
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Ecology Center Publications Ecology Center 

10-17-2019 

Investment of Both Essential Fatty and Amino Acids to Immunity Investment of Both Essential Fatty and Amino Acids to Immunity 

Varies Depending on Reproductive Stage. Varies Depending on Reproductive Stage. 

Taylor V. Pettit 
Utah State University 

R. John Pettit 
Utah State University 

Andrew M. Durso 
Utah State University 

Susannah S. French 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/eco_pubs 

 Part of the Ecology and Evolutionary Biology Commons 

Recommended Citation Recommended Citation 
Pettit, Taylor V., Pettit, RJ, Durso, Andrew M., French, Susannah S. Investment of both essential fatty and 
amino acids to immunity varies depending on reproductive stage. J Exp Zool. 2019; 331: 552– 561. 
https://doi.org/10.1002/jez.2324 

This Article is brought to you for free and open access by 
the Ecology Center at DigitalCommons@USU. It has been 
accepted for inclusion in Ecology Center Publications by 
an authorized administrator of DigitalCommons@USU. 
For more information, please contact 
digitalcommons@usu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/286364655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/eco_pubs
https://digitalcommons.usu.edu/eco_center
https://digitalcommons.usu.edu/eco_pubs?utm_source=digitalcommons.usu.edu%2Feco_pubs%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=digitalcommons.usu.edu%2Feco_pubs%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


For Peer Review
Investment of both essential fatty and amino acids to 

immunity varies depending on reproductive stage

Journal: Journal of Experimental Zoology Part A

Manuscript ID JEZ-A-2019-05-0040.R1

Wiley - Manuscript type: Research Paper

Date Submitted by the 
Author: n/a

Complete List of Authors: Pettit, Taylor; Utah State University, Department of Biology
Pettit, John; Utah State University, Department of Biology
Durso, Andrew; Utah State University, Department of Biology & Ecology 
Center; Florida Gulf Coast University, Department of Biological Sciences
French, Susannah; Utah State University, Department of Biology & 
Ecology Center

Keywords: leucine, palmitic acid, lizard, reptile, trade-off, wound, life history

 

John Wiley & Sons

JEZ Part A: Ecological and Integrative Physiology



For Peer Review

Investment of both essential fatty and amino acids to immunity varies depending 
on reproductive stage

Taylor V. Pettit1, R. John Pettit1,2, Andrew M. Durso1,3, Susannah S. French1

1Department of Biology and the Ecology Center, Utah State University, 5305 Old Main 
Hill, Logan, UT 84322
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Abstract

Trade-offs among the key life history traits of reproduction and immunity have been 
widely documented. However, the currency in use is not well-understood. We 
investigated how reproducing female side-blotched lizards, Uta stansburiana, allocate 
lipids versus proteins when given an immune challenge. We tested whether lizards 
would invest more in reproduction or immunity depending on reproductive stage. 
Females were given stable isotopes (15N-leucine and 13C-1-palmitic acid), maintained 
on a regular diet and given either a cutaneous biopsy or a sham biopsy (control). Stable 
isotopes were monitored and analyzed in feces and uric acid, skin biopsies, eggs, and 
toe clips. We found that lizards deposited both proteins and lipids into their healing 
wounds (immune challenged), skin (control), and eggs (all) and that catabolism of 
proteins exceeded incorporation into tissue during wound healing. Specifically, we found 
that healed biopsies of wounded animals had more leucine and palmitic acid than the 
non-regrown skin biopsies taken from unwounded control animals. Lizards earlier in 
reproduction invested relatively more labeled proteins into healing their wound tissue, 
but not into unwounded skin of control animals. Thus, reproduction is sometimes 
favored over self-maintenance, but only in later reproductive stages. Finally, we 
documented positive relationships among the amount of palmitic acid deposited in the 
eggs, the amount of food eaten, and the amount of palmitic acid excreted, suggesting 
higher turnover rates of lipids in lizards investing highly in their eggs.

INTRODUCTION

When an organism is forced to choose between repairing itself and investing in 
offspring, it is often unclear which will take precedence. Animals allocate limited 
resources to provide for various physiological processes, such as immune response 
and reproduction. When resources are severely limited, some processes are neglected 
and others are favored. The conflicting needs of immune response and reproduction are 
of particular interest. When female tree lizards have restricted access to food, wounded 
females have smaller follicles than healthy females (French et al., 2007), suggesting 
that in some cases immune response, as measured by wound healing, takes 
precedence over reproduction. However, other studies suggest that this prioritization is 
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flexible (Nordling et al., 1998; Rödel et al., 2016). Field studies show that when females 
are at the height of reproductive investment (i.e. vitellogenesis), they heal wounds 
slower than females in other reproductive phases (French and Moore, 2007). Similarly, 
laboratory experiments on reproductive males also indicated suppressed wound 
recovery and immune function (Adamo et al., 2001; French and Moore, 2007; McKean 
and Nunney, 2001). These findings suggest that males and females in more resource-
demanding reproductive states give priority to reproduction, at least under certain 
circumstances, but these circumstances remain poorly understood with respect to 
variation across species and reproductive modes as well as within species (Saad and 
Elridi, 1984; Gustafsson et al., 1994; Christe et al., 2011; Marzal et al., 2007).
 
Previous studies have measured relative changes in follicle size for reproductive 
investment and healing of a small cutaneous wound to estimate immunological 
investment. While these measures provide the functional response of these two 
systems respectively, they do not measure resource investment directly. Using stable 
isotope tracers allows for a non-lethal comparison using common units to follow the 
“fates” of ingested nutrients and compare resource investment among fundamentally 
different sink pools within the bodies of living vertebrates (McCue, 2011). Nutrient use 
(Khalilieh et al., 2012; Cherel et al., 2005) and allocation of resources to reproduction 
(Hobson, 2006; O'Brien et al., 2000) have been studied separately using stable isotope 
tracers in organisms as diverse as hawkmoths and birds, but few studies have 
compared rates of isotope deposition into tissues or organs that compete for common 
resources (Brace et al., 2015; Durso and French, 2018), and no studies have attempted 
to use multiple tracers to simultaneously track the fates of different biomolecules. 

Here, we introduced a solution of 98% 15N-leucine to investigate protein allocation and 
98% 13C-1-palmitic acid to investigate lipid allocation, respectively, into female lizards to 
simultaneously track their fates within the body. We gave small cutaneous or sham 
(control) biopsies to vitellogenic female side-blotched lizards (Uta stansburiana). We 
simultaneously measured their investment of both an essential amino acid (leucine) and 
a prevalent fatty acid (palmitic acid), each bearing a unique isotopic label, into their 
developing follicles and into their healing wounds. We expected that lizards given a 
wound challenge would invest more into their wounds than the unwounded skin of 
unwounded animals. Also, based on the short lifespan of side-blotched lizards, we 
predicted that relative investment would vary depending on stage of reproduction. 
Specifically, we expected that reproduction would take precedence over self-
maintenance in females in later stages of reproduction that had already invested in their 
clutch, whereas we expected that females in earlier reproductive stages would invest 
relatively more in self-maintenance (i.e. wound healing).

METHODS

Experimental Design

We used stable isotope tracers to compare investment in wound healing versus 
reproduction. After introducing labeled stable-isotope-containing compounds into an 
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animal, tissues were analyzed to measure the ratio of stable isotopes. High relative 
abundance of introduced isotope in newly synthesized tissue indicated recent tissue 
growth. By comparing isotope content of tissues involved in wound healing and 
integrative immune response (i.e. scab tissue) with that of tissues geared toward 
reproductive output (i.e. egg tissue), we quantified resource allocation of immune-
challenged organisms using a single unit of measure (i.e. micrograms of nitrogen).

We collected 50 female side-blotched lizards (Uta stansburiana) from a single site in St. 
George, Utah in May 2016. They ranged in snout-vent length (SVL) from 41 to 53 mm 
(mean ± SEM = 47 ± 0.3 mm, interquartile range = 45.5 – 48.9 mm) and in mass from 
1.9 to 5.1 g (mean ± SEM = 3.0 ± 0.09 g, interquartile range = 2.7 – 3.4 g). The mass of 
food consumed by the lizards was monitored from day 1 of the study until day 18, and 
final tissue samples were collected from the lizards on day 20. On day 3, each lizard 
was gavaged with 50μL of 1.5mg/mL Ringer’s solution containing 98% 15N-leucine and 
98% 13C-1-palmitic acid. Three lizards partially regurgitated the isotope mixture, and 
were therefore excluded from the study.

The remaining 47 lizards were randomly assigned to one of two treatment groups, 
which did not differ significantly in SVL or mass (p > 0.3). On the dorsal side of the lizard 
between the hind legs, an initial 3.5cm biopsy was collected from the first treatment 
group of 23 lizards and the remaining 24 lizards received a sham biopsy on day 4 
(Neuman-Lee and French, 2014; French et al., 2006). On days 19 and 20 all animals 
received a final biopsy (the biopsy removed the regrown tissue from the previously 
wounded group and the control group received an initial biopsy in the same location as 
the wounded group). All animals were anesthetized using isofluorane for both initial and 
final procedures.

Digital photographs of all lizards were taken using a Pentax K-x digital camera every 3 
to 4 days. Images were blindly analyzed using image analysis software (Image J, NIH 
Imaging). The area of the wound was calculated at each time point for all individuals 
and the percent of the wound healed between time points was calculated (Neuman-Lee 
and French, 2014).

The lizards were fed a maintenance diet daily over the course of the study, with the 
exceptions being the days prior to gavage and surgery. Lizards were given between 
0.08g and 0.16g of crickets each day. Fresh crickets were given to the lizards each day. 
At the beginning of the day, the crickets from the previous day were removed and 
weighed, after which fresh crickets were weighed and introduced into the lizards’ cages. 
By calculating the difference between the mass of crickets put into the cages and the 
mass of crickets removed, the mass of food consumed by each lizard was calculated. 

The lizards’ cages were monitored daily for the presence of eggs. Eighteen lizards laid 
eggs (9 lizards from the biopsy group, 9 lizards from the control group) over the course 
of the experiment. Eggs from six individuals (2 from the biopsy group and 4 from the 
control group) were dissected out after their deaths at various points throughout the 
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experiment and their isotopic ratios were measured, but these are excluded from most 
statistical analyses below for lack of replication.

On day 3 (prior to the treatment with labeled isotopes), one partial toe clip was collected 
from each lizard to serve as an indicator of the background levels of carbon and 
nitrogen isotopes. On day 18 a second toe clip was collected from each lizard, and on 
day 19 a baseline blood sample was collected within 3 minutes of removing the animals 
from their cages. Uric acid and feces were collected from each lizard’s cage on day 20 
(picked up using tweezers from the bottom of each cage). All samples were stored in a 
drying oven and dried to a constant mass before being processed.

After the study was finished, the toes, biopsies, eggs, uric acid, and feces were 
processed by folding 0.5 to 2.0mg of each sample into a clean tin capsule (5x9mm; 
Costech Analytical, Valencia, California, USA). Samples were analyzed for δ15N and 
δ13C using continuous-flow direct-combustion and isotope ratio mass spectrometry 
(Europa Scientific ANCA-2020; PDZ, Crewe, England).

Data Transformation & Statistical Analysis

We calculated the amount of excess 15N and 13C in each tissue by subtracting the 
background abundance of these isotopes measured by Durso and French (2018) and 
using additional unpublished data. We calculated the rate of deposition into each tissue 
following Stark (2000).

We used multivariate regression (function “lm” in R, version 3.3.3) to examine the effect 
of our wound treatment and the amount of food eaten on the rates of leucine and 
palmitic acid deposition into eggs, wounds, feces, and uric acid. We removed 4 lizards 
from our statistical analysis either because they had an abnormally high body mass or 
ate a very large number of crickets, conditions that seem to have caused abnormalities 
in isotope concentration in tissues. Figures were made using ggplot2 v. 2.2.1 (Wickham, 
2009).

RESULTS

We found a positive effect of the amount of food eaten on the amount of 13C-1-palmitic 
acid deposited in the eggs and the amount of 13C-1-palmitic acid excreted in uric acid 
(Table 1). Food intake did not affect other nutrient deposition rates (Table 1; Fig. 1). The 
slopes of the relationships between deposition rate and food intake were not 
significantly different from zero for either eggs or scabs and either 15N-leucine or 13C-1-
palmitic acid (p > 0.60).

The wounding treatment did not affect the total amount of food eaten by lizards (sham 
treatment 1.17 ± 0.17 g, wound treatment 1.30 ± 0.24 g; p = 0.59, R2 = 0.006). There 
were no significant relationships between the amount of isotope in scabs or eggs and 
the rate of wound healing as measured by photography. Wounded lizards excreted less 
13C-1-palmitic acid than control lizards (Table 1). There was also no relationship 

Page 4 of 21

John Wiley & Sons

JEZ Part A: Ecological and Integrative Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

between relative investment of 15N-leucine and 13C-1-palmitic acid into eggs and wound 
healing (Fig. 2). These relationships were not significant (p=0.90 for leucine, p = 0.47 for 
palmitic acid), nor were there significant interactions with wounding treatment (p = 0.78 
for leucine, p = 0.55 for palmitic acid).

A limitation is that only approximately half the lizards in our study laid eggs, which 
reduced our sample size considerably. However, comparisons between lizards that laid 
eggs and those that did not revealed no significant differences in the amount of either 
isotope in skin biopsies (Fig. 3A&B; Table S1), in food ingestion (Table S1), or in wound 
healing rate (Table S1). Ultrasound data show that individuals that did not lay eggs but 
survived to the end of the experiment (11 lizards from the biopsy group, 10 lizards from 
the control group) had significantly more egg tissue remaining in the ovary (mean ± 
SEM = 0.14 ± 0.02 mg, interquartile range 0.7 – 0.22 mg) than individuals that had laid 
eggs and were starting on a new clutch (essentially 0; N = 9 from each group, t = -8.5, p 
< 0.0001, R2 = 0.63; Fig. 3C; Table S1). Eggs were not dissected from any surviving 
individuals that did not lay during the 18-day experiment. These individuals had 
significantly lower total clutch mass at the beginning of the experiment (mean ± SEM = 
0.19 ± 0.03 mg, interquartile range 0.09 – 0.24 mg) compared to individuals that laid 
eggs (mean ± SEM = 0.60 ± 0.07 mg, interquartile range 0.36 – 0.79 mg; t = 5.3, p < 
0.0001, R2 = 0.40; Fig. 3D; Table S1), and were significantly smaller (mean ± SEM SVL 
= 46 ± 0.5 mm) than individuals that laid eggs (mean ± SEM SVL = 48 ± 0.4 mm; p = 
0.05, R2 = 0.11; Fig. 3E; Table S1). This is likely due to their being earlier in the 
reproductive process compared to those that laid. Comparing ultrasound data to date of 
laying revealed that there was a strong negative linear relationship between follicle size 
& date of laying (-0.04 mg per day; p < 0.001, R2 = 0.51; Fig. S1), such that animals 
earlier in reproduction took longer to lay, as would be expected.

Compared to the non-regrown skin biopsies taken at the end of the experiment from 
unwounded control animals, the healed biopsies of wounded animals had 3.4e-6 ± 1.1e-
6mg more 15N-leucine (F1,35 = 9.41, p = 0.004, R2 = 0.19, one outlier removed; Fig. 4A) 
and 2.14e-5 ± 4.0e-6mg more 13C-1-palmitic acid (F1,35 = 29.16, p < 0.001, R2 = 0.45, 
one outlier removed; Fig. 4B), after correcting for differing stoichiometry (Fig. 5). In 
contrast, estimates of the effect of wounding on the amount of isotope found in eggs 
were negative, but not statistically significant (for leucine, -9.9e-7 ± 2.1e-6mg; F1,22 = 
0.23, p = 0.63, R2 = 0.01; Fig. 4C; for palmitic acid, -2.6e-5 ± 3.7e-5mg; F1,11 = 0.49, p = 
0.49, R2 = 0.02; Fig. 4D), even when up to 4 outliers were removed (not shown). Three 
of the four outliers were the individuals who consumed the most food, and the fourth 
was among the top 20% of individuals by amount of food eaten.

The number of days until the eggs were laid (which corresponds to the stage of 
reproduction at the beginning of the experiment) interacted with the wound treatment to 
influence the amount of recovered label in the end-of-experiment biopsies not for 15N-
leucine (F3,11 = 3.8, p = 0.14; R2 = 0.37; Fig. 6A) but for 13C-1-palmitic acid (F3,11 = 17.1, 
p < 0.001; R2 = 0.78; Fig. 6B).

DISCUSSION
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We found significantly more of both tracers in healed wounds than in regular skin from 
control animals that did not receive a biopsy (Fig. 4 A&B). We also found highly altered 
stoichiometry of intact skin, scabs, and healed wounds (Fig. 5), and that investment into 
healing was dependent on reproductive state (Fig. 6). Isotope incorporation, excretion, 
and egestion rates were primarily driven by metabolism and were largely independent of 
wounding and wound healing rate, with the notable exception of fatty acid excretion 
being reduced in wounded animals. Both leucine (15N-labeled) and palmitic acid (13C-
labeled) tracers for the most part behaved in a similar way (Fig. 4). Although we did not 
document significant decreases in label allocation to eggs in wounded animals, the 
larger absolute size of clutches of eggs (18-398 mg) may mean that they take longer 
and/or need a larger effect size in order for significant differences in label incorporation 
to appear, relative to healed wound tissue (0.01-1.17 mg). However, we did observe 
increased fatty acid deposition in the eggs of animals that ingested more food, 
suggesting that these animals had overall higher lipid turnover rates. Finally, in absolute 
terms, our rate estimates were lower than those of Durso and French (2018) and of 
Brace et al. (2015) for 13C-leucine to female Anolis sagrei gonads. 

Wound Healing Dynamics

We found that healing wound tissue 15-16 days post-wounding contained more of both 
labeled compounds than skin from control animals that did not initially receive a biopsy 
(Fig. 4), despite their altered stoichiometry (Fig. 5). The fact that both isotopes are 
higher in healing wounds relative to skin demonstrates active deposition into immune 
and re-epithelization response of both lipids and proteins. Our finding that some non-
wounded lizards also had high levels of labeled nitrogen in their skin & muscle tissue 
suggests that individual variation is high and could be attributed to variation in 
unquantified lipid stores at the beginning of the experiment, terminal investment 
thresholds (Duffield et al., 2017), or other factors. Of course, low levels of labeled 
isotopes in the initial biopsy of experimental animals are expected, because the heavy 
isotopes we used as labels are not common in nature.

Even though the total nitrogen content (both 15N and 14N isotopes combined, including 
all 15N label) of healed wound biopsies is much smaller than that of healthy tissue, a 
relatively high percentage of this nitrogen came from our label treatment. In general, 
protein catabolism is increased after trauma, and skeletal muscle is preferentially 
catabolized in humans (Simsek et al., 2014). Wounded lizards in our study built scabs 
using ingested amino acids at a rate 2.8x that of allocation to healthy tissue (healthy 
skin biopsies), and built new tissue (healed wound biopsies) using ingested amino acids 
at a rate 3.8x that of allocation to healthy tissue (healthy skin biopsies). Because the 
amount of label given was miniscule compared to the size of the existing pools with 
natural-abundance isotope ratios within the body, the absolute values of these rates are 
still very small. Finally, distinguishing between proteins involved in tissue reconstruction 
and immune proteins recruited to fight infection at the site of the wound is not possible 
using our technique, although looking at differential timing in future studies could 
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provide evidence, whereby the immunological response precedes the longer 
reconstruction phase (Martin, 1997).

Finally, wounded animals excreted less palmitic acid than unwounded ones (Table 1), 
suggesting that they were retaining more lipids than control animals. It may be that 
these animals were incorporating more lipids into healing wounds and thus less was 
being excreted. This idea is also supported by the greater overall amount of labeled 
compounds in the wound tissue relative to the skin of unwounded controls (Fig. 4A&B). 
This finding may also partially explain stoichiometric differences among tissues (Fig. 5).  

Stoichiometry

When examining ratios of total nitrogen to total carbon (both isotopes combined), we 
found that healed wounds and scabs contained about half as much nitrogen and about 
10% more carbon by mass as unwounded tissue, corresponding to an average total 
C:N ratio of ~3:1 in healthy tissue, ~4:1 in scabs, and ~5:1 in healed wounds (Fig. 5). 
Scabs and especially healed wounds were more variable than healthy tissue, with C:N 
ratios of healed wounds ranging from 3.8:1 to 6.9:1. We interpret this as evidence for a 
lower overall concentration of protein in scabs and healed wounds compared to healthy 
tissue, despite the above evidence that recently-ingested protein is preferentially 
recruited to the wound site (Fig. 4A), which could also be explained by relatively greater 
relative lipid investment at wound sites, driving the C:N ratio up (Table 1; Fig. 5). 

Following injury, animals generally metabolize a greater percentage of available amino 
acids for energy (Demling and DeSanti, 2000; Simsek et al., 2014). While protein 
production also increases following trauma, the increase in amino acid catabolism 
outpaces the increase in anabolism, resulting in a net loss of nitrogen from the body 
(O'Donnel et al., 1976). Both of these processes may result in a relatively lower amount 
of ingested nitrogen being incorporated into new tissues than carbon, with nitrogen 
instead being metabolized and otherwise lost (e.g. excreted) from the body. Young and 
Huang (1969) explained their finding that rats with fractured femurs incorporated less 
labeled carbon into tissue surrounding the injury than non-wounded rats by suggesting 
that local severe electrolyte change related to the traumatic injury may have inhibited 
the uptake of leucine into the muscle tissue near the injury site. Ryan et al. (1974) 
speculated that infection may lead to a decrease in fat mobilization in rats, leading to 
the necessity of amino acid combustion to compensate for reduced metabolic fuel. A 
slightly more recent study (Askanazi et al., 1980) suggests that proteins are broken 
down and transported to the liver for hepatic protein synthesis. Yu et al. (1988) found 
that supplementation of branched chain amino acids in burn patients did not result in an 
increase of leucine uptake in protein synthesis, but rather resulted in increased leucine 
oxidation for energy. Thus there are at least three hypotheses for this phenomenon: that 
leucine is directly incorporated into the wound site during local protein synthesis; that 
leucine is locally catabolized for energy; or that amino acids are broken down and 
transported to the liver for hepatic synthesis. Our results show an overall reduction in 
protein in wounded lizards, which supports the last of these three hypotheses.
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Reproductive stage

We found support for our hypothesis that the stage of reproduction affected investment 
into healing. Specifically, animals earlier in reproduction (laid eggs on a later date) 
invested relatively more labeled proteins and lipids into healing their wound tissue (Fig. 
6). That this same relationship was not apparent in the unwounded skin of control 
animals suggested that without the wounding challenge, investment into skin 
maintenance did not change over time with reproduction. This finding was also 
supported by the findings of Durso and French (2018), who found that earlier 
reproductive stages increased the absolute and relative allocation of protein to self-
maintenance. This is consistent with a study in Texas field crickets (Gryllus texensis), 
whereby researchers found that immune-challenged crickets had decreased protein 
deposition into eggs (Stahlschmidt et al., 2013). Similarly, female Wellington tree wetas 
(Hemideina crassidens) that were immune-challenged laid fewer eggs than non-immune 
challenged females, and their eggs had lower protein content (Kelly, 2011). The general 
pattern was similar for protein and lipid investment, although not statistically significant 
for proteins (Fig. 6B), potentially suggesting that lipids may be a more limiting resource 
than proteins, although our ability to draw such conclusions is hindered by our small 
sample size. Because our study lasted only 18 days, compared to an average gestation 
period of 48 days (Tinkle, 1967), individual variation in timing of reproduction was 
probably the most important source of variation in our experiment.
    
Studies have shown that various animals will prioritize self-maintenance over 
reproductive investment when faced with a stressor, particularly in species with 
relatively short lifespans. For example, burying beetles (Nicrophorus vespilloides) that 
were wounded during breeding had reduced reproductive output (Reavey et al., 2014), 
and immune challenged Mallee dragons (Ctenophorus fordi) showed decreased 
reproductive investment (i.e. egg mass) (Uller et al., 2006). Similarly, in female dung 
beetles (Euoniticellus intermedius), activation of the immune system causes resources 
to be diverted away from reproduction (Reaney and Knell, 2010). Immune activation 
also results in lower circulating levels of testosterone in male Cape ground squirrels 
(Xerus inauris) (O'Brien et al., 2018), and in lower sperm swimming velocity in Great 
Tits (Parus major), impairing reproductive ability (Losdat et al., 2011). In iteroparous 
species, including U. stansburiana, reproductive costs of immune challenges may be 
observed in later clutches or litters rather than in the immediate reproductive event (e.g. 
Marzal et al., 2007), something we do not have the data to assess in the current study.

We also found positive relationships among the amount of palmitic acid deposited in the 
eggs, the amount of food eaten, and the amount of palmitic acid excreted (Table 1). 
This suggests higher turnover rates of lipids in animals investing highly in their eggs. 
Elevated turnover rates in females investing heavily in their eggs make sense, as 
pregnancy is known to have high metabolic costs in all animals (Lourdais et al., 2002; 
Van Dyke and Beaupre, 2011; Sparling et al., 2006). Although metabolic rate was not 
measured directly in this study, reproduction, food consumption, and digestion are 
known to be directly related to metabolic rate, and metabolic rates decrease following 
immune challenges in this species (Smith et al., 2017; Plasman et al., 2019). Egg 
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formation increases resting metabolic rate by 22% in female zebra finches (Taeniopygia 
guttata; Vézina and Williams, 2005) and by 27% in female great tits (Parus major; 
Nilsson and Råberg, 2001). Studies in reptiles are few, but both male and female 
Argentine Black-and-White Tegus (Tupinambis merianae) are known to behaviorally 
maintain metabolic rates two to three times higher during the reproductive season via 
seasonal endothermy (Tattersall et al., 2016). Durso & French (2018) did not find that 
food restriction had a significant effect on allocation of leucine to either reproduction or 
wound-healing. Our data suggest that metabolic activity was likely the primary driving 
force determining the destination of our isotope label.

Conclusions

In conclusion, our study showed that animals invest both lipids and proteins into healing 
tissues, and that this investment varies depending on the stage of reproduction, at least 
for lipid. By using a stable isotope label, we were able to put these important life history 
processes onto a common scale and provide quantitative estimates of the effect of a 
highly relevant wound challenge on relative investment into eggs and into wound 
healing.
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Table 1: Summary of multivariate linear regression models examining the main effects of wounding and food eaten on 
15N-leucine and 13C-1-palmitic acid deposition rates (mg/day) into four sink pools (egg, healed wound/biopsy, uric acid 
[excretion], and feces [egestion]).

   Response Variable

 Measurement 15N-Leucine Deposition Rate (mg/day) 13C-1-Palmitic Acid Deposition Rate (mg/day)

 Sink Pool Egg Biopsy Uric acid 
(excretion)

Feces 
(egestion)

Egg Biopsy Uric acid 
(excretion)

Feces 
(egestion)

Intercept Estimate 
±

SE

-2.43e-
12 ±

4.52e-12

-1.94e-15 
±

9.13e-15

5.31e-12
±

4.82e-13

7.75e-11
±

2.55e-11

-4.21e-12 
±

3.73e-11

4.14e-15 
±

8.65e-14

1.14e-12
±

2.12e-12

7.44e-12
±

2.91e-12

Estimate 
±

SE

4.13e-13 
±

3.61e-12

-8.59e-15 
±

7.30e-15

-4.49e-13
±

3.85e-13

-1.32e-11
±

2.04e-11

4.37e-12 
±

2.98e-11

9.05e-14 
±

6.91e-14

-3.82e-12
±

1.69e-12

-2.02e-12
±

2.33e-12

Wound 
treatment

(t-value) 
P

(0.11) 
0.91

(1.18)
0.26

(-1.17)
0.27

(-0.65)
0.53

(0.15) 
0.88

(1.31) 
0.21

(-2.26) 
0.04*

(-0.86)
0.40

Estimate 
±

SE

5.04e-12 
±

2.58e-12

3.64e-15
±

5.23e-15

1.36e-13
±

2.76e-13

-2.09e-11
±

1.46e-11

4.88e-11 
±

2.14e-11

5.03e-15 
±

4.95e-14

3.65e-12
±

1.21e-12

5.58e-13
±

1.67e-12

Explanatory 
Variable

Amount 
of food 

eaten (g)

(t-value) 
P

(1.95) 
0.08

(0.70) 
0.50

(0.49)
0.63

(-1.44)
0.18

(2.28) 
0.04*

(0.10) 
0.92

(3.01)
0.01*

(0.34)
0.74

Multiple R2 0.26 0.16 0.11 0.20 0.32 0.14 0.50 0.06

Adjusted R2 0.13 0.02 -0.04 0.07 0.21 -0.01 0.41 -0.10

Univariate 
Model 

Summary

(FDF)
P

(2.052,12) 
0.17

(1.172,12) 
0.34

(0.702,12) 
0.51

(1.522,12) 
0.26

(2.812,12) 
0.10

(0.932,12) 
0.42

(5.882,12) 
0.02

(0.382,12)
0.69
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Table S1

There were no differences between females that laid eggs & those that did not in allocation (mg/day) of either isotope to wound healing, feces, or 
uric acid, and no interactions with wound treatment. There were no differences between females that laid eggs & those that did not in food 
consumption, but females that laid eggs were larger and heavier than those that did not at the beginning of the experiment.

Element Response variable Laid (t / p) treatment laid*treatment Adjusted R2

C Fecal (mg/day) 1.17 / 0.25 -0.53 / 0.60 -0.14 / 0.89 0.01
C UA (mg/day) -0.29 / 0.78 0.18 / 0.86 -0.53 / 0.60 -0.04
C Biopsy (mg/day) -0.14 / 0.52 0.29 / 0.77 1.13 / 0.27 0.04
N Fecal (mg/day) -0.03 / 0.98 0.55 / 0.59 -0.76 / 0.45 -0.04
N UA (mg/day) 0.66 / 0.51 0.50 / 0.62 -1.17 / 0.25 -0.03
N Biopsy (mg/day) -1.17 / 0.25 -0.63 / 0.54 1.01 / 0.32 -0.05

Wound healing (%; day 5) 1.11 / 0.28 NA NA 0.01
Clutch mass (mg; day 1) 3.6 / 0.0008 

***
-0.04 / 0.97 0.74 / 0.47 0.39

Clutch mass (mg; day 18) -2.6 / 0.013 0.95 / 0.35 -0.57 / 0.57 0.24
Food ingestion 0.78 / 0.44 1.03 / 0.31 -0.91 / 0.37 -0.04
SVL (mm) 2.35 / 0.02 * 1.68 / 0.10 -1.13 / 0.27 0.08
Mass (g) 2.7 / 0.009 ** 0.66 / 0.51 0.24 / 0.81 0.23
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Mass of food ingested by each lizard compared to the rate of isotope incorporation into tissues. The mass of 
food eaten is plotted against the rates of leucine (15N-labeled) and palmitic acid (13C-labeled) deposition in 

skin biopsies (wound healing), eggs, feces (egested), and uric acid (excreted). Wound “healing” 
measurements from sham animals (N=24) come from biopsies of dorsal tissue taken at the end of the 

experiment (and are directly compared with biopsies of healed would tissue taken from animals wounded at 
the beginning of the experiment; N = 23). The gray shading represents the 95% confidence level interval 

for predictions from a linear model ("lm") for significant relationships only. 
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Deposition of A) 15N-leucine and B) 13C-1-palmitic acid into wound healing and egg production, by wounding 
treatment (N = 9 for sham, N = 6 for wound; individuals whose eggs were collected by dissection not 

shown). Wound “healing” measurements from sham animals come from biopsies of dorsal tissue taken at 
the end of the experiment, in the same location where wound treatment animals were initially wounded. 
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Differences in deposition of A) 15N-leucine and B) 13C-1-palmitic acid into wound healing, clutch mass C) 
before and D) after the experiment, and E) SVL at the beginning of the experiment between individual 

lizards who laid eggs (N = 9 lizards from the biopsy group, 9 lizards from the control group) and those who 
did not (N = 11 lizards from the biopsy group, 10 lizards from the control group). 

165x75mm (220 x 220 DPI) 

Page 17 of 21

John Wiley & Sons

JEZ Part A: Ecological and Integrative Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Mass of A) 15N (leucine) and B) 13C (palmitic acid) from label in wound biopsies and eggs, by wounding 
treatment. Wound “healing” measurements from sham animals (N = 21) come from biopsies of dorsal tissue 

taken at the end of the experiment, in the same location where wound treatment animals (N = 17) were 
initially wounded. Egg material from 11 lizards from the biopsy group (9 laying eggs and 2 dissected) and 13 
lizards from the control group (9 laying eggs and 4 dissected) has here been combined. Note that the y-axes 

showing nitrogen in A) and C) are one order of magnitude lower than those showing carbon in B) and D), 
because carbon is more abundant than nitrogen in animal tissues. Significant differences between 

treatments are shown with a * in A) and B) after removal of one outlier each. There were no significant 
differences between treatments in C) or D) even when up to 4 outliers were removed. All outliers are shown 
(three of the four outliers were the individuals who consumed the most food, and the fourth was among the 

top 20% of individuals by amount of food eaten). 
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A) Percent N, B) percent C and C) C:N ratio of initial biopsy, scab, and post-wound biopsy. Normal skin (N = 
21) contained almost twice as much nitrogen as scabs (N = 14) or healed wounds (N = 17), and healed 

wounds contained more carbon than normal skin or scabs. These differences are corrected for in the above 
rates. 
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Relationship between mass of A) 15N (leucine) and B) 13C (palmitic acid) from label in wound biopsies and 
the day on which the eggs were laid, which corresponds to the stage of reproduction at the beginning of the 
experiment. Wound treatment (N = 5) represented by triangles with dashed lines; control treatment (N = 9) 
by circles with solid lines. Note that the y-axes showing nitrogen in A) is one order of magnitude lower than 

that showing carbon in B), because carbon is more abundant than nitrogen in animal tissues. 
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Relationship between A) clutch mass (mg) at the beginning of the experiment and date of laying (N = 19), 
and B) clutch mass (mg) at the beginning of the experiment for individuals that did not lay eggs (N = 21; x-

axis variation [“jitter”] is introduced to better visualize the points). There was a strong negative linear 
relationship between follicle size & date of laying (-0.04 mg per day; p < 0.001, R2 = 0.51). The gray 

shading represents the 95% confidence level interval for predictions from a linear model ("lm"). 
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