid to

discussing decommensurate phases.

11
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2.1 Introduction

In the early 1900s, experiments investigating the shear response of various crystals

identified a common characteristic, plastic deformation increased the shear strength

of the crystal [31]. This could not be explained by shearing one lattice plane uni-

formly with respect to another under stress. Uniform shearing would not strengthen

a crystal and predicts a shear modulus many orders of magnitude different to ex-

perimental measurements [30].

An explanation for shear strengthening was proposed by G. I. Taylor [11] in 1934

based on the experimental observations of sheared salt crystals by A. F. Joffe [32].

Taylor explained that shearing does not occur uniformly but is mediated by lo-

calised defects, which he defined as dislocations. Using the lattice model proposed

by Dehlinger [33], predecessor of the Frenkel-Kontorova model, Taylor found that

the cost of breaking a finite number of bonds was energetically favourable to uniform

shear. As real crystals often contain "misfits" or dislocations which can be removed

by shearing, Taylor was also able to explain the increased shearing strength. Ad-

ditionally, when commenting on the interaction between nearest neighbours Taylor

stated that “the whole macroscopic phenomenon of gliding must be regarded as the

integrated effect of individual jumps” [11].

Four years after Taylor’s seminal paper, a similar model to Dehlinger’s for interact-

ing particles on a one-dimensional periodic substrate was independently proposed

by Y. Frenkel and T. Kontorova [34, 35]. Initially employed to study dislocations

in metals [12], the Frenkel-Kontorova (FK) model now has applications spanning a

broad range of physical systems. The applications include classical systems such as

coupled pendula [13] to quantum system such as Josephson Junctions [15,16].
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2.2 The Frenkel-Kontorova Model

In this section, we derive the intuitively simple FK model. We consider a one

dimensional chain of harmonically interacting particles on a sinusoidal landscape,

as depicted in figure 2.1. The nearest neighbour interaction has elastic constant g

and an interparticle spacing of abulk in equilibrium. The sinusoidal landscape has

an amplitude of εs and periodicity aCE where CE denotes the channel edge.

Figure 2.1: Schematic plot of the FK model. A chain of particles with natural spac-
ing abulk and elastic constant g situation on a substrate potential with period aCE and
amplitude εs. Adapted from Fig. 1.1 in [2]

The Hamiltonian for the model depicted in figure 2.1 is comprised of the kinetic

energy

K =
m

2

∑
n

(
dxn
dt

)2

, (2.1)

where m and xn are the mass and position of the nth particle, we assume all particles

are identical. The potential energy has two contributing factors; one from the po-

sition of the particles on the potential landscape and the other from the separation

of nearest neighbours away from equilibrium.We can express this as

U = Usub + Uint =
∑
n

[
εs
2

(
1− cos

(
2πxn
aCE

))
+
g

2
(xn+1 − xn − abulk)2

]
, (2.2)
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where εs is the potential amplitude and abulk is the substrate periodicity. The elastic

constant is defined to be the second differential of the interaction potential at the

equilibrium interparticle separation, g = U ′′int(abulk) [36]. The equilibrium separa-

tion, abulk, can be an inherent length scale of the potential, such as particles joined

by springs. Such potentials, which have both an attractive and repulsive branch,

can be used to study “free-end” chains [23]. Alternatively, for a convex interaction

potential ( U ′′int(x) > 0 for all x > 0), such as the interaction of superconducting

vortices [18], one considers a “fixed-density” FK chain. The length of abulk is set by

fixing the number of particles N in a given length of chain L.

Combining equation 2.1 and equation 2.2 and then dedimensionalising, one arrives

at the Hamiltonian

H =
2H
εs

=
∑
n

[
1

2

(
dx̃n

dt̃

)2

+ (1− cos (x̃n)) +
g̃

2
(x̃n+1 − x̃n − ãbulk)2

]
, (2.3)

where we have rescaled the following length scales to be defined with respect to the

periodic landscape:

ãbulk =

(
2π

aCE

)
abulk, x̃n =

(
2π

aCE

)
xn, t̃ =

(
2π

aCE

)
t
( εs

2m

)1/2

(2.4)

for the interparticle spacing in equilibrium, the particle position and the time di-

mensions respectively. The dimensionless coupling constant is

g̃ =
(aCE

2π

)2

g
(εs

2

)−1

. (2.5)
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The associated equation of motion is therefore

d2xn
dt2

+ sin(xn)− g(xn+1 + xn−1 − 2xn) = 0, (2.6)

where we have dropped the tilde for the dimensionless variables. For low tempera-

tures and with no external force applied, the mobile particles can only be displaced

a small amount. In this limit we can linearise the equations of motion by making a

change of variables to xn = naCE +un where |un|� aCE when the density is approx-

imately one particle per well. Applying this variable change and Taylor expanding

to lowest order gives

d2un
dt2

+ un − g(un+1 − un−1 − 2un) = 0. (2.7)

The solution of which, un(t) ∝ eiωph(k)t−ikn, describes phonon modes along the chain

with dispersion relation ω2
ph(k) = 1 + 2g[1 − cos(k)]. One can identify a minimum

phonon frequency, which in this normalised expression is ωph(k = 0) = 1. Addition-

ally the maximum phonon frequency is ωph(k = π) =
√

1 + 4g. This linearised form

is sufficient as long as the displacement remains small in comparison to periodicity.

For larger displacement nonlinear effects are crucial.

The impact of phonon modes depends on the damping strength. In the under-

damped regime, defect motion can be suppressed by phonon radiation. J. F. Currie

et al. [37] found, through numerical investigation, that the defect oscillations, as

it travels over the potential landscape, causes phonon radiation which reduce the

defects energy. Our work is focused in the overdamped limit in which phonons can

be neglected [2]. We return to the dynamics of driven channels in Chapter 6.
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The generalised FK model given in equation 2.6 is the most simplified form of the

model. Extensions to the generalised model have been the subject of many inves-

tigations [2], two prominent contributors to this field are O. M. Braun, Yu. S.

Kivshar [38, 39]. We now briefly summaries some of the observations from the ex-

tended FK model.

Equation 2.6 assumes harmonic interactions in one dimension between neighbouring

particles which are indistinguishable. O. M. Braun, Yu. S. Kivshar investigated the

impact to defect dynamics in the FK model with long range interaction [40], trans-

verse motion [41], impurities [38] as well as the impact on diffusion an anharmonic

particle interaction at different densities [39].

O. M. Braun, Yu. S. Kivshar numerically compare the kinks characteristics of the

standard FK model with nearest neighbour interactions with long range Coulomb

and dipole interactions [40]. Whilst the general properties of the defects remain the

same the specific form of their shape is altered. This in turn changes the form of the

mass, potential energy and interaction between defects. Introducing anharmonicity

into the interaction potential breaks the symmetry in defect motion, chains with

interstitial atoms have a greater response to shearing than an equivalent chain with

vacancies [39].

Impurities can be included in the FK model by manipulating the properties of a

particle within the chain, i.e. its mass or interaction strength. O. M. Braun, Yu. S.

Kivshar investigated the defect dynamics in a discrete chain containing an impurity.

They found that the defect-impurity interactions can lead to a change in the trans-

port properties and induce scattering, the change in transport properties depends

on the nature of interactions (i.e. attractive or repulsive).
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Just like the inclusion of anharmonic interactions, O. M. Braun, Yu. S. Kivshar

demonstrate that a transverse degree of freedom in the FK model causes a break

in the symmetry of defect motion [41]. The authors determine the critical region in

which zig-zag defects form, they conclude that an effective anharmonicity is induced

by the coupling of the transverse and longitudinal degrees of freedom.

O. M. Braun, Y. S. Kivshar and A. M. Kosevich analytically investigated the in-

teraction between two very weakly coupled one dimensional FK chains [42]. They

demonstrated that the interaction of two slow kinks in neighbouring chains causes

a bound state to be formed. This system can be used to model stacked supercon-

ductors such as BSCCO [43]. The binding effect has been observed in the highly

discrete limit by P. Woafo [44] in which the slow moving kinks had a width similar

to the lattice spacing.

Additionally, one can consider the effects of perturbing the sinusoidal substrate

potential. In the context of superconducting vortex channels, where the substrate

potential is induced by the pinned channel edge. R. Besseling et al. found that

shearing one channel edge with respect to the other caused an abrupt change in the

shearing dynamics of the interacting chain [18]. Replacing the periodic channel edge

with one with disorder, R. Besseling et al. discovered the nucleation of defects which

mediated the shear [45].

Despite its simplicity, the one-dimensional FK model has been applied to many

physical systems including crowdions, where an interstitial atom is played within

an ordered lattice. This was investigated by A. S. Kovalev et al. [14], the authors

considered the lattice line containing the crowdion as a one-dimensional interact-
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ing tube within a substrate potential. Similarly, A. C. Scott derived an equivalent

expression to equation 2.6 for a chain of pendula coupled by torsional springs [13].

The coupled pendula model has since been applied by S. W. Englander et al. to

the denaturation in DNA [46]. We now use the pendula model to arrive at the

continuum limit solution.

2.3 The Continuum Limit Approximation

In the limit of strong torsional coupling, the angular deviation between neighbouring

springs is small, as such the evolution of the angle along the chain can be approxi-

mated as a continuous variable. In the continuum limit, equation 2.6 becomes

d2u

dt2
− d2d

2u

dx2
+ sin(u) =

a2
CE

12

[
∂4u

∂2x∂2t
+

(
∂u

∂t

)2

sin(u)− ∂2u

∂x2
cos(u)

]
, (2.8)

where u(x, t) is the continuum limit position variable and d = aCE
√
g [2]. The

continuum limit expression of the FK model was first shown by P. Rosenau when

investigating the nonlinear dynamics of mass-spring chains [24]. Assuming the con-

tributions from the discreteness of the chain are negligible then we can set the right

hand side of the equation to zero. After rescaling the spatial variable by d we are

left with the sine-Gordon (sG) equation.

∂2u

∂t2
− ∂2u

∂x2
+ sin(u) = 0. (2.9)

The sG equation was the first to show solitonic properties [2], the existence of long

time stable waves which can evolve with constant profile. One such solution to the

continuum limit equation, referred to as a kink, is expressed as
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u(x, t) ∝ tan−1

[
exp

(
−σ x− vt√

1− (v
c
)2

)]
, (2.10)

where v is the velocity of the kink and σ is the topological charge which has a value

of +1(−1) for a (anti-) kink [2]. A plot of this function, for σ = 1, is given in

figure 2.2. A kink forms when an excess particle is placed in the chain, a kink can

be formed within a chain of coupled pendula by inducing a complete rotation of a

pendula [13]. The anti-kink occurs when a particle is removed from the chain, or

when a pendula is completely rotated in the opposite direction.

x

u(x,t)

Figure 2.2: Schematic plot of equation 2.10 (blue) and 2.11 for the arbitrary parameters
σ = 1, u = 0, Ω = 0.1, t = 5π.

The final excitation which can occur in this model are known as breathers and they

have zero topological charge. In the FK model, breathers are described by

u(x, t) ∝ tan−1

[(√
1− Ω2

Ω

)
sin(Ωt)

cosh
(
x
√

1− Ω2
)] , (2.11)

The breather describes a localised oscillation, its magnitude oscillates in t with in-

ternal frequency Ω < ωph(k = 0) [2]. The profile at an arbitrary time is given in

figure 2.2. As discussed in Chapter 8, the breathers observed in the superconducting

channel take a different form to the one given in equation 2.11. We classify ours as
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breathers as they are a local excitation which has zero topological charge.

The continuum limit kink solution has been shown to approximately model the kink

excitation in discrete system, in the strong coupling limit of g � 1, up to an “adia-

batic dressing” [2]. Whilst the dressing only perturbs the continuum limit solution,

in the limit of strong interaction, it can have a significant impact on the properties

of the excitations. The profile of the sG kink given in equation 2.10 is translationally

invariant. In the discrete case, however, the kink experiences a, reduced, potential

barrier. This is referred to as the Peierls-Nabarro (PN) Barrier after its namesakes

who independently studied the critical shear of dislocations [47] and [48] respectively.

Fluxons in Josephson junctions (JJs) are an example of a system which can be

studied in both the continuum [15] and discrete [16] limit. A JJ is comprised of

two superconductors separated by an insulating layer. Supercurrents circulate be-

tween the two superconductors about the fluxon which exists within this insulating

layer [5]. D. W. McLaughlin and A. C. Scott demonstrated that the long JJ can

be modelled using a perturbed sG equation [15]. The fluxon in their model can be

treated as a kink in the continuum limit. Alternatively, A. V. Ustinov et al. con-

sider a model similar to that of the discrete FK model given in equation 2.6 when

investigating the fluxon dynamics in periodic array of discrete JJs [16].

2.4 Ground State Structure

We have introduced the FK model, its continuum limit counterpart the sG equation

and reviewed some studies of kink properties in the presence of alterations to the

generalised FK model. The ground state study of the FK model has applications

in adsorbed atoms (or adatoms) on the surface of crystals where the bulk and sub-
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strate lattice parameter can vary significantly [49]. In fixed-density systems one can

quantify the discrepancy in a number of ways, with the optimum method depending

on the system considered.

For a chain of particles connected by springs, the preferential parameter to use

when quantifying the discrepancy is the associate natural length scale of the bulk

abulk and substrate aCE. The relative density is often considered when investigat-

ing vortices in superconductors [18] as it can be altered using an external magnetic

field [5]. Alternatively, one can use the relative number of particles N and potential

wells M within the periodic unit of length L. These relative parameters can be

expressed via the dimensionless coverage parameter

θ =
aCE
abulk

=
N

M
. (2.12)

As the coverage parameter, θ, of the FK model changes, the ground state transitions

through a number of different states [2]. The ground state structure is dependent

upon both the coverage parameter and the relative strengths of the interaction and

substrates. Solving for such a ground state can be cumbersome process as it requires

solving N coupled ODEs. One method suggested by Griffiths and Chou [3], involves

a minimisation eigenvalue approach for an effective potential.

Using the minimisation eigenvalue approach, Marchand et al. numerically deter-

mined the phase space of a simplified version of the FK model with non-convex

interaction potential [4], shown in figure 2.3. The phases are shown as a function

of the difference in lattice parameter δ = aCE − abulk and the relative interaction

strength K =
U0
int

U0
sub

. The tongues in figure 2.3 are labelled by their winding number,

as defined in [3]. Marchand et al. found that there is “usually” [4] a continuous
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Figure 2.3: Phase space of the FK model showing the commensurate states (or tongues)
as a function of relative interaction K and difference in lattice parameters δ. Each state
is labeled by its winding number as defined in [3]. Results were obtained numerically by
Marchand et al. [4]. Overlaid red arrow is related to equation 2.14 and not part of the
original figure displayed in Fig. 3 in [4]

second order transition from the state labelled 1/1→ s/q where s and q are integers

and typically a first order transition between all other states.

As the interaction strength decreases, K → 0, one can see, from figure 2.3, an

increases in the density of phases. Marchand et al. noted that the winding number

of a given state was found by adding the numerators and denominators of the neigh-

bouring tongues. For example, at K = 1.0 in figure 2.3 the 2
3
tongue is bounded by

the 3
5
and 3

4
tongues, adding the numerator and denominator of these neighbouring

tongues returns 3+3
5+4

= 2
3
. For this reason Marchand et al. proposed that for an in-

finite chain there is a devils staircase of phases [4]. These states can be categorised

by commensurate, incommensurate and decommensurate.
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2.4.1 Commensurate Ground States

For any value of θ = s
q
, where s, q are coprimes, there exists a commensurate struc-

ture. The simplest case is when s = q = 1 which is the registered state in which each

potential well contains exactly one particle. An alternative commensurate state is

achieved when θ = 1
2
, which has an associated winding number ω = 2, where every

second well is occupied, inverting this coverage gives θ = 2 (ω = 1
2
) would result

in an equilibrated state in which each well is doubly occupied. These are just two

of an infinite number of possible ground states. For θ = 1
p
where p is an integer,

the ground state is formed by equally spacing the particles with one situated at the

minima of every pth well. The translational invariance of the θ = 1
p
states means

that the response to shearing in a one dimensional system is independent of p [2].

Figure 2.4: Ground state arrangement for θ = 3/5 where 3 particles are located within
a periodic region of length 5aCE. Figure taken directly from Fig. 5.3 in [2].

For all other commensurate values of θ the ground state structure is comprised of a

repeated period structure of length sa0 consisting of q particles, the lattice spacing

(and particle deviation un) is no longer constant throughout the chain. The ground

state for θ = 3/5 is displayed in figure 2.4, note how the periodic unit of width 5aCE

contains three particles.
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2.4.2 Incommensurate Ground States

When θ cannot be expressed as a rational number the resulting structure is referred

to as incommensurate, these states can only occur in infinitely long system. To

numerically study the ground state structure of an infinite length system of fixed

density, periodic boundary conditions are often implemented. Such a system has a

fixed number of wells, M , and particles, N , within the periodic unit of length L,

as such a rational value of θ always exists and it is impossible to simulate a truly

incommensurate state.

One can overcome the simulation limitations by selecting an appropriate choice

for N and M . One such option is to pick successive numbers from the Fibonacci

sequence (FS), e.g N = 89, M = 144. This approach was taken by L.M. Floría

and F. Falo when investigating the response of incommensurate structures to an

alternating driving force [50]. The ratio of these values closely approximates the

irrational Golden ratio (GR). For comparison, the coverage parameters of the GR

and FS are

θGR =

√
5− 1

2
≈ 0.61803 and θFS =

89

144
≈ 0.61806. (2.13)

The incommensurate state has no regular structure, in the infinite limit a particle

exists at every height in the well including the maxima. S. Aubry found that there is

an abrupt transition in the behaviour of the incommensurate structure as the inter-

action parameter passes through a critical point, defined gAubry [51]. For g < gAubry

the incommensurate structure is pinned to the substrate potential, above the Aubry

transition the structure is in the sliding mode.
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2.4.3 Decommensurate Ground State

We have outlined the key ground state features for both a commensurate and in-

commensurate coverage parameter. Now we ask what happens when a periodic unit

of M wells contains N = M ± m particles where M � m ∈ {1, 2, 3, ...}. In

this limit the ground state structure which forms is that of the commensurate state

θ = N
M

= 1 but with m equally spaced kinks (or anti-kinks if m < 0). One can also

have kinks at other filling factors θ = s/q where q > 1, where each the kink contains

σ/q additional atoms. In this thesis, we only consider the simplest case of q = 1.

These kinks have well defined profile, mass and energy [2]. As these decommensu-

rations are a pivotal part of the coming research, an overview of their ground state

properties will now be given.

We simulate a periodic unit of length L = NcaCE. One might wonder why a period-

ically evolving structure with ω = (Nc − 1)/Nc where both are coprimes is not the

natural ground state when one particle is removed from the registered chain. As the

lattice parameter discrepancy increases from δ = 0.5 for K � 1, the ground state

transitions through a series of phases starting with a winding number of ω = 3
4
,

shown by the red arrow in figure 2.3. The average particle spacing approaches unity

via

ω =
3

4
→ 4

5
→ 5

6
→ 6

7
→ n− 1

n
. (2.14)

As n increases, the size of the associated tongue in phase space reduces. In the

limit n → ∞, it becomes energetically favourable to form the registered state with

decommensuration. When a decommensuration is introduced, a finite region of the

periodically ordered chain is perturbed. In section 2.2 we defined un = xn−naCE as
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the displacement of each particle, we can therefore quantify the impact of a defect

by the accumulated impact of each particles displacement

∆u = u−∞ − u∞ = σ. (2.15)

which is equal to the topological charge for the system. Figure 2.5 provides an exam-

ple the local deformations in the presence of an (a) anti-kink (b) kink, the particle

positions, in this schematic, are located at the intersection of the continuum limit

solution (dashed black line) and the substrate potential (solid blue line).

Figure 2.5: Schematic arrange of particles in the presence of an anti-kink (top) and a
kink (bottom). The particles (black) are situated at different heights in their respective
potential wells (blue), the dashed black line emphasises the continuum limit solution. Far
from the centre of the defect particles are situated at the potential minima.

Whilst only one well can physically contain the interstitial (or vacancy), the parti-

cles in the neighbouring wells dilate (or contract) in order to minimise the overall

potential energy contributions from both the substrate and interaction. Indepen-

dent of the topological charge, both defects are identifiable by a localised excitation

which exponentially decays.
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The extent of the distribution, i.e. the kinks size, has been shown in the con-

tinuum limit to be

deff = d [−V′′sub(xm)]
−1/2

, (2.16)

where xm is the location of the maximum substrate potential and d = aCE
√
g [39].

We can see from this formula that as the substrate potential increases in magnitude,

the kinks width decreases. This is because the curvature of each well increases and

so displacing a particle from the equilibrium by the same amount now costs much

more. Furthermore, from the continuum limit we understand that the mass of a

kink/anti-kink is given by

ma =
1

4π2
√
g

∫ x′′0

x′0

dφ
√

2Vsub(φ), (2.17)

where x′0, x′′0 are the positions of two adjacent minima. When considering multiple

defects, one must ensure that the system length L � σdeff is sufficiently long such

that each defect can be resolved. For two kinks one requires that x(2)
d − x

(1)
d � deff,

where xd is the location of the defects centre of mass. Away from a defect (x �

xd + deff) the chain returns to the registered state.

When a kink (anti-kink) forms, there is an aggregation (dispersion) of interacting

particles. The net effect of this is an increase (decrease) in the local charge. There-

fore, much like the particles forming it, decommensurations also interact. Whether

they attract or repel each other depends on their relative topological charge.

For an exponentially decaying particle interaction, the interaction energy between
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two static kinks, which are sufficiently separated, was shown by Y. Hsu to be given by

vint(R) ∝ σ1σ2
√
ge−

R
d , (2.18)

where σi is the topological charge, d is the kinks width and R is the separation. The

interaction between two solitons is caused by the overlap in their tails. We can see

from equation 2.18 that a static kink and anti-kink would attract whilst a kink-kink

pair would repel. The equation also shows that one can always treat the interactions

of kinks as a two body problem.
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2.5 Concluding Remarks

• The Frenkel-Kontorova model can be used to describe one dimensional systems

with a competing length scale between the interaction and substrate potential.

• In the over-damped limit, one can neglect phonon modes which impact the

dynamics of excitations.

• In the limit of strong interaction, one can consider the continuum limit in

which the FK model transforms into the sG equation.

• Stable excitations to the sG equation exist which allow for the evolution of

topological charge along the chain.

• The sG model also supports breather modes. The profile of these, however, is

different to the kind observed in our investigation.

• The discreteness of physical systems can have a perturbative effect on the

structure of the excitations, known as the adiabatic dressing [2].

• The ground state structure of a harmonically interacting chain of particles

on a sinusoidal substrate depends on the relative potential strength K and

coverage parameter θ.

• The periodicity of the structure in the commensurate phase depends on the

coverage parameter. As θ → 1 the energetically favourable state is an isolated

defect in an otherwise registered chain.

• The static properties of kinks have known mass, width and interactions which

depend on the microscopic details, such as the potential strength K.
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Chapter 3

Superconductivity

The system we have chosen to consider for our investigation of the dynamics in the

presence of competing length scales is Type-II superconductors. More specifically,

we consider the mixed phase of a narrow superconducting channel comprised of lay-

ered superconductors. In this chapter, we provide the system relevant background

required in this thesis for modelling these system. More detail, than presented in

this section, can be found by combined reading of [5] and [6].

We begin, in section 3.1, by motivating our investigation of superconducting chan-

nels. An overview of Type-I and Type-II superconductors is presented in section

3.2. We then introduce both London and Ginzburg-Landau theory, in sections 3.3

and 3.4 respectively. These theories introduce the crucial concepts of our model.

One such concept is the superconducting vortex. These flux tubes are the building

blocks of all of our simulations, section 3.5 details their properties. The dynamics

and interaction are quantified and an account of the limits considered are given.

We conclude this chapter by discussing the design of our superconducting vortex

channel in section 3.6.

31
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3.1 Introduction and Motivation

By definition, superconductivity is the phenomenon of zero electrical resistance and

either the complete or partial expulsion of a magnetic field below a critical temper-

ature, Tc [5]. The advent of a material with zero resistance has many promising real

world applications, such as in particle accelerators [52]. One of the major limita-

tions, however, are the critical temperatures currently achieved. Despite increasing

two orders of magnitude since its discovery in 1911 [53], the recorded values are

still far below room temperature. One of the highest critical temperatures achieved

at ambient pressure to date was in a cuprate known as HgBa2Ca2Cu3O8+δ, with

a record value of 135K [54]. These significantly higher temperatures and magnetic

fields are, in part, due to the existence of the mixed phase in which the zero resis-

tance state is prolonged by the formation of flux tubes [6].

More recently, experiments involving hydrides such as H3S and LaH10 have achieved

temperatures of 203K and 250K respectively [55]. These experiments, however, were

performed at extremely high pressure, of order O(102GPa). However, temperature

and pressure are not the only limitation these superconductors face. Manufacturing

superconductors is also made difficult by their brittle nature. For example, cuprate

superconductors are extremely brittle [56]

An upper bound to the achievable critical temperature still remains elusive, with a

complete explanation for the phenomena lacking. As we shall discuss in the coming

sections, the flux tubes which extend the range of superconductivity can introduce

a resistance when in motion. There has been significant interest in studying the dy-

namics of the flux tubes, with the motivation of reducing their mobility [45].
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3.2 Type-I and -II Superconductors

Superconductors exhibit the phenomena of zero resistance and the complete expul-

sion of a magnetic field when the temperature is below a critical value. Different

types of superconductors can be differentiated by how this state breaks down. In

the coming few sections we shall review two of the phenomenological theories behind

superconductivity and explain in more detail how these two types of superconduc-

tor differentiate. First, we qualitatively describe the key features of Type-I and -II

superconductors, emphasising the main differences.

The names Type-I and Type-II refer to the number of critical fields; a Type-I su-

perconductor has only one critical field below which the magnetic field is completely

expelled from the bulk of the superconductor. This transition was show by Halperin,

Lubensky and Ma to be first order [57]. The Type-II superconductor, however, has

two critical fields. It too exhibits complete magnetic expulsion, known as the Meiss-

ner effect, below its lower critical field, Hc1 in figure 3.1, and a partial expulsion

below its upper critical field, Hc2 in figure 3.1, with a continuous (second order)

transition between the two critical field strengths. This phenomena is explained by

the existence of flux tubes which distribute themselves throughout the bulk, which

we shall discuss in greater detail in section 3.5. A schematic depiction of the mag-

netic induction is given in figure 3.1

The type of materials that exhibit Type-I superconductivity include pure metals and

metalloids, such as Mercury and Aluminium [58]. In 1992, U. Gottlieb et al. discov-

ered that the alloy TaSi2 displayed characteristics of Type-I superconductivity [59].

Type-I superconductors are often referred to as low temperature superconductors

as they commonly have critical temperatures below 10K [58].
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Figure 3.1: Schematic plot depicting the difference in the flux penetration (magnetic
induction) B as a function of applied external magnetic field H for Type-I and Type-II
superconductors. The critical fields of each type of superconductor are also displayed. This
figure is reproduced from Fig. 1.5 in [5].

Type-II superconductors, however, tend to have a much more complex composition.

Common materials include metal alloys such as NbN and Nb3Ge with associated

transition temperatures of 16K and 23.2K respectively. Another type of Type-II

superconductors are the cuprate compounds. They are often referred to as high

temperature superconductors (HTSCs) as their transition temperature is above the

boiling point of liquid nitrogen. Examples of these compounds include YBa2Cu3O7−δ

(YBCO) [60] and Bi2Si2CaCu2O8 (BSCCO) [61], both of which are multilayered

compounds containing layers of CuO2. The transition temperatures of these cuprates

are 93K and 96K respectively, much larger than that of Type-I superconductors as

well as Type-II metal alloys. More recently other metallic compounds have shown

high temperature superconductivity such as iron-based compounds [62].
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3.3 London Theory

We now give an overview the London theory of superconductivity. The earliest for-

malism of superconductivity was produced by F. and H. London in 1935 [63]. The

brothers proposed two equations, relating the microscopic properties of the electric,

E, and magnetic, B, fields to the superconducting current density Js via

E =
m∗

nse∗2
∂Js

∂t
, (3.1)

B = − m∗

nse∗2
∇× Js, (3.2)

where ns is the density of superconducting charge carriers with mass m∗ and charge

e∗. Equation 3.1 shows that an electric field causes the superconducting charge car-

riers to accelerate. Comparing this expression to Ohm’s law J = σE which describes

the fixed current induced by an electric field. We can identify that equation 3.1 de-

scribes a current which increases with time Js ∝ Et. This is the first key feature of

superconductors, perfect conductivity.

We now turn our attention to the second London equation. Employing both Am-

pere’s law, ∇×B = µ0J, and Gauss’ law for magnetism, ∇ ·B = 0, one can remove

the current density dependence from equation 3.2. Readily arriving at

∇2B =
1

λ2
B. (3.3)

To appreciate the power of this equation, one should consider a semi infinite super-

conductor extending from x = 0 to x = −∞ with a constant magnetic field applied
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parallel to the surface. Solving equation 3.3 for the magnetic field profile within

the superconductor, one simply finds B(x) = B0e−x/λ. The magnetic field decays

exponentially within the superconductor, with a decay length of

λ =

√
m∗

nse∗2µ0

. (3.4)

Equation 3.3 therefore describes the second key feature of superconductivity, the

Meissner effect - the exclusion of a magnetic field from the bulk of a superconductor

by screening currents. This phenomena was discovered by W. Meissner and R.

Ochsenfeld two years before the London brothers published their findings [64]. The

decay constant λ, better known as the London penetration depth, is the distance

an external magnetic field penetrates the superconductor. The London penetration

depth is material dependent with λ ≈ 50nm in Nb and λ ≈ 190nm in YBa2Cu3O7−δ

[58].
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3.4 Ginzburg-Landau Theory

Similar to the London theory, the Ginzburg and Landau (GL) theory is a phe-

nomenological approach to describing superconductivity. However, it can be ap-

plied to both Type-I and Type-II superconductors. Whilst the BCS theory offers a

more in depth understanding of the microscopic effects of the superconductor, the

phenomenological approaches of both the London brothers and Ginzburg-Landau

contain all the necessary features for the system explored in this thesis. Addition-

ally, it has been shown, by L. Gor’kov in 1959 [65], nine years after the GL theory

and seven years after BCS, that the GL theory is a generalised form of the 1972

Nobel prize winning BCS theory [66], which is beyond the scope of this thesis.

Whilst the pseudo-wavefunction theory was postulated by Ginzburg and Landau,

many others made significant contributions. Along with L. Gor’kov, who associated

the GL parameters with the microscopic theory [65], A. Abrikosov first used the GL

theory to explain the features of Type-II superconductors [67]. In this section, we

shall review the GL theory following the derivation presented in [6] and [5]. Then

use it to quantify the difference between Type-I and Type-II as well as explain some

of the pertinent phenomena of Type-II superconductors introduced in section 3.1.

The GL theory is based upon the theory of second-order phase transitions, pub-

lished by L. Landau in 1937. The ethos of this theory is that in the vicinity of

criticality one can expand the free energy, F , in powers of the complex pseudo-

wavefunction ψ, where each of the powers in the expansion has a dependence on the

temperature where ψ is small. This pseudo-wavefunction is related to the supercon-

ducting electron density via ns = |ψ|2, which is zero in the normal phase. This is

associated to the density of Cooper pairs in the BCS theory [66]. Near the critical
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temperature Tc, one can Taylor expand the free energy as

F = a0 + a1ψ + a2ψ
2 + a3ψ

3 + a4ψ
4, (3.5)

where ai = ai(T ) are the temperature-dependent coefficients, in the absence of any

fields or gradients. As ψ = 0 for T > Tc, the constant a0 = Fn is equal to the

free energy of the normal phase. At any given temperature, the equilibrium state is

associated with a minimum in the free energy. One therefore requires that a1 = 0

for all T . Similarly, as F ∈ R one also requires a3 = 0 for all T . This reduces the

free energy expansion of a homogeneous material at zero magnetic field to

F = Fn + a2ψ
2 + a4ψ

4. (3.6)

The coefficients a2 and a4 in equation 3.6 are more commonly denoted as α(T ) and

1
2
β(T ) respectively. Ginzburg and Landau considered the temperature dependence

of these two coefficients, by considering the location of the minimum free energy

which occurs at ψ0 = 0 and ψ0 = ±α/β. In the vicinity of the critical point, we

require β to be a positive constant. The temperature dependence is then encoded

within α ∝ τ where τ is the reduced temperature. The variation in the free energy

as a function of the pseudo-wavefunction is given in figure 3.2

From figure 3.2, it is evident that below the transition temperature, the energy is

minimised by a finite density of superconducting electrons. The density increases

linearly as the temperature is reduced below Tc. Including both magnetic fields and

gradient terms, the full expansion of the free energy density may be expressed as



3.4. GINZBURG-LANDAU THEORY 39

F = Fn + α|ψ|2+
β

2
|ψ|4+

1

2m∗

∣∣∣∣( h̄i∇− e∗

c
A
)
ψ

∣∣∣∣2 +
B2

2µ0

, (3.7)

where A is the vector potential. A consequence of incorporating the “kinetic energy”

term is a variation in the wavefunction causes an increase in the free energy. These

consequences are more readily understood from the Ginzburg-Landau equations

αψ + β|ψ|2ψ +
1

2m∗

(
−ih̄∇− e∗

c
A
)2

ψ = 0, (3.8)

Js =
e∗

m∗
|ψ|2

(
h̄∇ϕ− e∗

c
A
)

= e∗|ψ|2vs, (3.9)

where ψ(r) = |ψ(r)|eiϕ(r) and vs is the superconducting electron velocity. These are

found by minimising the GL free energy with respect to both ψ and A [5]. By set-

tingA = 0 in equation 3.8 and normalising with respect to the ψ2
∞ = −α/β one finds

ψ0
ψ

F

α > 0

ψ0-ψ0
ψ

F

α < 0

Figure 3.2: Schematic plot of the free energy functional above (left) and below (right) the
critical temperature Tc, ψ0 highlights the equilibrium positions. This figure is reproduced
based on Fig. 8.3 in [6].
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ξ2d
2ψ̃

dx2
+ ψ̃ − ψ̃3 = 0, (3.10)

in one dimension where ψ̃ = ψ/ψ∞. The parameter ξ in equation 3.10 defines the

natural length scale over which ψ varies, more commonly known as the coherence

length. This is defined as

ξ(T ) =

√
h̄2

2m∗|α(T )|
. (3.11)

As one approaches Tc, the scale over which ψ varies diverges. So far we have in-

troduced two characteristic length scales. The first defines the decay of the applied

magnetic field, λ, and the second is the characteristic length scale of the variation,

ξ, of the pseudo-wavefunction ψ. Both characteristic length scales are dependent

on the specific superconductor in question, with ξ = 39nm in Nb and ξ = 2nm in

YBa2Cu3O7−δ [58]. By considering the ratio of the two length scales associated with

a superconductor, one arrives at the Ginzburg-Landau parameter

κ =
λ

ξ
. (3.12)

The consequences of this ratio are profound. Through numerical integration of equa-

tion 3.10, Ginzburg and Landau studied the behaviour of the surface energy between

the normal and superconducting phase. They found that its contribution to the free

energy changes from positive to negative as one increases through the critical value

κc = 1√
2
. They also justified how the Type-I superconductors have κ < κc, which

was experimentally verified at κ = 0.03 and κ = 0.11 in the Type-I superconductors

of Al and In, respectively.
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In 1957, A. Abrikosov went on to study the impact of a negative surface energy [67].

He found that the free energy is minimised by maximising the domain wall area

through subdividing the normal regions. Naively, however, this suggests a run-away

effect in which the free energy can be reduced further by the continual subdivision of

the regions. Whilst increasing the domain wall area reduces the free energy, the con-

tribution from the gradient term in equation 3.7 increases as the state sub-divides.

A. Abrikosov found that the optimum domain size for these evenly distributed nor-

mal regions was of the order O(ξ), which we know as the vortex lattice, see section

3.5. Abrikosov also found that instead of the abrupt breakdown of superconductiv-

ity observed in Type-I superconductors, two critical fields exists within which the

flux penetrating gradually increases. In the mixed state, between the lower (Hc1)

and upper (Hc2) critical fields, the field enters the superconductor via an increasing

density of quantised vortices, also referred to as flux tubes.

The mixed state provides a useful toy model for simulating a Frenkel-Kontorova

type system. The next section is dedicated to applying the theory discussed in this

section to derive the relevant parameters of our model. Only required background

is highlighted.
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3.5 The Superconducting Vortex

In the previous section, we established that in the mixed phase of a Type-II su-

perconductor the magnetic flux penetrates through normal domains called vortices.

Through a free energy optimisation, A. Abrikosov found that the optimum size of

each domain is of the order O(ξ). In this section, we take a closer look at the vortex.

Following the methods presented in [6] and [5], we show the flux carried by each

vortex, how they interact, the natural ground state arrangement and the dynamical

response to internal and external forces.

3.5.1 Vortex-Vortex Interaction

Like the suppression of the magnetic field by supercurrent flow at the boundaries of

a Type-I superconductor, each vortex has a supercurrent circulating around it. In

a similar fashion to London’s evaluation of the flux, Φ, contained within the core

of a superconducting ring, one can integrate the magnetic field within an isolated

circular surface of radius r � ξ which is far away from the vortex that the enclosing

v(r) = 0. This gives

Φ =

∫
B · dS =

∮
A · dl (3.13)

using Stoke’s Theorem. Combining this with equation 3.9, the line integral along

the closed circular path at a radial distance of r from the vortex core yields when

going around any closed path

Φ = Φ0 =
h

2e
, (3.14)
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as the wavefunction remains single valued. In contrast, had the integration loop in-

cluded n vortices, then the total flux would have been Φ = nΦ0. The quantisation of

the fluxoid, suggested by F. London, was experimentally verified using a thin walled

cylinder by W. A. Little and R. D. Parks in 1964 [68]. One should note that it is

the fluxoid and not the flux which is conserved, far from the vortex core, however,

where the screening currents are zero the two are indistinguishable.

For a given magnetic flux, B, penetrating the superconductor, there will be n = B/Φ0

vortices. We now consider their interaction, and deduce from this the ground state

lattice structure. We also determining the total flux around an isolated vortex, we

can also determine the magnetic field profile at r � ξ. We consider a modified form

of equation 3.3, from London theory, which accounts for the vortex core.

∇2B− 1

λ2
B = −Φ0

λ2
δ2(r)ẑ. (3.15)

where δ2(r) is the two-dimensional delta function, for convenience the vortex is sit-

uated at the origin. Equation 3.15 has known solution for r � ξ given by

B(r) =
Φ0

2πµ0λ2
K0

( r
λ

)
(3.16)

where B(r) is the magnitude of the magnetic field at a radial distance r from the

vortex. The modified Bessel function of the second kind, K0(r), diverges logarith-

mically as r → 0. The interaction between two vortices can be determined by

calculating the free energy contribution from the combination of the fields from two

vortices situated at r1 and r2, respectively as derived in [5]. They find
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V12 =
Φ2

0

2πµ0λ2
K0

(r12

λ

)
. (3.17)

for the interaction between vortices with Euclidean separation r12 � 2ξ. The inter-

action increases the free energy and, as such, the vortices have a repulsive interaction

with a force of magnitude

F12 =
Φ2

0

2πµ0λ3
K1

(r12

λ

)
, (3.18)

which acts in the radial direction between r1 and r2. So far, we have identified

that due to the fluxoid quantisation the vortex density of the mixed phase is set

by the external magnetic field. These vortices are repulsive and so favour maximal

separation. The arrangement which offers maximum separation at a given density

is the triangular lattice with lattice vectors

a = abulkx̂ (3.19)

b = abulk

(
1

2
x̂ +

√
3

2
ŷ

)
(3.20)

where a2
bulk = 2/

√
3n is the lattice spacing. In the context of superconducting vor-

tices, the triangular lattice is more often referred to as Abrikosov lattice, despite

its namesake incorrectly predicting a square lattice arrangement. The vortex lattice

was first imaged ten years after Abrikosov’s prediction by Essman and Träuble us-

ing magnetic decoration [69]. We shall discuss this observation method in greater

detail (see section 6.3.2). In the presence of boundaries or inhomogeneities in the
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underlying material, the Abrikosov lattice is distorted to minimise the free energy.

Whilst bulk lattice defects are not of primary interest in this thesis, we shall discuss

some of the methods for identifying them in section 4.4.

3.6 Superconducting Narrow Channel

Thus far, we have reviewed the theoretical groundwork of superconductivity, with a

particular focus on the mixed state of Type-II superconductors. We now discuss how

one can create a driven superconducting lattice within a confining channel geometry.

First presented by A. Pruymboom et al. in 1988 [1], the superconducting narrow

channel (SCNC) has had enormous amounts of interest [18, 70–73], with its adapt-

ability being one of its main drawing points. We begin by outlining the general

composition of a SCNC. While our focus is on a single isolated channel, experiments

often produce an array of around 200 narrow channels from one sample. This allows

the measurements of bulk properties. Our focus is on dynamics and so we focus on

a single channel.

Figure 3.3: Schematic plot of the the narrow superconducting channel geometry, both a
three dimensional (left) and two dimensional (right) representation. The circles represent
vortices, and the light/dark grey shading indicates different superconductors. The applied
magnetic field acts out of the plane. The pinned channel edges have been aligned with the
a lattice vector.
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Figure 3.3 depicts a schematic example of one of the narrow superconducting chan-

nels of the experiments of A. Pruymboom et al. [1]. The channel is produced by

layering two different superconductor’s, and etching away a channel region from the

upper layer to reveal the lower layer. Pruymbooms device consisted of a d1 = 50nm

thick layer of NbN on top of a d2 = 550nm thick layer of amorphous Nb3Ge. Conven-

tionally, channel geometries are long and thin, however, alternative geometries can

be imagined, for example A. A. Tomlinson has proposed an alternative fabrication

which would mimic periodic boundaries by etching a large hexagon from a pinned

Abrikosov lattice [28]. An alternative channel etching, with diamond constrictions

rather than straight boundaries was investigated by K. Yu et al. [73]

Before we justify the design of figure 3.3, we first comment on the thickness of

the “thin” superconductor. It is well documented that a superconductor’s proper-

ties can drastically change in the thin limit. Namely the loss of the Meissner effect

and Pearl’s solution for the vortex-vortex interaction [6]. The quantities derived in

section 3.5 however were for a “thick” superconductor. The compound Nb3Ge has

a coherence length of ξ = 3nm and a London penetration depth of λ ≈ 90nm, as

one can see d2 � λ � ξ. By “thin”, therefore, we are referring to the structural

properties of the vortex tube. We assume that the samples are sufficiently thin that

the vortex remains straight and free of entanglement, permitting us to model it as

a two dimensional system as justified by A. Pruymboom et al. [1].

The Abrikosov lattice can deform in the presence of inhomogeneities in the un-

derlying superconductor. These random defects in the crystalline structure cause a

local reduction in the local order parameter [74]. If the size of a defects is of the

order O(λ) then it is energetically favourable for a vortex to align with it. One is

not limited to randomised pinning sites, as by employing ionising radiation one can
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fabricate a specific pinning geometry, such as conformal arrays [25].

Not only do these pinning sites limit the thermal motion of vortices, but they can

also restrict motion from transport currents. When an external current, J, is applied

across a superconductor, it induces a Lorentz force which acts in the direction per-

pendicular to both the external current and magnetic flux. This can be described by

FD = J× Φ0

c
. (3.21)

Alternatively, one could have considered the Lorentz force from the screening cur-

rents to derive the vortex-vortex interaction. At finite temperatures with an applied

current, the pinned vortices may undergo discontinuous motion known as flux creep.

As these pinning sites can help minimise vortex motion, which introduces a resis-

tance, there is a significant amount of research dedicated to understanding and

manipulating the effects of pinning [75]. Pinning plays a crucial role in the layered

geometry depicted in figure 3.3 in which the NbN layer has a significantly higher

pinning strength than the underlying Nb3Ge layer. By etching out a channel geom-

etry, a region of the low pinning superconductor is exposed.

For finite drive, vortices in an isolated NbN sample remain motionless whilst the vor-

tices in an isolated Nb3Ge sample would flow almost unimpeded by pinning sites [1].

By layering the superconductors, those vortices located underneath the NbN layer

will be locked into place through the strong attraction. Those vortices located in

the exposed region will be in a state of motion for sufficient drive. As we shall see,

however, there is an artificial pinning imposed on the exposed superconductor with

the ordered channel edge acting as the substrate potential in the FK model.
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As the mobile portion of the superconducting lattice flows, it accumulates a vis-

cous drag force proportional to the velocity of the vortex Fdrag = −ηvv. The

viscous drag coefficient η was found by Bardeen and Stephenson to be

η = B
Φ0

ρfc2
(3.22)

where ρf ∝ B is the flow resistivity, meaning the viscous drag coefficient is indepen-

dent of the magnetic field. As we shall see, the dynamics of the vortices beyond the

critical shear in superconducting channels is challenging to resolve. By enhancing

the viscous drag one could conceivably improve the resolution of the vortex dynamics

without impacting the critical driving forces. M. Danckwerts et al. [76] has shown

that by coupling the superconductor to a nearby two dimensional electron gas, the

vortex motion can be further suppressed by induced Eddy currents.
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3.7 Concluding Remarks

• Type-II superconductors experience a mixed phase, in which magnetic flux

penetrates the superconductor in the form of discrete vortices. This phase is

not observed in Type-I superconductors

• The vortex carries a quantum of flux, Φ0 within its core. The core radius of a

vortex is of the order O(ξ) where ξ is the coherence length.

• In the mixed phase, away from the upper critical magnetic field, the separation

between vortices is much greater than the core radius, abulk � ξ. One can,

therefore, consider the vortices to be point-like.

• The repulsive vortex-vortex interaction is the modified Bessel function of the

second kind, to maximise separation the vortices arrange into the Abrikosov

lattice at zero temperature.

• A vortex can be pinned to an inhomogeneity in the underlying superconductor

where there is a reduction in the local order parameter. The pinning sites can

be natural or fabricated.

• Confining channels of pinned and “free” vortices can be created by layering su-

perconductors with different pinning strengths. The vertical alignment causes

“free” vortices which reside under the strong pinning material to also be pinned.

• Considering thin superconductors means we can treat the flux tubes as straight.

These tubes experience a viscous drag force when driven by a Lorentz force.
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Chapter 4

Numerical Model for SCNC

In Chapter 3 we introduced relevant required properties of Type-II superconductors

for this thesis. In this chapter, we now explain how these physical features can be

reproduced in numerical simulations. In section 4.2, we present a detailed account of

the overdamped Langevin equation. We discuss each component of this equation in

turn, identifying both how this equation can model a superconducting channel and

possible methods of optimising each component. Further optimisation techniques

such as tabulating the interaction force, cell decomposition and the periodic correc-

tor method are described in section 4.3. For a detailed study of the optimisation

methods and appropriateness of the simulated thermostat, we refer the reader to

previous work within this group: J. S. Watkins [27] and A. A. Tomlinson [28] re-

spectively. With a vortex lattice simulation established, we conclude this section by

determining the melting temperature of an infinite Abrikosov lattice. This allows

us to verify our simulation and set the scale for annealing.

51
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4.1 Introduction

The generalisations of the FK model detailed, in section 2.2, are not analytically

tractable. We simulate numerically with C++ and analyse with Mathematica. Simu-

lating many body systems over long time periods is computationally intensive, they

are sensitive to noise and require averaging over many runs. It is for this reason

that a discussion of optimisation techniques is presented.

When simulating the mixed state of Type-II superconductors one is presented with

a choice: one can numerically solve the Ginzburg-Landau equation directly and

simulate a limited number of vortices as one is constrained by the computational

intensity, or, one can model the pancake vortices of a thin Type-II superconductor

as point particles with zero mass interacting in a flat two dimensional plane. The

benefit of treating the vortices as point particles as the computational simplicity

means that the number of vortices which can be simulated increases dramatically.

The cost, however, is that one loses the ability to study the creation and annihilation

of vortex/anti-vortex pairs. As the average spacing between vortices is much larger

than the vortex core, abulk � ξ, we treat the vortex cores as point like.

Although it is possible to experimentally study Type-II superconductors in a lab,

there are many benefits to employing numerical techniques. Experiments are ex-

pensive, whilst simulations are, in general, cheap. When simulating, one can readily

perform a parametric sweep of phase space. The accessibility of the phase space in

simulations can, however, be a double edged sword. As experiments require more

effort to run, greater attention is often paid beforehand to determine appropriate

parameters.
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4.2 The Overdamped Langevin Equation

In this thesis, we numerically solve for the static and dynamical behaviour of a col-

lection of N interacting vortices under the influence of external constraints. There

are a number of techniques which can be applied to tackle many body systems,

each of which have their own benefits and constraints. One is the Monte Carlo

method. Whilst this approach is useful when trying to find the ground state of

a system, it offers limited applicability when studying dynamics [77]. The work

presented in this thesis needs to incorporate the flow of vortices, we opt instead

to employ Langevin dynamics. The method discussed in this section applicable for

many physical systems including superconducting vortices and repulsive particle’s.

We, therefore, introduce the generalised equation of motion and then outline how it

can be realised for superconducting vortices.

Langevin dynamics simplifies the treatment of a system by allowing one to neglect

the treatment of microscopic interactions in place of a continuum. The time scales

of the macroscopic vortex dynamics and the motion of the microscopic Cooper pairs

are very disparate. This means that the specific details of the interactions can be

replaced with a stochastic force, χ(t), and a viscous drag, −ηṙ where η is the flux

flow defined in the last section. Such techniques are common place when studying

Brownian motion. The equation of motion for a particle is

mr̈ = F + χ(t)− ηṙ, (4.1)

where m is the particle mass, r̈ is the particle’s acceleration and F encapsulates all

of the additional forces the particle experiences.
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We now isolate each term and discuss its role in narrow superconducting chan-

nels and how it can be optimised. Firstly, the viscous drag acting on the vortex is

significantly greater than the inertia. In this overdamped limit one can treat the

vortex as massless (m = 0), leaving behind a first order differential equation known

as the overdamped Langevin equation.

The power of employing Langevin dynamics is the adaptability of the model. Take

the force acting on the vortex F; this can include interaction with other mobile vor-

tices Fvv, with a confining pinned lattice Fvp, with pinning sites within the channel

Fp or with an external driving force FD. Furthermore each of these components

can be varied to meet the specific needs of the experiment. In our simulations we

consider the interaction of superconducting vortices derived in the previous chapter,

one could however consider repulsive magnetic colloids instead by setting the inter-

action force as Fvv ∝ r−3 [40].

The mobile vortices are confined in the homogeneous channel by a lattice of pinned

vortices in a triangular arrangement. Pinning sites can be simulated in a number

of ways [18, 78, 79]. H. J. Jensen et al. [79] considered weak pinning sites when

conducting a phase space investigation of two-dimensional flux flow as a function

of driving force and pinning strength. A similar study was later produced by H.

Fangohr et al. [78]. In our investigation, we consider infinite strength pinning sites

in the channel edges and no pinning in the channel, similar to that of [18]. The

current required to induce flux motion (see equation 3.21) is 2× 104 times bigger in

NbN than in amorphous Nb3Ge [1]. This approximation is, therefore, appropriate

for modelling narrow superconducting channel, as depicted in figure 3.3.

The final component of the force is the externally applied force. Here we consider a
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constant Lorentz force discussed in the previous chapter. F. Peeters et al. studied

the flow profiles of vortices in wide channels with a variety of position dependent

driving forces when investigating the relative chain velocities in wide channels [19].

Beyond inhomogeneous forces, time dependent forces such as an AC driving force

are commonly implemented when investigating synchronisation [23].

To approximate temperature, one requires a model for a thermostat. The stochas-

tic behaviour in our system is simulated with the Anderson thermostat [80], this

simulates a canonical ensemble (NVT) with temperature T, number of vortices N

and volume, V. This thermostat requires that the thermal kinks from the underly-

ing continuum are uncorrelated between both time and vortices, which is expected

due to the disparate time scales. The Anderson thermostat assumes that the kicks

should produce the Boltzmann distribution of the vortices energies and have a time

average of zero. One can represent this as

〈χi(t)〉 = 0, (4.2)

〈χi(t)χj(t′)〉 = 2TkBηδijδ(t− t′), (4.3)

where kB = 1 is the Boltzmann constant and δ is the Kronecker delta function. We

implement this by assigning each vortex in the system a probability of being kicked.

To simulate this, we let

χi(t) =

√
2kBTη

p∆t
γi(t)Θ(p− qi(t)) [cos(θi(t))x̂ + sin(θi(t))ŷ] , (4.4)

where ∆t is the iterated time step. This must be held constant throughout the

simulation as varying it would also vary the magnitude of the kick. The Θ is the
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Heaviside function and permits a kick when the randomly generated probability,

qi(t), from the uniform real distribution U(0, 1) is less than the probability of a kick

occurring p = 0.01. An appropriate value of p was previously investigated by A.

Tomlinson [28].

As the system is 2D, the angular direction of the kick θi(t) was also evaluated

using a randomly generated probability from the uniform real distribution U(0, 2π).

As we require a distribution of kick sizes, γi(t) was a randomly selected number

from the normal distribution with a mean of 0 and a variance of 1. To generate

pseudo-random numbers we used the c++ package #include <random >.

Beyond simulating stochastic dynamics, the advantage of having a thermostat is

the ability to anneal. Annealing involves increasing and subsequently decreasing the

temperature in order to release a system from a meta-stable state. These stochastic

kicks can free a system from an excited state in which it is trapped. When employed

correctly, annealing can dramatically reduce the time required to obtain the ground

state.

To anneal the system one must first thermally excite the vortices by increasing the

temperature to T < Tm where Tm is the melting temperature determined in section

4.4. Holding the vortices at the desired temperature below the melting allows the

system to escape metastable states. We maintain this temperature for a prescribed

period of time and then slowly reducing the temperature back to zero, lowering

the temperature must be performed slowly as to avoid quenching. Reducing by T−1

as this was found to be most effective. We anneal the vortices across multiple cycles.

With each term in equation 4.1 discussed, we now justify how the vortices posi-
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tions are updated. Rearranging equation 4.1

ri(t+ ∆t) = ri(t) +

∫ t+∆t

t

δt (F(r(t), t) + χ(t)) . (4.5)

There are a range of integration techniques which can be used, depending on the

nature of the PDE. The stochastic nature of Langevin dynamics, however, means

that many of the conventional techniques cannot be employed. For example, the

predictor-corrector method assumes knowledge of previous states which is forbidden

by equation 4.3. Instead we employ the simple Euler technique of

ri(t+ ∆t) = ri(t) + ∆t

(
F(r(t), t) + χ(t)

η

)
. (4.6)

The final parameter to be determined is an appropriate value for the time step,

∆t. The error of the position at a given time, when using the Euler method, is

proportional to the time step. A larger time step also increases the risk of vortices

becoming too close and experiencing unnaturally large interaction forces, this sets

a limit on the maximum time step [77]. On the other hand, choosing a time step

which is too small makes observing long term dynamics significantly harder. An

extensive analysis of an appropriate choice of ∆t was conducted by J. Watkins [27].

In accordance with his analysis, we set ∆t = 0.0125. This value ensures that the

displacement of any one particle |δr|� abulk
50

.
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4.3 Further Optimisation

As with any numerical investigation, optimisation is key. Simulating the long time

dynamics of a many body system over a range of phase space is numerically tax-

ing. In this section, we introduce the techniques implemented in our simulation and

discuss why they were chosen over alternative forms. For a detailed analysis of the

numerical techniques presented in this section, we refer the reader to [27]. Aside

from computational improvements, one can reduce the human inefficiencies by first

reducing the phase space studied as well as implementing a bash script for sweep-

ing over this space. This script allowed a list of desired simulations to be iterated

through without user input between simulations, saving valuable time.

When simulating many body dynamics the most computationally intensive contri-

bution to the simulation time is determining the interactions; both the vortex-vortex

interaction as well as the vortex-pin interaction. At every time step the forces need

to be recalculated in order to update positions, for N mobile and M pinned vor-

tices the interaction is an order O(N2 + NM) process. We now address a number

of methods which can be implements to improve the performance of this calculation.

The interaction between vortices, as derived in Chapter 3, is the modified Bessel

function of the second kind. This is a numerically taxing function as one has to

access external libraries such as the Boost library. The Bessel function reduces in

magnitude as its argument grows. As such, the contribution to the interaction force

from far away vortices is negligible when compared with those close by. It is there-

fore sensible to implement a cut-off distance beyond which the contributions are

neglected, for which rc = 6λ is a commonly used [26].
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3λ 6λ
r

|F(r)|

Figure 4.1: Plot of the magnitude of the interaction force as a function of separation.
The form of the interaction given in equation 3.18 is displayed in blue, the approximate
form given in equation 4.7 with a cut off radius of rc = 3λ is displayed in red.

Accessing the Boost library still accumulates a significant amount of time, even

with a cut-off distance in place. For rc = 6λ one still has to access the library

Arc/Acell ∝ O(102) times, as shown in figure 5.2. An approach taken by A. E.

Koshelev and V. M. Vinokur [81] was to apply an approximate form of the interac-

tion force,

Fvv(r) = Fvp(r) =

(
1

r

)(
1− r2

r2
c

)2

, (4.7)

for r ≤ rc. Whilst this does have the beneficial property of being equal to zero at

the cut-off radius, it is evident from figure 4.1 that the profile of the approximate

force represents a softer interaction compared to true vortex interaction. As the

asymmetry of the Bessel function plays a crucial role in the dynamics we instead

tabulate the Bessel function at every r = ih and use

f(r∗) =


f(h) h < r∗,

f(r−) + [f(r+)− f(r−)]
(
r∗−r−
h

)
h ≤ r∗ < rc,

0 rc ≤ r∗

(4.8)
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the magnitude of the force at r∗ which is situated between the list elements i− = r−/h

and i+ = r+/h. Note that the interaction force is truncated here to f(h), as ∆r � h

this does not present any issues. We let h = rc/60000 = 0.0001 as determined by

J. Watkins [27]. The approximate interaction force of A. E. Koshelev and V. M.

Vinokur was found to be almost two times faster than the tabulated force [27]. In

this thesis, we implement the tabulated force. Although it is not the most efficient

method presented, it is more representative of the true force. In Chapter 5 we show

that by keeping the Bessel form of the boundary interaction, we can construct an

alternative representation of the boundary potential which both improves the sim-

ulations efficiency and permits some exact calculations.

Whilst implementing a cut-off radius significantly reduces the number of force calcu-

lations, one still has an order O(N2 +NM) process in determining whether a given

vortex is within the cut-off distance. One way to overcome this is to discretise the

space, determine which cell each vortex is located in and then only include nearby

cells in the iteration. This process is called cell decomposition.

Figure 4.2: Plot of a Abrikosov lattice with parameter abulk = 1 shown in black, the
vortices within a cut-off radius of a given point (black dashed line) are displayed in blue.
The vortices within the linked grid elements are displayed in red. The left and right figure
have a cut-off of rc = 6 and box width w = abulk and w = 2.5abulk respectively.
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When discretising the space into individual cells an appropriate cell size must be de-

termined. If the cells size is too large, one evaluates many null contributions which is

inefficient. As the cell size is reduced the connections become more complex and the

number of empty cells increases. An optimum dimension is of the order O(abulk), an

example of an optimum and inefficient cell decomposition is displayed in figure 4.2

respectively. For the set up shown in figure 4.2, a box dimension of w = abulk gives

an efficiency of 85.3% whilst a dimension of w = 2.5abulk gives an efficiency of 55.4%.

Although the efficiencies are subject to position, one can identify an improvement.

In the FK model one can employ Middleton’s no passing rule [82], in which the

ordering in the channel remains constant, instead of cell decomposition. This tech-

nique can be applied when simulating both registered wide channels and incommen-

surate single chain channels under constant drive. As we are concerned with the

“slip” mechanism between neighbouring chains in this thesis, we do not apply this.

There are two commonly used approaches to implementing periodic boundary condi-

tions. The first method is to apply ghost cells. Whilst these cells are not physically

present, they are included in the force calculations. When invoking cell decompo-

sition one has to also keep a record of neighbouring cells which are through the

periodicity. We however opt for the far more efficient approach of periodic correc-

tion. As L� rc, for a horizontal separation ∆x > L/2 one can instead apply

∆x→ ∆x− ∆x

|∆x|
L. (4.9)

Combining these methods leads to a significant improvement in simulation efficiency.

In the next chapter, we shall revisit the boundary interaction and show how the

efficiency can be vastly improved when the contribution is expressed.
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4.4 Melting an Infinite Vortex Lattice

We now determine the melting temperature of the infinite vortex lattice. This both

verifies the simulation and sets a scale for annealing. The expected ground state

of an infinite plane of repulsive vortices is the triangular lattice, referred to as the

Abrikosov lattice for a superconducting vortex lattice. Once melted, the state loses

all triangular order. As such, one can use the hexatic order parameter to determine

the location of the melting temperature. The hexatic order parameter is given by

ψ6 =

∣∣∣∣∣
〈

1

Np

Np∑
i=0

1

zi

zi∑
j=0

ei6θij
〉∣∣∣∣∣

2

, (4.10)

where θij is the angle between the ith vortex and its jth neighbouring vortex, zi is

the coordination number of the ith vortex and 〈〉 are a time average. To maximise

the number of vortices included in the analysis, ghost cells were applied during the

Delaunay triangulation to determine the coordination numbers. As we are simulat-

ing an infinite system we expect for there to be an impact on the sharpness of the

melting transition due to finite sized effects. To determine a melting temperature

from the broad transition we select the intersection of the hexatic order parameter

ψ6 and the defect ratio Nv, defined as

Nv = 1− 1

Np

Np∑
i=0

δ6,zi , (4.11)

where δ6,zi is the delta function which gives 0 if the coordination number is anything

other than 6. There are many alternative methods for identifying the melting tem-

perature, one such example is the Lindemann criteria which is given by

Tm =
4πmνca2

bulk

kB
, (4.12)
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wherem is the atomic mass, ν is the kick frequency, abulk is the atomic spacing. This

method is subjective, one must first define an appropriate value for the Lindemann

criterion c. A typical value of the Lindemann criterion is c = 0.2.
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Figure 4.3: Plot of ψ6 (blue) and Nv (red) as a function of temperature T for a doubly
periodic unit cell of dimensions abulkL×

√
3/4abulkL containing n = 1296 vortices.

The simulation was initiated at T = 0 with Np = 1296 arranged in the Abrikosov

lattice within a periodic unit with dimensions abulkL ×
√

3/4abulkL at T = 0. The

temperature is increased by ∆T = 0.0005 every Nt = 20000 time steps. The incre-

mentation in temperature is not abrupt, instead each change was implemented by

increasing the temperature by an amount δT = ∆T
100

until the desired temperature

is achieved. At each temperature, the positional data was sampled every 100 time

steps. Figure 4.3 displays the averaged results of many repeats of this simulation,

from which one finds Tm ≈ 0.0143.

The melting temperature of the confined channel may differ from that of the in-

finite system. We, however, only require an estimate to set an upper bound when

annealing. As a final verification, we annealed Np = 1296 randomly ordered vortices.

Perfect order was found after three cycles of the annealing method discussed above,

with a maximum applied temperature of T = 0.003575� Tm.
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4.5 Concluding Remarks

• Many of the experimental concepts discussed in Chapter 3 can be transferred

over to numerical simulations.

• Computational simulations can provide a fast and effective method of sweeping

phase space as well as accessing states which are difficult to achieve experi-

mentally.

• Langevin dynamics is an appropriate model which can be adapted to investi-

gate many different effects, the cost of using such techniques for superconduc-

tors is that one loses the ability to observe some phenomena.

• We model the mixed phase of superconductivity, away from the upper critical

magnetic field. In this limit the vortices can be treated as point-like.

• Additionally, we consider the limit in which the viscous drag acting on the

vortex is significantly greater than the inertia. In this limit we use the over-

damped Langevin equation.

• A host of different optimisation techniques have been employed to make the

simulations more efficient. These include a radial cut-off length, tabulating

the force and the periodic corrector method.

• The melting temperature for an infinite two dimensional superconducting vor-

tex lattice, Tm ≈ 0.0143, shall be used as a scale for the annealing process.



Chapter 5

Fourier Representation of Channel

Potential

In this chapter, we use Poisson summation to determine an alternative expression for

the potential stemming from an infinite periodic array of vortices. Initially believing

this to be a novel result, we later found that it had already been achieved by T. Dröse

et al. [29]. We, however, have reproduced it independently. In section 5.1 we outline

the analytical techniques employed in this chapter, the techniques are presented in

greater detail in section 5.2 were we derive the form of the potential experienced by

a single point within an infinite lattice. In section 5.3, we determine the potential

stemming from a half infinite vortex lattice in section, briefly commenting on its

convergence compared to the infinite lattice potential. In section 5.4, we determine

an alternative expression for the potential stemming from the confining walls of a

narrow superconducting channel. For the channel system, the new form is compared

to the original summation - both in convergence and accuracy. We conclude this

chapter by comparing the Fourier form with a discrete sum of pinned sites with an

imposed cut-off length.

65
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5.1 Introduction

In Chapter 4, we discussed some of the many techniques employed to improve the

efficiency of the simulation. By applying these standard techniques we improved

our numerical efficiency at the cost of accuracy. In this chapter we employ Poisson

summation to determine an alternative expression for the potential stemming from

the channel edge, which is comprised of a pinned lattice of vortices. We refer to this

alternative expression as the Fourier form of the potential.

It was noted, in Chapter 4, that the most significant contributor to the compu-

tational time is the calculation of the interaction force. Whilst the Bessel function

is not long-range, decaying exponentially at long range, the potential at a point

within the channel has contributions from many lattice sites. As we are dealing

with a narrow channel, the number of particles in the boundary, M, is far greater

than contained in the channel, N. As such the dominant contribution to the simu-

lation time is from calculating the force from the pinned boundary.
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5.1.1 Summary of Analytical Procedure

Here we outline the technique we apply to re-write the potential stemming from the

pinned boundary. We consider the potential VT (|r|) which has the following proper-

ties. The potential is comprised of a sum over an infinite lattice Λ, with periodicity

a. This requires

VT (r′) =
∑
r∈Λ

V (|r− r′|). (5.1)

The potential stemming from each site V (|r|) must be integrable, meaning it does

not have any uncontrolled singularities. When singularities are present one can em-

ploy Ewald summation [83]. For this method to be most effective, the potential

V (|r|) must decay slowly. We first Fourier transform the potential in equation 5.1,

ṼT (|k|) = F [VT (|r|)] (|k|) =
∑
r∈Λ

e−ik·r
∫
dr′eik·r

′
V (|r′|). (5.2)

We now inverse Fourier transform to find the potential in real space again

VT (|r|) = F−1
[
ṼT (|k|)

]
(|r|) =

∫
dk
Ω

e−ik·r
∑
r′∈Λ

eik·r
′
Ṽ (|k|), (5.3)

=

∫
dk
Ω

e−ik·r
1

Ωw

∑
Λk

δ(k−Λk)Ṽ (|k|), (5.4)

where Λk is the reciprocal lattice and we have used the identity for the Fourier series

representation of a sum of delta-functions over a lattice, and Ω is the volume for the

Fourier transform in d-dimensions and Ωw is the volume term for Poisson summation.
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The potential is therefore given by

VT (|r|) =
1

ΩΩw

∑
k∈Λk

e−ik·rṼ (|k|), (5.5)

which is a sum over reciprocal space, Λk. For the particular potential here the

algebraic details mean we go through the derivation in detail, but the basic idea

is encapsulated purely in equation 5.5 up to constants. We simply calculate the

Fourier transform of our potential, and sum over it with appropriate phases, over

the reciprocal lattice. For some lattice geometries, some of these sums will be

analytically tractable which is the power of the technique.
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5.2 The Infinite Rectangular Lattice

The potential experienced at the point (x, y) (where x 6= 0 and y 6= 0) within in an

infinite pinned vortex lattice, shown in figure 5.1, is defined to be

V∞(x, y) =
∞∑

n,m=−∞

K0

(√
(x+ axn)2 + (y + aym)2

λ

)
, (5.6)

where K0 is the modified Bessel function of the second kind, ax,y are the horizon-

tal/vertical lattice parameters (for a square lattice ax = ay) and λ is the penetration

depth.

Figure 5.1: Schematic plot of the infinite rectangular lattice (blue crosses) with associated
potential landscape shown in the overlaid contour plot. A reference point is defined along
with the horizontal and vertical lattice parameters, ax,y respectively. Lattice sites are
located at Λ = naxx̂ + mayŷ where the integers n ∈ (−∞,∞) and m ∈ (−∞,∞). To
form the Abrikosov lattice one can set ax = 1, ay =

√
3 and then superimpose V∞(x, y)

and V∞(x+ ax/2, y + ay/2).
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The equation 5.6 defines the potential through a two-dimensional real space summa-

tion over a lattice. The modified Bessel function of the second kind, asymptotically,

is exponentially convergent, given by

K0 ∼
e−z√
z
, (5.7)

in the large z limit [84]. The real space sum is also, therefore, a convergent one.

However, the scale over which the Bessel function becomes exponential can be quite

large (the λ → 0 limit is particularly troublesome). We essentially apply Poisson

summation to carry out parts of the summation. In the full infinite lattice this

does not improve convergence, It does, however, improve the convergence for the

potential stemming from a superconducting channel edge, which is the focus of this

thesis.
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Figure 5.2: Plot of the potential V∞(x, y) and number of included lattice sites N as a
function of cut-off radius Rc, with λ = 1. The inset shows the selected particles from a
point (x, y) for a given Rc.
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In figure 5.2, both the value of the potential V∞(x, y) and the number of lattice

points included are plotted as a function of cut of radius, Rc for a square lattice.

The potential at Rc ≥ 6λ, a commonly used cut-off value in simulations, is con-

verged to < 1% its true value. From figure 5.2 we can identify that a minimum of

N = 100 lattice points are included for this choice of cut-off. As the Bessel function

is computationally taxing to evaluate, reaching significant precision requires a long

simulation time - especially for large system sizes. In order to return to the poten-

tial, we must apply inverse Fourier transforms to equation 5.8.

Ṽ∞(kx, ky) =
∞∑

n,m=−∞

∞∫
−∞

dx′√
2π

∞∫
−∞

dy′√
2π

eikxx
′+ikyy′

×K0

(√
(x′ + axn)2 + (y′ + aym)2

λ

)
. (5.8)

We note that the zeroth order modified Bessel function of the second kind has an

integral representation given by

K0(z) =
1

2

∫ ∞
0

dt

t
e−t−

z2

4t , (5.9)

where λz =
√

(x′ + axn)2 + (y′ + aym)2 [84]. Using this representation, as well as

the variable changes λx̄ = x′ + nax and λȳ = y′ +may one arrives at

Ṽ∞(kx, ky) =
1

2

∞∑
n,m=−∞

e−ikxnax−ikymay
∞∫

0

dt

t
e−t

×
∞∫

−∞

dx̄√
2π

eikxx̄−
x̄2

4λ2t

∞∫
−∞

dȳ√
2π

eiky ȳ−
ȳ2

4λ2t , (5.10)
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where the order of integration has been changed. It is now evident that the integrals

in both x̄ and ȳ are standard Gaussian integrals of the form

I1 =

∫ ∞
−∞

dz√
2π

e−
z2

a
+bz =

√
a

2
e
ab2

4 , (5.11)

where we require that a ∈ R. One is then left with a final integral over t which can

be readily solved, yielding

Ṽ∞(kx, ky) =
∞∑

n,m=−∞

e−ikxnax−ikymay

λ−2 + k2
x + k2

y

. (5.12)

In order to retrieve the infinite potential, we transform back. The infinite potential

is therefore given by the double summation

V∞(x, y) =
2π

axay

∞∑
n,m=−∞

e−
2πinx
ax
− 2πimy

ay

1
λ2 + (2πn

ax
)2 + (2πm

ay
)2
. (5.13)

We have utilised the Fourier series for a Dirac comb

∞∑
n=−∞

δ(k − Tn) =
1

T

∞∑
n=−∞

e
2πikn
T , (5.14)

which is true for an infinite summation. The representation given in equation 5.13 is

applicable to any monatomic lattice with Bessel type interactions. For simulating,

it is more convenient to use the sinusoidal rather than the complex representation.
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V∞(x, y) =
2πλ2

axay

+
4π

axay

∞∑
n=1

cos 2πnx
ax

+ cos 2πny
ay

1
λ2 + (2πn

ax
)2

+
8π

axay

∞∑
n,m=1

cos 2πnx
ax

cos 2πmy
ay

1
λ2 + (2πn

ax
)2 + (2πm

ay
)2
. (5.15)

The infinite summation of Bessel functions has been replaced with a sum of more

computationally accessible functions. Although we shall not use equation 5.15 again

we comment on its convergence. Immediately, one can appreciate that we still have

a double summation. Truncating each of the infinite sums in both expressions for

V∞(x, y) at Ntrunc, we find the number of terms scales as Nterms = (2Ntrunc + 1)2 for

the Bessel sum and as Nterms = N2
trunc +Ntrunc + 1 for the new representation.

We consider the value of the potential (0.5, 0.5) for a square lattice (ax = ay = 1)

with λ = 1. One finds that the Bessel form of the infinite lattice converges more

readily than the new expression, converging to 6 significant figures for Ntrunc = 14

for which Nterms = 841. Once it has undergone Poisson summation, the same poten-

tial only requires Ntrunc = 50 for which Nterms = 2551 to achieve the same precision.

Whilst the new representation no longer requires one to call upon the Bessel li-

brary, it offers little to negligible improvement in convergence. Another impact of

the new representation is that we can no longer identify the lattice sites from the

sum, and so one cannot include disorder into the sum. Whilst it is true that the

improvement in the convergence of the infinite lattice is negligible, the rate of con-

vergence differs significantly for a partially-infinite lattice. We shall now consider a

lattice infinite in one direction and semi infinite in the other.
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5.3 The Semi-Infinite Lattice

We now consider the potential stemming from a semi-infinite lattice (SIL) com-

prised of pinned vortices. The vortex lattice is infinitely extended in the horizontal

direction and only between [0,−∞] in the vertical direction, displayed in figure 5.3.

In the original representation, the potential from the SIL at the point (x, y) where

y > 0 is given by

VSIL(x, y) =
∞∑

m=0,
n=−∞

K0

(√
(x+ axn)2 + (y + aym)2

λ

)
. (5.16)
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Figure 5.3: Plot of the semi-infinite rectangular lattice considered in this section. Lattice
sites are located at Λ = naxx̂+mayŷ where the integers n ∈ (−∞,∞) andm ∈ (0,∞). To
form a semi-infinite Abrikosov lattice one can set ax = 1, ay =

√
3 and then superimpose

VSIL(x, y) and VSIL(x+ ax/2, y + ay/2).
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Employing the generalised technique in section 5.1.1, one arrives at

VSIL(x, y) =
π

ax

∞∑
n=−∞

e−
2πinx
ax
−Qn(ay−y)

Qn (eQnay − 1)
, (5.17)

where 0 < y ≤ ay and

Qn =

√
1

λ2
+

(
2πn

ax

)2

. (5.18)

For λ ≥ 1 we find that in the limit of large n, Qn → n. Whilst this expression is

algebraically equivalent to the original Bessel summation, it is now exponentially

convergent in y. The convergence shall be discussed in greater detail in section 5.4.

An expression for the semi-infinite hexagonal lattice can be found by superimposing

the two semi-infinite rectangular potentials VSIL(x, y) and VSIL(x + ax/2, y + ay/2).

This however leads to a cumbersome expression. We instead opt to derive an ex-

pression for the potential from an infinite line of superconducting vortices, which

we then sum over to produce a semi-infinite hexagonal lattice. The potential at the

point (x, y) from an infinite line of vortices is given by

VL(x, y) =
∞∑

n=−∞

K0

(√
(x+ axn)2 + y2

λ

)
. (5.19)

The summation is now only in the horizontal direction. Fourier transforming and

repeating the same method as outlined for the doubly infinite lattice, one arrives at

VL(x, y) =
∞∑

n=−∞

∫ ∞
−∞

dkx√
2π

∫ ∞
−∞

dky√
2π

e−ikx(nax+x)−ikyy

λ−2 + k2
x + k2

y

. (5.20)
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As before, we can employ the identity given in equation 5.14 to complete the inte-

gration over kx. The integral over ky however, requires the use of the identity

I2 =

∫ ∞
−∞

dk
e−iak

Q2 + k2
= π

e−Q|a|

Q
(5.21)

As such we find, for y ≥ 0 that

VL(x, y) =
π

ax

∞∑
n=−∞

e−
2πinx
ax
−Qny

Qn

(5.22)

Where Qn is the defined in equation 5.18. One can now sum this in the vertical direc-

tion to retrieve the potential for a semi-infinite lattice. Summing over VL(x, y+may),

we obtain the expression shown in equation 5.17. As we desire to simulate the

Abrikosov lattice, we instead determine the summation VL(x+max/2, y +may/2).

The summation over m can be trivially shown to be a simple geometric series. The

potential given in equation 5.23 can be set to that of the Abrikosov if one sets ax = 1

and ay =
√

3.

V A
SIL(x, y) =

∞∑
m=0

VL(x+
max

2
, y +

may
2

)

=
π

ax

∞∑
n=−∞

e−
2πinx
ax
−Qny

Qn

∞∑
m=0

(
e−inπ−

Qnay
2

)m
=

π

ax

∞∑
n=−∞

e−
2πinx
ax
−Qny

Qn

(
1− (−1)ne−

Qnay
2

)
=

π

ax

∞∑
n=−∞

αne−
2πinx
ax
−Qny (5.23)
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where

αn =
1

Qn

(
1− (−1)ne−

Qnay
2

) (5.24)

Again, one can identify the exponential convergence of the expression in n. So far we

have derived an expression for the fully infinite rectangular lattice potential V∞(x, y),

the potential stemming from an individual line of superconducting vortices, VL(x, y),

and the semi-infinite rectangular, VSIL(x, y), and Abrikosov, V A
SIL(x, y), lattice struc-

tures. In this thesis, we investigate the dynamics of mobile superconducting vortices

confined within a mobile channel etched into a pinned Abrikosov lattice. As such

the final expression we require is that of the channel potential.



78 CHAPTER 5. FOURIER REPRESENTATION OF CHANNEL POTENTIAL

5.4 The Superconducting Channel

In this section, we take the potential for the semi-infinite Abrikosov lattice and use

it to form a superconducting channel. This is, partially, motivated by finding a more

efficient method of simulation the boundary potential. We numerically compare the

alternative expression to the original Bessel summation for our channel, assessing

the convergence at various points within the channel. We also evaluate the profile

of the potential along the centre of the channel using the new representation and

the original form for different values of the radial cut-off.
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Figure 5.4: Schematic plot of the narrow superconducting channel. The grey region
indicates sections of infinitely pinned vortex lattice separated by a width w. Two symbols
are used to emphasise the two rectangular sub-lattices. Note: In forming the channel, one
has to specify if the boundaries are symmetric or out of phase. This relates to an odd or
even number of mobile lattice rows respectively. This figure depicts an even channel with
a boundary translation of ∆x = ax

2 .

Figure 5.4 is a schematic example of a narrow superconducting channel. Due to the

different sub-lattices present (denoted by different symbols), one has to distinguish

between odd and even channel widths
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w =


(2n+ 1)b0 for an odd channel,

2nb0 for an even channel.
(5.25)

Where b0 = ax
2
. Odd and even channels are defined by the number of registered

chains of vortices which fit within the mobile region, n. The narrow channel poten-

tial is therefore given by

VC(x, y) = V A
SIL(x, y) + V A

SIL(x+ ∆x,w − y) (5.26)

where ∆x = 0 for a channel containing an odd number of rows and ∆x = b0 = ax
2

for a channel containing an even number of rows. One can trivially show that

VC(x, y) =
π

ax

∞∑
n=−∞

αne−
2πinx
ax

(
e−Qny + τne−Qn(w−y)

)
(5.27)

where

τn =


1 for an odd channel,

(−1)n for an even channel.
(5.28)

Equation 5.27 provides an expression for the superconducting channel potential. It

only uses computationally accessible functions, instead of relying on the summation

of Bessel functions. One would anticipate that this new expression will be more

computationally efficient. We shall now evaluate the convergence of this new form.

Following on, we evaluate the profile of the potential along the channel as a function

of cut-off radius, making a surprising finding about commonly used values.
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From equation 5.27, one can see that the exponential convergence is position depen-

dent. We therefore evaluate the convergence at various points within the channel.

Unlike the Bessel summation, which is over discrete lattice sites, the sum in equa-

tion 5.27 has no real space association. When comparing the convergence of the

potential we therefore treat the number of terms in each of the truncated sums as

our variable. Converting the potential into sinusoidal form, one finds

V F
C (x, y) = V 0

C(y) +
2π

ax

∞∑
n=1

αn cos

(
2πnx

ax

)(
e−Qny + τne−Qn(w−y)

)
. (5.29)

Where V 0
C(y) is the n = 0 contribution of the sum, which only depends on y. Trun-

cating the sum in equation 5.29 at n = Ntrunc, the number of terms in the potential

would be NF
terms = Ntrunc+1. Whilst a channel constructed from semi-infinite Bessel

summations, as shown in equation 5.30, would contain NB
terms = 8N2

trunc + 4Ntrunc.

Not only does each term take longer to calculate, but the number of terms included

grows much faster as function of Ntrunc.

V B
C (x, y) =VSIL(x, y) + VSIL(x− ax

2
, y +

ay
2

)

+ VSIL(x,w − y) + VSIL(x− ax
2
, w − y +

ay
2

), (5.30)

where w is the channel width and VSIL(x, y) is given in equation 5.16. Table 5.1

shows the convergence of the single chain (n = 1, w = 2b0 = ax) channel potential

detailed above when evaluated at (ax
2
, ay

2
), at the minimum of the potential. One

can see that truncating the summation of equation 5.29 at Ntrunc = 6 gives the

correct potential to 15 significant figures. The Bessel summation given in equation

5.30 only achieves the correct potential to 7 significant figures for Ntrunc = 16, which

means the Bessel function is evaluated 2112 times.
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Table 5.1: Channel Potential Convergence. Table showing the convergence of the single
chain potential at a central point of the channel (ax2 ,

ay
2 ), evaluated using both the original

Bessel Summation, V B
C , as well as the new representation, V F

C .

Ntrunc NB
terms V B

C NF
terms V F

C

1 12 3.16524499543214 2 4.55352552178547
2 40 4.03228932278470 3 4.55354360840724
3 84 4.36002683721161 4 4.55354355546269
4 144 4.48178944109878 5 4.55354355563586
5 220 4.52694272213426 6 4.55354355563526
6 312 4.54368613465819 7 4.55354355563526
7 420 4.54989304018604 8 4.55354355563526
8 544 4.55219261273093 9 4.55354355563526
9 684 4.55304395386813 10 4.55354355563526
10 840 4.55335890691338 11 4.55354355563526
11 1012 4.55347534690931 12 4.55354355563526
12 1200 4.55351837081431 13 4.55354355563526
13 1404 4.55353426013497 14 4.55354355563526
14 1624 4.55354012585283 15 4.55354355563526
15 1860 4.55354229048861 16 4.55354355563526
16 2112 4.55354308906979 17 4.55354355563526

As previously mentioned, the convergence of equation 5.29 is location dependent

whilst the original Bessel form is not. Table 5.2 shows the same calculation but for

a point closer to the boundary, (ax
20
, ay

20
) where both representations of the potential

only achieve the correct potential to 6 significant figures for Ntrunc = 16. From tables

5.1 and 5.2, we have identified that whilst the convergence of the new representation

can be significantly faster, it is positionally dependent. The convergence of the

original form, without a cut-off radius, however is independent of location. We

define the convergence to be

Cn(x, y) = 100
V B
C (x, y, 100)− V i

C(x, y, n)

V B
C (x, y, 100)

. (5.31)

Where we treat the original Bessel summation evaluated to Ntrunc = 100 as the abso-

lute value of the potential. The potential has converged to more than 15 significant

figures for Ntrunc = 100 and is independent of location.
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Table 5.2: Channel Potential Convergence. Table showing the convergence of the single
chain potential near the channel edge at (ax20 ,

ay
20 ), evaluated using both the original Bessel

Summation, V B
C , as well as the new representation, V F

C .

Ntrunc NB
terms V B

C NF
terms V F

C

1 12 5.32467944413438 2 6.55781778806106
2 40 6.21472948604849 3 6.69316109970862
3 84 6.54252282276115 4 6.73131503922644
4 144 6.66289986979861 5 6.74005608213307
5 220 6.70728938130972 6 6.74005608213307
6 312 6.72370611597712 7 6.73809146405786
7 420 6.72978491458252 8 6.73623210830974
8 544 6.73203609883066 9 6.73493232094218
9 684 6.73286948350705 10 6.73414398533459
10 840 6.73317783066032 11 6.73371099663949
11 1012 6.73329185089524 12 6.73349372150392
12 1200 6.73333399029932 13 6.73339539155778
13 1404 6.73334955662202 14 6.73335711854484
14 1624 6.73335530443448 15 6.73334627489070
15 1860 6.73335742603385 16 6.73334627489070
16 2112 6.73335820890493 17 6.73334947071706

Figure 5.5 depicts the convergence of both the original representation (blue curve)

and the Fourier representation as a function of location. From lowest to highest,

each curve is obtained by incrementally moving closer to the channel edge from the

centre of the channel. The results of which are summarised in the inset figure which

denotes the point at which the original method has converged more than the new

representation.

As one approaches a lattice point, the convergence of the new representation be-

comes considerably slower. Nearing the centre of the channel, however, the potential

has almost converged after one term. In the majority of our numerical investiga-

tions, the motion in y is prohibited. Later we shall permit vertical motion, the

extent to which a single vortex deviates from its expected position is O
( ay

100

)
and

so the convergence of the new representation is still much faster.
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Figure 5.5: Plot of the convergence as function of the number of terms included in the
summation, n for various locations within the channel (x = 0, y =

ay
2i where i is iterated

from 1 to 30). The blue curve details the convergence of the original Bessel summation.
As the convergence is independent of location it is only evaluated at the point (ax2 ,

ay
2 ).

The black curves represent the convergence of the Fourier transformed potential V F
C . The

convergence gets monotonically slower as one approaches the channel edge from the centre.
The number of terms at which the original Bessel channel summation, V B

C , has converged
more than the Fourier representation is displayed within the inset figure.

As previously mentioned, one technique commonly employed to improve the effi-

ciency of the simulation is to employ a radial cut-off distance to the interaction

force, beyond which the contributions are considered negligible. We now compare

the profile of the potential along the channel for various cut-off distances to that

of the new representation for single chain channel of width w =
√

3, the results of

which are displayed below.

From figure 5.6, we find that a cut-off radius of Rc = 12.0 is required to cor-

rectly match the profile from the channel potential VC(x,
√

3/2) = V (x). Despite

the potential appearing to have converged sufficiently for Rc = 6.0, as observed from

figure 5.2, the potential profile observed for this choice of cut-off does not provide

an accurate representation. Therefore, to simulate the channel potential, using a
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discrete set of lattice points, one has to evaluate the interaction with over 400 lattice

points. One should note that studies which have employed a cut-off radius often

rescale the potential such that V (rc) = F (rc) = 0.

0.2 0.4 0.6 0.8 1.0
x

4.50
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V(x)

Rc=6.0

Rc=8.0

Rc=10.0

Rc=12.0

Vc(x)

Figure 5.6: Plot of the potential experienced along the middle of the channel for w =√
3, ax = 1 and b0 =

√
3/2 for a selection of cut-off distances as well as the Fourier

representation of the potential.
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5.5 Concluding Remarks

• It is common practice to iterate through a discrete set of lattice points when

simulating a pinned superconducting lattice. As this technique is numerically

intensive one often applies a variety of methods to improve the efficiency, as

discussed in Chapter 4.

• These offer limited improvements in speed and a noticeable reduction in ac-

curacy. We, however, use Poisson summation to find an alternative represen-

tation of the channel potential. One finds

V F
C (x, y) = V 0

C(y) +
2π

ax

∞∑
n=1

αn cos

(
2πnx

ax

)(
e−Qny + τne−Qn(w−y)

)

• This alternative representation offers faster convergence than the original rep-

resentation, when compared to the original form for a point away from the

lattice sites.

• We also observed that a commonly used cut-off length in bulk lattice systems

(Rc = 6.0λ) is not appropriate for channel systems. Employing a cut-off radius

of Rc = 6.0λ both misrepresent the true critical shear and introduces noise

which may lead to unnatural phenomena.

• Many simulated experiments have assumed a simple sinusoidal potential stem-

ming from the channel edges, by analysing the convergence we have shown it

to be appropriate.

• Unless otherwise stated, we shall now use this representation in all simulations.

• The work in this and some of the following chapter are summarised in our

paper preprint [85].
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Chapter 6

The Critical Drive of Registered

Channels

This chapter comes in two halves, we first investigate the critical shear in wide reg-

istered channels analytically and then numerically. In section 6.2, we introduce the

tilted washboard model, we derive the velocity profile for uniform drive and discuss

the impact of an alternating current. Observational techniques are the subject of

section 6.3, we review the observation of the dynamics of colloids by M. P. N. Juniper

et al. [23] and discuss the feasibility of observation techniques of vortices in super-

conducting channels. In section 6.4, we use the Fourier form of the boundary, defined

in equation 5.29, to show that even for two registered chains the phenomenological

equation is not exact. In section 6.5, we derive the phenomenological equation for a

reduced model by employing three assumptions. We simulate the registered channel

in section 6.6, using the Fourier form as well as the discrete lattice sum with two

different cut-off radii. Finally, in section 6.7 we investigate the impact of corrections

to the reduced model have on the critical shear of registered chains.

87
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6.1 Introduction

Up to this point, we have primarily discussed the properties of the ground state

structure of the mobile vortex lattice in a channel of width w = 2b0 = ay. The

ground state was discussed for a range of coverage parameters at zero temperature

and no external force. The ground state has a rich set of phases as a function of

the coverage parameter θ. To understand the system better, we work exclusively

at θ = 1 in this chapter, and make use of our Fourier representation of the boundary.

The registered channel is translationally invariant, which greatly simplifies the anal-

ysis. All findings in this chapter for a channel of width w = 2b0 are technically valid

for all coverage parameters θ = 1
p
, where p is any integer between 1 for the registered

system to L for a single particle at T = 0. Another advantage to only considering

the registered dynamics is that the particles are all located at the potential minima

at F = 0, the maximally locked state. By contrast, a vortex exists at every possi-

ble point within the periodic landscape in an incommensurate state, including the

maxima and so motion can occur for any non-zero force.
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6.2 The Tilted Washboard Model

In Chapter 2, we considered the ground state structure formed when interacting par-

ticles are placed on periodic potential, we now ask what happens when this effective

substrate potential is tilted, see in figure 6.1. This model has a variety of appli-

cations including the RCSJ model for Josephson junctions [5]. One can consider

the potential for a particle at a point within the narrow superconducting channel

channel to be given by

VTotal(x, y, t) = VSubstrate(x, y, t) + VInteraction(x, y, t) + VExternal(x, y, t). (6.1)

Where VSubstrate is the periodic substrate potential which in our case is that of

the pinned channel edge VC. For the FK model to be applicable one requires

VSubstrate(x, y, t) = VSubstrate(x + ax, y, t). In most experimental studies the sub-

state potential considered is time independent with one clear exception, bulk lattice

shearing [86]. In these experiments one boundary is sheared with respect to the

other, either at a constant rate or in an oscillatory fashion.

The interaction potential VInteraction is the net potential a single vortex experiences

from the surrounding mobile lattice. As we shall at first be dealing with a single reg-

istered chain of vortices this term can be neglected as it is constant. In this section,

we shall see that once the channel is wide enough for n > 2 registered chains the

interaction becomes important once again due to the relative displacement between

neighbouring chains. Once decommensurations are introduced into the system the

density gradient means we can no longer neglect the impact of this term even in

single channels.
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The final term in equation, VExternal, is the potential stemming from the external

forces, given by FExternal(r, t) = FDC(r) + FAC sin(ωt) where the subscripts denote

direct and alternating forces respectively. Although we only consider a constant

force FExternal = FDC in our numerical study, a great deal of current interest lies in

a position dependent force. D. V. Tkachenko et al. [19] applied a transverse force

profile in wide channels and measured the associated velocity profile of each chain.

M. P. N. Juniper et al. [23] apply both an AC and DC driving force to the colloids,

their results are discussed below.

Let us first consider the simplest case in which we have one particle on a sinusoidal

landscape with a constant force applied, such a model is applicable to a particle

rolling down a washboard potential or a vortex driven by a Lorentz force, directed

down the channel, through the periodic landscape stemming from the pinned chan-

nel edge. The equation of motion is given by

ẋ =
1

η

[
FDC + α sin

(
2πx

aCE

)]
. (6.2)

Where η is the viscous drag, FDC is the applied driving force which acts on the

particle in a potential of amplitude α and period aCE. As described in the section

on the Langevin equation, we have opted to neglect the inertia of the particle as we

are in the overdamped regime.

Considering the tilted washboard picture displayed in figure 6.1, one can identify

that so long as a potential barrier exists the particle remains localised. At zero

temperature, the particle will remain confined within its potential well at the point

x = 2π
aCE

sin−1
(FDC

α

)
for FDC < fc. Increasing the magnitude of the external force
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causes the landscape to tilt further, eventually the potential barrier becomes a point

of inflection and the particle is permitted to flow. This is often referred to as the

locked to sliding transition or the saddle-node bifurcation [2].

f=0 0<f<fc f=fc

Figure 6.1: Schematic plot of the tilted washboard model at f = 0, 0 < f < fc and at the
critical shearing force f = fc for a registered chain of particles on a sinusoidal landscape.

A schematic plot of the average velocity as a function of driving force is displayed in

figure 6.2, the dashed line shows how the average velocity profile in the limit of no

substrate potential, v = F/η. The solid line in figure 6.2 depicts the velocity profile

for a single particle or registered chain for finite substrate potential. As already

explained, there is a minimum force, FC, required for motion to occur. This point

marks the location of the locked to sliding transition, for a registered channel at zero

temperature it is dependent only on the magnitude of the substrate potential. We

now consider the profile of the average velocity immediately after the critical point

by rearranging and integrating equation 6.2 over one lattice period.

∫ aCE

0

dx

FDC
α
− sin

(
2πx
aCE

) =

∫ Tp

0

α

η
dt. (6.3)

At a fixed driving force the particles velocity oscillates about an average, v̄, as it

moves over the potential landscape, the time period for this motion is Tp = aCE/v̄.

The equation 6.3 can be readily solved to show that the average chain velocity is
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v̄ =
1

η

√
F2
DC − α2. (6.4)

Let us now take a moment to examine this equation. When the driving force FDC < α

the average velocity of the chain is purely imaginary, this implies that in this simpli-

fied model the magnitude of the substrate potential gives the critical shear, FC = α.

The critical exponent of this transition is ν = 1
2
, which is the same as that found for

the critical current in the RCSJ model for superconductors [5]. As the magnitude

of the force increases the impact of the substrate diminishes, as such the average

velocity eventually grows according to v ∝ F/η.

Figure 6.2: Schematic plot the average particle (or chain with coverage parameter θ =
1
p) velocity as a function of driving force when driven over a sinusoidal landscape by
a homogeneous driving force. The solid (dashed) curve shows the velocity profile for
a periodic potential with finite (zero) amplitude. FC marks the location of the critical
shearing force.

Above we considered the impact a constant driving force has on a particle in a si-

nusoidal trap, the particle is limited to motion down the potential only, applying an

additional alternating force, FAC sin(ωt), dramatically changes the dynamics. The

results of which are displayed in figure 6.3.
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Figure 6.3: Plot the average particle velocity as a function of direct driving force when
driven over a sinusoidal landscape by both a direct and alternating driving force. The
dashed (dotted) curve shows the velocity profile for a periodic potential with finite (zero)
amplitude. The coloured lines represent the response to direct driving force FDC at different
strength FAC for fixed substrate potential. Figure taken directly from Fig. 1 in [7].

Figure 6.3 shows the velocity profiles for a chain of particles interacting on a sub-

strate driven by a combination of alternating and direct forces. Compared to the

previous profiles for FAC = 0 in which the velocity increases monotonically beyond

the critical shearing point, when FAC 6= 0 a mode-locking behaviour is observed giv-

ing the appearance of Shapiro steps, named after their discovery in the AC Josephson

effect [87]. The magnitude of the alternating force does not impact the velocity of

these steps, only the relative width of each and their dependence on the constant

force. These steps appear due to synchronisation, a phenomena first observed, in

coupled pendula, by C. Huygens [88]. The interaction between multiple weakly cou-

pled oscillators with similar frequencies causes the frequencies to become equal. In

the washboard model the synchronisation would be between an applied AC driving

force and the velocity oscillations from the substrate potential.
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It has also been shown experimentally that introducing some anharmonicity into

the substrate potential leads to a devils staircase of mode-locked velocities. To un-

derstand why these steps occur, one needs to observe the dynamics of the individual

particles. Until recently, experiments have only had access to integrated properties.

In the next section we discuss some experimental techniques, which allow insight

into the particle dynamics, in greater detail.

6.3 Experimental Observations

In many of the experimental setups considered in this field of research, the dynamics

of the system have to be inferred from indirect measurements. For example, for a

Type-II superconductor in the mixed state the dynamics of the vortex lattice are

inferred from the current-voltage characteristics. Whilst in the locked state, the

vortex lattice remains motionless and the current flows with zero resistance. At a

critical value of the current, the vortex lattice is no longer locked as it enters the

flux flow regime which dissipates energy introducing a resistance.

These indirect measurements are useful when trying to understand the dynamics

of a registered chain under the influence of a constant force. One can directly re-

late the measurements to the average chain velocity of the chain to the individual

particle dynamics as every particle travels forward together. The relation between

average properties and individual particle dynamics becomes less clear however when

one introduces an alternating force or defects. Whilst the integrated properties do

show distinctively different characteristics in each of these regimes, one cannot de-

duce the individual particles dynamics. Having access to the microscopic dynamics

rather than just the average properties unleashes the potential for many new inves-

tigations. One is able to gain greater insight in to the behaviour of defects.
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6.3.1 First Observation of Colloidal Dynamics

In the last section, we discussed how applying both an alternating and direct force

Shapiro steps are observed in the average velocity-force profile. With access to only

the average properties, one cannot identify the microscopic mechanisms which cause

this mode-locking behaviour. This was rectified by M. P. N. Juniper et al. by ex-

perimentally observing the real time dynamics of colloidal particles in a periodic

trap [23].

M. P. N. Juniper et al. created a sinusoidal trap in a water-ethanol mixture using

optical tweezers. Within this trap the polystyrene particles, which can be magneti-

cally charged, are driven using a piezo stage. The individual particle dynamics could

then be recorded in real time using a 40Hz camera. The authors used this set up to

study the motion of a chain of particles under the influence of an AC and DC force as

a function of chain rigidity, as well as when the chain contains a defect, see chapter 7.

It was found that the mode-locking behaviour is due to the particles maintain-

ing a periodic trajectory in which the velocity of the step is due to net result of

both forwards and backwards motion of each particle. The authors could even dif-

ferentiate between different periodic modes with the same velocity and could predict

when each mode would become dominant. In this colloidal set up, one could study

different substrate geometries and also varying interaction strengths.
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6.3.2 Observation Techniques in Type-II Superconductors

As we are investigating the dynamics with a Type-II superconductor, it is natural

to ask if it is feasible to experimentally observe the dynamics within these systems.

Many techniques exist for visualising both the static and slowly varying mixed su-

perconducting state. These include scanning tunnelling microscopy, magnetic force

microscopy and scanning hall probes. Whilst all of these methods have been em-

ployed to view the static mixed phase as well as slowly varying dynamics such as

flux creep and stochastic behaviour, the rate at which these methods can record

limits their use in chain dynamics analysis. Two of the more promising methods in-

clude magneto-optical imaging and scanning superconducting quantum interference

device (SQUID), both of which are discussed below.

In the mixed state, the magnetic field is expelled from the superconductor except in

the normal cores of each vortex. One can therefore view the structure of the flux line

lattice by displaying the magnetic field. In macroscopic systems one can visualise

the magnetic field pattern using iron filings, one can achieve a similar visualisation

in Type-II superconductors using a layer of ferrimagnetic crystal such as Bi:YIG.

This layer, which is often evaporated onto the superconductor responds to its mag-

netic field pattern.

When a linearly polarised light is incident upon the Bi:YIG crystal, the light is ro-

tated by an amount proportional to the local magnetic field. One can then infer the

magnetic field structure by the reflected light intensity, this relation however is not

linear so requires calibrating. This method is non destructive, capable of resolving

the vortex lattice and the crystal can respond to local field changes on sub-nanoscale

times. One of the main limitations of this method, image capture rate, has made
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vast improvements in recent years with some experiments now claiming image rates

of up to 30 000 fps [89]. The imagine quality can be enhanced by applying an ad-

ditional reflective layer between the crystal and superconductor. To the best of our

knowledge, this technology is yet to be used to experimentally study FK channels

however. The rate of improvements in image resolution and rate suggest that even

if it is not currently possible, it might be eventually.

Alternatively, one can use a SQUID as a magnetometer, such as that used by L.

Embon et al. when imagining the dynamics of super-fast vortices [8]. By placing the

SQUID on a sharp tip, L. Embon et al. increased the possible resolution enabling

them to not only resolve the flux lattice but also identify subtle displacements, re-

port they can identify vortices moving at velocities up to 20 km/s [8]. Using this

set up they studied the dynamics of individual vortices under the influence of large

current densities. Each image requires approximately four minutes to capture, the

intensity profile of an image is related to time averaged magnetic field at each point.

For a vortex moving with a small velocity, the small displacements could be stitched

together to visualise the motion. For higher velocities however, one could only vi-

sualise time averaged trajectories.

Figure 6.4: Plot of the magnetic imaging of vortices for an applied field of Ba = 5.4mT
at driving currents both above and below Ic. The imaging process produces time-averaged
locations for I > Ic The scale bar is 3µm. Figure adapted from Fig. 2 in [8].
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Information can be successfully gained by layering many trajectories, for example

when simulating wide superconducting channels driven by an imposted density gra-

dient, J. S. Watkins [27] visualised the localisation of the lattice defects by overlaying

the trajectories of mobile vortices over long times. The trajectories of all particles

in a channel with an imposed constriction allowed A. A. Tomlinson to identify long

time, stable localised modes [28]. It is evident therefore that having experimental

access to trajectories can be useful. Our investigation, however, requires the rela-

tive positions of particles within the same chain - as such the trajectories offer little

insight into the dynamics.
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6.4 Critical Shear of Narrow Channels

In this section, we determine the critical shear for a registered vortex lattice at zero

temperature in a narrow superconducting channel. We define a channel to be narrow

if it is only wide enough to only fit one registered chain of vortices, w = 2b0, we de-

fine channels with N ≥ 2 as wide channels. Due to the translational symmetry, the

method used to derive the form of the shearing force required for a chain containing

N = 1 registered chain is also applicable to a channel with N = 2 registered chains.

We will then compare these values to that of the widely accepted phenomenological

equation

FC
w =

2Ac66

w
, (6.5)

where A encapsulates the microscopic details including the structure of both the

pinned and mobile lattice, for a hexagonal pinned lattice the maximum value of this

parameter is A0 = 1/(π
√

3) ≈ 0.551329 which occurs for a registered chain within a

channel of width w = Nb0. As the channel geometry is varied from this arrangement

the parameter reduces in value, in the presence of a defect A→ 0.

The final parameter in equation 6.5 is the shear modulus of the vortex lattice c66

which Brandt found to be expressed by

c66 =
Φ0Bc2

16πµ0λ2
b(1− b)2(1− 0.58b+ 0.29b2). (6.6)

Where Φ0 is the flux quantum, Bc2 is the upper critical field strength, λ is the pen-

etration depth and b = B/Bc2 is the reduced field [21]. We have already discussed
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how the magnetic flux enters the superconductor in discrete units of Φ0, as such

the parameter b can be treated as the channel density with Nc ∝ b
Φ0
. Equation 6.5

implies that a superconducting channel containing N registered chains has a critical

shearing force FC
N ∝ 1/N . By determining the exact expressions for the critical

shear of both the one and two chain channels, we shall see that although the force

and channel width are approximately inversely related, there is a deviation.
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Figure 6.5: Plot the shear modulus c66 as a function of the reduced field b = B/Bc2
determined by equation 6.6.

We compare our solution for the single and double channel to that of the phenomeno-

logical equation. In order to do so, we must first determine a suitable value for b.

The appropriate choice of mobile vortex density is that of the pinned channel edge,

at this density the shearing strength is maximal. Figure 6.5 shows how equation 6.6

varies as a function of b, the maximal value from the shear modulus is found to be

c66 = 0.1252587 in units of Φ0Bc2
16πµ0λ2 for which b = 0.2999815. Using the microscopic

parameter A0 one finds FC
0 = 0.05316144.
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For a single registered vortex lattice line within the mobile region of an infinite

superconducting channel of width w =
√

3 one can ignore the bulk interaction as

each vortex is equally spaced and so the net interaction is zero, the only important

consideration therefore is the force from the boundary which can be found by dif-

ferentiating equation 5.29 for a single chain to find

FC

(
x,

√
3

2

)
= 8π2

∞∑
n=1

αnn sin(2πnx)e−
√

3Qn
2 . (6.7)

We have set y =
√

3
2

which is the centre of the channel and restricted transverse

motion. From equation 6.7 one can read off that the maximal force from the bound-

aries occurs at xc = 0.25 for n = 1, at which point Fmax
C ≈ 0.0500164. This value

is of the same order of magnitude as that obtained from Brandt’s expression. Some

experiments have modelled the superconducting channel using a single cosine poten-

tial, whilst this does provide a simple approximation, we find that the n ≥ 2 terms

of the summation do contribute to the value of the critical shear despite the rapid

convergence, the converged value of the critical force for a single chain 0.0500184.

F

Figure 6.6: Schematic diagram of the ground state lattice sites in a registered channel of
width w = 3b0 before (black) and after (grey) a shear force f < Fcrit is applied. We note
how the relative shift of both chains is the same.
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For the single channel system we can rigorously set transverse motion to zero due

to the inversion symmetry around the centre of the channel. For a two row system,

this is no longer the case, and this will be our first major approximation; we will

restrict transverse motion. This is a somewhat severe approximation, the effect of

which is discussed in section 6.7, but allows us to make analytical progress.

We now turn our attention to the two chain channel system. One might antici-

pate that we have to consider the bulk distortions, however the symmetry of the

system means the bulk lattice always maintains hexagonal order once we have fixed

y-motion, see figure 6.6. As the lattice shifts as one entity, there is no net interac-

tion force meaning only one variable is required. Again we differentiate the channel

potential to find

FC

(
x,

√
3

2

)
= 4π2

∞∑
n=1

αnn sin(2πnx)e−
√

3Qn
2

(
1 + (−1)ne−

√
3Qn
2

)
. (6.8)

Without the presence of the underlined term in equation 6.8, the expression for the

boundary force for the two chain channel is exactly one half of equation 6.7. The

true critical shear however deviates from the phenomenologically predicted FC
ay value

(from equation 6.5) by

100
FC(0.25,

√
3/2)− FC

ay

FC(0.25,
√

3/2)
≈ 0.404440%. (6.9)

Even for two chains there is a finite deviation from the phenomenologically predicted

value. Transverse motion does not remedy this, checked later. We now consider

wider channels, as we no longer have such high symmetry, the interaction forces in

the bulk must be included and new techniques for solving have to be employed.
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6.5 Critical Shear of an N Chain Channel

When considering a superconducting channel containing N transversely constrained

registered chains of vortices at zero temperature, one has N+1
2

free parameters when

N is odd and N
2
when N is even. This is due to the symmetry about the centre of

the channel. For N ≥ 3 the hexagonal mobile lattice may deform under shear and

so one has to consider the interaction of a particle with the neighbouring chains. As

each chain maintains discrete translational invariance, only the relative separation

of chains changes and one can employ equation 5.22 to determine the interaction

between neighbouring chains. The force acting on a particle in the jth chain at

(xj, yj) in a channel of width w containing N chains is

Ftotal(xj, yj) = FC(xj, yj) +
N∑
i=1
i 6=j

FL(xi − xj, yi − yj) + f, (6.10)

where FC is the force on the particle from the channel edge, FL is the force on the

particle from another chain and f is the driving force. And the associated energy

of a particle is given by

Et(xj, yj) = V A
SIL(xj, yj) + V A

SIL(xj, w − yj) + fxj

+
1

2

N∑
i=1
i 6=j

VL(xi − xj, yi − yj) +
∞∑

n=−∞
n6=0

K0 (nax) . (6.11)

The total energy can then be obtained by summing over the chain index j. The first

two terms in equation 6.11 are the energy associated with the interactions with the

channel edge. Notice we have opted to use the semi-infinite lattice potential rather

than the channel potential as was used in the determination of the single and double
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channel critical shear, the reason for this is explained below. The third term is the

driving force. The fourth term is the interaction energy of a particle with the other

mobile chains. Finally we have the energy associated with inter chain interactions,

as this is only a constant we shall now omit it.

As the number of chains increases, so too does number of terms that have to be

considered. Accurate analytical solutions are therefore taxing to achieve using the

original representation. Our Fourier representation has two appealing properties

which we now make use of; it is exponentially convergent in both n (the number of

Fourier modes) and y (the chain separation). We therefore approximate the inter-

chain interaction using only one Fourier mode, and allowing each chain only to

interact with its nearest neighbours. The outer chains interact with their respective

boundary; we use the full semi-infinite lattice form (1st harmonic), hence why we

split the contribution in equation 6.11. This model is much simpler and allows one

to determine the critical shear.

J1
B

J1
L

J1
L

J1
B

(x1,b0)

(x2,2b0)

(x3,3b0)

Figure 6.7: Schematic diagram of the reduced model considered in this section for a
registered channel of width w = 4b0. For a given particle, only the interaction with a
neighbouring boundary, JB1 , or mobile lattice line JL1 are considered, all other interactions
are neglected. As the transverse motion is restricted, the only free parameters are the
longitudinal position of each chain xi. We know from symmetry that x1 = x3.
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Figure 6.7 displays the reduced model system for three mobile chains, we make the

approximation that the central chain only interacts with the neighbouring mobile

vortex lines and the outer chains interact with only the central vortex line and one

boundary. We investigate the impact of these assumptions in section 6.7.

We now demonstrate the calculation for the simple case of one chain, comparing

to the solution to the solutions above. We then use a three chain channel to discuss

the new techniques required and then extend them to the N chain system. For the

single chain with the assumptions described above, the energy of a particle is given by

Et(x1) = 2JB1 cos(ωx1) + fx1, (6.12)

where ω = 2π/ax, and the factor of two is due to the interaction with each boundary.

The coefficient JB1 is the first Fourier term of the boundary potential, as depicted

in figure 6.7, given by

JB1 = 2πα1e−
√

3Q1
2 . (6.13)

Whilst in the locked state, the net force acting on the chain is zero. At the point of

the critical shear, the net force is zero and there is a point of inflection in the tilted

energy landscape. For a single chain, these can be expressed in terms of the total

energy via:
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dEt

dx1

= 0, (6.14)

d2Et

dx2
1

= 0. (6.15)

Equation 6.14 describes no net force, and equation 6.15 describes the point of in-

flection. Applying these to equation 6.12 one finds:

f − 2ωJB1 sin(ωx1) = 0, (6.16)

cos(ωx1) = 0. (6.17)

One can immediately read off from equation 6.17 that at the moment of critical

shearing, the particle is located at xc = .25. Substituting this coordinate into equa-

tion 6.16 one finds the critical shearing force is

fc = 2ωJB1 ≈ 0.0500164. (6.18)

Due to the convergence, this solution agrees with the exact value (of fc = 0.0500184)

up to 4 significant figures (deviation of 0.00399853%). We now consider N chains in

this nearest neighbour model, for which we now have the additional approximation

of nearest neighbouring interaction only, with interaction strength

JL1 =
2π

Q1

e−
√

3Q1
2 . (6.19)



6.5. CRITICAL SHEAR OF AN N CHAIN CHANNEL 107

Note that JL1 =
(

1− e−
√

3Q1
2

)
JB1 ≈ JB1 . The energy for the N chain system up to

a constant factor using these approximations is given by

Et(X) = JB1 (cos(ωx1) + cos(ωxN)) ,

+ JL1

N−1∑
n=1

cos (ω(xn − xn+1)) ,

+ f
N∑
n=1

xn. (6.20)

Where X = (x1, x2, . . . , xN). We temporarily neglect any knowledge of the symme-

try in this system and solve with N independent variables. As such the conditions

defined by 6.14 and 6.15 are replaced by

∂Et

∂xn
= 0, (6.21)∣∣∣∣ ∂2Et

∂xn∂xm

∣∣∣∣ = 0. (6.22)

Equation 6.21 gives a set of N coupled equations of motion given by

f − JB1 ω sin(ωx1) + JL1 ω sin (ω(x1 − x2)) = 0,

f − JL1 ω sin (ω(x1 − x2)) + JL1 ω sin (ω(x2 − x3)) = 0,

...

f − JL1 ω sin (ω(xN−2 − xN−1)) + JL1 ω sin (ω(xN−1 − xN)) = 0,

f − JB1 ω sin(ωxN) + JL1 ω sin (ω(xN−1 − xN)) = 0.
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As each of these equations equal zero, one can add them up to find

Nf = JB1 (sin(ωx1) + sin(ωxN)) . (6.23)

The equation 6.20 is symmetric under the inversion of the spatial parameters, i.e.

E(x1, x2, . . . , xN) = E(xN , xN−1, . . . , x1), therefore xn = xN−n+1 which reduces

equation 6.23 to Nf = 2JB1 sin(ωx1). In one dimension, the requirement given

by equation 6.15 refers to a point of inflection in the energy profile. In systems with

dimensions d ≥ 2, the point of inflection might be a function of multiple variables.

As such one solves for the Hessian, given in equation 6.22. The determinant of the

Hessian matrix is given by the product of the eigenvalues. For it to be zero (equa-

tion 6.22) at least one of the eigenvalues must be zero, but the others matter for

determining the type of criticality. If the eigenvalues of the Hessian are all positive

(negative) at X then the energy Et(X) is in a local minimum (maximum). If how-

ever the eigenvalues are both positive and negative at X then there is a point of

inflection in Et.

The Hessian matrix is given by

H =



X0 +X1 −X1 0 . . . 0

−X1 X1 +X2 −X2 . . . 0

0 −X2 X2 +X3 . . .
...

...
...

... . . . −XM

0 0 . . . −XM XM +XM+1


(6.24)

for the bulk energy given in equation 6.20. We employ the shorthand notation
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Xi ≡ cos (ω(xi − xi+1)). For symmetry we introduce x0 and XM+1, both of which

we set to zero after solving for the determinant as they are not true parts of the

model. The full Hessian matrix is an N ×N matrix, as we have invoked the natural

symmetry we reduce the matrix to an M ×M order matrix where

M =


N+1

2
for an odd channel,

N
2

for an even channel
(6.25)

due to the nearest neighbour interaction, the Hessian is tri-diagonal, and therefore

the determinant may be found in terms of continuants, Dn, the first four of which

are given by

D0 = 1,

D1 = X0 +X1,

D2 = (X0 +X1) (X1 +X2)−X2
1 ,

= (X1 +X2)D1 −X2
1D0,

D3 = (X0 +X1)
[
(X1 +X2) (X2 +X3)−X2

2

]
−X2

2 (X2 +X3) ,

= (X2 +X3)D2 −X2
2D1.

By evaluating each continuant, one can identify the emergence of a recursion rela-

tion. It is in fact well known that for a tri-diagonal matrix with the same symmetry

as equation 6.24 obeys the following recursion relation
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Dn = (Xn−1 +Xn)Dn−1 −X2
n−1Dn−2,

= Xn−1 (Dn−1 −Xn−1Dn−2) +XnDn−1,

→ Dn −XnDn−1 = Xn−1 (Dn−1 −Xn−1Dn−2) ,

D̃n = Xn−1D̃n−1. (6.26)

Where D̃n = Dn −XnDn−1. Evaluating this relation for D̃M+1 one finds

D̃M+1 =
M∏
i=0

Xi,

DM+1 −XM+1DM =
M∏
i=0

cos (ω(xi − xi+1)) ,

DM+1 =
M∏
i=0

cos (ω(xi − xi+1)) = 0. (6.27)

As such, the Hessian is the product of all neighbouring line interactions. For this

equation to be satisfied only one of the terms is required to equal zero, as such there

are many solutions. We therefore solve this set of equations numerically, figure 6.8

displays both the eigenvalues and the positions of the three chains.

Due to the symmetry of the chains, one has two independent variables x1 and x2 and

three simultaneous equations. One initiates the system at X(f = 0) = (x1, x2, x3) =

(0, ax
2
, 0) at f = 0 and solves the equations 6.21 for the positions as a function of

f . Using these coordinates, X(f 6= 0), one can evaluate the value of the eigenvalues

of the Hessian matrix as a function of f , the coordinates are only determinable up

to the point of critical shearing. We therefore confirm the existence of criticality by

observing one of the eigenvalues approaching zero.
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Figure 6.8: Plot of the eigenvalues (blue) and equilibrium positions (red) of the three
chains as a function of applied driving force. The outer chains (solid red line) are degenerate
and reach a point x1 = x3 = 0.25 at the moment of critical shear.

As one can see from figure 6.8, all three eigenvalues are all positive at f = 0 mean-

ing a local minima exists. They reduce in magnitude as a function of driving force

with one reaching zero at f ≈ 0.016701 at which point the outer chain reaches

x1 = x3 = 0.25. If the Hessian is negative a local minima exists, we cannot de-

termine the value of the Hessian beyond fc and so we infer the creation of a local

minima from the trajectory of one of the eigenvalues as f → fc. In fact, one finds

that the criticality occurs when the outer chains reach x1 = xN = 0.25 for any

number of registered chains. Substituting this into equation 6.23 one finds that

fcrit =
2JB1 ω

N
, (6.28)

as predicted phenomenologically. In deriving this expression, we had to omit higher

order Fourier terms as well as treat next nearest neighbour interactions as negligi-
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ble. Despite the convergence of the potential both radially and in Fourier terms,

these two factors do contribute a small but finite amount to the critical shear of the

system. We have already identified from equation 6.8 how even two chains causes a

deviation from the phenomenologically predicted value.

6.6 Simulating of Driven Registered Channels

Although we are unable to analytically solve the full model due to the complexity,

we can simulate a channel of N registered chains using the methods described in

Chapter 4. All simulations were initiated at f = 0 with the mobile lattice in its

ground state structure at T = 0 with transverse motion suppressed. The simulations

were repeated using both the original Bessel summation and Fourier representation

of the substrate potential.

Due to the smooth periodicity of the Fourier form one can simulate a fully reg-

istered system by just considering a single unit cell, this however would require

sufficient wrapping of the bulk force. As seen in figure 5.6, the Bessel form has a

discontinuous potential dependent on cut-off and so a large system must be simu-

lated. We however consider of system of length L = 20 > 2Rmax
c where Rmax

c = 9

here.

For each simulation, the applied driving force was incremented, from f = 0 to

f = 0.1, by an amount ∆f = 0.0001. After each increment the system was given

150000 time steps to equilibrate. The average velocity, displayed in figure 6.9, could

then be determined by storing the particle positions as a function of time, the crit-

ical shear however required a slightly different approach.
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Table 6.1: Critical shearing force of n registered chains within a channel of width w =
(n+ 1)b0 using both the Fourier representation of the channel edge potential as well as a
discrete lattice with two different cut-off lengths for the interaction, Rc = 6.0 and Rc = 9.0.
Each shearing force is given as an upper and lower bound. The lower bound is the last
force for which the evolved particle position was localised to 6 significant figures and the
upper bound is the force at which the particle has moved into the next potential well.

n Fourier Discrete Rc = 6.0 Discrete Rc = 9.0

1 0.050015 - 0.050019 0.051358 - 0.051359 0.050008 - 0.050009
2 0.024904 - 0.024909 0.026870 - 0.026869 0.024931 - 0.024932
3 0.016605 - 0.016611 0.018114 - 0.01815 0.016639 - 0.016640
4 0.012455 - 0.012581 0.014025 - 0.014026 0.012462 - 0.012463

Around the separatrix the net force is extremely small, as such the average ve-

locity may appear to be zero from figure 6.9, as such the location of the transition

was determined by a lack of long time convergence (to 6 s.f.) of the particle position.

Once an approximate location of the shearing force was identified, the simulation

was repeated for a longer simulation time in the vicinity of the transition using

δf =
∆f

100
. (6.29)

Despite reducing the incremental step size, the precision with which fcrit can be

determined is limited for finite time simulations due to the slow motion around the

shearing point. From particle positions every 10000 iterations alone, it is difficult to

determine if a particle is approaching convergence or has entered the sliding state.

One could always simulate for longer, however this requires both more memory and

time.

The values of the critical shear associated with each method are displayed in table

6.1. The lower bound is the last force for which the evolved particle position was
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localised to 6 significant figures and the upper bound is the force at which the par-

ticle has moved into the next potential well. To the accuracy of the simulation, the

phenomenologically accepted evolution of the shearing force is within the bounds

of the shear for the Fourier representation of the boundary as well as the discrete

lattice summation with a cut-off of Rc = 9.0. For a smaller cut-off there is a growing

discrepancy in the simulated and expected shearing force.
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v

Figure 6.9: Plot the average chain velocity for n = 1, 2, 3, 4 chains shown via the blue,
yellow, green and red lines respectively. In the large force limit all chains converge upon
the velocity profile v̄ = f/η (dashed black line).

Figure 6.9 shows the average velocity of the mobile lattice as a function of applied

driving force for n = 1− 4 registered chains in a channel of length L = 100aCE and

using the Fourier representation of the boundary. The driving force was increased

in small increments of ∆f (defined above) initiating the particles from the final po-

sition at the previous driving force and allowed to equilibrate for 55000 time steps

before any data was recorded. The average velocity was evaluated using
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v̄ =
1

N

N∑
i=1

1

M

M∑
i=1

xi(tj)− xi(tj + ∆t)

∆t
, (6.30)

where N is the total number of mobile particles, xi(tj) is the position of the ith

particle at time tj = (j − 1)∆t. The final term, ∆t, is the time interval used when

determining the velocity, if ∆t is too small, the impact of fluctuations in the ve-

locity due to the potential landscape increases, see figure 6.10. If, however, ∆t is

too large then one is at risk of not detecting the particle loop through the periodic

unit at large velocities. In the evaluation of the average velocity shown in figure 6.9,

∆t = 12.5 which equates to measuring the change in position every 1000 time steps.
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Figure 6.10: Plot of the position as a function of time for a vortex within a single chain
channel for f & fc.

The average velocity profiles in figure 6.9 agree with the expected profile discussed

in section 6.2. When deriving equation 6.4, we considered a single restricted chain
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of vortices in a rigid sinusoidal potential. We now check how well this expression

agrees not only with the single chain but its appropriateness it is to wider channels

in which the substrate potential no longer has a simple sinusoidal profile.
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Figure 6.11: Plot of the scaled velocity relation for n = 1, 2, 3, 4 chains shown via the
blue, yellow, green and red lines respectively. The scaling parameters used in this figure
α = β = 1. The inset provides an expanded view of the region in which all four chains
profiles are visible.

We check the scaling of equation 6.4 by plotting nαv̄ against ϑ
1
2nβ where ϑ =(

f 2 − f cn2
)
where n is the number of registered chains with an associated critical

shearing force f cn. We employ the quantity ϑ much like how the reduced temperature

τ = (T−Tc)/Tc is used in conventional phase transition studies such as superconduc-

tivity. The critical exponent of this is 1/2 for the locked to sliding transition. The

parameters α and β are used to identify how the expression scales with dimension,

in this system we consider the number of chains to be the dimension. The results,

displayed in figure 6.11, show that the profiles are equivalent for α = β = 1. Despite
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only being derived for a single registered chain in a sinusoidal potential, the critical

velocity relation stated in equation 6.4 is independent of dimension and appears to

provide a good fit for n = 1− 4 chains.

6.7 Corrections to the Reduced Model

In the above section, we found that the phenomenological expression for the critical

shear of N registered chains is derivable once one disregards higher order Fourier

modes and next nearest neighbouring chains. The inclusion of these factors allowed

us to identify a, small, discrepancy with the theory for n = 1, 2 chains. For larger

systems we required the use of simulations and identified that the velocity profile

in the vicinity of the transition does not depend on the number of chains at zero

temperature and for restricted transverse motion. In this section we now consider

these two other factors which, when included into the model, can drastically impact

the value of the critical shearing force.

Firstly, the chains thus far have been constrained to only move in x, we investi-

gate the impact this has on the critical shearing force and describe any changes in

the behaviour of the mobile lattice when its transverse motion is unrestricted. Fi-

nally, we briefly describe the impact thermal excitation has on the model, as this is a

complex subject with an extensive field of research we only include it to justify why

we refrain from annealing for the ground state as the driving force is varied.
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6.7.1 Higher Order Terms

In our reduced model, we neglected the impact of higher order Fourier modes and

beyond nearest neighbour interaction, we address these here. The interaction energy

between a particle, in a channel of width w = 6b0 (i.e. odd number of mobile rows),

and the pinned channel edge (with ax = 1) is given by the expression

FB(x, y) = 2π2

∞∑
n=1

αnn sin (2πnx)
(
e−Qny + e−Qn(6b0−y)

)
. (6.31)

The force a particle at (0.25, 2b0) and (0.25, 3b0) from the channel edge expression

above is 0.4% and 0.003% of that of a particle at (0.25, b0) respectively. For a particle

at (0.25, b0), truncating the boundary interaction force after one Fourier component

causes the force to vary by 0.002% from the true value. Similarly for the mobile

chain interaction, including the interaction force from the chain a distance of 2b0

away reduces the force by 0.4% its value and truncating the force after one Fourier

component deviates the force, from the true value, by 0.002%. It is therefore ac-

ceptable to approximate the interaction by nearest neighbour only with a truncated

force.
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6.7.2 Transverse Motion

For a single chain of N particles, we can solve when including transverse motion,

due to the inversion symmetry. For wider systems however, the transverse motion

affects the motion and the critical shear, and so we must assess its impact. Even for

a single discrete chain of N particles, the model is extremely cumbersome to solve

due to the number of coupled equations. This problem only increases in difficulty

when one allows for transverse motion as well. For T = 0 our method for n = 1 is

exact. When one restricts transverse motion it is possible to approximately deter-

mine the critical shearing force in wide channels. The inclusion of transverse motion

permits the lattice to reduce its energy state through deformation.

Transverse deformations are commonly observed in superconducting channels with

imposed variation, be it via motion through a restriction in the channel geometry or

via a varying imposed density difference along the channel. In each of these studies

the lattice reorientates to minimise its local energy state. In our registered channel

however the system remains translationally invariant and so each chain deforms as

one entity. We now determine the relative change in position of the chains and

critical shearing force as a function of drive, f , and number of chains, n.

We simulate n = 1 − 20 chains both with and without transverse motion, for each

simulation we increase the driving force by ∆f every 150000 time steps from the

perfect lattice at f = 0. At each new value of the force the system is allowed to

equilibrate for 55000 time steps before the positional data was recorded. The system

is kept at zero temperature and the Fourier representation of the channel potential

is used as it has been shown to be a more accurate representation when simulated.

The critical shear of each system size is displayed in figure 6.12.
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Figure 6.12: Plot of the critical shearing force as a function of number of chains for
transverse motion permitted (yellow) and forbidden (green), for comparison we also plot
the predicted shearing value using the phenomenological expression discussed above. The
inset shows the relative difference in the shearing force with and without transverse motion
as a function of number of rows. Inset contains numerical errors and we do not believe
these to be physically relevant.

Figure 6.12 shows how the critical shear of each size system compares with the

predicted value by Brandt with transverse motion both on and off. One can iden-

tify that the general form of the variation as a function of width agrees with the

fc ∝ n−1 derived earlier and that the critical shear is lower when transverse motion

is permitted. The inset in figure displays the relative difference in the critical shear

between transverse motion on and off, defined as

f̃ = 100
f coff − f con
f coff

(6.32)

From the inset, one can see that there is zero difference in having transverse motion

permitted for a single channel, this discrepancy in shearing force then appears to

level off at f̃ ≈ 3 − 4%, subject to significant numerical error. The transverse mo-

tion, therefore, has a much larger impact on the critical shear than truncating the

Fourier expansion or considering only nearest neighbours.
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We now evaluate how the lattice structure changes to permit this reduction in criti-

cal force, figure 6.13 shows the transverse deviation, ∆y, for each chain as a function

of relative driving force. Due to the symmetry of the channel we only evaluate the

positional change of chains originally located at y < ym, the curves displayed in

figure 6.13 are labeled by their chain number nc and the total number of chains in

the channel n with nc = 1 being the outermost chain, see index subscripts of the

chains in figure 6.7.
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Figure 6.13: Plot of the transverse deviation from the expected position of the nc th
chain as a function of drive in a channel containing n registered chains ∆y = yk − kb0.
Each curve has been scaled by the systems relative shearing force. Chains from the same
system are displayed in the same colour.

For odd channels, the central chain of vortices is situated along the midpoint of the

channel, the symmetry ensures the chain does not deviate in position. Interestingly,

from figure 6.13 we can see that in all channel sizes displayed, for both odd and even

widths, the outermost chain of vortices follows the same profile ∆y(f). The interior

chains also move further from the channel edge but by a smaller extent which de-

pends on the total number of chains within the channel.
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Overall, it is evident that as one approaches the critical shear, the mobile lattice

compresses to reduce the friction from the boundary. To appreciate why the mobile

lattice compresses, we qualitatively consider the transverse force acting on a particle

in the nc = 1 chain of the n = 2 channel, for simplicity we consider a single unit cell

of width a0. When a driving force is applied, both chains of the mobile lattice are

shifted forward with respect to the pinned channel edge.

As the mobile lattice maintains its order, the separation between neighbouring vor-

tices from opposite chains is rm =
√

(abulk/2)2 + (∆ym)2 whilst the separation of a

mobile particle with the nearest pinned vortex rp =
√

(∆xp)2 + (∆yp)2. The associ-

ated transverse force on the particle from the mobile, Fm
T (rm), and pinned, F b

T (rb),

must balance in equilibrium.

It was shown in section 6.5 that the interaction strength from a neighbouring line and

boundary are approximately equal, as such the transverse forces acting on the par-

ticle are balanced when radial separation from are similar. We have identified that

∆xp < abulk/2 and so to compensate for this the transverse separation ∆yp > ∆ym.

This qualitatively justifies why the outside chains move in, it does not however an-

swer why the outside chains follow the same profile ∆y(f) independent on channel

width.

For channels with n > 2 chains, the horizontal separation of neighbouring mo-

bile chains ∆xp 6= abulk/2, as such the separating in neighbouring chains is reduced.

The profile of the outermost chain is maintained because, whilst the separation of

the outermost chain with its neighbour is reduced, the relative position of the neigh-

bouring chain has also shifted. These two effects might cancel each other out.
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6.7.3 Temperature

Whilst increasing the temperature of a two dimensional Abrikosov lattice of vortices,

the system may undergo a phase transition in which the structural order is abruptly

lost. This transition is due to the thermostat inducing stochastic motion. Far below

the melting temperature, Tm ≈ 0.0143 for our system the structural order remains

intact and the thermostat only induces temporary displacements. In a channel sys-

tem, however, a thermostat can drastically modify the critical shear profile.

In the washboard model, the potential barrier U reduces in magnitude as the force

approaches the critical shear. Introducing a stochastic term gives a particle getting

an energetic kick, ∆E, with a probability e−∆E/kBT . If this energy gain is larger

than the potential barrier, the particle may escape its well creating a kink/anti-kink

pair. As we shall explain in Chapter 7, this pair causes the whole chain to shear.

After the shear the particles remain locked one well further on than they were ini-

tially located. This process occurs each time a particle in the chain is kicked by a

sufficient amount, the average chain velocity is due to instantaneous kicks.

As the temperature of the channel increases, or the driving force approaches the

critical shearing force. The probability of a particle receiving a sufficient amount

of energy, ∆E > U , becomes more likely and the average chain velocity increases.

Within the context of overdamped Josephson junctions, this effect is referred to as

thermally activated phase slip and was first found by Ambegaokar and Halperin in

1969. A plot of the average velocity as a function of drive obtained from simulations

at a range of temperatures using our set up is displayed in figure 6.14. For a truly

random thermostat, one requires transverse motion too.



124 CHAPTER 6. THE CRITICAL DRIVE OF REGISTERED CHANNELS

T=0.0

T=0.0005

T=0.0010

T=0.0020

T=0.0050

0.040 0.045 0.050 0.055
FD

0.005

0.010

0.015

0.020

0.025

v

0. 0.02 0.04 0.06 0.08 0.1
FD0.

0.02

0.04

0.06

0.08

0.1

v

Figure 6.14: Plot of the average velocity of a registered chain in a channel of width
w =

√
3 as a function of applied driving force at a selection of temperatures. The inset

plot shows an enhanced view of the average velocity in the vicinity of the critical point.

One must be careful when deciding if annealing is appropriate. In section 4.2, it was

explained that bulk systems may occasionally be trapped in an excited state and

annealing the system is a useful technique in aiding the system in relaxing to its true

ground state. The energy imparted to the particles can allow them to free them-

selves from unnatural states. When seeding a wide (w > 2b0) registered channel

from a random arrangement, it may take an exponentially long time for the system

to arrive at its natural ground state without the aid of annealing.

For the tilted washboard model, however, this additional energy may change the

natural state of the system. As discussed above as one approaches the critical

driving force, the presence of a thermostat may permit motion before reaching the

critical point. In the following investigations, annealing is only employed at zero

driving force as an additional verification of the ground states obtained at T = 0

only.
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Figure 6.15: Plot of the average velocity of a registered chain in a channel of width
w =

√
3 as a function of applied driving force at a selection of temperatures. Displayed

from top left to bottom right are the simulated data for T = 0.0005, 0.001, 0.002 and
0.005, each temperature profile was simulated in a channel of length L = 100aCE (blue
curve) as well as L = 200aCE (yellow curve).
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6.8 Concluding Remarks

• An exact form of the critical shearing force in both one and two registered chain

systems was derived for one dimensional chains, these values were compared

with the phenomenologically accepted expression.

• A derivation for the phenomenologically accepted expression was provided,

along with a justification of all assumptions made.

• Simulated data with the Fourier form of the boundary potential identified an

issue with the commonly accepted cut-off length of rc = 6λ.

• We investigated the scaling of the critical exponent of the velocity profile and

found that the relation holds for n = 1− 4 registered chains.

• Finally, we discussed three alternative approximations commonly made in sim-

ulations and presented the impact of each of them.



Chapter 7

Defects in Narrow Channels

In this chapter, we investigate the static and dynamical properties of interstitials

and vacancies within a "free" vortex chain in a 1D narrow channel. Whilst the

content in this chapter is, mostly, well understood in the context of kinks in the

discrete FK model, a global summary of the physics in the context of SCNCs does

not exist. In this chapter, we provide this summary with accompanying numerics.

This chapter provides the background for the novel dynamics observed in wider

channels, which we discuss in chapter 8. In section 7.2 we describe the simulation

and compare the simulated ground state to that of the continuum limit solution.

Further, in section 7.2, we verify the 1D approximation by simulating the zig-zag

transition for the modulated SCNC. The averaged dynamics of the driven channel

are discussed in section 7.3. We show how one can infer the defect velocity from the

average velocity, up to the critical shear, and introduce the anharmonicity of the

system. Motivated by N. Kokubo et al. [70], the individual particle dynamics are

discussed in section 7.4, explaining both the discrete and anharmonic effects. Also

in section 7.4, we analyse the kink’s motion both above and below the critical shear.

The dynamics of the kink above the critical shear are novel results.

127
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7.1 Introduction

The critical shear of a crystalline lattice was found to be many orders of magnitude

lower than the value predicted from uniformly sliding one lattice place with respect

to another [11]. As discussed in Chapter 2, this drastic reduction is due to the emer-

gence of defects known as dislocations [11]. These defects, which form within the

crystal, permit the motion of locked particles. Since their discovery, a vast amount

of research has been conducted on the static and dynamic properties of defects in

crystal structures [90]. In the wider context of the FK model, these dislocations are

referred to as kinks and have been observed in a wide range of systems including

coupled pendula [13] and arrays of Josephson junctions [16].

One of the main reasons we, and many others, have chosen to simulate a nar-

row superconducting channel system is its versatility. In section 6 we focused on a

commensurate channel as this offers the strongest confinement. As the application

of superconductors depends on the pinning of these mobile chains, a great deal of

work has gone into considering the impact of perturbations to the channel geome-

try [18, 73] or pinned edge [45]. Here we choose to investigate the impact decom-

mensurations have on the average velocity of the channel particles or vortices and

so we consider the channel edges to be the pinned hexagonal lattice, for this chapter.

Historically, experiments have only had access to integrated properties, such as

the resistance profile in type II superconductors [22]. The experimental accessibil-

ity motivated theoretical investigations of integrated properties such as the average

chain velocity [19]. We, however, use real time dynamics to explain these integrated

observations in terms of the individual particle motion. Such observations were

shown to be possible experimentally by P. H. Kes et al. [17], see section 6.3. By
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analysing the neighbouring separations in the chain (inter-particle distance within

the mobile chain) the dependence of the kinks dynamics on the driving force are

determined.

7.2 Kink Ground State

The topic of defects was first introduced in section 2.3 as an exact solution to the

sine-Gordon equation. Defects were then reintroduced in section 2.4.3 where it was

explained how they may become the natural ground state in discrete channels with

aCE ≈ abulk. The concept of minimising the energy in such systems by localising

the discrepancy was discussed as well as a brief introduction to how the shape of

this defect depends on the properties of the model. In this section, we discuss their

static properties in a tightly confined superconducting channels.

It has been noted, in section 2.4.3, that kinks (and anti-kinks) have extended tails

which leads to long distance interaction. When considering a defect within a peri-

odic unit, one must ensure that the simulated region is sufficiently long that the kink

does not self interact. Simulating long systems is more accessible with the Fourier

form of the channel edge potential than with a discrete set of pinned lattice points.

In this chapter we consider a superconducting channel with length Lc = 200aCE and

width wc =
√

3aCE =
√

3. The width is chosen to be exactly wide enough to fit one

registered chain, the channel has periodic boundary conditions.

A decommensuration occurs in these systems when vortices are added or removed

from the registered chain. To achieve the correct ground state, we seed each simu-

lation with both a random arrangement as well as a line of equally spaced vortices

with spacing abulk = (N + σ)/Lc where σ is the topological charge. Each vortex
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was located along the centre of the channel with transverse motion prohibited. The

ground state was then found by allowing the mobile vortices to relax over an ex-

tended period of time. All simulations were conducted at T = 0, the annealed

ground state is discussed in section 7.2.1.

Each of the methods described above resulted in the same ground state vortex

arrangement, only differing in the location of the excitation. The location of the

kink in the randomly seeded channel was, unsurprisingly, random. When initiating

with a uniformly spaced line of vortices, the location at which the kink would lo-

calise was more predictable. For simplicity, consider the pinned lattice sites being

xpi = xp0 + iaCE and the initial mobile sites being xmi = xm0 + iabulk. As the spacings

are not equal, the two chains will have regions of being maximally in and out of

phase. The defects will naturally localise at either the minima or maxima of the

alignment with the channel edge depending on the topological charge of the defect.

Figure 7.1 displays the deviation from expected position (when compared to a reg-

istered chain) for a typical ground state obtained from a uniformly spaced mobile

lattice containing one vacancy with respect to the channel edge. The uniform lattice

was seeded in such a way that the pinned and mobile lattice was maximally out of

phase at the mid point of the periodic unit for easy visualisation. Instead of plotting

actual positions, we plot the deviation from the expected position ui = xi− iaCE as

it enhances the defect.

Overlaid onto the figure a fit of both the sG profile for a stationary anti-kink (black)

as well as an approximate profile (red). An appropriate expression for the deviated

profile of an isolated anti-kink confined in a quasi-one-dimensional superconducting

channel was derived, in the sG limit, by R. Besseling et al. [45] for zero drive. Using
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Figure 7.1: Plot of the deviation (blue) from the expected particle position (when com-
pared to a registered chain) along the chain of length L = 200aCE containing one vacancy
σ = −1. Overlaid onto the plot is a fit of both the continuum limit function (black) and
an approximate function (red) to the data as well as the kink’s length positions, defined
to be where u(x±) = 0.5± 1/e.

the first order term of the Fourier form of the boundary potential, derived in Chap-

ter 5, the authors employed linear elasticity theory (l.e.t) to derive

ul.e.t(x) =
2aCE
π

tan−1

[
exp

(
+2π(x− xc)

ld

)]
, (7.1)

where xc denotes the position of anti-kinks centre, u(xc) = 0.5 and the anti-kink’s

length (core-size) is defined in [45] as

ld = 2π
√

3πλaCE. (7.2)

In our model λ = aCE = 1 and so ld = 19.29, comparing this value with our simu-

lated data we find usim(xc − ld) ≈ 0.001.

Interestingly, we can alternatively approximate the deviation profile for the iso-

lated anti-kink at zero drive using the function
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uapprox(x) = α tanh [β (x− γ)] + δ. (7.3)

The fitting parameters were determined to be α = δ = 0.49927, β = 0.236889 and

γ = 99.5 using the Mathematica function FindFit[]. Both the profile derived by R.

Besseling et al. in equation 7.1 and the approximate profile in equation 7.3 appear

to model the simulated data well, deviating only around the extended tails, as seen

in figure 7.2.
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Figure 7.2: Plot of the deviation from the expected particle position (blue) along the
chain of length L = 200aCE containing one vacancy σ = −1 in the vicinity of the tail.
Overlaid onto the plot is a fit of both the sG limit function (black) and an approximate
function (red) to the data as well as the length positions, defined as u(x±) = 0.5± 1/e.

We define the kinks length as l̃d = x+ − x−, where u(x±) = 0.5 ± 1/e as shown by

the dashed lines in figure 7.1. We determine an approximate value for the kinks

length by finding the intersects of the functions given in equations 7.1 and 7.3 with

the dashed lines. The widths for each method are listed in Table 7.1. Outside of
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Table 7.1: Table of the kinks length l̃d, determined using equations 7.1 and 7.3 as well
as using a linear extrapolation of the simulated data.

u(x) l̃d

ul.e.t 104.3 - 94.7 = 9.6

usim 103.9 - 95.1 = 8.8

uapprox 103.5 - 95.5 = 8.0

this region the function slowly decays, after which u(x) returns to a constant value.

As there is a vacancy, the particles to the right of the defect is one well further on

than expected.

An alternative way to represent the positional data of the anti-kink is displayed in

figure 7.3 which depicts the nearest neighbour separations

∆u(i) = xi+1 − xi. (7.4)

A positive value of ∆u(i) − aCE implies a local dilation, whilst ∆u(i) − aCE < 0

implies a contraction of the chain. We can relate the nearest neighbour separation

to the derivative of the anti-kink profile given in equation 7.3.

∂uapprox(x)

∂x
= αβ sech2 [β (x− γ)] . (7.5)

Similarly, differentiating equation 7.1 gives

∂ul.e.t(x)

∂x
=

4aCEe
2π(x−xc)

ld

ld

(
e

4π(x−xc)
ld + 1

) (7.6)
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Figure 7.3: Plot of the deviation in the nearest neighbour separation (blue) along the
chain of length L = 200aCE containing one vacancy σ = −1. The derivatives of both the
sG limit function (black) and an approximate function (red) to the data are also overlaid
as well as the length positions, defined to be 1/e of the amplitude of the simulated data.

The profile of the differential of equation 7.1 (see figure 7.3) shows that the function

does not match the simulated nearest neighbour separation of an anti-kink well in

the core of the defect, this suggests a limitation to the use of linear elastic theory for

our defect in the region where the separation of vortices are maximal. The profile

of equation 7.5 is displayed in figure 7.3, using the parameters found for the fit of

equation 7.3. Neither u′l.e.t or u′approx match the simulated data in the core, both

match well in the vicinity of the core boundaries, predicting a kink l̃d ≈ 8.4, as seen

in figure 7.3, it correctly predicts the kinks length. The benefit of using ∆u(x) to

depict the defect is one can integrate it to determine the topological charge. For a

single chain, the topological charge can be readily determined from

u(+∞)− u(−∞) = σ. (7.7)

Using the integral of ∆u(x) however allows one to isolate different regions of the

defect, which shall be crucial when considering wider channels.
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In section 4.4, we introduced the hexatic order parameter and discussed how it is

commonly used to identify defects in a bulk lattice. In our investigation into static

and dynamical properties of defects in narrow channels, however, we opt not to use

it in our analysis. Figure 7.4 shows the hexatic order of each mobile vortex in the

channel, the hexatic order was obtained by performing a Delaunay triangulation on

the mobile and pinned lattice combined and then selecting only the mobile vortices.
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Figure 7.4: Plot of the hexatic order ψ6 of each mobile vortex in a channel (L = 200abulk).
The hexatic order of the channel containing n = 199 (201) is denoted by the +(∗) symbol.

Whilst figure 7.4 does show a drastic loss of order in the vicinity of the defect, we

are unable to determine its topological nature. The hexatic order is more commonly

used to determine the order of a bulk rather than individual vortices. Relaxing from

the uniform uniformly spaced chain, the hexatic order of the bulk increases from

ψ6 = 0.23 to ψ6 = 0.95.

We have identified that the ground state of an anti-kink may be achieved from

a uniform or random arrangement of vortices, both with and without annealing.

The deviation from the expected position for an anti-kink can be approximately

modelled using both the continuum limit equation 7.1 as well as the approximation

equation 7.3, as seen in figure 7.1. Using the approximate form, we can seed defects

at desired locations within the channel with much greater precision when compared

to the uniform or random seeding previously used.
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7.2.1 The Zig-Zag Transition

Above, we determined the ground state of a 1D chain containing a vacancy. We

found that the defect is localised to a region a width 7aCE, with slowly decaying

tails extending beyond. Here we include transverse motion and determine the den-

sity range for which the one-dimensional assumption is valid. Each randomly seeded

arrangement was annealed, as described in section 4.2.

Figure 7.5: Schematic plot of the conventional zig-zag transition, in which one chain
bifurcates into to chains with each particle joining alternating chains.

The term zig-zag comes from the way in which one chain bifurcates into two chains,

each particle alternating in which new chain it joins, see figure 7.5. It is com-

monly studied in parabolic confining potentials where there is a trade off between

potential energy and maximal separation. G. Piacente et al. [91] performed ground

state energy calculations on charged particles interacting with a screened Coulomb

(Yukawa) potential whilst confined to a parabolic potential. The authors determine

a structural phase diagram as a function of density and parabolic confinement which

extends far beyond the conventional zig-zag transition.

O. M. Braun and Y. S. Kivshar [41] have studied the zig-zag transition in the FK

model. They consider a chain of repulsive atoms confined to a potential which is

modulated along the chain and parabolic in the transverse direction. They investi-

gate the transition in a registered chain as a function of repulsion. In addition they

repeat this for a one dimensional chain containing a kink as well as an anti-kink,

then they compare the dynamics of the zigzag kink with the zigzag anti-kink. Not-
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ing that the additional degree of freedom induces an effective anharmonicity.

Here we determine the location of the “zig-zag” transition for the narrow super-

conducting channel, where the confining potential is described by equation 5.29.

Unlike O. M. Braun and Y. S. Kivshar [41], our transverse confinement is exponen-

tial. We do not address the nature of the transition, we only identify the density

at which it occurs. To identify the number of defects a single chain can support

before it becomes energetically favourable to spread in the transverse direction, one

can evaluate the “zig-zag” transition. This transition marks the location a 1D chain,

partially, bifurcates. We use the term “zig-zag” loosely here because the chain does

not experience the conventional zig-zag observed in uniform confinement such as

in [91]. The ground state, at densities just above the bifurcation, are not transla-

tionally invariant due to the modulated potential, see inset in figure 7.6.

Figure 7.6 displays the average horizontal, vertical and radial spacings of nearest

neighbours in a channel of length L = 100aCE as a function of number of vortices

n. As the number of particles increases from zero, the average horizontal and radial

separation decrease whilst the vertical separation is zero until there are 125 vortices

in the channel beyond which there is a sudden increase in the average vertical sep-

aration. Beyond this critical point the decrease in horizontal separation is almost

perfectly balanced by the increase in average vertical separation.

We therefore find that a chain of length L = 100abulk and width w =
√

3abulk

can host a maximum of nk = 25 interstitials with associated coverage parameter

θcrit = 5
4
before it becomes energetically preferential for the chain to bifurcate. In

this chapter, we are only consider θ � θcrit and so we are justified in neglecting

transverse motion.
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Figure 7.6: Plot of the horizontal (blue), vertical (yellow) and radial (green) separation
of neighbouring vortices within a channel of width w =

√
3

2 and length L = 100aCE. The
inset shows the arrangement for n = 120 (∗) and n = 130 (+).

7.3 Integrated Chain Dynamics

In the previous section, we found that when an interstitial or vacancy is placed into

a long channel the effect of the defect is localised to only a few particles. The de-

fect was comprised of a local expansion or contraction, symmetric about its centre.

Away from the defect the chain is found to be the registered state. In a channel of

length L = 200aCE the deformation induced by the defect only covered a region of

approximate length 40a0, with σ ≈ 0.7 within l̃d. We now determine what impact

defects have on the average velocity of the chain.

Repeating the method of section 6.6, we measure the average velocity of the single

chain of length L = 200aCE containing n = 200 + σ vortices. The resulting average
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velocity profiles are displayed in figure 7.7 along with the profile registered chain

found earlier. Again, we identify two distinct regions with the the profile for f > fc

being similar to the registered chain. In the region 0 < f < fc, however, the profile

is significantly different to the registered chain.
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Figure 7.7: Plot of the average velocity of a chain as a function of applied driving force
in a channel of width w =

√
3 and length L = 200aCE. The chain contains σ defects within

an otherwise registered chain. The chain contains kinks if σ > 0 and anti-kinks if σ < 0.
The PN barrier for a defect is four orders of magnitude smaller than the amplitude of the
potential landscape, as such the critical shear of a defect is extremely close to the origin.

Below the critical shearing force of a single registered channel at zero temperature,

each particle in the chain is bound. As such, the average velocity of the chain is

zero. From figure 7.7 it is clear that when the channel contains a defect the chain

has a finite average velocity, even as one approaches zero drive. The gradient of the

linear velocity profile appears to be dependent on the magnitude of the topological

charge |σ|, however there is a difference in the velocity profile depending on the
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sign of the topological charge. A chain containing |σ| anti-kinks (dashed) appears

to have a slightly lower velocity than a chain containing |σ| kinks (solid) for a given

drive, the discrepancy increases with the number of defects.

Two notable figures in this field of research are O. M. Braun and Y. S. Kivshar. They

contributed to the understanding of the finite velocity below the critical shearing

force as well as the velocity profile dependence on the sign of topological charge [39].

As the dynamics of the vortices are the subject of the next section, we only outline

the reasons for each of these features of figure 7.7 in this section.

The vortices comprising the kink are in an excited state when compared to their

registered configuration. These vortices, therefore, face a reduced potential energy

barrier. The extent to which the potential barrier has been reduced depends on a

number of variables including the width of the kink. As the vortex-vortex interac-

tions are anharmonic, a contraction of particles has a higher energetic cost than a

dilation does. A kink therefore has a higher energy than an anti-kink and should

therefore flow faster. Likewise the more kinks present in the channel the more com-

pressed the whole chain causing it to flow faster. According to O. M. Braun and

Y. S. Kivshar, the net impact of these factors on the average velocity is described by

v̄ = cDvD =

∣∣∣∣1− ( aCE
abulk

)∣∣∣∣ vD, (7.8)

where vD is the speed of a kink (or anti-kink) [39]. This formula is valid when the

chain is locked and only the kink can flow (i.e. f < fc). Rearranging equation

7.8, we evaluate the decommensuration speed in each of the channels considered in

figure 7.7. As shown in figure 7.8 the channels with topological charge of the same
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sign have collapsed onto each other for f < fc, after which the profiles diverge.

As expected the kink and anti-kink have different speeds, which we have already

attributed to the difference in width due to the anharmonic interactions.
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Figure 7.8: Plot of the defects speed of a registered chain in a channel of width w =
√

3
containing σ defects as a function of applied driving force according to equation 7.8. The
chain contains kinks if σ > 0 and anti-kinks if σ < 0. The formula is only value for f < fc.

The defects in each of the channels travels through at a significantly faster rate than

the average registered chain, moving two orders of magnitude faster. It is, therefore,

not surprising that observing the defect motion experimentally has proven difficult.

As the magnitude of the topological charge increases, the once abrupt locked to

sliding transition evolves into a gradual variation in the velocity profile. In the large

force limit, each of the profiles in 7.7 collapse onto each other. This implies that

the impact of the defects diminishes once the whole chain is in motion. Having

discussed the average properties of the chain as a whole, we not delve further and

explain these integrated properties in terms of the individual particle motion.
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7.4 Kink Dynamics

In this section, we look at the dynamics of each particle in the channel to under-

stand the motion of the kink through the rigid channel. We shall describe how the

individual particles permit the kink and anti-kink to flow through the channel, why

a defect in the superconducting channel is static at zero drive and how the structure

of the defect evolves as a function of drive.

From figure 7.7 it was evident that both the kink and anti-kink increased the average

channels velocity below the critical shear. What was not clear, however, was the

kinks dynamics and how they increase the channels average velocity.

(a) Kink motion.

(b) Anti-kink motion.

Figure 7.9: Schematic diagrams of the particle and hole defects motion through the chain.
The motion of the particle is given via the black - dashed arrow and the motion of the
defect is given by the solid red arrow. The periodic potential is shown in black. Note:
both the shape of the well and the position of all particles have been simplified.

Figure 7.9 outlines how the (a) kink and (b) anti-kink evolves through the channel.

As the particles move to the right the interstitial (vacancy) moves to the right (left)

meaning the kink (anti-kink) travels forward (backwards). Each time the defect

evolves through the periodic unit, each particle will be displaced into the next well.

The average chain velocity is determined by the rate at which the defect can pass

through the channel section. For |σ| defects in a region of length L, each particle in

the channel will be displaced |σ| wells per cycle of the defect.
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7.4.1 Peierls Nabarro Barrier

We have addressed the direction in which a kink/anti-kink moves and how its mo-

tion results in an average channel velocity. We have not yet explained why the kink

can move in the first place, for f < fc. When a defect is present in the channel,

the driving force is not acting on the quasiparticle but the particles that form it.

For a chain to be in motion each particle must shift wells, which means overcoming

the potential barrier. The translation of a particle from one minima to the next

requires a gain in energy of ∆V = Vmin − Vmax = 0.0159569866 = εs in registered

systems. The particles comprising the kink however are not initially situated in their

respective minima, instead they are located higher up the potential well. Meaning

the associated energy cost to shift wells ∆V < εs for a particle comprising the kink.

The kink profile given in equation 7.1 was found by modelling the sine-Gordon

equation [39]. This equation is valid in the continuum limit. With the exception of

some adiabatic dressing, it was shown in figure 7.1 that the ground state structure

of a kink within a discrete channel can be closely approximated using the equation

7.1. In the continuum limit, the complete translational invariance means, however,

that the kink can be in motion even at zero drive. This is not the case here, for zero

drive the defect is static.

We have identified that whilst the discreteness only has a small impact on the static

structure of the kink, it does impact dynamics. Instead of continuous translational

invariance the system now has discrete translational invariance. The associated en-

ergy barrier which the chain is required to overcome when translating the system

by ∆x = aCE is known as the Peierls Nabarro potential, EPN [47, 48].
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The Peierls Nabarro potential is defined as the difference in the channels energy

between the stable and unstable stationary ground states. Due to the numerical

fluctuations in the simulations, it proved difficult to simulate the unstable configu-

ration. In order to simulate the unstable ground state, a mobile vortex was pinned

at the maxima of the potential landscape and the remaining vortices were evolved

about it. Figure 7.10 depicts where each particle, from the evolved ground state for

both the stable (blue) and unstable (yellow) configurations, reside on the potential

energy landscape defined in equation 5.29.
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Figure 7.10: Plot of the potential energy each particle experiences from the channel edge
in the vicinity of the defect, the simulated stable ground state is shown in blue whilst the
unstable ground state is shown in yellow. The horizontal positions are the true positions
of the particles, the vertical position is found using V F

C (x,
√

3
2 ) from equation 5.29.

The first thing to note from figure 7.10 is how high up the substate potential the

maximum particles are situated. One also notes the symmetry of both the stable

and unstable configuration about their respective centres. The full ground state

energy of each configuration is determined via

V (X) =
N∑
i=1

V F
C

(
xi,

√
3

2

)
+

N∑
j=1,
j 6=i

K0

(
|xi − xj|

λ

)
, (7.9)
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where X denotes the ground state configuration of the channel. The relative differ-

ence in energy between the stable and unstable state is given by

100
ESim

PN

εs
= 100

V (XStable)− V (XUnstable)

εs
= 0.06769279%. (7.10)

For the chain to slide it no longer requires each particle to overcome the full potential

well εs, one only requires EPN � εs. The drastic reduction in the potential barrier

can be attributed to the structure of the kink. Consider the stable (blue) and un-

stable (yellow) configurations are displayed in figure 7.10 to be the initial and final

position of a translation. From our simulated data we find ESim
PN = 0.000010801729.

The constituents of the kink to the right (left) of the centre all slide up (down)

their respective wells. The net energy required to move the particles up their wells

is approximately balanced by the gain in energy from the other particles moving

down their wells, the discrepancy in loss and gain reduces as a function of kink

length. In the limit of strong coupling, g � 1, V. L. Pokrovsky obtained

EPok
PN ≈ 32π2ge−π

2√g, (7.11)

by employing a Poisson summation technique similar to the one used to derive the

channel potential in section 5 [92]. In section 2.4, it was stated that the kinks size

is ∝ √g, as such it is clear from equation 7.11 that an increase in the kinks length

results in a reduction in the Peierls Nabarro barrier. From Chapter 2, the dimen-

sionless coupling constant is

g =
(aCE

2π

)2

V ′′int(abulk)
(εs

2

)−1

= 3.2830547. (7.12)
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Substituting this into equation 7.11 one finds that the expected potential barrier

EPok
PN = 0.000017752835, this is approximately 1.64 times larger than the simulated

value of ESim
PN = 0.000010801729, it is unclear what causes the discrepancy in values.

The magnitude of the PN barrier, EPN, is three orders of magnitude less than the

substrate potential, εs, as such it only becomes important when f → 0 where it

prohibits free flowing kinks in discrete channels at zero drive.

In section 6.7, we found that an applied temperature smeared the locked-to-sliding

transition. Temperature increases the probability of a vortex being kicked into the

next well, this creates a kink/anti-kink pair. If the driving force is great enough to

over come the attraction of this pair (see equation 2.18), then the pair will travel

in opposite directions through the channel translating one particle at a time. In a

periodic system these two defects meet up and annihilate after each period.

7.4.2 Anharmonic Interactions

In this chapter so far, we have explained how defects move in terms of the parti-

cles comprising them, how this motion causes a channel flow, why these defects are

permitted to flow for f � fc and how the barrier each particle has to overcome is

related to the width of the defect. We now address the discrepancy in the speed of

the kink and anti-kink identified in figure 7.8. As suggested earlier this is due to the

anharmonicity of the particle interactions.

In section 2.2, we derived the FK model by considering the energy of a chain of

particles coupled by perfect springs. The nearest neighbour interaction potential for
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spring coupling is Vint ∝ (δx)2 where δx is the deviation from the expected separa-

tion, abulk. Unlike the vortex-vortex interaction, the interaction force for expansion

and contraction is identical. The ideal vortex separation is enforced by the density

of the periodic unit of length L, extending the length of the channel for a fixed

number of vortices would result in a larger value of abulk.

It is not the lack of a natural length scale which makes the interaction anhar-

monic. Many anharmonic interaction potentials with a natural length scale exist in

nature, such as the Lennard-Jones potential which models the interaction between

atoms [93]. The degree of anharmonicity simply refers to how much the potential

deviates from a harmonic oscillator, for weak anharmonicity and δx � 1 one can

approximate the potential as harmonic.

In the vicinity of a kink (anti-kink) there is a local contraction (expansion) of the

mobile channel. Due to the anharmonicity, the energy of a static kink is therefore

larger than that of a static anti-kink and therefore the PN barrier of a kink is also

lower. The rest energy of a defect is defined as

Ek,k̃ = V
(
XN
k,k̃

)
− V

(
XN

reg

)
, (7.13)

where XN
k,k̃

is the ground state configuration of all N containing a kink (k) or anti-

kink (k̃) and XN
reg is the ground state configuration of N registered particles. The

rest energy of the kink is Ek = 2.45478 which is the due to an increase in interaction

energy of Eint
k = 2.35697 and an increase in the substrate energy of Esub

k = 0.09781.

One can see that the increase in interaction energy due to the contraction is far

greater than the increase in potential energy, as we are in the strongly interacting
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limit. The energy of the anti-kink is Ek̃ = −1.90443 with an increase in substrate

potential energy of Esub
k̃

= 0.08056 and a decrease in the interaction energy of the

channel by Eint
k̃

= −1.98499. For reference, each vortex in the registered channel

has a rest energy of E = 3.8076. We identify the presence of anharmonicity through

the difference in magnitudes of the interaction energy in the addition and removal

or a particle.

7.4.3 Kink Motion

We now take a closer look at the kink dynamics, investigating the structural and

dynamical changes as a function of driving force. By measuring the nearest neigh-

bour separation at each time frame, we deduce a behaviour of a decommensuration

either side of the critical driving force. We first discuss how the structure of the

kink evolves with increasing drive and then move on to discuss its motion.

The Deformable Particle

The kink (anti-kink) is a deformable quasi-particle comprised of many mobile vor-

tices. Its malleable structure can deform to maintain a minimum energy. An exam-

ple of this is how a kink breathes as it is adiabatically translated from one well to

the next, as seen from the two ground states in figure 7.10. We first consider the

height of the defect as a function of drive, shown in figure 7.11 below. In order to

track the defect one must first define its location, X. Bergman et al. [94] define the

coordinate of the kink via

X = − σ

aCE

∫
x y′(x−X) dx, (7.14)
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where y(x) describes the profile of the defect. We, however, define the kink (anti-

kink) coordinate as the maximum (minimum) of the ∆u(x) profile shown in figure

7.3 as it provides a quick and reliable method for locating the kink to within one

aCE. Unless in the unstable configuration, there is always a single maxima in the

nearest neighbour separation. The height of the defect is defined as the magnitude

of the maximum (minimum).
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Figure 7.11: Plot of the maximum nearest neighbour separation of the anti-kink as a
function of drive, for a channel of length L = 200aCE containing n = 199 vortices.

Figure 7.11 shows the measured height of an anti-kink as a function of drive. As the

driving force increases from zero there is a gradual reduction in the height, meaning

there is a slow increase in the local vortex density. In the vicinity of the critical

shearing force of a single chain there is an abrupt drop in the height of the kink,
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reducing almost to zero. The amplitude of the anti-kink separation at large drive

is less than 10% of the ground state amplitude. We now take a closer look at the

separation profile at different drives to determine how the system is compensating

for this reduction in height.

Figure 7.12 shows the nearest neighbour separation of the mobile channel of length

L = 200aCE containing n = 199 vortices at a selection of drives, shown in blue.

Also displayed in figure 7.12 is the inter-particle separation profile which has been

reflected about the centre of the defect, yellow curves. This allows one to identify

any asymmetry in the profile. Whilst the data is only displayed for a single time

frame, it was found the structures displayed are stable in the long time limit with

only small perturbations as it passes over the potential landscape.

We have already discussed the profile of the anti-kink at zero drive in great de-

tail, displayed in the top figure of figure 7.12. From figure 7.11, it was evident that

for low drive the height of the anti-kink remains mostly constant. This is observed

in the first 3 graphs in which the height and width are approximately constant. As

well as consistent shape, its clear that the deformation is localised as away from the

peak the deviation in neighbouring spacing being equal to zero. With the deforma-

tion only reducing in height and broadening as f approaches fc.

The prominent difference in each profile in figure 7.12 is the increasing asymme-

try observed. As the driving force increases from f = 0 to f < fc, the anti-kinks

tails alter their shape. The trailing tail, located to the right of each (blue) peak,

becomes elongated. Whilst the leading tail becomes sharper. This compression and

dilation is due to the mobility of the particles either side of the kink. To conserve

area, the amplitude reduces as the kinks tail grows.
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Figure 7.12: Plot of the nearest neighbour separation (blue) for a channel of length
L = 200aCE containing n = 199 vortices at a selection of driving forces below the critical
shear. The inverted data is shown in yellow.
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Figure 7.13: Plot of the nearest neighbour separation (blue) for a channel of length
L = 200aCE containing n = 199 vortices at a selection of driving forces above the critical
shear. The inverted data is shown in yellow.
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Figure 7.13 shows the nearest neighbour separation of the mobile channel contain-

ing an anti-kink for the high drive regime f > fc. The defect is no longer localised,

with each set of neighbouring particles being dilated with respect to the registered

spacing. As the driving force increases, the peak is broadened further until it ceases

to exist at large driving force. The topological charge of the chain is constant, this

is equivalent to preserving the area under each curve in figure 7.13. As the height

of the deformation peak reduces the overall shape must broaden to maintain area.

We also note that the effect of noise is more prominent in figure 7.13 compared to

figure 7.12 as the scale of the figure has changed. The asymmetry in the profile,

as observed in figure 7.12, is gone. This implies that the kink is moving at a low

velocity in the rest frame of the mobile chain.

Kink Motion

Figure 7.14 shows the displacement a kink (blue) and anti-kink (black) in a chan-

nel containing one of the defects at different driving forces drive. Data associated

with transient states has been discarded. Independent of driving force, the defect

always travels at constant velocity. With the kink travelling forwards and anti-kink

travelling backwards, justified above. The trajectories displayed are at equal spac-

ing of driving force, with each line further from the centre having a driving force

∆f = 0.005 larger than the previous. For both types of defects we identify two dif-

ferent regimes, the collection of trajectories with small gradients and then a number

of faster moving chains. The two different regimes of motion for each defect are

emphasised by the schematic red lines shown in figure 7.14.



154 CHAPTER 7. DEFECTS IN NARROW CHANNELS

Figure 7.14: Plot of the kink (blue) and anti-kink (black) displacements as a range of
different driving forces, the trajectories fan out for increasing driving force. Dashed red
lines mark approximate transition.

As each of the defects has a linear trajectory, one can readily determine its velocity.

It was shown in figure 7.8 that the kink (and anti-kink) move 2 orders of magnitude

faster than the average channel velocity. One can, however, employ equation 7.8

to scale them accordingly. For both a single kink or an anti-kink in a channel of

length L = 200aCE, the scaling parameter was shown to be cD = 1
200

. Applying the

scaling equation 7.8 we compare the kink and anti-kink velocity to that of a single

registered chain, see figures 7.15 and 7.16 respectively. The scaled kink velocity,

shown in figure 7.15 (dashed yellow), matches the profile of the registered channel

(blue) well straight after the critical shear. As the driving force grows, however, the

two curves diverge.

We determine the scale factor defined equation 7.8 for f > fc for the kink and anti-

kink, see insets of figures 7.15 and 7.16. For the kink one finds c̃−1
D (k) = 〈v̄/vD〉 =

203.137, whilst for the anti-kink one finds c̃−1
D (k̃) = 201.136 where 〈. . .〉 the average.

For both the kink and anti-kink, the scalar is just greater than that of the locked

phase c−1
D = 200. Implying the defect does contribute a finite amount to the average

velocity for f > fc.
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Figure 7.15: Plot of the average channel velocity for a registered chain (blue), scaled kink
velocity (dashed yellow) and scaled kink velocity in the rest frame of the channel (red).
The inset shows the ratio, c̃D = v̄/vD of the kink for f > fc.

To isolate the kink motion, we subtract the registered chain velocity from the scaled

kink/anti-kink velocity, this is displayed on both figure 7.15 and 7.16 and more

clearly in figure 7.17. As the drive increases from zero to fc, each vortex resides

higher up in its respective well the Peierls Nabarro barrier reduces and so both the

kink and anti-kink can travel at increasing speeds. As the kink is wider than the

anti-kink its velocity remains greater. As seen in figure 7.17, the velocity of the kink

and anti-kink diverges at f = fc.

Beyond the locked to sliding transition, the registered sections of the chain are mo-

bile. Removing the registered channel motion (moving to the resting frame of the

chain) we find that there is a significant reduction in the mobility of the kink and

anti-kink. The defect’s velocity appears to linearly increase from zero. Once the

chain is in motion, there is no longer a preference for the defect to transport mass

through the channel. The defect therefore is almost at rest beyond fc in the moving

frame.
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Figure 7.16: Plot of the average channel velocity for a registered chain (blue), scaled
anti-kink velocity (dashed yellow) and scaled anti-kink velocity in the rest frame of the
channel (red). The inset shows the ratio, c̃D = v̄/vD of the kink for f > fc. As the
anti-kink travels backwards we plot −vk̃ instead.

The simulation for each driving force both above and below the critical shear was

produced by incrementally increasing the drive by ∆f from the previous value, us-

ing the final state as the initial conditions for the new drive. Each simulation was

repeated, now with an abrupt increase in the force from f = 0 to the desired value,

initiating the simulation with the ground state configuration. In agreement with

the findings of Middleton, the resulting steady state dynamics were independent of

initial configuration [82]. The minimisation process, used to find the ground state

structure, was independent of the method of seeding for the single chain. The choice

becomes important in wider systems as we shall see in the next chapter.

In this section, we have identified how the particles motion leads to the quasiparti-

cle dynamics and established why the defect is permitted to flow below the critical

shearing force of a single chain. We then proceeded to investigate why there is an
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asymmetry in the velocity of a kink and anti-kink, this led us to determine the rest

energy of a kink and anti-kink as well as determine how this energy varies when its

width is varied. Considering the particle dynamics in even greater detail, we con-

cluded the section with looking at the stable state motion of these quasi-particles

and their deformation as a function of drive. We identified the drastically different

profiles of the kink both above and below the critical shear force. Using what we

have learnt we now address some applications of defects.
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Figure 7.17: Plot of kink (yellow) and anti-kink (blue) velocity in the rest frame of the
L = 200aCE long mobile section of the channel.

The defects studied in this chapter move under the influence of a direct force only

in a fixed-density chain. As such the velocity, for a given direct force, is constant.

R. Besseling et al. [45] visualised the motion of a kink in a finite length chain under

the influence of both an AC and DC driving force.

R. Besseling et al. found that defects, much like the individual particles, experiences

mode locking with visible steps. They were able to directly observe the oscillating

motion of a defect in a chain of particles. When a sufficiently large force is applied
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to the free chain, a kink forms at the tail end of the chain. This kink then evolves

along the chain until it reaches the front, where it is reflected and transformed into

an anti-kink which flows backwards through the chain. The overall effect is an os-

cillating transformation between kink and anti-kink, with each particle moving two

wells along with every period. For this reason it is often referred to as caterpillar-like

motion [2].

7.5 Concluding Remarks

• The deviation from expected position for an anti-kink in an otherwise reg-

istered channel can be approximately modelled using equation 7.1 from R.

Besseling et al. [45] . Similarly, we can approximate the profile equation 7.3.

• We estimate the anti-kink core to have a width of approximately 7aCE, includ-

ing the extended tails the width is approximately 40aCE.

• The inter-particle spacing is an appropriate quantity to quantify defects as it

preserves topological charge and differentiates kinks and anti-kinks, unlike the

hexatic order.

• From studying the "zig-zag" transition, we determine the assumption of a one

dimensional chain is valid up to a coverage parameter of θc = 5
4
.

• Introducing defects into the chain alters the integrated properties, seen in the

average velocity as a function of drive.

• The average velocity profile depends on the topological charge, σ, of the chain.

Using the scaling relation, presented by O. M. Braun and Y. S. Kivshar [39],

one can deduce the defects velocity from the chains average velocity using

equation 7.8. This relation is true below the critical shear.
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• The kink and anti-kink travel in opposite directions when acted upon by a driv-

ing force. The particles comprising the quasi-particles travel in the direction

of the force.

• Chains containing defects are permitted to flow for drives below the critical

shear (of the associated registered system) because the potential barrier each

particle must overcome is lower in the vicinity of the defect. This reduced

potential is called the Peierls-Nabarro Barrier [47,48].

• The anharmonicity of the Bessel interaction force means contractions are a

higher energy state compared to dilations. This property explains the discrep-

ancy in the properties of the kink and anti-kink.

• For finite drive, below the critical shear force, the inter-particle spacing profile

of the anti-kink is tall, narrow and asymmetric. Above the critical drive, it is

broad, shallow and symmetric.

• The reduction in localisation causes the abrupt reduction in the defect velocity,

in the rest frame of the chain.
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Chapter 8

Defects in Wide Channels

In this chapter, we investigate the static and dynamical properties of defects in

wide channels. In section 8.2, we consider the dynamics of a driven channel when a

vortex from one registered chain is placed in the neighbouring chain, creating a kink

and anti-kink in neighbouring chains. Comparing this dynamics with conventional

single chain defect interaction we identify an interesting phenomena. To explain the

dynamics of interaction we consider a channel of two chains with just one defect

present, this is the subject of section 8.3 onwards. We investigate both the ground

state and dynamics of both chains; the chain containing the defect as well as the

neighbouring registered chain. Finally, we deduce the underlying mechanism of

this phenomena and use it to explain the kink/anti-kink interactions introduced in

section 8.2.

161
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8.1 Introduction

In Chapter 6, we employed analytical and numerical techniques to investigate the

locked-to-sliding transition of registered chains within wide channels. We found that

at zero temperature, the critical shear of interacting chains constrained to move in

one-dimension could be approximately modelled using the phenomenological equa-

tion 6.5. Approaching the critical shearing force from the ground state, each chain

is elastically sheared with respect to both its neighbouring chains and the rigid

channel edge potential. Central chains were displaced further than the outer chains

with respect to the ground state position. At driving forces above the critical shear,

the state moved as a rigid-body. Rigid-body motion was observed for all registered

channel widths and the critical behaviour of the average chain velocity was found

to be scale invariant.

In Chapter 7, we presented the static and dynamical behaviour of an isolated defect

in a one-dimensional chain in a rigid channel potential. We reviewed the ground

state structure of the isolated defect, its profile was well approximated by equation

7.1. At zero drive, the symmetric kinks length, defined as 1/e of the amplitude, was

approximately 7aCE. The velocity and asymmetry of the isolated kink increased

with drive, for drives below the critical shear. In the long time limit, the defect’s

velocity was constant at a given drive. Above the critical shear there is a significant

reduction in the amplitude and velocity of the kink.

We now combine these systems to investigate the static and dynamical behaviour

of defects in wide channels. This novel system, displayed in figure 8.1, allows us to

investigate the properties of kinks in a channel with both a rigid potential stemming

from the channel edge and a deformable potential from the neighbouring chain. We
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will investigate the dynamics in both the low and high driving regimes, with respect

to the critical shear of the defected channel. Whilst the properties of defects in

wide channels is a natural extension to chapters 6 and 7, the coupling of rigid and

deformable potentials may seem esoteric to the wider physics community. We now

give an overview of some of the areas in which similar studies arise.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Figure 8.1: Schematic plot of the channel studied in this chapter. The grey region
represents the pinned channel edge, modelled using the Fourier form given in equation
5.29. The white region is the homogeneous channel of width w = 3

√
3

2 aCE and length
L = 200aCE unless otherwise stated. Each mobile chain is displayed in a different colour
to signify that they are treated separately.

Original motivation for this investigation was to understand the underlying mecha-

nism of the relative slip of chains in wide channels (typically 8 chains wide) when

half of chains experience a different response to shearing than the others. This dif-

ference in response is achieved through varying the viscosity across the width of the

channel, this leads to the natural question; how does the critical shear of this system

change when each individual chain has a unique critical shear? Moreover is it true

that each chain goes one at once or does it slip as a whole, and are there localised

defects which mediate such a motion?

There are many systems in which the slip mechanism in wide inhomogeneous chan-

nels has been studied. The average velocity of individual chains, rather than the
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mechanism, of such a system was considered by D. V. Tkachenko et al. [19]. The col-

loids with interparticle interaction V (r) ∝ r−3 were subject to a nonuniform driving

force Fdr(y). A similar study was conducted by C. Reichhardt et al. [20] for particles

interacting with Yukawa potential confined to a channel geometry. Instead of the

nonuniform driving force used in [19], C. Reichhardt et al. drive only one chain.

Both groups use the average velocity of each chain to investigate the transition from

rigid-body motion to plastic motion.

Initially we considered a wide channel in which the chains experienced different

driving forces, like D. V. Tkachenko et al. [19]. We found a pronounced effect in the

relative slip when one of the neighbouring chains contained a different number of

vortices, for a given driving difference. A similar increase in shearing effects in the

presence of mismatched densities was shown by R. Besseling et al. who evaluated

the critical shear as a function of boundary misalignment of each channel edge [18].

Defects were created by translating one edge diagonally with respect to the other

at constant density. R. Besseling et al. only consider the average motion of all the

vortices, rather than of each chain individually.

The investigations mentioned above were concerned with the integrated proper-

ties, neglecting the behaviour of individual particles. We will now discuss some

of the background physics, which looks at particle motion, that is relevant to this

particular work. Our literature search has led us to four main areas: Josephson

junctions, colloids, crowdions, and other research within the field of vortices. While

these areas have some similarities to the work here, we have found very little in

the way of directly related work, though the crowdion literature comes closest with

an equivalent system in the static limit. We now discuss each field and the most

relevant studies therein.
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A crowdion is created by inserting an extra atom into a row of atoms located within

the bulk of a lattice, meaning it can be treated in a one dimensional chain in a

background potential. A.S. Kovalev et al. considered the impact of perturbations

in the background potential due to the presence of defects (crowdions) [14]. A.S.

Kovalev et al. determined that the perturbation to the potential landscapes changes

the form of defect-defect interaction from the exponential form predicted by the

FK model and given in equation 2.18 to the inverse power law R−3. In the static

case that A.S. Kovalev et al. consider, the surrounding three dimensional potential

was only elastically perturbed. Additionally, A.S. Kovalev et al. found that the

Peierls-Nabarro barrier experienced by the defect is greater in the case of the elastic

potential compared to the rigid potential, the ratio of the difference in the barrier

is shown to be greater for broader defects.

In the continuum limit, the fluxon (kink) mobility has been studied in stacked

Josephson junctions, as this field is extensive and beyond the scope of this thesis

we only introduce it briefly. An intrinsic Josephson effect can be studied in high

temperature superconductors, such as in BSCCO where the copper-oxide/bismuth-

oxide/copper-oxide layers form a superconductor-insulator-superconductor junction

[95]. V. M. Krasnov and D. Winkler showed that fluxons in adjacent layers of this

thin geometry are attractive [96]. Alternatively one can study the effects of fluxons

in stacked junctions comprised of thicker, low temperature superconducting layers

in which a similar phase-locking effect has been observed [97].

Whilst we are unable to find any reference, in the colloidal literature, to the dy-

namics of defects in channels with imposed order from the channel edge we believe

it to be a feasible system to study the effects in. P. Henseler et al. [98] and M.
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Köppl et al. [99] have studied the properties of defects in constricted microchannels

with constant channel edges. The motion of a single colloidal particle confined to a

periodic potential generated by charged particles was studied by S. Bleil et al. [100].

By oscillating the charged particles in the channel edge, S. Bleil et al. were able to

direct the brownian motion of the single particle.

Previously, our group has investigated defect mediated density changes in long chan-

nels (typically 6− 10 chains wide) through an ordered channel edge [27]. Imposing

different vortex densities at either end of the channel induced a density driven flux

flow. J.S. Watkins and N.K. Wilkin found that for suitable density difference the

two different lattice structures would form in the channel, aligned with the chan-

nel edges. These lattice structures contain a different number of chains (rows). To

mediate this row drop between the different flowing lattice structures, a disloca-

tion travels transversely to the flowing lattice. Upon reaching the channel edge the

dislocation is reflected through an interaction with geometrically necessary defects

(GNDs). These GNDs occur because of a mismatch in the density of the bulk and

channel edges. In the density driven wide channel system considered by J.S. Watkins

and N.K. Wilkin, the properties of these defects flowing along the channel edges in

the presence of both a rigid and elastic potential are difficult to decipher. The sys-

tem we have chosen to consider, depicted in figure 8.1, allows greater access to these

properties.

Having discussed the relevant literature from a results and experimental perspective,

we now look at modelling. One can model the physical systems described above in a

number of ways. In the continuum limit case of stacked Josephson junctions V. M.

Krasnov and D. Winkler employed a coupled sG model [96]. In the discrete limit,

A. S. Kovalev et al. employ a generalised FK model in which they can solve the
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coupled equations describing the channel and potential landscape for the ground

state structure [14]. We employ numerical techniques as we are interested in the

dynamical properties of a discrete chain in the presence of a deformable potential

which experiences both elastic and plastic shearing. In these limits both the coupled

sG and generalised FK are no longer valid.

In this chapter we investigate the dynamics of defects in wide channels which expe-

rience both a rigid and deformable potential at driving forces both above and below

the critical shear. The closest things we have found in the literature are the study

of crowdions in the generalised FK model, one dimensional defects in the high-drive

and high-mobility regime as well as previous work of our group conducted by J.S.

Watkins and N.K. Wilkin. A. S. Kovalev found that the presence of a deformable

potential landscape altered the interaction between of static defects (crowdions) and

increased the Peierls-Nabarro barrier [14].

We conduct a similar study of a kinks response to drive to that of O. M. Braun

et al. [101] in a one-dimensional underdamped FK model. O. M. Braun et al. found

that at high drive and low damping, the enhanced oscillation of atoms situated in

the kinks tail grew leading to the creation of a kink/anti-kink pair in the tail. This

leads to a cascading effect where each newly formed defect decay or collide lead-

ing to a sliding state. They do not observe such effects in an overdamped system.

The defects which exist between the rigid and mobile potentials (GNDs) have been

shown by J.S. Watkins and N.K. Wilkin to be of vital importance in mediating

density reductions in confined channels [27]. It is the dynamics of defects situated

in a similar fashion to the GNDs that we are interested in.
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8.2 Channel Flow with Kink/Anti-Kink Pair

Using the cantilever tip of a magnetic force microscope it is possible to manipulate

the position of an individual vortex, as shown by E. W. J. Straver et al. in a Nb

film [102]. By moving one vortex from one registered chain to the other, one can

create a kink in one chain and an anti-kink in the other. Whilst in a large bulk lattice

a misplaced vortex might be energetically trapped, often requiring a thermostatic

kick to minimise the energy state, the excited states in highly confined systems

tend to have short lifetimes. Therefore, within the context of simulations, initial

conditions for these excited states is crucial, and we discuss them now.

8.2.1 Seeding a Kink/Anti-Kink Pair

Stabilising a kink and an anti-kink in neighbouring chains at zero drive, with trans-

verse motion included, presents difficulties. Simply moving one vortex, transversely,

to the neighbouring chain results in an immediate annihilation of the interstitial and

vacancy. Instead one could seed each chain using a uniform lattice with a different

parameter a± = L
NC±1

where NC is the number of vortices in a registered chain of

length L. This stability of the uniform arrangement however is dependent on where

the uniform chains are seeded with respect the channel edge.
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Figure 8.2: Plot of the life time of a kink and anti-kink when initiated from two uniform
chains of different spacing, seeded from the starting point x0 = xmin

0 + ∆s. Produced for
a channel of length L = 60aCE, similar effects were observed in longer systems.
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Figure 8.2 shows the lifetime of the kink and anti-kink in a channel of length

L = 60aCE at zero drive with lattice parameters a±. The first particle of each

chain was located at x0 = xmin
0 + ∆s where xmin

0 is the position of the minima of the

first well and ∆s is the relative shift. It is clear from figure 8.2 that as the seeding lo-

cation is translated across one lattice site the lifetime of the state drastically changes.

If the natural locations for the kink/anti-kink to form, discussed in section 7.2,

are too close then they move towards each other as they form and annihilate. Seed-

ing with a uniform chains was repeated for L = 80aCE, 100aCE, 200aCE. Increasing

the length of the channel does increase the lifetime however this method is prone

to instability. Initiating each chain using equation 7.1 proved to be a more stable

method. As the kink and anti-kink move in opposite direction when under the in-

fluence of a driving force, we set the kink to the left of the anti-kink.

The inter-particle separation ∆u for the ground state structure of the chain con-

taining an anti-kink (N = Nc − 1) is depicted in figure 8.3. We observe the large

profile of the anti-kink at x ≈ 75 and a small perturbation at x ≈ 25 which is the

response of the chain to the neighbouring kink, this perturbation is similar to that

observed by A.S. Kovalev et al. [14].
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Figure 8.3: Plot of the interparticle spacing of the chain containing an anti-kink, the
peak at x ≈ 75 is the anti-kink and the peak at x ≈ 25 is the perturbation due to the
neighbouring kink.
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8.2.2 Driven Channel Dynamics

For a single chain seeded with a kink and anti-kink well separated, the pair annihi-

lated for all drives in our simulations. With a kink and anti-kink stabilised within

the two chain channel, a driving force was then applied abruptly at time t1 = 50000

(time steps). We can visualise the dynamics from the contour plot shown in figure

8.4, this shows position plotted against time with the colour associated with the

nearest neighbour separation ∆u for one of the chains, as depicted in figure 8.3.

The broad region at x ≈ 75 shows the location of the anti-kink within that chain,

and the narrow region at x ≈ 25 is the response of the registered chain to the kink

in the neighbouring chain. At low drive (FD = 0.0050) the two travel towards each

other and eventually annihilate (at t2) as one might expect.

Figure 8.4: Contour plot of nearest neighbour separation ∆u as a function of time for
the chain containing an anti-kink in a channel of length L = 100aaCE with a neighbouring
chain containing a kink. A driving force, FD = 0.0050, is abruptly applied at t1.
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At increased driving force, whilst still in the low drive regime, the kink and anti-kink

pass over each other, imprinting only a phase shift, as depicted in figures 8.5. This

phase shift in the trajectory of the defects is due to the attraction between them,

the kink and anti-kink accelerate towards each other and decelerate as they sepa-

rate. A similar phase shift is observed in kink-anti-kink interaction in the continuum

limit [2].

(a) (b)

Figure 8.5: Contour plot of nearest neighbour separation ∆u as a function of time for
the chain containing one vacancy in a channel of length L = 100aaCE with a neighbouring
chain containing an interstitial vortex,for driving force FD = 0.0125 and FD = 0.0175
respectively.
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For higher drives, however, the dynamics completely changes. Figure 8.6 depicts

the dynamics for the driving forces FD = 0.0225 and FD = 0.0275 respectively.

Once the drive is applied, the anti-kink appears to undergo a continuous transition

reversing its direction of motion and reducing its shape to that of the perturba-

tion. The opposite effect happens to the original perturbation. As the driving force

increases, the rate of these oscillations and the horizontal separation between the

defects increases. This behaviour is very different to anything observed in single

chain channels discussed thus far.

(a) (b)

Figure 8.6: Contour plot of nearest neighbour separation ∆u as a function of time for
the chain containing one vacancy in a channel of length L = 100aaCE with a neighbouring
chain containing an interstitial vortex,for driving force FD = 0.0225 and FD = 0.0275
respectively.

To explain this oscillating action at a distance, we now consider a single defect

within a channel with two otherwise registered chains. The effects at high drive

(above Fcrit) presented in this section also occur when y-motion is restricted and

channels of length L = 80aCE, 100aCE, 200aCE.
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8.3 Single Defect in a Wide Channel

8.3.1 Introduction

Here we consider two registered chains with either a kink or anti-kink placed within

one of the chains. We first describe the ground state, both how the defects structure

relaxes within the less rigid potential as well as the resulting deformation of the

registered neighbouring chain in the presence of the defect. We refer to the local

deformation in the registered chain as a breather as it has zero topological charge,

however both its profile and dynamics are different to the continuum limit solution,

see equation 2.11.

We then investigate the dynamics, comparing the defect motion for both the low

(f < f c2) and high (f > f c2) velocity regime as well as analysing the breathers dy-

namics and how this influences the behaviour of the system. Using what we learn

from the single defect, we explain the behaviour of the kink/anti-kink interaction

described previously. Finally we describe how this behaviour adapts to even wider

channels in which the influence of the substrate potential is even weaker.
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8.3.2 Ground State Structure

As with the single chain we evaluate the nearest neighbour deviation. Despite trans-

verse motion being included, no vortices are exchanged between the chains and so

the topological charge of each chain remains constant at zero for the registered chain

and σ = ±1 for the defect chain. The results of which are displayed in figure 8.7 for

a channel of length L = 200aCE containing N = 399 vortices. For comparison the

data displayed is for no transverse motion, the impact of transverse motion will be

shown later in figure 8.11.
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Figure 8.7: Plot of the deviation in the nearest neighbour separation along the chain of
length L = 200aCE and width w = 3

√
3

2 in a channel with two chains with no transverse
motion. The registered chain is displayed via the solid blue line whilst the chain containing
one vacancy (σ = −1) is shown via the dashed yellow line, for comparison the single chain
for zero transverse motion is also displayed via the dotted green line.

We first consider the nearest neighbour deviation for the anti-kink. The overall

shape is still symmetric about its centre with a clear maxima in separation, sug-

gesting the structure is in the stable ground state, see section 7.4.1. The ratio of

amplitudes, of the nearest neighbour deviation, for the anti-kink in a two chain

system compared to a one chain system is approximately 5 to 4. To maintain topo-

logical charge, the resulting defect in the two chain channel has a narrower length.
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In section 7.2 we defined the defects length as 1/e the nearest neighbour separation

amplitude. For the anti-kink in a channel of width w = 3
√

3
2
, the defects length is

l̃d2 ≈ x2 − x1 = 102.7− 96.3 = 6.4 < l̃d1 ≈ 8.4.

We now consider the deformation of the registered chain. The overall shape of

the deformation is a compressed core surrounded by two expansive tails. Interest-

ingly, the anti-kinks length l̃d2 is exactly the same as the length of the compression

region of the breather, defined as region two in figure 8.8.

①

②

③

Figure 8.8: Schematic plot of nearest neighbour profile for a breather in the vicinity of
an anti-kink at zero drive. The region highlighted red is the contracted core whilst the
identical blue regions are the breathers expansive tails.

The topological charge of the registered chain is zero, as such the net effect of the

expansive tails must cancel out with the compressive core. To determine the topolog-

ical charge of each of the three regions depicted in figure 8.8, we must first determine

the boundary points of each region. Region one extends between (0, x1→2), region

two is between (x1→2, x2→3) and region three is between between (x2→3, L). The

points between each region x1→2 and x2→3 were determined by locating the points

either side of ∆xNN − aCE = 0 and linearly fitting between the two points. Al-

though approximate, this linear fit proved to be most effective method of locating

the zeros at all drives and only results in a maximal positional error of less than aCE
10

.
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With the boundaries between regions established one could then determine the

topological charge of each region, defined as the area between the curve and the

axis. Although more sophisticated techniques for numerical integration exist [103],

the method which proved most resilient was to employ.

σ̃ =
M∑
i=1

[∆xNN − aCE]i +4, (8.1)

where σ̃ is the regional topological charge which despite not being itself conserved

must combine with the other regions to give the actual topological charge and 4

refers to the contribution to the regional topological charge around the axial inter-

sect, its magnitude at least two orders of magnitude smaller than σ̃. Applying this

to the ground state, one finds the area of each region to be A1 = 0.0943074, A2 =

−0.188542 and A3 = 0.0942792 respectively. Giving a net charge for the registered

chain of σ = 0.00004496 6= 0, this error is due to the handling of the charge at the

boundary of each region. This error is three orders of magnitude smaller than the

area of each region and so the trapezium rule used in equation 8.1 is suitable for our

purpose.

Figures 8.9 - 8.11 show the difference in the ground state profile of the anti-kink and

breather, both with and without transverse motion. It is evident that the anti-kink

and breather have larger structures when transverse motion is permitted, this is due

to the interaction with the neighbouring chain inducing transverse deviations. For

simplicity, however, we prevent transverse motion in all further simulations. Whilst

there is a slight impact on the ground state structure, the dynamical phenomena

observed at high drive in section 8.2 does not rely on transverse motion.
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Figure 8.9: Plot of the horizontal component of the nearest neighbour in the chain of
length L = 200aCE with (left) and without (right) a defect in. The blue (yellow) curve is
with (without) transverse motion.
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Figure 8.10: Plot of the transverse deviation from expected position of each vortex in the
chain of length L = 200aCE with (left) and without (right) a defect in. The blue (yellow)
curve is with (without) transverse motion.
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Figure 8.11: Plot of nearest neighbour radial separation in the chain of length L = 200aCE
with (left) and without (right) a defect in. The blue (yellow) curve is with (without)
transverse motion.
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8.4 Driven Dynamics

Before we can investigate the low drive dynamics, we must first define what is meant

by low drive. Using equation 6.8, we can determine the critical driving force of a

registered channel of width w = 3
√

3
2

exactly. Whilst the low drive dynamics were

different when a defects were included in a single chain, the location of the low

to high drive transition remained fixed. This, however, is not obvious for wider

channels with defects.
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Figure 8.12: Plot of the average velocity as a function of driving force for each chain in
a two chain channel of width w = 3

√
3

2 and length L = 200abulk containing n = 399 (red),
n = 400 (black) and n = 401 (blue) particles. The dashed lines depict the average velocity
for the chain containing the defect and the solid line is that of the neighbouring registered
chain. The inset shows the same profile but over a wider range of driving forces.

Figure 8.12 shows the average chain velocity as a function of drive for a channel

of width w = 3
√

3
2

and length L = 200aCE containing either one kink or one anti-

kink. As the chain with the defect responds differently to its neighbouring registered
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chain, the velocity profile of each chain is shown rather than just a channel profile.

As with the single channel, the kink flows faster through the channel than the anti-

kink. Unlike the single chain system, however, the presence of a defect lowers the

critical drive of the locked to sliding transition. With the extent to which it is

lowered depending on the polarity of the topological charge. As the sharpness of

the transition is lost when defects are present, we define the low (high) drive regime

to be below (above) the transition region. We define the transition region to be

0.020 . fc . 0.023.

8.4.1 Low Drive

In section 7.4, we identified the growing asymmetry in the anti-kink’s profile as

a function of drive. The same is not observed here, as the drive varies between

0 ≤ f < fc the height, width and symmetry are unperturbed. The increasing

driving force however does impact the structure of the breather.
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Figure 8.13: Plot of the integrations of each of the breathers three regions as depicted
in figure 8.8. Region 1-3 are shown via the blue, green and yellow curves respectively.
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So far we have established that the breather remains localised to the neighbouring

defect and has zero topological charge with the combined effect of each of the three

regions depicted in figure 8.8 cancelling out. As the driving force increases however,

the relative size of each of these regions varies with the leading edge increasing in

size whilst the trailing edge reduces to compensate. The structure of both the anti-

kink and its associated breather at increasing driving force are depicted in figure

8.14 The topological charge of each region as a function of drive is depicted in figure

8.13. As the driving force increases the trailing edge decreases in size until it ceases

to exist, at which point only regions one and two exist.
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Figure 8.14: Nearest neighbour separation in the (a) anti-kink and its associated (b)
breather for a selection of driving forces, below the critical shear.
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8.4.2 Novel Dynamics at High Drive

One can see from figure 8.13 that as one approaches the critical driving force of the

two chains containing one anti-kink, see figure 8.12, the magnitude of the charge

of regions one and two increases. They increase to integer charge of opposite po-

larity at the critical shear of the channel. Meaning they have accumulated enough

charge to become a kink/anti-kink pair. The driving force acting on the chain forces

these two entities in opposing directions causing them to split apart. As the kink

and anti-kink have equal and opposite charge, the topological charge of the chain

remains equal to zero.

The original anti-kink locks to the newly formed anti-kink from the breather de-

cay. The bound propagating pair of anti-kinks is stable in the long-time limit. As

it propagates it permits each vortex to translate, as seen in the single chain at low

drive. The newly formed kink propagates in the opposite direction, its existence

causes a breather to form in the neighbouring registered chain.

From this point one of two things occurs, depending on system length, L, and driv-

ing force. Firstly, for either short periodic units or driving forces just above critical

the by-products of the decay come together and annihilate at which point the cy-

cle starts again. In longer systems or at higher drive a more interesting effect occurs.

When a low driving force (f < fc) is abruptly applied to the static ground state, the

time required for the deformed breather to stabilise from the ground state arrange-

ment to its stable structure decreases with drive. Similarly, at high drive (f > fc),

the time taken for the trailing edge to disappear decreases with increasing driving

force. Consider then an infinitely long system, immediately after the initial decay
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the anti-kink pair travels to x = −∞ whilst the kink/breather travel to x =∞. As

the kink travels, its associated breather deforms and eventually decays.

As the kink’s breather has a reversed polarity to the anti-kink’s breather, its decay

causes a kink in each chain to combine and travel to x = ∞ leaving behind an

anti-kink and breather. The anti-kink travels slower than the kink, and its decay

time is shorter. The combined impact of this means in an infinitely long two chain

channel, a driven defect serves as a quasi-localised source of stable pairs of kinks

and anti-kinks, with the production rate dependent on the driving force. In fact, as

the original defects profile remains largely unchanged up to the moment of decay,

one can pin a defect in the channel edge and have a fixed source of kinks and anti-

kinks. The contour plot of simulated date depicting this behaviour is given in figure

8.15 where the colour scale is similar to that of 8.6. A schematic of the mechanism

observed in figure 8.15 is given in figure 8.16.

Using the mechanism outlined above, we now explain the kink/anti-kink interaction

observed in section 8.2. As the original kink and anti-kink approach, the relatively

high driving force causes the associated breathers to decay, resulting in the reflection

at a distance observed in figures 8.6. Due to their close proximity, the stable pair of

kinks and anti-kinks annihilate. Then another decay occurs reflected in the defects

again. One can see from figures 8.6 that the trajectory of the centre of the kink and

anti-kink, this is due to the subtle difference in velocity.
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8.5 Concluding Remarks

• The dynamics observed in a channel containing a kink and an anti-kink in

neighbouring chains is drive dependent.

• At very low drive, the kink and anti-kink annihilate. Remaining below the

critical shearing force of the defected channel, an increases in drive causes the

kink and anti-kink to pass over each other, only imprinting a phase shift in

the process.

• Above the critical shearing force of the defected channel, a novel interaction

is observed. This was originally identified as “action at a distance”.

• By studying an isolated defect in a two chain channel, a breather was identified

in the neighbouring chain. This excitation has zero topological charge, does

not oscillate like the sG breather and is caused by the interaction with the

neighbouring defect.

• The anti-kink’s breather consists of a contracted core surrounded by expan-

sive tails. As drive is applied an asymmetry is identified in the profile of the

breather, this asymmetry was drive dependent. The magnitude of the topo-

logical charge in the leading (trailing) tail increases (decreases) with increasing

drive.

• At the critical driving force of the channel, the trailing tail ceases to exist.

The remaining two regions, which have equal and opposite topological charge,

each grow in magnitude forming a kink/anti-kink pair which separate .

• The original anti-kink and the anti-kink formed in the breather decay prop-

agate along the chain as a pair. The nearly formed kink propagates in the

opposite direction until its associated breather can decay, repeating the cycle.
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Figure 8.15: Contour plot of the many time frame data of a single anti-kink evolving in
the high drive regime.
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Figure 8.16: Schematic plot outlining the mechanism of defect motion in figure 8.15.
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Chapter 9

Conclusion

In Part I of this thesis we have investigated the shear response of free vortices con-

fined to a superconducting channel. We presented the methods used to simulate

superconducting narrow channels such as the NbN/Nb3Ge channel created by A.

Pruymboom et al. [1]. We have studied three main areas: deriving an expression

for the boundary potential and analytically solving registered systems for a reduced

model; reviewing and summarising defects in narrow channels; and examining de-

fects in wider channels (amounting to defects in deformable potentials).

We, independently, derive an alternative representation for the potential which stems

from the channel edge. Using this new representation we investigate the exactness of

the phenomenologically accepted equation for the critical shear of registered chan-

nels. This formula is widely accepted by a number of experiments [17,18,45] which

simulate longitudinal motion only. In this limit we employ translational invariance

to explicitly show that the phenomenological equation is not exact for two chains.

We then show how this expression can be derived for a reduced model. The reduced

model makes three assumptions:

187
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1. Vortices are only permitted to move in one-dimension;

2. The interaction potential is truncated to the lowest order Fourier mode;

3. Interaction is calculated from neighbouring chains only.

We address the impact of these assumptions and note that the most significant is

prohibiting transverse (y-) motion. We finally show, for n = 1− 4 chains, that the

response of the channel, for driving forces above the critical shear, is scale invariant.

We present a detailed account for the dynamics of an isolated defect confined to

a one-dimensional channel, identifying the differences in the shape and velocity of a

defect for low- and high- driving force. In both driving regimes the long time limit

behaviour of the defects is shown to be stable, with amplitude and velocity fluctuat-

ing a small amount as the defects evolve over the underlying potential. We calculate

the Peierls-Nabarro barrier for a registered channel containing an isolated defect and

asymmetry observed in the integrated dynamics of sheared one-dimensional chains.

We finally move onto studying defects in deformable potentials. Using the Fourier

representation of the channel potential we observe dynamics which are only visible

for long channels. Our original motivation was to look at two chains with different

topological charge. We identified novel interactions in this system which we orig-

inally classified as “action at a distance”. Investigating each defect in isolation we

determined the mechanisms which underpin the novel motion. We find that the

drive-induced asymmetry in the perturbed registered channel decays at high drive.

This decay process causes a reflection in the topological charge and trajectory of

the defect. The quasi-localised oscillating defect acts as a source of stable bound

kink/kink and anti-kink/anti-kink pairs.
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9.1 Further Work

In figure 8.12, we plot the average velocity of each chain of a two chain channel in

which one chain contains a defect. This contains two interesting features which are

worthy of further investigation.

Firstly, the critical shear of each chain is lowered in the presence of a defect, the

extent to which it is lowered is dependent on the topological charge of the defect.

This effect is also observed by C. Reichhardt et al. [20], however, they only show

this effect N = 16 particles in the “registered” chain which we have shown to be too

few to form a kink in our system. An explanation for this may lie in the effective

potential the registered chain experiences in the vicinity of the neighbouring defect.

We propose that one approach for studying this effect would be to pin a defect into

one of the channel edges and study a registered chain. As mentioned in section 8.4.2,

pinning a defect in the channel edge is an effect source of kink/anti-kink pairs.

Secondly, in figure 8.12 we observe an additional feature, between the critical shear

of the anti-kink system and the critical shear of the kink system. This feature ap-

pears to be a scaled down version of the critical shear profile.

Shapiro steps have been commonly observed in the velocity profile of single chains,

both in the average velocity of the whole chain [7] as well as the defect velocity [23].

As discussed in section 6.2, these steps are due to the synchronisation between the

applied AC driving force and the frequency of motion over the periodic landscape

from the DC driving force. M.P. N. Juniper et al. [23] determined the cause of the

steps, in a colloidal chain with free-ends, were due to an defect propagating through

the chain and reflecting at each end, this reflection also changed the topological
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charge of the defect. Here we present an alternative oscillating defect which experi-

ences AC-like behaviour under a DC driving force. The impact of including an AC

driving force is, therefore, of great interest.

Lastly, the novel oscillations observed for a single defect in a wide channel, were

found to quasi-localise the defect, a slow drift occurs due to the asymmetry in the

kink and anti-kinks velocity. M. Danckwerts et al. [76] have proposed a mechanism

to enhance the viscous force a vortex experiences, discussed in section 3.6. Applying

a different drag to each chain, one could both improve the localisation of the defect,

and study the stability of the defect/defect pairs which are produced as a product

of the oscillations.
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Chapter 10

Introduction to Part II

Motivation

Since the first experimental realisation in 1995 by Cornell and Wieman [104], both

the size and lifetime of Bose-Einstein condensates (BECs) have significantly in-

creased. Cornell and Wieman produced a BEC of 2000 condensed 87Rb atoms, their

BEC had a lifetime of 15-20 seconds. Modern experiments, such as E. W. Streed

et al. [105], can now stabilise BECs for several minutes. Extending the lifetime of

a condensate is crucial, it allows one to investigate the broad range of nonlinear

phenomena observed within the condensate such as vortices [106], solitons [107,108]

and shock waves [109, 110]. In this part of the thesis, we investigate the feasibility

of transporting BECs within the confines of a photonic crystal fibre (PCF).

Typically a condensate undergoes thermal depletion when it interacts with the envi-

ronment, be it via a poor confining vacuum [111] or interaction with a resonant flash

from a CCD camera [104]. By confining a BEC to the hollow-core of a PCF, one can

isolate it from stray gas particles and/or selectively transport it to a higher vacuum.
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Pioneered by Philip St. J. Russell et al. [112], the PCF has found a range of uses

beyond its original motivation of high power optical transport, such as micron-sized

particle transport [113].

Collimating and guiding in hollow-core photonic crystal fibres has already been

achieved for both atoms [114–116] and larger molecules [117,118]. Beyond guiding,

there are other benefits to storing matter within a PCF core such as investigating

low-intensity highly-nonlinear phenomena [119]. D. S. Bykov et al. have also shown

how atoms within the PCF core can be used as a strain, temperature and electric

field sensor [120]. M. Bajcsy et al. have constructed an all-optical switch from atoms

in the PCF core [121]. Attempts to guide BECs through a PCF have resulted in

significant depletion [122, 123]. N. K. Wilkin and J. M. F. Gunn found that the

light-matter coupling between a uniform Bose gas and a standing wave within the

PCF core lead to modulational instabilities [124].

We investigate a different regime to [124] in which a dilute, low temperature con-

densate of N � 1 bosons interact with the gapped fibre mode. By treating the

radiation as a dynamic participant, rather than just a background potential, we find

that the slowly varying envelope of the field is described by the nonlinear Schrödinger

equation. Taking advantage of the PCFs properties, we identify a stable light-matter

solitonic solution to the nonlinear Schrödinger equation with variable amplitude and

velocity.
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Overview

In Chapter 11 of this thesis we present an overview of the broad physics of optical

guides. We begin by reviewing two conventional guides; solid core dielectric fibres

and metallic waveguides. By discussing the beneficial properties as well as the loss

mechanisms, we motivate the photonic crystal fibre design. Following the methods

presented in [10,125], we explain the key properties of a Bragg fibre [126] by consid-

ering both a 1D photonic crystal as well as the hollow metallic waveguide discussed

in section 11.2.3. We conclude this section by presenting an overview of confined

matter guidance. In this section, we introduce the prominent guiding method, we

then discuss key historical moments in the evolution of this field. From the proposal

of atomic transport [127] through to modern attempts at BEC loading [128].

As we are considering a novel way of transporting a Bose-Einstein condensate within

the hollow core of a PCF, we introduce the key features of condensates and derive

a model commonly used to study the dynamical behaviour of a low temperature,

dilute vapour of interacting bosons. This model is referred to as the Gross-Pitaevskii

equation (GPE) after its namesakes E. P. Gross [129] and L. P. Pitaevskii [130]. As

we are interested in the mobility of the BEC, we express the GPE in its hydrody-

namic form. We also outline the limits we investigation within section 12.2.

Finally, in Chapter 13 we combine our expression for the dynamics of both the light

and matter to formulate an equation for the effective 1D dynamics along the fibre

core, the nonlinear Schrödinger equation. This equation supports a light-matter soli-

ton. Taking advantage of the properties of the PCF, we identify a regime in which

the soliton is stable and can evolve down the fibre core with variable amplitude and

velocity.
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Chapter 11

Photonic Crystal Fibres

In this chapter, we introduce the key concepts of the manipulation of light. Two

conventional methods of guiding radiation; the solid core dielectric fibre and the

hollow metallic fibre are discussed in section 11.2. We qualitatively describe the

different methods of confinement, the construction and composition as well as the

benefits and limitations of each method. As the mode structure of the hollow-core

PCF and the hollow metallic waveguide have been shown to be similar [125], we

also derive the profile of the transverse magnetic and transverse electric modes of a

cylindrical metallic waveguide in section 11.2.

This chapter will go on to introduce the photonic crystal fibres, in section 11.3.

We use the limitations discussed in section 11.2 to justify the PCF design. In our

research, we consider the Bragg fibre rather than the holey fibre, as such we develop

the theory of the Bragg fibre from a simple one dimensional photonic crystal. We

conclude this chapter with a historical review of atomic transport. The content

of this chapter is a culmination of a number of source; two prominent sources of

information are [10] and [131].
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11.1 Introduction

The interaction of electromagnetic fields with matter has a vast range of applica-

tions. One of the most ubiquitous is the role of radiation pressure in astrophysics,

a concept first put forward by Kepler in 1619. The pressure created stabilises large

stars preventing them from collapsing under their own weight. Additionally, it con-

tributes to the Poynting-Robertson effect where dust is sent spiralling into the Sun

and removed from the Solar System [132]. Currently, researchers are utilising radi-

ation pressure for the propulsion of Solar Sails in Space [133].

Through advances in our understanding of the interaction between light and mat-

ter, electromagnetic fields are now capable of cooling matter [134] and localised

electromagnetic radiation can even be used to confine and transport atoms and

molecules [118,135]. However, one flaw is that the radiation is prone to dispersing if

left unconfined. This can be caused by scattering from air molecules and can there-

fore limit transportation. Fortunately, techniques exist to control the guiding light

which helps to maintain a strong electromagnetic field. The focus of this chapter is

to gain an understanding of such devices, such that we can utilise them to guide a

coupled light-matter wave.

For centuries, simple plane mirrors have been used to produce reflections. Next,

mirrors and lenses were redesigned to further manipulate the trajectory of light. In

1609, Galileo employed this technique to visualise celestial bodies. Going beyond

its visual applications, light can also be used to send information in the form of op-

tical signals. We can now transmit optical signals along a curved trajectories using

optical fibres. Combining the ability to manipulate both light and atoms introduces

many more possibilities which we shall discuss in this chapter.
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11.2 Guiding Light

11.2.1 Manipulating the Trajectory of Light

Most natural sources produce radiation with a spectrum of frequencies, for centuries

we have been able to reflect and diffract as well as disperse this light into its compo-

nents. Advances allowed us to develop lasers which produce collimated radiation at

a desired frequency, combinations of these lasers can be used to then create standing

waves and other optical traps. We now have devices capable of prohibiting certain

frequencies and localising light along a certain trajectory [10].

Light can be guided along a confined path using optical waveguides. Such de-

vices are of paramount importance to the telecommunications industry. Two early

examples are hollow metallic waveguides and dielectric fibres. Both of these are ca-

pable of guiding electromagnetic radiation and can be designed using many different

materials and/or geometries to tailor to the specific needs. However, the inherent

nonlinearities of solid core dielectric fibres limits the maximum signal intensity and

hollow metallic waveguides only have a finite window of permitted frequencies.
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11.2.2 Solid-Core Dielectric Fibres

Since the Ancient Greeks, information has been encoded in optical signals. One ben-

efit of this is the almost instantaneous speed at which information can be transmit-

ted. Despite a significant amount of research dedicated to improvements, free-space

optical communication is limited to a maximum signal range of a few kilometres

within earths atmosphere [136]. This is, in large part, due to atmospheric attenua-

tion and beam dispersion. By propagating the signal through a dielectric fibre, one

can transmit over distances which are two orders of magnitude larger than that of

free-space signals along any trajectory [137].

The electromagnetic field is primarily localised within the high refractive index

core. The extent to which the light is confined depends on the geometry of the

fibre and the refractive indices of the core and cladding. The optical fibre localises

light via total internal reflection, a process first demonstrated in a "light fountain"

by J. Babinet and D. Colladon. Light incident upon this boundary obeys Snells law

ncore sin (θcore) = nclad sin (θclad) where ni is the refractive index of the material and

θi is the angle the light is incident/emergent from the boundary. As θi is defined

from normal incidence, for light to remain localised in the core θclad = 90◦, from this

we find that the critical angle for light incident upon the interface from the core is

given by

θcritcore = arcsin

(
nclad
ncore

)
. (11.1)

It is evident from equation 11.1 that the core must have a higher refractive index

than the cladding in order for light to remain localised. Increasing the difference

in refractive index causes an increase in the range of acceptable incident angles, re-
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ferred to as the acceptance cone. Naïvely, then, one may assume that a larger index

contrast between the core and cladding is always beneficial. One can appreciate

why this may not be desirable by considering dispersion using geometric optics. As

the acceptance cone increases, so too does the range of time of flight. Those that

enter at a larger angle, with respect to the fibre axis, take a longer time to traverse

a section of the fibre when compared to those travelling straight down causing an

increase in dispersion. As such, small differences in refractive index, achieved by

varying the silica doping, are often preferential.

Acceptance

Cone

Cladding

Core

Figure 11.1: Schematic of the acceptance cone for a multimode dielectric step-index fibre.
Light incident from within the acceptance cone, with an angle θ ≤ θcritcore will propagate down
the fibre core (solid line). If the incident angle is θ > θcritcore then the light will escape into
the cladding (dashed line). The cladding is often wrapped in additional layers.

In the previous paragraph we considered an optical fibre which has an abrupt change

in the refractive index at the core - cladding interface. More sophisticated designs

have also been created where a gradual change in the refractive index allows the

light to follow a curved trajectory within the core. Most step index dielectric fi-

bres, like the one displayed in figure 11.1, are constructed with the same transverse

structure. This comprises of a solid dielectric core that is in direct contact with a

dielectric cladding, enclosed in a buffer/jacket which provides strength. The rela-

tive diameter of each of these layers can drastically change the properties of the fibre.
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If the core radius is small, around 5− 10µm, the modes are only permitted to travel

straight down the fibre rather than repeatedly bounce off the boundary. These single

mode fibres are less prone to dispersion and are commonly used within the telecom-

munications sector as signals can be sent over very long distances. As previously

mentioned, increasing the core diameter means more modes can evolve down the

fibre simultaneously, where the number of supported modes is proportional to the

square of the radius [138]. These multimode fibres have a core radius an order of

magnitude larger than that of the single mode fibre and are commonly used in short

devices which require multiple modes. One example is the endoscope, its low-cost

wide aperture design allows doctors to easily visualise internal organs.

Fibres are constructed from a large cylinders of dielectric material, known as a

preform, which is heated up and drawn out. The drawing process reduces the size

of the preforms diameter by a factor of order O(104) and so many metres of optical

fiber can be produced from one preform. One has to be careful not to introduce

any defects in the drawing out process as these can diffract the light reducing the

signal strength. Most commonly these preforms are made of doped silica but other

materials include fluoride, phosphate and chalcogenide glasses.

Producing fibres from only dielectric materials means they are resistant to electrical

interference, unlike the copper wire. They are however still prone to attenuation, the

main causes of which are light scattering and absorption. Through improvements

in composition and manufacturing the fibres are now achieving losses as low as 0.17

dB/km at 1550 nm [139]. Meaning optical signals can be sent over much longer dis-

tances without any significant loss. The fibre attenuation coefficient, α, is defined as
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α = −10

z
log10

(
P (z)

P (0)

)
, (11.2)

where P (z) is the power of the optical signal at the distance z in kilometres [138].

A fibre with an attenuation coefficient α = 0.17dB/km retains 1/e of the original

signal intensity at a distance of approximately 25km. In order to maintain a strong

signal over long distances, repeaters are required. Repeaters convert the optical sig-

nal into an electrical one, amplify it and then transform it back into an optical signal.

Optical fibres also display nonlinearity. In some cases these nonlinear effects are

beneficial as they allow one to study the properties of optical solitons [140]. The

Kerr effect is an example of one such nonlinear effect observed in solid core fi-

bres [141], a phenomenon in which the local refractive index of a material depends

on the field intensity, I, via

n ≈ n0 + n2I. (11.3)

For n2 > 0 (n2 < 0) the mode self-focuses (self-defocuses). As n0 � n2 (for fused

silica: n0 ≈ 1.453, n2 ≈ 3.2 × 10−16cm2/W [142]) this effect can often be ignored

in many optical devices. The nonlinear effects cannot be ignored in optical fibres

as their effect can grow as a signal evolves [140]. Consider a Gaussian beam evolv-

ing down a fibre core; in accordance with equation 11.3 the radial intensity profile

causes a small but finite change to the refractive index profile. In turn, this causes

the beam to self-(de)focus. Above a critical power this can lead to a run away effect

as the beam evolves down the fibre. The critical power is defined by
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Pcrit = αb
λ2

4πn0n2

, (11.4)

where λ is the wavelength and αb is a constant which is dependent on the input

beam profile [143]. The Kerr effect, therefore, puts a limitation on both the maxi-

mum intensity of a signal and the distance it can be transmitted. Silica, for example,

has a critical power of Pcrit ≈ 2.8MW. More sophisticated repeaters, then described

above, exist which can both reshape and enhance a signal. Another optical applica-

tion which can occur as a result of the Kerr effect is optical biastability, this is the

ability to switch between two different optical states. This property is exploited in

nonlinear Fabry-Perot interferometry [140].

11.2.3 Metallic Waveguides

The nonlinear effects discussed above occur due to the transmission of electromag-

netic radiation through a dielectric medium. One could circumvent these effects by

transmitting light through the vacuous core of a hollow metallic waveguide. For

simplicity, we determine the transverse mode structure and associated dispersion

relations of a cylindrical metallic waveguide where the walls of the guide to be com-

prised of a perfect conductor, following the methods of [131]. If these walls are not

perfect, the field penetrates the conductor and causes resistive losses. This skin

effect has an associated length scale which is dependent on the conductivity and

frequency [131]. In order for there to be zero penetration, a node must exist in

the radial profile of the field at the conductor surface and the field must also be

perpendicular to the surface at the boundary.
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Maxwells equations for a plane, monochromatic wave with frequency ω evolving

down the empty core of a cylindrical metallic waveguide are

∇× E =
iω
c
B, (11.5)

∇×H = − iω
c
D, (11.6)

∇ ·D = 0, (11.7)

∇ ·B = 0. (11.8)

The displacement field D is related to the electric field through the expression

D = εE = ε0(1 + χ)E = E. As we are dealing with a vacuum containing zero

charge and current density (ρ = J = 0), the dielectric constant is just the free space

value ε = ε0 = 1, as the electric susceptibility χ = 0. The magnetic field H is related

to the magnetic induction via H = µB = B where µ = 1 is the permeability. Taking

the curl of the first of Maxwell’s equations and applying equation 11.6 gives

∇× (∇× E) =
iω
c
∇×B,

∇(∇ · E)−∇2E =
ω2

c2
E. (11.9)

Since ε = µ = 1 in our units, the speed of light c = (µε)−
1
2 = 1. To simplify the

analysis of the mode structure we assume the cross sectional area of the waveguide

remains constant. Bends and rotations play an important role in the application

of waveguides, we however omit them from consideration allowing us to assume a

plane wave in the axial direction and E(r, θ, z, t) = E(r, θ)e±ikz−iωt. Utilising the
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transversality constraint given in equation 11.7, one produces the two-dimensional

wave equation

[
∇2

t +

(
ω2

c2
− k2

)]
E

B

 = 0, (11.10)

where

∇2
t =

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂θ2
, (11.11)

denotes the transverse components of the cylindrical Laplacian. An identical wave

equation to equation 11.10 can be derived for the magnetic field [131]. We shall

solve the wave equation, subject to the boundary conditions

n̂× E = 0 n̂ ·B = 0, (11.12)

where n̂ is the unit normal, these are imposed by assuming a perfectly conducting

metallic boundary. Solving the wave equation with these constraints allows us to not

only find the mode structure but also the associated dispersion relation for the mode.

The modes of a metallic waveguide come in two distinct forms, depending on which

component of the electromagnetic wave is transverse to the propagation axis. The

mode can either have its magnetic field entirely in the transverse direction (Bz = 0)

with Ez(R) = 0 at the cylinder’s boundary, ρ = R. These modes are referred to as

transverse Magnetic (TM). Alternatively, one could have a transverse electric (TE)

mode with Ez = 0 everywhere and ∂nBz = 0 at ρ = R.
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The boundary conditions mentioned above can be identified by writing the electric

field in terms of the components parallel and transverse to the axis as E = Ez +Et.

Similarly for the magnetic field and operator ∇ = ∇t + ẑ ∂
∂z
. From this, one can ex-

press the boundary conditions in the direction parallel to unit normal, n̂. Both the

transverse electric and magnetic can be solved by considering the scalar potential ψ

defined by

Xt = ± ik
γ2
∇tψ, (11.13)

where X denotes either E or B for transverse magnetic or electric fields respectively

and γ2 = ω2

c2
− k2. One arrives at equation 11.13 by substituting the separated

components of the field and the operator, discussed above, into Maxwell’s equations

and simultaneously solving for Bt (Et). Finally, by setting Ez (Bz) to zero one

arrives at equation 11.13 where ψ = Bz (Ez) is the transverse electric (magnetic)

mode. As such, the associated boundary condition is now ∂nψ = 0 (ψ = 0) at ρ = R.

Note there is no solution to the wave equation for both a transverse electric and

magnetic field (TEM) as the boundary conditions would imply zero field every-

where. A TEM mode is, however, possible when considering a coaxial cable [131].

We shall now consider a transverse electric mode (Ez = 0) and as we are dealing with

a cylindrical waveguide, we change to a more natural coordinate system. Applying

the separation of variables Bz(ρ, φ) = ξ(ρ)Φ(φ) to the cylindrical wave equation

11.10 gives

ρ2

ξ

∂2ξ

∂ρ2
+
ρ

ξ

∂ξ

∂ρ
+ ρ2γ2 = − 1

Φ

∂2Φ

∂φ2
. (11.14)
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As each side of equation 11.14 depends only on one variable, both must equal the

same constant, which we define to be P 2. This allows us to solve for both the radial

ξ(ρ) and azimuthal Φ(φ) solutions independently. One can read off that the angular

dependence of the mode is given by

Φ(φ) = A cos (Pφ) +B sin (Pφ) . (11.15)

As the mode cannot be multivalued upon complete rotations about the axis, the

constant P = m where m be an integer. The remaining expression for the radial

profile is given by

ρ2 ∂
2ξ

∂ρ2
+ ρ

∂ξ

∂ρ
+
(
ρ2γ2 − P 2

)
ξ = 0. (11.16)

This is the Bessel equation, an equation which arises in many different fields of

physics including the interaction of superconducting vortices [5] and patterns in

acoustical radiation [144]. Equation 11.16 is satisfied by the Bessel function of the

first kind ξ(ρ) = JP (γρ). The boundary condition for the transverse electric mode

is ∂nψ = 0, i.e. the first derivative of the mode in the direction normal to the surface

must be zero at ρ = R. For a perfect cylinder the surface normal is in the radial

direction, n̂ = −ρ̂ as such the boundary condition is satisfied by

−∂ρξ(ρ) =
γ

2
[JP+1 (γρ)− JP−1 (γρ)] = 0. (11.17)

The values of ρ which satisfy equation 11.17 are well documented in [84]. We denote

the radial locations at which the nth derivative of the P th order Bessel function is
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equal to zero by

ρ′P,n = γR =

√
ω2

c2
− k2R. (11.18)

We include a prime in the symbol to emphasise that it is the zero of the first deriva-

tive. If instead we were solving for the TM modes, we would determine the locations

the function itself equaled zero, denoted by ρP,n. Rearranging equation 11.18 for k

gives

k2 =
(ω
c

)2

−
(
ρ′P,n
R

)2

,

→ k =
1

c

√
ω2 − ω2

c . (11.19)

Here we can see the frequency of the incident radiation, ω, has a minimum value

for propagation, below which the wavevector, k, is purely imaginary and the field is

evanescent. Alternatively, we can express this in terms of wavelengths

1

λ2
=

1

λ2
0

− 1

λ2
c

. (11.20)

Where λ is the guided wavelength, λ0 is the free space wavelength of the incident ra-

diation. The maximum wavelength, λc, which can be guided down a hollow metallic

waveguide is directly dependent on the dimensions of the guide as

λc =
2πR

ρ′P,n
. (11.21)
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One can also rearrange equation 11.19 to consider ω(k), a schematic plot of equation

11.19 for the P = 0 modes is given in figure 11.2, whilst other modes are possible

they are not considered in this thesis. We have established that there is a minimum

frequency for a given mode which depends on both the cylinders radius R, as well as

the choice of P and n. As the frequency increases more modes become available and

the spacing between modes decreases. The mode with the lowest cut-off frequency

is called the dominant mode, this is commonly the TE0,1 mode.

�

ω

TE01

TE02

TE03

Figure 11.2: Dispersion relations for the three lowest TE0n mode. As the frequency
increase the distance between modes decreases.

The transverse electric modes of the cylindrical metallic waveguide are denoted by

TEP,n and have an axial magnetic field given by

Bz = [A cos (Pφ) +B sin (Pφ)] JP (γρ) . (11.22)
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In order to find the transverse profile of the electric field we define

E(ρ, φ) = Eρ(ρ, φ)ρ̂+ Eφ(ρ, φ)φ̂+ Ez(ρ, φ)ẑ, (11.23)

and similarly for the magnetic field. We substitute the decomposed form of the

electric and magnetic field back into equations 11.5 and 11.6. As both of these are

vector equations, we obtain six equations by comparing components. These can

then be solved simultaneously to express each component in terms of Ez and Bz as

listed below.

Eρ =
i
γ2

(
ω

ρ
∂φBz − k∂ρEz

)
, (11.24)

Eφ =
i
γ2

(
k

ρ
∂φEz − ω∂ρBz

)
, (11.25)

Bρ =
i
γ2

(
ω

c2

1

ρ
∂φEz − k∂ρBz

)
, (11.26)

Bφ =
i
γ2

(
k

ρ
∂φBz +

ω

c2
∂ρEz

)
. (11.27)

These equations can be applied to both transverse electric and magnetic modes. For

the TE modes, Ez = 0 and Bz as defined in equation 13.15 thus

Eρ =
iωP
γ2ρ

[−A sin (Pφ) +B cos (Pφ)] JP (γρ) , (11.28)

Eφ = − iω
2γ

[A sin (Pφ) +B cos (Pφ)] [JP−1 (γρ) + JP+1 (γρ)] , (11.29)

Bρ = − ik
2γ

[A sin (Pφ) +B cos (Pφ)] [JP−1 (γρ) + JP+1 (γρ)] , (11.30)

Bφ =
iωP
γ2ρ

[−A sin (Pφ) +B cos (Pφ)] JP (γρ) . (11.31)
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Thus far, we have maintained a general form of the TE mode. We now consider the

lowest order modes TE0,n which have no azimuthal dependence and are given by

Eρ = 0 Eφ = − iω
2γ

J1 (γρ) . (11.32)

The factor of i is associated with a π
2
phase difference between Eφ and Bφ. A plot of

the radial dependence the transverse electric modes is given below, see figure 11.3.

The TE0,n modes have a ring like structure with a node at the boundary. While

other, more complex modes exist, we shall not discuss such modes in this thesis as

we only require the TE0,n mode.

As previously mentioned, the field does penetrate the metallic walls of the guide

for finite conductivity, especially at high frequencies. The field exponentially decays

into the metal over the length known as the skin depth δs, typically of the order

of a few micrometers within a good conductor like copper. The wavelength of high

frequency microwave radiation, however, is of the order of millimetres. As λCu � δs,

the assumption of perfect conductivity is appropriate.

Figure 11.3 shows the radial intensity of the first three TE0,n modes as a function

of ρ. The boundary conditions, discussed earlier, imply the function must have a

node at ρ = R. With each higher order mode, another node is present between

0 < ρ < R. The maximum amplitude of each mode appears closer to ρ = 0 for

higher order modes. The cross-sectional profile of each of these modes is produced

by revolving this function by 2π about the z-axis, as seen in figure 11.4.
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Figure 11.3: Radial intensity profile, |Eφ|2, for the first three TE0n modes as a function
of radii for a perfect metallic waveguide. Each higher order mode has one more node, the
associated cross-sectional area is displayed in figure 11.4.

In this section on hollow metallic waveguides, we discussed the benefits of guiding

light, derived the modal profile for a perfect cylindrical conductor and introduced

the cut-off frequency below which the mode is evanescent. We also mentioned the

resistive losses which arise when the conductivity is finite, it is this skin effect which

limits the use of metallic waveguides in telecommunications.

As the amount of data being transmitted increases, shorter length pulses are re-

quired to increase the density of transmitted information. The losses due to field

penetration into the conductor increases with frequency and, as such, the guiding

of radiation is limited to the microwave range. For high frequency transmission an

alternative guide is required, one such example is the photonic crystal fibre.

Figure 11.4: Cross sectional profile of the first three TE0n modes of a perfect metallic
waveguide respectively. Each higher order mode has one more node, as seen in figure 11.3.
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11.3 Photonic Crystal Fibres

11.3.1 Overview

In section 11.2 we discussed two different methods of guiding light. We considered

a straight cylindrical guide both for the solid core dielectric fibre and the hollow

metallic waveguide and discussed the mechanisms by which they localise light. The

dielectric fibre can transport a wide range of frequencies down its solid core but

due to the inherent nonlinearities there is a limit on the light intensity. Guiding

light down the vacuous core of a metallic guide alleviates these concerns. There is,

however, a limit on the frequency which can be efficiently guided due to the skin

effect.

Combining the useful features of each guiding method, we now consider a hollow core

dielectric fibre and discuss how such a device could guide light. In section 11.2.2,

we explained why ncore > nclad is required for dielectric guiding. As ncore < nclad for

hollow-core PCFs, the light must be confined by a new mechanism. In this section

we give a brief overview of photonic crystal fibres, discussing their proposal, design

and production. We then consider a simple one dimensional photonic crystal which

can be used to explain how the two dimensional fibre works.

Unlike solid core fibres which confine light via total internal reflection, photonic

crystal fibres employ a periodic dielectric function to confine light via a band gap.

This concept was first proposed by Yeh and Yariv in 1976 [9]. They originally con-

sidered a one dimensional slab of stratified dielectric medium, see figure 11.5. By

considering both a semi and fully infinite periodic dielectric, they analysed both

surface and bulk modes respectively. Although Yeh and Yariv were not the first to
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propose a stratified dielectric medium [145], they were the first to realise the possi-

bility of confining light within a region of lower refractive index.

Figure 11.5: Starting from the top, the figure includes the waveguide design, dielec-
tric profile and transverse field distribution of the fundamental mode of a typical Bragg
reflection waveguide with na,= 1.0, nz = 3.38, nl = 2.89. Figure taken from [9].

As we shall later discuss, the mode is evanescent within the stratified dielectric

medium and so remains primarily localised within the air region. Shortly after pub-

lishing their analysis of the 1D slab guide, Yeh, Yariv and Marom realised a 2D

trap could be created by forming a cylinder from periodic layers of dielectric mate-

rial [126]. They coined this design the Bragg cylinder/fibre due to its similarities

with the Bragg reflector, a schematic example is given in figure 11.6a.

Yeh et al. also discussed how the Bragg fibre, much like the metallic waveguide,

can be designed to support only a single mode within its core. This reduces the

broadening of a light signal from modal dispersion, an effect brought on by the phase
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velocity dispersion of modes within the fibre. Using the transfer matrix method at

each interface, Yeh et al. were able to deduce the electric field amplitude for the

TE01 mode. They found that the amplitude decayed by an amount proportional to

the refractive index ratio through each cladding pair.

Figure 11.6: a) Schematic diagram of the Bragg fibre, similar to the one used by Yeh,
Yariv and Marom. The hollow core is surrounded by concentric rings of high and low
dielectric material. b) An alternative form of photonic crystal fibre which is made of one
dielectric material with a two dimensional periodic array of holes, known as holey fibres.
This figure is taken directly from [10]

The one dimensional periodic Bragg fibre is not the only possibility, as seen in fig-

ure 11.6b one can also confine light using a two dimensional array of holes within a

dielectric medium. A wide range of fabricated lattice structures allows one to tailor

the functionality of the fibre to the specific requirements [146]. Varying the radius

and separation of the surrounding holes alters the confined frequency range.

Both the Bragg and holey fibre rely on band gaps opening within the dispersion re-

lation, the mechanisms is discussed in section 11.3.2. The Bragg fibre offers stronger

confinement of light than the holey fibre, requiring only roughly 10 layers of cladding

pairs [10]. It is also less prone to surface modes at the core-cladding interface. The

holey fibre, however, is more commonly used as it is simpler to construct.
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PCFs are constructed in a similar way to solid core fibres. A preform is heated

up and drawn out into a long thin strand. The two dimension fibre shown in figure

11.6b is formed by first fusing a collection of individual hollow core preforms. This

collection is then drawn out producing the fibre. The Bragg fibre requires a preform

with concentric layers, the difficulty is in finding materials with both a large contrast

in their refractive index and compatible thermal properties.

A Bragg fibre was first produced by Temelkuran et al in 2002 [147] using layers of

a low index polymer (PES, n ≈ 1.55) and a high index chalcogenide glass (As2Se3,

n ≈ 2.8). The fibre was produced by rolling a flat periodic slab into a hollow cylinder

and drawing it to the desired layer thickness, which was roughly 900nm of PES and

270nm of As2Se3 with two half layers of glass either side to reduce surface modes.

Fink et al. [148] found that the attenuation of the Bragg fibre was roughly 1.0dB/m

which is significantly lower than the materials comprising it (7-10dB/m for As2Se3

and 100000dB/m for PES). The large difference justifies how well the light is con-

fined to the core. Fink et al. also displayed omni-directionality, reflecting light from

all incident angles, as well as transmitting through curved PCFs.

Due to the strong confinement and low attenuation, one could fill the core with

a medium and study nonlinear effects. Which we shall discuss this, in the context

of transporting matter, presently. In our investigation, we consider a Bragg fibre as

it is most convenient for calculations due to the symmetry and tight confinement.

We have identified that the intense confinement is due to the periodic design of the

fibre, to understand how this works in greater detail we shall now consider a one

dimensional photonic crystal. We develop this one dimensional crystal into the slab

considered by Yeh and Yariv, introducing all new concepts along the way. This will

introduce all the key concepts and ideas needed to describe the Bragg fibre.
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11.3.2 One Dimensional Crystal

As previously mentioned, the photonic crystal fibre uses an underlying periodicity

to confine light. To understand this concept more, we consider an infinite one di-

mensional photonic crystal - constructed by layering infinite sheets of alternating

dielectric media.

First we present the physics of on-axis propagation, where light travels at normal

incidence to the dielectric interface. We introduce the concept of band gaps, how

they can be manipulated and the existence of evanescent modes within the gaps.

We then discuss how the band gaps change when the wavevector has a component

parallel to the interface, for both a finite and infinite photonic crystal.

For the purpose of our study, we require light to be confined to the air core of

a Bragg fibre. As such we discuss how modes are localised within either the crystal

or the air. We then go onto briefly discuss loss mechanisms and the structure of the

Bragg fibre modes, for an in-depth account of the loss mechanisms see [10].

On-Axis Propagation

Taking advantage of the periodic geometry, we write the mode in Bloch form. For

now we assume that the crystal has discrete periodicity along the z-axis, with pe-

riod a, and homogeneous in the xy plane. The wavevectors describe how the field

transforms under translation, as the crystal is homogeneous in the horizontal plane

the associated wavevector, k‖, can take any value. The periodicity in z means there

is a discrete translation symmetry, we can therefore restrict the range of the wave

vector in this direction: −π
a
< kz ≤ π

a
. This region is defined as the Brillouin zone.
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The mode is, therefore, given by

Bn,k‖,kz(r) = eik‖·ρeikzzun,k‖,kz(z), (11.33)

where ρ is the transverse component of r and the spatial profile is defined by

un,k‖,kz(z) = un,k‖,kz(z + a). For on-axis propagation k‖ = 0, as such, the mag-

nitude of the total wavevector |k|=
√
k2
‖ + k2

z = kz.

The discrete translational symmetry imposes restrictions on the structure of the

modes. A translation by an integer number of dielectric periods must return the

same field intensity. The nodes of the field must, therefore, be located in either the

high or low dielectric region, not both. As such gaps open in the dispersion, within

these gaps exists a range of forbidden frequencies. The band upon which mode is

situated, shown by the blue lines in figure 11.7, is referred to as the band number n

as seen in equation 11.33

A photonic band gap opens as soon as there is a periodic variation in the dielectric,

∆ε. As the frequencies scale with crystal size, the size of the band gap, ∆ω, is more

commonly defined with respect the midgap frequency, ωm, found to be

∆ω

ωm
≈ ∆ε

ε
· sin (πd/a)

π
, (11.34)

where d is the thickness of the higher dielectric material, the gap-midgap ratio is

given as a percentage [10]. One consequence for the band gap is the difference in

where the field is most concentrated. If we consider just the first band gap in figure

11.7, the lower (upper) band is concentrated in the high (low) dielectric region.
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Modes with frequencies within the gap may exist but they are evanescent and decay

spatially at an exponential rate depending on how far into the gap the frequency is.

The decay rate is maximal in the middle of the gap and reduces as one approaches a

band. One can also vary the decay rate by optimising the relative thickness of each

layer, the optimum design is very close to quarter wave thickness [10].

Figure 11.7: Dispersion relations for "on axis" propagation. The dispersion bands are
shown in blue and the regions with no allowed modes (band gaps) are highlighted in yellow.
This figure is taken directly from [10].

A typical plot of the dispersion relation for on-axis propagation in a dielectric crystal

is displayed in figure 11.7, the width of the gap is always minimal/maximal at either

at k = 0 or at the zone boundary k = π
a
with the first band gap often being the

largest. At both of these points, each dispersion curve has zero gradient.



11.3. PHOTONIC CRYSTAL FIBRES 221

Off-Axis Propagation

We now consider off-axis propagation, in which the field has a component parallel

to the dielectric interface, k‖ 6= 0. One consequence of off-axis propagation is the

removal of mode degeneracy, now either the electric (TE) or magnetic (TM) field

is transverse to the direction of propagation, but not both. As stated above, the

crystal is homogeneous in the xy plane, as such all wavevectors are permitted and

there is no longer a band gap.

Figure 11.8: Projected dispersion relation for "off axis" propagation for a TE field. The
blue (green) line refer to propagation with kz = 0 (kz = π

a ). The grey regions in between
the blue/green lines indicate where "on axis" modes exist. The red line is the light line
ω = cky above which light may propagate in free space. This figure is taken directly
from [10]

We have seen above that for on-axis propagation (kx, ky, kz) = (0, 0, kz), band gaps

open in the dispersion for any periodic dielectric. The dispersion relation for on-axis

propagation is reduced to 0 ≤ kz ≤ π
a
due to the periodicity. Propagating in the

direction perpendicular to the periodicity (kx, ky, kz) = (0, ky, 0), the homogeneity

implies no band gaps in the dispersion. It is, therefore, natural to enquire how the

system transitions between these two limits.
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Figure 11.8 is referred to as the projected band structure. In short, this depicts a con-

densed version of the on-axis dispersion relation as a function of off-axis wavevector,

here |k‖|= ky. To understand the projected band structure, compare the locations

of the band gaps and modes in figure 11.7 to the regions at ky = 0 in figure 11.8.

The green and blue lines in figure 11.8 mark the locations of the points (0, ky, 0) and

(0, ky,
π
a
) in the on-axis profile respectively, the end points of each band.

The grey regions in figure 11.8 mark the regions where on-axis propagation is per-

mitted for a given ky. As the off-axis component ky grows, the size of the photonic

band gap in the perpendicular propagation reduces until it ceases to exist. The

band gap, therefore, completely disappears as one introduces an off-axis term as a

propagating ky can be found at any frequency.

If, however, the one dimensional crystal is instead finite in the xy plane and semi-

infinite in z, then the propagation is dependent on the modes position with respect

to the light line ω = cky, shown in red in figure 11.8. In free space, far away from the

crystal the plane waves must obey ω = c
√
k2
y + k2

z . At a given ky, a free space mode

exists for any frequency above or on the light line. Below the light line requires an

evanescent mode with an imaginary kz component.

Frequencies above the light line within the grey regions are permitted to propa-

gate in the both the crystal and free space, whilst those frequencies found within

the gap are forbidden to propagate through the crystal. Below the light line, light

may propagate within the crystal for modes within the grey regions but cannot

extend into free space. Modes in a band gap below the light line are evanescent

everywhere. Utilising the band gap above the light line, Yeh and Yariv confined

light between two semi-infinite 1D crystals, as displayed in figure 11.5.
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Defect Modes

Defects can come in many forms, any region in which the translational symmetry is

broken is a defect. For example, slabs of different thickness or refractive index can

be defects in a one dimensional crystal. These defects can exist either within the

bulk of the crystal or at the surface. Modes within a band gap are evanescent in the

periodic crystal, the only way a mode within the gap can propagate is if localised to

a defect. To reduce the impact of surface modes, the interior layer of Bragg fibres

is often half the thickness [126]. Optimising the structure of a holey fibre is much

more difficult as many defected surface modes may exist [149].

The thickness and index of the defected layer determines the modes which can be

localised by it. We have previously mentioned that the decay rate of an evanescent

mode is maximal at the midpoint of a band gap, designing a defect which supports

a mid-gap mode ensures a tight confinement. Increasing the thickness of the defect

can also increase the number of supported modes, much like how a wider metallic

waveguide could be used as a single or multimode guide. The hollow-core in Yeh and

Yariv’s waveguide could be considered as a defect within an infinite crystal.

Omnidirectional Mirror

Yeh, Yariv and Marom realised that forming cylinder of concentric layers would cre-

ate defect modes and confine light to the core. The first experimental realisation of

the Bragg fibre was by Temelkuran et al. in 2002, they constructed it by rolling a flat

one dimensional Bragg mirror into shape. The defect mode is localised to the fibre

core if it exists above the light line and within the one dimensional band gap, green

region in figure 11.9. Within the blue region, the fibre acts as an omni-directional

mirror [148].
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Figure 11.9: Schematic representation of the projected band structure for both the Bragg
fibre. The green region highlights where defect modes can be localised within the core. For
modes within the blue region, the fibre acts as an omni-directional mirror. Figure adapted
from [10].

In the discussion of the 1D crystal above, we assumed that the perfectly flat and

homogeneous in the xy plane. For the Bragg fibre this assumption is no longer

true. To justify the confinement, the light must not escape to infinity. As the radii

increases, the curvature decreases and the fibre walls tend to the one dimensional

limit. We are justified in approximating the band diagram using the 1D solution.

Ibanescu et al. recognised the similarities between the omnidirectional Bragg fi-

bre and the hollow core metallic waveguide [125]. They found that both guides,

which localise light in the hollow core, have similar modes and dispersion relations.

The magnetic (electric) field in the TE (TM) modes of a metallic waveguide must

remain in the axial direction. The equivalent modes of a Bragg fibre, however, the

non transverse field can point in any direction. For this reason Bragg fibre modes

are commonly denoted by the lower case letters te and tm.
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Figure 11.10: Band diagram for both the Bragg fibre and hollow core metallic waveguide.
Figure taken directly from [10]. The modes are labeled as te for transverse electric, tm
for transverse magnetic or he/eh for a hybrid mode. The grey region in figure (b) are the
allowed modes of the Bragg fibre included for comparison.

The core radius of a Bragg fibre governs both the cut-off position of each mode

and the dominant cause of losses in the fibre. We have already mentioned that the

combination of a hollow core and all dielectric materials may reduce the loss rates

when compared to the metallic waveguide and solid core optical fibre, but that does

not mean losses are completely removed. For small core radius, the primary cause

of signal loss is due to field penetrating the fibre walls. As the core radius increases,

the impact of the fibre walls is reduced and more modes exist within the band gap.

The dominant loss mechanism within large core fibres then becomes inter-modal

coupling. Optimising the core radius to reduce losses is therefore imperative.

The hollow core enclosed by a dielectric material should permit higher intensities

that the solid-core dielectric fibre as well as higher frequencies that hollow metallic

waveguides. These, however, are not the only benefits of the hollow core photonic

crystal fibre. One can also guide atoms and molecules down the hollow core as we

shall now discuss.
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11.4 Transport in Fibres

Electromagnetic radiation is a very versatile tool when it comes to manipulating

matter. For example, one can use the Doppler effect to heat a sample up or cool

it down [134]. Most importantly for our purposes, electromagnetic radiation can

be used to trap and guide atoms. These traps can be designed in a whole host of

ways, one can tightly confine atoms within a small region to increase the atomic

density. This can be achieved via an all optical trap such as in optical molasses or

an MOT which uses a combination of optical and magnetic fields. Alternatively the

interference pattern from a collection lasers can create a tuneable optical lattice to

provide a periodic potential landscape [111].

In this section we provide a historical overview of light-matter guidance within

waveguides, we first motivate this work by mentioning some of the advantages over

free space guiding. Despite some experimental groups opting to use a combination

of guiding techniques, the primary method of localising matter remains unchanged.

Therefore, before we discuss the evolution of transportation we describe the mech-

anism by which light can trap and guide matter.

Advances in understanding and technology have lead to a vast improvement in the

efficiency of atomic transport, one is now able to transport higher yields over longer

distances. When these same techniques are applied to transporting cold atoms, the

same success is not repeated. We conclude this section by reviewing the exper-

imental literature on cold atom transport in hollow optical fibres, motivating an

alternative approach to be discovered.
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Advantages of Waveguide Transport

Free space traps have proven to be an invaluable tool [150], it does however have

its limitations. The dispersion and attenuation of light in free space significantly

limits its use in atomic transport. The trapped state may also be short lived due to

interaction with the environment, this can be particularly troubling when creating

an extremely cold state such as a BEC.

The above limitations can be overcome by transporting atoms within the confines

of a waveguide, PCFs can significantly reduce a signals attenuation and isolate from

the environment. Selectivity in the loading process also allows one to transport a

sample from a poor vacuum to a better one. One can transport along a variable

trajectory, a task which is cumbersome in free space, and monitor by exposing a

section of the guide permitting certain frequencies to propagate through the walls.

Alternatively, instead of transporting to a new environment one can perform ex-

periments within the guide itself. V. Venkataraman et al. used the hollow core of a

holey fibre to investigate low intensity nonlinear phenomena. D. S. Bykov et al. have

constructed a multi-purpose sensor from light-matter interactions within a PCF. It

is possible to use the narrow core to investigate strongly 1D systems [151–155].

Detuned Guiding

Lasers are an essential tool for trapping atoms, especially when other methods, such

as magnetic fields, cannot be used. When studying BEC, one may need to alter the

scattering length of the atoms. This can be achieved using Feshbach resonances, for

this one needs to be able to vary the magnetic field. A common, all-optical, method

employed to localise atoms is the dipole gradient force. This technique utilises the
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variety of spacings in the energy levels of the atom, the frequency can be chosen

to excite a transition between two specific levels. These levels are labelled to be

the ground state |g〉 and the excited state |e〉 with associated energies Eg and Ee

respectively. The electric dipole interaction potential is given by

V (r, t) = −d · E(r, t), (11.35)

where d is the electric dipole moment and E(r, t) is the electric field at r. Using

second order perturbation theory, it was shown that the change in the ground state

energy ∆Eg

V (r) = −1

2
α(ω)〈E(r, t)2〉t, (11.36)

where 〈E(r, t)2〉t denotes the time average of the field intensity and α(ω) is the

atomic polarisability given by

α(ω) ≈ |〈e|d · ε̂|g〉|
2

h̄(ωeg − ω)
, (11.37)

where ε̂ is the unit vector in the direction of the electric field and ωeg = (Ee−Eg)/h̄

[156]. The difference in the incident and natural frequencies is known as the detun-

ing δ = ω − ωeg. Also in equation 11.37 is the Rabi frequency ΩR = |〈e|d · E|g〉|/h̄

which quantifies the frequency in population changes in the ground and excited state.

The force experienced on the atom by the potential V (r) is given by the dipole force

Fdipole = −∇V (r) =
1

2
α(ω)∇〈E(r, t)2〉t. (11.38)
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From equation 11.38, one can identify that the force an atom will experience with

respect to the potential landscape depends on the exact nature of the detuning pa-

rameter δ. If δ is positive (negative) then the atom will be repelled (attracted) to

regions of high field intensity, this is referred to as blue (red) detuned guiding.

We now provide a historical timeline of the experimental literature. Starting with

the initial proposal and experiments, then reviewing how the guiding capabilities

improved with advancements in technology. We conclude with an overview of the

limited success in guiding cold atoms.

11.4.1 Transport in Fibres

Using inhomogeneous radiation to collimate and guide beams of atoms dates back to

the early 1970s, A. Ashkin was the first to use radiation pressure from focused visible

light to accelerate freely suspended particles [157]. Early experiments used either an

array of mirrors [158] or an axicon [159] to produce a focused beam of light. These

beams, however, have a limited axial focal length. M. Florjanczyk and R. Tremblay

used a axicon to produce a donut shaped beam with an axial focal length of the

order O(102)cm [160], an order of magnitude larger than the beam length produced

by J. E. Bjorkholm et al. [158]. In each of the experiments referenced, the donut

beam profile provided transverse confinement.

The concept of using an optical guide to transport atoms was first proposed by M.

A. Ol’Shanii et al. in 1993 [127]. M. A. Ol’Shanii et al. considered a glass capillary

in which the light, confined by total internal reflection, was capable of transporting
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atoms tens of metres. Although the Bragg fibre offers stronger confinement and

therefore permits higher optical transmission, it had not been fabricated at the time

of writing. Those thermal atoms which emerged from the atomic source with a

small transverse velocity could then be guided down the fibre. Additionally, M. A.

Ol’Shanii et al. determined the maximal fibre curvature for a given atomic velocity.

Shortly after M. A. Ol’Shanii et al. , S. Marksteiner et al. proposed a similar guide

which supported a single optical mode [113]. The difference in S. Marksteiner’s et

al. approach is the light was blue detuned with respect to the atomic transition. This

meant that rather than guiding the atoms along the fibre core, the light provided a

repulsive enclosure from the evanescent fields at the boundary surface. The bene-

fit of this design is a reduction in spontaneous emissions from thermal excitations.

However, one has to consider a very narrow core in order to produce a collimated

beam.

In the years immediately following M. A. Ol’Shanii et al. and S. Marksteiner et

al. publications, M. J. Renn experimentally verified both red- [114] and blue [115]-

detuned guiding. Whilst the blue detuned guiding was capable of producing three

times the flux of red detuned guiding, an additional red detuned laser was required

for loading and the set up offered limited axial confinement. Following the work of

M. J. Renn et al. , V. I. Balykin et al. reported an increase in the atomic density

guided in a hollow laser waveguide with blue detuned light [116]. Using a conver-

gent design, V. I. Balykin et al. reported a density increase by a factor of 105 whilst

reducing the temperature by a similar factor.

Atoms are not the only thing to be successfully transported through hollow cores,

with the advent of the photonic crystal fibre, micron-sized particles were successfully
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transported over 5m by O. A. Schmidt et al. [117, 118]. Shortly after T. Takekoshi

et al. displayed atomic transportation with a photonic crystal fibre [135]. Hollow

optical fibres offer much lower loss rates compared to glass capillaries, the current

lowest loss rate recored is 1.2dB/km, achieved by P. J. Roberts et al. [161]. The in-

creased confinement offered by photonic crystal fibres means greater transportation

distances [118] and deeper optical depths achievable. In 2011, M. Bajcsy successfully

loaded 30,000 rubidium atoms, which they report as a sixfold increase compared to

maximum depths previously achieved [162].

Loading of energetic particles commonly involves the fibre being located close to

a vapour source [114] - [115], less energetic particles are loaded either using gravity

[162] to lower the particles in or more commonly, via an optical gradient trap [118].

The optical gradient trap is created by injecting the radiation from the opposite

end of the fibre to the atomic source, as the light emerges from the fibre it diffuses

creating a dipole gradient funnel.

Alternatively one can inject radiation from each end of the fibre, by varying the

frequency of one with respect to the other a standing wave is created. The standing

wave allows particles to be selectively launched and with tuneable mobility, this was

first shown by S. Okaba et al. [137] who referred to it as an optical conveyor belt.

S. Ghosh et al. take a very different approach to the conventional loading discussed

above. The fibre in their experiment is coated with an atomic layer, when irradiated

the atoms in this layer occupy the core [163].

There has also been significant interest in light-matter interactions within the hol-

low core of tapered optical fibres [151–155]. Tapering the fibre involves smooth

reduction in the core diameter. As the number of supported modes is related to the
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core diameter, tapering can filter out higher order modes whilst leaving fundamen-

tal modes largely unaffected. The tapering in [151–155], however, is drastic with

the core diameter reduced to a few hundred nanometer. It is commonly used to

investigate enhanced light-matter coupling.

Whilst thermal [135] and laser-cooled [164] atoms have been successfully stored

and manipulated in the hollow core of photonic crystal fibres, ultra-colds samples

have reported limited success. The loading efficiency of an ultra-cold sample from

an MOT trap has significantly improved. By optimising the optical conveyor belt

M. Langbecker et al. reported a loading efficiency of 40% [128], much higher than

previous loading efficiencies of 2.56% and 3.0% achieved by F Blatt et al. [165] and

A. P. Hilton et al. [166] respectively.

Guiding ultra-cold atoms once inside the core has proven difficult, despite the im-

proved loading efficiency. C. A. Christensen et al. retrieved approximately 5% of

the initial population for a red detuned guiding potential in a 2cm long hollow-core

fibre [122]. A similar depletion rate was found by S Vorrath et al. two years later,

when they loaded a 8.8cm long fibre with ultracold 85Rb atoms [123].

To explain the atomic attenuation observed in ultracold guiding, N. K. Wilkin and

J. M. F. Gunn examined the light-matter interaction of a Bose gas and a stand-

ing wave within the confines of a hollow core [124]. They found the light-matter

coupling leads to modulational instabilities. In this thesis, we utilise the properties

of the hollow optical fibre and propose an alternative method by which ultra-cold

atoms, or a Bose-Einstein condensate, can be guided through the hollow core.
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11.5 Concluding Remarks

• Solid-core dielectric fibres are commonly used in a range of applications from

endoscopy to telecommunications. Their low loss design provides an excellent

medium for guiding light over long distances. The maximum power which can

be transmitted is limited due to the onset of nonlinear effects.

• Hollow metallic waveguides can circumvent these nonlinear issues, the fre-

quency range is limited to microwaves however because of the significant at-

tenuation from the skin effect. In the limit of perfect conductivity one can

derive the profiles of the transverse electric and transverse magnetic fields.

• Photonic crystal fibres combine the useful features of both dielectric fibres

and metallic waveguides to create an optical guide capable of transmitting

high intensities with a relatively low loss.

• An extensive range of PCF designs exist, we consider the Bragg fibre because

of its simple design and high confinement.

• The band gaps, impurity modes and losses of the Bragg fibre are dependent

on the design. It is possible to create a single-mode omniguide fibre.

• Whilst the collimating and guiding of atoms in photonic crystal fibres has

proven successful, similar experiments with ultra-cold gases have experienced

significant depletion.
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Chapter 12

Bose Einstein Condensates

In this chapter, we outline the important features of the Bose Einstein condensate.

In section 12.1, we describe how and why the condensate forms. In section 12.2, we

introduce the Gross-Pitaevskii equation (GPE), a model which is commonly used

to study the condensates dynamics. Whilst formulating the GPE, an account of the

assumptions made are stated. The content of this chapter is a synthesis of a number

of sources, namely [111] and [150].
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12.1 Introduction

In section 11.4, we discussed the techniques commonly employed to transport atoms

and molecules through the core of photonic crystal fibres. We also highlighted

the limited success when these same techniques were applied to ultracold atoms.

Each experiment reported with a significant reduction in the number of atoms when

retrieved from the fibre core. In this section we introduce the BEC.

12.1.1 Bose-Einstein Statistics

The statistics of indistinguishable particles falls into one of two categories, depend-

ing on the particles spin. Bosons (fermions) have integer (half-integer) spin, in units

of h̄, and obey Bose-Einstein (Fermi-Dirac) statistics. The crucial difference be-

tween bosons and fermions is the symmetry of their many body wavefunction. The

wavefunction of identical bosons (fermions) is symmetric (anti-symmetric) under the

exchange of any two particles, meaning N identical bosons (fermions) can (can not)

occupy the same state.

Fermions therefore obey Pauli’s exclusion principle. Not only can bosons occupy

the same state, but the probability of finding all N identical bosons in the same

state is N ! times more likely than it is for non-identical bosons [150]. In fact, for an

ideal non interacting gas of N bosons at temperature T in a volume V , the average

occupation of the ith state is determined by the Bose-Einstein distribution function

〈n(εi, T )〉 =
(
e(εi−µ)/kBT − 1

)−1
(12.1)

where εi is the energy of the ith state, µ is the chemical potential and kB is the
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Boltzmann constant. Compared to the Fermi-Dirac distribution, the occupation is

unbounded as the argument of the exponent tends to zero. The statistics of photons

was proposed by Bose [167] and extended by Einstein to include integer spin par-

ticles [168]. Einstein’s study of a non-interacting bosonic gas also discovered that

a macroscopic portion of an ideal Bose gas would occupy the lowest energy level,

below a critical temperature.

By considering an ideal, non-interacting Bose gas one can show that the transi-

tion temperature for BEC is given by

kBT0 = 3.3125
h̄2

M

(
N

V

) 3
2

(12.2)

where M is the mass of the boson [111]. One can also arrive at equation 12.2 by

equating the de Broglie wavelength with the average inter-particle spacing. The

critical temperature of BEC is of the order of O(102)nK. Below this critical temper-

ature, the fraction of the bosons in the condensate is given by

N0 = N

[
1−

(
T

T0

) 3
2

]
(12.3)

Equations 12.2 and 12.3 are only applicable for a three dimensional ideal Bose gas.

Table 3.1 in [111] outlines how these expressions alter in lower dimensions as well

as when trapped in a harmonic potential, following the work of Mullin [169]. The

dimensionality plays a crucial role in the properties of BEC. For a spatially uniform

infinite system, BEC can only occur at T = 0 for a two dimensional system [170]

and not at all for one dimension [171].
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Elementary examples of bosons include exchange particles such as photons. One

can also have composite bosons which obey Bose-Einstein statistics even if the par-

ticles comprising them do not, two examples are He4 and Rb87. For atoms to obey

Bose-Einstein statistics, it must contain an even number of neutrons. The fermionic

components of a neutral atom all have half-integer spin. As the number of protons

matches the number of electrons, the combined spin of these two components is

integer. The net spin of the atom is therefore determined by the neutrons.

12.1.2 BEC Production

Producing a BEC proved to be a difficult task, one had to reduce the temperature

of a large Bose gas without letting it solidify. This was first achieved by Cornell and

Wieman [104]. Seventy years after Einsteins prediction, the pair managed to sta-

bilise a BEC comprised of around 2000 87Rb atoms for 15−20s. For their efforts, the

pair shared the Nobel Prize with Ketterle who produced a BEC containing around

105 23Na atoms shortly after [172]. Since then, there has been a significant increase

in both the size and lifetime of the BEC [110]. The cooling methods employed,

however, remain largely unchanged.

In section 11.4, we introduced the dipole gradient force which can manipulate mat-

ter. We now describe how electromagnetic fields can be employed to cool a vapour

down. The first stage of cooling is to trap the atoms, this is most commonly achieved

using a potential trap as shown via equation 11.36. One then employs doppler cool-

ing [105], counter propagating lasers with frequencies detuned just below an atomic

transition are incident upon the sample. Due to the Doppler effect, atoms absorb

more radiation from the opposing beam, to the direction of travel, which causes a

momentum kick slowing the atom down. Applying counter propagating beams along
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each axis can fully localise a boson gas.

Doppler cooling reduces the temperature of the vapour to hundreds of micro-Kelvin.

To reach the temperatures needed for BEC, one must then apply evaporative cool-

ing. Essentially, this process involves reducing the depth of the trap allowing the

more energetic particles to escape and removing a significant portion of the vapours

average energy in the processes. Whilst this method has proven to be effective,

it does cause a reduction in the atom number by approximately 99%. Alternative

cooling methods have more recently been proposed which can cool a sample much

faster and maintaining a greater portion of the original sample [173].

Once created, they are visualised by processing the shadow from a CCD camera

image, this gives the spatial distribution of the BEC. For the velocity distribution

one can release the BEC and visualise after a delay. Both methods are destructive.

12.1.3 Interaction Bosons

Much like a finite temperature, the presence of interactions implies that the ground

state is no longer fully condensed, with collisions causing scattering to higher en-

ergy states. We now review the interaction force in a BEC, this will prove important

when deducing an appropriate model in the next section. The collisions of inter-

acting atoms in a Bose gas can be cumbersome to accurately model. Fortunately

for a dilute BEC at low temperatures, one can employ a pseudo-potential which

accurately models the low energy behaviour.

Not only does the diluteness condition (|a|n 1
3 � 1) ensure that the average par-
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ticle spacing, is much greater than the interaction range r0, but it also suppresses

three body collisions which are necessary for solidification. In this limit, one can

show that the pseudo-potential for two body interaction between particles at r and

r’ is given by

Ueff = U0δ(r− r’) =
4πh̄2aBorn

M
δ(r− r’) (12.4)

where M is the atoms mass, δ is the Dirac delta function and aBorn is the s-wave

scattering length, as determined from the Born approximation [174].

The most commonly used composite bosons used to create a BEC are alkali met-

als, such as 7Li, 23Na and 87Rb. Not only do each of these isotopes have an even

number of neutrons, but the interaction force can be tuned using Feshbach res-

onance [175, 176]. This process involves altering the energy shift of a collision by

coupling to a bound state. As such, by tuning the magnetic field to vary the Zeeman

effect, one can alter the scattering length, aBorn, to be strong or weak, attractive or

repulsive [177,178].

In this section, we have provided an overview of Bose-Einstein condensates, dis-

cussing the transition temperature and the associated condensate fraction. We then

introduced examples of composite Bosons, from which a BEC with tuneable inter-

actions can be produced. The form of the effective interactions was discussed as

well as a brief account of how one can vary the interaction strength using Feshbach

resonance. In our investigation we consider the effective one dimensional form of the

three dimensional BEC, comprised of weakly interacting atoms, by averaging over

the transverse components.
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12.2 The Gross-Pitaevskii Equation

As previously mentioned, a BEC forms when a dilute vapour of indistinguishable

bosons in the thermodynamic limit condense together to form one single entity. We

now derive the Gross-Pitaevskii equation (GPE) from the Hamiltonian for an in-

teracting Bose gas. The GPE is a useful tool for describing the zero temperature

behaviour of a non uniform Bose gas with an effective pseudo-potential interac-

tion [111].

For the GPE to be appropriate, certain conditions must be satisfied. As the GPE

describes zero temperature behaviour, one must ensure that the temperature is suf-

ficiently low. As this is a mean field approach which neglects the effects of short

range interaction it is only useful for studying phenomena which occurs over length

scales l� a. Meaning the inter-particle spacing is much larger than the interaction

range, the diluteness condition must, therefore, be satisfied. Fortunately, the density

of a typical BEC is approximately five orders of magnitude lower than the number

density at atmospheric pressure.

If we consider a system of N identical bosons each of mass M confined to a one

body potential V(ri), interacting via a delta function potential (i.e. contact inter-

actions) then the Hamiltonian is

H =
N∑
i=1

p2
i

2M
+

N∑
i=1

V(ri) +
U0

2

N∑
i 6=j

δ(ri − rj), (12.5)

where p = −ih̄∇ is the momentum operator, U0 is the s-wave scattering amplitude

defined in equation 12.4 and ri is the position of the ith boson. Let Ψ be a nor-

malised eigenstate of the Hamiltonian, H, that satisfies the Schrödinger equation,
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HΨ = EΨ. Multiplying the Schrödinger equation by Ψ∗ and integrating over all

coordinates gives the energy

E =

∫
Ψ∗HΨdr1...drN. (12.6)

We make the assumption that all N particles are condensed. Whilst the actual

number of condensed atoms is in fact less than N for interacting bosons at finite

temperature, the condensate interaction (quantum) and thermal depletion is suffi-

ciently low in the limit we consider [179]. As such, we employ the Hartree - Fock

ansatz for the condensate wavefunction

Ψ(r1, ..., rN) =
N∏
i=1

ψ1(ri), (12.7)

The wavefunction of an N boson system is the product of each individual single

particle state, the Hartree - Fock ansatz assumes that all bosons are in the same

single particle state ψ1(r). Substituting the approximated wavefunction back in to

the integral given in equation 12.6 gives

E = N
∫
ψ∗1(r)

[
− h̄2

2M
∇2 + V(r) + U0

N − 1

2
|ψ1(r)|2

]
ψ1(r)dr. (12.8)

Where the coefficient (N − 1)/2 is the total number of possible pairs of bosons.

Note that only two body interaction is included. With ψ(r) =
√
Nψ1(r) and treat-

ing N − 1 ≈ N in equation 12.8 for sufficiently large N , yeilding

E [ψ] =

∫
ψ∗(r)

[
− h̄2

2M
∇2 + V(r) +

U0

2
|ψ(r)|2

]
ψ(r)dr. (12.9)
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The first term in the integrand is the kinetic energy of the BEC. In the Thomas-

Fermi limit of a large condensate, which we operate in, the contribution from the

kinetic energy is negligible. The second term defines the interaction with the exter-

nal potential, the final term is the Hartree Energy which describes the mean field

interactions between bosons. By requiring the Gross-Pitaevskii energy functional to

be extremal subject to the normalisation condition:
∫
|ψ|2 dr = N, it is possible to

determine ψ. Using the Langrange multiplier associated with this condition

δ

δψ∗(r)

[
E− µ

∫
|ψ|2 dr′

]
=

[
− h̄2

2M
∇2 + V(r) +

U0

2
|ψ(r)|2 − µ

]
ψ(r) = 0,

(12.10)

where µ is the chemical potential and ψ, ψ∗ are be considered independent in func-

tional differentiation [30]. Solving this we find the condensate wavefunction must

satisfy the nonlinear Schrödinger (NLS) equation

µψ(r) =

[
− h̄2

2M
∇2 + V(r) + U0 |ψ(r)|2

]
ψ(r). (12.11)

This is equivalent to the NLS equation with the chemical potential in place of the

energy eigenvalue. For the dynamics of the condensate, however, we use the time

dependent Gross-Pitaevskii (GP) equation

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2M
∇2 + V(r) + U0 |ψ(r, t)|2

]
ψ(r, t). (12.12)

To describes the dynamics of a BEC in an a detuned guiding potential, one lets

V(r) = −1
2
α0〈E2〉 where 〈...〉 is the time average of the electric field, as stated in
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equation 11.38. This is the dipole gradient potential from red -detuned light (i.e

α0 < 0), the condensate energy is minimised with respect to the external potential

by localising at the regions of high intensity.

12.2.1 Hydrodynamic Representation

Multiplying equation 12.12 by the wavefunction ψ∗(r, t) and subtracting the com-

plex conjugate equation, one finds

∂|ψ|2

∂t
+∇ ·

[
h̄2

2iM
(ψ∗∇ψ − ψ∇ψ∗)

]
= 0. (12.13)

This has the form of the continuity equation, implying the condensate velocity is

v =
h̄2

2iM
(ψ∗∇ψ − ψ∇ψ∗)

|ψ|2
. (12.14)

As we are studying the transport properties of the condensate, it is useful to recon-

struct the Gross-Pitaevskii equation into a more useable form. To do so we employ

the Madelung transformation

ψ(r, t) =
√
ρ(r, t)eiS(r,t), (12.15)

where ρ is the density and S contains information about the velocity via

v =
h̄

M
∇S, (12.16)



12.2. THE GROSS-PITAEVSKII EQUATION 245

as shown in equation 12.14. To leading order (for systems in their ground state) the

phase S gives the chemical potential via

µ = −S
t
. (12.17)

This is a consequence of particle conservation in the NLSE and is incorporated as

part of the phase. Substituting the Madelung representation of the wavefunction

into equation 12.12, factorising and separating the real and imaginary parts gives

the following two equations and recasting the variables, the dimensionless equations

are

ρt + ∂z(ρSz) = 0, (12.18)

1

2
S2
z − µ+ ρ− 1

4

(
ρzz
ρ

+
1

2

ρ2
z

ρ2

)
− 1

2
α〈E2〉 = 0, (12.19)

where Az denotes the partial differential of A with respect to the fibre axial direction,

z. Up to now we have considered a fully three dimensional BEC. Here we present

the effective one dimensional form of the hydrodynamic equations. We make the

assumption that the light-matter dynamics are separable and that the transverse

profile of the light and matter remain constant. The variables z, t and ρ have been

replaced by

z′ =
h̄√

Mρ0U0

z, t′ =
h̄

ρ0U0

t, ρ′ =
ρ

ρ0

and α =
α0

U0ρ0

. (12.20)

Equation 12.18 is a continuity equation, equivalent to equation 12.13. Equation

12.19 is a Bernoulli-like equation, the terms from left to right are: the kinetic en-

ergy, the chemical potential, the Hartree potential, U0ρ and the quantum pressure.



246 CHAPTER 12. BOSE EINSTEIN CONDENSATES

The final term in equation 12.19 is the dipole force. This term describes the forces

due to spatial variations in the density, and is a direct consequence of the Heisen-

berg uncertainty principle. For variations on length scales greater than the coher-

ence length this term is negligible. The simplest solution to the GPE is the free

particle soliton ψ(r) =
√
N/V eik·r, known as the Hartree solution. One can re-

cover the Bogoliubov-de Gennes equations by linearising the GPE by considering

ψ(r, t) = ψ0(r, t) + δψ(r, t) where δψ(r, t) accounts for small deviations [150].

12.3 Concluding Remarks

• Bose-Einstein condensates are coherent states of matter in which a large num-

ber of bosonic atoms occupy the same state. The occur when the temperature

of an ideal Bose gas is reduced below a critical value.

• In our investigation we consider a large, dilute BEC at zero temperature which

is comprised of weak repulsive composite Bosons. We model the dynamics of

this condensate using the Gross-Pitaevskii equation.

• In this limit the Hartree-Fock ansatz for the ground state wavefunction is

appropriate. The interactions can be modelled by only considering the s-wave

scattering in this limit.

• For a sufficiently large BEC, one can employ the Thomas-Fermi approximation

and neglect the contribution from the kinetic energy term in the GPE.

• We employ the Madelung transformation to express the GPE in its effective

one dimensional hydrodynamic form.



Chapter 13

BEC Transport in Crystal Fibres

13.1 Hollow Optical Fibre Modes

Often, when studying the dynamics of matter, one treats the electromagnetic field as

fixed, only there to provide a background potential. Allowing the light to instead be

a dynamical participant leads to a host of nonlinear effects. Much like the derivation

of the hollow metallic waveguide modes we begin with Maxwell’s equations, except

now we no longer make the assumption that the medium is homogeneous or that the

mode can be treated simply as plane wave. We do however maintain the assumption

of no currents (J = 0) and that µ = 1. Maxwell’s equations are

∇× E = −1

c

∂B
∂t
, (13.1)

∇ ·D = 0, (13.2)

∇×H =
1

c

∂D
∂t

, (13.3)

∇ ·B = 0. (13.4)

247
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Now with

D(r, t) = ε(r)E(r, t) = (1 + 4πα0ρ(r))E(r, t), (13.5)

where the susceptibility depends on the atomic density ρ(r). We work under the

assumption that BEC is tightly confined within the electric field and as such remains

localised with respect to the field profile. This allows us to neglect the time depen-

dence of the BEC, treating it to be constant with respect to the electromagnetic

field. We employ the transversality constraint to derive the wave equation. As we

no longer have a homogeneous medium, we have to select a mode which obeys the

transversality constraint.

∇ ·D = ∇ · [(1 + 4πα0ρ(r))E, ]

= (1 + 4πα0ρ(r))(∇ · E) + E · ∇(4πα0ρ(r)). (13.6)

We now let ρ(r) = ρ̄ν(r) where the average density obeys 4πα0ρ̄� 1. The electric

field can be expanded in powers of ρ̄ to give

E = E0 + 4πα0ρ̄E1 +O(E2). (13.7)

Substituting this form into equation 13.6 gives

∇ ·D = ∇ · E0 + 4πα0ρ̄(∇ · E1 + E0 · ∇ν) + 4πα0ρ̄ν(∇ · E0) + . . .

' 0. (13.8)
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To lowest order we find: ∇·E0 = 0 and to first order: ∇·E1+E0 ·∇ν = 0. In order to

take advantage of the transversality constraint, we must select a mode which obeys

these requirements. Due to the geometry of the fibre, it is most intuitive to consider

cylindrical polars, E = Err̂ + Eφφ̂ + Ezẑ. The first order requirement, ∇ · E0 = 0,

implies that the lowest order component of the mode remains transverse, as such we

require Ez0 = 0, likewise we see Ez1 = 0.

We also require E0 · ∇ν = 0. As stated above the BEC is dilute and confined

within the core of the fibre. As the fibre is considered to be long and thin, its intu-

itive that the leading order component of ∇ν ∝ r̂. Thus Eρ0 = 0 as well, the mode is

therefore entirely in the φ̂ direction. Excitations in the BEC density occur along the

ẑ direction, therefore ∇νex always remains perpendicular to the field E = Eφφ̂. The

density is assumed to have no azimuthal dependence, such excitations in transverse

azimuthal traps have been considered by others, such effects have been studied in

pancake BECs by G. Theocharis et al. [180]. With the transversality constraint

obeyed, the wave equation is given by

∇2E = c−2∂tt[(1 + 4πα0ρ)E]. (13.9)

Above, we have justified the leading order components of both the electric field and

the density. Despite the density having its greatest variation in the radial direction,

the tenuous density has little impact on the robust transverse structure of the mode,

f(r), over the diameter of the core. Small axial variations in the atomic density,

however, can have a noticeable effect on the dielectric properties in the direction of

propagation.
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The axial variation of the electric field occurs over length scales much longer than

the wavelength of the light λ ∝ Ω−1
0 , where Ω0 is the frequency of the dominant

Fourier component. We, therefore, consider a plane wave e−iΩ0t within a slowly

varying envelope ε(z, t). As we have have assumed no azimuthal density variations,

we anticipate the field to also have no φ dependence.

E(r, t) = ε(z, t)f(r)e−iΩ0tφ̂. (13.10)

The left hand side of the wave equation 13.9 is the vector Laplacian, which for the

mode defined by equation 13.10 gives

∇2E = 0r̂ + 0ẑ

+

[(
1

r

∂

∂r

(
r
∂f(r)

∂r

)
− f(r)

r2

)
ε(z, t) + εzz(z, t)f(r)

]
e−iΩ0tφ̂. (13.11)

Had we introduced azimuthal field dependence, the vector Laplacian would have

contained a term in the radial direction. The right hand side of the wave equation

gives

1

c2
∂tt[(1 + 4πα0ρ)E]

=
1

c2
(1 + 4πα0ρ)

[
εtt(z, t)− 2iΩ0εt(z, t)− Ω2

0ε(z, t)
]
f(r)e−iΩ0tφ̂. (13.12)

Equating each side of the wave equation, we can partially separate the equation to
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isolate the radial dependence.

−γ2 =
1

f

[
1

r

∂

∂r

(
r
∂f

∂r

)
− f

r2

]
= −εzz

ε
+

1

c2
(1 + 4πα0ρ)

1

ε

[
εtt − 2iΩ0εt − Ω2

0ε
]
.

(13.13)

As each side of equation 13.13 depends on different variables each side must be equal

to the same constant, which we define as −γ2. Thus the radial dependence of the

mode is governed by

r2∂
2f(r)

∂r2
+ r

∂f(r)

∂r
+ (γ2r2 − 1)f(r) = 0. (13.14)

This is the Bessel equation as seen in section 11.2 for the radial profile of the hol-

low metallic waveguide. As discussed in the previous chapter, M. Ibanescu et al.

showed that despite the hollow Bragg fibre being an all dielectric device, it has sim-

ilar dispersion properties to the hollow metallic waveguide [125]. Including cut-off

frequencies and mode profiles. The radial profile is therefore given by

f(ρ) = J1 (γr) . (13.15)

We have assumed azimuthal symmetry, as such the only mode available is the TE01

mode. This is not a requirement, it merely simplifies the calculation. Other ben-

efits of the TE01 mode is the lowest loss, so if many modes are incident upon the

fibre, after a finite length/time only the TE01 mode will be present. It also offers

the lowest cut-off frequency [125], and has a node within the hollow core near the

boundary layer - this reduces the likelihood of atoms escaping and sticking to the

fibre walls. Higher order TE0n modes may, however, offer tighter confinement.



252 CHAPTER 13. BEC TRANSPORT IN CRYSTAL FIBRES

With the transverse profile fixed, we now turn our attention to the axial behaviour

of the electric field. Both the magnitude and slope of ε(z, t) are assumed to be

small, we are therefore justified in omitting terms such as O(εttε, ε
2
t ε, εtε

2) as they

are considerably smaller. Rearranging equation 13.13 gives

εzz −
2iΩ0

c2
εt +

[
1

c2
(1 + 4πα0ρ)− γ2

]
ε = 0. (13.16)

In order to get this differential equation entirely in terms of the slowly varying

component of the field ε(z, t), we utilise the Bernoulli-like equation 12.19. We first

convert equation 13.16 into its dimensionless form by employing the variable change

defined earlier. This gives

εzz + 2iΩεt +
Mc2

gρ0

[
Ω2
(
1 + 4παρ2

0gρ
)
− Λ2

]
ε ≈ 0, (13.17)

where we have defined

Ω =
h̄

Mc2
Ω0 and Λ =

h̄

Mgρ0

γ. (13.18)

In the previous section, we showed how the BEC can be described using a Bernoulli-

like equation

ρ = µ+
1

4
α|ε|2f 2(r). (13.19)

Utilising the relation between the differential of the phase and the velocity. We

remove all of the r dependence from equation 13.19 by averaging over it by multi-

plying each term by f 2(r) and then integrate overall r, setting
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∫ ∞
0

f 2(r)rdr = 1 and
∫ ∞

0

f 4(r)rdr = η, (13.20)

where η is a constant resulting from the integration of the radial profile with the

weight function r identified by rearranging equation 13.14 into Sturm-Liouville form.

One can now replace the density in equation 13.16 with

ρ = µ+
1

4
αη|ε|2. (13.21)

We are now faced with two possible mechanisms by which the density can go to

zero depending on the chemical potential, both mechanisms are depicted in the

figure 13.1. Firstly, if one considers zero chemical potential, both the density ρ and

electric field ε, can tend to zero smoothly as z → ±∞, figure 13.1a. Alternatively

for negative chemical potential, the density could be localised to a finite width,

smoothly going to zero at z = ±z0, figure 13.1b. In the latter regime, the electric

field is evanescent beyond z = ±z0 and so one has to match the solutions.

Figure 13.1: a) Schematic diagram of the two localised light-matter solutions to equation
13.21. The blue (red) region shows the radiation (BEC) density profile.
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Zero Chemical Potential

We first consider zero chemical potential, for which the BEC gains/loses no energy

from entering the fibre core. One can show

1

2
εzz + iΩεt + 2TΩ2|ε|2ε = 0, (13.22)

Where we have set Ω = Λ and

T =
Mc2α2πηρ0

4
. (13.23)

Applying a final variable change, for convenience, of τ = 2ΩTt and z̄ = 2
√
TΩz one

arrives at the one-dimensional nonlinear Schrödinger equation

εzz + iεt + |ε|2ε = 0. (13.24)

We now follow the methods presented in [181] to determine an appropriate solution

to equation 13.24. As we desire a solution localised in space/time, we consider a

travelling wave solution of the form

ε̃(z̄, τ) = A(ξ)ei(rz̄−sτ), (13.25)

where ξ = z̄− Ūτ and both r, s are real constants. Substituting the travelling wave

solution into the NLS equation gives r = ŪΩ from the imaginary components and
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Aξξ = ∆A− A3, (13.26)

from the real components where ∆ = r2− s. One can replace the second differential

of A with respect to ξ in equation 13.26 by employing

Aξξ =
1

2Aξ

d
dA

(A2
ξ). (13.27)

Rearranging and integrating both sides of the equation with respect to A one arrives

at

A2
ξ = ∆A2 − 1

2
A4. (13.28)

The solution of which can be more readily seen by letting A = B−1, one can show

B2
ξ = ∆B2 − 1

2
. (13.29)

From which it is evident that B(ξ) = 1√
2∆

cosh
(√

∆ξ
)
. Here, ∆ is a free parameter

which we set to be ∆ =
A2

0

2
to simplify the solution. The complete expression for

the slowly varying component of the electric field is therefore

ε(z, t) = A0 sech
[√

2TA0Ω(z − Ut)
]
eiΩ(Uz+[TA2

0−
1
2
U2]t). (13.30)

A few interesting things can be noted from this solution (which is for µ = 0). Firstly,

the presence of the BEC lowers the cut-off frequency. If light is launched down a
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fibre with frequency below the empty fibre cut-off but above the new cut-off the light

is forbidden to flow down the fibre without the presence of the BEC. The extent to

which the cut-off frequency is reduced is given by

ω =
h̄2

Mρ2
0g

2

[
TA2

0 −
1

2
U2

]
Ω0 (13.31)

The extent to which the mode frequency is lowered is therefore controlled by the

two independent parameters A0 and U . Due to the dipole force, the BEC desires to

remain in the regions with high light intensity and the light cannot escape from the

BEC. The full expression for the mode is given by

E(r, t) = A(z − Ut)f(r)e−i(Ω0−ω)tφ̂, (13.32)

and is displayed schematically in figure 13.2. Once can see the light-matter soliton

evolves down the fibre core with velocity U in a ring-like structure with no obvious

decay modes. N. S. Ginsberg et al. demonstrated the retrieval of ultraslow light

propagated in BEC [182], the light was retrieved after travelling 160µm. One could

envisage that our light-matter soliton could propagate ultra slow light over much

longer distances along variable trajectories within the isolated enclosure.

Solitons were first observed, using absorption imaging, in a repulsive 23Na, it was

created by imprinting a phase step in the BEC. Bright solitons, such as ours, have

also been observed within an attractive 7Li BECs.

Víctor M. Pérez-García et al. identify soliton propagation through a BEC trapped in

a cigar shape potential [183]. This highly asymmetric limit allows them to analyse
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the effective one dimensional dynamics of the BEC, they find that the width of the

soliton is inversely proportional to number of atoms in the BEC. Therefore, too large

of a number would cause it to become unstable and collapse. We also observe an

amplitude dependent width in equation 13.30, implying that there may be a limit

to the size permitted.

Figure 13.2: Schematic diagram of light-matter soliton propagating through the hollow-
core of the Bragg fibre.

Negative Chemical Potential

The solution derived above is obtained for zero chemical potential, in which the

BEC has no energetic preference on entering the fibre or not. As such the mode was

localised by both the density and field going to zero at the infinity. We now consider

the case a fibre with negative potential, energy is therefore required for the BEC is

exist within the fibre core. Referring back to the Bernoulli-like equation governing

the dynamics of the BEC

ρ = −|µ|+1

4
αη|ε|2. (13.33)

Where we consider a BEC at rest with respect to the confining potential (u = 0).

The density is a positive quantity, as such it goes to zero at the point
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|µ|= 1

4
αη|ε|2. (13.34)

From this we can define the location at which the density goes to zero, ρ(z0) = 0.

First we determine the field profile within the region |z|≤ z0, substituting in the

new form of the density and setting

ε(z, t) = ε̃(z, t)e−2iΩMc2παρ0|µ|t, (13.35)

we arrive at the same NLS equation observed earlier

1

2
ε̃zz + iΩε̃t + 2TΩ2|ε̃|2ε̃ = 0. (13.36)

The profile of the electric field within the region of finite density is therefore the

same as before that of zero chemical potential, up to a phase factor. As before we

see this causes a reduction in the allowed modes in the fibre, however the reduction

is less than before due to the negative chemical potential, utilising this mechanism

puts a constraint on the allowed value of µ, from equation 13.34 we can see

|µ|= αηA2

4
sech2

[√
2TΩA(z0)

]
≤ αηA2

4
(13.37)

Beyond z0, the atomic density, which permits the existence of the mode, is no longer

present. Setting ρ = 0 in equation 13.17 gives

εzz + 2iΩεt = 0 (13.38)
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The time dependence of both solutions much match up at the boundary therefore

εt = iΩ
[
TA2

0 −
1

2
U2 − 2Mc2παρ0|µ|

]
ε (13.39)

The spatial dependence of the linear solution must be exponential decay, ε ∝ e−Kz.

Substituting this form back into equation 13.38 we find

K =
√

2Ω

[
TA2

0 −
1

2
U2 − 2Mc2παρ0|µ|

]1/2

(13.40)

Firstly, we can see that for a solution to exist we require TA2
0 to be larger than the

sum of the remaining terms, otherwise the mode will be oscillatory. This is because

the frequency shift ω < 0 and so the cut-off is raised. Alternatively, one can find an

appropriate value for K by matching both the magnitude and the gradient of ε(z−0 )

and ε(z+
0 ) for u = 0.

A1e
−Kz0 = A sech

(
A
√

2TΩz0

)
(13.41)

−KA1e
−Kz0 = −A2

√
2TΩ sech

(
A
√

2TΩz0

)
tanh

(
A
√

2TΩz0

)
(13.42)

Hence

K = A
√

2TΩ tanh
(
A
√

2TΩz0

)
(13.43)

We have obtained two different forms of the decay constant K, we now equate the

two forms to find
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tanh2
(
A
√

2TΩz0

)
= 1− 1

TA2

(
ρ0Mc22παµ

)
(13.44)

For a solution to exist, 0 ≤ tanh2(...) < 1 therefore for zero velocity

|µ|< αη

8
A2. (13.45)

This constraint, which is tighter than the requirement from equation 13.37 implies

that the chemical potential has to be big enough to overcome the dipole energy

(∝ A2) to populate the solution. Assuming this constraint can be achieved, we have

shown that it is possible to evolve a light-matter soliton down the core of a hollow

optical fibre. Uncoupled, neither component are permitted to exist within the core,

but together they can evolve.

Whilst the coupled light-matter soliton is stable within the core, individually both

are forbidden from entering the core. It is, therefore, natural to ask how one could

launch such a state into the fibre. Whilst this is beyond the scope of our analytical

calculation, we briefly mention some experimental methods which may offer a so-

lution. Firstly, similar optical-gap-solitons have been identified in solid core fibres

by E. Lidorikis et al. [184]. The solitons, in their investigation, are launched using

the phenomena of bistability, where their is an abrupt change in transmission as the

input flux is increased. Alternatively, tapering the fibre limits how far a mode can

propagate, as seen the the dimensional dependence of the cut-off frequency in 11.21.

A tapered fibre could, therefore house the reduced cut-off for a finite length.
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Conclusion

We have studied the interaction between light and matter within the confines of

a hollow photonic crystal fibre. Approaches conventionally used to collimate and

guide atoms through the fibre core had limited success when applied to ultracold

gases. Motivating the search for an alternative mechanism for guiding Bose-Einstein

condensate which utilise the rich physics of photonic crystal fibres.

We demonstrated that combining the useful design features of both solid-core di-

electric fibre and hollow metallic fibre, one can create an optical guide capable of

delivery high intensity radiation over a wide range of frequencies. We reviewed the

mode profile and dispersion relation of the all-dielectric Bragg fibre. We recognised

that the TE01 mode commonly has the lowest cut-off frequency as well as the lowest

attenuation. These factors combined with its rotational symmetry and intensity

peak far from the fibre walls make it an ideal candidate for guiding.

We consider a large, dilute BEC at zero temperature which is comprised of weak

repulsive composite Bosons which we model using the Gross-Pitaevskii equation. In

261
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this limit, we employ the Hartree-Fock ansatz as well as the Born approximation for

the interaction. The GPE was expressed in its hydrodynamic form and the kinetic

energy was neglected as we operate in the Thomas-Fermi limit.

N. K. Wilkin and J. M. F. Gunn have shown that any perturbations to a uniform

condensate density within the fibre core lead to modulational instabilities when

coupled to a standing wave. We instead consider the dynamics of the slowly vary-

ing envelope of the field in an effectively one dimensional system. We report on a

coupled light-matter soliton with variable amplitude and speed. As a result of the

variation in the susceptibility due to the BEC, the cut-off frequency of the radiation

is reduced when coupled.

We identify that radiating the core with the reduced cut-off frequency permits the

formation of a light-matter soliton with no evident decay modes. This opens up a

host of applications such as the possibility of both a BEC and ultraslow light source.

Further work is required to determine how to launch the light-matter soliton into

the fibre core.
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