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ABSTRACT 

An evaluation of management options for the Clover Root Curculio (Sitona hispidulus),  

a pest of Alfalfa (Medicago sativa) in the Intermountain West 

by 

Kaitlin A. Rim, Master of Science 

Utah State University, 2019 

Major Professor: Dr. Ricardo A. Ramirez 

Department: Biology 

 Clover root curculio (CRC) larval feeding on alfalfa (Medicago sativa L.) roots is 

associated with secondary plant pathogen infection and can reduce forage quality, yield, 

and stand life. Given the cryptic nature of the susceptible larval stages, the paucity of 

contemporary literature, and historical focus on eastern U.S. populations, management 

options for CRC suppression are limited and new research into management is crucial. 

Belowground pest management in other systems has occurred through the application of 

soil-active biological agents. Further, host-plant resistance is integral to pest management 

in alfalfa; over 100 commercial varieties exist with resistance to pathogens and 

Hemiptera. In Chapter II, I aimed to collect resident natural enemies of CRC immatures 

in the Intermountain West. I found that Beauveria spp. fungi were prevalent natural 

enemies of CRC immatures, which can inform future biological control efforts. In 

Chapter III, I applied commercial biological and chemical insecticides to target larvae at 

various phenological times. While support for biological insecticides to suppress 

belowground weevil pests exists, I encountered challenges in testing entomopathogenic 

nematodes, fungi, and bacteria for CRC larval management and did not observe 
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reductions in immature populations. Additionally, flupyradifurone, a systemic insecticide 

applied in alfalfa, did not reduce CRC. Evaluating CRC suppression was challenging 

under field settings, because of their cryptic nature, low population densities at field sites, 

and potentially aggregated population distributions. Lastly, in Chapter IV, I evaluated 

commercial root-pathogen resistant alfalfa varieties and CRC-resistant developmental 

lines for resistance to CRC. I found that the commercial alfalfa varieties with root-

pathogen resistance did not confer resistance to CRC. However, one Cornell University 

developmental line considered resistant to CRC revealed enhanced nodulation and could 

result in increased root vigor and reduced plant stress, allowing plants to tolerate CRC 

damage. Further, the soil-less arena for testing CRC larvae was presented as a useful 

method for quick screening of host-plant cultivars in the laboratory and may be adapted 

to other belowground pest systems. Overall, this research confirms historic natural enemy 

data and provides a foundation for development of effective contemporary integrated 

management of CRC in Intermountain West alfalfa, including soil-active insecticides and 

host-plant resistance.  

 

(206 Pages) 
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PUBLIC ABSTRACT 

An evaluation of management options for the Clover Root Curculio (Sitona hispidulus),  

a pest of Alfalfa (Medicago sativa) in the Intermountain West 

 

Kaitlin A. Rim 

 

The clover root curculio (CRC) is an important forage pest throughout North 

America. Extensive larval feeding on host roots has been associated with reduced stand 

establishment, disruption of nutrient and water uptake, increased secondary plant 

pathogen infection, decreased winter plant survival, and reductions in forage quality and 

yield. Due to the hidden nature of larvae in the soil, CRC is often overlooked and 

integrated pest management programs are limited as there is a lack of management 

options. First, I surveyed northern Utah alfalfa for CRC natural enemies, particularly 

insect-attacking nematodes and fungi (entomopathogens) that could be used in biological 

control programs against CRC larvae. I found Beauveria spp. fungi most commonly 

infecting CRC larvae belowground. Next, I used recent information on the CRC life cycle 

in the Intermountain West to test multiple field applications of soil-active biological 

insecticides (entomopathogenic nematodes, fungi, and bacteria) and a synthetic systemic 

insecticide, flupyradifurone. Although these insecticides were compatible with spray 

equipment and alfalfa production, applications of these products did not reduce CRC 

larval populations or root damage in my studies. Further, the two application timings 

tested (before larval peak and during larval peak) did not increase application 

effectiveness. However, evaluating CRC suppression in the field was challenging because 
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they are hidden in the soil, have patchy distributions, and were observed in low numbers. 

Lastly, I tested existing root-pathogen resistant alfalfa varieties for potential cross-

resistance to CRC, and evaluated alfalfa currently being bred at Cornell University for 

specific resistance to CRC larvae. Although commercial root-pathogen resistant alfalfa 

had no effect on CRC, the CRC-resistant alfalfa developed at Cornell University may 

alleviate the impact of CRC larval damage through increased nodule production. This 

research provides the groundwork for finding effective and long-term management 

solutions for CRC in the Intermountain West and will assist in the continued 

development of insecticide application programs and resistant host plants to ultimately 

improve alfalfa production. 
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CHAPTER I 

BIOLOGY AND MANAGEMENT OF CLOVER ROOT CURCULIO  

(COLEOPTERA: CURCULIONIDAE)1 

Abstract 

 Clover root curculio (Sitona hispidulus (F.)) (CRC) has become an economically 

important pest of alfalfa since the regulatory phase-out of carbofuran, methyl bromide, 

and other synthetic soil fumigants. Native to temperate Europe, the Middle East, and 

Asia, CRC was introduced to North America in the early 1900s and is now widespread 

across the U.S. Adult foliar herbivory is not typically economically important. However, 

severe root damage by larvae can result in secondary plant pathogen infections, leading to 

losses in forage quality, yield, and stand life. Monitoring efforts include sweep netting 

adults and soil sampling around the crown and roots of plants for eggs and larvae. 

Relationships between CRC densities and root damage as well as economic thresholds 

have yet to be established. Although several pyrethroids have been registered for use 

against CRC adults, they are not recommended due to potential non-target effects. 

Chemical controls have not been registered for use against the cryptic larval stage. This 

review discusses CRC identification, life history, biology, and ecology. Potential 

ecological management strategies (e.g., crop rotation, planting dates, resistant host 

varieties), biological control agents, and insecticide options are also described as key 

components of an integrated pest management program against CRC in U.S. alfalfa 

Key Words: Sitona hispidulus, Medicago sativa, Trifolium, Sitona spp. 

 

1Rim, Kaitlin, Price, Steven J., Wenninger, Erik J., Long, Rachael, Ramirez, Ricardo A. 
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 Clover root curculio (CRC), Sitona hispidulus (Fab.) (Coleoptera: Curculionidae) 

is one of 11 species of Sitona in North America and is an important pest of clovers 

(Trifolium spp.) (Fabales: Fabaceae) and alfalfa (Medicago sativa L.) (Fabales: Fabaceae) 

(Bright 1994). Adults feed on the leaves, causing minimal damage, whereas larval 

feeding causes severe root damage and affects short- and long-term alfalfa health. In 

2017, U.S. alfalfa hay alone generated over US$7 billion on 6.7 million hectares (16.5 

million acres; USDA-NASS 2018). However, when alfalfa is grown mixed with other 

forages, mixed hay production (US$16.1 billion) is about two times greater than alfalfa 

hay alone and exceeds profits from U.S. wheat production (USDA-NASS 2018). 

Therefore, reduced alfalfa health due to CRC larval damage can have important 

economic impacts. 

 Clover root curculio was first reported in Long Branch, New Jersey in 1875 

(Wildermuth 1910) but is native to temperate Europe, Asia, and the Middle East 

(Hamilton 1889, 1894; Boroumand 1975; Kivan 1995). By the early 1900s, CRC had 

spread throughout North America and is now found from Alaska to eastern Mexico, 

though it is less common at these extreme latitudes (Fig. 1-1; Bright 1994, Bright and 

Bouchard 2008). During early investigations, adult CRC in clover swards were 

occasionally considered an important pest when populations were high, but larval damage 

was usually misattributed to other pests or simply overlooked (Wildermuth 1910). The 

historical shift from forage cropping systems involving short-term clover swards to 

increasingly larger acreage alfalfa stands, where CRC persist for multiple years, may 

have increased the severity and range of this pest (Wildermuth 1910). It has also been 

hypothesized that reduced broad-spectrum insecticide use against eastern alfalfa weevil 
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(Hypera postica (Gyllenhal)) (Coleoptera: Curculionidae)) in the 1970s limited non-

target control of CRC, given the subsequent increases in premature alfalfa stand 

degradation (Gotlieb et al. 1987, Hower et al. 1995) and higher frequencies of alfalfa 

Fusarium (Hypocreales: Nectreaceae) wilt (Leath and Hower 1993). The phase-out of 

soil-active, broad-spectrum insecticides and synthetic soil fumigants (i.e., carbofuran and 

methyl bromide) in the early 2000s by the Environmental Protection Agency left growers 

of a wide variety of crops without chemical control options for soil-dwelling pests like 

CRC. Thereafter, CRC management shifted toward cultural control practices, but 

research is still needed to develop an integrated pest management (IPM) approach to 

mitigate the harmful effects of CRC in alfalfa. 

Life Stages and Phenology 

Description of Stages 

Adult 

 Adults average 4 mm in length and are between 1 and 2 mm wide (Fig. 1-2A; 

Wildermuth 1910, Bright 1994). Compared with many North American Sitona spp., the 

eyes of CRC are weakly convex (Bright 1994, Bright and Bouchard 2008). The black 

cuticle is covered with dark gray, brown, and tan scales making a stripe and 

checkerboard-like pattern on the elytra (Fig. 1-2A). Long, light brown or white, semi-

erect, setae on the elytra are diagnostic of CRC, while most other sitonids lack this 

feature (Fig. 2B; Bright 1994, Phillips and Barratt 2004, Bright and Bouchard 2008). 

Adult female CRC are identified by the narrowly rounded apex of the eighth sternite as 

described by Bright (1994). The alfalfa weevil (Fig. 1-2C) may also be collected along 

with CRC in alfalfa. 
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Egg 

 Eggs are ellipsoid, small (<0.5 mm length), and yellowish-white when laid, 

maturing to shiny black within a few days if fertilized (Fig. 1-3A; Jackson 1922, 1928a; 

Bigger 1930). They have a slightly granular, shiny cast stemming from the micro-

sculpturing of the chorion (Wildermuth 1910, Marvaldi 1999). 

Larva 

 Larvae are off-white and semi-translucent, legless and grub-like, with a light 

brown head capsule (Jackson 1920). Development progresses through five instars before 

pupation (Fig. 1-3B-F; Wildermuth 1910, Leibee et al. 1980a, Tan and Hower 1991). The 

shape of the head capsule and mandibular anatomy of CRC larvae are used to separate 

them from larval Sitona cylindricollis Fåhraeus (Coleoptera: Curculionidae), but it is 

unknown whether these characters could be reliably used to differentiate CRC from other 

Sitona spp. found in the United States (Herron 1953, Manglitz et al. 1963). 

Pupa 

 The pupa is cream colored with the head tucked toward the sternum, thus 

concealed beneath the prothorax in dorsal view (Fig. 1-3G). Gosik and Sprick (2017) 

further described diagnostic features for CRC pupal identification and Jackson (1920) 

describes sexing through inspection of abdominal segments. Days before eclosion, the 

eyes and ends of appendages begin darkening to brown (Jackson 1920, Bigger 1930). 

Life History 

 In North America, CRC is univoltine (Fig. 1-4A; Webster 1915a). Typically, 

adults emerge during midsummer to feed on foliage, and are most active at the soil 

surface, possibly due to the cool and humid microclimatic conditions under the plant 
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canopy. Additionally, increased CRC activity has been recorded during cooler night 

temperatures when summer daytime temperatures are high (Kerr and Stuckey 1956). 

Thereafter, adults emigrate by crawling to adjoining pastures, field edges, or sheltered 

wooded-edges (Underhill et al. 1955, Barney et al. 1979, Roberts et al. 1982) to aestivate 

for 1.5–3 mo. During this time they feed minimally and remain inactive, concealing 

themselves in crevices in the soil, under field litter, or burrowed in plant crowns 

(Markkula and Roivainen 1961, Phillips and Ditman 1962, Leibee et al. 1980a). 

Aestivation for this species may be obligatory as similar behaviors have been reported in 

Finland where mean temperatures during the warmest months can range from 14 to 20°C 

(Markkula and Roivainen 1961, Rautapää and Markkula 1966). Adults return to the field 

early fall, continue feeding, and start laying eggs (Pausch et al. 1980). At this time, post-

aestivation adults may disperse to new areas. Fields adjacent to each other may receive 

founders from crawling populations, whereas adult flight—likely on warm Fall days—

may be important for long-distance dispersal to new fields (Prescott and Newton 1963, 

Leibee et al. 1981, Culik and Weaver 1994). 

 Adults overwinter within the upper ca. 2.5 cm of soil or on the soil surface under 

organic matter and debris (Wildermuth 1910, Marshall and Wilbur 1934, Herron 1953, 

Rautapää and Markkula 1972). Warm temperatures (≥10°C) in early spring stimulate 

over- wintered adults to feed and oviposit once again (Bigger 1930). Spring flights after 

overwintering may not occur due to the degeneration of flight muscles over the winter 

(Jackson 1928a) and CRC dispersal, if any, occurs through crawling. 

 Although feeding by overwintered adults on fresh leaves in spring is minimally 

damaging, the root-feeding larvae can cause significant damage (Marshall and Wilbur 
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1934, Underhill et al. 1955, Wenninger and Shewmaker 2014). First instars feed on 

nitrogen-fixing root nodules, ingesting the tissues inside and leaving behind the 

hollowed-out epidermis or consuming it entirely (Bigger 1930, Marshall and Wilbur 

1934, Manglitz et al. 1963). As larvae develop, feeding extends to the rest of the root 

system. Fifth-stage larvae stop feeding and create a pupal cell near the soil surface where 

they have been reported to remain for anywhere from 8 to 22 d before emerging as new 

generation adults in the summer (Wildermuth 1910, Bigger 1930, Marshall and Wilbur 

1934). Adults feed, mate, and oviposit diurnally throughout their lifespan during times of 

activity into the following spring (Phillips and Ditman 1962, Rautapää and Markkula 

1966, Powell and Campbell 1984). 

Phenology Differences 

 Although typically overwintering as both eggs and adults, discrepancies in CRC 

phenology throughout the U.S. exist regarding overwintering life stage and duration 

(Bigger 1930, Phillips and Ditman 1962). In eastern states, both eggs and adults 

overwinter and adults promptly resume oviposition in the spring (Bigger 1930, Herron 

1953, Lau and Filmer 1959, Phillips and Ditman 1962, Kalb et al. 1994). Conversely in 

the western United States (e.g., Utah), recent research has indicated that CRC overwinter 

primarily as eggs and few adults survive to oviposit the following spring (Fig. 1-4B; 

Price 2017). Research is underway to confirm this trend in other western states. In areas 

of mild winter weather or in the event of a warm winter, adult overwintering may be 

delayed, and females can oviposit throughout the winter months (Powell and Campbell 

1984). Additionally, warm fall weather may initiate egg hatching late in the season and 

larval overwintering may occur (Leibee et al. 1980a, Quinn and Hower 1985a). While 
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overwintering larvae have been reported in some areas, it is unknown to what extent 

larvae survive and contribute to spring populations (Folsom 1909, Rautapää and 

Markkula 1966). 

Ecology 

Host Plants 

 Members of the tribe Sitonini are oligophagous on Fabaceae, primarily feeding on 

Trifolieae (e.g., clovers and alfalfa), Cicereae, Hedysareae, and Galegeae (De Castro et 

al. 2007). Generally, CRC prefers Trifolium spp. over Medicago spp. and other legumes, 

although preference can be variable depending on the host species and plant growth stage 

(Thompson and Willis 1971, Barratt and Byers 1992). Historically, important clovers in 

North America and preferred hosts of CRC are red (T. pretense L.), white (T. repens L.), 

and alsike clovers (T. hybridum L.) (Thompson and Willis 1971, Barratt and Byers 1992). 

However, since the 1900s, alfalfa’s role in U.S. forage production has steadily increased 

(USDA-NASS 2018), making this host more available to CRC. Clover root curculio has 

also been reported as a minor pest of soybean particularly when adjacent to infested 

alfalfa or clover fields (Kogan and Kuhlman 1982). Additional host species of lesser 

importance include Lespedeza striata (Thunb.) (Fabales: Fabaceae) (Phillips and Ditman 

1962), black medic (Medicago lupulina L.) (Fabales: Fabaceae) (Murray and Clements 

1994), and bigflower vetch (Vicia grandiflora var. kitaibeliana W. Koch) (Fabales: 

Fabaceae) (Byers and Kendall 1982). Trefoils (Lotus spp.) (Fabales: Fabaceae) and 

crownvetch (Coronilla varia L.) (Fabales: Fabaceae) are incidental hosts (Thompson and 

Willis 1971, Byers and Kendall 1982, Barratt and Byers 1992). While congener S. 

cylindricollis has been reported feeding on sweet clovers (Melilotus spp.) (Fabales: 
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Fabaceae) (Bright and Bouchard 2008), this genus has not been recorded as a major host 

of CRC. Additionally, economically important pulse crops (e.g., chickpeas, peas, lentils) 

that are hosts of Sitona lineatus L. (Coleoptera: Curculionidae) do not seem to be suitable 

hosts for CRC (Melamed-Madjar 1966). 

Description of Damage  

Direct Damage  

 Adult 

 Adult feeding damage appears as semicircular notches on leaf edges or as 

symmetrical or paired holes centered on the midrib when feeding occurs before leaflet 

expansion (Fig. 1-5A; Folsom 1909, Bigger 1930). A recent study observed greater 

damage to newer leaves at the top of alfalfa plants which suggests leaf maturity may 

influence adult feeding behavior (Price 2017). Typically under field conditions, damage 

from adult feeding is negligible; however, foliar feeding on seedlings can severely reduce 

stand establishment (i.e., seedling densities; Jewett 1934). 

 Larva  

 Larval feeding progresses from nitrogen-fixing root nodules (first and second 

instars; Fig. 5B) to smaller fibrous and lateral roots (beginning with the second instar), 

and finally to the main taproot and crown (fourth and fifth instars; Fig. 1-5C; Wildermuth 

1910, Bigger 1930, Dickason et al. 1958, Tan and Hower 1991). In most cases, larvae 

consume entire nodules, sever lateral roots, and girdle taproots (Bigger 1930, Jewett 

1934, Marshall and Wilbur 1934). Clover root curculio are especially damaging to 

seedlings and can sever small young roots, reducing seedling densities by 20–30% in 

addition to overall stand establishment (Godfrey et al. 1986). Nodule removal by early 
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instars may temporarily interrupt nitrogen fixation, putting plants under nitrogen stress 

(Quinn and Hall 1992, Murray et al. 2002). Further, due to spring synchrony between 

early-stage larval activity and peak nodule production, the potential for nodule damage is 

high (Quinn and Hower 1986a, Pietola and Smucker 1995). Additionally, mid-stage 

larval feeding (second through fourth instars) on lateral roots interrupts water and nutrient 

movement and can kill root apices (Jewett 1934, Tan and Hower 1991). Weakening of 

the root system from lateral root feeding also contributes to winter heaving where plants 

are upheaved by the combination of frozen water expansion and inadequately anchored 

roots (Underhill et al. 1955, Holmes and Robertson 1960, Russell et al. 1978). Larger 

fourth- and fifth-stage larvae feeding on alfalfa taproots can remove 5.7 to 1.9 mg/d, 

respectively (Dintenfass and Brown 1986). After 2 yr of taproot damage, many plants 

have greater than 17% surface area damage (Pesho 1975, Quinn and Hower 1986b) 

which has then been reported to increase to 87% by the third year of damage (Hower et 

al. 1995). Overall, feeding damage on alfalfa roots can occur as deep as 71 cm in the soil, 

although feeding is concentrated in the top 25 cm of the root system and crown 

(Dickason et al. 1968). As alfalfa stands age, the depth of root damage changes 

marginally, but the severity of the accumulative damage occurring at shallow soil depths 

increases rapidly (Dickason et al. 1968, Pesho 1975, Cranshaw 1985). Consequently, 

damage to alfalfa is typically not noticed until the second year (Cranshaw 1985, Godfrey 

et al. 1987). 

Indirect Injury 

 Physical damage from larval feeding predisposes plants to a suite of diseases like 

crown rots, root rots, and wilts (Graham and Newton 1959, 1960; Graham et al. 1960; 
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Newton and Graham 1960; Kilpatrick and Dunn 1961; Leach et al. 1963; Thompson and 

Willis 1967; Dickason et al. 1968; Hill et al. 1969, 1971). While CRC feeding damage is 

not necessary for root pathogen infection (Dunn et al. 1964), evidence indicates that 

mechanical injury creates an infection site. Pathogens like Fusarium oxysporum f.sp. 

medicaginis (Weimer) or Corynebacterium insidiosum (McCulloch) (Corynebacteriales: 

Corynebacteriaceae) can colonize the vascular system belowground after CRC damage 

and cause wilt aboveground (Leath and Hower 1993). When deep CRC feeding lesions 

occur, inner cortex colonization by Fusarium oxysporum Schltdl. or Fusarium solani 

(Mart.) can lead to cortical rots (Kalb et al. 1994). It has also been hypothesized that 

larvae may vector pathogens, given that numerous pathogenic fungi have been isolated 

from larval head capsules (Kilpatrick 1961, Leath and Hower 1993). 

 Clover root curculio larval damage and phytopathogens may interact 

synergistically to reduce crop yields, plant densities, and stand life (Leach et al. 1963, 

James et al. 1980, Godfrey and Yeargan 1989). For example, combined CRC and root rot 

fungal infection in alfalfa reduced second cutting yields by 21%, whereas each pest alone 

reduced yields by approximately 8% (Godfrey and Yeargan 1987). Additionally, CRC 

and pathogen synergism may amplify stand decline by reducing the cold hardiness of 

plants, resulting in increased winterkill (Gotlieb et al. 1987). Lastly, once decay within 

the crown has begun, secondary invaders (e.g., saprophytes, arthropods, microorganisms) 

colonize, accelerating the decay process and attracting other pests like the clover root 

borer (Hylastinus obscurus Marsham (Coleoptera: Curculionidae); Leath and Byers 1973, 

Leath and Hower 1993, Kalb et al. 1994). 

Economic Impacts 
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 Yield losses from CRC damage have been reported to range anywhere from 8 to 

18% in second-year alfalfa fields (Jewett 1934, Godfrey and Yeargan 1987, Hower et al. 

1995). Further, reductions in alfalfa stand densities (crowns/0.25 m2) by 20–30% have 

been reported to occur within the first 1–2 yr of CRC damage (Dintenfass and Brown 

1988b, Godfrey and Yeargan 1989). For example, using density data from Godfrey and 

Yeargan (1989), yields can be estimated to decrease by 1.3 t/ha in the third year of 

production. Although first-year yield reductions have been inconsistently associated with 

CRC, early reductions in stand densities due to CRC damage are persistent through the 

life of the stand, therefore reducing the long-term economic viability of fields (Dintenfass 

and Brown 1988b). Godfrey and Yeargan (1989) predicted an 11–15% reduction in stand 

life attributable to CRC.  

 Within a season, Sitona feeding has been associated with the delayed regrowth 

after alfalfa harvest, or “green-up” (Goldson et al. 1985, 1987, 1988). This may be a 

result of reductions in the total nonstructural carbohydrate root reserves important for 

postharvest regrowth. For instance, 50% reductions in nonstructural carbohydrate 

reserves were predicted to occur when 2% taproot surface area was damaged by CRC, 

but increasing to 20% taproot surface area damage could result in complete depletion of 

these reserves (Dintenfass and Brown 1988b).  

 Clover root curculio larval damage may also decrease forage competitiveness 

against weeds due to stand thinning, which can increase weed intrusion (James et al. 

1980; Godfrey and Yeargan 1985, 1987; Hower et al. 1995). Weeds do not appear to 

affect CRC populations, nor does CRC directly affect weed growth (Godfrey and 

Yeargan 1985, Barney and Pass 1987), but CRC larval feeding can increase the rate of 



12 

 

 

nitrogen transfer from clover to neighboring grasses increasing non-host plant growth 

(Murray and Hatch 1994).  

 Currently, monetary losses associated with CRC damage have yet to be 

determined, but economic impacts of congener S. discoideus Gyllenhal (Coleoptera: 

Curculionidae) have been estimated in New Zealand. A study by Goldson and Muscroft- 

Taylor (1988) estimated yearly yield increases of 25–1000 kg/ ha and increased profits of 

NZ$16–300 (~US$10–200) from insecticidal management of S. discoideus. Comparing 

these data to third-year losses (1300 kg/ha) reported in Godfrey and Yeargan (1989), 

successful CRC larval management could result in similar profit increases. Additionally, 

the cost of N applications to offset losses due to S. discoideus nodule feeding were 

estimated at approximately NZ$140/ha (~US$100; Willoughby and Eerens 2006). As 

mentioned previously, nitrogen stress can also occur in CRC-infested fields due to 

decreased nodulation and nitrogen fixation (Quinn and Hall 1992), and additional N 

applications may also be necessary. Further, direct costs have been estimated for the 

alfalfa snout beetle (ASB) (Otiorhynchus ligustici (L.)) (Coleoptera: Curculionidae), a 

flightless weevil with a 2-yr life cycle whose root- feeding larvae can also reduce alfalfa 

stand establishment and cause significant stand loss (Cornell University Cooperative 

Extension 2007). Alfalfa snout beetle has been estimated to cause losses of US$336/ha 

during the first year (stand establishment; Cornell University Cooperative Extension 

2007). Thereafter, ASB can reduce profits by approximately US$52/ha and US$366/ha if 

50% stand loss occurs during the second year in three-cut, 4-yr rotational systems and 

four-cut, 3-yr rotational systems, respectively (Cornell University Cooperative Extension 

2007). Although ASB has a different life cycle and may be more damaging than CRC, 
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comparisons can be made due to its similar feeding habits. If we adjust the costs reported 

for ASB to 20% stand reductions after the second year due to CRC based on results in 

Dintenfass and Brown (1988b) and Godfrey and Yeargan (1989), we tentatively estimate 

US$20/ha and US$146/ha in three-cut, 4-yr rotational systems and four-cut, 3-yr 

rotational systems, respectively. 

Abiotic Influences 

 Survival of early-stage CRC larvae is affected by soil texture and moisture levels 

(Tan and Hower 1991). First-instar movement and survival increases in coarse sand and 

slightly moist silty clay loam (35% clay) due to larger pore spaces and soil cracking as 

clay dries but declines with increasing moisture content (Pacchioli and Hower 2004). In 

fact, excessive soil moisture has been observed to reduce larval populations, while 

moderately moist (19–27% volumetric water content) conditions significantly increase 

larval numbers (Godfrey and Yeargan 1987, Pacchioli and Hower 2004). Although the 

association is weak, first and second instars appear to be more positively correlated with 

field soil moisture content than larger larvae (Quinn and Hower 1986a, b). Whether soil 

moisture directly affects larval survival or is mediated through other variables (e.g., 

changes in entomopathogen communities or nodule accessibility) is not known (Quinn 

and Hower 1986a). 

Monitoring 

 Due to the cryptic nature of larvae and eggs in soil and adult movement between 

the soil surface and plant canopy, CRC monitoring is complex and requires multiple 

approaches throughout the life cycle. Eggs can be monitored by taking soil samples near 

plant crowns and wet sieving the soil (Fig. 1-6). After washing, remaining particulates are 
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separated from eggs through floatation and filtration using a high-solute salt solution 

(Aeschlimann 1975, Ng et al. 1977, Quinn and Hower 1985b). This method has high egg 

recovery rates but is time intensive and requires large numbers of samples for accurate 

density estimations due to the aggregated distribution of eggs in the field (Quinn and 

Hower 1986b). 

 A similar process can be used to locate larvae and pupae from soil core samples 

(Fig. 1-6), though recovery of first instars can be difficult since they are concealed within 

root nodules (Lau and Filmer 1959, Leibee et al. 1980b, Quinn and Hower 1986b). Later-

stage Sitona larvae and pupae can also be collected by placing soil core samples in a 

Berlese–Tullgren funnel (Aeschlimann 1975). Unfortunately, the time constraints and 

logistic challenges that arise with these monitoring methods impede their usefulness to 

growers. Many devices have been utilized in the past to monitor CRC adults including 

pitfall traps for crawling adults (Pausch et al. 1980, Leibee et al. 1981, Culik and Weaver 

1994), sticky traps for flying adults (Prescott and Newton 1963), and emergence traps for 

newly eclosed adults (Barney et al. 1979, Leibee et al. 1981, Roberts et al. 1982). For 

research purposes, samples can be taken from the soil surface or foliage with a suction 

sampling device and can be actively sorted on a heated metal pan to encourage movement 

or used with a Berlese–Tullgren funnel to passively extract adults (James et al. 1980, 

Roberts et al. 1982, Goldson and French 1983). Most of these methods require large time 

commitments or specialized equipment. Sweep net sampling circumvents these 

shortcomings but is useful only when adults are active in the crop canopy, and less so 

when adults are on or near the soil surface during summer diapause or after emergence 

(Thompson and Willis 1967). 
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 Pheromone-baited traps are one future possibility for monitoring CRC. During 

colonization of spring pulse crops, male S. lineatus produce an aggregation pheromone 

(4-methyl-3,5-heptanedione) that attracts both sexes (Blight and Wadhams 1987, Nielsen 

and Jensen 1993, Quinn et al. 1999). While sticky or cone traps may be effective during 

migration (Nielsen and Jensen 1993), recent studies have found pheromone-baited pitfall 

and pan traps to be superior for S. lineatus capture in the summer and fall (St Onge et al. 

2018). A homologous aggregation pheromone may exist for CRC and could be used in 

pest management programs. Although pea leaf weevil pheromone is not widely available 

commercially, other weevil pheromones, particularly those of Anthonomus spp. 

(Coleoptera: Curculionidae), can be purchased. However, further investigations are 

needed in order to implement this monitoring technique for CRC. 

Management 

Cultural Control 

 Historically, cultural controls thought to manage CRC adults included burning 

forage stubble in winter, or disking and harrowing after the first harvest (Wildermuth 

1910, Webster 1915b). However, overwintering adults could escape burning (Webster 

1915b), while disking and harrowing could damage and kill plants (Wildermuth 1910). 

Regardless, such tactics would be impractical in modern production systems and are not 

recommended today. 

Crop Rotation and Planting Dates 

 Alfalfa growers should rotate to non-leguminous, non-host crops unsuitable for 

CRC (e.g., grasses, row crops, sugar beets, potatoes) for at least one season to limit CRC-

related damage and temporarily disrupt populations before rotating back to alfalfa or 
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clovers (Baird et al. 1997, Tietz 2012, Townsend 2012, Wenninger and Shewmaker 

2014). Consecutive alfalfa rotations are not recommended since larvae can feed on 

leftover root material in both traditional and no-till operations and survive to damage new 

plants (Godfrey et al. 1986, Barney and Pass 1987). To prevent fall migration of CRC to 

newly-planted host crops, new alfalfa fields should not be planted near heavily infested 

fields if possible (Townsend 2012, Wenninger and Shewmaker 2014). Additionally, 

current recommendations advocate for spring-sown alfalfa in some areas since well-

established plants appear to tolerate more damage from fall-migrating adults (Leibee et 

al. 1981, Wenninger and Shewmaker 2014). Roots of spring-planted alfalfa also have 

wider diameters and proportionally wider root layers by their first year of potential larval 

damage, which may limit deep feeding lesions (Powell and Campbell 1983). Lastly, since 

CRC root damage is additive, alfalfa stands should be removed at the end of their 

economic productivity (Dickason et al. 1968, Baird et al. 1997, Seyedbagheri 2012). 

Irrigation and Fertilization 

 In established stands, proper irrigation and fertilization may also limit CRC 

damage since robust healthy plants may withstand root damage and quickly recover from 

stress (Wilson and Barber 1954). Low soil moisture levels due to drought or 

underwatering place additional stress on root-damaged plants with impaired capacity to 

absorb water (Godfrey and Yeargan 1985). Plants grown at optimum moisture levels are 

better able to tolerate CRC larval damage; however, over-watered soils can become 

anaerobic leading to higher incidences of secondary infections (Godfrey and Yeargan 

1985, Tietz 2012). Increased nitrogen applications may reduce overall larval 

establishment by suppressing plant nodulation (Wolfson 1987). However, nitrogen 
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fertilization is generally not recommended for alfalfa and unlikely to be an economically 

viable long-term solution for CRC management (Wenninger and Shewmaker 2014, 

McNeill et al. 2016). 

Host-Plant Resistance 

 The use of pest-resistant alfalfa cultivars has become a fundamental component of 

IPM programs for other pests (e.g., root and stem pathogens, aphids). Research into 

alfalfa resistance toward CRC has been limited and unsuccessful, likely due in part to the 

tetraploid genome and polysomic inheritance of alfalfa (Maureira and Osborn 2005). This 

results in varieties with high genetic variation making it difficult to understand the 

specific resistance mechanisms in alfalfa (Maureira and Osborn 2005). Currently, there 

are no modern commercial varieties with resistance to chewing insects like CRC, but 

research is underway to develop CRC-resistant lines. 

 Historic screenings for CRC resistance in alfalfa and clovers often failed to 

identify mechanisms of resistance and have not yielded promising results (Pedersen et al. 

1975, Byers and Kendall 1982, Byers et al. 1996). Despite the shortcomings of these 

studies, we can begin to predict what cultivars, mechanisms, and plant defense com- 

pounds may be influential in CRC resistance or tolerance. For instance, increased root 

cellulosic and hemicellulosic fiber density may be one morphological mechanism to 

investigate that may increase resistance to larval feeding in T. repens (Powell and 

Campbell 1983). Previous research has documented the toxicity of secondary metabolites 

such as saponins and tannins to various pests, including Coleoptera in alfalfa (e.g., 

Bennett 1965, Tava and Odoardi 1996, Nozzolillo et al. 1997). Evaluations by Pedersen 

et al. (1976) demonstrated that alfalfa plants selected to express higher levels of saponin 
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were positively correlated with CRC resistance. Further research revealed that the 

potentially resistant Lahontan variety exhibited higher levels of root saponins (Hanson et 

al. 1963; Pedersen et al. 1975, 1976). Additionally, alfalfa leaves treated with tannic acid 

resulted in decreased alfalfa weevil activity and feeding as well as increased weevil 

mortality (Bennett 1965). Initial research for clover resistance to clover root weevil (S. 

obsoletus (=lepidus) Gyllenhal) showed reduced adult feeding on varieties high in 

condensed tannins, but subsequent studies were not able to confirm these results (Fay and 

Dale 1993, Hardwick 1998, Crush and Ouyang 2007). The paucity of information 

regarding curculionid larval responses toward saponin-rich and tannin-rich tissues makes 

research into these metabolites and resistance toward CRC imperative. Plants exist as a 

part of a diverse community of organisms and can be hosts to many different herbivores 

both temporally and spatially. As plant responses toward one herbivore could affect a 

different herbivore feeding on the same plant, plant resistance toward one herbivore 

could be conferred to other herbivores (Rossi et al. 1998, Wondafrash et al. 2013, 

Ramirez and Spears 2014). Though current commercial alfalfa lines lack resistance 

toward chewing insects, resistant lines are currently available to combat nematodes, 

piercing–sucking insects, and phytopathogens. Research is needed to assess whether 

available resistant varieties can confer resistance toward CRC. 

Natural Enemies and Potential Biological Control 

 Some natural suppression of CRC may occur through natural enemies (Table 1-1), 

but not enough for economic control. Enhancing natural enemies through biological 

control tactics can be a promising alternative when other management options are not 

available or effective, as is the case with CRC. For example, predaceous beetles have 
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been observed consuming CRC eggs and adults (e.g., Barney et al. 1979, Barney and 

Armbrust 1980, Quinn and Hower 1987). With few management techniques available, 

conservation biological control may be integral for CRC management in the future, but 

more research into the role of these predators in CRC population management is needed. 

Additionally, many of the classical biological control agents introduced from Europe in 

the 1900s to manage North American Sitona failed to establish (e.g., Loan 1965). 

However, entomopathogens commonly found infecting all stages of CRC have practical 

applications in the field and may be more important and efficacious natural enemies of 

CRC larvae. 

Predation 

 Little is known about generalist predator effects on CRC field populations. Birds 

and mites have been recorded consuming CRC adults and eggs, respectively (Wildermuth 

1910, Lindsey 1939, Aeschlimann 1980), but carabid beetles have been more frequently 

documented as CRC predators. Among three carabid egg predators collected in 

Pennsylvania, Amara aenea (Coleoptera: Carabidae) DeGeer was recorded consuming 

seven to eight CRC eggs daily per predator (Quinn and Hower 1987). Likewise, in 

Illinois, Cyclotrachelus (=Evarthrus) sodalis (LeConte) (Coleoptera: Carabidae), 

Pterostichus (=Abacidus) permundus (Say) (Coleoptera: Carabidae), Harpalus 

pennsylvanicus DeGeer (Coleoptera: Carabidae) and Gryllus pennsylvanicus Burmeister 

(Orthoptera: Gryllidae) were identified as significant field edge predators for aestivating 

and migrating CRC adults (Barney et al. 1979, Barney and Armbrust 1980). Further, 

CRC adult predation cage trials showed H. pennsylvanicus and G. pennsylvanicus 

consuming two to three weevils per week, double that of A. permundus and C. sodalis 
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(Barney et al. 1979). Sitona lineatus predator surveys similarly found high numbers of 

carabids but interestingly, rove beetles of the genus Philonthus (Coleoptera: 

Staphylinidae) were shown to be efficient egg predators in the lab (60% egg removal in 2 

d; Vankosky 2010, Vankosky et al. 2011a). Further investigations into alfalfa predator 

communities across a broader geographic range as well as laboratory and field studies to 

clarify the role of predators in CRC population management are needed. 

Parasitoids 

 Three Mediterranean species of egg parasitoids (Hymenoptera: Mymaridae), 

Anaphes pratensis Forster, Anaphes diana (Girault) (=Patasson lameerei Debaucheis), 

and Patasson heterotomus Mathot, were observed emerging from Sitona in the late 1960s 

and early 1970s (Aeschlimann 1977). The predominant species, A. diana, was first 

introduced to Newark, Delaware from France in 1976 as a biocontrol agent of Sitona. By 

1984, A. diana had also been released in Illinois, Kentucky, and Idaho (Schauff 1984, 

Dysart 1990) although reported parasitism rates in its native range were low (2–20%; 

Aeschlimann 1977, 1980, 1986). Ultimately, U.S. introductions of A. diana failed for 

unknown reasons. Since the parasitoid is tolerant of a wide range of temperatures, 

thermal extremes were not considered to be the main reason for reduced establishment 

(Bloem and Yeargan 1982, Dysart 1990).  

 Additionally, three braconid parasitoids, Pygostolus falcatus (Nees), Perilitus 

rutilus (Nees), and Microctonus aethipoides Loan, and one tachinid fly, Campogaster 

exigua (Meigen) (Diptera: Tachinidae), found parasitizing European populations of 

Sitona spp. and Hypera spp. adults, were introduced to North America in the mid-1900s 

(Munro and Post 1948; Berry and Parker 1950; Loan and Holdaway 1961a,b). Although 
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releases targeted sweet clover weevil, S. cylindricollis, these parasitoids were known to 

also parasitize CRC and other Sitona in their native range and under laboratory 

conditions (Berry and Parker 1950; Loan and Holdaway 1961a,b). Ultimately, these 

introductions also failed to establish in North American Sitona spp. possibly due to poor 

host synchronization, variation in performance of introduced parasitoid populations, or 

other unknown factors (Loan and Holdaway 1961a, Loan 1965). Surveys to recover 

introduced or native parasitoids of adult Sitona in Missouri, northern California, and 

Oregon have also had limited success (Crow et al. 1968, Phillips et al. 2000). Although 

CRC adults have been parasitized by the native parasitoid Microctonus sitonae Mason 

(Hymenoptera: Braconidae), which regularly infects adult Sitona scissifrons Say 

(Coleoptera: Curculionidae), CRC are not reliable hosts for this parasitoid’s development 

(Loan 1960, 1963). One native tachinid, Strongygaster (=Hyalomyodes) triangulifer 

Loew (Diptera: Tachinidae), was reported parasitizing CRC but is unlikely to be useful in 

management due to its broad host range (Loan 1963). 

Entomopathogenic Fungi 

 The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin 

(Hypocreales: Cordycipitaceae) is known to infect all CRC stages, but the role of this 

fungus in regulating CRC populations is not well understood (Wildermuth 1910, 

Kilpatrick 1961, Crow et al. 1968, Aeschlimann 1980). Although, B. bassiana infection 

rates of adults in the laboratory and field can reach high levels (Rockwood 1951, Turner 

Jr. 1957, Kilpatrick 1961, Crow et al. 1968), others have argued that B. bassiana may be 

acting as a secondary pathogen or saprophyte and is a low-level mortality factor in adult 

populations (Quinn and Hower 1985c). Other sitonids are similarly affected by B. 
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bassiana (Ellingboe et al. 1957, Aeschlimann 1980, Willoughby et al. 1998). 

Approximately 30 strains of B. bassiana collected from CRC and S. obsoletus throughout 

Europe showed pathogenicity toward S. obsoletus, but their virulence varied widely when 

tested against New Zealand populations of S. obsoletus in the laboratory (Willoughby et 

al. 1998, Goldson et al. 2004, Nelson et al. 2015). Sitona obsoletus was additionally 

infected by a strain of Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: 

Clavicipitaceae) (Goldson et al. 2004). Aeschlimann (1980) was able to isolate M. 

anisopliae from larval sitonids, though this occurrence was particularly rare. 

Nevertheless, S. obsoletus larvae were found susceptible not only to B. bassiana and M. 

anisopliae, but also to M. flavoviride Gams and Rozsypal, Isaria farinosa (Holmsk.) 

Fries (Hypocreales: Cordycipitaceae), and I. fumosorosea (Wize) Brown and Smith under 

laboratory conditions (Poprawski et al. 1985). Whether entomopathogenic fungi could be 

a useful element in CRC IPM programs has yet to be established. 

Entomopathogenic Nematodes 

 Entomopathogenic nematodes (EPNs) tested against CRC under both laboratory 

and field settings have shown promising results for CRC management. In the laboratory, 

Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Steinernema 

feltiae Filipjev (Rhabditida: Steinernematidae), and S. bibionis Steiner infect and 

reproduce in early and late instars, pupae, and even adult CRC. Particularly, late-stage 

CRC larvae supported higher S. feltiae and H. bacteriophora infectivity and reproduction 

(Jaworska and Wiech 1988, Wiech and Jaworska 1990). Additionally, the Oswego strain 

of H. bacteriophora may be especially useful when targeting second to fifth instars and 

pupae (Loya and Hower 2003). When applied in the field, this strain can reach stable 
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populations quickly, persist for multiple years, and reduce adult emergence and larval 

root damage (Loya and Hower 2002). 

 EPNs have been used in the long-term successful control of other belowground 

weevil pests of alfalfa, where there are also no effective chemical control options. For 

example, ASB has been successfully managed through the augmentation of locally 

adapted EPNs in New York (Shields et al. 2009). Native, locally adapted S. carpocapsae 

Weiser, S. feltiae and H. bacteriophora were successfully isolated from ASB-damaged 

alfalfa field soil in northern New York, and these species have since been distributed to 

growers and applied to fields as an effective ASB management strategy (Neumann and 

Shields 2004, Cornell University Cooperative Extension 2007, Shields et al. 2009). The 

success of the ASB biological control program has led other researchers to investigate the 

potential use of EPNs for CRC suppression. 

Entomopathogenic bacteria  

 The most widely used microbial agent that has gained attention in IPM literature 

is Bacillus thuringiensis Berliner (Bt) (Bacillales: Bacillaceae), a bacterium that 

ultimately leads to insect death. Bacillus thuringiensis is easily produced in vitro under 

laboratory settings, can be formulated into various products (e.g., suspensions, powders, 

granules, etc.), and its genome can be incorporated into plants making it effective for 

commercial production and large-scale usage (Lacey et al. 2015). One study by Bezdicek 

et al. (1994) found significant reductions in CRC feeding damage on nodules that had 

rhizobium enhanced with B. thuringiensis spp. tenebrionis genes when compared with an 

unaltered rhizobium. Additionally, different Bt subspecies can offer greater control to 

certain insect families over others. Bacillus thuringiensis spp. galleriae is a subspecies 
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that attacks beetles and may be effective against CRC given its efficacy against field 

populations of alfalfa weevil and rice water weevil (Lissorhoptrus oryzophilus Kushel) 

(Coleoptera: Curculionidae) when applied as a spray suspension or granule, respectively 

(Asano et al. 2003, Aghaee and Godfrey 2015, Shrestha et al. 2018). Research is 

currently being conducted on its efficacy toward CRC in the field (K. R., unpublished 

data). 

Chemical Control 

 Chemical control of CRC is difficult due to year-round population presence, 

dispersal of adults in and out of fields, and cryptic habits exhibited by all life stages. 

Historically, CRC management relied on heavy applications of chlorinated hydrocarbons 

with long-lasting residual activity (e.g., DDT, cyclodienes, and hexachlorocyclohexanes), 

as well as carbamates and organophosphates. Efficacy against CRC was variable, but 

even when these chemical controls successfully reduced larval populations and root 

damage, seed or forage yields and stand longevity were often not improved (Phillips and 

Ditman 1962, Dunn et al. 1964, Dickason et al. 1968, Neal and Ratcliffe 1975, James et 

al. 1980, Dintenfass and Brown 1988a). Particularly, applications of chlorinated 

hydrocarbons yielded inconsistent results in their efficacy against CRC depending on 

application timing, CRC life stages present, and field age (Underhill et al. 1955, Kerr and 

Stuckey 1956, Hansen and Dorsey 1957, Turner Jr. 1957, Dickason et al. 1958, Leach et 

al. 1961, Forsythe and Gyrisco 1962, Dunn et al. 1964, Waters 1964). For example, 

cyclodienes were reported to provide effective control for anywhere from 1 to 3 yr, and 

multiple applications were often required for effective long-term control in forage and 

seed production (Turner Jr. 1957, Dickason et al. 1958, Leach et al. 1961). 
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 Carbamates with systemic activity, such as carbofuran, produced inconsistent 

results for similar reasons, but were best used against pre-ovipositional adults. Late 

summer (late August to early September) applications of carbamates coupled with spring 

diazinon (soil-active organophosphate) treatments were observed to reduce larval 

populations and root lesions the following year (Godfrey and Yeargan 1987). Targeting 

pre-ovipositional adults in this manner may have decreased fall oviposition, and thus 

affected egg and larval densities the following spring. However, accurate timing of fall 

applications is imperative. For instance, fall (late September) foliar applications of 

carbamate and organophosphates significantly reduced adult Sitona populations in alfalfa 

but were ineffective in controlling immatures (Barratt 1985). Here, adult reductions did 

not affect larval populations, as treatments may have occurred after oviposition as 

evidenced by pre-application egg densities of about 10,000 eggs/m2 with approximately 

30% eggs hatched (Barratt 1985). 

 Since the revocation of carbofuran tolerances in 2009 (EPA 2009), current control 

options have been limited to shorter residual foliar insecticides targeting the adults. 

Several pyrethroids are registered for use against CRC adults (Reitz 2018); however, 

prophylactic control of adults may be ineffective in suppressing subsequent larval 

numbers and is not currently recommended (Wenninger and Shewmaker 2014). Such 

extensive, field-wide treatments in spring to control adult CRC could likely have 

unintended ecological consequences such as reducing important biocontrol agents of 

alfalfa weevil and aphids. Therefore, research is needed on alternative chemistries as well 

as adjustments to application patterns and timing that could reduce non-target effects of 

insecticides. One possible approach would be to band spray field edges when adults are 
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reentering fields after aestivation (Pausch et al. 1980). As for larval management with 

insecticides, there are currently no soil-active synthetic insecticides registered for 

management, but research is underway to investigate modern chemistries and appropriate 

application timings for efficacy against CRC immatures in alfalfa (K. R. and R. F. L., 

unpublished data). 

 Insecticidal seed treatments (e.g., thiamethoxam, furathiocarb, benfuracarb, 

imidacloprid) may be a promising alternative for initial protection against CRC, though 

research into alfalfa seed treatments against Sitona spp. is limited. One study by Rotrekl 

and Cejtchaml (2008) found insecticidal seed treatments to significantly increase the 

number of undamaged and minimally damaged (10–25% leaf area loss) alfalfa foliage in 

both greenhouse and field trials. Additionally, yields (green weight) for insecticide-

treated alfalfa seed were typically higher than the untreated control (Rotrekl and 

Cejtchaml 2008). However, this study failed to assess belowground damage, but studies 

in field pea (Pisum sativum L.) (Fabales: Fabaceae) have investigated these effects. For 

instance, plants grown from insecticide-treated pea seeds displayed increased nodulation 

but did not decrease nodule damage or S. lineatus larval numbers, and was inconsistently 

associated with yield increases (Seidenglanz et al. 2010, Vankosky et al. 2011b). Further, 

thiamethoxam seed treatments only provided protection for the first 1–1.5 mo after pea 

planting (Vankosky et al. 2011b). More research is needed to determine the effects of 

seed treatments on CRC during alfalfa stand establishment 

Concluding Remarks 

 Since the cancelation of registrations for soil-active insecticides in early 2000s, 

CRC has become an increasingly important economic pest in U.S. alfalfa forage 
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production. Although adult feeding damage can occasionally be devastating to seedlings, 

cryptic larval damage to roots and increased incidences of secondary pathogen infections 

are most threatening to alfalfa stands. The lack of economic thresholds and effective 

management tactics for larval CRC makes research into alternative management 

techniques essential. Because the majority of literature on CRC was published in the mid-

to late-1900s, it may be beneficial to update and replicate historic CRC studies with 

modern techniques. Future research should also focus on developing economic thresholds 

and predictive degree-day models, investigating diverse types of management techniques 

like biological control agents and resistant host plants, and increasing the understanding 

of how chemical control of adults impacts egg laying and future larval damage. 
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Tables and Figures 

Table 1-1. Natural enemies reported attacking Sitona hispidulus in both their native and introduced range. 

Taxa Species Stage attacked References 

Hymenoptera: Braconidae Microctonus aethiopoides Adult (Aeschlimann 1980) 

(Jackson 1922) 

(Loan and Holdaway 1961b) 

 Microctonus Sitonae Adult (Loan 1963) 

 Perilitus cerealium Adult (Jackson 1928a) 

 Perilitus rutilus Adult (Jackson 1928b) 

(Loan and Holdaway 1961b) 

 Pygostolus falcatus Adult (Aeschlimann 1980) 

Hymenoptera: Mymaridae Anaphes diana (= Patasson lameerei) Egg (Aeschlimann 1975, 1977) 

(Dysart and Bingham 1976) 

Diptera: Tachinidae Microsoma (= Campogaster) exigua Adult (Aeschlimann 1980, 1990) 

 Strongygaster (= Hyalomyodes) 

triangulifera 

Adult (Loan 1963) 

Coleoptera: Carabidae Agonum cuprienne Egg (Quinn and Hower 1987) 

 Agonum placidum Egg (Quinn and Hower 1987) 

 Amara aenea Egg (Quinn and Hower 1987) 

 Anisodactylus sanctaecrucis Egg (Quinn and Hower 1987) 

 Colliuris pensylvanica Egg (Quinn and Hower 1987) 

 Cyclotrachelus (= Evarthrus) sodalis Adult (Barney et al. 1979) 

(Barney and Armbrust 1980) 

 Harpalus pensylvanicus Adult (Barney et al. 1979) 

(Barney and Armbrust 1980) 

 Pterostichus lucublandus  Egg (Quinn and Hower 1987) 

 Pterostichus (= Abacidus) permundus  Adult (Barney et al. 1979) 

(Barney and Armbrust 1980) 

Orthoptera: Gryllidae Gryllus pennsylvanicus Adult (Barney et al. 1979) 

(Barney and Armbrust 1980) 

Arachnida: Acari Allotrombium sp. Egg (Aeschlimann 1980) 
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Taxa Species Stage attacked References 

 Anystis spp. Egg (Aeschlimann 1980) 

Entomopathogenic Fungi Beauveria bassiana All stages (Aeschlimann 1980) 

(Crow et al. 1968) 

(Kilpatrick 1961) 

(Quinn and Hower 1985c) 

(Rockwood 1951) 

 Metarrhizium anisopliae Larvae (Kilpatrick 1961) 

Entomopathogenic Nematodes Heterorhabditis bacteriophora All stages (Jaworska and Wiech 1988) 

(Loya and Hower 2002, 2003) 

(Wiech and Jaworska 1990) 

 Steinernema bibionis All stages (Jaworska and Wiech 1988) 

(Wiech and Jaworska 1990) 

 Steinernema feltiae All stages (Jaworska and Wiech 1988) 

(Wiech and Jaworska 1990) 
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Fig. 1-1. (A) Sitona hispidulus is ubiquitous throughout the continental United States 

and can be found as far north as Alaska and south to Mexico. This map has been adapted 

from distributions reported in Bright (1994) and Bright and Bouchard (2008). 
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Fig. 1-2. (A) Distribution and hosts of Sitona hispidulus can overlap with (B) Sitona 

cylindricollis and (C) Hypera postica. Sitona hispidulus adults can be distinguished from 

other curculionids and sitonids occurring in alfalfa and clovers by their checkerboard 

elytral pattern with long semi-erect white and brown setae, short and stout rostrum, and 

weakly-convex eyes. Unlike S. hispidulus, H. postica has a long rostrum and a dark 

medial stripe on the elytra, while S. cylindricollis has convex eyes and lacks semi-erect 

setae. Photo credit: 2-A and 2-C Kaitlin Rim, Utah State University; 2-B Pest and 

Diseases Image Library, Bugwood.org 
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Fig. 1-3. Sitona hispidulus has an (A) egg stage that sclerotizes to black over 48 hours, 

(B-F) five larval stages, and a (F) pupal stage before eclosion. Photo credit: Kaitlin Rim, 

Utah State University. 
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Fig. 1-4. (A) Generalized life cycle of Sitona hispidulus throughout the continental U.S. 

(AE = aestivate, OW = overwintering). Seasonal distribution and life stage abundance of 

S. hispidulus may change slightly depending on the region. For instance, (B) in northern 

Utah, S. hispidulus mainly overwinters as eggs while other areas have reported higher 

adult overwintering. Values are means ±1 SE (Price 2017). Samples were taken from 

seven fields (mean size 17.53 hectares) of varying age and management style from April 

2 to December 3, 2016. During each sampling event, 4 D-vac samples, 8 egg samples, 

and 8 soil cores were taken from each field and dissected to measure S. hispidulus adults, 

eggs, and larvae, respectively. 
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Fig. 1-5. Characteristic Sitona hispidulus damage. (A) Adult S. hispidulus leaf notching 

observed on Medicago sativa trifoliate leaf. (B) Damaged M. sativa root nodules 

characteristic of S.hispidulus first instar feeding (indicated by arrows). (C) Taproot 

scarring observed on M. sativa. Photo credit: Steven Price, Utah State University. 
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Fig. 1-6. Soil cores are taken by removing root and soil material from around alfalfa 

crowns (A). Soil is gently broken apart and agitated by hand with water. Supernatant 

containing soil particles, organic matter, soil mesofauna, and floating Sitona hispidulus 

immatures is poured through a series of mesh sieves (U.S. standard sieve set #5, #10, 

#35, #60) (B). This process continues until soil is completely disaggregated. Sitona 

hispidulus immatures are typically recovered from #35 and #60 mesh. Photo credit: 

Kaitlin Rim, Utah State University. 
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Research Objectives 

Historically, CRC research focused on populations in the Midwest and eastern US 

(e.g. Bigger 1930, Marshall and Wilbur 1934, Herron 1953, Underhill et al. 1955, 

Roussel et al. 1956, Lau and Filmer 1959, Godfrey and Yeargan 1987, Kalb et al. 1994). 

Therefore, research has been initiated on the biology and control of CRC populations in 

the West (Utah, Idaho, and California). As Kalb et al. (1994) stated, “The greatest 

promise for management…lies with advances in alfalfa breeding and biological control.” 

1. Survey and identify potential endemic entomopathogenic biological control 

agents in Utah alfalfa fields (see Chapter II; formatted according to APA 

citation style), 

2. Evaluate the impacts of biological control agents and chemical control 

treatments for suppression of CRC under field conditions (see Chapter III; 

formatted according to guidelines for the journal Crop Protection), 

3. Investigate the effects of host plant resistance on CRC adult feeding and 

oviposition as well as larval feeding behavior (see Chapter IV; formatted 

according to the guidelines for the journal Annals of the Entomological 

Society of America). 

Chapter I was a literature review of clover root curculio and is a pre-copyedited, author 

produced version of an article accepted for publication in the Journal of Integrated Pest 

Management following peer review. The version of record Rim, K, Price, Steven J., 

Wenninger, Erik J., Long, Rachael, and Ramirez, Ricardo A. 2019. Biology and 

management of clover root curculio (Coleoptera: Curculionidae). Journal of Integrated 

Pest Management. 10:1-14 is available online at https://doi.org/10.1093/jipm/pmz020.  

https://doi.org/10.1093/jipm/pmz020
https://doi.org/10.1093/jipm/pmz020
https://doi.org/10.1093/jipm/pmz020
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CHAPTER II 

SURVEY FOR NEMATODE AND FUNGAL PATHOGENS OF CLOVER ROOT 

CURCULIO IN UTAH ALFALFA SOILS 

Abstract 

Clover root curculio (CRC; Sitona hispidulus F.) feed on clovers and alfalfa 

throughout North America. Larvae are the most damaging stage, causing reductions in 

alfalfa and clover stand health due to root feeding activity that may also facilitate 

secondary plant pathogen infections. Historically, soil-active insecticides and fumigants 

successfully suppressed CRC populations below damaging levels. Since the regulatory 

cancellation of these products in the 2000s, incidences of CRC damage have increased 

and management options targeting larvae are limited. Entomopathogens are important 

natural enemies of below-ground insects. Further, new technologies facilitate isolation, 

identification, mass rearing, and field applications of biological control agents. In the 

current study, we aimed to isolate locally adapted strains of entomopathogenic fungi and 

nematodes from northern Utah alfalfa by collecting field soil, searching for infected CRC 

immatures, and subjecting sentinel hosts (Galleria mellonella L.) to collected soil. Hosts 

showing signs of nematode infection were placed in modified white traps while hosts 

killed by fungi were plated on growth medium. Soil characteristics were also recorded for 

all field sites. Beauveria sp. was recovered from CRC immatures with an overall 

infection rate of 4.7%. Entomopathogenic nematodes were not recovered during this 

study. Future surveys should try other entomopathogen isolation techniques and survey 

seasonally throughout the duration of CRC immature peaks. Locally adapted Beauveria 
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strains may be more efficacious than commercially available strains and should be tested 

for pathogenicity and virulence towards CRC in the laboratory and field. 
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Introduction 

The clover root curculio (CRC), Sitona hispidulus F. (Coleoptera: Curculionidae), 

has been a pest of leguminous forage crops such as clover (Trifolium spp.) and alfalfa 

(Medicago sativa L.) (Fabales: Fabaceae) throughout the continental United States since 

the early 1900s (Bright, 1994; Webster, 1915; Wildermuth, 1910). Adult CRC feed on 

foliage during late summer and oviposit at the soil surface typically in the fall and the 

following spring (Bigger, 1930; Marshall & Wilbur, 1934). After eggs hatch during 

spring, 1st instars burrow into the soil where they progress through five stages (Leibee, 

Pass, & Yeargan, 1980; Marshall & Wilbur, 1934). Larvae are the most damaging stage 

of this pest given that early instar larvae consume nitrogen-fixing root nodules, and mid- 

to late-instars lacerate lateral roots and feed on the taproot cortex (Bigger, 1930; 

Manglitz, Anderson, & Gorz, 1963; Marshall & Wilbur, 1934). Not only does CRC larval 

feeding cause direct plant damage, but larvae may facilitate infections by secondary plant 

pathogens (e.g., Fusarium wilts) (e.g., Leath and Hower 1993). This subsequently results 

in decreased alfalfa stand life (Gotlieb, Pellett, & Parker, 1987), yield (Godfrey & 

Yeargan, 1987), and forage quality (Godfrey, Yeargan, & Muntifering, 1987). 

Historically, soil-active insecticides and fumigants with long-lasting residual 

activity were successful in suppressing CRC populations below damaging levels, but 

their cancellation in the 2000s (EPA, 2009) corresponded with increases in damage from 

belowground pests including CRC (Tietz, 2012). Several insecticides have been 

registered in the Intermountain West against CRC adults (e.g., lambda-cyhalothrin, 

gamma cyhalothrin, chlorantraniliprole, chlorpyrifos) (Reitz, 2018). However, due to 

adult mobility and ability to evade spray events, the limited knowledge on whether adult 
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reductions suppress subsequent larval numbers, and the potential non-target effects on 

alfalfa weevil natural enemies in the spring, these are not recommended (Rim et al., 

2019b; Wenninger & Shewmaker, 2014). Furthermore, there are currently limited 

management options targeting CRC immatures, and insecticides are not available to 

target these stages. Current management practices focus on crop rotation to a non-

legume, planting alfalfa in the spring, removing stands at the end of their productive life, 

and carefully monitoring water and nutrient levels (Rim et al., 2019a; Wenninger & 

Shewmaker, 2014). More effective, longer-lasting management options that can be easily 

incorporated into contemporary forage production systems to reduce CRC immature 

populations and related alfalfa damage need to be investigated. 

Entomopathogens are important natural enemies of below-ground insects and 

have been isolated and applied augmentatively to target many cryptic below-ground pests 

(e.g., larval stages of Curculionidae, Scarabaeidae, Sciaridae, Noctuidae) (Hazir et al. 

2004). Various entomopathogens have been tested against CRC and previously described 

infecting CRC naturally, but the prevalence of these agents in the field and their role in 

managing CRC populations in the Intermountain West is not well known. For instance, 

the most prevalent entomopathogenic fungus infecting all CRC stages is Beauveria 

bassiana (Balsamo) Vuillemin (Aeschlimann, 1980; Crow, Puttler, & Daugherty, 1968; 

Kilpatrick, 1961; Wildermuth, 1910). Furthermore, entomopathogenic nematodes (EPNs) 

have also been tested against CRC under laboratory and field conditions. Heterohabditis 

bacteriophora Poinar, Steinernema feltiae Filipjev, and S. bibionis Steiner can infect 

CRC from larvae to adults in the laboratory, but late instar CRC support higher S. feltiae 

and H. bacteriophora infectivity and reproduction than pupae and adults (Jaworska & 
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Wiech, 1988; Wiech & Jaworska, 1990). Additionally, H. bacteriophora (Oswego strain) 

is efficacious against larvae and pupae in the field and can persist for multiple years to 

reduce CRC adult emergence and root damage (Loya & Hower, 2002, 2003). 

Upon isolation and identification of important entomopathogens of insect pests, 

pathogen mass rearing is relatively easy through in vivo or in vitro methods (Hazir et al., 

2004), and many commercial insectaries supply beneficial organisms that can be easily 

applied with traditional equipment (Shapiro-Ilan, Gouge, Piggott, & Fife, 2006). 

Entomopathogens can be safer and longer-lasting alternatives to traditional chemical 

controls and can be compatible with other chemical and biological pesticides (Kaya & 

Gaugler, 1993).  

Despite the many benefits of entomopathogens (e.g., broad host range, rapid kill 

rate, applicator safety), their use against soil-dwelling pests in alfalfa production is rare. 

One major reason for low adoptability may be because different species and/or strains of 

entomopathogens often have different environmental requirements and are sensitive to 

environmental factors like solar radiation (UV) (e.g., Gaugler & Boush, 1978), 

temperature (e.g., Kamionek, 1974; Molyneux, 1986), and moisture (e.g., Kamionek, 

1974). However, using optimal application strategies (e.g., Shapiro-Ilan et al., 2006) to 

apply species or strains with environmental adaptations to specific geographic regions 

and/or greater specificity towards target organisms may increase efficacy in the field. For 

example, locally adapted Steinernema and Heterorhabditis spp. were successfully 

isolated from alfalfa soils in northern New York, and are now a fundamental component 

of integrated pest management of alfalfa snout beetle (Otiorhynchus ligustici (L.)), for 

which chemical control options are also limited (Cornell University Cooperative 
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Extension, 2007; Neumann & Shields, 2004; Shields, Testa, Neumann, Flanders, & 

Schroeder, 2009).  

Due to the success of locally adapted entomopathogens isolated in New York 

against the alfalfa snout beetle, we conducted surveys in northern Utah (Cache Co.) for 

local endemic entomopathogens. Entomopathogens contributing to CRC immature 

mortality may have potential for future biological control efforts against CRC immature 

stages. 

Materials & Methods 

Field locations and survey methods 

Six alfalfa fields in Cache County, Utah, were surveyed on 21 June 2017 (Table 

2-1). At each field, 8 soil core samples (28 cm diameter x 30 cm depth) each centered 

around an alfalfa crown were collected randomly throughout fields (except site #1 where 

5 cores were sampled) (total 45 cores). Sampling time corresponded with late-stage larval 

CRC activity and when we would expect higher incidences of EPN infection. Samples 

were stored at 5-7 °C until they could be processed (1 mo.). All collected root material 

was observed for CRC damage, and the following environmental and agronomic 

conditions were recorded for each field: soil composition (SoilWeb, 2018), time since last 

irrigation event, time since last cutting, and soil moisture (% volumetric soil water 

content) (Field Scout Soil Moisture Meter TDR 100).  

Isolating Entomopathogens 

Soil cores were sifted through #10 mesh (2 mm) for dead and infected CRC 

immatures (larvae and pupae). Immatures appearing dead or diseased were individually 

placed onto modified white traps kept at room temperature (22-25 ˚C) (White, 1927). 



65 

 

 

Briefly, this procedure used a (40 mm diameter) petri dish lid placed inside a larger petri 

dish bottom (90 mm diameter). Immatures were placed on filter paper (No. 1, 55 mm) 

(Whatman, Buckinghamshire, UK) positioned on top of the dish lid. Subsequently, the 

dish bottom was filled with deionized water to the height of the smaller dish lid. 

Individuals on white traps were monitored for infection by entomopathogenic nematodes 

(EPNs), fungi, or bacteria every other day for a total of 7 d.  

After CRC were removed from processed soil, sentinel waxworm larvae, Galleria 

mellonella (L.) (Lepidoptera: Pyralidae) were subjected to soil following the insect 

baiting technique described by Bedding and Akhurst (1975). This involved processing 

soil that was cleared of large debris, moistened with deionized water, and packed into a 

clean plastic container (500 mL). Six waxworm larvae were placed on the surface of the 

soil, and the container was inverted after being covered with a lid. Dead sentinel hosts (G. 

mellonella) were removed after 48 h, individually placed onto modified white traps, and 

monitored following the same procedure used for immature CRC. 

Rearing and Identifying Entomopathogens 

Each isolated nematode strain was reared for multiple generations on G. 

mellonella hosts in ‘infection traps’ described by Stock and Goodrich-Blair (2012) and 

observed for virulence (short infection time, large number of offspring per host). To do 

this, an aqueous suspension of infective-juveniles (IJ) were distributed on a piece of filter 

paper (No. 1, 90 mm) in the inverted lid of a petri dish (90 mm diameter). Ten waxworm 

larvae were added to the lid and covered with the inverted petri bottom. Each dish was 

stored inside a plastic bag in the dark at room temperature (22-25 ˚C) to allow for host 

infection. Infected waxworm cadavers were removed after 3-5 d and placed in modified 



66 

 

 

white traps, where IJs could then be isolated. Nematode isolates were sent to Dr. Patricia 

Stock at the University of Arizona for identification using molecular techniques while 

populations were sustained in vivo at Utah State University on G. mellonella. 

Conidia from fungal-infected CRC were transferred to potato dextrose agar with a 

sterile loop and were allowed to proliferate at room temperature (22-25 ˚C). Fungal 

growth was checked every two days until sporulation occurred. Fungi were identified 

with assistance from Dr. Don Roberts at Utah State University. 

Data Processing 

To calculate infection rates across sites for fungal infections of CRC and 

nematode infections of G. mellonella, the number of infected hosts from each site was 

divided by the total number of individuals collected or exposed from each site, 

respectively. Overall infection rates were calculated by dividing the sum of infected hosts 

from all sites by the total number of hosts over all sites. 

Results 

 Topsoil content of sampled fields was generally silty with low sand and medium 

clay content (Table 2-1). However, fields varied in time since last cutting (<1 wk to 3 

wks) and time since last irrigation event (1 wk to >3 wks) (Table 2-1). The soil moisture 

content (% volumetric water content) ranged across all field sites, but no field had a 

volumetric water content of greater than 10% (Table 2-2). Site #1 was the only field that 

had not been irrigated in over three weeks, and as a result, had the lowest volumetric soil 

water content (Table 2-2). All soil core samples exhibited root damage associated with 

CRC larval feeding, and CRC immatures were collected at all sites. A total of 82 CRC 
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immatures (62 larvae, 18 pupae) were collected over all sites and a total of 591 G. 

mellonella were subjected to field soil during this survey (Table 2-2). 

Entomopathogenic fungi (all identified as Beauveria spp.) were recovered from 

CRC immatures in two of the six fields sampled, with an overall infection rate of 4.7% 

(Table 2-2; Fig. 2-1A). None of the collected CRC were infected with entomopathogenic 

nematodes, however 11.2% of sentinel waxworm hosts had nematode emergence (Table 

2-2; Fig. 2-1B). Nematode samples sent to the University of Arizona were identified as 

free-living, non-entomopathogenic rhabditids. 

Discussion 

Although found in low numbers, the entomopathogenic fungus, Beauveria spp., 

appears to be the most common entomopathogen found infecting CRC larvae and pupae 

in northern Utah. Previous studies on CRC infection by B. bassiana have focused on 

adults, and report mortality ranging from 0 to 23% (Aeschlimann, 1980; Crow et al., 

1968; Quinn & Hower, 1985; Rockwood, 1951). However, entomopathogenic fungi, 

specifically Beauveria spp., have been consistently reported as the primary natural enemy 

of Sitona immatures (Aeschlimann, 1980; Jackson, 1922; Kilpatrick, 1961), although 

natural infection rates were often low and variable. For instance, in Italy and France, B. 

bassiana infection caused 2.7% and 31.1% Sitona immature mortality, respectively 

(Aeschlimann, 1980). Further, in New Hampshire white clover (Trifolium repens L.), 

Kilpatrick (1961) reported a total 4.6% of field-collected Sitona immatures died from B. 

bassiana infection. This infection rate was similar to the overall infection rate reported in 

the current study.  
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Surveys for Sitona pathogens have also reported rare (<1%) sitonid mortality 

from Metarhizium anisopliae and Aspergillus spp. (Aeschlimann, 1980; Kilpatrick, 

1961). Although these species were not isolated from CRC or G. mellonella hosts during 

this particular study, strains of Metarhizium (6 strains) and Aspergillus (1 strain) have 

been previously isolated by Dr. DW Roberts from Cache Co., UT soils (compared to 16 

strains of Beauveria) (USDA-ARS, 2019). Beauveria and Metarhizium are widespread 

throughout North America and Europe; however, many abiotic factors and farm 

management techniques may influence presence and prevalence of naturally occurring 

fungi populations. For example, most entomopathogens are sensitive to disturbance 

events, but it has been suggested that M. anisopliae is more common in agricultural 

habitats with higher pesticide applications (reduced host availability) and frequent 

disturbance events (e.g., tilling) (Hummel et al., 2009), while B. bassiana is more 

common in natural or undisturbed habitats (e.g., forests and uncultivated land) 

(Bidochka, Kasperski, & Wild, 2002; Quesada-Moraga, Navas-Cortés, Maranhao, Ortiz-

Urquiza, & Santiago-Álvarez, 2007; Tarasco, De Bievre, Papierok, Poliseno, & 

Triggiani, 1997). This suggests that Beauveria may be well supported in alfalfa fields due 

to perennial plantings (4-6 years) with little to no tillage and a high prevalence of insect 

hosts (e.g., CRC, alfalfa weevil). Additionally, multivariate analyses by Quesada-Moraga 

et al. (2007) found that predictive variables for B. bassiana occurrence included higher 

clay content (>10% clay), higher pH, higher altitude (≥ 400 m), and lower latitude (< 

40°). Although we did not measure soil pH during this study, the measured soil and 

environmental conditions lie within the ranges for the B. bassiana predictive factors 

reported in Quesada-Moraga et al. (2007). However, to further understand these abiotic 
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relationships in Utah and potentially isolate different genera of fungi, future studies 

should survey for CRC immatures over a broader period of time and environmental 

conditions (April-July), survey fields with different management types, and perform more 

complete analyses of soil samples (e.g., pH, organic matter). 

Other surveys for entomopathogenic fungi in clover or alfalfa have similarly 

found Beauveria as the most prevalent fungal pathogen. For example, Steenberg et al. 

(1995) found most adult and immature predatory beetles in alfalfa naturally infected by 

B. bassiana and few infected by M. anisopliae. British surveys for adult Sitona obsoletus 

natural enemies in clover reported B. bassiana as the most dominant fungal pathogen (34 

strains), while only one strain of M. anisopliae was collected (Goldson, McNeill, Gerard, 

et al., 2004). Multiple studies have isolated and subsequently tested B. bassiana found 

naturally infecting curculionid pests in alfalfa or clover for efficacy and virulence against 

these pests (e.g., Ellingboe et al., 1957; Quinn & Hower, 1985; Willoughby et al., 1998; 

Yucel et al., 2018). Results suggested that naturally-occurring strains caused > 50% 

mortality after one week and/or performed equally as well as commercial strains. To 

expand upon this research, isolated fungal strains should be tested against CRC at varying 

temperatures and conidial concentrations for their efficacy under various conditions. 

 Despite reported Sitona larval infections by Hexamermis sp. in Europe 

(Aeschlimann, 1980), we did not observe natural infection by this group in northern Utah 

alfalfa fields during our survey. Research has shown that nematode movement, activity, 

and survival decreases as soil clay content increases (Georgis & Poinar, 1983; Molyneux 

& Bedding, 1984) and as moisture decreases (Kung, Gaugler, & Kaya, 1991). We posit 

the small pore spaces and poor oxygenation in clay and silty clay loam soils collected in 
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this study interfered with host finding and successful EPN isolation. Additionally, EPN 

survival and pathogenicity was typically reduced as soil moisture decreases to the levels 

recorded in this survey (Kung et al., 1991; Molyneux & Bedding, 1984), and at moistures 

less than 4%, EPNs may enter a state of inactivity (anhydrobiosis) to reduce desiccation 

(Crowe & Madin, 1975), thus, they may not be detected with the baiting method at these 

low moistures. Interestingly, an endemic population of H. bacteriophora was previously 

isolated from Brigham City (Box Elder Co., UT) soil infested with plum curculio 

(Contrachelus nenuphar (Herbst)) (Alston et al., 2005; Kim, 2007; Kim & Alston, 2008). 

This result was likely because the soils in Brigham City, UT associated with fruit tree 

hosts were sandy loam (>50% sand, 6-10% clay) with moistures ranging from 31-70% 

(Kim, 2007). These represent optimal conditions for nematode establishment and 

persistence (Kaya & Gaugler, 1993). Further surveys for EPN strains endemic to northern 

Utah should focus on soils with similar conditions. 

There may also be other pathogens not found in this study contributing to natural 

CRC population control, and future surveys for potential biological control agents of 

CRC should search for other pathogens such as bacteria or viruses in addition to fungi 

and nematodes. Improved methods that may also enhance CRC pathogen isolation 

include direct extraction of pathogens from field soil (e.g., Saunders & All, 1982), and 

sampling seasonally throughout the duration of CRC immature peaks (late April-June). 

We posit that the locally occurring Beauveria sp. strain isolated during this study may 

potentially be augmentatively applied in CRC management programs. For example, a few 

locally-adapted strains of B. bassiana found infecting Sitona obsoletus in Europe are 

being formulated into a granular fungal biopesticide to manage newly invasive (<10 
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years) S. obsoletus populations in New Zealand (Goldson, McNeill, Proffitt, et al., 2004; 

Nelson, McNeill, Van Koten, & Goldson, 2015; Willoughby et al., 1998). Similar 

formulations may be efficacious against CRC in Utah, yet future studies need to focus on 

laboratory and field testing for pathogenicity and virulence towards CRC. 
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Tables and Figures 

Table 2-1: Field collection site location and characteristic information. NA = field information not available 

Site 

Number Location Coordinates 

Field 

Age 

(yrs) 

Topsoil 

Composition1 

Last cutting 

prior to 

collection 

Last irrigation 

event prior to 

collection 

1 Trenton, 

UT 

41.880803,  

-111.949908 

4 Fine silty loam 

(22.5% clay, 

9.5% sand) 

< 1 wk > 3 wk 

2 Richmond, 

UT 

41.890729, 

-111.840814 

5 Silty clay loam 

(32.5% clay, 

19.7% sand) 

2 wk 2 wk 

3 Richmond, 

UT 

41.883600, 

-111.828262 

3 Fine silty loam 

(12.5% clay, 

30.9% sand) 

2.5 wk 2.5 wk 

4 Wellsville, 

UT 

41.662046, 

-111.919956 

4 Fine silty 

(22.5% clay, 

33.3% sand) 

3 wk 1 wk 

5 College 

Ward, UT 

41.659281, 

-111.898328 

NA Fine silty 

(22.5% clay, 

33.3% sand) 

3 wk 2 wk 

6 College 

Ward, UT 

41.652032, 

-111.901998 

6 Fine silty 

(22.5% clay, 

33.3% sand) 

3 wk 1 wk 

1Soil information obtained from SoilWeb (2018). 
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Table 2-2:  Average soil moisture (± SEM) of soil cores, immature CRC (larvae and pupae) abundance, and fungal infection rate 

across and over all sites. Total number of waxworms exposed to collected soil and nematode infection rate across and over all sites.  

 

* Volumetric Soil Water Content = VWC 

 

Site 

Number 

Average soil 

moisture 

(VWC* %) 

 CRC  Sentinel Waxworms 

 

Total 

immatures (n) 

Beauveria 

spp. 

Infected (n) 

Infection 

rate (%) 

 Hosts 

exposed 

(n) 

Nematode 

infected 

(n)  

Infection rate 

(%) 

1 5.85 ± 0.86  1 0 0  66 0 0 

2 6.66 ± 0.23  19 0 0  96 1 1.0 

3 6.66  ± 0.83  26 1 3.8  141 14 9.9 

4 8.86 ± 0.76  11 0 0  96 13 13.5 

5 6.40 ± 0.92  19 0 0  96 12 12.5 

6 9.69 ± 0.93  10 3 30.0  96 13 13.5 

 Overall CRC infection rate:  
4.7 

 Overall waxworm infection 

rate:  
11.15 
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Figure 2-1: (A) Clover root curculio pupa with Beauveria sp. fungal growth, and (B) 

Galleria mellonella larva with rhabditid nematodes. 
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CHAPTER III 

EVALUATION OF CHEMICAL AND BIOLOGICAL INSECTICIDES FOR 

MANAGEMENT OF THE CLOVER ROOT CURCULIO IN  

INTERMOUNTAIN WEST ALFALFA (Medicago sativa) 

 

Abstract 

Clover root curculio (CRC1) (Sitona hispidulus F.) larvae feeding belowground on 

alfalfa (Medicago sativa L.) roots negatively impacts plant and stand health and may lead 

to economic losses. Contemporary research on management of CRC larvae is limited, and 

increased damage resulting from the cancellation of broad-spectrum insecticides 

substantiates the need for evaluating modern formulations of biological and systemic 

insecticides. Further, without economic thresholds and predictive degree-day models, it is 

difficult to determine insecticide application times. However, recent research has 

revealed seasonal timing of the larval peak in the Intermountain West. Therefore, we 

tested applications of Bacillus thuringiensis spp. galleriae, the entomopathogenic 

nematode Steinernema riobrave, the entomopathogenic fungus Beauveria bassiana, and a 

systemic insecticide, flupyradifurone, in a randomized complete block design for efficacy 

against resident CRC immatures across two alfalfa field seasons (2018-2019) in 

Kimberly, ID. Treatments were applied at two phenological times, before larval peak or 

during larval peak. Soil core samples were taken 4-wk post-application to determine the 

number of CRC pupae and larvae, larval head capsule width as a measure of 

development, and plant damage. We found that biological and systemic insecticides did 

                                                      
1 Abbreviations: Clover root curculio = CRC, entomopathogenic nematode = EPN, infective juvenille = IJ 
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not reduce resident CRC populations or affect larval development compared to untreated 

controls. Root damage was also similar across control and insecticide treatments. Further, 

application timing did not improve insecticide efficacy. Given the diverse insecticide 

types evaluated, differing mechanisms may exist for their lack of success against CRC. 

For instance, possible reduced penetration of Bacillus in soil strata, in part from 

prohibitive soil characteristics reducing exposure and necessary ingestion to be effective; 

and low flupyradifurone translocation to the root zone. The challenges for successful use 

of biological insecticides in field settings is well documented. Yet, it is also important to 

note the difficulties in evaluating CRC suppression, in part, because of the variation in 

resident populations and their cryptic nature. 

 

Keywords: Sitona hispidulus, entomopathogens, Steinernema riobrave, Beauveria 

bassiana, Bacillus thuringiensis spp. galleriae, flupyradifurone 

  



86 

 

1. Introduction 

Incidences of clover root curculio (CRC) (Sitona hispidulus F.) damage and 

presence in forage production were first recorded in New Jersey, United States in 1875 

(Wildermuth, 1910). Due to a research focus on major above ground alfalfa pests (e.g., 

alfalfa weevil, armyworm, and aphids) and the non-target control of CRC through broad-

spectrum insecticide applications targeting these aboveground pests (e.g., Hower et al., 

1995), CRC remained a minor pest throughout the 1900s. Coincident with the federal ban 

on carbofuran (EPA, 2009), CRC has become a major pest throughout the U.S. Typically, 

adults feed inconsequentially on alfalfa (Medicago sativa L.) and clover (Trifolium spp.) 

leaves while the larval stage causes significant damage to host root systems (Rim et al., 

2019b). Destructive root damage caused by larvae is associated with reduced stand 

establishment (Godfrey et al., 1986), disruption of nutrient and water uptake (Jewett, 

1934; Tan and Hower, 1991), increased secondary plant pathogen infection (Graham and 

Newton, 1960, 1959), decreased winter plant survival (Underhill et al., 1955), and 

reduced forage quality and yield (Godfrey and Yeargan, 1989). Current integrated pest 

management programs are focused on cultural control through crop rotation, irrigation 

and nutrient management programs, and altered planting dates (Rim et al., 2019a, 2019b; 

Wenninger and Shewmaker, 2014). Moreover, chemical control of CRC is difficult as 

economic thresholds have not been determined, susceptible life stages are associated with 

cryptic habitats, there are no registered insecticides for larvae, and applications of 

registered chemistries against adults are not recommended (Rim et al., 2019a; Wenninger 

and Shewmaker, 2014).  
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Historically, applications of persistent insecticides with soil activity to target 

alfalfa weevil (Hypera postica (Gylenhall)) may have suppressed CRC populations 

(Hower et al., 1995). However, insecticide trials targeting CRC specifically yielded 

variable results, and even when larval populations were reduced, yield and stand 

longevity were often not improved (Dickason et al., 1968; Dunn et al., 1964; James et al., 

1980; Neal and Ratcliffe, 1975; Phillips and Ditman, 1962). Further, chlorinated 

hydrocarbon applications yielded inconsistent results in their efficacy against CRC 

depending on field characteristics, CRC phenology, and application timing (Dickason et 

al., 1958; Underhill et al., 1955). Regardless, most of the insecticides tested in these 

studies (e.g., chlorinated hydrocarbons, carbamates, organophosphates) have since been 

cancelled by the Environmental Protection Agency (National Pesticide Information 

Center, 2015). Moreover, different regions of the U.S. may differ in CRC phenology, and 

some areas with mild winters may have increased larval overwintering (Quinn and 

Hower, 1985a). Timing applications to target larvae are difficult due to these 

phenological discrepancies and the lack of predictive degree-day models. However, 

seasonal data exists for CRC populations in northern Utah and can inform timing of 

applications targeting susceptible life stages (Price, 2017). Due to the cancellation of 

insecticides, the paucity of recent literature on CRC, and the historical focus on the 

eastern U.S. populations, contemporary research into management practices, especially in 

the western U.S., is crucial. Therefore, a renewed evaluation of chemical and biological 

insecticides for CRC larval suppression is needed. 

 Although CRC larvae are the most susceptible and most damaging stage, targeting 

this belowground stage can be challenging. However, systemic insecticides play an 
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important role in integrated pest management programs for soil pests (e.g., wireworms, 

root worms) and a variety of other crop pests. For instance, imidacloprid and 

flupyradifurone seed treatments for soybean demonstrated that these insecticides can be 

translocated to root material (Stamm et al., 2016). Although neonicotinoid field pea seed-

treatments did not reduce Sitona lineatus L. (Coleoptera: Curculionidae) larval numbers 

and nodule damage, overall root vigor and plant health improved through increased 

nodulation, nodule size, and N-fixing ability (Seidenglanz et al., 2010; Vankosky et al., 

2011). In addition to seed treatments, soil or foliar applied systemic insecticides can 

translocate from non-target tissues to target tissues rapidly. For instance, soil applications 

of dinotefuran and flupyradifurone reduce aboveground pest densities and leaf damage in 

two weeks or less (Palumbo, 2012; Stansly and Kostyk, 2016). Neonicotinoid sprays 

significantly reduce belowground tuber damage from wireworms (Elateridae) in potato 

(Kuhar and Alvarez, 2008), and are efficacious preventative treatments for managing 

other cryptic pests such as early-instar billbug larvae feeding in turf stems (Reynolds and 

Brandenburg, 2015). However, neonicotinoids have come under scrutiny for their 

purported negative environmental and ecological effects (e.g., Goulson, 2013; Hallmann 

et al., 2014; Woodcock et al., 2017). Further, no neonicotinoids are registered as foliar 

sprays in alfalfa, and seed treatments to target insect pests, are not common practice 

(Bachmann et al., 2019). Therefore, other potential systemics, namely flupyradifurone, 

which is considered a reduced risk pesticide (EPA, 2018) and currently registered for 

foliar application against hemipteran alfalfa pests (Bachmann et al., 2019), may benefit 

CRC management.  
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Likewise, integrated pest management of other cryptic belowground pests like 

CRC have found success using biological insecticides such as entomopathogenic 

bacteria, nematodes, and fungi (e.g., Glare et al., 2004; Hazir et al., 2004; Shields and 

Testa, 2017). In addition, if shown to be effective reduced-risk products, biological 

insecticides can be easier to register and can be applied with similar equipment to 

synthetic products (Shapiro-Ilan et al., 2006). Bacillus thuringiensis (Bt), for example, 

has increased in importance since genes from its endotoxins are components of some 

transgenic crops (Lacey et al., 2015). In alfalfa, nodules colonized by symbiotic 

Rhizobium bacteria engineered with Bacillus thuringiensis tenebrionis Berliner cryIII 

endotoxin genes had a 26% reduction in damage from early-instar CRC and S. lineatus L. 

(Bezdicek et al., 1994). However, the use of genetically engineered alfalfa has been 

difficult to adopt due to the potential for cross-pollination and gene transfer to non-

engineered alfalfa or native congeners (Amand and Peaden, 2000; Jenczewski et al., 

1999). While Bt is not a standard application in forage, applications of Bt to crops in 

other systems have been successful. For example, granular formulations of Bt galleriae 

reduced the number of immature rice water weevil (Lissorhoptrus oryzophilus Kushel), a 

weevil that damages rice roots, stunting growth and reducing yield in California (Aghaee 

and Godfrey, 2015). Therefore, Bt applications may provide some management for CRC 

immatures.  

Heterorhabditis spp. and Steinernema spp. nematodes, have offered success 

against weevil pests such as black vine weevil (Otiorhynchus sulcatus (F.)) (Bedding and 

Miller, 1981), root weevils on citrus (Pachnaeus litus (Germar) and Diaprepes abreviatus 

(L.)) (Bullock et al., 1999: McCoy et al., 2000), plum curculio (Conotrachalus nenuphar 
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Herbst) (Kim and Alston, 2008), and the pea weevil (S. lineatus L.) (Jaworska, 1998) that 

can cause considerable damage to crop root systems. The use of locally-adapted 

entomopathogenic nematodes (EPNs) has provided persistent and effective long-term 

control of the alfalfa snout beetle (Otiorhynchus ligustici (L.)), another belowground 

weevil pest of alfalfa (Cornell University Cooperative Extension, 2007; Neumann and 

Shields, 2004; Shields et al., 2009). Further, field research in Pennsylvania alfalfa 

demonstrated a locally adapted EPN strain, H. bacteriophora (Oswego strain), lead to 

significant reductions in CRC adult emergence and root damage three years after EPN 

application (Loya and Hower, 2002). However, the most prevalent natural enemy of CRC 

larvae and adults is an entomopathogenic fungus, Beauveria bassiana (Balsamo) 

Vuillemin (Aeschlimann, 1980; Crow et al., 1968; Jackson, 1922; Kilpatrick, 1961; 

Wildermuth, 1910). Typically, B. bassiana natural infection rates in the field are low (2-

5% infected) (e.g., Aeschlimann, 1980; Kilpatrick, 1961), and infectivity varies between 

fungal strain and Sitona spp. stage (e.g., Poprawski et al., 1985). Though, studies have 

investigated CRC susceptibility to B. bassiana in the laboratory (e.g., Quinn and Hower, 

1985), few studies have investigated CRC biological control through direct applications 

of B. bassiana in the field. 

There are some challenges associated with the use of biological insecticides in the 

field. Some agents are sensitive to environmental factors such as soil texture and 

moisture, pH, temperature and ultraviolet radiation, and interspecific competition (e.g., 

Gaugler and Boush, 1978; Kung et al., 1991, 1990). As a result, application methods may 

be more complex or may need to be adjusted to increase efficacy and prevent degradation 

of microbial agents in the field. Efficacy can also vary between species and 
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concentrations may need to be higher in field settings to overcome the negative effects of 

biotic and abiotic factors or to target pests that may evade infection by tunneling into 

roots (Georgis, 1990). Further, the semi-arid conditions in the Intermountain West may 

require applications of species that can succeed under drought conditions. For instance, 

the nematode Steinernema riobrave is known to have higher temperature thresholds and 

be desiccation-tolerant (Somvanshi et al., 2008; Yaari et al., 2016). These along with an 

increased specificity towards beetles and weevils (e.g. Bullock et al. 1999; Cabanillas 

2003; Shapiro-Ilan et al. 2004) makes S. riobrave a promising biological agent for 

potential CRC larval management in the Intermountain West. When microbial agents 

selected for their specificity to certain host groups and environmental range are applied 

adhering to label instructions and accounting for potential pitfalls, they may provide 

effective and persistent belowground pest suppression (e.g., Shields et al., 2009). 

Chemical insecticides registered for CRC adult management are not economically 

feasible due in part to non-target effects, and there are no registered insecticides for 

management of insects belowground in alfalfa (Rinehold, 2017; Wenninger and 

Shewmaker, 2014). Therefore, this study aims to evaluate the efficacy of three microbial 

agents – Bt galleriae, S. riobrave, and B. bassiana – as well as a systemic chemical 

insecticide (flupyradifurone) for CRC larval management. Further, we investigated the 

impact of application timing based on larval phenological peaks on insecticide efficacy in 

2018. This study assessed the utility of microbial, biological, and chemical control 

programs applied at different time points during CRC larval phenology for larval 

suppression and reduction of taproot damage in commercial alfalfa fields.  
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2. Materials and Methods 

2.1 Field Characteristics and Experimental Design 

Two field experiments were conducted at University of Idaho’s Kimberly 

Research and Extension Center (Kimberly, ID), one each in 2018 and 2019 field seasons. 

In 2018, the experiment was applied to a 4-year-old alfalfa stand established in 2014. The 

native soil in this field was silty clay loam (Table 3-S1). Each of six replicated blocks 

(randomized complete block design (RCBD)) consisted of eight 2.9  3.0 m plots with a 

3.0 m buffer between plots (experimental unit). Plots were randomly assigned a treatment 

time combined with one of three treatments or an untreated control (2 application times × 

4 treatments = 8 plots/block, N = 48). Treatments included the biological insecticides S. 

riobrave (Sierra Biological Inc., Lyndonville, NY) and Bt-galleriae (grubGONE!, 

Phyllom Bioproducts, Oakland, CA), and the systemic insecticide, flupyradifurone 

(Sivanto™, Bayer, Leverkusen, Germany). The two treatment application times were 

determined from northern Utah CRC phenology data (Price, 2017; Rim et al., 2019b) 

with the first application applied to early-instars before the larval peak at the start of the 

season (April 25, 2018), and the second applied later to target late-instars during CRC 

larval peak (June 21, 2018) (Table 3-S2).  

In 2019, a 6-year-old field (established in 2013) was selected due to its higher 

CRC densities than the field used in 2018. The native soil in this field was silt loam 

(Table 3-S1). Experimental units were the same as previously described. However, in 

2019, there were five treatments consisting of the biological insecticides S. riobrave, Bt-

galleriae, and B. bassiana (BotaniGard® ES, Laverlam International Corp., Butte, MT), 

the systemic insecticide flupyradifurone, and an untreated control. Similarly, each of the 
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five treatments were established within a RCBD replicated 5 times (n = 25). Given 

irrigation needs for treatments were not accessible for an early application, a single 

application on May 24, 2019 aimed to target CRC larvae during larval peak similar to the 

second application in 2018 (Table 3-S2).  

2.2 Insecticide application details 

Guided by application recommendations for EPN applications (Georgis, 1990; 

Shapiro-Ilan et al., 2006), treatments were applied in the morning (08:00-09:00) using a 

single wheel push type sprayer (Bellspray, Inc. R&D Sprayers) with a 2.29 m boom with 

46 cm nozzle spacing. Treatments were applied at the following concentrations: S. 

riobrave concentration of 2.5  109 infective juveniles (IJs)/ha (Georgis, 1990; Shapiro-

Ilan et al., 2006), a granular formulation of Bt-galleriae at the label rate of 112 kg/ha 

(Hubble-Wirgler and Sutherland, 2017; Redmond et al., 2019), B. bassiana at the label 

rate of 4.9  1013 viable spores/ha, and flupyradifurone at the label rate of 205 g ai/ha. 

The sprayer was equipped with high capacity cone nozzles (TeeJet TXA8001VK Hollow 

Cone Tip, Ceramic) operated at 241 kPa for S. riobrave, B. bassiana, and chemical 

insecticide application (Georgis, 1990; Shapiro-Ilan et al., 2006). Screens were removed 

from the sprayer for EPN treatments to reduce nematode mortality (Hazir et al., 2004). 

The label rate of Bt-galleriae was hand-applied to each plot by shaking granules through 

the punctured lid of a glass jar. Fields were overhead irrigated 1.27 cm after each 

application event in both 2018 and 2019 to ensure adequate biological survival based on 

the label and previous research (Georgis, 1990; Shapiro-Ilan et al., 2006). However, for 

the first application timing in 2018 (April 25), S. riobrave and Bt galleriae plots were 
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hand irrigated post-application with spray equipment (11.4 L H2O/plot) given that 

overhead irrigation was not accessible. 

 

2.3 Data collection 

2.3.1 Effect of Treatments on CRC Immatures 

At approximately 4-weeks post-application, CRC larval and pupal populations in 

each plot were measured by haphazardly taking four soil cores (subsamples 

approximately 10 cm diam.  25 cm depth) using a drain spade. Using modified methods 

from Lau and Filmer (1959) and Leibee et al. (1980), soil cores were processed by 

washing samples through a series of sieves (U.S. standard set #5, #10, #35, #60) 

separating CRC immatures from soil particulate. Head capsule width of each larva was 

measured with an ocular micrometer under a stereomicroscope (Leica MZ6, Leica 

Microsystems, Wetzlar, Germany) to evaluate insecticide affects by instar. 

2.3.2 Effect of Treatments on Alfalfa Taproot Damage 

Roots from each subsample in 2018 were reserved to quantify CRC-associated 

feeding damage using methods from Price (2017). First, lateral roots were removed from 

the taproot, and the taproot was then sliced longitudinally so the inner cortex could be 

removed which aids in the root sample lying flat for root scarring calculations. To 

calculate the percent of damaged area, the flattened root was scanned (Canon CanoScan 

LiDE 60) with a metric ruler for scale. Within season CRC root scars (≤ 1 year old 

damage) were digitally traced using Photoshop. New damage was determined by the 

damaged area being lighter in coloration when compared to the outer cortex, a distinct 

ridge or edge as the feeding boundary, or the presence of loose fibers from fresh feeding 
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in the damaged area. Root scarring area was subsequently analyzed using ImageJ 

software (ImageJ 1.49f; http://rsbweb.nih.gov/ij/). Root damage data from 2019 was not 

quantified because new damage was difficult to quantify from the prior 6 years of 

accumulative CRC larval damage (61.0 ± 15.2 % existing root damage). 

2.3.3 Steinernema spp. Persistence in Soil 

To verify successful nematode applications, nematode presence was confirmed by 

subjecting greater wax moth (Galleria mellonella L.) larvae to four soil samples taken 

(depth of 10 cm, 4 subsamples per plot) haphazardly from both nematode and control 

treatments at 1, 4, and 8 weeks post-application using the insect baiting technique 

described by Bedding and Akhurst (1975). Briefly, soil was cleared of large debris such 

as plant material or stones, moistened with deionized water, and placed in a clean plastic 

container (500 mL, 11.5 cm diameter × 7.5 cm height). Five greater wax moth larvae 

were placed on the surface of the soil, and the container was inverted after being covered 

with a lid. Dead sentinel hosts (G. mellonella) were removed after 48 h and observed for 

signs of EPN infection. Insects infected with Steinernema spp. adopted a grey coloration 

characteristic of the symbiotic bacteria Xenorhabdus associated with this genus of EPNs 

(Boemare et al., 1996). 

 

2.4 Data Analysis 

 Data from the 2018 and 2019 trials were analyzed separately using R statistical 

software (RStudio).  

2.4.1 Effect of Treatments on CRC Immatures 

http://rsbweb.nih.gov/ij/


96 

 

In 2018, CRC immature counts (larvae and pupae combined) were analyzed 

within a two-way Analysis of Variance (ANOVA) with four levels of treatment (two 

biological insecticides, S. riobrave, Bt-galleriae; one systemic insecticide, 

flupyradifurone; and an untreated control) and two levels of application time (before 

larval peak and during larval peak). In 2019, a single application was applied therefore a 

one-way ANOVA was performed to compare CRC immature counts and larval head 

capsule widths for the 5 treatments that included S. riobrave, Bt-galleriae, B. bassiana, 

flupyradifurone, and control. When significant differences were detected via ANOVA, 

the post-hoc Tukey’s HSD test was used to separate significantly different mean values. 

2.4.2 Effect of Treatments on Alfalfa Taproot Damage  

The proportion of root area consumed in 2018 was transformed 

(sin−1 √
 𝑎𝑟𝑒𝑎 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 (𝑚𝑚2)

𝑇𝑜𝑡𝑎𝑙 𝑟𝑜𝑜𝑡 𝑎𝑟𝑒𝑎 (𝑚𝑚2)
 ) for normality and  homoscedasticity and was similarly 

analyzed by two-way ANOVA with block as a random effect. When significant 

differences were detected via ANOVA, the post-hoc Tukey’s HSD test was used to 

separate significantly different mean values.  

2.4.3 Steinernema spp. Persistence in Soil 

For each of the three application times, two in 2018 and one in 2019, a repeated 

measures ANOVA was used to compare untreated control plots and S. riobrave treated 

plots at 1, 4, and 8 weeks post-application. When significant differences were detected 

via ANOVA, the post-hoc Tukey’s HSD test was used to separate significantly different 

mean values. 

 

3. Results 
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3.1 Effect of Treatments on CRC Immatures 

Overall in 2018, there was no significant difference in the number of immature 

CRC (larvae + pupae) collected among treatments (F = 1.29, df = 3, 32, P = 0.295). 

Although there were 6-8 times more CRC immatures collected after the first application 

timing compared to CRC collected after the second application timing (F = 42.23, df = 1, 

32, P <0.001) (Table 3-1), insecticide treatments did not improve CRC suppression for 

either timing (treatment × time interaction: F = 0.33, df = 3, 32, P = 0.801). Further, we 

found there were no significant differences in the effects of insecticides on CRC larval 

development (head capsule widths) compared to the control (F = 0.82, df = 3, 23, P 

=0.496) (Fig 3-1). Similarly, head capsule widths of larvae collected after the second 

application timing were 1.75 times larger than larvae collected after the first application 

timing (F = 82.51, df = 1, 23, P <0.001), but insecticide treatment efficacy was not 

impacted by increased larval size during the second application timing (treatment × time 

interaction: F = 0.69, df = 3, 23, P =0.570) (Fig 3-1).  

For the 2019 season similarly, CRC was not significantly suppressed by any of 

the insecticide applications compared to the control (F = 1.65, df = 4, 16, P = 0.211) 

(Table 3-1). Further, larval head capsule widths did not significantly differ between 

insecticide treatments and the control (F = 2.82, df = 4, 15, P = 0.063) (Fig 3-2). 
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Table 3-1. Effect of spray treatments on Sitona hispidulus number of immatures in Kimberly, ID, for 2018 and 2019. Means (± SE) 

presented did not differ significantly (P = 0.05) among treatments; NT = not tested 

 

 Number of Immatures *  Larval Head Capsule Width 

 2018  2019  2018  2019 

Treatment 1st App. 2nd App.    1st App. 2nd App.   

Control 4.13 ± 1.01 0.54 ± 0.15  3.05 ± 0.69  0.46 ± 0.08 0.77 ± 0.04  0.63 ± 0.08 

Flupyradifurone 4.25 ± 1.27 0.67 ± 0.33  5.30 ± 1.13  0.37 ± 0.02 0.78 ± 0.03  0.77 ± 0.01 

Bt-galleriae 3.38 ± 0.59 0.50 ± 0.31  5.20 ± 0.87  0.42 ± 0.05 0.77 ± 0.03  0.80 ± 0.02 

S. riobrave 2.75 ± 0.50 0.42 ±0.17  5.80 ± 1.01  0.44 ± 0.03 0.71 ± 0.06  0.76 ± 0.02 

B. bassiana NT NT  4.90 ± 0.59  NT NT  0.74 ± 0.02 

* larvae and pupae combined 
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Figure 3-1. Larval head capsule widths for Sitona hispidulus larvae collected from 

control and insecticide treated plots in Kimberly, ID alfalfa for 2018. The width of the 

shaded area represents the proportion of data located there. Means (indicated by ×) 

presented did not differ significantly (P = 0.05) among treatments.  
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Figure 3-2. Larval head capsule widths for Sitona hispidulus larvae collected from 

control and insecticide treated plots in Kimberly, ID alfalfa for 2019. The width of the 

shaded area represents the proportion of data located there. Means (indicated by ×) 

presented did not differ significantly (P = 0.05) among treatments.  
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Table 3-2. Mean (±SE) proportion of alfalfa root area consumed by Sitona hispidulus 

larvae in Kimberly, ID, 2018. Means presented did not differ significantly (P = 0.05) 

among treatments. 

Treatment 1st Application 2nd Application 

Control 0.09 ± 0.02 0.09 ± 0.01 

Flupyradifurone 0.09 ± 0.01 0.10 ± 0.02 

Bt-galleriae 0.08 ± 0.02 0.13 ± 0.02 

S. riobrave 0.09 ± 0.02 0.08 ± 0.01 

 

 

3.2 Effect of Treatments on Alfalfa Taproot Damage 

With no differences in CRC immature (larvae + pupae) suppression occurring 

after insecticide applications in 2018, taproot damage was also equal among treatments 

and the control (F = 0.31, df = 3, 32, P = 0.818) (Table 3-2). Further, the proportion of 

taproot damage did not differ between application times (F = 9.61, df = 1, 32, P = 0.334) 

(Table 3-2).  

3.3 Steinernema spp. Persistence in Soil 

After the first application in 2018, the average proportion of Steinernema spp. 

infected greater wax moths in S. riobrave treated plots was not significantly different 

from the infection in control (F = 1.40, df = 1,10, P = 0.264) regardless of time post-

application (F = 1.21, df = 2, 10, P = 0.339) (Fig 3-3A). However, after the second 2018 

application, there was a significant interaction between treatment (S. riobrave treated and 

control) and time post-application (1, 4, or 8 weeks) (treatment × post-application time 

interaction: F = 6.79, df = 2, 25, P = 0.004). Post hoc tests indicated the proportion of 

wax moths infected by Steinernema spp. in S. riobrave treated plots at 4 weeks post-

application was significantly higher (P < 0.001) than infection in S. riobrave treated plots 
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at 1- and 8-weeks post-application. Further, only at 4-weeks post-application was 

infection in S. riobrave treated plots significantly higher (P < 0.001) than infection in 

control plots (Fig 3-3B). The proportion of greater wax moth infection in control plots 

remained the same over time (P = 1.00). Similarly in 2019, the proportion of 

Steinernema spp. infected greater wax moths was significantly affected by treatment and 

time (treatment × post-application time interaction: F = 41.03, df = 1, 22, P <0.001). Wax 

moth larval infection in S. riobrave treated plots was highest 1-week after application (P 

< 0.001) and steadily declined over time. Infection in S. riobrave treated plots was 

significantly higher than infection in control plots at 1- and 4-weeks post-application (P 

<0.001), but at 8-weeks post-application, infection was similar (P = 1.00) between 

treatment and control (Fig 3-3C). Similarly, wax moth infection in control plots did not 

change significantly over time (P = 1.00). 
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Figure 3-3. Mean (±SE) proportion of wax moths infected by Steinernema spp. in 

Steinernema riobrave treated and non-treated (control) plots over time (1, 4, and 8 weeks 

post-application) for the first application (A) and second application (B) in 2018, and the 

single application in 2019 (C). Results from repeated measures ANOVA are shown 

inside the graphs. NS (P > 0.05) * (P < 0.05) **(P < 0.01) *** (P < 0.001). S.r. = S. 

riobrave  

 

  

Treatment: NS 
Time: NS 
Interaction: NS 

Treatment: ** 
Time: * 
Interaction: ** 

Treatment: *** 
Time: *** 
Interaction: *** 
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4. Discussion 

 Contemporary research on CRC larval management is limited and increases in 

damage resulting from the cancellation of broad-spectrum insecticides with soil-activity 

substantiates the need for evaluating biological and systemic insecticides. In the present 

study, resident CRC populations were observed in all plots in both 2018 and 2019, and 

root damage occurred on all collected plants. Insecticides applied during this study, 

biological or synthetic, did not affect the total number of immatures collected or improve 

the resulting feeding damage compared to the untreated control. Given the diversity of 

insecticide types and modes of action it was surprising that our evaluation did not result 

in any one product suppressing CRC. Yet, CRC larval management with insecticides has 

historically been challenging. For instance, the efficacy of spring chlorinated 

hydrocarbon applications in reducing belowground larval damage ranged from not 

effective or moderately effective (Dunn et al., 1964; Waters, 1964) to highly effective 

(Forsythe and Gyrisco, 1962; Turner Jr., 1957) even with significant reductions in 

aboveground adult populations (Dunn et al., 1964; Forsythe and Gyrisco, 1962). Despite 

our results, we can glean important information and consider the many factors that may 

explain them. These include but are not limited to reduced systemic translocation to roots 

and reduced biological agent establishment, soil penetration, or host finding as a result of 

soil characteristics. 

Management of belowground pests like CRC often presents unique challenges, 

due, in part, to complications with ease of access for monitoring, measuring damage, and 

targeting with insecticides. For example, although S. lineatus larvae belowground cause 

significant damage to pea roots, monitoring and chemical control focuses on adults that 
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are easy to access aboveground, even though there may be little to no direct impacts on 

immature stages belowground or significant increases in yield (Cárcamo et al., 2018). 

Furthermore, difficulties in laboratory rearing forces researchers to rely on field-collected 

organisms or resident populations for laboratory and field experiments. For example, in 

historic CRC rearing methods (Baker and Byers, 1977; Byers, 1995; Newton, 1958) 

survival was often too low (< 17% survival) to result in large numbers of larvae for 

experiments. There are no effective methods for CRC rearing, and field-collected larvae 

are difficult to obtain in high quantities to screen insecticidal products against larvae in 

the laboratory. Thus, field testing has been the primary mode of insecticide research for 

CRC. However, additional challenges occur when relying on resident field populations 

for testing, such as low pest densities or patchy distributions. This is indeed the case with 

CRC as populations have aggregated field distributions (Ng et al., 1977; Quinn and 

Hower, 1985), and an average of 3.0 ± 0.3 immatures (larvae + pupae) were collected 

across all samples in this study. Given these challenges, it is imperative to test products 

over multiple years, fields, pest densities, and times. 

The systemic insecticide treatment, flupyradifurone, failed to reduce numbers of 

CRC immatures in both years. Similarly, Barratt (1985) found no differences in Sitona 

discoideus Gyll. (Coleoptera: Curculionidae) larval density between plots treated with 

systemic insecticides, oxamyl and fenamiphos, and control plots. This was hypothesized 

to result from insufficient insecticide translocation and inadequate application 

concentrations (Barratt, 1985). Research is limited on flupyradifurone translocation rates 

and activity belowground following foliar sprays, but translocation to root material from 

seed treatments has been recorded by Stamm et al. (2016). Still, flupyradifurone 
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translocation to leaf material has been demonstrated to be rapid (as early as 4 days) and 

persistent (24 days) in greenhouse-grown tomato after soil drenches (Nauen et al., 2014). 

Further, flupyradifurone soil applications at maximum yearly rates (409 g ai/ha) were 

moderately efficacious in decreasing belowground cabbage maggot (Delia radicum L.) 

numbers and feeding after 1 and 3 days (Joseph and Zarate, 2015). Due to the two 

applications in 2018, we tested a rate at half of the maximum yearly rate (205 g ai/ha) for 

each application. Although post-application irrigation was intended to wash active 

ingredients into the root zone, the reduced efficacy belowground was still likely a result 

of xylem transport of flupyradifurone in the direction of transpiration upward to the 

shoots (Nauen et al., 2014). Therefore, applications of flupyradifurone, despite 

application rate or application technique (foliar vs. soil drench), may not translocate to 

root material at adequate concentrations to target belowground pests. Indeed, the past 

success of carbofuran in CRC management may be a result of the downward 

transportation of active ingredients through phloem (Kleier, 1994). 

The nematode application rate informed by recommendations (Georgis, 1990; 

Shapiro-Ilan et al., 2006) and used here allowed for nematode establishment as we 

recovered nematode-infected greater wax moth larvae. However, CRC immature 

populations were not impacted by this treatment. We posit prohibitive soil characteristics 

(e.g., high clay content) and environmental factors (e.g., heat, UV, low moisture) in field 

settings may require higher application rates to offset potential reduced nematode 

movement and survival (Georgis and Poinar, 1983; Kung et al., 1991, 1990) or patchy 

CRC distributions (Ng et al., 1977; Quinn and Hower, 1985). For instance, while similar 

rates of 2.5 bil H. bacteriophora IJs/ha provided >70% CRC control in the laboratory 
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(Loya and Hower, 2003), only field applications of 7 bil IJs/ha and 15 bil IJs/ha 

decreased CRC populations and damage in the field (Loya and Hower, 2002). Moreover, 

nematodes only persisted for multiple years in field soil when applied at 15 bil IJs/ha 

(Loya and Hower, 2002). Steinernema riobrave effectively manages other belowground 

weevil pests in the field, namely plum curculio (Conotrachelus nenuphar (Herbst); 

Coleoptera: Curculionidae) (Shapiro-Ilan et al., 2004) and Diaprepes abbreviatus 

L.(Coleoptera: Curculionidae) (McCoy et al., 2000), and is especially well-adapted for 

environments with higher ambient temperatures. But even in these systems, field 

application rates for successful control exceed 10 bil IJs per ha (McCoy et al., 2000; 

Shapiro-Ilan et al., 2004). Field application rates higher than the 2.5 bil IJs/ha 

recommended by Georgis (1990) and Shapiro-Ilan et al. (2006) may be necessary to 

observe significant reductions in CRC populations and damage, as was observed in Loya 

and Hower (2002). However, the economic feasibility of these types of applications 

should also be evaluated. 

Furthermore, while pre-application soil moisture levels were adequate (>14% 

VWC, Table 3-S2) for Steinernema infectivity at all application times and years (Grant 

and Villani, 2009; Molyneux and Bedding, 1984), plots were individually hand-watered 

after the first application in 2018 due to unavailability of overhead irrigation at 

application time. This delayed and reduced volume of post-application irrigation was 

reflected in the low Steinernema spp. wax moth larvae infection observed after the first 

application in 2018. The increased time required to hand-water each plot in 2018 may 

have increased exposure of S. riobrave to harmful ultraviolet light and desiccation 

(Georgis, 1990; Kaya and Gaugler, 1993), further reducing nematode survival and soil 
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penetration. However, even with adequate irrigation (1.27 cm) during the second 

application in 2018 and in 2019, CRC populations were not affected.  

Similar to this study, granular Bt-galleriae (grubGONE!) applied at label rates, 

the same product and rate tested herein, failed to reduce Scarabaeidae larval populations 

in field studies (Popillia japonica Newman and Cyclocephala hirta Le Conte) at several 

sites and application timings (Hubble-Wirgler and Sutherland, 2017; Redmond et al., 

2019). The challenges described in these studies may correspond to issues in efficacy in 

our study as we hypothesize that Bt-galleriae did not establish in the soil or could not 

adequately penetrate the soil to be ingested by susceptible stages. Early stage larval CRC 

(1st-3rd instar) may additionally be less likely to ingest Bt as they are frequently concealed 

inside nodules, feeding, and protected by the hollowed-out nodule (Danthanarayana, 

1969). Bt spore survival depends on a variety of soil metrics including soil pH, moisture, 

nutrients, and the presence of resident microorganisms (West et al., 1985). Soil moisture 

and pH in 2018 and 2019 fields were adequate for Bt survival (West et al., 1985), 

however, nutrient levels important for microbes and levels of indigenous microorganisms 

were not assessed in this study. It is possible that resident microorganisms competed with 

Bt for nutrients, thus, reducing survival and establishment of Bt and its crystalline protein 

that provides insecticidal activity (West et al., 1984).  

Importantly, Bt soil penetration depends on soil texture. For example, Saxena et 

al. (2002) found that in clay amended soils (12% clay) only 16% of Bt crystalline protein 

leached through 15 cm deep soil columns, and that Manduca sexta L. (Lepidoptera: 

Sphingidae) larval mortality from leachates was reduced by nearly half in this soil type 

compared to non-amended soil. In 2018 and 2019 fields, native soil was silty clay loam 
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and silt loam, respectively, with clay contents exceeding 12% and potentially decreasing 

Bt penetration. Additionally, soil penetration of Bt under field settings has been reported 

to range from <1 to 6 cm deep even when irrigation is adequate (Akiba, 1991). 

Considering CRC larval feeding is concentrated in the upper 25 cm of alfalfa taproots 

(Dickason et al., 1968) and that Bt must be ingested for successful infection, Bt 

applications to soil surfaces, especially in heavy clay soils, may fail to reach larvae 

feeding deeper in the soil profile. 

Most studies on microbial management of CRC with fungi focuses on adults (e.g., 

Crow et al., 1968; Quinn and Hower, 1985b) and none, to our knowledge, have tested B. 

bassiana in the field to manage CRC adult or larval populations. Nelson et al. (2004) 

found that regardless of application rate, a B. bassiana spore establishment of >104 

spores/g of soil was important for efficacy against S. lepidus larvae belowground. Further, 

spore suspensions, like the suspension used in the current study, had higher (104 – 105 

spores/g of soil) and more uniform spore establishment in the soil than granular 

applications (Nelson et al., 2004). However, suspensions were applied to the soil surface 

in Nelson et al. (2004), while in the current study, the suspension was applied to tall 

alfalfa. Although post-application irrigation was intended to wash B. bassiana spores off 

leaves to the soil surface, we did not measure spore levels to ensure adequate levels of 

spores established (>104 spores/g of soil) in the alfalfa root zone for effective CRC 

immature management. Ideally, field applications of B. bassiana to target CRC 

immatures should be applied directly to the soil surface or when alfalfa is short (<10 cm) 

early in the season or immediately after harvest. However, early season larval densities 

may be low (e.g., Table 3-S2, larvae at first application 2018) when alfalfa is short early 



110 

 

in the season, and traditional first harvests in Idaho and northern Utah occur after most 

larval damage has occurred (mid- to late June). Thus, our application focused on ensuring 

sufficient numbers of larval hosts were available for pathogen infection, but also that 

larval reductions at this time might still decrease root damage. Because B. bassiana is the 

most common natural enemy of CRC, future studies on augmentative biocontrol should 

continue to evaluate B. bassiana applications but may determine the appropriate foliar 

rate for adequate spore establishment and persistence in the soil after irrigation, 

investigate other formulations (granular), or test different application techniques 

(chemigation, soil drench). 

Although larval head capsule widths did not significantly differ among treatments 

at any application, we hypothesize that the reduced variation observed in insecticide 

treated plots may be a result of particular instars being more susceptible to certain 

products, especially in regard to the biological insecticides. For example, in the 

laboratory, H. bacteriophora Poinar, Steinernema feltiae Filipjev, and Steinernema 

bibionis Steiner infect and reproduce in all CRC stages, but later instars are the most 

susceptible stage (Jaworska and Wiech, 1988; Wiech and Jaworska, 1990). Additionally, 

Loya and Hower (2003) found that H. bacteriophora could not reproduce in first instars. 

Furthermore, we hypothesize that 1st and 2nd instars feeding inside nodules and protected 

by the nodule epidermis are less likely to encounter and ingest Bt that is in the soil 

medium. Larval head capsule widths after the first application in 2018 were generally 

smaller overall, but larvae for untreated control plots varied widely from 2nd to 4th instar, 

while widths for insecticide treatments grouped around 2nd and 3rd instars. Similarly, head 

widths in the control plots at the second application time in 2018 and the 2019 
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applications varied across 3rd to 5th instars, but head capsule widths in insecticide treated 

plots were mostly restricted to 5th instars. Further studies in the laboratory and field 

investigating the interaction of CRC stage and feeding habits as they relate to 

susceptibility and biological agent reproduction are needed. 

Lastly in 2018, the proportion of root area consumed was not different between 

insecticide treatments and the untreated control. Because CRC taproot damage is 

cumulative (Dickason et al., 1968), there are sometimes difficulties identifying “new 

damage” (≤ 1 year old damage) from old damage, especially in older stands. Although 

damage estimations taken using these methods were an appropriate metric for assessing 

taproot damage, it is equally important to note that mainly 4th and 5th instars are 

consuming taproot material (Dintenfass and Brown, 1986). Alternative methods to 

quantify damage to alfalfa roots such as counting damaged nodules and rootlets (Price, 

2017) may provide more complete information on larval feeding damage from a wider 

range of larval stages (1st-3rd instars) within a season. 

 Studying belowground pests like CRC can be difficult as rearing, monitoring, 

measuring damage, and targeting with pest control programs is complicated by cryptic 

habits and soil interactions. Further barriers arise in CRC damage evaluations in that 

damage builds up quickly over time in perennial alfalfa systems. Resident pest 

populations are also challenging to evaluate because of potentially low population 

densities and aggregated CRC population distributions, resulting in data that is often 

highly variable and skewed towards zero. Given these constraints, evaluating insecticide 

field applications for belowground pests can be a logistical challenge requiring a 

considerable amount of time. Indeed, we did not observe differences among the tested 
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insecticides. While this result can be attributed to the initial challenges in studying 

belowground pests, inadequate suppression may also be related to several factors specific 

to the unique biological insecticides used and new systemic product available for alfalfa. 

Using the most appropriate application rates for success in other systems, other factors 

related to local conditions may have affected the biological products. While a degree day 

model is needed, it is also clear that applications in our study were made at an appropriate 

time since larvae were present during applications. Future studies may continue to test 

insecticides for CRC larval management, but, as with the congener S. lineatus, it may be 

more feasible to focus insecticide evaluations on determining action thresholds and spray 

regimes for adult CRC in various regions, evaluating the future impacts on CRC larvae 

and damage over time. 
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Supplemental Tables 

 

 

 

Table 3-S1. Field characteristics were determined by taking ten soil samples 25-30 cm 

deep haphazardly throughout the field, combining samples in a clean container until 

thoroughly mixed, and sending 300 g of soil to be analyzed at Utah State University 

Analytical Laboratories.  

Field 

Season 

Age 

(yr) Soil Texture pH 

Salinity 

(dS/m) 

Phosphorus 

(mg/kg) 

Potassium 

(mg/kg) 

2018 4 Silty Clay Loam 7.6 0.70 12.9 208 

2019 6 Silt Loam 7.7 0.58 12.0 218 



 

 

   

1
2
9
 

 

 

Table 3-S2. Pre-application measurements were taken before each application in both field seasons. Field soil moisture (% volumetric 

water content (%VWC)) was measured thrice from each plot throughout the field using a soil moisture meter (Field Scout TDR100, 

Spectrum Technologies Inc., Aurora, IL) with 7.62 cm probes. Additionally, 5 soil core samples were taken haphazardly throughout 

the field to determine initial CRC immature density and stage. Mean (±SE) soil moisture, mean (±SE) number of Sitona hispidulus 

eggs, hatched eggs, and larvae, and mean (±SE) head capsule width were calculated from these data. NA = not applicable 

 

 

Date 

Soil Moisture 

Content 

(%VWC) Eggs Hatched Eggs Larvae 

Mean head 

capsule width 

(mm) 

2018      
 

   1st Application April 25 27.89 ± 0.47 19.6 ± 5.36 6.2 ± 2.58 0.0 ± 0.0 NA 

   2nd Application June 21 53.36 ± 0.67 2.2 ± 1.60 - 1.88 ± 1.03   0.88 ± 0.04 

2019       

   Application May 24 42.23 ± 0.50 14.9 ± 2.96 21.2 ± 1.07 3.6 ± 0.93  0.38 ± 0.05 
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CHAPTER IV 

EVALUATION OF ALFALFA (FABALES: FABACEAE) CULTIVARS FOR 

RESISTANCE TO CLOVER ROOT CURCULIO  

 

Abstract 

Since the cancellation of broad-spectrum soil-active insecticides in the 2000s, 

clover root curculio (Sitona hispiduls F.) (CRC) larval root damage has increased in 

alfalfa (Medicago sativa L.) production. Few studies have evaluated contemporary 

cultivars for potential resistance to CRC. Therefore, we first investigated potential cross-

resistance between commercial root-pathogen resistant varieties (root-knot nematode and 

Phytopthora root rot) and CRC. Here we tested three varieties, a variety susceptible to 

root-pathogens (control), and one variety each with moderate and high root-pathogen 

resistance. Next, we tested 5 developmental alfalfa lines against larvae where two were 

CRC-susceptible (control) lines, and three were resistant to CRC. A soil-less arena was 

used to observe nodule feeding and development (head capsule width) of larvae. Further, 

one CRC-resistant line paired with its genetically similar CRC-susceptible line were 

tested against CRC adults. Leaf area consumption and oviposition were estimated for 

plants exposed to CRC adults under greenhouse conditions. Regardless of resistant 

variety or alfalfa line, adult feeding and oviposition were similar within each trial 

compared to susceptible controls. Further, results from cross-resistance trials 

demonstrated there were no differences in larval nodule consumption or development, 

suggesting root-pathogen resistance may not influence resistance towards CRC larvae. 

Although larval development was similar across susceptible and resistant lines, one CRC-
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resistant line displayed overall increased nodulation, and thus, had a significantly lower 

proportion of nodules consumed by larvae. Further research is needed to understand if 

nodulation is an advantageous adaptation, as nodule growth may increase alfalfa 

resilience towards larvae, but also increase resources for neonates.  

 

Keywords: feeding behavior, oviposition, belowground herbivore, host-plant resistance, 

conferred resistance 
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Introduction 

Clover root curculio (CRC) (Sitona hispidulus F.) (Coleoptera: Curculionidae) is 

an alfalfa and clover (Fabales: Fabaceae) pest that negatively affects alfalfa plant health 

and yield. Adults feed aboveground on leaves, yet typically do not cause economic losses 

(Rim et al. 2019). Conversely, immature CRC feed on roots belowground and are 

recognized as the damaging stage (Rim et al. 2019). Larval feeding can result in reduced 

stand life and density, plant stunting, yield loss, and decreased plant overwintering 

survival (e.g., Godfrey and Yeargan 1987, Godfrey et al. 1987, Gotlieb et al. 1987). 

Furthermore, larval feeding damage increases plant susceptibility to Fusarium 

(Hypocreales: Nectriaceae) infections which can exacerbate these problems (Graham and 

Newton 1960, Hill et al. 1969, Leath and Hower 1993). Since the cancellation of broad-

spectrum soil-active insecticides (e.g., carbofuran) and fumigants commonly used against 

alfalfa weevil (Hyera postica Gyllenhal, Coleoptera: Curculionidae) (EPA 2009, Tietz 

2012), there have been notable increases in CRC populations and associated root damage 

(Tietz 2012). Furthermore, broad-spectrum insecticides registered for CRC adult 

management may have detrimental non-target effects, and current management practices 

are limited in their ability to manage cryptic CRC larvae (Wenninger and Shewmaker 

2014, Rim et al. 2019). Thus, developing integrated pest management tactics is critically 

needed. 

The development of tolerant or resistant host plants has been integral to successful 

integrated pest management programs in cropping systems. For example, the 

development of solid-stemmed wheat in the 1940s significantly reduced wheat stem 

sawfly (Cephus cinctus Norton, Hymenoptera: Cephidae) infestations (Platt et al. 1948) 
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and continue to be used in spring wheat production (Morrill et al. 1994). Fortunately, 

over 100 alfalfa varieties are commercially available with varying resistance to a 

multitude of alfalfa pests (NAFA 2017). However, development of resistant alfalfa 

varieties primarily targets hemipteran pests like aphids and leafhoppers, or plant 

pathogens like nematodes and bacterial wilts. Presently, no commercial alfalfa cultivars 

are available with resistance to chewing insects such as alfalfa weevil or CRC, in part due 

to the high genetic variability in alfalfa (Maureira and Osborn 2005), and also 

considering that mechanisms underlying alfalfa resistance to chewing insects (e.g., 

saponins) may potentially interfere with palatability (e.g., bloat in livestock; Fay and 

Dale 1993). 

Historic evaluations for CRC resistance identified potentially resistant lines (e.g., 

Lahontan), but have yet to identify resistance mechanisms (e.g. Byers and Kendall 1982, 

Byers et al. 1996). However, research on congeners may shed some light on host plant 

characteristics that may confer resistance to CRC. For instance, as leaf thickness 

increased for pea plants, herbivory from adult Sitona lineatus L. (Coleoptera: 

Curculionidae) decreased (Havlíčková 1980). Additionally, sweetclover root disks 

impregnated with nitrates, arabinose, ascorbic acid, glucuronic acid, or mannitol, all 

isolated from healthy plants, deterred Sitona cylindricollis Fåhraeus (Coleoptera: 

Curculionidae) feeding (Akeson et al. 1970).  

Cross-resistance is a component of resistant varieties, whereby resistance to one 

pest results in resistance to other pests through a common resistance mechanism. Cross-

resistance has been reported between different pest groups and niches, including aphids 

and plant pathogenic nematodes (e.g., Kaloshian et al. 1995, Rossi et al. 1998, Vos et al. 
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1998, Ramirez and Spears 2014). Although this interaction is well-studied in tomato, 

cross-resistance between two alfalfa foliar pests from different phyla has been recorded. 

Here, varieties with resistance to stem nematode effectively decreased aphid populations, 

regardless of aphid resistance (Ramirez and Spears 2014). In fact, plant-mediated 

interactions between different pests and cross-resistance research has routinely focused 

on foliar pest complexes or the impact of root herbivory on foliar pests (Bezemer et al. 

2003, Soler et al. 2005, Van Dam et al. 2005). Given these interactions and observations 

of resistance toward a multitude of pest types, sources of resistance may already exist in 

commercially available varieties when cross-resistance is considered. Given the lack of 

studies on belowground pest complexes and potential cross-resistance, it is necessary to 

investigate existing commercial alfalfa varieties with resistance to belowground plant 

pathogens for cross-resistance towards CRC larvae. 

Research is ongoing at the Cornell Forage Breeding Program (Ithaca, New York, 

USA) to develop CRC-resistant alfalfa lines (Neally et al. 2006, Crawford et al. 2018). 

Thus far, this project has developed and released an alfalfa snout beetle (Otiorhychus 

lingustici L., Coleoptera: Curculionidae) (ASB) resistant line (Seedway 9558 SBR) 

(Crawford et al. 2014, Ramanujan 2014). This weevil causes significant root damage to 

alfalfa in northern New York, similar to damage caused by CRC larvae (York et al. 

1971). Additionally, in initial field screenings of experimental CRC-resistant and 

susceptible lines, resistant lines showed higher crown and root biomass and lower root 

damage ratings in response to larval feeding (Crawford et al. 2018). However, only plant 

biomass and damage ratings were collected during this study; thus, further research is 
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needed to understand the effects of these developmental lines by assessing impacts to the 

target herbivore, CRC.  

Here, a laboratory no-choice test was used to evaluate (1) commercial alfalfa 

varieties from Alforex Seeds (Woodland, CA) resistant to root-knot nematode and other 

root pathogens for potential cross-resistance to CRC and, (2) developmental alfalfa lines 

resistant and susceptible to CRC from Cornell University’s Forage Breeding laboratory. 

We measured larval nodule feeding and development of early-instar CRC larvae using a 

soil-less method. Additionally, adult feeding on aboveground leaf tissue and oviposition 

on these alfalfa lines and varieties were assessed. We hypothesized that CRC-resistant 

lines would exhibit reduced adult feeding and oviposition aboveground, and decreased 

nodule feeding and CRC larval development (head capsule widths) belowground. Lastly, 

should root-knot nematode resistance be conferred to CRC, we similarly hypothesized to 

observe reduced nodule feeding, slower larval development, and decreased adult 

oviposition behavior. 

Materials and Methods 

Cross-Resistance Alfalfa Variety Trial.  

To examine conferred resistance between root pests and CRC, commercial 

varieties PGI459 and PGI437 (Alforex Seeds, Woodland, CA) were selected from the 

2017 National Alfalfa and Forage Alliance alfalfa variety ratings for their high resistance 

to northern root-knot nematode (RKN, Meloidogyne hapla, Tylenchida: Heteroderidae). 

Further PGI437 and PGI459 were additionally rated resistant and highly resistant to 

Phytopthora (Peronosporales: Peronosporaceae) root rot, respectively. Varieties with 

‘high resistance’ to pests are quantified as having more than half (50%) of plants resisting 



136 

 

 

pest damage while ‘resistant’ varieties resist pests and damage in 31-50% of plants 

(NAFA 2017). The check variety, Ranger, was selected due to its purported susceptibility 

to both CRC and northern root-knot nematode (Pedersen et al. 1976, Griffin and Elgin 

1977, Griffin 1980). The commercial varieties PGI437 and PGI459 were compared to the 

check variety, Ranger. Both CRC adults and larvae were tested against PGI437, PGI459, 

and Ranger to examine cross-resistance between root pathogens and CRC. 

CRC-Resistant Alfalfa Line Trial.  

Three developmental CRC-resistant (NY1713, NY1720, and NY1719) and two 

CRC-susceptible (NY1718 and NY1717) non-commercial lines from Cornell University 

were tested. Developmental lines were derived from Oneida Ultra (NY1720 and 

NY1717) (Viands et al. 2004a) or Seedway 9558 (NY1713 and NY1718) (Viands et al. 

2004b) parental alfalfa populations. The line NY1719, a cross between both CRC-

resistant lines NY1713 and NY1720, was also tested. To investigate CRC-resistance in 

these developmental lines, all five lines were tested against CRC larvae with the CRC-

susceptible lines, NY1718 and NY1717, serving as positive controls. Further, the CRC-

resistant line NY1713 paired with its CRC-susceptible line, NY1718, was tested against 

CRC adults. 

Collection of clover root curculio. 

Clover root curculio eggs were collected from wild populations located at 

Greenville Research Farm (Logan, Cache Co., UT) whereby a hand trowel was used to 

collect soil to a depth of 2.5 cm (~ 300 mL of soil per sample) around alfalfa crowns 

(Rim et al. 2019) during October of 2017 and 2018. Soil samples were processed 

similarly to the methods described by Rim et al. (2019). Briefly, soil was washed through 
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a series of sieves (U.S. standard set #5, #10, #35, #60), particulate matter from the #60 

sieve was examined under a stereomicroscope, and mature CRC eggs were placed on a 

moistened filter paper within a parafilm-sealed petri dish. Eggs were stored in the 

refrigerator (5-7C) until use in larval trials (1-4 wk after collection) where neonate 

larvae emerged from eggs (see Larval Evaluations section).  

Adult CRC were field collected from August to October of 2018 and 2019 using a 

handheld vacuum mulcher (Echo ES-250, Lake Zurich, IL) modified into a sampling 

device. Clover root curculio adults recovered from vacuum samples were placed in a bug 

dorm (BioQuip Products Inc., Compton, California, USA) with a moistened cotton roll 

(Patterson Companies, Saint Paul, MN) and alfalfa bouquets replenished every 3-4 d. 

Clover root curculio adults are not sexually dimorphic; therefore, we observed copulation 

or mate guarding behavior for sex determination and collected adult pairs in a 9-dram vial 

with a moist cotton wick. Adults were subsequently stored at 5-7˚C for 1-2 wks and 

cotton wicks were moistened ad libitum until their use (see Adult Evaluations section) 

Larval Evaluations. 

Plants used in the larval study were grown hydroponically at optimal temperature 

for alfalfa growth (23-25˚C) (Teuber et al. 1988) inside an incubator (#136LLVL 

Percival, Perry, IA) under constant environmental conditions (23-25˚C, 14L:10D, 

40%RH) for 2-4 months until use (Fig. 4-1). To standardize root nodule numbers at the 

initiation of the larval feeding experiment, nodules were randomly excised using a knife 

(X-ACTO, Elmer’s Products Inc., High point, NC) so that only 4 – 6 nodules remained at 

the start of the experiment. We used a completely random design to assign treatments 

(uninfested control or CRC infested) with one egg placed adjacent to the crown of each 
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CRC infested plant (~ 1cm deep). Uninfested controls were used to ensure no other 

factors were contributing to root material loss and/or growth during the experimental 

period. Each plant and egg, secured between germination paper, were rolled into 

transparency film for stability. We established 15 replications (both uninfested control 

and CRC infested) of each alfalfa variety or line within each respective trial and held 

them in the same incubator conditions as described above for plants. Eggs were 

monitored every 24 hr until first-instar larvae emerged, after which feeding continued on 

the plant undisturbed for one week. At the end of one week, surviving larvae were 

carefully removed, their head capsule width (mm) measured, and nodules observed for 

damage. Data were also recorded for the number of additional nodules that developed 

during the experiment.  

Adult Evaluations.  

Three to five plants were seeded in a 15.25 cm diameter  20.32 cm tall pot 

(experimental unit) filled with Sungro #3 Propagation Mix under greenhouse conditions 

(23°C, 14L:10D, 37% RH) until plants were approximately 30 cm in height. One of the 

germinated plants was randomly selected from each pot (20 replications for each line and 

variety) to be used in the experiment and all others were removed. To standardize the 

number of leaves, leaves were removed until there were only five trifoliate leaves per 

plant. Transparent enclosures (cages) were constructed by rolling transparency film into a 

~5cm diameter by 27.94 cm-long tube with a rubber band secured mesh bag over one end 

(top of the cage). Similar to the methods in Connin et al. (1966), plaster of Paris (DAP 

Products, Baltimore, MD) mixed as directed was poured over the freshly watered soil, 

creating a flat, white surface to aid in CRC egg collection. The uncovered bottom of each 
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cage was centered around each plant stem and pushed into the unset plaster, creating a 

plaster floor inside the cage. The plaster set for 30 minutes before CRC pairs were added. 

Plants were exposed to a mated pair for 4 d and beetle survival was recorded every 24 hr 

throughout the study. Replications from adult evaluations where one or both beetles died 

or escaped prior to the 4-d experimental period were excluded. Surviving beetles were 

then removed and placed in a 70% ethanol solution for sex confirmation via dissection, 

and eggs were counted within each cage. When CRC dissections revealed both beetles to 

be male, this replication was also removed from oviposition data. To estimate adult 

feeding damage (leaf area consumed and total leaf area), stems were cut at the base and 

shoot material was reserved. Additionally, negative controls were used to observe for 

indiscriminate oviposition behavior by placing CRC pairs into cages with a moistened 

cotton roll without plants.  

To calculate leaf areas, first, freshly collected shoot material were carefully 

placed and spread out on a flatbed scanner to obtain a digital image (Canon CanoScan 

LiDE 60, Canon, Ōta, Tokyo, Japan). A ruler was included to determine scale. Using 

Photoshop (Adobe, San Jose, CA), feeding damage was filled with a contrasting color 

(black) and the rest of the plant material was removed from the photo so that only 

damaged area was shown. Similarly, damaged area and remaining leaf area were filled to 

calculate total leaf area. These images were then analyzed with ImageJ (ImageJ 1.49f; 

http://rsbweb.nih.gov/ij/) by calculating the damaged and overall surface area of each of 

the 5 trifoliate leaves. 

Data Analysis.  

 All data were analyzed using R software (RStudio). 

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
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Cross-Resistance Alfalfa Variety Trial.  

Commercial alfalfa varieties were evaluated to investigate cross-resistance to 

CRC by selecting commercial varieties (PGI459 and PGI437) with varied resistance to 

root pathogens, analyzing larval and adult responses relative to a susceptible control 

variety (Ranger). To compare the total number of nodules consumed on the alfalfa 

varieties during larval evaluations, data were analyzed using generalized linear model 

(GLM) with the log10-link and Poisson distribution error. To compare group means, 

Tukey tests (95% confidence index) were applied to the GLM using the MultComp 

package. The proportion of nodules consumed (sin−1 √
# 𝑛𝑜𝑑𝑢𝑙𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 # 𝑛𝑜𝑑𝑢𝑙𝑒𝑠
 ) and larval 

head capsule width (mm) were compared among treatments using independent Kruskal-

Wallis rank sum test for uneven sample sizes and non-normal data. 

 Replications from adult evaluations where one or both beetles died prior to the 4-

d experimental period were excluded leaving 18, 18, and 19 replications for PGI437, 

PGI459, and Ranger, respectively. A two-way ANOVA for normal and homoscedastic 

data was performed on the proportion of leaf area consumed 

(sin−1 √
𝑎𝑟𝑒𝑎 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 (𝑚𝑚2)

 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 (𝑚𝑚2)
) for each variety by trifoliate leaf position (1 being the basal 

most trifoliate leaf and 5 the apical trifoliate leaf). Then, the overall proportion of leaf 

area consumed was estimated by combining total leaf area and consumed area data for 

the five trifoliate leaves in each replicate (∑ 𝑎𝑟𝑒𝑎 (𝑚𝑚2) 5
𝑛=1 ). Overall proportion of leaf 

area consumed (sin−1 √
 𝑎𝑟𝑒𝑎𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑜𝑣𝑒𝑟𝑎𝑙𝑙  (𝑚𝑚2)

 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (𝑚𝑚2)
 ) was analyzed by a one-way 

ANOVA. Tukey’s HSD post hoc tests followed ANOVAs to separate significant 

differences in adult feeding among varieties.  
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The total number of eggs laid (oviposition) during the experimental period (4 

days) was compared among alfalfa treatments (no-plant negative control, Ranger, 

PGI437, and PGI459) using a GLM with the log10-link and quasi-Poisson distribution 

error. Following the GLM analysis, Tukey HSD with a 95% confidence index was 

performed using the MultComp package for multiple comparisons. 

CRC-Resistant Alfalfa Line Trial. 

Developmental alfalfa lines were evaluated for resistance (NY1720, NY1713, and 

NY1719) and susceptibility (NY1717 and NY1718) to CRC larvae. Count data were 

analyzed using GLM with the log10-link and Poisson distribution error to compare the 

total number of nodules consumed on alfalfa lines, and the quasi-Poisson distribution 

error for the number of nodules grown between treatments (uninfested control and CRC-

infested) for each line with an average of ≥1 grown nodules. To compare group means, 

Tukey tests (95% confidence index) for multiple comparisons were applied to GLMs 

using the MultComp package. Independent Kruskal-Wallis rank sum tests for non-normal 

data were used to analyze the proportion of nodules consumed (sin−1 √
# 𝑛𝑜𝑑𝑢𝑙𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 # 𝑛𝑜𝑑𝑢𝑙𝑒𝑠
 

) and larval head capsule width (mm) data. When Kruskal-Wallis resulted in statistical 

significance (p ≤ 0.05) pairwise comparisons using Wilcoxon rank sum test with 

Bonferroni correction were performed.  

 Replications from adult evaluations where one or both beetles died prior to the 4-

d experimental period were excluded leaving 17 replications for each line tested 

(NY1718 and NY1713). Similar to the cross-resistance trial, a two-way ANOVA for 

normal and homoscedastic data was performed on the proportion of leaf area consumed 

for each line by trifoliate leaf position. The overall proportion of leaf area consumed was 
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then analyzed by a one-way ANOVA. Tukey’s HSD post hoc tests followed ANOVAs to 

separate significant differences in adult feeding among lines.  

Dissections for one replication revealed two females, thus, the total number of 

eggs laid (oviposition) for this replication was divided by two to adjust to one gravid 

female. Oviposition during the experimental period (4 d) was compared among CRC-

susceptible line, NY1718, and CRC-resistant line, NY1713, using a GLM with the log10-

link and quasi-Poisson distribution error. Following the GLM analysis, Tukey HSD with 

a 95% confidence index was performed using the MultComp package for multiple 

comparisons. 

Results 

Cross-Resistance Alfalfa Variety Trial. 

Clover root curculio larvae fed on all varieties and there were no significant 

differences between Ranger, the control variety, and the root pathogen-resistant 

commercial varieties in the total number of nodules consumed by larvae after 7 days 

(GLM: F = 1.269, P = 0.281) (Table 4-1). Similarly, the proportion of nodules consumed 

was not significantly different among Ranger (control) and the two root-pathogen 

resistant varieties (Kruskal-Wallis: χ2 = 4.573, df = 2, P = 0.102) (Table 4-1). Further, 

there was no effect of variety (Ranger, PGI437, and PGI459) on larval head capsule 

widths. (Kruskal-Wallis: χ2 = 3.319, df = 2, P = 0.190) (Table 4-1).  

 Across all commercial varieties on average, the proportion of leaf area consumed 

by adults was significantly greater on the apical trifoliate leaf compared to the four basal 

trifoliate leaves (ANOVA leaf position: F = 7.483, df = 4, 259, P < 0.001). Adults 

consumed nearly 2 times the leaf area on the uppermost trifoliate leaf (the 5th trifoliate 
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leaf from the bottom) compared to the other leaves (Fig. 4-2). There was no significant 

interaction effect between leaf position and variety (ANOVA variety × leaf position: F = 

0.940, df = 8, 259, P = 0.4842). Similarly, the overall proportion of leaf area consumed 

(all leaves on a single plant combined) was similar among Ranger, PGI437, and PGI459 

(ANOVA: F = 1.103, df = 2, 52, P = 0.339) (Table 4-2). Oviposition (total eggs) was 

significantly higher on all varieties compared to the no-plant control (GLM: F = 13.892, 

P < 0.001), where on average, females caged with plants laid 14.28 ± 2.39 eggs and those 

without plants deposited 0.61 ± 1.16 eggs (Fig. 4-3). Although seemingly more eggs were 

deposited on PGI459 (19.22 ± 5.42 eggs) with high resistance to both RKN and 

Phytopthora root rot, compared to the susceptible control, Ranger, and PGI437, with 

moderate resistance to root pathogens (11.30 ± 3.34 and 12.80 ± 3.65 eggs, respectively), 

differences were not significant (P = 0.39 and 0.59, respectively) (Fig. 4-3). 

CRC-Resistant Alfalfa Line Trial. 

The total number of nodules consumed by larvae did not differ among 

developmental alfalfa lines (GLM: F = 1.447, P = 0.216) (Table 4-3). However, the 

proportion of nodules consumed on NY1713, the Seedway 9558-derived CRC-resistant 

line, was approximately 3 times less than NY1720, the Oneida Ultra-derived CRC-

resistant line (Kruskal-Wallis: χ2 = 12.992, df = 4, P = 0.011) (Table 4-3). Only the 

NY1713 line grew more than one nodule on average (4.17 ± 1.12 nodules) over the 7-day 

experimental period compared to the other Cornell developmental lines (0.21 ± 0.12 

nodules). Yet, NY1713 nodules grew similarly on the uninfested control (4.53 ± 1.94 

nodules) and the CRC-infested treatment (3.8 ± 1.21 nodules) (GLM: F = 0.107, P = 
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0.747). Larval head capsule widths did not differ among the developmental lines 

(Kruskal-Wallis: χ2 = 7.051, df = 4, P = 0.133). 

In adult evaluations with CRC-resistant NY1713 and CRC-susceptible NY1718 

lines, there was a marginal significant difference in the proportion of leaf area consumed 

by trifoliate leaf number (ANOVA leaf position: F = 2.421, df = 4, 160, P =0.051). On 

average, adults consumed 1.5 times the leaf area on the uppermost trifoliate leaf (the 5th 

trifoliate leaf from the bottom) compared to other leaves (Fig. 4-4). There was no 

significant interaction between leaf position and variety (ANOVA variety × leaf position: 

F = 0.330, df = 8, 160, P = 0.858). Similarly, the overall proportion of leaf area 

consumed (all leaves on a single plant combined) was similar among lines (ANOVA: F 

=0.015, df = 1, 32, P = 0.912) (Table 4-4). Oviposition (total eggs) was not significantly 

different between NY1718 and NY1713 (GLM: F = 0.032, P = 0.860) (Table 4-4). 

Discussion 

No differences in larval development (head capsule widths) or in nodule 

consumption were found between root pathogen-resistant commercial varieties and 

Ranger, suggesting that, alfalfa bred for resistance to root pathogens may not confer 

resistance to larval CRC. In a study by Byers and Kendall (1982), the authors similarly 

found no difference in CRC larval growth (head capsule width and body length) on the 

Phytophthora root rot resistant variety, KS77, compared to a susceptible control. 

Although our study, and that of Byers and Kendall (1982), showed no conferred 

resistance, there is a paucity of information on cross-resistance between root pests and the 

mechanisms of resistance to root pests. Further, even when resistance mechanisms are 

known, they may differ between varieties (Postnikova et al. 2015). For instance, root-
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knot nematode resistance has been hypothesized to be a result of programmed cell death 

around the entry site (Williamson and Kumar 2006) or prevention of nematode entrance 

into root systems (Potenza et al. 2001, Dhandaydham et al. 2008). The mechanisms of 

resistance to root pathogens in PGI437 and PGI459 have not been evaluated, but it is 

possible that resistance mechanisms may differ between these varieties even though they 

target the same pest or pest group.  

However, pathogens and chewing insects affect plants in very different ways, 

thus, mechanisms likely differ. Kafle et al. (2017) found herbivore identity or feeding 

guild to be a key factor in influencing plant defense traits. Studies in tomato have also 

indicated that induced responses to sucking insects differ from those targeting chewing 

insects (e.g., Stout et al. 1998, Rodriguez-Saona et al. 2010). Therefore, it is possible that 

defense mechanisms and resistance towards CRC larval feeding are independent of those 

towards root pathogens.  

Interestingly, the cross-resistance and developmental line trial both showed CRC 

removed greater proportions of leaf area from the apical leaf, the youngest trifoliate leaf 

on experimental plants (5th leaf), compared to the older, more basal, trifoliate leaves on 

the plant. This same trend was observed by Price (2017) in a caged field study where 

beetles caged on uppermost leaves consumed more leaf area (mm2) than those caged on 

lower leaves. The observed increase in leaf area consumption on young leaves over 

mature leaves was consistent with the results in Coley (1980). It is currently unknown 

what influences adult CRC feeding, yet for the curculionid S. cylindricollis, adult diet 

preference was influenced by changes in concentrations of feeding stimulants (e.g., 

sucrose) and deterrents (e.g., ascorbic acid, mannitol) as leaves mature (Akeson et al. 
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1970). Further, as leaves age and mechanical defenses are altered like leaf toughness 

(Lucas et al. 2000) or leaf thickness (Havlíčková 1980) this may negatively affect or 

deter feeding. Glandular trichomes on alfalfa are another physical defense shown to 

reduce potato leafhopper (Empoasca fabae Harris, Hemiptera: Cicadellidae) in addition 

to damage-related plant stunting and yield loss in alfalfa (Sulc et al. 2001). Researchers 

hypothesize glandular trichomes physically entrap leafhopper nymphs in exudate (Ranger 

and Hower 2001) or that volatile production differs on plants with glandular trichomes 

making them less attractive to potato leafhoppers (Ranger et al. 2005). Further, erect 

glandular trichomes on Medicago disciformis DC. and Medicago scutellata (L.) Miller 

resulted in 100% mortality of alfalfa weevil larvae aboveground (Shade et al. 1975, 

Kreitner and Sorensen 1979). Although we did not assess these particular defenses, it is 

likely that a combination of chemical and physical defenses results in adult CRC 

preference towards younger leaves. These kinds of defenses should not be discounted in 

future studies on CRC adult feeding and oviposition as they have the potential to 

influence adult behavior.  

Despite differences observed for CRC feeding on different trifoliate leaves, there 

were no differences in the overall proportion of leaf area consumed among any of the 

root-pathogen resistant varieties or the resistant Cornell developmental line and controls. 

To standardize plants for the adult trials, plants were pruned until only 5 trifoliate leaves 

remained. These methods may have resulted in host plant priming, where previously 

damaged plants have faster responses and may respond more aggressively to future 

damage or stress (Conrath et al. 2006, Frost et al. 2008). It may be possible that leaf 

removal in adult evaluations, as well as nodule removal in larval evaluations, induced 
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defenses or primed plants for CRC feeding. However, plants can distinguish between 

mechanical damage and insect feeding as influenced by insect oral or ovipositional 

secretions (exogenous plant defense elicitors) (Eder and Cosio 1994). For instance, 

Spodoptera exigua (Lepidoptera: Noctuidae) herbivory and their salivary factor, glucose 

oxidase, decreased terpenoid biosynthesis gene expression in Medicago truncatula 

Gaertn while mechanical wounding alone had no effect on these same pathways (Bede et 

al. 2006). Considering the plant’s ability to differentiate between mechanical damage and 

insect herbivory and given that nearly all plants were pruned for experiments, the results 

presented herein would likely be similar if plants were not pruned for standardization. 

Aboveground adult CRC feeding did not differ between root pathogen resistant 

varieties and the susceptible control, suggesting that pathogen resistance belowground 

may not influence aboveground resistance to chewing insects. Research on the influence 

of belowground pathogen resistance to aboveground chewing insects is limited, but in 

tomato, the Mi gene that provides resistance to root-knot nematodes was found to confer 

resistance to the potato aphid (Macrosiphum euphorbiae (Thomas), Hemiptera: 

Aphididae) and whiteflies (Bemisia tabaci (Gennadius), Hemiptera: Aleyrodidae), both 

piercing-sucking insects damaging aboveground tissues (Vos et al. 1998, Nombela et al. 

2003). In this case, although the same gene was conferring resistance, the mechanisms of 

resistance to each pest was hypothesized to be different (Nombela et al. 2003). Other 

studies on plant-mediated interactions indicate belowground pathogen infection can 

decrease subsequent aboveground defense compounds and nutrition, which has positive 

effects on aboveground chewing herbivore feeding and growth (e.g., Kaplan et al. 2008, 

Kafle et al. 2017). However, we did not observe increases in aboveground feeding on 
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root pathogen resistant varieties compared to the control either. It is possible the 

resistance mechanisms against root pathogens in the commercial alfalfa varieties tested 

here may not be effective against aboveground chewing herbivory, and different 

resistance pathways may be necessary to target aboveground chewing pests. 

Although feeding did not differ between varieties, females displayed discriminate 

oviposition behavior. Significantly more eggs were laid when alfalfa was present 

compared to the arenas without a plant. Despite being aboveground, maternal Sitona 

lepidus Gyll. (Coleoptera: Curculionidae) can discriminate between nodulated and non-

nodulated white clover plants (Johnson et al. 2006) and will significantly increase 

oviposition when caged on a host-plant (white clover) compared to those caged with the 

non-host, Lolium perenne L. (Poales: Poaceae) (Mowat and Clawson 1996). However, 

females in this study did not significantly alter oviposition among pathogen-resistant 

varieties and the susceptible control. Research on oviposition preferences for 

aboveground insects with belowground offspring is limited and it is currently unknown 

what influences CRC oviposition, but a complex of cues may be involved. Chemical 

attractants and deterrents can have complex interactions in influencing host plant 

decisions for oviposition, especially when pests are specialists like CRC. For example, 

maternal Plutella xylostella L. (Lepidoptera: Plutellidae), a specialist on Brassicaceae 

(Barbarea spp.), prefer to oviposit on resistant plants and smaller/younger leaves with 

higher concentrations of saponins and glucosinolates, both deterrents and defense 

compounds that are important for host-plant recognition (Badenes-Perez et al. 2014). 

Further research is needed to identify cues or attractants for maternal CRC.  
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Nevertheless, increased oviposition may not result in subsequent increases in 

CRC larval populations, feeding, or development. It is important to consider that 

aboveground damage from adult CRC can alter resources and defenses belowground, 

impacting subsequent oviposition behavior or larval offspring. For instance, maternal 

Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) aboveground feeding decreased 

root biomass by approximately 30% and subsequently reduced offspring growth and 

survival (Clark et al. 2011). Clover root curculio larval survival and development 

depends on nutrient-rich belowground food sources, like nodules (Gerard 2001); 

reductions in belowground resources resulting from aboveground herbivory may be 

detrimental to offspring. Furthermore, density dependent larval mortality of Sitona spp. 

occurs when the number of eggs exceed the available resources (e.g., total number of 

nodules available) (Aeschlimann 1979, Quinn and Hower 1986a, Gerard 2001). 

Therefore, increased oviposition may be potentially detrimental to neonate nodule finding 

and survival if the total number of nodules available remains the same or even decreases 

as a result of maternal feeding. 

Indeed, development of chewing insect resistant alfalfa is underway, specifically 

directing efforts towards belowground pest management such as alfalfa snout beetle and 

CRC (Crawford et al. 2012, 2018). Thus, understanding the potential mechanisms behind 

resistance to CRC in the Cornell University developmental alfalfa lines is critical and 

may inform future advances in chewing-insect resistance. However, like the findings for 

root pathogen resistant varieties, purported CRC-resistant alfalfa lines did not reduce 

larval feeding and development. Larvae consumed a similar number of nodules and had 

similar head capsule widths on the CRC-susceptible and CRC-resistant developmental 
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alfalfa lines. However, Crawford et al. (2018) showed that percent CRC resistance, 

calculated from ratings for little to no root damage, was higher in CRC-resistant lines 

than CRC-susceptible lines. Yet, experimental methods herein differed from those of 

Crawford et al. (2018). Dissimilarly, we measured early-instar nodule feeding in a soil-

less system for 7 days, whereas Crawford et al. (2018) did not survey CRC larvae and 

instead, rated overall taproot damage in the field over 2 years. The soil-less arenas in our 

study allowed for easy and simplified observations of plant-herbivore interactions in 

belowground systems. This does not reflect the myriad of biotic and abiotic factors 

contributing to herbivore feeding, growth, and survival under field settings. For example, 

Hackell and Gerard (2004) hypothesized that the inability of S. lepidus larvae to feed on 

clover nodules in petri dishes was due to nodule odors flooding the experimental arena 

and a lack of contact stimuli. Contrastingly, in a field system, nodule odors are dispersed 

in the soil around nodules in gradients, and the larval cuticle is in contact with the soil 

medium (Hackell and Gerard 2004). The methods we employed in the larval experiments 

were sufficient for rapid screening of potentially resistant alfalfa lines, but further 

research in systems with soil are important to a well-rounded understanding of CRC 

larval feeding, development, and survival. 

Although we did not observe differences in the total number of nodules consumed 

or larval development, the proportion of nodules consumed lower on CRC-resistant line 

NY1713 compared to NY1720, also a CRC-resistant line. The significantly lower 

proportion of nodules consumed by larvae on NY1713 was because this line grew 

nodules during the 7-day experimental period. We hypothesized this may have been a 

compensatory response to larval feeding as evidenced by Quinn and Hall (1992), where 
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compensatory growth of alfalfa nodules occurred after nodules were removed by CRC or 

when mechanically removed. However, NY1713 nodule growth was similar between the 

uninfested control and the CRC-infested treatment. This suggests compensatory nodule 

growth did not occur in this CRC-resistant line, but that NY1713 tended to have 

increased nodulation overall.  

Enhanced nodulation may benefit host plants damaged by CRC by decreasing 

nitrogen stress and potentially increasing tolerance to CRC larval feeding. The negative 

impacts of larval feeding on nitrogen-fixing nodules and subsequent plant stress is well-

known and has been recorded for other sitonids. For example, high populations of S. 

lepidus larvae terminated the nitrogen-fixing abilities of white clover plants (Gerard 

2001), and Sitona discoideus Gyll. (Coleoptera: Curculionidae) larval feeding disrupted 

nitrogen-fixation and increased nitrogen stress in field-grown alfalfa (Goldson et al. 

1988). These decreases in nitrogen-fixation resulted in reduced aboveground nitrogen, 

yield, and decreased stem regrowth after harvest (Goldson et al. 1987, 1988). Further, 

Vankosky et al. (2011) found that although the number of S. lineatus damaged nodules 

did not change in inoculant and thiamethoxam treated field pea, plants displayed 

increased nodulation, higher numbers of large multilobed nodules, and increased nitrogen 

fixation compared to controls. If CRC larvae consume the same number of nodules on 

average (~2 nodules/larva/week), the observed increased nodulation in N1713 may offset 

the nitrogen stress and disruption of nitrogen-fixation due to regular nodule loss from 

CRC larval feeding. However, further studies on nitrogen-fixation capacity related to 

CRC larval feeding on NY1713 is needed to test this hypothesis. 
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Yet, the increased nodulation observed on NY1713 may potentially increase CRC 

larval survival and may not necessarily result in subsequent plant yield increases. 

Although CRC and most Sitona early instars are not obligate nodule feeders, research 

indicates that just the presence of nodules on alfalfa roots increases larval survival by 3-

14 times when compared to larval survival on non-nodulated roots (Byers and Kendall 

1982, Wolfson 1987). Further, CRC and Sitona larval development (head capsule width 

and body length) was enhanced on nodulated roots (Byers and Kendall 1982, Wolfson 

1987, Gerard 2001, Hackell and Gerard 2004). Although NY1713 had a higher number of 

nodules, we did not observe increased head capsule widths for CRC larvae on NY1713 

compared to the other developmental lines. Additionally, S. lepidus larvae are attracted to 

nodules by the volatile protein asparagine (Snapp and Vance 1986), a precursor and 

potential host-finding and feeding stimulant for larvae (Hackell and Gerard 2004). 

Increased nodulation may increase volatile emission and, thus, increase host-plant or 

nodule finding. Lastly, first-instar Sitona mortality was high (95-99%) (Aeschlimann 

1979) and was posited to be a result of interspecific competition or failed host-plant and 

nodule finding (Quinn and Hower 1986a, 1986b). Thus, the increased nodulation 

observed on NY1713 may potentially increase host-plant and nodule-finding as well as 

CRC larval survival under field conditions.  

Like adult evaluations for root pathogen resistant trials, aboveground adult CRC 

feeding did not differ between the CRC-resistant line, NY1713, and its paired susceptible 

line, NY1718, suggesting that purported resistance and susceptibility of these lines to 

field populations of CRC larvae may not necessarily affect aboveground tissues and CRC 

adult feeding. When developing alfalfa varieties with resistance towards chewing insect 
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pests, it is important to increase resistance without sacrificing nutrition and palatability 

for livestock feeding on foliage. For example, high saponin content in alfalfa was 

associated with increased CRC resistance (Pedersen et al. 1975, 1976), but saponins have 

negative effects on animal metabolism and are associated with bloat (increased gas 

pressure in the rumen) in livestock (Sen et al. 1998). For these reasons, developing alfalfa 

with resistance to CRC may be particularly difficult. Therefore, it could be beneficial that 

resistance or tolerance for these CRC-resistant lines is concentrated in belowground 

tissues.  

Oviposition behavior was also similar among NY1713 and NY1718. Like the 

results for root pathogen resistant alfalfa trials, maternal CRC may be able to detect that 

belowground resources exist (nodules); however, female CRC in this study may not have 

the ability to detect the increased number of nodules found on NY1713. Johnson et al. 

(2006) posited that maternal congener S. lepidus received cues through host shoot and 

root volatiles as well as chemical and physical cues from the soil. We hypothesized that if 

female CRC were able to adjust oviposition based on the concentration of belowground 

resources (higher numbers of nodules), this ability may have been hindered in the current 

study since plaster covered the soil surface and may have disrupted detection of root 

volatiles and soil cues.  

Overall, CRC larvae were able to feed on nodules and develop on all eight alfalfa 

cultivars tested. Further, antibiosis was not observed with larvae or adults on root 

pathogen-resistant alfalfa varieties or CRC-resistant developmental lines, suggesting 

resistance to root pathogens may not be conferred to CRC. The CRC-resistant 

developmental lines are still under development at Cornell University, thus, upcoming 
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breeding cycles of these lines may yield different or stronger results. Future studies 

should focus on evaluating alfalfa cultivars with resistance to other pests as well as 

investigate the interactions between enhanced nodulation, CRC larval survival, and 

nitrogen stress to determine if nodule growth is a beneficial physiological adaptation that 

increases alfalfa resilience towards CRC larvae. Lastly, bioassay procedures to observe 

belowground insect pests are lacking (Hunter 2001). Therefore, the methods stated here 

to observe larvae is a novel way to screen host plant cultivars and observe belowground 

plant-herbivore interactions without expensive equipment or the extensive time 

commitment that usually accompanies soil sorting methods. 
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Tables and Figures 

 

 

 

 
Fig. 4-1. Medicago sativa plants were grown hydroponically to be tested against Sitona 

hispidulus larvae. (A) One rhizobia-inoculated (Nitragin® Gold, Monsanto, St. Louis, 

MO) alfalfa seed was placed no more than 1 cm from the top edge of a moistened 

germination paper (38.1  25.4 cm) (Anchor Paper Inc, St. Paul, MN), which was then 

folded in half. (B) Papers with seeds were rolled into cylinders, and (C) placed into 

containers filled with a hydroponic growth solution (0 N-10 P-10 K, Alaska Morbloom, 

Central Garden and Pet Company, Walnut Creek, CA; Immunox Multi-purpose 

Fungicide, Spectracide, Spectrum Brands, Madison, WI) covering the bottom 5-6 cm of 

papers. Capillary action through the papers appropriately moistened seeds for 

germination and growth. (D) Plants were grown for approximately 2-4 months prior to 

use in larval trials.   
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Table 4-1. Larval Sitona hispidulus feeding and development on alfalfa check variety 

and root pathogen-resistant commercial alfalfa varieties. Mean (± SEM) number of 

nodules, number of nodules consumed by larval S. hispidulus, proportion of nodules 

consumed, and larval S. hispidulus head capsule width for each variety. *CRC = clover 

root curculio, RKN = root knot nematode, R = Resistant, HR = Highly resistant. 

 

Variety 

Resistance/ 

Susceptibility* 

 

No. 

Nodules 

No. 

Nodules 

Consumed 

Proportion 

of nodules 

consumed  

Larval head 

capsule 

width (mm) 

Ranger CRC and RKN 

susceptible 

 5.78 ± 0.46 2.56 ± 0.53 0.48 ± 0.10 0.45 ± 0.04 

PGI437 RKN-HR, 

Phytopthora-R 

 5.18 ± 0.30 3.18 ± 0.30 0.64 ± 0.07 0.55 ± 0.03 

PGI459 RKN-HR, 

Phytopthora-HR 

 5.21 ± 0.30 2.14 ± 0.30 0.41 ± 0.05 0.48 ± 0.03 
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Fig. 4-2. Comparison of leaf area consumed by adult Sitona hispidulus (Ranger, PGI437, 

and PGI459 combined) by leaf position (1 being the basal most trifoliate leaf and 5 the 

apical trifoliate leaf). Values shown are the mean (± SEM) proportion of leaf area 

consumed by caged mated pairs of adults. Asterisk indicates significant difference via 

Tukey test (P < 0.05). 
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Table 4-2. Mean (± SEM) alfalfa leaf area, area consumed, and proportion of area 

consumed by adult Sitona hispidulus on root knot nematode-resistant commercial alfalfa 

varieties and Ranger. Proportion of leaf area consumed was calculated by dividing leaf 

area consumed by total leaf area. 

 

Variety 

 

Leaf Area (mm2) 

Leaf Area 

Consumed (mm2) 

Proportion of 

Leaf Area 

Consumed 

Ranger 
 

1,761.44 ± 175.19 109.98 ± 14.71 0.06 ± 0.01 

PGI437 
 

2,335.96 ± 445.59 126.83 ± 25.02 0.05 ± 0.01 

PGI459 
 

1,816.43 ± 201.27 112.64 ± 14.70 0.07 ± 0.01 
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Fig. 4-3. Mean (± SE) number of eggs laid by adult female Sitona hispidulus oviposition 

on the no-plant treatment, Ranger, PGI437, and PGI459. Different letters above bars 

indicate significant differences via a Tukey test with a 95% confidence index (MultComp 

package). 
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Table 4-3. Larval Sitona hispidulus feeding and development on Cornell University 

developmental lines. Mean (± SEM) total number of nodules, number of nodules 

consumed by larval S. hispidulus, proportion of nodules consumed, and larval S. 

hispidulus head capsule width for each experimental alfalfa line. CRC = clover root 

curculio. *Different letters within column indicate significantly different means via 

Kruskall Wallis rank sum test (p ≤ 0.05). 

 

Line 

Resistance/ 

Susceptibility 

 

No. 

Nodules 

No. 

Nodules 

Consumed 

Proportion of 

nodules 

consumed * 

Larval head 

capsule 

width (mm) 

NY1718 CRC-susceptible 

(1 cycle) 

 4.33 ± 0.33 2.33 ± 0.88 0.57 ± 0.23ab 0.59 ± 0.05 

NY1717 CRC-susceptible 

(1 cycle) 

 4.67 ± 0.43 2.17 ± 0.54 0.44 ± 0.09ab 0.50 ± 0.04 

NY1713 CRC-resistant 

(4 cycle) 

 9.20 ± 1.32 1.53 ± 0.17 0.22 ± 0.04a 0.43 ± 0.03 

NY1720 CRC-resistant 

(4 cycle) 

 5.11 ± 0.39 3.00 ± 0.41 0.64 ± 0.11b 0.50 ± 0.05 

NY1719 CRC-resistant 

(3 cycle) 

 5.40 ± 0.58 2.30 ± 0.42 0.48 ± 0.10ab 0.43 ± 0.04 
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Fig. 4-4. Comparison of leaf area consumed by adult Sitona hispidulus (NY1718 and 

NY1713 combined) by leaf position (1 being the basal most trifoliate leaf and 5 the apical 

trifoliate leaf). Values shown are the mean (± SEM) proportion of leaf area consumed by 

caged mated pairs of adults. Different letters above bars indicate significant differences 

via a Tukey test with a 95% confidence index. 
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Table 4-4. Mean (± SEM) total leaf area, area consumed, proportion of area consumed, 

and oviposition by adult Sitona hispidulus on CRC-susceptible (NY1718) and CRC-

resistant (NY1713) developmental lines. Proportion of leaf area consumed was calculated 

by dividing leaf area consumed by total leaf area.  

 

Line  

Total Leaf Area 

(mm2) 

Leaf Area 

Consumed 

(mm2) 

Proportion of 

Leaf Area 

Consumed Oviposition 

NY1718 
 

1,774.58 ± 140.57 67.67 ± 7.78  0.04 ± 0.01 22.53 ± 5.11  

NY1713 
 

2,198. 80 ± 175.11  78.65 ± 9.78 0.04 ± 0.01 23.76 ± 4.67  
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CHAPTER V 

SUMMARY AND CONCLUSION 

Summary 

 The current knowledge and available pest control tactics for clover root curculio 

(CRC) primarily comes from historic research on eastern U.S. populations. Novel studies 

have provided valuable information about CRC biology in the Intermountain West and 

now that updated phenological information can inform monitoring and collection 

protocols, research can now focus on the development of updated control strategies. 

However, management of belowground pests can be challenging and synthetic 

insecticides have not been registered to target CRCs susceptible larval stage 

belowground. Integrated pest management of similar belowground weevil pests (e.g., 

alfalfa snout beetle and black vine weevil) has found success through the isolation and 

application of biological insecticides. Furthermore, host plant resistance in alfalfa, 

especially towards pathogens and hemipteran pests, is well-studied but we lack an 

understanding of alfalfa resistance towards chewing insects such as CRC. 

 In the first study, we surveyed northern Utah alfalfa fields with known resident 

populations of CRC for entomopathogenic nematodes (EPNs) and fungi. Similar to 

previous reports, we found Beauveria spp. fungi most commonly infecting CRC 

immatures. We did not isolate EPNs from alfalfa field soil, and we posit this may be a 

result of soil textures and low soil moistures resulting from alfalfa management that are 

unsupportive of EPN survival. We urge future research to evaluate locally-adapted strains 

of Beauveria spp. for potential augmentative applications in CRC immature management. 
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 In the second field study, we evaluated the direct and indirect suppressive effects 

of biological insecticides (Steinernema riobrave, Beauveria bassiana, and Bacillus 

thuringiensis spp. galleriae) and a synthetic systemic (flupyradifurone) insecticide on 

field populations of CRC immatures across two phenological times (before larval peak 

and during larval peak) and two field seasons (2018-2019). Surprisingly, we found that 

neither biological nor systemic insecticides reduced resident CRC populations or affected 

larval development compared to untreated controls, and overall, application timing did 

not improve insecticide efficacy. Root damage was also similar across control and 

insecticide treatments. Differing mechanisms may exist for the lack of success of these 

products. For instance, flupyradifurone translocation to belowground systems is not well 

understood. Further, many biotic and abiotic variables affect biological insecticide 

establishment and persistence. For instance, penetration of Bacillus thuringiensis in soil 

strata is reduced in soils with high clay. To offset biological agent mortality due to the 

low soil moisture and high UV, heat, and temperature levels in Intermountain West 

climates, EPN application rates may need to increase, but this could be cost prohibitive. 

Further, CRC immatures’ cryptic belowground nature, aggregated population 

distributions, and low sample numbers make evaluating field suppression challenging. 

 In the final laboratory study, three commercial alfalfa varieties with varying 

resistance toward root pathogens were evaluated for potential cross-resistance, and five 

developmental alfalfa lines were tested for their purported resistance or susceptibility to 

CRC adults and larvae. Adults and larvae were able to feed, oviposit, and develop on all 

test varieties and lines. Neither differences in adult leaf consumption and oviposition nor 

differences in larval development and nodule consumption were observed in cross-
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resistance trials, suggesting root-pathogen resistance may not impact CRC. Likewise, 

adult leaf consumption and oviposition were similar between CRC-resistant and CRC-

susceptible lines. Although larval development did not differ between lines, the 

proportion of nodules consumed was significantly lower on one CRC-resistant line due to 

its fast nodule growth overall. Increased nodulation may lead to increased root vigor and 

improved plant health making this line more tolerant of CRC larval damage. 

 

Conclusion 

 Coincident with the federal ban on the soil-active insecticide, carbofuran, CRC 

has become a major pest throughout the U.S.; the need to develop modern management 

programs has increased. The research presented herein represents the foundations of 

contemporary integrated pest management and host-plant resistance for CRC in 

Intermountain West alfalfa production. In agreement with previous research, we have 

identified Beauveria spp. fungi as the most prominent entomopathogenic fungi naturally 

occurring in Intermountain West CRC-infested alfalfa. Knowing this, various virulent 

strains can be collected, tested, and developed into a CRC-specific and locally adapted 

biological control agent, ideally better at targeting damaging CRC larvae and reducing 

synthetic insecticide inputs. However, this research outlines some of the challenges in 

targeting CRC larvae with insecticides and some of the specific hurdles for biological 

insecticide applications in similarly hot and dry climates. In anticipation of these 

challenges, continued product testing, especially of biological insecticides, should use 

innovative techniques to aid in insecticide soil penetration and biological survival. From 

this work, we can also begin to understand and speculate about the mechanisms of alfalfa 
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resistance or tolerance to CRC and better inform the continued development of CRC-

resistant alfalfa cultivars. Overall, this research offers some insight into the intricacies 

and challenges of CRC belowground management; laying the foundation for future 

investigations into integrated management of CRC. 
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APPENDIX A 

 

AUTHORSHIP AND CITATION OF PUBLISHED CHAPTERS 

Chapter I: 

This is a pre-copyedited, author-produced version of an article accepted for 

publication in the Journal of Integrated Pest Management following peer review. 

The version of record Rim, K., S. J. Price, E. J. Wenninger, R. Long, and R. A. 

Ramirez. 2019. Biology and management of clover root curculio (Coleoptera: 

Curculionidae). Journal of Integrated Pest Management 10: 1-14 is available 

online at: https://doi.org/10.1093/jipm/pmz020. 

 

https://doi.org/10.1093/jipm/pmz020
https://doi.org/10.1093/jipm/pmz020
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APPENDIX C 

ROOT-PATHOGEN RESISTANT COMMERCIAL VARIETY AND CLOVER ROOT 

CURCULIO-RESISTANT DEVELOPMENTAL LINE SAPONIN CONTENT 

Materials and Methods 

Saponin levels were measured following the methods described in Kendall (1964) 

for all commercial varieties in cross-resistance trials (Ranger, PGI437, PGI459) and two 

clover root curculio (CRC)-resistant lines, NY1713 and NY1719. Briefly, 3 g of fresh 

plant material and 150 mL of distilled water was placed in a laboratory blender and plant 

tissue was ground on high for 2 min. Some foam was created during this process. The 

solvent was transferred to a beaker (1,000 mL) and another 150 mL of distilled water was 

added. This solution was mixed with an electric food mixer on high for 2 min to create 

foam. After mixing, the solution was immediately transferred to a 1,000 mL graduated 

cylinder, allowed to stand for 2 min, and then shaken to eliminate air spaces left by large 

unstable bubbles. The total volume (mL) of foam was then taken as a rough measure of 

the saponin level for that plant material. Saponin foam levels were measured for both the 

roots and shoots of each plant and repeated for 15 plants of each variety. 

Commercial varieties and developmental CRC-resistant lines were analyzed 

separately using R software (RStudio). Saponin foam volume data were √𝑥 transformed 

to obtain data normality and homoscedasticity. To compare the volume of saponin among 

the roots and shoots of alfalfa varieties and lines, a two-way Analysis of Variance 

(ANOVA) was performed where plant part (root or shoot) and variety or line were the 
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two main factors. Following significant ANOVAs, Tukey HSD with a 95% confidence 

index was performed to separate significantly different group means. 

Results 

Commercial Varieties 

Saponin foam volume was significantly affected by plant part (root or shoot) and 

variety (plant part × variety interaction: F = 3.42, df = 2, 96, P = 0.037) (Fig. B1-A). The 

roots of Ranger and the moderate root-pathogen resistant variety, PGI437, had the highest 

saponin foam levels at 285.3 ± 29.8 and 300.4 ± 48.4 mL of saponin foam, respectively 

(Fig. B1-A). Contrastingly, Ranger shoots as well as the roots and shoots of PGI459, the 

variety with high resistance to root pathogens, had the lowest saponin foam volumes (Fig. 

B1-A). 

CRC-Resistant Lines 

Similarly, there was a significant interaction between plant part and CRC-resistant 

line (plant part × line interaction: F = 5.65, df = 1, 48, P = 0.022) (Fig. B1-B). Saponin 

levels in the roots of NY1713 were approximately half that of its shoots (P < 0.001) or 

either tissue in NY1719 (roots: P =0.02, shoots: P < 0.001) (Fig. B1-B). 
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Fig. B1: Mean (±SE) saponin foam volume (mL) for the roots and shoots of (A) 

commercial alfalfa varieties and (B) CRC-resistant developmental lines. Different letters 

above bars indicate significant differences via Tukey test with a 95% confidence index. 

Conclusions 

The insecticidal activity of alfalfa saponins is well-known (Nozzolillo et al., 1997; 

Oleszek et al. 1990; Tava and Odoardi, 1996), and previous research by Pedersen et al. 

(1976) demonstrated that alfalfa plants selected to express overall higher levels of 

saponin were positively correlated with CRC resistance. Further research revealed that 

the potentially CRC-resistant Lahontan variety (40-48% resistance) exhibited higher root 

saponins than 7 out of the 11 varieties evaluated despite its being among those varieties 

with the lowest foliage saponin levels (Pedersen et al. 1975). Based on these results, we 

estimated saponin levels in the roots and shoots of all commercial varieties (Ranger, 
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PGI437, PGI459) and two CRC-resistant developmental lines (NY1713 and NY1719) 

tested against CRC adults and larvae in Chapter IV.  

Adult feeding was similar among the commercial varieties (Chapter IV, Table 4-

2) and similarly, shoot saponin levels across these varieties were statistically

indistinguishable. However, while root saponin volume was approximately two times 

higher in Ranger and PGI437, when compared to PGI459 with high resistance to root 

pathogens, the proportion of nodules consumed by CRC larvae and larval head capsule 

widths (larval development) (Chapter IV, Table 4-1) were not affected by saponin 

differences. Similarly, nodule consumption and larval head capsule widths did not differ 

among NY1713 and NY1719 (Chapter IV, Table 4-3), although saponin foam volume in 

NY1713 roots was half that of NY1719 roots.  

These results suggest that the correlation between saponins and CRC resistance 

may not be as strong as previously assumed, or that more precise saponin measurement 

techniques are needed to fully understand this relationship. Historic research formed 

hypotheses on CRC-resistance ratings calculated from an arbitrary 0-5 scale (0 = “no 

symptoms of damage”, 5 = “severe damage”), did not directly sample CRC immature 

populations, and often did not statistically analyze CRC data to determine differences 

(Pedersen et al. 1975, 1976). Furthermore, while the methods described in Kendall (1964) 

are simple and allow for assaying large sample sizes quickly, it only provides a crude 

look at total saponins. Saponins are a broad class of chemicals and further work would be 

necessary to isolate specific saponins important for suppression. Lastly, many 

advancements in our understanding of host-plant resistance and defense have occurred 

since these publications in the 1970s. Thus, although CRC-resistance in Lahontan was 
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seemingly correlated with increased root saponins, other physical or chemical defenses 

may have also contributed to resistance. 
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APPENDIX D 

ADULT CLOVER ROOT CURCULIO MANAGEMENT AND EFFECTS ON 

SUBSEQUENT EGG POPULATIONS 

Materials and Methods 

A field experiment was conducted at the Universtity of California 

Research and Extension Center in Tulelake, California targeting the adult CRC in 

early fall after aestivation as they migrate back into alfalfa fields with the aim of 

reducing egg subsequent egg populations. This was a parallel component of 

Chapter III evaluating insecticide applications targeting larvae. The experiment 

was performed in a fourth-year alfalfa stand (variety, WL372HQ Roundup Ready, 

fall dormancy 5) established in 2014. Each of five replicated blocks (randomized 

complete block design) consisted of three 8.2  6.1 m plots (experimental unit). 

Plots were randomly assigned one of three treatments: untreated control, lambda-

cyhalothrin, and lambda-cyhalothrin combined with a spinosad. Treatments were 

applied at 33.6 g ai/ha lambda-cyhalothrin (Warrior II®, Syngenta, Basel, 

Switzerland) and 33.6 g ai/ha lambda-cyhalothrin (Warrior II) + 224.2 g ai/ha 

Spinosad (Entrust®, Corteva, Wilmington, DE, USA) on September 10, 2018 

using a backpack sprayer and a 2.7 m boom. Spray equipment was operated at 

207 kPa (187 L/ha) for all treatments.  

Adult CRCs were monitored weekly for one month post-application using 

a standard sweep net and counting the number of weevils from ten, 180o sweeps 
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per plot. Egg populations were estimated approximately 3 weeks post-application 

(October 3, 2018) and again the following Spring (April 17, 2019) by removing 

two soil core samples (~20 cm deep  ~20 cm diameter) from each plot with a 

shovel. All samples were shipped on ice overnight to UC Davis for soil core 

processing according to the methods described by Rim et al. (2019) to determine 

egg numbers. Four samples were taken from the field pre-application to determine 

CRC populations and stages present. Across all pre-application samples, 2 eggs 

were collected, and no adults were detected from sweeps. Lastly, alfalfa yields 

(kg/ha) were estimated from the final (4th) harvest of the season on September 26, 

2019 to reflect an entire season of CRC immature damage post-application.  

Adult CRC data were not analyzed because >60% of sweep samples 

collected at each time point were devoid of adults, thus, adult data was >70% 

zeroes and could not be accurately analyzed. Egg collections in fall and spring 

were analyzed by separate generalized linear mixed models (GLMMs) with the 

log10-link and Poisson distribution error where treatment was the main factor and 

block was considered a random effect. Yield data were analyzed by a linear 

mixed-effects model with treatment as the main factor and block as a random 

effect. Following significant analyses, Tukey HSD with a 95% confidence index 

was performed using the MultComp package for multiple comparisons. All data 

were analyzed using R software (RStudio). 

Results 
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On average, less than 1 adult CRC were collected from lambda-

cyhalothrin (Warrior II) and lambda-cyhalothrin + spinosad (Warrior II + Entrust) 

treatments, while samples from untreated control plots typically collected >1 adult 

CRC from sweeps (Fig. C1). Further, mean adults steadily decreased in control 

plots over time (Fig. C1). Significantly fewer eggs were collected from insecticide 

treated plots compared to the untreated control at 3-weeks post application in fall 

2018 (df = 2, 12, P < 0.001) (Fig. C2). Similar trends were observed in eggs 

collected the following April (spring 2019) where significantly fewer eggs (15.2 ± 

5.2 eggs) were collected from lambda-cyhalothrin + spinosad (Warrior II + 

Entrust) treated plots compared to the untreated control (36.6 ± 5.4 eggs), and an 

intermediate number of eggs (21.8 ± 5.9 eggs) were collected from lambda-

cyhalothrin (Warrior II) treated plots (df = 2, 12 , P  = 0.044) (Fig. C2). 

Significant differences in yield (kg/ha) were not observed among treatments from 

the September 2019 harvest (F = 3.42, df = 2,8, P = 0.084) (Fig. C3). 
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Fig. C1: Mean (±SE) number of adult Sitona hispidulus collected for each 

treatment at various time points after insecticide application on September 10, 

2018 to alfalfa at UC Research and Extension Center in Tulelake, California. 
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Fig. C2: Mean (±SE) number of Sitona hispidulus eggs collected in fall (Oct 3, 

2018) and spring (Apr. 17, 2019) for treatments applied to alfalfa at UC Research 

and Extension Center in Tulelake, California on September 10, 2018. Fall and 

Spring data were analyzed by separate GLMMs; different letters above bars 

indicate significant differences via a Tukey test with a 95% confidence index 

(MultComp package) for each sampling time. 
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Fig. C3: Alfalfa yield (kg/ha) harvested on September 26, 2019 for treatments 

applied to alfalfa at UC Research and Extension Center in Tulelake, California the 

previous fall on September 10, 2018. Significant differences among treatments 

were not detected at the α = 0.05 by linear mixed-effects model. 
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Conclusions 

As discussed in Chapter III, CRC immature management is difficult, mainly due 

to their cryptic soil-association. Contrastingly, adult CRC may be easier to access as they 

are present aboveground and can be easily accessed for monitoring and management. 

Indeed, several insecticides are registered to target adult CRC, but spring applications are 

not recommended due to the non-target effects on biocontrol agents and natural enemies 

of other major alfalfa pests (e.g., alfalfa weevil, aphids) (Rim et al., 2019; Wenninger and 

Shewmaker, 2014). Further, historic research on the efficacy of prophylactic fall adult 

reductions has been inconsistent (Godfrey and Yeargan, 1987; Waters, 1964). Therefore, 

this study aimed to determine if reducing post-aestivation adult populations leads to 

subsequent immature reductions and potential yield increases.  

Clover root curculio adult populations in control plots steadily declined over time, 

likely a result of natural CRC adult phenology (Rim et al., 2019). As expected, 

insecticide treatments suppressed CRC adult populations in the fall, even to zero at some 

collection times. Equally promising reductions of egg populations (<1 egg detected per 

plot) also occurred in insecticide treated plots in fall 2018, reflecting the decreased 

number of adults. Overall, egg populations increased in spring, likely due to surviving 

overwintered adults ovipositing in early spring (Rim et al. 2019), but insecticide treated 

plots still trended towards reduced egg populations. However, it was still unclear if these 

reduced egg densities (15-20 eggs/sample) were effective for significantly reducing 

subsequent larval outbreaks and damage. In fact, yield was unaffected by insecticide 

treatments, suggesting that observed egg reductions may not suppress CRC larval 

populations and root damage associated with yeild decreases. But, difficulties in 
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determining yield differences may also be a result of the already existing four years of 

accumulative CRC damage (Dickason et al., 1968; Hower et al., 1995). 

Initial results from this study indicate fall adult management has the potential to 

reduce subsequent immature populations, although the impact on yield was inconsistent. 

However, future studies should continue to investigate this trend by testing other 

registered products for adult CRC (Reitz, 2018) in a similar fashion, and determining the 

cumulative effects of adult management throughout the life of the alfalfa stand. For 

example, Godfrey and Yeargan (1987) found yearly fall granular carbofuran treatments 

for adults combined with spring granular diazinon applications for larvae significantly 

reduced root damage and larval densities by 75-80% every spring for the 3-year study. 

Lastly, because adult monitoring and management programs are accessible and likely to 

be adopted by producers, monitoring techniques (e.g., degree day models) and action 

thresholds should be developed to better inform insecticide applications. 
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