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This thesis extends upon the representational output of semantic instance segmentation

by explicitly including both visible and occluded parts. A fully convolutional network is

trained to produce consistent pixel-level embedding across two layers such that, when clus-

tered, the results convey the full spatial extent and depth ordering of each instance. Results

demonstrate that the network can accurately estimate complete masks in the presence of

occlusion and outperform leading top-down bounding-box approaches.

The model is further extended to produce consistent pixel-level embeddings across two

consecutive image frames from a video to simultaneously perform amodal instance seg-

mentation and multi-object tracking. No post-processing trackers or Hungarian Algorithm

is needed to perform multi-object tracking. The advantages and disadvantages of such

a bounding-box-free approach are studied thoroughly. Experiments show that the pro-

posed method outperforms the state-of-the-art bounding-box based approach on tracking

animated moving objects.
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1 Introduction

Computer vision is a field that focuses on a high-level algorithmic understanding of digital

images. It strives to intelligently describe everything in an image, such as the localiza-

tion/classification/action of an object, the relationship between objects, and the 3D struc-

ture of the scene. Since videos can be treated as a collection of images, they are included

in the consideration of computer vision. With videos, more complex spatiotemporal tasks

emerge, such as the re-identification of the same objects across multiple images, multi-

object tracking, structure from motion, and odometry estimation.

The field of computer vision has gained increasing popularity after the huge success

of deep learning since AlexNet was proposed in 2012 [1]. Fig 1 shows the architecture

of AlexNet. Back then GPUs (Graphics Processing Unit) were not optimized for neural

networks yet and AlexNet was too big to fit on one GPU so it was distributed to multiple

GPUs. The applications of deep learning have now flourished in many domains, such as

object detection [4] and tracking [22], semantic segmentation [23], instance segmentation

[24], image synthesis [25], and video synthesis [26].

Deep learning is a sub-field of machine learning that utilizes the effective modeling ca-

pability of deep neural networks in many tasks, including computer vision, natural language

understanding, reinforcement learning, etc. It serves as a powerful tool that automates fea-

Figure 1: Architecture of AlexNet. Image from [1].
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ture extraction and relationship reasoning. The weights are initialized randomly without

prior knowledge of the problem. Given the input data, the model predicts the output and

corrects its weights against the ground truth through a derivative-based technique called

back-propagation. The network is expected to gradually formalize filters that are capable

of modelling increasingly complex relationships as the number of layers and weights go

up.

Before deep learning, a lot of algorithms were elaborately and manually designed by re-

searchers. It was a very time-consuming process and often limited to specific environments

and applications. The features extracted from human-designed algorithms have both the

blessing and the curse of interpretability. On one hand, people understand exactly what the

features are trying to capture, but, on the other hand, there could be untapped features that

are potentially useful but not directly understandable to human beings. In overly complex

problems, it is also unclear how to capture the correct features needed for a generalized

solution. Deep learning, in contrast, is a one-size-for-all solution that learns features in an

iterative process. Researchers now instead focus on the problem formulation and weight

optimization aspects of the problem-solving.

In general, there are three classes of learning paradigms in machine learning: super-

vised learning, semi-supervised learning, and unsupervised learning. In supervised learn-

ing, every training example is presented as a pair of input and expected output, or ground

truth; in semi-supervised learning, a small set of labelled data and a larger set of unlabelled

data are provided; in unsupervised learning, the input is provided without the ground truth,

which should be instead inferred from the input itself.

Deep learning thrives in all three learning paradigms. Most vision tasks mentioned

above can be formulated as any of the three paradigms. Classic supervised learning is

the most obvious route, but it requires a lot of human effort to provide the labelled data.

When labelled data is too expensive or impractical to obtain due to the limitations of human

labor, it often becomes the bottleneck of the performance. Semi-supervised learning has
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shown promising results where the model learns useful feature extraction from unlabelled

data through techniques such as auto-encoding [27] before fine-tuning on labelled data.

Unsupervised learning is the most challenging to design but also the most promising. Once

formulated, an unsupervised model can essentially use cheaply obtained training data and

benefit from a diverse set of data distributions.

Given the advancement in tools and algorithms in recent years, computer vision re-

searchers have become progressively more interested in a precise, pixel-wise understand-

ing of images. From crude to precise, image understanding tasks can be ordered as: image

classification – bounding box localization and classification – semantic segmentation – se-

mantic instance segmentation – panoptic segmentation, each providing more information

than the last.

Image classification assigns a class label to an entire image. For example, if an image

contains a truck as the salient object, it should be assigned the “truck” label regardless

of its exact appearance or background. Figure 2 shows a classic dataset, CIFAR-10 [28],

for image classification. In image classification, the challenge is to model the variety of a

category of objects. For example, trucks should all have wheels and large space for cargo.

In recent years, neural networks have achieved super-human performance (defined roughly

as lower than 5.1% top-5 error rate) on certain datasets of image classification [11, 29],

such as ImageNet [7].

Bounding box localization and classification, also known as object detection, takes im-

age classification one step further. Its goal is to produce the exact location of the object of

interest. By drawing a bounding box around the object, it also opens up the possibility of

labelling multiple objects at the same time. For example, in Figure 3, there are multiple

human faces in the image. The algorithm draws a bounding box around each face and clas-

sifies it as “face.” Object detection is an active research area with the support from large

datasets such as Microsoft COCO, PASCAL, and Labeled Faces in the Wild [30, 31, 32].

Object detectors generally fall into two categories, one-stage detectors such as [33, 34],
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Figure 2: Image classification from CIFAR-10. Image from http://bit.ly/
33Mspyw

and two-state detectors such as [35, 36, 37]. The difference is one-stage detectors output a

fixed number of detections on a grid while two-stage detectors propose an arbitrary number

bounding boxes and filter them in post-processing.

Figure 3: Face detection on multiple people [2]

Semantic segmentation takes image understanding to another level by assigning a class

label to each pixel, achieving localization and classification at the finest granularity. For

example, in Figure 4, the algorithm labels each pixel that belongs to the “person” class

as red, drivable road as purple, sidewalk as pink, road signs as yellow, and street lights

as orange. The actual colors do not matter as long as they are consistent for the same

class. Modern semantic segmentation methods mostly rely on fully-convolutional neural

http://bit.ly/33Mspyw
http://bit.ly/33Mspyw
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networks [15, 14]. Datasets like CityScape and KITTI [3, 38] provide large amounts of

driver-view training data, mostly for autonomous driving research purposes.

Figure 4: Semantic segmentation on a street view in the CityScape dataset [3]

Instance segmentation looks beyond the semantic classification of the pixel and assigns

a unique identity to each visible object within the same class. For example, in Figure 5, the

pixels that belong to chairs are correctly identified and separated from all other objects in

the scene, plus each chair has a distinct identity (illustrated with a unique color) consistent

within its boundary. Some methods build on top of object detection and estimates the object

mask within the bounding box [4, 39, 40], while the others take a bottom-up approach that

assigns properties to pixels and cluster them later into instance masks [41, 42, 43].

Panoptic segmentation combines semantic segmentation and instance segmentation into

one task. The countable things are treated as instances where as the uncountable “stuff” is

treated as semantic segmentation. It aims to assign a class and/or identity to every pixel

in the image. It was first proposed by Alexander Kirillov et al. in 2018 [44], which also

Figure 5: Semantic instance segmentation on chairs. Image from http://bit.ly/
2DRMRTW

http://bit.ly/2DRMRTW
http://bit.ly/2DRMRTW
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Figure 6: A side-by-side comparison of different segmentation tasks. Image from http:
//bit.ly/34Xjuvm

introduced a new Microsoft COCO Panoptic dataset for the task. Others quickly followed

up on improvements [45, 46, 47, 48, 49]. Figure 6 compares the relationship between

semantic segmentation, instance segmentation, and panoptic segmentation.

Even though panoptic segmentation provides classification and identity for each pixel

in the image, it is by no means the end of all pixel-level tasks. So far the focus has been on

the visible portion of the image, but human beings have much stronger perceptive capability

in the sense that they are also able to infer what is occluded. We don’t simply assume an

object is cut in half just because we can only see half of it. We imagine where the rest of

it is and what it looks like based on what we see. Amodal segmentation fulfills this need

by explicitly estimating the complete mask based on the visible part. This is particularly

useful in tasks such as multi-object detection and tracking because, ideally, objects should

not be lost when briefly occluded.

Instance segmentation, either modal or amodal, traditionally has two general branches

of techniques, top-down and bottom-up, as mentioned previously. The top-down approach,

much like a two-state object detector, relies heavily on generating bounding boxes around

http://bit.ly/34Xjuvm
http://bit.ly/34Xjuvm
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objects. The instance mask is then estimated strictly within the boundary of the box, as

shown in Figure 7.

Figure 7: Sample instance segmentation result from Mask R-CNN [4]

In cluttered scenes where a lot of objects are overlapping, it becomes challenging to

generate bounding boxes for each object due to non-maximum suppression (NMS). NMS

is a necessary step to filter out overlapping bounding boxes. It achieves this filtering typ-

ically by calculating the intersection over union (IOU) between candidate boxes. IOU is

designed to measure the extent of overlapping between two shapes. NMS sorts all bound-

ing boxes by their confidence scores. When two boxes have an IOU over a pre-determined

threshold, NMS discards the one with a lower confidence score and keeps the other. Figure

8 illustrates the definition of IOU.

Current bounding box proposal methods typically generate many more boxes than the

actual number of objects, in the hopes that a post-processing algorithm will only keep the

candidates that have both the highest confidence and the best overall fit for each object.

Figure 9 demonstrates the effect of such post-processing. The problem with this approach

is that, when objects are cluttered and overlapping, a lot of valid bounding boxes are treated
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Figure 8: Intersection over union. Image from bit.ly/33RC9Yq

as false-positives and discarded. Figure 10 shows such a failure case. Several modifica-

tions such as Soft NMS and Softer NMS are proposed to mitigate this issue [50, 51]. They

improve benchmark scores but do not address the fundamental problem of bounding boxes

– bounding boxes can repeatedly cover the same region multiple times and they intention-

ally do so to systematically cover important visual clues. Methods like [35] even explicitly

allow ~2k bounding box proposals in the intermediate step to cover the image as much

as possible. As long as bounding boxes are still part of the algorithm, this problem will

persist.

Figure 9: The effect of non-max suppression. Image from bit.ly/2YjNe38

Another issue with bounding boxes is that, when the algorithm tries to generate a mask

bit.ly/33RC9Yq
bit.ly/2YjNe38
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Figure 10: A failure case of non-max suppression. Image from bit.ly/355TkXi

for the salient object of the detected class and two objects are both visible in the bounding

box, it can be confusing to decide which one is the targeted object. Technically, both of

them are, so the algorithm ends up attempting to cover both objects with a strange shape.

Examples of this type of error are shown in later chapters.

Other than the tasks mentioned above, there are other areas in computer vision that take

advantage of videos instead of static images. Videos consist of multiple frames of highly

correlated content. The fact that neighboring frames are taken within temporal and spatial

proximity provides extra information.

Optical flow is usually calculated to visualize pixel movement between consecutive

video frames and help track object movement, as shown in Figure 11. Traditionally this

is done through a differential method called the Lucas-Kanade method [52, 53]. Modern

methods rely heavily on deep learning to estimate optical flow through either supervised

learning [54, 55] or unsupervised learning [56]. Optical flow can also be jointly learned

with other tasks such as depth estimation [57] and segmentation [58].

Human key-points estimation is usually done jointly with human detection [4] to pro-

vide extra information to be used in pose estimation [59, 60] or fun applications such as

synthesized dancing videos [61] or motion capture. Figure 12 demonstrates the task of

bit.ly/355TkXi
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Figure 11: Optical flow, tracked through multiple frames and visualized on the last frame.
Image from http://bit.ly/2PjjDTk

Figure 12: Human key-points estimation [5]

human key-points estimation.

Three dimensional reconstruction is another area that leverages the power of videos.

The concept is that a camera moves continuously in a 3D space, taking 2D images peri-

odically. The appearances of objects warp based on their shape and distant to the camera.

Structure from motion extracts feature points from frames and re-projects them into the 3D

scene in order to reproduce the structure [62]. Stereo matching tackles the problems differ-

ently. Stereo matching assumes that two cameras are side-by-side and calculates the depth

at every pixel by measuring how much each pair of corresponding pixels shifts between the

left and right image [63]. Figure 13 and 14 illustrate the two methods.

Among current research areas mentioned above, amodal instance segmentation and

multi-object tracking are the two areas that strive for the highest level of scene understand-

http://bit.ly/2PjjDTk
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ing. One describes the complete shapes of objects regardless of their visibility, the other

preserves the identities of multiple objects, given their detections, across video frames.

This thesis focuses on these two areas and proposes a unified method for both. The pro-

posed method is intuitive yet powerful. It is easy to construct, with very few parameters to

manually tune. Specifically, the contributions of this thesis include:

• Investigate the limitations of bounding boxes in highly crowded scenes for both in-

stance segmentation and tracking;

• Propose a bounding-box-free method for amodal instance segmentation based on

pixel embeddings;

• Extend the proposed method into a multi-object tracking method without motion

modelling or complex identity matching post-processing;

• Compare the behaviors and trade-off between the proposed models and state-of-the-

art models in the literature to highlight current issues in segmentation and tracking.

Figure 13: Structure from motion. Image from http://bit.ly/2YjQsUk

http://bit.ly/2YjQsUk
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Figure 14: Stereo Matching. Top: left and right view. Bottom: color-coded depth map and
3D reconstructed scene. Image from http://bit.ly/2LoAfrS

http://bit.ly/2LoAfrS
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2 Related Work

2.1 Deep Learning and Computer Vision

2.1.1 Components of Deep Learning

Even though the new wave of deep learning interest only started in 2010s, the core compo-

nents and fundamentals of deep learning are not young. This section reviews the develop-

ment of deep learning from the last century and introduces the core concepts and techniques

along with their history.

The foundational concept of perceptron [64] was first introduced in 1957. Frank Rosen-

blatt proposed it as a binary classification algorithm that has the following rule:

f(x) =


1 if w · x+ b > 0,

0 otherwise
(1)

where w and x are vectors of real values of the same length, and b is the bias. Today, the

form of w · x + b is still a fundamental computing rule in a fully connected network. The

difference is that neural networks now are much more flexible than simple binary classifi-

cation. Each f(x) and the non-linear activation function after it are together considered a

“neuron”. A generic architecture for fully connected neural networks is shown in Figure

15. In this case, the network has one input layer, two hidden layers, and an output layer.

The dimensions of inputs and outputs are pre-defined by the problem, but there is a lot

of flexibility for how many hidden layers and how many neurons per layer a network can

have. Generally, the capacity of network increases as the network gets more complicated.

What is not shown in Figure 15 is the activation function. There is an activation function

for every layer of the neural network. The function can have many designs to choose from,

but it needs to be differentiable and nonlinear. The differentiability allows backpropagation,

thus training, of the neural network. The nonlinearity provides the network with the ability
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Figure 15: A generic architecture of fully connected networks. Image rendered by http:
//bit.ly/2s28oa8

to model nonlinear relationships in data, which is what makes neural networks powerful.

If there is no nonlinear activation function, then the entire fully connected network can be

reduced to one matrix multiplication. In other words, there is no reason to have multiple

layers without nonlinear activation functions.

Consider a two-layer fully connected network without activation functions. It can be

represented as

f(x) = A1(A0x+ b0) + b1 ,

which can be simplified as

f(x) = A1A0x+ A1b0 + b1 .

http://bit.ly/2s28oa8
http://bit.ly/2s28oa8
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Let A = A1A0 and b = A1b0 + b1, then we have

f(x) = Ax+ b ,

which is the form of a one-layer fully connected network.

Common choices of nonlinear activation functions include ReLU (Rectified Linear

Unit) [65], LeakyReLU [66], ELU (Exponential Linear Unit) [67], Sigmoid, Hyperbolic

Tangent (tanh), and softplus [68]. Figure 16 shows each function listed above. Their equa-

tions are as the following:

ReLU(x) =


x if x > 0,

0 otherwise
,

ELU(x) =


x if x > 0,

α(ex − 1) otherwise
,

LeakyReLU(x) =


x if x > 0,

αx otherwise
,

Sigmoid(x) =
1

1 + e( − x)
,

tanh(x) =
ex − e−x

ex + e−x
,

softplus(x) = ln(1 + ex) .

Fully connected networks work well with one dimensional data, sometimes two dimen-

sional data if it is flattened to be one-dimensional but, in general, fully connected networks

struggle to work well on two dimensions and beyond due to its input format limitations.

By design, the input of a fully connected network is a one-dimensional vector of fixed size.

Inputs of different shapes have to be cropped or padded, depending on whether they have

more numbers or fewer. In contrast, convolutional neural networks solve this problem by
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Figure 16: Plot of various activation functions. Image rendered by the author.
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Figure 17: Process of a convolutional filter convolving with the input. Note how the out-
put location corresponds to the location of the input. Image from http://bit.ly/
2PkeSsz

utilizing small convolutional filters to convolve with the input. The input can be one, two,

three, or higher dimensional. The most commonly used are two and three dimensional

convolution filters. They are usually of size (3 × 3), (5 × 5), or (7 × 7). Bigger sizes

are theoretically possible but rarely used. The size of each spatial dimension also needs to

be an odd number in order to preserve the shape of the input. Figure 17 demonstrates the

process of a two dimensional convolution. At the borders of the input image, the designer

of the algorithm has a choice between zero-padding the border or leaving it as-is. Zero-

padding will cause the output of convolution to have the same shape as the input, whereas

leaving it as-is will cause the output to have a smaller shape. In the case of Figure 17, there

is no zero-padding, so the input image changes from 5× 5 to 3× 3

The convolutional layer has many variants. One of them is the atrous convolutional

layer. It allows the layer to have explicit control over the output resolution by changing

how “sparse” the atrous convolution filters are. Another variant is the convolution transpose

layer. It increases the output resolution compared to the input in contrast to decreasing it in

normal convolution layers. This is achieved by flipping the order of the input and the filter.

To train a neural network, whether it is convolutional or fully connected, a core tech-

nique called Stochastic Gradient Descent (SGD) was introduced. In 1951 and 1952, two

http://bit.ly/2PkeSsz
http://bit.ly/2PkeSsz
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Figure 18: Procedure of Stochastic Gradient Descent. Image from http://bit.ly/
2PkLSRP

papers were published that were considered the foundational works of SGD. It is an itera-

tive optimization algorithm to minimize/maximize the value of a function. It works in the

following stages: (1) start at a random location on the function value plane with random

parameters; (2) find the gradient with respect to the parameters to decide the direction for

its next step; (3) update by taking a step of predefined step size in that direction; (4) repeat

step (2) and (3). Figure 18 shows the stages of SGD.

SGD requires the gradients of the function to be known. It is done through a technique

called automatic differentiation (autodiff). In 1970, the earliest form of general automatic

differentiation was developed by Seppo Linnainmaa [69, 70], even though it was not called

“backpropagation” at the time. Modern deep learning frameworks use the reverse mode

automatic differentiation for calculating gradients. The procedure is best shown through a

toy example.

Assume we want to calculate the gradient for

f(x1, x2, x3) = αx1x2 + βx23

http://bit.ly/2PkLSRP
http://bit.ly/2PkLSRP
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with respect to x1, x2, x3 where α and β are constants. In other words, we are interested in

df
dx1
, df
dx2
, df
dx3

. The algorithm breaks f down to basic units whose the gradient functions are

known and clearly defined. In this case,

y1 = x1x2 ,

y2 = x23 ,

y3 = αy1 ,

y4 = βy2 ,

y5 = y3 + y4 .

It then uses the commonly known Chain Rule to iteratively find the gradients with respect to

the target parameters. As a reminder, the Chain Rule states that, if there are three variables

a, b, c where a depends b and b depends on c, and we are interested in the derivative of a

with respect to c, then it can be calculated as

da

dc
=
da

db
· db
dc
.

In the case of the example, gradients for each intermediate step can be easily obtained as

the following:

dy5
dy3

= 1,
dy5
dy4

= 1,
dy3
dy1

= α,
dy4
dy2

= β,
dy1
dx1

= x2,
dy1
dx2

= x1,
dy2
dx3

= 2x3 .
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Since f = y5, we can then df
dx1
, df
dx2
, df
dx2

as:

df

dx1
=

df

dy3
· dy3
dy1
· dy1
dx1

= 1 · α · x2 ,

df

dx2
=

df

dy3
· dy3
dy1
· dy1
dx2

= 1 · α · x1 ,

df

dx3
=

df

dy4
· dy4
dy2
· dy2
dx3

= 1 · β · 2x3 .

The exact values of these gradients can then be easily calculated when constant α, β

and the values of x1, x2, x3 are plugged in.

Many optimization algorithms proposed over the years. Among them, the most famous

ones include Adamax [71], Adam [71, 72], RMSProp, AdaGrad [73], Adadelta [74], and

Nadam [75]. They propose extensions on top of the original SGD by introducing ideas such

as momentum, sliding window average of gradients, and adaptive learning rate. The choice

of optimizer, together with learning rate, can be a deciding factor in machine learning.

Therefore it should be carefully tested through a search algorithm.

In 1997, long-short term memory (LSTM) recurrent neural network was invented by

Sepp Hochreiter and Jürgen Schmidhuber [76]. LSTM is still one of the core modules in

modern research of recurrent neural networks (RNN). To be able to appreciate LSTM, one

first needs to understand the vanilla RNN design. RNNs are the backbone of natural lan-

guage processing. They have the architectural advantage of being able to handle sequential

data naturally. Language is one of the two manifestations of intelligence, together with

visual understanding. Therefore, being able to understand human languages, translating

them to one another, rephrasing with similar meanings attracted huge research interest in

the community. Previously neural networks have been a state-less model, meaning that the

content and ordering of previous inputs and outputs have no effect on the next inputs or

outputs. Being able to retain information in a way that models human memory is desir-

able in sequential data processing. The recurrent neural network was designed to solve this
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Figure 19: A generic architecture of recurrent neural networks. Image from http://
bit.ly/2rUkou5

Figure 20: Flexible input/output for recurrent neural networks. Image from http://
bit.ly/2LqwsKw

particular problem. Figure 19 shows a generic architecture of a RNN.

In the figure, there is a hidden state, denoted as ht for time step t. The hidden state

is affected by the previous inputs so that it produces different outputs of the same input

xt+1 in time step t + 1 given different previous inputs from time step 0 to t. The right

hand side of the figure is the setup unrolled in time. This architecture is very flexible

in its input/output arrangement. It can be one-to-one, one-to-many, many-to-one, many-

to-many, with arbitrary input and output length. Figure 20 illustrates these input/output

arrangements.

The computation of RNN is as follows. Let xt be input at time t, ht be hidden state at

time t. The internal state is updated using both the previous hidden state and the input:

ht = tanh(Whhht−1 +Wxhxt) ,

http://bit.ly/2rUkou5
http://bit.ly/2rUkou5
http://bit.ly/2LqwsKw
http://bit.ly/2LqwsKw
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Figure 21: Architecture of LSTM recurrent neural networks. Image from http://bit.
ly/2rUkou5

and then the output is:

y = Whyht ,

so one RNN unit keeps three parameter matrices: Whh,Wxh,Why.

The design works better than fully connected networks on sequential data, but it still has

its problems. Researchers found that this design does not handle long-term dependencies

in sequential data, such as language. In the original design, h was responsible for both

(1) remembering particular information at a certain point in time and (2) carrying long

term persistent information. LSTM mitigates this problem by explicitly introducing two

memory states, cell state C and hidden state h, and extra gates to decide whether some

information should be remembered or forgotten. Figure 21 illustrates the internal structure

of a LSTM unit.

The first Sigma gate is the forget gate ft

ft = Sigmoid(Wf [ht−1, xt] + bf )

where [, ] means concatenation.

The second and third gate work together to decide what which values in the input x

http://bit.ly/2rUkou5
http://bit.ly/2rUkou5
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should be used to update the hidden state and how:

it = Sigmoid(Wi[ht−1, xt] + bi

C̃t = tanh(WC [ht−1, xt] + bC) .

The cell state Ct is then updated by

Ct = ftCt−1 + itC̃t .

The last part of LSTM is to produce hidden state ht:

ot = Sigmoid(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct) .

The cell state C and hidden state h can be think of the long and short term memory,

respectively. C is preserved between time steps and only updated when necessary. The

update contains multiplication and addition, which help both gradient backpropagation and

preserving information. h is derived from C at each time step and may be adjusted drasti-

cally at any step.

2.1.2 Major Datasets

In 1998, Yann LeCun and his team released MNIST [6], a dataset of 32 × 32 greyscale

images of hand-written digits from 0 to 9. It is commonly known today as a quick and

easy-to-learn dataset for neural network sanity check. Figure 22 shows samples from the

MNIST dataset.

In 2010, ImageNet was launched by Fei Fei Li’s team. With more than 14 million

images from 20000 classes, it was the biggest dataset of image classification at the time,
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Figure 22: Sample data from MNIST dataset [6]

Figure 23: Sample data from ImageNet dataset [7]
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Figure 24: Workflow diagram for VAE. Image from http://bit.ly/2PkLS4b

and it inspired and challenged many researchers to focus on training on large amounts

of data and modeling diverse environments. Pre-training on ImageNet is still a common

technique for many computer vision tasks. Figure 23 shows samples from the ImageNet

dataset.

2.1.3 Generative Models

In 1985, the autoencoder [77] was invented by Rumelhart et al. to utilize neural networks

for self-supervised representational learning. The goal of an autoencoder is to take data x as

input and produce output x0 as output such that x = x0. The loss function can be as simple

as mean squared error (MSE). The network is forced to learn internal representations of the

data. If the intermediate representation is forced to be lower dimensional than the data, then

the network needs to learn efficient and robust representations. The encoder and decoder

can then be used as data compression tools and the latent space representation can be seen

as the encoded data.

In 2013, Variational Autoencoder (VAE) [27] was introduced by Kingma et al.. It is

based on autoencoder but the model is meant to be generative. In other words, the output

does not have to rely on a similar input. To do that, VAE puts constraints on the latent

http://bit.ly/2PkLS4b
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space that it needs to be close to a Gaussian distribution, regardless of the original data

distribution. It does not matter if the data to be generated is cat images or stock prices. The

encoder outputs a mean vector and a variance vector to form an N -dimensional Gaussian

distribution. The decoder then samples from this distribution and tries to reconstruct the

input. Figure 24 illustrates this workflow.

Note that the sample is random therefore not guaranteed to be the same even when

the input is the same. This forces the entire Gaussian distribution to be representative of

the original data. When a VAE is successfully trained, any sample from the distribution

should produce something that looks realistic. A property of such a network is that by

gradually changing the sample point, the output also changes gradually, meaning that there

are no sudden jumps. Figure 25 illustrates this continuous representation learned by VAEs

on MNIST. In the middle row, as the two dimensional noise changes along their axes, the

reconstructed image also continuously changes from 6 to 2, then to 0, 4, 9, and 7. Note

how each number is realistic and slightly different from its neighbors.

To train a VAE, the loss function also needs to be adjusted from that of autoencoders. A

simple reconstruction loss is no longer good enough. There also needs to be a distribution

loss so that the distribution of the internal representation is close to the true prior distribu-

tion, which is assumed to be Gaussian. Let z be the hidden variable that generates observed

data x, and let p(z|x) represents the true distribution of z given x. We approximate p(z|x)

with a trainable distribution q(z|x). The exact loss function is then formulated as:

Eq(z|x)logp(x|z)−KL(q(z|x)‖p(z|x)) , (2)

where the first term measures reconstruction loss, and the second term measures difference

between the estimated distribution and true distribution through KL divergence.

The implementation of the sampling layer requires a reparameterization trick. A normal

sampling layer does not allow gradients to backpropagate due to its randomness. The trick
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Figure 25: Results of continuous sampling from VAE. Image from http://bit.ly/
2YkLeaQ

http://bit.ly/2YkLeaQ
http://bit.ly/2YkLeaQ
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Figure 26: Workflow diagram for GAN. Image from http://bit.ly/2YnloCZ

is to set up the previous layer to explicitly produce a mean µ and a variance σ. They are

then combined together through

x = µ+ ε · σ

where ε is a randomly sampled Gaussian noise with 0 mean and unit variance. This way

the Gaussian sampling layer allows gradients to flow back through µ and σ, which tie the

layers together.

In 2014, Goodfellow et al. invented Generative Adversarial Network (GAN) [78]. It

is considered one of the most influential inventions in deep learning, as it inspired count-

less research ideas and displayed the powerful creativity in neural networks. GANs are

similiar to VAEs in the way that they are both generative models. The idea is to set up

two networks, one serves the role of discriminator D, the other serves the role of generator

G. The generator generates target output from a sample from a noise distribution, and the

discriminator decides whether it is real or fake. This workflow is illustrated in Figure 26.

By providing desired outcome as real data and treating the generator’s outcome as fake

data, the discriminator gets progressively better at separating those two sets. The discrim-

inator in turn forces the generator to come up with progressively realistic imitation of the

real data. The desired end goal is to have a generator that perfectly fools the discriminator

http://bit.ly/2YnloCZ
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by producing results no different than the provided set. In [78], the generator tries to min-

imize the loss function while the discriminator tries to maximize it. Let x be real data and

z be sampled noise from the distribution. The loss function is then defined as:

Ex[log(D(x))] + Ez[log(1−D(G(z)))] . (3)

In training, there is a trick that the authors recommended. In the GAN paper the au-

thors mentioned that the minimax loss can make the network stuck in early stages, so they

recommend changing the loss function for the generator from minimizing

log(1−D(G(z)))

to maximizing

log(D(G(Z))) .

Later in the famous Wasserstein GAN paper [79], Arjovsky et al. propose to modify the

loss function so thatD no longer performs binary classification of “real” vs “fake”. Instead,

D outputs a real value number per image so that the number for real data is bigger than for

fake data. This new metric is inspired by the Earth Mover Distance. This loosens up the

restriction that D has to give a probability. As a result, equation 3 becomes less confusing

and training is more stable. D now maximizes

D(x)−D(G(z))

where as G maximizes

D(G(z))

Many applications and improvements of GANs were proposed after its invention. Gau-

GAN [8] converts simple doodling into realistic beautiful pictures, as shown in Figure 27.
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Figure 27: GauGAN. Note how the reflection matches the shape of the mountain and the
color of the sky [8]

(a) (b)

Figure 28: Image In-Painting. (a) shows the processing of masking void areas; (b) shows
the completed mask and repaired image [9]

Image in-painting [9] completes pictures with user-defined void areas in them, as shown in

Figure 28. BigGAN [10] achieves ultra-realistic image generation with GAN, as shown in

Figure 29.

2.1.4 Common Architectures

In 2015, Residual Neural Network (ResNet) [11] was proposed by Kaiming He et al. It

introduced the novel idea of skip connections between layers to facilitate gradient flow and

mitigate the vanishing gradients problem when training deep neural networks. With the

help of the skip connections, the authors were able to train a network as deep as one thou-

sand layers. ResNet was the first neural network to achieve 3.7% error rate on ImageNet,

better than the human performance of 5%. Figure 30 illustrates the skip connections in

ResNet.
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Figure 29: Realistic images generated by BigGAN [10]. Yes they are all fake.

Figure 30: Connection in ResNet [11]
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Figure 31: Connection in DenseNet [12]

The idea of using shortcut connections to facilitate gradient flows and boost perfor-

mance were further explored in 2017 and 2019. Huang et al. [12] proposed to connect

every convolutional layer with every other convolutional layer in the same “dense block”

to form dense skip connections, as shown in Figure 31. Xie et al. took the idea to the

extreme and randomly wired networks in many possible ways [13], as shown in Figure 32.

Both show improvements in performance compared to sequentially layered networks.
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Figure 32: Connection in randomly wired neural networks [13]
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2.2 Segmentation

Semantic segmentation allows systems to interpret image content in both the spatial and

categorical domain. Semantic segmentation separates pixels of one class from the rest of

the image. It is the first step towards segmentation level image understanding. When an

image contains multiple disjoint segments of the same category, the segments can easily be

separated into unique instances.

The research progress in getting high-quality semantic segmentation results inspired

many architectures and ideas. SegNet [14] proposes max-unpooling layer to perform up-

sampling the same way downsampling is performed at the previous max-pooling layer.

This is a novel way to recover information. Figure 33 shows the architecture of SegNet.

Long et al. propose fully convolutional network (FCN) [15] to perform semantic segmenta-

tion on arbitrary-size image by taking away the fully connected layers that are traditionally

at the end of the network for classification. Figure 34 shows the architecture of FCN.

Figure 33: Architecture of SegNet [14]

The DeepLab family of DeepLabV1, DeepLabV2, DeepLabV3, DeepLabV3+ [80, 81,

82, 23] of semantic segmentation models propose several novel ideas and improvements

over the existing methods. Among the techniques used and popularized are atrous convo-

lution, fully connected conditional random field (CRF), and atrous spatial pyramid pooling.

Atrous convolution works by introducing gaps to the traditional convolution so that the

receptive field of a convolution filter can be manually controlled without increasing size or

parameters. Atrous spatial pyramid pooling processes input at different atrous dilation rate
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Figure 34: Architecture of FCN [15]

and saves the output features at different scales. This helps detecting objects of different

sizes. CRF is part of the post-processing step, thus making the method not end-to-end

trainable. CRF is later dropped in DeepLabV3 and DeepLabV3+.

In reality, objects in scenes are rarely separated out perfectly without interference from

other objects and/or the environment. Usually, the result of semantic segmentation can only

be interpreted as a collection of ambiguous, inseparable blobs. Figure 35 (a, b, c) illustrates

the limitations of semantic segmentation in cluttered scenes. With only pixels of the same

class highlighted, it is impossible to separate out individual pedestrians. The best one can

do is connected components, but it fails as soon as two people share border.

Instance segmentation extends semantic segmentation by distinguishing between ob-

jects of the same class. Figure 35 (d) illustrates the result of instance segmentation. Each

person has a unique color/identity assigned to him/her. This way, different instances of the

same class can be distinctly separated.

However, as some people or objects move in front of others, they unavoidably occlude

part of others’ appearance. Therefore, each object’s full spatial occupancy and depth or-

dering — two properties that humans instinctively estimate — are not represented in the

output. Full spatial occupancy means the entire mask of the object, regardless of how much

of it is occluded by others in front of it. Depth ordering means how it ranks in terms of the
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(a)

(b)

(c)

(d)

Figure 35: Semantic segmentation and instance-level segmentation of people (Cityscapes
dataset [3], Hamburg image #036527): (a) original image; (b) semantic person segmenta-
tion; (c) grouping via connected components; (d) person instance segmentation.
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number of objects in front of it. If there is no object in front it, it should be ranked layer 1.

The object behind it should be ranked layer 2. The process goes on until every object has a

depth ordering.

Traditional instance segmentation does not consider full spatial occupancy or depth

ordering. In contrast, when occluded regions are taken into consideration, it is referred to

as amodal segmentation [83]. The normal instance segmentation that does not consider the

occlusion is referred to as modal segmentation.

To successfully segment occluded regions, the method not only needs to know where

occlusions happen, but also the shape of unseen object parts relative to what is observed.

If the objects are non-rigid, there can be multiple plausible solutions. Imagine a hand

behind a curtain. It could be making any shape without people knowing. Any valid shape

it can make is technically a version of the ground truth. On top of the inherent difficulty

of the task, the lack of amodal ground truth makes it difficult to develop and evaluate new

methods. Li and Malik [83] composited training data from PASCAL VOC 2012 [84] by

overlaying foreground masks. However, the resulting images are unnatural, with unrealistic

lighting and object scales.

Zhu et al. [85] introduced the COCO Amodal dataset, consisting of thousands of

amodal masks approximated by human annotators. It should be pointed out that the “ground

truth” is never truly the ground truth and only estimated by human annotators. It is close to

the ground truth, but the real spatial layout was unavoidably lost when the original providers

of the modal version of the dataset decided to not record it. Ehsani et al. [16] introduced

a synthetic dataset “DYCE” consisting of images rendered from various indoor graphics

models at different angles. Unfortunately, fundamental flaws exist in the ground truth for

both datasets. COCO Amodal uses inconsistent rules between annotators regarding am-

biguous issues such as whether shadows should be considered part of the mask. In DYCE,

there are systematic rendering bugs found in the ground truth masks, and the annotation

appears unprofessional with typos and synonyms in the labels such as “coffeemachine”
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and “coffemachine” coexisting as distinct classes. Figure 36 shows incorrectly rendered

ground truth masks for the category “wall”. Table 1 shows the typos and synonyms in

class names ground truth. The list is not exhaustive. Due to these reasons, the only two

commonly known admodal instance segmentation datasets were practically unusable at the

time of writing.

image mask for “wall”

image mask for “wall”

Figure 36: DYCE [16] image and ground truth mask for “wall”; it appears that the mask
for light reflected off the wall is provided instead

Due to the reasons mentioned above, the methods in this thesis are trained and tested

on our own synthetic dataset. The details of this dataset can be found in section 3.

Fortunately, in this year’s CVPR, two amodal instance segmentation datasets were re-
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Table 1: Typos and synonyms in class names ground truth in DYCE

walls, wall
rug, carpet
mug, cup

diningtable, table
tray, plate

coffemachine, coffeemachine, coffemaker
couch, sofa

painting, picture
island, cabinet

lamp, light

Figure 37: KINS [17]

leased. They are called KINS and SAI-VOS. One is further annotated on top of KITTI, the

other is rendered using GTA V game engine. We hope that these two datasets will inspire

more research in the area. Figure 37 and Figure 38 show example data from these datasets.

Because ground truth instance labels are permutation invariant, the common approach

of training deep fully-convolutional networks (FCNs) to detect and segment objects faces

the dilemma of an ambiguous target [15]. In semantic segmentation, each class label can

be formatted as a one-hot encoding, such that the difference between two one-hot encoding

vectors can be measured with categorical cross-entropy. Labels for instances can be repre-

sented as integers in the ground truth save file, but not for the loss function. Integer instance

labels unavoidably mean the distance between instance 1 and instance 2 is closer than that

between instance 1 and 3. Instance segmentation cannot use one-hot encoding either be-

cause the number of total instances is unknown, unlike semantic segmentation where the
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Figure 38: SAIL-VOS [18]

classes to classify are predefined.

There are generally two categories of approaches used to achieve instance segmenta-

tion. Top-down methods begin by finding the regions (often bounding boxes) that con-

tain each instance, and then performing pixel-wise segmentation of the dominant instance

within that region. For example, Mask R-CNN [4] extends Faster R-CNN [37] by adding

a branch for segmentation mask prediction in parallel with the other branches (bounding

boxes and classification). Li et al. [86] proposed an alternative that uses location-sensitive

fully convolutional networks to partition bounding boxes into 3×3 grids, and then evaluates

the likelihood that each partition contains the correct part relative to the other partitions.

Top-down methods bypass the ground truth instance label problem because each instance

is isolated in the bounding box. There are no other masks that it needs to be distinguished

from because the bounding box already does that.

The second category, bottom-up methods, begin by assigning attributes to pixels and

then clustering them into instances. Examples include those that use pixel embedding to
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move the high-level detection stage to the end of the process [43, 41]. Fathi et al., [43]

adopt this principle by training a network to evaluate pairwise pixel similarity. They train

a separate model to generate seed points that represent the typicality of a pixel compared

to other pixels in the area. Brabandere et al., [41] proposes a discriminative loss function

to train pixel embeddings such that they are close within the same instance but far apart for

different instances. The bottom-up methods solve the instance label problem by using clus-

ters. Each cluster needs to be far enough away from other clusters, therefore eliminating

the need for an integer-label-based metric.

The above methods propose a surjective mapping from pixels to instances. However, it

is worth considering if this is an optimal representation of semantic instance segmentation.

Computer vision often aims to reverse-engineer scenes from images/video, and an assign-

ment of all visible parts to a single membership is an incomplete descriptor. In contrast,

the full segmentation masks and relative depth ordering prior to image projection provides

a more complete descriptor.

To this end, Yang et al. [87, 88] estimate layer ordering as part of instance segmenta-

tion and introduce a learned predictor based on relative detection scores, position on the

ground plane, and size. They acknowledge the benefits of full spatial segmentations of

visible and occluded parts, but their method focuses on the benefits of depth ordering for

instance grouping. Chen et al. [89] attempt to fill occluded regions by selecting similar

non-occluded exemplar templates from a library; this improves instance segmentation of

visible pixels. Uhrig et al. [90] propose to consider explicit depth ordering estimation for

instance segmentation. Their method exploits ground truth depth information, but it does

not attempt to recover occluded segments. While each of these methods uses the concept of

occlusions to improve instance segmentation, none of them explicitly targets the full spatial

extents and depth ordering of instances.

Li and Malik [83] use an iterative approach to gradually predict the amodal masks based

on the bounding box and classification produced by an object detector. They compute the
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visible mask and iteratively expand upon it to produce the amodal mask and bounding box.

Ehsani et al. [16] propose a GAN-based model to produce both the segmentation and the

appearance of the occluded regions, assuming that foreground segmentation is already pre-

calculated by other methods. However, their method focuses on crops with one salient

object.

Amodal segmentation remains as a challenging task and very few studies and datasets

exist. Current methods either focus on a special case of the general problem or extend

upon top-down approaches. This thesis proposes an alternative bottom-up approach and

examines some challenges associated with amodal segmentation.
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2.3 Multi-Object Tracking

Multi-object tracking (MOT) has been a popular research area for a long time. The goal

of MOT is to track all objects in a video. This requires the position and identity of objects

to be preserved. The position is usually described by a bounding box in the format of

(top, left, bottom, right) or a centroid in the format of (x, y). The identity of the object

is annotated as an object ID . The ID could be either an integer or a string, as long as it is

unique.

Due to the strong demand of surveillance and autonomous driving, most multi-object

tracking datasets contain only pedestrians. PETS 2009 [91] is an old dataset primarily

targeting surveillance videos; MOTChallenge [92] is a large MOT dataset with data col-

lected and released in 2015, 2016, and 2017. Tasks mostly include multi-people tracking,

but more subsets such as 3D tracking and sports analysis are also coming soon; Pose-

Track [93] contains human pose estimation and human pose tracking data, marking a shift

towards more detailed human-oriented tracking tasks; NVIDIA AICity Challenge [94] con-

tains multi-object detection and tracking data from surveillance cameras together with other

tasks, such as vehicle speed estimation; Path Track [19] is a recently published dataset with

diverse scenes from ball room to stadium; KITTI dataset [38] contains videos collected

from car-mounted cameras, mostly from European cities. MOTS (Multi-Object Tracking

and Segmentation) [21] is a 2019 dataset with both pedestrian tracking and segmentation

data.

Despite the recent rise in popularity, multi-object tracking has been following a typi-

cal procedure pipeline for a long time. Figure 39 shows the workflow of a general MOT

algorithm. A MOT algorithm can be roughly divided into the detection stage and the as-

sociation stage. In the detection stage, an object detector is applied to each frame of the

video and produces object locations, sometimes together with extra descriptors such as

color histogram features or appearance embeddings. Kalman filter [95], proposed in 1960,

is a common tool in estimating and refining the object location predictions and often plays
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Figure 39: MOT workflow [19]

a part in state-of-the-art methods. In the association stage, the tracking algorithm asso-

ciates the detections in the current frame with the detections in the previous frames. Offline

methods also have access to future data so they can perform two-way associations. The

unmatched detections are initiated as new tracklets, and the undetected objects that are

previously tracked will be marked lost after a period of time. The famous Hungarian Algo-

rithm [96] is usually used in the association stage. Most MOT algorithms do not deviate too

much from this protocol. Most of the work is done to improve the speed or performance of

the stages.

To measure the performance of MOT algorithms in benchmarks and competitions,

many metrics are proposed. A good metrics system should be able to measure the pro-

posed method’s ability to precisely locate objects and consistently maintain their identities.

It should also be intuitive to understand and easy to use, requiring as few parameters to

choose as possible. Among the most commonly used are MOTA (Multi-Object Tracking

Accuracy), MOTP (Multi-Object Tracking Precision), and IDF1 (Identity F1 Score). Both
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MOTA and MOTP are proposed by Bernadin and Stiefelhagen in [97] as part of the pro-

posed CLEAR MOT metrics system. Their proposed system fits the description of a good

MOT metrics system above with the following rules: (1) all correspondences between a

ground truth object and a hypothesis can only be considered when their distance is within

a threshold, regardless of how this distance is computed; (2) when the tracker makes a mis-

take by switching the identities of two objects that it is tracking, the metrics system only

punishes the results once, regardless of when the identity switch happens. This ensures that

the switch has a fixed punishment unrelated to the timing. An alternative metrics design

that calculates the accumulated distance error between a ground truth object and a hypothe-

sis would be unfair because it favors late mistakes rather than early mistake due to the error

buildup; (3) when two object proposals are both within the distance threshold of a previous

tracked object, the one with the same identity as the previous one will be favored, even

if it has a longer distance, because identity consistency is more important than accurate

localization.

The MOTP score is calculated as the following:

MOTP =

∑
i,j d

i
t∑

t ct
, (4)

where dit is the distance between a ground truth object and its matched hypothesis, and ct

is the number of matches in frame t.

The MOTA score is calculated as the following:

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

, (5)

where mt is the number of misses, fpt is the number of false positives, and mmet is the

number of mismatches.

MOTP measures the average distance between hypothesis and object. MOTA accounts

for all object configuration errors made in the tracking process. It is therefore more com-
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monly used than MOTP. This is also because, once again, maintaining consistent identities

is more important than coming up with precise bounding boxes or centroids.

IDF1 measures the ratio of correctly identified detections over the average number of

ground-truth and computed detections. It is proposed by Ristani et al. in [98]. The authors

argue that it is more important to measure how well a tracker can correctly determine who

is where at all times than how often it makes incorrect decisions, which is what CLEAR

MOT measures. The calculation of IDF1 is a bit more involved than the other two, as

described below:

IDFN =
∑
τ∈AT

∑
t∈Tτ

m(τ, γm(τ), t,∆) (6)

IDFP =
∑
τ∈AC

∑
t∈Tγ

m(τm(γ), γ, t,∆) (7)

IDTP =
∑
τ∈AT

len(τ)− IDFN =
∑
τ∈AC

len(γ)− IDFP (8)

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
, (9)

where τ is a true trajectory, γ is a computed trajectory, AT is true identities, AC is com-

puted identities, m(·) is misses, t is time, and ∆ is the intersection threshold of two detec-

tion boxes.

IDF1 provides a balanced measure of precision and recall. According to the authors, the

new proposed metrics system achieves the following properties similar to CLEAR MOT:

(1) a correct match is one-to-one; (2) the matching is the most favorable to the tracker; (3)

errors of any type are penalized in the same currency. Moreover, it also handles overlapping

and disjoint fields of view in exactly the same way. This is a missing feature from other

previous methods, but sometimes less useful. For example, in this focused area of this
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thesis work, there are no multi-camera setups that require re-identification, therefore no

disjoint or overlapping fields of view. Nevertheless, IDF1 serves as a robust and intuitive

measurement in evaluation part of this thesis work.

The rich collection of people datasets in turn enabled many research works in people-

oriented multi-object tracking. With the rise of deep learning, most methods are now using

it in one aspect or more.

DeepMOT [99] makes the observation that most tracking algorithms rely on the Hun-

garian Algorithm, which is non-differentiable. Differentiability is a key feature of a prob-

lem that can be solved with deep learning. If the assignment algorithm can only be treated

as a post-processing step, that means the tracking algorithm cannot be directly optimized

based on the MOTA and MOTP metrics. The authors therefore propose a differentiable

assignment algorithm that allows their tracking algorithm to be optimized end-to-end.

Bergmann et al. [100] approach the tracking problem in a surprisingly simple yet effec-

tive way. They modify a Faster R-CNN to predict the bounding boxes of currently tracked

objects in the next frame, on top of the regular detection results from the original Faster

R-CNN, which are the bounding box locations and classifications for the current frame.

This simple setup is coupled with a constant speed motion model and a Siamese network

for appearance embedding. The input is formulated as a stacked array of frames in or-

der to provide spatiotemporal information. The authors urge fellow researchers to focus

on more challenging aspects of multi-object tracking because they discover that fancy and

complex models do not significantly outperform their no-bell-and-whistle Faster R-CNN

model (Tracktor++) on current datasets. If tracking-by-detection can be just as good, the

authors ask, what is the real benefit of dedicated tracking methods? A brief investigation

of success and failure cases for their method reveals that all existing methods tend to fail

on occluded objects and small objects.

Wang et al. [20] proposes a model that integrates bounding box detection and visual

embedding into a shared model. They argue that a shared model saves computation and
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allows multiple tasks to be jointly optimized. They exploit several recently proposed tech-

niques to improve performance on top of their novel design. First, the authors utilizes

an improved version [101] of triplet loss [102] to help pulling apart embeddings from all

instances of different identities in a batch, instead of just a positive pair and a negative

pair. Second, the authors uses the idea from [103] to make the weights of multiple loss

terms trainable so that they are better balanced. They train a YOLO-like one-stage model

to simultaneously output the location, classification, and embedding per grid location. In

post-processing, each object’s visual embedding is updated with a weighted sum of previ-

ous and current embedding, and its location adjusted with a Kalman filter. The tracker then

performs the Hungarian Algorithm twice, once based on appearance similarity, the other

based on location overlap.

Voigtlaende et al. [21] proposes a model (TrackR-CNN) to simultaneously perform

detection, tracking and segmentation for multiple objects, together with a corresponding

dataset that they annotated. They make the observation that bounding-box based perfor-

mance has been saturating, based on recent tracking evaluations on common benchmarks.

They point out that bounding box-level annotations are sometimes too coarse, which this

thesis agrees with and investigates. The problem is that the salient object is rarely the only

relevant element inside the bounding box. Other objects of the same or different category

often appear partially within the bounding box as well. A visual descriptor will then fail to

extract useful information due to competition, unless a mask is also provided. The authors

therefore extend Mask R-CNN, which already provided instance segmentation and bound-

ing box detection, with a head for 3D convolution to process temporal information and link

object identities over time.

It can be argued that these algorithms can be generic enough to be migrated to other

domains, such as cars or other categories. However, as the field advances, more algorithms

are starting to tailor their tricks towards pedestrian-only applications. Wang et al. specify

the anchor boxes in the detector to be exclusively 3:1 aspect ratio since humans are usually
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standing upright [20]. This assumption does not hold for all objects; Tang et al. leverage

techniques from person re-identification to help improve tracking performance [104].

The skewed focus on pedestrian tracking brings extra limitation to existing MOT meth-

ods because not all objects can be differentiated based on appearance. For example, an-

imals look very similar to each other because they do not wear clothes; cells are almost

identical-looking because they are split from a common cell. Despite the visual similar-

ity, humans still succeed in tracking multiple objects. We hypothesize that this is partially

due to our perception of continuous movements. In other words, as long as the objects are

moving continuously in a video with a reasonable frame rate, people can follow the ob-

jects by extracting the spatiotemporal information even without the help of discriminative

appearances.
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3 Amodal Instance Segmentation Using Deep Pixel Em-

bedding

3.1 Motivation

Methods relying on bounding box selection are inherently limited by a priori region selec-

tion. When instances of similar size overlap with one another, the region selection phase

often experiences one of three types of error: 1) due to non-maximum suppression, the

algorithm ignores the bounding box of the occluded instance, as shown in Figure 40 (b); 2)

the instance will be represented as a collection of separate partial instances with different

labels, as shown in Figure 40 (c); 3) the segmentation model gets confused about which

object should be segmented, so it segments many objects within the bounding box and

produces a mixed mask.

The issues mentioned above indicate that bounding box is a low-quality descriptor of

object orientation, shape, location, and depth ordering. To solve these issues, bounding

box needs to be moved from the procedure and the workflow needs to be reworked from

bottom up. Masks, on the other hand, naturally described the orientation, shape, precise

location, and depth ordering of objects. To produce fine-grain masks, the network needs to

produce pixel-level features based on a larger context region instead of the region defined

by bounding boxes.

We propose a fully-convolutional, end-to-end trainable approach that jointly estimates

1 1 1 11

(a) (b) (c) (d) (e)

Figure 40: Instance segmentation output scenarios for two overlapping rectangles. Image
rendered by the author.
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the presence of occlusion and provides consistent instance labeling across foreground and

occluded regions. The method is evaluated on an easily configurable synthetic dataset

consisting of various types of shapes with occlusions with precisely known amodal masks.

Results demonstrate that the method is capable of accurately estimating layered spatial

occupancy and outperforming a state-of-the-art top-down alternative.

3.2 Method

The goal of the proposed method is to produce full instance masks for each segmented

object as long as part of the object is visible in the image. To circumvent the limitations

of DYCE and COCO Amodal datasets, a synthetically generated dataset of shapes is used.

The advantages of this set include 1) full control of scene complexity; 2) access to pre-

cise ground truth; and 3) rigid shapes where the ground truth is often unique given partial

observations.

The dataset has three classes of shapes: triangles, rectangles, and circles. All shapes

have a fixed size, but their locations, orientations, and depth orderings are randomized.

Shapes have the same color as the background, only distinguished by their black outlines,

so that the network cannot cheat by simply detecting color or intensity. This representation

forces the network to rely on outlines and be aware of large regions for context.

For training and evaluation, the ground truth masks are arranged in the following man-

ner: foreground semantic classification, occlusion semantic classification, foreground in-

stance labels, and occlusion instance labels. See Fig. 41 for a sample of training data. The

proposed method generates the following four outputs: 1) foreground multi-class seman-

tic segmentation, that labels pixels as background, foreground, or occluded; 2) occlusion

multi-class semantic segmentation, that labels occluded pixels as one of the classes; 3)

foreground embedding, used to cluster foreground pixels into instances; 4) occlusion em-

beddings, that are consistent with visible instances. It is worth noting that occluded pixels

are defined as those where one instance occludes another instance. While the method does
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Figure 41: Sample training data. From left to right: input image, foreground class mask,
occlusion class mask, foreground instance mask, occlusion instance mask.

not consider occlusions caused by background objects, this could trivially be added as an-

other class to the output.

To train instance embedding across both the foreground and occluded regions, the

method uses a variation of the discriminative loss function introduced in [41] . Consider an

input image I and a pair of embedding outputs Ef and Eo that contain embedding vectors

for the foreground region and occluded region, respectively. The embedding outputs are

matrices with the same spatial dimensions (rows and columns) as the input image, where

the number of channels C represents the dimensionality of each pixel’s embedding. The

goal of the network is to map each foreground pixel p ∈ I to a C-dimensional embedding

vector Ef (p) and each occluded pixel p ∈ I to a C-dimensional embedding vector Eo(p)

such that embedding vectors for pixels belonging to the same instance are close together in

the C-dimensional space and embedding vectors for different instances are far apart.

The overall loss consists of three terms: variance lvar, distance ldst, and regularization

lreg. Let K be the total number of classes, Nk be the number of instances of class k, N

be the number of ground truth instances and let Rn
f ⊆ I and Rn

o ⊆ I denote the set

of foreground and occluded pixels for instance n ∈ {1, . . . , N}, respectively. Also, let

µn be the average embedding vector of all pixels in both the foreground and occlusion

embeddings for instance n. The variance term and distance term are defined as

lvar = 1
N

∑N
n=1

1
|Rnf |+|Rno |

(∑
p∈Rnf

[
||µn − Ef (p)|| − dvar

]2
+

+
∑

p∈Ro(n)
[
||µn − Eo(p)|| − dvar

]2
+

)
(10)
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Figure 42: Proposed segmentation architecture.

and

ldst =
K∑
k=1

1

Nk(Nk − 1)

Nk∑
n=1

Nk∑
m=1
m6=n

[
2ddst − ||µn − µm||

]2
+
, (11)

where [a]+ = max(a, 0) is the hinge loss, and || · || is L1 distance. Constants dvar and

ddst are the margins for the variance and distance term. Effectively, lvar penalizes pixels

that belong to the same instance but are farther than dvar apart in the embedding space, and

ldst penalizes cluster centers that represent different instances but are closer than ddst. The

regularization term

lreg =
1

N

N∑
n=1

||µn|| (12)

prevents the network from minimizing ldst by simple embedding amplification. Finally, the

network is trained to minimize Ltotal = α · lvar + β · ldst + γ · lreg. Fig. 42 presents an

example of the method applied to shapes.

The network uses a pre-trained feature extractor and produces a depth-concatenation of

four outputs. The four modules share the output from the feature extractor. The method

clusters the network’s pixel embeddings into instances using the algorithm presented in

[41]. A random unlabeled pixel is selected and the embeddings around it within vvar are

grouped together. The mean embedding of this group is used for the next round of grouping

until convergence.

For post-processing, the algorithm starts by randomly picking a non-labelled pixel and
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labels all pixels with an embedding within the similarity threshold as the same instance.

The algorithm then randomly selects another pixel and repeats this process until all pixels

are labelled. The threshold used here is the same value as the threshold used in training,

which is dvar.

3.3 Implementation Details

The proposed method uses DeeplabV3+ [23] with an Xception backbone as the feature

extractor. Its final upsampling and logit layers are removed and the 256-dimensional output

is used as features. Input size is set to 256 × 256 and the output size is 64 × 64. For the

loss function, α = β = γ = 1, dvar = 0.5, ddst = 1.5. Embedding dimension C = 6 and

the mean shift threshold for clustering is 1.5, which is consistent with ddst. The embedding

module consists of 256, 256, 128, and C convolution filters, with RELU activations.

For comparison, Mask R-CNN is selected as a representative model of top-down ap-

proaches for baseline due to the success and popularity of the R-CNN family among object

detection and segmentation architectures. It is an architecture originally designed only

for foreground instance segmentation, but it can be easily modified to perform amodal in-

stance segmentation by fine-tuning on amodal ground truth. Its weights are pre-trained on

MS COCO. Its output is upsampled from the original m × m mask to the corresponding

bounding box size and put in the context of the whole image. The final output is resized to

64× 64 to be directly comparable with our method.

All models are trained for 100 epochs in Tensorflow with Adam optimization (learning

rate = 1e-4 and batch size = 2). Training examples are generated at runtime with the same

initial random seed. Each epoch has 1000 images.

3.4 Experiments

The embedding model and Mask R-CNN are both evaluated on 1000 shapes images ran-

domly generated with 6 instances per class. Results in Table 2 show that our model out-
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performs Mask R-CNN on AP, AP50, ARNone, and ARPartial. Mask R-CNN achieves better

results on AP75 when non-max suppression threshold t = 0.7, and AR100, ARHeavy when

t = 0.9, but it cannot retain high performance with a single value of t. The same per-

formance pattern repeats when the number of instances per class is increased from 6 to

12.

As part of an ablation study, the semantic segmentation prediction for the model is re-

placed with ground truth. With 6 instances per class, AP increases from 0.7673 to 0.7959

and AR100 increases from 0.7933 to 0.8300 when using ground truth; with 12 instances

per class, AP increases from 0.5262 to 0.5419 and AR100 increases from 0.5697 to 0.6013.

These marginal improvements suggest that semantic segmentation is not the primary bot-

tleneck of performance.

In the second part of the ablation study, the instance clustering result is replaced by

ground truth. This way, the only source of error is insufficient layers of masks to ac-

commodate the full complexity of occlusions. As Table 4 shows, the performance gains

diminishing improvement as the model allows more layers to represent occlusion. Data

Table 2: Performance of models on 6 instances per class with different NMS threshold t

N Model AP AP50 AP75 AR100 APNone ARPartial APHeavy

6

Ours 0.7673 0.9091 0.7800 0.7933 0.9983 0.9637 0.6190
MRCNNt=0.1 0.5553 0.6526 0.6249 0.5823 0.7916 0.6986 0.4373
MRCNNt=0.3 0.6781 0.8010 0.7706 0.7132 0.8765 0.8417 0.5898
MRCNNt=0.5 0.7238 0.8701 0.8187 0.7620 0.9017 0.8768 0.6562
MRCNNt=0.7 0.7332 0.8860 0.8323 0.7766 0.9112 0.8822 0.6748
MRCNNt=0.9 0.6109 0.7334 0.6800 0.8010 0.9240 0.8978 0.6998

Table 3: Performance of models on 12 instances per class with different NMS threshold t

N Model AP AP50 AP75 AR100 APNone ARPartial APHeavy

12

Ours 0.5262 0.7099 0.5192 0.5697 0.9958 0.9499 0.4049
MRCNNt=0.1 0.3564 0.4350 0.4068 0.3730 0.7247 0.6220 0.2562
MRCNNt=0.3 0.4641 0.5827 0.5312 0.4887 0.8226 0.7678 0.3715
MRCNNt=0.5 0.5127 0.6416 0.5874 0.5399 0.8618 0.8019 0.4290
MRCNNt=0.7 0.5203 0.6570 0.5926 0.5533 0.8722 0.8110 0.4424
MRCNNt=0.9 0.4022 0.5253 0.4450 0.5856 0.8913 0.8326 0.4702
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Figure 43: Performance for different number of instances per class and different embedding
dimensions C. x-axis is number of instances, y-axis is different metrics, and colored lines
represent models with different C.

suggests that three or more layers of mask output in the embedding model instead of just

“foreground and occlusion” could improve performance, depending on the complexity of

the application.

The embedding model is also trained and evaluated on shapes datasets with different

number of instances per class in order to study its embedding capacity. Since embeddings

for shapes of different classes are allowed to be similar, the class is limited to rectangles

in this study. Fig. 43 shows that the performance drops when there are more instances

of the same class. This happens for two reasons: first, more instances introduce more
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(a) left to right: image, embedding, semantic segmentation mask, masked embedding,
labels, ground truth. Top is foreground, and bottom is occlusion

(b) individual instance masks

Figure 44: Failure cases for embedding model. Red circle indicates a triple stack.

occlusions, which increases the chance of more than two objects stacking together; second,

distinguishing between more instances within the same class requires the model to have

higher embedding capacity. Fig. 43 also shows that increasing the dimension results in

diminishing but consistent improvement on performance. This is because the loss function

encourages embeddings of the same instance to be close to one another, and embeddings

of different instances to be far away. The penalty on the magnitude of embeddings makes

this goal hard to achieve in low dimensions. In higher dimensions it is much easier to find

another embedding that is both close to the origin and far enough from other embeddings.

The structure of the embedding model allows easier expansion into three or more layers

of masks. Two layers shows its limits when objects are heavily occluded. For example, it

is impossible to get correct results in Fig. 44 because there are three objects stacked within

the red circle. The model can recover two of them at best. This is the most typical failure

case for the proposed embedding model. By evaluating masks constructed from different

number of layers of ground truth, Table 2 and Table 3 show that more layers of masks will

lead to better results and that when the number of layers is held constant, performance on
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Figure 45: First failure case for Mask R-CNN. Left to right: ground truth, unfiltered pro-
posals, filtered proposals

Figure 46: Second failure case for Mask R-CNN. Left to right: ground truth, filtered pro-
posals, final results

heavily occluded regions gets worse because more instances are stacked.

Mask R-CNN has two typical failure cases, as shown in Fig. 45 and Fig. 46. In

the first case, the region proposal network generates the correct bounding boxes for the

indicated circles, but some get filtered out during the non-maximum suppression stage.

In the second case, both indicated rectangles fit within one bounding box and the mask

generator is confused about which one is the salient object.

This points to a fundamental difference between the two types of approaches. Top-

down, bounding-box-based approaches have the ability to look at a region multiple times

and potentially generate a complete mask each time. However, this also acts as a double-

edged sword when multiple objects could appear in the same bounding box and compete

for the mask if they are the same class. Spamming bounding boxes will also cause many
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Table 4: Performance of instance masks constructed from different number of layers of
ground truth masks. N is the number of instances per class.

N Layers AP AP50 AP75 AR100 APNone ARPartial APHeavy

6
2 0.8584 0.9604 0.8614 0.8627 1.0000 0.9927 0.7408
3 0.9703 0.9901 0.9802 0.9744 1.0000 0.9997 0.9509

12

2 0.6594 0.8317 0.6436 0.6611 1.0000 0.9910 0.5251
3 0.8703 0.9703 0.8812 0.8729 1.0000 0.9993 0.8206
4 0.9584 0.9901 0.9703 0.9629 1.0000 0.9999 0.9475

false positives. The embedding model, on the other hand, is a bottom-up, bounding-box-

free approach. Each pixel can only have one final embedding per layer, which will then be

clustered into an instance label or ignored as background. The trade-off is that, situations

like Fig. 45 and Fig. 46 can be avoided, but, when number of layers of ground truth mask

in the training data is insufficient, the best possible performance will have a relatively low

upper bound.

Figure 47 shows some of the foreground embedding and clustering results. The embed-

dings are reduced to three dimensions using principal component analysis and then mapped

to between 0 and 1 for RGB display. For instance segmentation, each label is assigned a

random color for uniqueness. Semantic segmentation is displayed in greyscale. Integer 1,

2, 3 are used to indicate class 1, 2, 3 in the labelling, which correspond to circle, triangle,

and rectangle.

3.5 Discussion

The proposed method pushes the boundaries of a deep network’s understanding of images

by training it to estimate segmentation masks for unseen parts, and to associate them with

visible instances. Experiments show that this bottom-up approach outperforms Mask R-

CNN, a typical architecture for instance segmentation, by addressing the fundamental flaw

in top-down approaches: the inability of bounding boxes to precisely capture the spatial re-

lationship between cluttered objects. While the method only considers two-layer occlusion

scenarios, the network structure can be easily modified to handle an arbitrary number of
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Figure 47: Sample results from the segmentation embedding model. From left to right:
image, embedding, embedding masked by semantic segmentation, instance clustering, in-
stance ground truth, semantic segmentation prediction, semantic segmentation ground truth

object types arranged in three or more layers.

Because it is difficult to obtain accurate annotations of occluded parts, the proposed
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method instead uses a synthetic dataset for training. We hope this and other recent works

will motivate the creation of large datasets with ground truth masks representing the full

spatial occupancy of occluded instances.
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4 Multi-Object Tracking Using Deep Pixel Embedding

4.1 Motivation

The field of multi-object tracking has traditionally used bounding boxes as the dominant

choice of location representation. As we showed in Section 3, there are many problems

with this choice.

First, bounding boxes are not precise. They are upright rectangles that surround the

object and its environment. The exact shape and area of the object is unknown from this

simple description. Second, bounding boxes do not handle occlusion and heavily overlap-

ping situations very well. By design, bounding boxes are passed through non-maximum

suppression or one of its variant versions, to get rid of duplicate detections. Unfortunately,

this process also gets rid of correct detections that are heavily overlapping with each other.

Second, segmentation performed based on the enclosed image inside the bounding box

is inaccurate. Even when the segmentation algorithm is well designed and well trained, it

still unavoidably fails when it is unclear which object inside the bounding box is supposed

to be segmented.

These two issues carry over to bounding box-based tracking as well. Tracking heavily

relies on a good object detector. When objects heavily occlude each other, as commonly

seen in crowded pedestrian walking scenes, bounding boxes often either get lost or switched

Figure 48: Identity switches to the other object that also appears in the same bounding box.
Image from [20]



72

Figure 49: Issues with bounding boxes compared to masks. Image from [21]

to some other object. Switch happens mainly due to two reasons under this design: (1) the

bounding boxes are so close to each other that the assignment cost of the incorrect one

is the same as the correct one or lower; (2) when two objects appear within the same

bounding box, the appearance encoding becomes a mixed balance of the two objects. As

the appearance encoding drifts away, it gets associated with the incorrect object. Figure 48

from [20] illustrates this scenario.

Figure 49 also demonstrates these two issues. The bounding boxes in the top enclose

two objects that are heavily overlapping, but the masks are able to capture the outline

differences with pixel-level precision. In the bottom row, the bounding boxes meant to

capture the salient object end up enclosing more area of the secondary object due to the

shapes of the objects. Both problems can be solved by using masks instead.
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4.2 Method

Due to the issues mentioned above, this thesis proposes a bounding box-free, segmentation-

based tracking method. It is an extension of the amodal instance segmentation method

introduced in chapter 3. It takes advantage of the extra pixel-level information given by

the mask to produce more precise localization. By enforcing pixel embedding consistency

between the amodal instance mask across two consecutive frames, tracking is simultane-

ously done via segmentation with no extra post-processing for data association or motion

modelling.

To accommodate the spatiotemporal information in the input, the solution turns out

to be surprisingly simple. We channel-wise concatenate two consecutive frames from the

video. This is inspired by many papers on video-based tasks that use a similar input format-

ting [55, 105]. Alternative design choices include a convolutional LSTM module [106] in

the middle of the network, or a 3D convolutional module [107] after the input layer. As be-

fore, a DeeplabV3+ model is used as the shared feature extractor for different heads. Other

than the previously introduced heads that produce foreground embedding, background em-

bedding, foreground semantic segmentation, and background segmentation for image 1,

we add four more heads that perform the same tasks for image 2. Figure 50 illustrates the

model architecture.

To the best of our knowledge, there is no amodal segmentation-based multi-object

tracking dataset. The MOTS dataset proposed in [21] comes close. They do provide seg-

mentation masks together with bounding boxes and identity information but unfortunately

it is not amodal. In CVPR 2019 two amodal segmentation datasets [108, 109] are proposed

but not published at the time of writing. One is synthesized using a GTA V engine, the

other annotated based on an existing dataset. They are also not for tracking, meaning there

are only random images but they do not form a continuous video. We use the same method

from section 3 to animate moving shapes. The shapes have three categories: circle, trian-

gle, and rectangle. They have a randomly initiated position and velocity. When they reach



74

Figure 50: Proposed tracking architecture.

the boundary of the image, they bounce back without loss of speed. Each shape is on a

separate depth layer, so no two shapes will collide with each other. Figure 51 illustrates

an example of consecutive frames from this synthetic dataset. The ground truth informa-

tion used for training has eight parts, four per image. For each image, it contains the (1)

foreground instance identity mask, (2) background instance identity mask, (3) foreground

semantic segmentation mask, and (4) background semantic segmentation mask.

The loss function used to train for the amodal instance segmentation task is similar to

the one used in section 3. The image-pair version of it takes the embeddings in both images,

pushes them together if they are from the same identity, or pulls them apart if they are from

different identities.

Let N be the number of ground truth instances and let Rn
1 ⊆ I1 and Rn

2 ⊆ I2 denote

the set of pixels for instance n ∈ {1, . . . , N} for image 1 and 2, respectively. Also, let

µn be the average embedding vector of all pixels in both the foreground and occlusion

embeddings for instance n. While equation 11 and 12 stay the same, the variance loss term
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 51: Sample sequence of moving shapes dataset

becomes:

lvar = 1
N

∑N
n=1

1
|Rn1 |+|Rn2 |

(∑
p∈Rnf

[
||µn − Ef (p)|| − dvar

]2
+

+
∑

p∈Rno

[
||µn − Eo(p)|| − dvar

]2
+

)
(13)

To perform instance segmentation and tracking, the pixel embeddings are clustered

using the same post-processing algorithm described in section 3.2. The whole framework

benefits from the simple and consistent setup that works very similarly compared to the

segmentation version. By clustering pixels across two frames and across two layers, the

model achieves simultaneous amodal instance segmentation and multi-object tracking.

Due to the format of the input, the model is technically only able to track two frames

at a time. This means that if two pairs of images, (I0, I1) and (I2, I3), are fed into the

network, then the model can only guarantee the identity consistency between (I0, I1) or

(I2, I3), but not between (I1, I2) or (I0, I3). Therefore, the images are fed into with a time-

step difference of 1. In other words, after the pair (I0, I1) is processed, I0 is shifted out

and I2 is shifted in. The next pair to be processed is thus (I1, I2). This technique links all

frames together and form long-term trajectories. Figure 52 illustrates this process.

The middle frame needs to be processed twice. Once as the second image in the first
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pair, then again as the first image in the second pair, so that it can link the identities of

all three frames together through an intersection-over-union matching between the two

versions of the mask for itself.

Experiments show that the model can produce consistent embeddings between the two

frames but not across multiple frames when objects move too much. Figure 55 shows this

phenomenon. Naively calculating embedding differences on a global scale and coming up

with an average representation for a certain object will fail.

4.3 Implementation Details

Similar to the amodal instance segmentation model proposed in section 3, the MOT model

uses DeepLabV3+ as the shared feature extractor. The model adds four more heads to pro-

duce foreground instance embedding, background instance embedding, foreground seman-

tic segmentation, and background segmentation for both images, therefore it has 2× 4 = 8

sub-task heads. Previous research has shown that training multitasking model outperforms

models trained on individual tasks independently [103]. By jointly training all these tasks

together, the model is forced to learn more robust internal representations.

The loss function has two terms. One is categorical cross-entropy for the semantic

segmentation, denoted as Lsemantic, the other is the discriminative loss function for MOT,

denoted as Linstance. The total loss is therefore

L = αLsemantic + βLinstance .

Linstance is modified to take in all the pixels across two frames and two layers together

if they belong to the same instance according to the ground truth. The coefficients α and β

are both set to 1.

For comparison, the model from [20] is selected because it has top performance on

common multi-object tracking benchmarks. Their Joint Detection and Embedding (JED)
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(a) 3 consecutive frames as input

(b) neighboring two frames can be linked by simply clustering the embeddings

(c) The middle frame plays the crucial role of linking identities together.

(d) All three frames are successfully linked together.

Figure 52: Multi-frame tracking process
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model simultaneously outputs the bounding box, classification, and appearance embed-

ding through a YOLO-like structure. They also take advantage of multi-scale features and

produces predictions at each scale. The JDE model achieves real-time processing with

18.8 FPS and MOTA=64.6% compared to Faster R-CNN + QAN with a slightly higher

MOTA=66.1% but only 6 FPS on MOT-16 test set. Figure 53 illustrates the architecture of

the JDE model.

Figure 53: Architecture of JDE [20]

The JDE model is a classic example of bounding box based top-down MOT models.

It predicts bounding boxes, classifies them, and produces appearance embeddings for each

image region within the bounding boxes. The model is tailored towards pedestrian tracking

because that is the only theme of multi-object tracking datasets at the moment. The model

assumes that most objects will have a 3:1 aspect ratio because human beings are usually

standing up-right. The model also assumes that each object looks different from other ob-

jects because each person is supposed to have a distinct choice of clothing. Interestingly,

very few existing methods address the problem of multi-class multi-object tracking. This
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means most existing models assume that all objects being tracked belong to the same se-

mantic class. In this case, it is pedestrians. To the best of our knowledge, there is also

no existing method that address amodal multi-class multi-object tracking because there is

simply no dataset for it. The JDE model is the closest and most promising model we can

find in the literature in terms of performance and comparability to our research.

4.4 Experiments

Both the proposed embedding model and the JDE model are trained, validated, and tested

on identical dataset settings. The train set consists of 500 sequences of moving shapes, 100

frames per sequence. The val and test set each has 5 sequences, 100 frames per sequence.

The train, val, and test set are initialized with the random seed = 1, 2, 3 respectively for

reproducibility purpose. This also ensures that the train, val, and test set do not overlap.

The embedding model uses Adam optimizer with the learning rate = 10−4, batch size =

1. The JDE model uses SGD optimize with the learning rate = 10−2, batch size = 1, which

is the same as the setting in the original paper. Each model trains for 10 epochs, so the total

number of training samples that each model sees is 500× 100× 10 = 500, 000.

For evaluation, we report IDF1 and MOTA metrics. The definition of these metrics can

be found in section 2.3. IDF1 and MOTA are considered the two most common metrics

to report on major benchmarks such as MOT-16. The original paper for JDE also reports

these two metrics against other methods.

The performance of two models on each sequence is listed in detail in table 4.4. The

overall performance is also calculated by averaging the scores on each sequence. Averaging

is valid when the number of frames and identities per sequence is identical, which is the

case in the synthetic dataset.

As shown in Table 4.4, our model outperforms the JDE model significantly. Figure 54

and Figure 55 show some of the tracking results from the test sequences.

To further analyze the behavior and performance of the embedding tracking method,
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Table 5: Performance of our proposed embedding model and the JDE model on 5 sequences
of moving shapes

Model Sequence IDF1 MOTA

Ours

1 33.8% 67.0%
2 52.6% 81.3%
3 68.1% 88.7%
4 77.5% 96.2%
5 31.0% 63.0%
Overall 52.60% 79.24%

JDE

1 10.6% 29.8%
2 15.1% 30.1%
3 11.7% 20.2%
4 12.5% 40.3%
5 28.7% 58.8%
Overall 15.72% 35.84%

Figure 56 and Figure 57 illustrate long sequences of tracking results produced by our MOT

embedding model.

To push the limit of embedding based tracking, we also tentatively increased the dif-

ficulty of the synthesized shapes dataset by rotating each shape during the sequence by a

random angular velocity. Figure 58 and figure 59 show qualitative results of our model on

these sequences.
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(a) (b) (c)

(d) (e) (f)

(h) (i) (j)

Figure 54: Sample results of the JDE embedding model on difference sequences.
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Figure 55: Sample results from the MOT embedding model. From left to right: image pair,
masked foreground embedding and background embedding for image pair, foreground and
background instance clustering for image pair
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30) (31) (32)

(33) (34) (35) (36)

Figure 56: Sequence 1 of tracking results produced by our MOT embedding model
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30) (31) (32)

(33) (34) (35) (36)

Figure 57: Sequence 2 of tracking results produced by our MOT embedding model
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30) (31) (32)

(33) (34) (35) (36)

Figure 58: Qualitative results of the embedding based tracking model on rotate shapes,
sequence 1.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30) (31) (32)

(33) (34) (35) (36)

Figure 59: Qualitative results of the embedding based tracking model on rotate shapes,
sequence 2.
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4.5 Discussion

It can be observed from Figure 55 and Figure 54 that the embeddings are very good at de-

tecting depth information and describe the exact spatial layout of shapes, whereas bounding

boxes struggle with overlapping shapes. For example, in Figure 54 (a), bounding box 5 is

on top of both sticks so the two sticks cannot be distinguished from bounding boxes. Also,

the two bounding boxes are overlapping so much that one of them is eliminated by non-max

suppression.

In the case of JDE models, there also seem to be three big issues with their approach.

They will be discussed in depth in the next three paragraphs.

(1) The object detector is not very good at detecting objects of large scales, namely the

sticks. This can be observed in Figure 54 (f)(h)(j). The sticks take 80% of the screen width

or height, which seems to exceed the receptive field of the network. However, the anchors

in their models are clearly defined to handle these scales. We suspect that it is because the

sticks tend to have unusual aspect ratios when the other shapes occupy relatively square

areas. The performance of the object detector seems very unstable. In some cases, all

shapes are detected correctly, such as 54 (c)(e), which shows that the model is capable of

handling objects at this scale; but in other cases, the model does so badly that it fails to

detect all the objects, such as 54 (h).

(2) The appearance embedding module fails to capture meaningful embeddings for the

shapes because it assumes that the shapes each have a unique look. Instead, the shapes

all have black border and white color, on a white background. This makes the appearance

embedding module struggle especially hard. As a result, it becomes very easy for the model

to mix up the embeddings of different shapes. The tracker ends up switching identities and

creating new identities constantly.

(3) The usage of Kalman filter is a bad choice. The JDE model holds the assumption that

objects will leave the scene once they cross the border. The Kalman filter tracks the motion

of objects and predicts that the objects will move of the frame given their current position
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and velocity. However, because the boundaries are set up as barriers, the shapes follow

the law of physics correctly and bounce back into the scene. It is indeed observed that the

shapes get assigned new identities once they bounce back from the border, indicating that

their current position is far away from their predicted position.

As for our proposed MOT embedding model, it can be observed that it gets the masks

of the shapes mostly right, but when shapes overlap heavily with each other, sometimes

there is confusion in the embedding about which shape belongs to which in the next frame,

especially when similar looking shapes are clustered together. Due to the two-frame input

format constraint, there is not enough temporal context to decide whether which way a

certain shape is heading when there are similar ones around it. This is the major contributor

to performance loss for our model.

This problem can be seen in Figure 56 (6)(7) where the old circle loses its identity and

gets assigned as a new track. Remarkably, the orange circle does not lose its identity. It is

correctly tracked from frame 1 to 21. Even though it is just barely visible in frame 7, its

invisible part is still estimated correctly in the second layer to preserve its identity.

Figure 57 showcases another long sequence of tracking results. We can observe that the

two sticks and two circles are tracked successfully throughout the sequence, with two new

identities being incorrectly assigned on the triangles at frame 18 and 26.
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5 Conclusion

This thesis explores the effectiveness and possibilities of deep pixel embeddings. It starts

by examining the ineffectiveness of bounding boxes in heavily crowded scenes. The rect-

angular shape of bounding boxes makes them an awkward and cumbersome descriptor for

fine-grain object information. This leads to the motivation for a method without bounding

boxes at all. The idea of assigning a pixel embedding to each visible pixel for cluster-

ing, was originally used for modal instance segmentation. We take it further and develop

the idea into amodal instance segmentation by explicitly allowing layers of masks to handle

occlusion. The idea is taken further still into amodal multi-object tracking by enforcing em-

bedding consistency between two frames and across both layers of masks. The framework

is simple yet powerful. There is neither motion model nor data association, thus no pa-

rameters to tune. The amodal masks allow identity matching even when objects are hardly

visible. The performance of the embedding models is evaluated on a synthetic shapes

dataset and compared against state-of-the-art models in the literature. We hope this thesis

inspires other researchers to further explore the potential of bounding box free, bottom-up

methods for segmentation and tracking.

The effectiveness of embedding is promising. Through a synthetic shapes dataset with

challenging object layouts and homogeneous colors, the embedding method shows its ca-

pability of modelling the surrounding context of objects and assigning distinctly separated

embeddings that are uniform within object boundaries. It will be worthwhile to investi-

gate the content of the embeddings and observe their relationship with the spatial location,

appearance, and classification of the objects.

The embedding model is not perfect. There are still things to be improved upon. First,

the model is limited by the number of masks explicitly constructed during the building stage

of the neural network. If test scenes become more complicated and requires more layers,

the theoretical upper-bound for the performance of the model will be limited. Future work

should explore adaptive growth for the model. Second, the model cannot handle complete
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occlusion. This means if an object completely disappears for a frame or more, its identity is

permanently lost because the key frame that links identities together will not find its mask.

This disadvantage can be mitigated by the classic approach of assuming that the position of

the object does not change during a time window when it is missing. The buffer time will

loosen up the constraint on successfully detecting objects at every frame.

Given the current design of the loss function, the embedding seems to be correlated

with the position of the objects. This makes sense since the network will take the shortest

path to its objective whenever possible. One of the properties of this embedding scheme

is that the embeddings change smoothly as the objects’ locations change continuously, and

it works well for instance segmentation. However, ideally the embeddings should capture

more complicated features so that the embeddings for each instance is somewhat inherently

different from other instances regardless of the location. This requires a more complicated

loss function and different data formatting. Future work should explore this route.

Ultimately, the ideal embedding model should be able to output embeddings that not

only distinctly and uniformly describe the outline of each instance, but also their classifi-

cation, orientation, and location such that the entire scene can be perfectly reconstructed

using only embeddings. This will require more complicated loss functions and potentially

a change in the model architecture.
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