
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Computer Science and Engineering: Theses, 
Dissertations, and Student Research 

Computer Science and Engineering, Department 
of 

Fall 12-4-2019 

Advanced Security Analysis for Emergent Software Platforms Advanced Security Analysis for Emergent Software Platforms 

Mohannad Alhanahnah 
University of Nebraska - Lincoln, mohannad@huskers.unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss 

 Part of the Computer Engineering Commons, Information Security Commons, and the Software 

Engineering Commons 

Alhanahnah, Mohannad, "Advanced Security Analysis for Emergent Software Platforms" (2019). Computer 
Science and Engineering: Theses, Dissertations, and Student Research. 182. 
https://digitalcommons.unl.edu/computerscidiss/182 

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and 
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/182?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages


ADVANCED SECURITY ANALYSIS FOR EMERGENT SOFTWARE PLATFORMS

by

Mohannad Alhanahnah

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Engineering

(Computer Engineering-Computer Science)

Under the Supervision of Professors Hamid Bagheri and Qiben Yan

Lincoln, Nebraska

December, 2019



ADVANCED SECURITY ANALYSIS FOR EMERGENT SOFTWARE PLATFORMS

Mohannad Alhanahnah, Ph. D.

University of Nebraska, 2019

Advisers: Hamid Bagheri and Qiben Yan

Emergent software ecosystems, boomed by the advent of smartphones and the

Internet of Things (IoT) platforms, are perpetually sophisticated, deployed into

highly dynamic environments, and facilitating interactions across heterogeneous

domains. Accordingly, assessing the security thereof is a pressing need, yet requires

high levels of scalability and reliability to handle the dynamism involved in such

volatile ecosystems.

This dissertation seeks to enhance conventional security detection methods

to cope with the emergent features of contemporary software ecosystems. In

particular, it analyzes the security of Android and IoT ecosystems by developing

rigorous vulnerability detection methods. A critical aspect of this work is the

focus on detecting vulnerable and unsafe interactions between applications that

share common components and devices. Contributions of this work include novel

insights and methods for: (1) detecting vulnerable interactions between Android

applications that leverage dynamic loading features for concealing the interactions;

(2) identifying unsafe interactions between smart home applications by considering

physical and cyber channels; (3) detecting malicious IoT applications that are

developed to target numerous IoT devices; (4) detecting insecure patterns of

emergent security APIs that are reused from open-source software. In all of

the four research thrusts, we present thorough security analysis and extensive

evaluations based on real-world applications. Our results demonstrate that the



proposed detection mechanisms can efficiently and effectively detect vulnerabilities

in contemporary software platforms.
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1

1 Introduction

Emergent software platforms have a tremendous impact on different aspects of

modern society, including economic growth, human relationships, entertainment,

scientific development, and education. These contemporary applications run at a

high level of dynamism and often interact over complex infrastructures. This era

of emergent software is driven by the increasing market and the rapid usage of

mobile and smart devices. This chapter discusses the unique characteristics of con-

temporary software platforms, describes the consequent security challenges, and

presents our methods to address the challenges by summarizing the contributions

of this dissertation.

1.1 Emergent Software Platforms

Conventional software leverages stringent development chains, in which individ-

uals/companies develop software and in many cases distributed it themselves.

On the other hand, emergent software ecosystems involve a chain of actors who

is responsible for the distribution of software, which is more loosely coupled in

contrast to conventional development chains. Moreover, software development is

becoming increasingly complex these days [1, 2], because applications, in the emer-

gent platforms, are moving beyond inexpensive recreational applications to more

business-centric usage [1]. Indeed, over the last decade, the emergent software
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imposes intrinsic changes in the way software is produced and consumed and

how users interact with mobile and smart devices [3]. Subsequently, contemporary

software introduces emergent characteristics in comparison with conventional

software.

Emergent software platforms are built from reusable units of software be-

haviour [4], unlike conventional apps that are self-contained. This trend encourages

emergent software platforms to share features through inter-component communi-

cation (ICC) in Android platform [5] and IoT apps interactions manifested through

the coordination between sensors and actuators in smart home [6]. This practice of

sharing functionalities represents the first characteristic of emergent software, we

formalize this attribute as feature interaction.

Emergent software platforms are deployed into highly dynamic environments

and often interact over highly heterogeneous platforms [7, 8, 3]. This imposes

the demand for cross-architecture implementation that allows delivering the func-

tionality of an application over various hardware platforms (i.e. MIPS and ARM)

and software platforms (i.e. Android and iOS) [9, 10]. This direction introduces

cross-architecture implementation, the second attribute of emergent software.

Emergent software ecosystems provide programming frameworks for third-

party developers to build apps to manage a single or even several smart devices at

the same time to realize more advanced and automated control [11]. This motivates

emergent software community to support open-source software that involves code

reuse to achieve multi-vendor integration [12]. To this end, code reuse is considered

as the third characteristic of emergent software.

The attributes of emergent software applications lead to unique security chal-

lenges, as illustrated in Figure 1.1. The first layer includes the three attributes of

emergent software that have been mentioned in this section. The second layer
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introduces the security challenges corresponding to each attribute, these challenges

are discussed in detail in the Section 1.2. Finally, the third layer represents the

emergent platform wherein we address the security challenges and lists the chapter

that presents the solution.

Android Apps

Emergent 
Software

Feature 
Interaction 

Code 
Reuse

IoT AppsAndroid Apps

Software 
Attributes

Section 1.1

Android Apps
Emergent 
Software 
Platforms

IoT Malware

Cross
Architecture

Unsafe 
Interactions

Insecure 
Patterns

Security 
Challenges

Section 1.2

Cross-architecture 
IoT Malware 

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Figure 1.1: Dissertation Road-map

1.2 Security Challenges in Emergent Platforms

After introducing emergent software and its attributes in the previous section, this

section discusses the security challenges related to these attributes and highlights

the requirements to handle the challenges.

1.2.1 Feature Interaction (FI)

The interoperability in the emergent software era implies the ability of applications

to interact and exchange information. This interaction can be perceived in the



4

Android platform through inter-app communication [13] and interactions between

sensors and actuators in the trigger/action ecosystem [14]. The interaction between

different components of the ecosystem is known as Feature Interaction, where the

behavior of one feature is influenced by the presence of another feature (or a

set of other features) [15, 16, 17, 18]. As a result, the feature interaction concept

provides value-added services and thus contributes to rich the user’s experience.

For example, an IoT app can provide energy-saving service by integrating an

air-conditioner, a ventilator, and thermometers [19]. Furthermore, applying the

concept of feature-interaction also reduces the developers’ burden and promotes

functionality reuse. For instance, in the context of the Android platform, the ability

to share pictures from one app with another [20], and a restaurant review applica-

tion can ask other applications to display the restaurantâĂŹs website, provide a

map with the restaurantâĂŹs location, and call the restaurant[21]. Nevertheless,

feature interaction is challenging traditional security analysis frameworks. First,

the number of interactions can be potentially exponential based on the number of

features [22]. Second, interactions cannot be deduced easily from the behaviors of

individual features. Third, the interaction introduces a new set of vulnerabilities

and safety issues such as resource contention, where features compete for resources

and loops in the communication among features [23]. Therefore, scalability aspect

should be handled efficiently in the proposed methods. The following subsection

discusses the feature interaction concept in the context of the Android and smart

home platforms.

1.2.1.1 Feature Interaction in the Android platform

The Android platform provides intent APIs to facilitate the interaction between

components within the app, which is known as Inter-Component Communica-
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tion (ICC) or across-apps, known as Inter-app communication (IAC). Although

IAC improving users’ experience and reducing programming burden, it can be

exploited to perform collusive attacks [24]. To conceal this exploit, dynamic java

programming features such as Reflection and Dynamic Class Loading (DCL), can

be employed. The usage of dynamic programming features is justifiable because

its usage is expected to be growing in the appified era [2]. Java reflection mecha-

nism is extensively used in Android apps for maintaining backward compatibility,

accessing hidden/internal application program interface (API), providing external

library support, and reinforcing app security [25, 26]. But the use of the reflection

mechanism renders the security analysis approaches designed to analyze and

detect malicious apps ineffective [27]. As the malicious code is not part of the apps’

bytecode, rather is loaded at runtime using the dynamic class loading (DCL).

The current state-of-the-art security mechanisms, both static and dynamic

analysis approaches, are insufficient for detecting the increasingly sophisticated

security attacks.

Static analysis approaches [28, 29, 30, 31] can be easily bypassed by apps that

covertly invoke malicious IAC using reflection or DCL. On the other hand, dynamic

analysis approaches, such as TamiFlex [32], StaDyna [26], and DyDroid [33], suffer

from false negatives largely due to the reachability challenges, where vulnerabilities

are missed because of inputs that fail to reach the vulnerable code; they thus do

not detect malicious IACs concealed behind reflective and DCL calls. In Chapter 3,

we present a hybrid analysis approach for detecting such sophisticated behavior.

1.2.1.2 Feature Interaction in Smart Home Platform

In a smart home environment, the same set of sensors and actuators can be con-

trolled from different IoT platforms (i.e. SmartThings Groovy and SmartThings
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IFTTT). This can lead to the race to configure, control, and monitor these de-

vices [34]. These platforms allow users to install third-party software apps that

automate the devices in their homes. Through their control of physical devices

in a system, software apps installed by the user can interact in both physical as

well as cyberspaces, allowing complex and varied automation. While enhancing

the user’s experience by delivering many options for automating their home, such

diversity at the same time escalates the attack surface for safety and security

threats. Interaction between smart home apps and devices can go beyond affecting

cyberspace to influencing the physical space, which might lead to severe safety

and security violations. Hence, identifying risky interactions is a pressing need.

This entails performing precise analysis that can assess the severity of interactions.

For instance, a door control app can be triggered to unlock the door when the user

arrives home, which is the desired behavior, but if the door unlocked while the

user is not present, this constitutes a serious hazard. This undesired behavior can

occur accidentally, or through unforeseen coordination between apps.

In this context, several techniques have been proposed in recent research to

identify possible safety and security violations in the IoT domain. However,

existing techniques provide an incomplete picture of the overall landscape of IoT

app interactions. In particular, the state-of-the-art techniques target only certain

types of inter-app attacks [34, 35, 11], do not take into account physical channels

through which apps can interact (such as temperature or moisture levels) [36],

which can underpin risky interactions, lack cross-platform analysis capability [34, 35],

which is necessary to analyze diverse systems that can interoperate in the same

IoT environment (e.g., Samsung SmartThings [37] and IFTTT [38]), and require

manual specification of the initial system configuration, which may lead to missing

potential unsafe behavior if it appears from different configurations [34]. Moreover,
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these analyses have been shown to experience scalability problems when applied

on large numbers of IoT apps [34, 11, 35]. In Chapter 4, we present a compositional

analysis approach that can detect unsafe interaction threats in a given bundle of

cyber and physical components co-located in an IoT environment.

1.2.2 Cross-Architecture Malware

Interoperability in emergent software era is underpinned by developing cross-

architecture applications and firmwares [7, 8], which support various CPU archi-

tectures of IoT devices. This involves the ability to program across-architecture IoT

devices with a single compiler [9] and thus facilitating heterogeneous firmware

update instead of using monolithic binary updates. Moreover, promoting cross-

architecture implies the code base will be compiled with different compilers using

various configurations (e.g., different optimization levels). Cross-compile execution

will impose significant changes in the representation of the generated binaries [39].

In the IoT malware domain, Mirai malware was developed to infect differ-

ent architectures of IoT devices, as security researchers found binaries for the

common architecturesâĂŤMIPS 32-bit, ARM 32-bit, and x86 32-bit belong to this

malware [40]. Mirai caused a major Internet service breakdown for a few hours

due to this cross-architecture capability, which supported the Mirai’s actor to infect

a large-scale of IoT devices [41]. Therefore, IoT devices have become enticing

targets for cyber-attackers. Since IoT devices are fully integrated into our daily life,

compromised devices can cause unprecedented damages. Even worse, IoT devices

are usually resource-constrained with low-profile processors, which prevents the

deployment of sophisticated host-based defenses as we commonly use on personal

computers (PCs). Consequently, the attackers endeavor to recruit vulnerable IoT
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devices to build a large-scale bot army to launch the attack, and the number of IoT

malware has more than doubled in 2017 [42]. Therefore, in Chapter 5, we design a

lightweight cross-architecture signature generation scheme for detecting/classifying

IoT malware.

1.2.3 Code Reuse

Open-source application is a key aspect to facilitate the integration between the

heterogeneous systems in which emergent software platforms are deployed [43, 2,

44, 45]. Therefore, the software communities open-source the software develop-

ment [46], because open-source implementations support achieving multi-vendor

interoperability [12, 44, 45]. So that 91% of IoT developers adopt open-source

software at least one part of their development stack [2, 47].

However, this usage of others’ implementations can lead to the propagation of

security vulnerabilities [48, 44] because of weak programming practices [49]. The

code reuse is observed between open source software and online programming

discussion platforms (e.g., Stack Overflow) [50, 51, 52]. Several works showed that

insecure code patterns propagated in production software [53, 54, 55]. To mitigate

this issue, developers should be supported through a detection mechanism that can

identify insecure implementations at the early stage of a software implementation,

which consequently will promote the development of secure code. In Chapter 6

we identify insecure patterns of Secure Socket Layer/Transport Layer Security

(SSL/TLS) in the context of Android and develop detection rules that can be used

within the IDE.

This section discussed the security challenges that are considered in this dis-

sertation, which shows the complexity and the demand for reliable methods.



9

Therefore, conducting rigorous security analysis for addressing the implications of

these attributes requires: (1) performing a holistic analysis, (2) resolving scalability

aspects, and (3) modeling different elements of the applications that will impact

applications’ behavior. All these requirements represent a severe demand for

high levels of reliability and scalability in the proposed solutions. Section 1.3

summarizes our solutions to address these security challenges.

1.3 Research Contributions

In this dissertation, we propose four security analysis frameworks for addressing

the challenges discussed in the previous sections and illustrated in Figure 1.1. Each

project considers a specific challenge in the context of one of the emergent software

ecosystems. We make the following contributions in this dissertation:

1. FI in Android Platform: We analyze feature interactions in the context of An-

droid that manifested through inter-app communication (IAC). In this work,

we expose a new attack that leverages reflection and dynamic class loading

features in conjunction with inter-app communication to conceal malicious

attacks to bypass existing security mechanisms. we also show the interaction

between apps can lead to privacy leakage and spoofing attacks resulted from

the interactions of Android applications. To identify such vulnerabilities,

we design, develop and implement Dynamic INter-App Communication

Tool (Dina), a novel hybrid analysis approach for identifying malicious IAC

behaviors concealed within dynamically loaded code through reflective/DCL

calls. Dina appends reflection and DCL invocations to control-flow graphs

and continuously performs incremental dynamic analysis to detect the mis-

use of reflection and DCL that obfuscates Intent communications to hide
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malicious IAC activities. Dina utilizes string analysis and inter-procedural

analysis to resolve hidden IAC and achieves superior detection performance.

This component of the dissertation is published in [56].

2. FI in smart home platform: we design and implement IotCom, a formal

method tool to identify safety and security violations that can occur in the

interactions between IoT apps in smart home environments. IotCom is

a compositional approach that empowers end-users to safeguard a given

bundle of cyber and physical components co-located in an IoT environment.

It automatically discovers such complicated interaction threats. IotCom

combines static analysis with lightweight formal methods to automatically

infer relevant specifications of IoT apps in an analyzable formal specification

language, taking into consideration the mapping between cyber and physical

channels. IotCom then checks the extracted specifications as a whole for

interaction threats.

3. Detecting Cross-architecture IoT Malware: we propose a data-driven sig-

nature generation method for detecting IoT malware, which generates dis-

tinguishable signatures based on high-level structural, statistical and string

feature vectors, as high-level features are more robust against code variations

across different architectures. The generated signatures for each malware

family can be used for developing lightweight malware detection tools to

secure IoT devices. The signature generation scheme extracts a reliable and

easily extractable string and statistical features. The string feature is ex-

tracted using N-gram text analysis, while the statistical feature contains the

code-level statistics. This work is published in [57]
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4. Insecure implementation of SSL/TLS: this work aims to support developers

in detecting insecure SSL/TLS implementation in their codes in the context

of Android, whether this implementation is imported from other projects

or other platforms such Stack Overflow. Our approach utilizes a low-cost

cross-language static analysis tool called PMD. In the end, two insecure im-

plementations of SSL/TLS have been identified, and subsequently, a new

PMD ruleset is created. This ruleset consists of three rules for addressing

hostname validation vulnerability and certificate validation vulnerability. This

work is published in [58].

1.4 Organization

The rest of this dissertation is organized as follows: Chapter 2 presents the related

work of this work and puts it in the context of describing the limitations of prior

work. Chapter 3 presents our security analysis framework (namely Dina) for

detecting vulnerable Android Inter-App Communication in dynamically loaded

code. In Chapter 4, we introduce our formal method approach for detecting

unsafe interactions in the context of a smart home. In Chapter 5, we discuss our

approach for analyzing IoT malware and describe the data-driven framework for

cross-architecture signature generation. Chapter 6 describes our approach for

detecting code reuse in the context of StackOverflow. Finally, Chapter 7 concludes

this dissertation and provides an outlook on future research directions.
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2 Related Work

In this chapter, we discuss research related to the work presented in this dissertation

and describes the limitation in prior work.

2.1 Android Inter-app Communication

This section discusses research efforts in the area of Android Inter-App Communi-

cation (IAC) and Inter-Component Communication (ICC). It then highlights the lim-

itations of the related solutions. Numerous techniques have been proposed to ana-

lyze inter-component communication vulnerabilities [59, 60, 61, 62, 63, 64, 31, 65].

Among others, IccTA [60] and its successor [62] leverage an Intent resolution

scheme to identify inter-component privacy leaks. However, their approach relies

on a preprocessing step connecting Android components through code instrumen-

tation, which can lead to scalability issues [31, 28]. Separ [29] and sealant [31]

perform compositional security analysis at a higher level of abstraction. While

these research efforts are concerned with security analysis of component interac-

tions between Android apps, DINA’s analysis enables reflection and DCL-aware

assessment of the overall security posture of a system, greatly increasing the scope

of potential ICC-based misbehavior analysis.

With respect to reflection and DCL, there have been several research efforts that

attempt to improve the soundness of static analysis in the presence of dynamically
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loaded code through Java reflection. Livshits et al. [66] propose a static analysis

algorithm that can approximate reflection targets using points-to information. Felt

et al. [67] discuss the challenges of handling reflection in Android applications and

then attempt to address them using Stowaway, a static analysis tool that is capable

of identifying reflective calls and tracking reflection targets by performing flow-

sensitive analysis. More recent static analysis approaches aim to improve precision.

These approaches include DroidRA [25] and Sparta [68]. DroidRA adapts

TamiFlex [32] to statically analyze Android apps for dynamically loaded code.

Unlike TamiFlex, DroidRA does not execute apps; instead, it uses a constraint

solver to resolve reflection targets. It also uses its own version of Booster to

manipulate Jimple, an immediate representation used by Soot directly. TamiFlex,

on the other hand, manipulates Java bytecode. Sparta implements annotations

in the Checker framework to track information flow and a type inference system

to trace reflective calls. Sparta also operates at the source code level and not the

bytecode or dexcode level. However, these static analysis approaches can work

only in cases in which reflection targets can be identified from the source code.

For the most up-to-date and comprehensive review of static analysis approaches

for handling reflection, see Landman et al. [27]. Our approach however detects

reflection targets and captures dynamically loaded code using dynamic analysis.

There have also been several research efforts to perform dynamic analysis to

detect reflection/DCL targets. Davis et al. [69] provide an app rewriting framework

named RetroSkeleton that is capable of intercepting reflections at runtime; however,

this approach does not work with custom classloaders. Sawin et al. [70] propose

an approach that combines static string analysis with dynamic information to

resolve dynamic class loading via Java reflection. This approach operates only on

the standard Java library. Execute This! [71] is a dynamic analysis approach that
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relies on an Android VM modification to detect reflection calls. It first logs runtime

events and then performs static analysis off-line. StaDynA [26] also performs

dynamic analysis in two phases. Our approach, on the other hand, performs

analysis continuously.

2.2 Smart home safety and security

This section discusses the stateof-the-art works that address the safety and securtiy

of smart home. IoT safety and security has been broadly studied recently [72, 11,

73, 74, 75, 76, 77, 35, 34, 36, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,

93, 94, 95, 96, 97]. Many of these studies focus on data security issues such as

permission overprivilege [72, 98], or sensitive information leakage [74, 11, 73, 99].

ContextIoT [11] and SmartAuth [73] both detect and enforce authorization policies

at runtime to prevent such attacks. ProvThings [75] examines data security by

determining data provenance in IoT systems, and can log interactions between IoT

apps. However, these approaches primarily aim to protect sensitive data, and do

not detect safety and security violations arising from interactions of apps in the

physical world.

Soteria [35] reports violations either within a single app or between pairs of

apps, indicating a possible cap on its scalability. IoTSAN [34] detects violations

in bundles of more than two apps. However, the initial configuration of those

apps and their connected devices must be provided manually for each analysis.

Also, it must first translate the Groovy code of the SmartThings apps to Java,

limiting its analysis to just less than half (27 of 65) of the devices supported by

SmartThings [100]. In contrast, IotCom directly analyzes Groovy code, supports

large app bundles and all SmartThings device types, and is completely automated.
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To the best of our knowledge, none of these approaches can detect violations

mediated by physical channels—a key feature of IotCom.

IoTMON [36] is a pure static analysis technique that analyzes rules based solely

on triggers, neglecting the conditions for specific actions. In contrast, IotCom

validates the safety of app interactions with more precision by effectively capturing

logical conditions influencing the execution of app rules through a precise control

flow analysis. Moreover, IoTMON does no analysis to detect potential safety and

security issues, which is conducted in a formally rigorous manner in IotCom.

Other researchers have evaluated the security of IFTTT applets [98, 76, 101, 102].

Fernandes et al. [98] studied OAuth security in IFTTT, while Bastys et al. [76] used

information flow analysis to highlight possible privacy, integrity, and availability

threats. However, none of the studies examined the aforementioned IoT safety

and security properties. In contrast, IotCom performs large scale safety and

security analysis, examining interactions between tens of IFTTT smart home

applets. IotCom also analyses bundles comprising both SmartThings Classic apps

and IFTTT applets, demonstrating its unique cross-platform analytical capability.

2.3 IoT Malware Detection

In this section, we focus on reviewing malware analysis approaches that aim at

classifying malware families and generating signatures for effective detection.

Malware Classification: Recently, Alazab [103] proposes a Windows malware

(in PE format) classification method based on features extracted dynamically

and statically from the malware files, including windows API sequences and

their frequencies of appearance. But the API calls are different across different

architectures, and can be easily forged or modified by attackers to disguise their
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malicious activities. Santos et al.[104] present a malware classification method

based on the frequency of opcode sequences, but opcode sequences can also be

easily disrupted by simple code variations resulted from different compilation

options. Zynamics Bindiff [105] and BinSlayer [106] measure binary similarities

based on graph isomorphism between CFGs. BinSlayer further improves the binary

comparison accuracy of BinDiff by incorporating graph edit distances, but also

brings considerable overhead. Both Shabtai et al. and Hu et al. [107, 108] use

static analysis to examine the effectiveness of malware detection using OpCode

N-gram analysis. Kong et al. [109] map malware instances to their corresponding

malware family using structural features of function call graph and statistical

features including lists of API calls and opcodes with their respective frequencies.

Malware Signature Generation: High level string features and statistical features

extracted from file size and file content have been used to classify firmware images

of embedded devices [110]. Besides our different goals (known firmware classi-

fication versus unknown malware classification), they use a simple intersection

method on string features to identify firmware images, while our N-gram string

features can extract more representative features for each malware family. We also

consider statistical features by counting instructions and functions at the assembly

code level, which have finer granularity. Perdisc et al. [111] propose a multi-stage

clustering approach for generating malware signatures using the network traffic

generated by malware samples. FIRMA [112] also utilizes network traffic to gener-

ate behavioral signatures for malware detection. Unlike [111], FIRMA generates

network signatures for each network behavior regardless of traffic types, the format

of which follow popular signature-matching IDS. While the previous work deals

with generic PC malware, we focus on the newly emerging IoT malware.
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2.4 Insecure SSL/TLS implementation Detection

In this section, we review related work that consider the insecure implementa-

tion of cryptograpy. FixDroid plug-in for Android studio has been developed

in [113], which addresses several limitations in Android Lint tool. It is used for

helping App developers in improving the quality of their code including insecure

implementations. FixDroid attempts to address the insecure implementations

of SSL/TLS. However, FixDroid only considers a single pattern, which is Im-

proper HostNameVerifier, while in our solution we consider three most commonly

observed patterns.

Another plug-in called CogniCrypt is developed for assisting developers in

generating secure implementation of crypto APIs [114]. This plug-in automatically

generates secure implementation instead of detecting insecure patterns using static

analysis technique. Although SSL API implementation is covered by the plug-in,

it does not show details about the type of SSL implementations that have been

covered.

HVLearn is a blackbox testing tool for verifying hostname ins SSL/TLS imple-

mentations based on automata learning algorithms [115]. However, developers do

not actually need blackbox testing techniques for detecting insecure implementa-

tion, as the source code is available. Also, HVLearn focuses only on detecting one

aspect of insecure SSL/TLS patterns.

Other solutions have been developed to detected insecure implementation

of SSL/TLS [116, 117]. However, these solutions intended to analyze released

applications and not to assist developers in detecting insecure patterns while

implementing SSL/TLS APIs.
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3 Dina: Detecting Hidden Android Inter-App

Communication in Dynamic Loaded Code

Java reflection and dynamic class loading (DCL) are effective features for enhancing

the functionalities of Android apps. However, these features can be abused by

sophisticated malware to bypass detection schemes. Advanced malware can

utilize reflection and DCL in conjunction with Android Inter-App Communication

(IAC) to launch collusion attacks using two or more apps. Such dynamically

revealed malicious behaviors enable a new type of stealthy, collusive attacks,

bypassing all existing detection mechanisms. In this chapter, we present DINA, a

novel hybrid analysis approach for identifying malicious IAC behaviors concealed

within dynamically loaded code through reflective/DCL calls. DINA continuously

appends reflection and DCL invocations to control-flow graphs; it then performs

incremental dynamic analysis on such augmented graphs to detect the misuse of

reflection and DCL that may lead to malicious, yet concealed, IAC activities. Our

extensive evaluation on 3,000 real-world Android apps and 14,000 malicious apps

corroborates the prevalent usage of reflection and DCL, and reveals previously

unknown and potentially harmful, hidden IAC behaviors in real-world apps.
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3.1 Background and Challenges

Android Apps: comprise different types of components, namely activities, services,

broadcast receivers, and content providers1. These components communicate through

a specific type of event messages called Intent, which can be either explicit, when its

recipient component is specified, or implicit, when no specific recipient component

is declared.

Inter-App Communication (IAC): Android apps typically use Inter-Component

Communication (ICC), a message passing mechanism (i.e. intent), to exchange

data. Components within or between apps use ICC to communicate with each

other via explicit or implicit Intents, depending on whether the target component

name is specified. The Android Intent is resolved at runtime based on the fields

of IntentFilter declared in the apps’ manifest files and the attributes of implicit

Intents, including action, category, and data. Intents can be sent through three types

of components (i.e., activities, services, receivers). Table 3.1 lists relevant Intent

sending and receiving APIs, categorized based on their corresponding component

types.

Components Intent-sending APIs Intent-receiving APIs
Receivers sendBroadcast()

sendOrderedBroadcast()
sendStickyBroadcast()
sendStickyOrderedBroadcast()

onReceive()

Activities startActivity()
startActivityForResult()

onCreate()

Services startService()
bindService()

onStartCommand()

Table 3.1: A non-exhaustive list of Intent APIs.

Reflection and Dynamic code loading (DCL): DCL allows Android apps to load

and execute code that is not part of their initial code bases at runtime. DCL is

used to overcome some restrictions (i.e. 64K maximum method references in a
1https://developer.android.com/guide/components/fundamentals.html
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dex file) and extend the app’s functionality [26]. Java reflection is a language

feature that provides developers with the ability to inspect and determine program

characteristics, such as classes, methods and attributes, at runtime. Reflection is

used for maintaining backward compatibility, accessing hidden/internal applica-

tion program interface (API), providing external library support, and reinforcing

app security [25, 26]. Therefore, reflection and DCL have been used to enhance

functionalities of Android applications for legitimate purposes. But reflection and

DCL can also be used to hinder static analysis tools because they are resolved at

runtime. Fig. 3.1 illustrates a reflective call where the actual reflection targets (i.e.,

Classes B, C and D) cannot be resolved by static analysis tools as the malicious code

is not part of the apps’ bytescode, rather is loaded at runtime using the dynamic

class loading (DCL).

Class A Reflection API

Class B

Class C

Class D

...

...

Method.invoke(...)

Reflected Object

?

?

?

Figure 3.1: A typical reflective call used to defeat static analyzers.

Challenges: Analyzing the interactions among apps is a challenging task. The

obfuscation techniques such as reflection and DCL impose additional challenges.

We lay out the specific challenges in details below.

• The collaborative nature of Android apps indicates that the analyst needs to

be able to analyze a large collection of apps that can potentially interact, and

observe their collective runtime behaviors. Most existing program analysis

approaches cannot support such needs, because they tend to operate in a

close-world fashion (i.e., any change to the program under analysis requires
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the entire analysis process to be rerun [118, 119]), require off-line processing

to generate analysis results, and can only analyze one app at a time.

• Reflection implies missing nodes and edges in the call graph, and thus the

control-flow and data-flow graphs regarding these missed nodes will not be

generated. Therefore, it is critical for the analyzers to have the capability of

resolving reflection and dynamically updating call graphs.

• DCL involves new codes that will be downloaded and executed at runtime.

The analyzers need to capture the newly downloaded code and then update

the call graph, control-flow and data-flow graphs at runtime.

3.2 Motivating Example

In this section, we present motivating examples to show how Intent can be used

as an attack vector to launch information leakage through hidden (dynamically

loaded) code, and to conceal method invocations through reflection.

Figure 3.2: Malicious app downloads code at runtime, and then uses it for leaking
sensitive information.
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1 public c l a s s DynLoadService extends S e r v i c e {
2 public i n t onStartCommand ( I n t e n t i n t e n t ) { [ . . . ]
3 loadCode ( ) ;
4 }
5 public void loadCode ( ) {
6 // Read a j a r f i l e t h a t conta ins c l a s s e s . dex f i l e
7 S t r i n g j a r P a t h =Environment . g e t E x t e r n a l S t o r a g e D i r e c t o r y ( ) . getAbsolutePath ( )

↪→ +"/dynamicCode.jar" ;
8 // Load the code
9 DexClassLoader mDexClassLoader = new DexClassLoader ( jarPath , getDir ( "dex" ,

↪→ MODE_PRIVATE) . getAbsolutePath ( ) ) ;
10 // Use r e f l e c t i o n to load a c l a s s and c a l l i t s method
11 Class <?> loadedClass = mDexClassLoader . loadClass ( "MalIAC" ) ;
12 Method methodGetIntent = loadedClass . getMethod ( "getIntent" , android .

↪→ content . Context . c l a s s ) ;
13 Object o b j e c t = loadedClass . newInstance ( ) ;
14 I n t e n t i n t e n t = ( I n t e n t ) methodGetIntent . invoke ( o b j e c t , DynamicService .

↪→ t h i s ) ;
15 s t a r t S e r v i c e ( i n t e n t ) ; } }

Listing 3.1: DynLoadService component resides in the malicious app and
performs DCL and reflection to hide its malicious behavior.

Fig. 3.2 presents a bundle of two apps, where a malicious IAC is initiated within

a dynamically loaded component from an external source to leak sensitive infor-

mation through the Messenger app. The DynLoadService component dynamically

loads a malicious class from an external JAR file placed at the location specified on

line 7 of Listing 3.1. It then instantiates a DexClassLoader object, and uses it to load

the DEX (Dalvik Executable) file contained in the JAR file. Using Java reflection

at line 12, the mDexClassLoader object loads a class called MalIAC and invokes

its getIntent method at line 14. This method returns an implicit Intent, which

DynLoadService uses to communicate with the Messenger Sender (line 15). Note that

MYSTIQUE-S [120] uses the same invocations in lines 9, 11-13 of Listing 3.1 for

constructing the attack template that loads the malicious payload on the fly.

Listing 3.2 depicts the hidden malicious class aiming at stealing users’ sensitive

information. On lines 3-4, getIntent obtains the sensitive banking information, and

then creates an implicit Intent with a phone number and the banking information

as the extra payload of the Intent (lines 5-8). This code is pre-compiled into
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DEX format and archived to a JAR file. The JAR file could be downloaded by

the malicious app after installation. The Messenger app, as shown in Listing 3.3,

receives the Intent and sends a text message using the Intent payload, effectively

leaking sensitive data.

1 public c l a s s MalIAC {
2 public I n t e n t g e t I n t e n t ( Context contex t ) {
3 S t r i n g account = getBankAccount ( " Bank_Account " ) ;
4 S t r i n g balance = getBankBalance ( " Balance_USD " ) ;
5 I n t e n t i = new I n t e n t ( "SEND_SMS" ) ;
6 i . putExtra ( "PHONE_NUM" , phoneNumber ) ;
7 i . putExtra ( " Bank_Account " , account ) ;
8 i . putExtra ( " Balance_USD " , balance ) ;
9 return i ; } }

Listing 3.2: Malicious IAC component is concealed as external code and
loaded at runtime after app installation.

1 public c l a s s MessageSender extends S e r v i c e {
2 public void onStartCommand ( I n t e n t i n t e n t ) {
3 S t r i n g number= i n t e n t . g e t S t r i n g E x t r a ( "PHONE_NUM" ) ;
4 S t r i n g message= i n t e n t . g e t S t r i n g E x t r a ( "TEXT_MSG" ) ;
5 sendTextMessage ( number , message ) ;
6 }
7 void sendTextMessage ( S t r i n g num, S t r i n g msg) {
8 SmsManager mngr = SmsManager . ge tDefaul t ( ) ;
9 mngr . sendTextMessage (num, null , msg , null , null ) ; } }

Listing 3.3: MessageSender resides in a benign app to receive Intents and send
text messages.

Listing 3.4 presents an abbreviated code snippet from a real-world app (i.e.,

com.example.qianbitou) that uses reflection to conceal IAC behavior. The method

instantiate in the class Fragment (line 2) calls the reflection method newInstance() (line

4). This reflective call will initialize the constructor of the class _03_UserFragment

(line 6), and execute the method onClick() that invokes toCall(), which defines an

implicit Intent for making a phone call to a hard-coded number between 8am

and 10pm. The suspicious method toCall() is a private method concealed behind

reflective calls, which is difficult to capture in the analysis.
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1 public c l a s s Fragment {
2 public s t a t i c Fragment i n s t a n t i a t e ( ) {
3 // R e f l e c t i o n c a l l s i t e
4 paramContext = ( Fragment ) l o c a l C l a s s 1 . newInstance ( ) ; }
5 }
6 public c l a s s _03_UserFragment extends Fragment {
7 public onClick ( ) {
8 t o C a l l ( ) ;
9 }

10 // The method invoked through the r e f l e c t i v e c a l l a t l i n e 4

11 private void t o C a l l ( ) {
12 i n t i = Calendar . g e t I n s t a n c e ( ) . get ( ) ;
13 i f ( ( i <= 22 ) || ( i >= 8 ) ) {
14 s t a r t A c t i v i t y (new I n t e n t ( " android . i n t e n t . a c t i o n . DIAL" , Uri . parse ( " t e l

↪→ :4000−888−620 " ) ) ) ; } } }

Listing 3.4: Reflection is used to conceal IAC behavior in a real-world app

In order to detect the suspicious behaviors in the motivating examples, a

systematic approach is needed to resolve reflection/DCL and update the method

graphs dynamically. specifically, the proposed approach should 1) load the class

MalIAC in the DCL (Listing 3.2), 2) append the method getIntent (Listing 3.2) to

the method graph after resolving reflection, and 3) analyze the control-flow graphs

of loadCode (Listing 3.1) and getIntent to perform IAC analysis for detecting

suspicious IACs.

DINA is designed to load and resolve the reflective calls in Listings 3.1 and

3.4 at runtime. DINA’s dynamic analyzer automatically and incrementally aug-

ments both the control-flow and data-flow graphs with the newly loaded code

and resolved reflective calls. In tandem with the graph augmentation, DINA’s

vulnerability analyzer identifies potential malicious IAC activities on the fly. As

a result, DINA has the capability to precisely and efficiently detect the malicious

IAC behavior in the motivating examples although it is concealed by reflection.
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3.3 Threat Model

This section describes the categories of suspicious inter-app communication behav-

iors that are considered in this work. The goal of the attacker considered in this

work is to launch stealthy inter-app attacks without being detected. Such stealthy

behavior can be manifested by different types of collusive attacks [121], where an

attacker uses the DCL and reflection mechanisms to obfuscate IAC behaviors of

the sender app and launch malicious behaviors, e.g., leaking sensitive information,

via another receiver app.

Our security analysis is centered around identifying the vulnerable IAC activities

that result in three types of serious threats: Information leakage, Intent spoofing, and

Android component activation, described as follows:

1. Information leakage happens when a receiver app exfiltrates the sensitive data

obtained through IAC communications from other apps and transmits it to

an external destination.

2. Intent spoofing is a security attack where the sender app forges Intents to

mislead receiver apps [21].

3. Android component activation happens when a malicious app intercepts an

implicit Intent by declaring an Intent filter matching the Intent, since the

Intent is not properly protected by permission restrictions [21].

We consider both explicit and implicit Intent. A malicious component refers to

a component that uses Intent sending/receiving APIs to help transfer malicious

Intents that contain sensitive information for data leakage, are forged for Intent

spoofing, or are received in an unauthorized manner. The data leaks are initiated by

a malicious component. Intent spoofing involves a path between two components
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when the sender component is malicious, while unauthorized Intent receipt involves

a path between two components when the receiver component is malicious. DINA

is designed to detect all three types of security threats. Moreover, we consider the

IAC communication that involves more than two apps, i.e., DINA will be able to

capture collusive attacks concealed in a transitive ICC path through multiple apps.

3.4 DINA System Design

This section presents DINA, a hybrid analysis tool for identifying sensitive IAC

paths that concealed through DCL and reflection. Fig. 3.3 illustrates DINA’s

architecture. DINA is a graph-centered hybrid analysis system that consists of three

main modules: 1) the collective static analysis module that simultaneously analyzes

multiple apps to automatically elicit DCL and reflection call sites within the

apps. The identified DCL and reflection call sites become the execution targets for

dynamic analysis; 2) the incremental dynamic analysis module that systematically

capturing new nodes and edges that are loaded at runtime by DCL and reflection;

3) the path construction module that generates the dynamic IAC graph that includes

all potential paths among the apps in the bundle. Specifically, it first generates

the static IAC graph, and then augments the static IAC graphs after receiving the

incremental updates; 4) the IAC vulnerability analysis module utilizes real-time IAC

graphs to identify potentially vulnerable paths.

3.4.1 Collective Static Analysis

The collective static analysis of DINA aims to statically identify the reflection, DCL

and IAC capabilities of each app in the app bundle, by analyzing multiple apps

at the same time. We generate two different types of graphs for each app, the
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Figure 3.3: Architecture of DINA

method call graph (MCG) and instruction graph (IG). The MCG maintains the call

relationships among the methods defined within the analyzed apps in the bundle,

while the IG includes detailed control-flow and data-flow information for a certain

method. DINA works on the bytecode level of the target application, and the

analysis focuses on the app’s Dalvik bytecode.

Algorithm 1 outlines the collective static analysis process, which consists of

two major steps:

Preprocessing. We first decompile APKs in the collective app bundle to generate

the bytecode of each app and extract its manifest file. Intent filter information

for each app is then extracted from the manifest file. This step also involves the

generation of MCG for each app and the IG for each method in the MCG. All

extracted information and the generated graphs are stored in a database for fast

access.

Reflection/DCL analyzer. We then identify DCL and reflective calls using the

MCG of each app by detecting DCL and reflection APIs, such as invoke(),

newInstance(), and getMethod(). The list of reflection and DCL APIs (i.e.,

Re f _DCL_API_List in Algorithm 1) is similar to the API list in StaDyna [26],
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which mainly includes APIs of dynamic class loading. We extend that list to

include additional reflection APIs involving method invocations [25]. As a re-

sult, this step identifies the apps that need to be executed in the incremental

dynamic analysis module. We further extract the class and method names (call

sites) implementing these APIs.

Finally, all the extracted information that is stored in the database will be

leveraged for generating a Static IAC Graph, which contains all the potentially

sensitive paths that have been constructed through the Path Construction component

(see Section 3.4.3).

Algorithm 1 Collective Static Analysis
INPUT: Bundle of Apps: B, Re f _DCL_API_List
OUTPUT: static_IAC, Intent_Filter_Appi, Re f _Details

// Preprocessing
1: static_IAC ← CreateNodes(|B|)
2: Intent_Filter_Appi ← {} // initialize Intent filter list
3: for each Appi ∈ B do
4: Decompile(Appi)
5: parse_manifest(Appi)
6: update(Intent_Filter_Appi)← {(Appi, class-name, intent-action-string)}
7: end for
8: for each Appi ∈ B do
9: Generate MCG(Appi)

// Reflection analyzer
10: for each method ∈ MCG(Appi) do
11: if methodj ∈ Re f _DCL_API_List then
12: update(Re f _Details)← {(Appi, class-name, method-name)}
13: end if
14: Generate IG(methodj)

// Generating Static IAC Graph
15: static_IAC ← IAC_Analyzer(IG(methodj), Appi)
16: end for
17: end for

3.4.2 Incremental Dynamic Analysis

DINA performs incremental dynamic analysis for each app that contains reflective

or DCL calls. The dynamic analysis is capable of capturing and loading code in

various formats (i.e. APK, ZIP, JAR, DEX), resolving reflection, and performing
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IAC analysis incrementally with progressive augmentation of graphs. We modified

Android framework for resolving reflective calls and capturing newly loaded

codes at runtime. The incremental dynamic analysis consists of two major steps as

described below (see Algorithm 2).

Resolving reflection and loading new codes. Every app implementing reflection

and DCL will be executed on a real Android device or an emulator. This step

aims to capture the dynamic behaviors of the app. To reach the components that

implement reflection, we use the reflection details extracted and stored in the

database, which includes the component name and the corresponding method

name that implement reflection and DCL in each app. These methods/components

of an app, regarded as method of interest (MoI), will be exercised in the dynamic

analysis for resolving reflection and DCL call sites, which will augment the control-

flow and data-flow graphs dynamically.

We utilize a fuzzing approach to trigger the components that contain reflection

and DCL call sites. In the end, the static IAC graph will be refined by the IAC

analyzer to include all the IAC detected inside the dynamically loaded codes after

resolving reflection. New edges pertaining to the identified IAC are added to the

graph at runtime.

3.4.3 Path Construction

This component is used to generate the Static IAC Graph after performing the

collective static analysis, and it is also used to generate the Dynamic IAC Graph

by augmenting the Static IAC Graph after adding dynamic information that is

extracted through the Incremental Dynamic Analysis. Specifically, the IAC analyzer
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Algorithm 2 Incremental Dynamic Analysis
INPUT: static_IAC, Re f _Details, Intent_Filter_Appi
OUTPUT: dynamic_IAC
1: dynamic_IAC ← static_IAC

// Resolving Reflection and Loading new code
2: for each Appi do
3: Install(Appi)
4: Launch(Appi)
5: Pull newly loaded code
6: for each Component ∈ Re f _Details(Appi) do
7: Find method of interest (MoI)
8: for each Method ∈ MoI(Appi) do
9: Execute the component using Monkey (if failed, execute the whole app using Monkey), and incre-

mentally generate IG(methodj)
// Generating Dynamic IAC Graph

10: dynamic_IAC ← IAC_Analyzer(IG(methodj), Appi)
11: end for
12: end for
13: uninstall(Appi)
14: end for

updates the Static IAC Graph by attaching new nodes and edges that are loaded at

runtime by DCL and reflection.

Algorithm 3 describes the operations performed by the IAC analyzer for con-

structing the potential paths among the apps in the bundle. The IAC analyzer

first identifies explicit Intent APIs (i.e. setClassName, setComponent) by iterating

over the nodes in the IG. The IAC analyzer then extracts the name of the receiver

component, finds the details of the receiver component in the Intent filter list, and

finally creates an edge between the sender and receiver components in the IAC

graph. Otherwise, if the node contains setAction, it indicates IAC uses an implicit

Intent. Therefore, the IAC analyzer extracts the Intent action string and then finds

potential recipient components in the Intent filter list.

The component name (Algorithm 3, line 3) and Intent action string (Algorithm 3,

line 8) are extracted using data-flow analysis based on the IGs. Note that the

generated IGs maintain both control-flow and data-flow information.
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Algorithm 3 Path Construction
INPUT: IG(methodj), Appi, Intent_Filter, Explicit_APIs
OUTPUT: IAC_Graph

// Identify Intent Type
1: for each node ∈ IG(methodj) do

// Explicit Intent
2: if methodName ∈ Explicit_APIs then
3: componentName = extractCompName(node)
4: if componentName == Intent_Filter_Appr.component then
5: IAC_graph ← addEdge(Appi, Appr)
6: end if

// Implicit Intent
7: else if methodName == setAction then
8: stringAction == extractStrAction(node)
9: if stringAction ∈ Intent_Filter_Appr.intent-action-string then

10: IAC_graph ← addEdge(Appi, Appr)
11: end if
12: end if
13: end for

3.4.4 IAC Vulnerability Analysis

Algorithm 4 depicts the process of IAC vulnerability analysis, which consists of

two components including: 1) IAC vulnerability analyzer that marks sensitive

paths in the dynamic IAC graph, and 2) path verifier that automates the path

triggering process by installing the apps involved in the identified sensitive paths

and then triggering the corresponding APIs.

IAC vulnerability analyzer identifies whether the nodes in the dynamic IAC

graph constitute a vulnerable path that reveals sensitive information. IAC vulnera-

bility analyzer performs its analysis over all identified IAC paths in the dynamic

IAC graph. Then for each path, every node is analyzed, by identifying whether

it is a sender or receiver node, and then depth-first search (DFS) is conducted to

find if this node can reach a sensitive source method in case of sender node, or

can reach a sensitive sink in case the node is receiver. We leverage a sensitive API

list that simplifies the widely used SuSi list [122] to identify these sensitive APIs.

An inverted DFS searches from the recorded MoI (identified in Algorithm 2) to

seek sensitive sources, while another DFS searches from Intent-receiving method
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at the receiver (line 12 in Algorithm 4) to look for sensitive sinks. Finally, it marks

the complete sensitive paths from the sensitive source to the sensitive sink across

multiple apps. Fig. 3.4 represents a typical sensitive path that links sensitive source

API to a sensitive sink through IAC after resolving the reflection/DCL calls. Note

that these paths are stealthy and difficult to find, as they only appear after loading

dynamic codes and resolving reflection calls, but they can be captured by DINA

efficiently.

Path verifier tries to automatically trigger the sensitive paths in the dynamic IAC

graph. A sensitive path contains a sensitive source and a sensitive sink node (cf.

Fig. 3.4, Algorithm 4, line 28). After identifying the sensitive path, the pather

verifier checks the type of reflection/DCL call site class. If the type is an activity,

the sender and receiver apps will be installed on our tablet device. We use adb

utility to execute the activity component and record the generated log using logcat

utility. Finally, the path will be considered as a triggered path if the log contains

the exercised activity, the Intent string action, and the name of the receiver app.

Sensitive Source

Reflection/DCL 
Calls

Intent Sending 
Method

Intent Receiving 
Component

Sensitive Sink

invoke

Sender App Receiver App

IAC

Figure 3.4: A simplified sensitive path example: the dashed method and paths can
be captured during DINA’s dynamic analysis phase.
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Algorithm 4 IAC Vulnerability Analysis
INPUT: dynamic_IAC, Sensitive_API_List
OUTPUT: nodei.sensitive, triggeredSensitiveIAC_list

// 1) IAC vulnerability Analyzer
1: for each node of Appm ∈ dynamic_IAC do

// 1.1) Identify sensitive methods in the sender node
2: if nodei is sender then
3: for each method ∈ DFS(nodei.method-name) do
4: if methodj ∈ Sensitive_API_List then
5: nodei.sensitive = True
6: else
7: nodei.sensitive = False
8: end if
9: end for

// 1.2) Identify sensitive methods in the receiver node
10: else if nodei is receiver then
11: for each method ∈ MG(Appm) do
12: if methodj ∈ {onCreate, onReceive, onStartCommand} && (class-name of methodj == class-name

of nodei) then
13: for each method ∈ DFS(methodj) do
14: if methodj ∈ Sensitive_API_List then
15: nodei.sensitive = True
16: else
17: nodei.sensitive = False
18: end if
19: end for
20: end if
21: end for
22: end if
23: end for

// 2) Path Verifier
24: for each path ∈ dynamic_IAC do
25: if pathi(sndNode).sensitive == True && pathi(recNode).sensitive == True &&

pathi(sndNode).callSite.type == activity then
26: install pathi(sndNode).app
27: install pathi(recNode).app
28: adb start pathi(sndNode).callSite
29: if check(AdbLogcat) then
30: triggeredSensitiveIAC_list← path_i
31: end if
32: end if
33: end for

3.5 DINA Implementation

This section explains the implementation details of DINA. We highlight major

implementation aspects that are key to the DINA’s functionality: specifically the

IAC analyzer and the dynamic analyzer.
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3.5.1 Class Loading Implementation

DINA is a class loader-based analysis system written in C++ that builds on top

of Jitana [28]. Compared with compiler-based approach such as the popular

Soot [119], DINA can investigate multiple apps simultaneously, while Soot re-

quires to load the entire code of one app to perform analysis. DINA uses a class

loader virtual machine (CLVM) implemented in the Android framework to load

classes in both the static and dynamic analyses, which allows the loading of multi-

ple apps simultaneously to generate graphs for analysis. The ability of analyzing

multiple apps concurrently helps resolve the scalability challenge mentioned in

Section 3.1.

DINA leverages BOOST Graph Library (BGL) [123] as a graph processing

engine, which facilitates the graph analysis and makes graph processing more

extensible. BGL is widely used, presents high performance, and supports multiple

graph analysis libraries (i.e. depth first search).

3.5.2 IAC Analyzer Implementation

The IAC analyzer aims to identify all potential IAC paths. This implies the IAC

analyzer should have program analysis capabilities. To concretize our idea of

DINA’s IAC analyzer, consider the code snippets obtained from two apps in

DroidBench2, shown in Listing 3.5. The code snippet from Echoer app contains

two different Intent messages that will be constructed after extracting the two

Intent actions (lines 4 and 7), which reflects the capability of Echor app to receive

two different Intent actions and act accordingly. The runtime analysis can only

reveal one of the activated paths, but will not be able to capture both the potential
2https://github.com/secure-software-engineering/DroidBench
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Intent receiving behaviors. On the contrary, DINA will be able to effectively

uncover both Intent actions from two different IAC paths (ACTION_SEND and

ACTION_VIEW), even if only one of them is executed at runtime.

We extended IAC analyzer performs data-flow analysis to extract the receiver

component name (for explicit intent) and the Intent action string (for implicit in-

tent). To illustrate the analysis process, Figure 3.5 depicts the generated Instruction

Graph (IG) for the method onCreate defined in code snippet extracted from Broad-

castReceiverLifecycle2 app (Lines 12-15 in Listing 3.5), where blue edges represent

control-flow and red edges represent data-flow. This method uses implicit Intent

(i.e. setAction, line 14). Once the IAC analyzer identifies this API (thick border

rectangle box in Figure 3.5) while iterating the IG, it will extract the Intent action

string by performing data-flow analysis. The red edge v1 contains the string value

that is passed to the setAction.

1 //Echoer app
2 I n t e n t i = g e t I n t e n t ( ) ;
3 S t r i n g a c t i o n = i . getAct ion ( ) ;
4 i f ( a c t i o n . equals ( I n t e n t .ACTION_SEND) ) {
5 Bundle e x t r a s = i . g e t E x t r a s ( ) ;
6 Log . i ( "TAG" , " Data rece ived in Echoer : " + e x t r a s . g e t S t r i n g ( " s e c r e t " ) ) ; }
7 e lse i f ( a c t i o n . equals ( I n t e n t .ACTION_VIEW) ) {
8 Uri u r i = i . getData ( ) ;
9 Log . i ( "TAG" , "URI rece ived in Echoer : " + u r i . t o S t r i n g ( ) ) ; }

10

11 //B r o a d c a s t R e c e i v e r L i f e c y c l e 2 app
12 protected void onCreate ( Bundle s a ve d I n s ta n c e S t a t e ) {
13 I n t e n t i n t e n t = new I n t e n t ( ) ;
14 i n t e n t . se tAct ion ( " i n t e n t . s t r i n g . a c t i o n " ) ;
15 }

Listing 3.5: Excerpts from DroidBench’s apps.

3.5.3 Dynamic Analyzer Implementation

The DINA’s current dynamic analysis prototype is implemented for Android 4.3.

We find Android 4.3 is sufficient for our study, since we observe no differences in
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ENTRY

1 0 (line=17) new-instance v0 [1_0_t30]

5 11 invoke-virtual v2 v0 [1_0_m5225]

v2

2 2 invoke-direct v0 [1_0_m156]

v0

4 8 invoke-virtual v0 v1 [1_0_m188]
methodName: setAction

v0

v03 5 const-string/jumbo v1 [intent.string.action]

v1

6 14 return-void []

EXIT

Figure 3.5: Instruction Graph for the method onCreate (Listing 3.5) that includes
both control-flow and data-flow.

DCL-related APIs between Android 4.3 and Android 7.1. This observation is also

confirmed by Qu et al. [33]. Currently, we have begun porting DINA to support

ART, the latest Android run-time system. The modified version of Android 4.3 is

adopted to keep incrementally capture newly downloaded codes, which includes

JAR, DEX and APK. We utilize Java Debug Wire Protocol (JDWP) over Android

Debug Bridge(ADB) [124] to pull the newly downloaded codes from the real device

(Nexus 7 tablet) that we used for running our experiments.

In the dynamic analysis, we utilize Monkey to generate a series of random user

inputs to reach the components that contain reflection/DCL APIs. Specifically, the
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class names extracted in the static analysis phase that contain reflective calls are

used for constructing component names that will be exercised by Monkey. Then,

each component is executed at three times with different seeds in each execution

to better cover the component. In the end, more reflective calls can be reached and

executed at runtime. For instance, if the identified component is an activity with

a button-click handler that triggers a reflective call that leads to IAC operations,

Monkey will click that button to activate the hidden IAC operation.

3.6 Evaluation

This section presents our experimental evaluation of DINA. We conduct our

evaluation to answer the following four research questions:

• Question 1: How accurate is Dina in identifying vulnerable IAC/ICC activi-

ties compared to the state-of-the-art static and dynamic analyses?

• Question 2: How robust is Dina in analyzing the capabilities/behaviors of

reflection and DCL implementations in real-world apps?

• Question 3: How effective is Dina in detecting vulnerabilities in real-world

apps?

• Question 4: How efficient is Dina in performing hybrid analysis?

3.6.1 How accurate is Dina?

Evaluating the accuracy of Dina requires performing the analysis on a ground

truth dataset, where the attacks are known in advance. This constitutes a major

challenge due to the lack of existing colluding apps [125], specifically benchmark
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apps that are using reflection and DCL for performing malicious IAC. We found 12

suitable Benchmark apps (listed in Table 3.2) from DroidBench and other resources

to validate Dina’s detection effectiveness and efficiency, all of which perform ICC

or IAC through reflection or DCL.

Comparing with static analysis tools. Next, we consider three state-of-the-art

static analysis systems: IccTA [126], SEALANT [31], and DroidRA [25] designed to

identify suspicious IAC and reflection activities. DroidRA focuses on detecting

reflective calls using composite constant propagation. IccTA is a static analysis tool

that can detect vulnerable ICC paths using inter-component taint analysis based

on FlowDroid. SEALANT combines data-flow analysis and compositional ICC

pattern matching to detect vulnerable ICC paths.

To construct a baseline system that shares the same capability as Dina, we

attempted to integrate these two types of techniques: DroidRA was used to resolve

reflective calls, while IccTA and SEALANT were used to detect vulnerable IACs in

targets captured by DroidRA. Here, we compare Dina’s reflection resolution and

IAC detection performance with other baseline approaches.

Comparing reflection resolution performance: we compare reflection/DCL reso-

lution capabilities of Dina and DroidRA over benchmark and real-world apps.

We found that DroidRA was able to resolve reflective calls in 8 out of 12 bench-

mark apps in Table 3.2. DroidRA did not detect any reflective calls in OnlyTele-

phony_Reverse.apk and OnlyTelephony_Substring.apk, and it crashed during the

inter-component analysis of DCL.apk. The only app that DroidRA can success-

fully analyze and annotate with reflection targets is reflection11.apk. On the other

hand, Dina has resolved all reflection and DCL calls in the benchmark apps. For

real-world apps, our results show that Dina can detect more reflective calls than
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DroidRA. For instance, for a malware sample3 that contains 14 reflective calls

and 4 DCL calls. DroidRA detects 11 of them, while Dina captures all reflec-

tive/DCL calls. This is because DroidRA fails to detect the reflective calls within

the dynamically loaded code.

Comparing IAC detection performance: we perform ICC/IAC analysis using

SEALANT and IccTA over the instrumented benchmark apps by DroidRA. Al-

though DroidRA successfully resolved the reflective calls of 8 benchmark apps, it

was not able to correctly instrument the apps with those reflection targets required

for IAC analysis. Our results indicate that many of these targets reside within

the Android framework, and thus are not considered in the analysis conducted

by DroidRA. We also found that while the annotated APK is structurally correct,

it can no longer be executed. Moreover, we observed that SEALANT yields in-

valid results after analyzing the instrumented APKs by DroidRA, which may be

caused by the incompatibility of the generated APK format with SEALANT’s input.

Therefore, we did not use the instrumented APKs, instead we used DroidRA’s

reported reflection resolution results, and then use these results in conjunction with

SEALENT and IccTA’s results to identify vulnerable IAC paths within benchmark

apps.

Table 3.2 shows IAC detection comparison results in terms of precision, recall

and F-measure scores. Note that we did not report the results of IccTA because it

can only produce results for 5 out of 12 apps (ActivityCommunication2, OnlyIntent,

OnlySMS, reflection11, and SharedPreferences1), but fails to detect any vulnerabilities.

SEALANT performs better in a number of benchmarks, yet produces several false

positives that affects its precision.
3MD5: 00db7fff8dfbd5c7666674f350617827
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Table 3.2: IAC detection performance comparison between DroidRA+SEALANT
and Dina. True Positive (TP), False Positive (FP), and False Negative (FN) are

denoted by symbols 2�, 4, 2, respectively. (X#) represents the number # of
detected instances for the corresponding symbol X. Also note that IccTA did not

detect any vulnerable paths.

Test Cases DroidRA+SEALANT Dina

ActivityCommunication2 2�(43) 2�
AllReflection 2�(43) 2�
OnlyIntent 2 2�
OnlyIntentReceive 2�(42) 2�
OnlySMS 2�(43) 2�
OnlyTelephony 2�(43) 2�
OnlyTelephony_Dynamic 2�(43) 2�
OnlyTelephony_Reverse 2 2�
OnlyTelephony_Substring 2 2�
SharedPreferences1 2 2
Reflection_Reflection11 2� 2�
Dynamic class loading 2 2�
Precision 29.2% 100%
Recall 58.3% 91.6%
F-measure 38.9% 95.62%

The experimental results show that Dina can handle reflective and DCL calls

to de-obfuscate ICC, and reaches 100% precision and 91.6% recall in detecting

vulnerable ICC. As for the app SharedPreferences1, Dina detects the reflective calls,

but misses its ICC path, because the shared preference mechanism used in the app

is not considered by Dina.

Comparing with dynamic analysis tools. As for the dynamic analysis approach,

the most closely-related technique is HARVESTER [127], which uses program

slicing to deobfuscate reflective calls for dynamic execution, yet we were informed

by the authors that neither the source code nor the binary version of HARVESTER

is available. Moreover, HARVESTER’s precision was not evaluated over benchmark
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apps, which makes it hard to compare against. IntentDroid [128] is a dynamic

analysis tool for detecting vulnerable IAC, but it cannot deal with reflection/DCL.

3.6.2 How robust is Dina?

In this section, we evaluate Dina’s capabilities to reveal the behavior of reflec-

tion/DCL classes in complex, real-world apps. We used three datasets with 49, 000

real-world apps, including: 1) 31, 894 apps from AndroZoo project4, 2) 3, 000

most popular apps from Google Play store, and 3) 14, 294 uncategorized malware

samples from VirusShare5.

Reflection/DCL Usage Landscape. We first performed the collective static analysis

of Dina using the three previously-mentioned sets of apps to identify reflection

and DCL call sites. The experimental results show that 92.0% (i.e., 26,361/ 31,894)

of AndroZoo apps implement reflection calls, and 51.1% (i.e., 16,313/31,894) of

them implement DCL calls. This shows the wide adoption of DCL and reflection

mechanisms in Android apps. More remarkably, 99.4% of 3, 000 popular apps

implement reflection calls, and 90.1% of them implement DCL calls. Therefore,

reflection and DCL mechanisms are even more widely adopted in popular apps.

For the malware apps, 85.0% implement reflection mechanism, while only 24.3% of

them adopt DCL mechanism. Solely based on our evaluation, it seems that fewer

malware apps use the DCL mechanism. Note that Dina counts the number of APIs

by traversing the whole method graph, which produces an accurate representation

of the apps under analysis.

We then run the dynamic analysis on the popular apps and randomly-picked

malicious apps. Table 3.3 presents the results, from which we can see that the
4androzoo.uni.lu
5virusshare.com
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number of activated classes in the benign apps significantly exceeds that of the

malicious apps.

We also perform further analysis to identify the entity, either the app itself or a

third-party library, behind the activated reflection and DCL classes. Note that we

ignore the Android framework classes.

We can see most of the activated reflection/DCL classes are included in third-

party APIs in both malicious and benign apps, as has been confirmed by prior

research [33].

Table 3.3: Dynamic analysis of real-world apps.

Dataset # of in-
stalled
Apps

# of apps
contain
reflec-
tion/DCL

# of ac-
tivated
reflec-
tion/DCL

% of 3rd
party
classes

% of app-
owned
classes

Benign 1,957 1,271 17,170 85.6% 7.66%
Malicious 2,378 1,033 7,336 54.6% 5.18%

Intent sending/receiving capabilities of DCL/reflection classes. Next, we evalu-

ate Dina’s incremental dynamic analysis to detect Intents in dynamically loaded

code. We analyze the activated reflection/DCL classes of popular and malicious

apps to identify the Intent sending and receiving APIs presided within the re-

flection/DCL classes. Table 3.4 presents the number of Intent sending APIs and

receiving APIs. We use DFS as a reachability test to find whether MoI can reach

the Intent sending APIs as shown in Table 3.4.

Table 3.4: Intent sending and receiving capabilities of activated ref/DCL classes.

Dataset # of Intent sending APIs
(reachable)

# of Intent receiving
APIs

Benign 1022 (936) 146

Malicious 600 (390) 79
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Sensitive sources within DCL/reflection classes. Table 3.5 presents the top 10

sensitive sources in the activated reflection and DCL classes in both benign and

malicious apps. These sensitive sources can reach Intent-sending APIs concealed

by reflection/DCL to leak sensitive information, including device ID, subscriber

ID, etc.

Table 3.5: Top sensitive sources in the activated reflection and DCL classes.

Benign Malicious
Sensitive APIs Freq. Sensitive APIs Freq.

getInstalledApplications() 113 getSubscriberId() 35

getMacAddress() 100 getSSID() 29

getCountry() 42 getMacAddress() 7

getActiveNetworkInfo() 33 getDeviceId() 6

getInstalledPackages() 21 getCountry() 6

openConnection() 20 getInstalledPackages() 6

getDeviceId() 7 openConnection() 4

getSubscriberId() 1 getSimSerialNumber() 2

Our analysis reveals that apps can indeed conceal their IAC communication

capabilities inside dynamically loaded classes. The experimental results show that

the total number of matched Intent action strings is 18, with the top-7 matched

strings depicted in Table 3.6. android.net.conn.CONNECTIVITY_CHANGE is the

most matched Intent action string appearing after the reflective calls. Among all

these dynamically executed apps, 38 apps are found to contain matched Intent

strings, which means these apps can potentially perform stealthy IAC activities

through reflection and DCL calls.

3.6.3 How effective is Dina?

In our experiment, we found some concealed IAC vulnerabilities that have been

effectively detected by Dina, as presented in Table 3.7. We have manually triggered
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Table 3.6: Number of matched cases of the top-7 matched Intent action strings.

Intent Action String # Matched Cases
android.net.conn.CONNECTIVITY_CHANGE 135,771

android.intent.action.MAIN 135,276

com.android.vending.INSTALL_REFERRER 7,118

android.intent.action.PACKAGE_ADDED 6,954

android.intent.action.PACKAGE_REMOVED 3,703

android.intent.action.BATTERY_CHANGED 660

android.intent.action.DOWNLOAD_COMPLETE 573

Figure 3.6: (a). Activity 1 of sender app; (b). Activity 2 of sender app initiated
through reflection; (c). Activity 3 represents the activity of receiver app invoked by

IAC; (d). Inject malicious email address in the sender app to launch attack via
IAC.

these vulnerable IAC paths to verify that they can be activated at runtime, as

described below.

Intent spoofing vulnerability is observed between appinventor.ai_created4each.My_-

Diary and com.my.mail. The receiver app manages the users’ emails, which contains

two components that can receive the implicit Intent android.intent.action.SEND.

The sender app contains the method ShareMessage() that can be triggered through

reflection, which initializes the Intent sending activity to configure the email setting

for the receiver app. We modified this method to inject a specific email address,
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Table 3.7: Risky vulnerabilities have been uncovered by Dina in real-world apps.

Sender
app

# of
Installs

Concealed
method by

reflection/DCL

Receiver
app

Sensitive
sink

Triggered
component

Consequences

appinventor
.ai_created
4 each.My

_Diary

5,000,000 ShareMessage() com.my.m
ail

android.u
til.log

Activity Intent Spoof-
ing

com.exampl
e.qianbitou

N/A toCall() com.axis.
mobile

java.lang.
ProcessB

uilder

Activity Android Com-
ponent Activa-
tion

com.hbg.col
oring.fish

5,000 shareImageOnT
witter()

cn.jingling
.motu.ph

otowonder

android.u
til.log

Activity Information
Leakage

com.sogou.
novel

100,000 ui.activity.Main
Novel Shelf.a()

com.gtp.n
extlaunch
er.trial

android.u
til.log

Broadcast
Receiver

Information
Leakage

which can be used for phishing attacks. The complete attack process is shown

in Fig. 3.6. The stealthy IAC initialized by the sender app cannot be detected

by existing static and dynamic analyses. Moreover, the class of ShareMessage()

requests to access the external storage, leading to serious privacy leakage. We scan

the sender app (downloaded from official Google Play store) on VirusTotal, and is

only detected by 2 engines out of 63.

Android component activation is observed between com.example.qianbitou and

com.axis.mobile. The sender is an app providing services for used cars, including

financial services. The app also implements reflection for invoking a method that

activates an implicit Intent android.intent.action.DIAL to make a phone call to a hard-

coded phone number. Therefore, any installed app (i.e. the receiver app) with com-

ponents that have the matched Intent filter will be activated. The receiver app is a

mobile banking app, whose component (com.gtp.framework.UninstallShortcutReceiver)

will be activated to make random phone calls.

Information leakage: we report several examples of potential information leakage

vulnerabilities:
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• vulnerability is observed between com.hbg.coloring.fish and cn.jingling.motu.

photowonder. The sender is a gaming app, and the receiver app is an image

editing app. The sender app contains a reflective call that instantiates an

implicit Intent for sending pictures from the mobile storage. We also observed

this concealed method invokes a sensitive API (queryIntentActivities) to obtain

the running activities on the mobile device. The implicit Intent can be

received by any app that contains android.intent.action.SEND. This vulnerable

IAC path may lead to the leakage of sensitive images, and it can be very

harmful when both apps are managed by one party.

• this case is observed between com.sogou.novel and com.gtp.nextlauncher.trial.

The sender app is a reader app, while the receiver app is used for 3D image

processing. The reflection implemented in this app executes an implicit Intent

android.intent.action.SEND for activating a broadcast receiver component of

the receiver app. The implicit Intent sends information about a book, which

can be easily replaced by sensitive information (e.g., bank accounts, location).

This vulnerability can also be exploited to perform denial of service attack

on the receiver app, by repeatedly invoking the implicit intent to send the

broadcast messages.

• the vulnerability constituted between com.slideme.sam.manager and com.google.android.

googlequicksearchbox. The sender is a mobile apps store, and the receiver app

is a google search service. The sender app contains a reflective call that

instantiates an implicit Intent (android.speech.action.RECOGNIZE_SPEECH)

for sending voice records. The complete attack process is shown in Fig. 3.7,

and the captured log confirms the activated IAC activity. This vulnerable IAC

path may be used to spy on the user and leak voice records. This vulnerability
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can be exploited to instruct Google Now to send messages to third parties.

Such vulnerability has been demonstrated by AVG team [129], which can

cause harmful consequences in which voice recognition techniques are used

to perform voice impersonation attacks.

(a) Activity 1

(b) Activity 2 (c) Activity 3

(d) Captured Log

Figure 3.7: (a). Activity 1 of sender app; (b). Activity 2 of sender app initiated
through reflection; (c). Activity 3 represents the activity of receiver app invoked by

IAC; (d). Captured log confirms the IAC.

3.6.4 How efficient is Dina?

App stores including Google Play receive thousands of new apps every day, all of

which require comprehensive security analysis. Therefore, we need efficient tools

that can scale to the size of a large app market. We next report the running time

of Dina’s app analysis. We report the analysis time for both static analysis phase

and dynamic analysis phase. The performance reported in this section was run

on a Nexus 7 tablet connecting to a MacBook Pro laptop with Intel Core 2 Duo
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2.4 GHz CPU and 8 GB memory. The static analysis was conducted on the laptop,

while the dynamic analysis was performed on the tablet.

Fig. 3.8 shows the static analysis time with respect to the app bundle size in

megabytes (MBs). With the growing app bundle sizes, the analysis time appears

to be stable. For most of the bundles, Dina can finish the static analysis within 1

minute, demonstrating the efficiency of Dina’s static analyzer. Fig. 3.9 presents the

running time of dynamic analysis for 1, 000 real-world popular apps. The result

shows that over 90% of apps can finish the dynamic analysis within 5 minutes. The

majority of the dynamic analysis time is spent on running the apps to boost the

coverage, and this time cost is inevitable for dynamic analysis tools. For complex

apps with an average app size of 42 MBs, Dina can accomplish the dynamic

analysis within 2.5 minutes/app on average as similar to the analysis time of

HARVESTER, showing that Dina can be used for large-scale security analysis.
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We further compared Dina’s runtime performance with the state-of-the-art

IAC analysis tools, i.e., SEALANT and DroidRA, using the set of benchmark apps

(cf. Section 3.6.1). Fig. 3.10 shows the results of performance comparison. Dina

achieves the best performance for the majority of the apps (8 out of 12), with an

average analysis time of 1 minute/app.
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Figure 3.10: Runtime performance comparison.

3.7 Discussion

Dynamic analysis coverage. Improving coverage has been a major challenge for

dynamic analysis approaches [130]. In Dina, we currently utilize Monkey for input

generation to exercise the targeted components. Although we achieve excellent

IAC detection performance, we may still suffer from potential false negatives. We

inherit some of the input generation limitations of Monkey. However, this fuzzing

approach is still widely used by recent approaches that target DCL (e.g., Dy-

Droid [33]), which relies on the observation that third-party libraries launch their

DCL events when starting the app, which is sufficient for our analysis. Further-

more, the empirical study performed in [131] shows Monkey has achieved the best

coverage among all analyzed input generation tools including DynoDroid [132]

and PUMA [133].

IntelliDroid [134] is a recently-proposed input generation tool using event-chain

detection and input injection with constraint solver. We integrate Intellidroid with

Dina to replace Monkey. However, it fails to trigger most of the reflective/DCL
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calls. We found that most of the statically-identified paths related to reflective

calls cannot be successfully triggered by Intellidroid, mainly due to the limited

input type support, the limitations in the constrain solver, and its lack of support

in dealing with environmental contexts/variables.

Furthermore, a malicious app may perform emulator detection to halt its

malicious activities during the analysis. Dina addresses this issue by performing

the analysis on real devices.

IAC detection accuracy. Compared with static and dynamic tainting analysis

based approaches, Dina does not perform precise data flow tracking analysis,

which may lead to the imprecision of our detection results. Thus, the static

analysis results may contain false positives. However, we use dynamic analysis

to narrow down the scope of analysis on the methods that are dynamically ex-

ecuted. Therefore, we can effectively alleviate the imprecision brought by the

lack of tainting analysis. One major benefit of our approach, however, is the

improvement on runtime performance as shown in Section 3.6.4 compared to other

approaches.Furthermore, existing static IAC analysis cannot handle an Intent that

has been obfuscated in a manifest file. In such scenario, static analysis cannot

identify app pairs by simply matching the Intents.

3.8 Summary

In this chapter, we present Dina, a hybrid analysis approach for detecting malicious

IAC activities in dynamically loaded code. Dina utilizes a systematic approach

based on control-flow, data-flow, and method call graphs to identify malicious

IAC activities across multiple apps. We have shown Dina can effectively resolve

reflective and DCL calls at runtime for real-world apps. We demonstrate that
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multi-app, colluding attacks concealed by reflection and DCL can be launched to

perform stealthy attacks, and evading existing detection approaches. In particular,

we discover several popular real-world apps, which can trigger vulnerable IAC

activities through reflection and DCL, leading to surreptitious privacy leakage.

We have compared Dina with existing IAC vulnerability and reflection analysis

tools. Dina analyzes most of apps in less than five minutes, and can identify

malicious IAC behaviors concealed by reflective calls that no previous approach

was able to detect. We believe further effort is required to better regulate the usage

of reflection and DCL calls to close the attack avenues without undermining their

utilities.
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4 IotCom: Compositional Safety and Security

Analysis of IoT Systems

The ubiquity of Internet of Things (IoT) and our growing reliance on IoT apps are

leaving us more vulnerable to safety and security threats than ever before. Many of

these threats are manifested at the interaction level, where undesired or malicious

coordinations between apps and physical devices can lead to intricate safety and

security issues. This chapter presents IotCom, an approach and accompanying

tool suite, to automatically discover such hidden and unsafe interaction threats

in a compositional, yet scalable, fashion. It is backed with automated program

analysis and formally rigorous violation detection engines. IotCom relies on

program analysis to automatically infer the relevant app’s behavior. Using a

novel strategy to trim the extracted app’s behavior prior to translating them to an

analyzable formal specification, IotCom mitigates the state explosion associated

with formal analysis. Our experiments with numerous bundles of real-world IoT

apps have corroborated IotCom’s ability to effectively detect a broad spectrum of

interaction threats triggered through cyber and physical channels, many of which

were previously unknown, and to significantly outperform the existing techniques

in terms of scalability.
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Figure 4.1: Smart Home Automation Model.

4.1 Background

Smart Home IoT Platforms

Smart home platforms allow users to configure, control, and monitor IoT devices

installed in their smart home. These cyber-physical systems combine a virtual

software-based backend, usually resident in the cloud, with physical devices—both

sensors that monitor the physical environment and actuators that act upon it.

Users can install third-party software apps in the virtual backend to automate

tasks performed by physical devices. Figure 4.1 summarizes the general model

for smart home automation. Apps consist of one or more rules defined using an

event-condition-action paradigm. Events sensed by the sensors are forwarded to

the backend via software proxies, which invoke triggers defined in the rules. If the

current state of the cyber-physical environment satisfies the conditions in a given

rule, the rule executes one or more actions, which are forwarded to actuators as

commands.
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Apps come from either vendor-specific marketplaces, such as Samsung’s Smart-

Things [37] and Google Home [135], or from cross-platform services like IFTTT [38].

Each framework defines and distributes apps differently. In IFTTT, for example,

each app is a single trigger-action rule that responds to and actuates via RESTful

web services. Other vendors allow for more complicated rules. Among others,

Samsung SmartThings Classic apps [37] are defined as Groovy programs, and

Alexa skills can be defined in any language supported by AWS Lambda [136].

Smart Home IoT Safety and Security

The convenience provided by the proliferation of automations and app market-

places also presents challenges for smart home safety and security. The smart home

app environment is collaborative, in that all installed apps or automations interact

with each other, via both cyber and physical channels. Bugs, misconfiguration, or

even malicious intent by app developers all present a threat of undesired behavior.

End users may have to set complex configuration options without clear documen-

tation, and some marketplaces allow third-party apps to be published by any

developer with little to no oversight [76, 137]. Indeed, the concealed risks inherent

in the complex coordination of third-party smart home apps can be very serious,

ranging from data access issues such as permission misuse and data leakage to

compromising the home’s physical safety [138, 139].

The wide variety of app marketplaces and the diversity of APIs and specifica-

tions complicate any holistic safety analysis; analyzing the apps installed in even

one smart home would involve multiple platforms, programming languages, and

channels of coordination. While various recent approaches [34, 11, 74, 102, 78, 140,

141, 142] have attempted to chip away at the challenges underlying such analysis,
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most focus on a single aspect of the problem [143, 72, 98, 74, 11, 73, 144] or on a

single app platform [36, 35, 11, 75, 78, 73, 72, 76].

In the following sections, we present an approach that can holistically analyze

safety properties of coordinating app bundles spanning multiple automation

platforms as well as both cyber and physical channels.

4.2 Illustrative Example

This section illustrates an unsafe interaction between IoT apps using a simple

example, shown in Figure 4.2. The example comprises three IoT apps—one

malicious (MaliciousApp) and two benign. HomeModeApp changes the heating status

of the oven based on the “mode” of the smart home system. The mode is a general,

customizable setting used for automation that generally tracks whether the user is

home or away or if it is day or night. FireAlarmApp opens the door when smoke

is detected. MaliciousApp represents a third-party app that pretends to perform a

benign activity but instead modifies the smart home’s mode, unbeknownst to the

home owner.

The detrimental interaction occurs when MaliciousApp switches the smart home

mode to Home. This triggers HomeModeApp, which turns on the heating element in

the oven. The oven may in turn activate the smoke detector, triggering FireAlarmApp

to open the door. Together, the interaction of the apps compromises the safety of

the home by opening the door when no one is at home. Such unsafe interactions

occur in real-world, as demonstrated in prior research [36].

Identifying such perilous interactions is challenging due to both the variety of

ways apps may communicate and the multiplicity of apps involved in each interac-

tion. The challenge is exacerbated by considering the concealed interactions, such
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Malicious 

App
HomeModeApp FireAlarmApp

Location

Smoke

Trigger: 

ModeAction: set

LocationMode

Action: 

oven.heating

Action: 

door.open

Trigger: 

detected

Figure 4.2: An example of malicious IoT apps interaction.

as the interaction between HomeModeApp and FireAlarmApp. In this case, HomeMod-

eApp activates the oven, which does not concern FireAlarmApp; nonetheless, the two

apps interact via the oven’s heating element and the smoke detector. An analysis

must be able to elucidate those hidden channels as well as holistically analyze

all interactions in the system. For example, the individual interactions between

MaliciousApp and HomeModeApp and between HomeModeApp and FireAlarmApp each

could be benign. It is only when put together that the three apps compromise the

IoT environment’s safety.

4.3 Safety Goals for IoT App Interactions

This work focuses on identifying security and safety violations resulting from

interactions among IoT apps installed in the same smart home environment. At a

high level, these apps are intended to make the home owner’s life more convenient

and should only act on devices when intended and in a predictable, safe manner.

Apps that are safe individually may begin to exhibit unintended, unpredictable, or

unsafe behavior when multiple apps interact. We have identified three high-level

goals that safe operation of IoT apps should satisfy:
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(G1) No unintended behavior: IoT apps should not send unnecessary or repeated

commands, which may lead to behavior not intended by the user. Such commands

provide a pathway for possible misconfiguration, errors, or threats in the cyber

components of the system to influence the physical world, which could lead to

unneeded wear on some devices or waste electricity, among other things.

(G2) No unpredictable behavior: We also seek to warn the user if apps lead the

cyber and physical components of the system to interact in a way that non-

deterministically interferes with the actions of other parts of the system. For

instance, if two apps each send a conflicting command to a same device, it may

cause an objectionable situation that whichever app happens to act last will undo

the action of the other, seemingly randomly.

(G3) No unsafe behavior: Lastly, IoT apps should never put the system in physical

states that are unsafe, such as unlocking or opening the door at night (as described

in our example from Section 4.2). Different from all the other approaches that

require manual specification of the initial configuration, which in turn may miss

some possible unsafe behavior if it appears from some different configurations,

IotCom provides system-wide reasoning by exhaustively checking all possible

system configurations, without requiring any manual specification of the initial

configuration.

In Section 4.7, we evaluate our approach against a set of safety and security

properties corresponding to each goal.
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4.4 Approach Overview

This section introduces IotCom, a technique that automatically determines whether

the interactions within an IoT environment could compromise the safety and

security thereof. Figure 4.3 illustrates the architecture of IotCom and its two major

components:

(1) Behavioral Rule Extractor (Section 4.5): The Behavioral Rule Extractor com-

ponent automatically infers models of the apps behavior using a novel graph

abstraction technique. The component first performs static analysis on each app

to generate an inter-procedural control flow graph (ICFG). It then creates a behav-

ioral rule graph containing only the flows pertinent to the events and commands

forwarded to/from the physical devices in the smart home, along with any con-

ditions required for those actions. Each flow is then automatically transformed

into a formal model of the app.

(2) Formal Analyzer (Section 4.6): The Formal Analyzer component analyzes

these models through bounded model checking. IotCom relies on three formal

specifications: (1) a base model of smart home IoT systems that defines a set of

rules to lay the foundation of cyber and physical channels, IoT apps, how they

behave, and how they interact with each other, (2) assertions for safety and security

properties, and (3) the IoT app behavioral rule model that Rule Extractor generates

automatically for each IoT app. The set of specifications are then checked as a

whole for violations of relevant safety properties.

Finally, a report is returned to the user describing the list of detected interaction

vulnerabilities. Upon reviewing the report, end-users and third-party reviewers

may choose to protect their system in a variety of ways, e.g., by disallowing
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Figure 4.3: IotCom System Overview.

the installation of certain combination of apps, or dynamically restricting certain

inter-app communications.

In the following two sections, we describe the details of static analysis used to

capture essential app information and formal analysis for automated detection of

property violations.

4.5 Behavioral Rule Extractor

As shown in Figure 4.3, the Behavioral Rule Extractor uses static analysis to

automatically infer the behavior of individual IoT apps. It executes three general

steps: 1. build an inter-procedural control flow graph (ICFG); 2. convert the ICFG to a

behavioral rule graph (BRG) ; and 3. generate formal models for the behavioral rules.
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4.5.1 Building ICFG

The Behavioral Rule Extractor first generates an inter-procedural control flow

graph for each app. It analyzes the abstract syntax tree of the given app to build

a call graph of local and API-provided methods as well as a control flow graph for

each local method. Each graph is generated using a path-sensitive analysis [145]

to preserve the logical conditions along each control flow. This improves the

precision of our approach compared to the state-of-the-art techniques, which do

not account for the conditions when identifying interactions between apps. It then

combines each control flow graph with the call graph to construct an ICFG starting

at each entry method in the graph. Entry methods are framework-specific methods

invoked in response to events in the smart home backend software; for example,

SmartThings defines a subscribe API that allows developers to specify custom

event handlers.

4.5.1.1 ICFG Example: IFTTT

The details of generating the ICFG depend on how apps are defined for each

platform. For example, IFTTT applets are reactive rules that interact with REST

services exposed by smart home vendors or other service providers [146]. Each

applet consists of a single trigger-action pair, without any conditions. IotCom

treats each applet as a standalone IoT app defining exactly one rule. The Behavioral

Rule Extractor performs string analysis [147] to extract an ICFG comprising a single

entry node for the trigger and a single “method call” invoking a device API for the

action. For instance, IFTTT applet “If I arrive at my house then open my garage

door” [148] would result in an ICFG containing an entry node for “arrive at my

house” and a method call node for “open my garage door”.
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Listing 1 Malicious IoT App activates Home Mode
1 preferences {
2 section("Select Mode:" ) { input "HomeMode" ,"mode" }}
3 section("Presence sensor" ) { input "presence" , "capability.presenceSensor" } }
4 def initialize() {
5 subscribe(presence, "presence" , presenceHandler)}
6 def presenceHandler(evt) {
7 def evtValue = evt.value
8 if (evtValue == "not present" ){
9 if (state.sunMode == "sunset" ) changeMode()

10 else state.sunMode = "sunrise"
11 } else {
12 def timeStamp = new Date()
13 log.debug "$timeStamp: status is $evtValue" } }
14 def changeMode() {
15 if (location.mode != HomeMode) {
16 setLocationMode(HomeMode)
17 } else {
18 mode = location.mode
19 log.debug "Current mode is: $mode" } }

4.5.1.2 ICFG Example: SmartThings Classic

Samsung SmartThings Classic apps are more complicated than IFTTT applets;

they are written as small Groovy programs, allowing for multiple rules and more

extensive logic. For example, Listing 1 shows the Groovy code defining the

malicious app described in Section 4.2. Algorithm 5 describes the steps performed

by the Behavioral Rule Extractor, detailed below, to derive models of a SmartThings

app’s behavior, starting with building the ICFG (lines 5-16).

To generate an ICFG, the Behavioral Rule Extractor first performs Entity Extrac-

tion to extract the information required to infer the rules in the app (Lines 6-10).

Next, it creates a control flow graph for each trigger’s entry method (Lines 11-15).

The call graph will be updated while processing the entry method. An edge will

be created between the caller (i.e. entry method) and the callee (i.e. local method).

These graphs are combined to generate an inter-procedural control flow graph for

the IoT app.
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Algorithm 5 Behavioral Rule Extractor

INPUT: IoT App
OUTPUT: App: set of behavioral rules

1: App← < {} >
2: ICFG← {}, CFGs← {}, CG← {}, BRG← {}
3: DevicesCap← {}, Triggers← {}
4: UserInput← {}, GlobalVar← {}
5: // Step 1 : Generating ICFG
6: // Step 1.1: Entity Extraction
7: DevicesCap← extractDevicesCap(app)
8: UserInput← extractUserInput(app)
9: GlobalVar← extractGlobalVar(app)

10: Triggers← extractTriggers(app)
11: // Step 1.2: Generating ICFG
12: for each trigger ∈ Triggers do
13: CFGs← constructCFG(trigger.entryMethod)
14: CG← updateCG()
15: end for
16: ICFG← constructICFG(CG, CFGs)
17: // Step 2: Converting ICFG to BRG
18: BRG← constructBRG (ICFG, Triggers, DevicesCap,
19: UserInput, GlobalVar)
20: // Step 3: Generating Behavioral Rules
21: for each trigger ∈ Triggers do
22: App.R← constructRules(BRG)
23: end for

Entity Extraction: The first subcomponent determines the entities on which the

app operates, including: (1) the smart home devices and attributes altered/queried

by this app; (2) any configuration values specified by the user, such as a desired

setting for some device attributes; (3) any global variables used in the app; and

(4) any events that trigger actions from the app, signified by use of certain APIs,

and the methods invoked by those triggers.

The extraction algorithm traverses all statements in the AST, extracting the

attached devices and user input from the preferences block (Listing 1, lines 1-10).

Global variables are extracted based on the official SmartThings documentation [37].
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Certain pre-defined values are assumed to be global, such as the state variable

used on line 21 of Listing 1. We identify all the uses of these global variables.

IoT apps are event-driven, so each subscription or scheduled call defines a

distinct entry point. Triggers and entry methods are thus extracted by traversing

the AST for calls to the subscribe, schedule, runIn, or runOnce API methods. For

instance, a contact sensor device—identified in SmartThings by the contactSensor

capability [100]—has a contact attribute representing the state of the sensor.

The attribute can take two values, either open or closed. Depending on the

value, such a device can be formalized as 〈contactSensor, contact, closed〉, or

〈contactSensor, contact, open〉. The extracted tuples are stored for later use in

building the behavioral rule graph.

Generating ICFG: In conjunction with Entity Extraction, the Behavioral Rule

Extractor also generates a call graph and control flow graph for each user-defined

method using a path-sensitive analysis. To construct an ICFG, each control flow

graph is incorporated with the call graph at each trigger’s entry point. Figure 4.4a

shows the ICFG corresponding to the malicious app code shown in Listing 1. The

ICFG mode includes the CFG of the entry method presenceHandler (Figure 4.4a

left side), and the CFG of the local method changeMode (Figure 4.4a right side).

Note that existing state-of-the-art analysis techniques lack support for direct

program analysis of Groovy code. By performing the analysis directly on the

Groovy code, IotCom avoids the pitfalls (and cost) of translating the code into

some intermediate representation.
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Figure 4.4: Extracted models for MaliciousApp, described in Listing 1, at different
steps of analysis.

4.5.2 Generating Behavioral Rule Graph

The Behavioral Rule Extractor next tailors the ICFG into a succinct, annotated

graph representing the relevant behavior of the IoT app—a behavioral rule graph

(BRG). By eliding all edges and nodes from the ICFG that do not impact the app’s

behavior with respect to physical devices, the BRG makes it easier to infer the

behavior defined in the app, optimizing the performance of our analysis. To

construct the BRG from the ICFG, the nodes in the ICFG are traversed starting

from each entry method, generating nodes in the BRG as follows:
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• Trigger: Entry method nodes from the ICFG are propagated to the BRG as

trigger nodes.

• Condition: Control statements such as if blocks generate condition nodes

in the BRG.

• Action: Any node that invokes a device API method creates an action node

in the BRG.

• Method Call: Method calls to other local methods produce method call

nodes in the BRG, as the called method may include relevant app behavior.

Each condition node has two edges, annotated with a T and F for the paths

where the conditional statement is true or false, respectively. Trigger, action, and

method call nodes each have exactly one outgoing edge, annotated as NP to signify

there is no predicate associated with traversing the edge.

Example BRG: Continuing the example (Listing 1) from Section 4.5.1, lines 17-18

of Algorithm 5 convert the ICFG for the malicious app into a BRG, starting with

the entry point presenceHandler shown in Figure 4.4a. The first node after the

entry point contains two statements, L(7)-L(8), of which only L(8) will carry over

to the BRG, shown in Figure 4.4b. L(12) and L(13) are assignment statements,

which do not influence the behavior of the app. Therefore, that branch is trimmed

from the BRG. L(9)—an if statement—will generate a condition node in the BRG.

Following the false branch of the condition leads to the node containing L(10).

This node is considered as action node because it influences the location mode.

Following the true branch, L(9) invokes the local method changeMode, thus this

node is considered as method node.
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After creating the BRG, the statements corresponding to each node are con-

verted to 〈device, attribute, value〉 tuples. If a value in any of the nodes does

not correspond directly to a member of one of those sets, we perform backward

inter-procedural data flow analysis [149] to resolve the dependency. Recall that the

BRG captures all actions that affect sensors and actuators deployed in the smart

home environment. All other details within the scope of the method are discarded.

Furthermore, the edges maintain the control flow that reflects predicates required

to activate a certain action.

4.5.3 Generating Rule Models

The final component of the Behavioral Rule Extractor generates formal models of

each app’s rules based on the BRG. As described in Section 4.1, the behavior of an

IoT app consists of a set of rules R, where each rule is a tuple of triggers, conditions,

and actions, R = 〈T , C, A〉. This behavioral model follows the automation model

in Fig. 4.1, where:

• T is a set of events that trigger specific rules. These events can be timed

events, sensor/actuator notifications, or events directly triggered by the user.

• C is a set of conditions for executing specific rules, based on information

about the state of the cyber and physical components of the system. This

state information may originate from many sources—user configuration or

input, the physical state of devices in the system, environmental values

such as sunrise time—and are general represented as variables in the rule’s

programmatic control flow path or as global user configuration values.



67

• A is a set of actions that can be performed upon execution of a rule. The al-

lowed actions are assumed to be exposed by the actuator proxies in the smart

home framework software, such as the capabilities exposed by SmartThings

to represent the behavior of their supported devices [100].

• Each rule r ∈ R has a set of Triggers(r) ⊆ T, a set of Conditions(r) ⊆ C,

and a set of Actions(r) ⊆ A that define its behavior.

In order to tie the behavior of these rules back to the physical devices in the

smart home, the elements of T, C, and A are each formalized as sets of tuples

of 〈device, attribute, value〉. Each type of device is assumed to have its own

set of device-specific attributes, and each attribute constrains its own allowed

values according to the device manufacturer’s specifications. For example, a

smart lock device may have a “locked” attribute to indicate the state of the

lock, which accepts values of “locked” or “unlocked”. An action to unlock a

specific lock (TheLock) would contain a tuple composed of those elements, e.g.,

〈TheLock, locked, unlocked〉.

To generate the models from the BRG, IotCom starts from each trigger node

(which is used as the Trigger for the rule) and traverses the graph to find the

action nodes; every rule must have at least one Action. From each action node, it

performs a reverse depth-first search back to the trigger, collecting the tuples for

each condition node encountered along the path as the Conditions of the rule.

Since the BRG provides an abstraction of the app’s behavior independent of

the underlying framework, the process would be the same for both IFTTT and

SmartThings Classic.
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4.6 Formal Analyzer

This section describes the Formal Analyzer component of IotCom, which takes as

input the behavioral rule models generated by the Behavioral Rule Extractor. These

formal models are verified against various safety and security properties using

a bounded model checker, i.e., the Alloy analyzer [150], to exhaustively explore

every interaction within a defined scope. This allows IotCom to automatically

analyze each bundle of apps without manual specification of the initial system

configuration, which is required for comparable state-of-the-art techniques [34, 35].

We use Alloy to demonstrate our approach because it combines a concise, simple

specification language with a fully-automated analyzer capable of exhaustively

checking our models for safety and security violations. In particular, Alloy in-

cludes support for checking transitive closure, which is important to analyze more

complex, chained interactions.

The bounded model checking uses three sets of formal specifications, as shown

in Figure 4.3: (1) a base smart home model describing the general entities composing

a smart home environment; (2) the app-specific behavioral rule models generated by

the Behavioral Rule Extractor; and (3) formal assertions for our safety and security

properties. Complete Alloy models are available online at our project site [151].

4.6.1 Smart Home Model

The overall smart home system is modeled as a set of Devices and a set of IoTApps,

as shown in Listing 2. Each IoTApp contains its own set of Rules. Each Device has

some associated state Attributes, each of which can assume one of a disjoint set of

Values. Recall from Section 4.4, each rule contains its own set of Triggers, Conditions,

and Actions. Each individual trigger, condition, and action is modeled as a tuple of
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one or more Devices, the relevant Attribute for that type of device, and one or more

Values that are of interest to the trigger, condition, or action. Defined in Alloy, each

of the listed entities is an abstract signature which is extended to a concrete model

signature for each specific type of device, attribute, value, IoT app, behavioral rule,

etc.

Listing 2 Excerpt of base smart home Alloy model.
1 abstract sig Device { attributes : set Attribute }
2 abstract sig Attribute { values : set Value }
3 abstract sig Value { }
4 abstract sig IoTApp { rules : set Rule }
5 abstract sig Rule {
6 triggers : set Trigger,
7 conditions : set Condition,
8 actions : some Action }
9 // Trigger, Condition, and Action contain

10 // similar tuples
11 abstract sig Trigger {
12 devices : some Device,
13 attribute : one Attribute,
14 values : set Value }
15 abstract sig Condition { ... }
16 abstract sig Action { ... }

Apps can communicate both virtually within the cloud backend and physically

via the devices they control. Virtual interactions fall into two main categories: (1)

direct mappings, where one app triggers another by acting directly on a virtual

device/variable watched by the triggered app; or (2) scheduling, where one rule

calls (e.g.) the runIn API from SmartThings to invoke a second rule after a delay.

Physically mediated interactions occur indirectly via some physical channel, such

as temperature. Our model—in contrast to others [34]—directly supports detection

of violations mediated via physical channels. As part of our model of the overall

SmartThings ecosystem, we include a mapping of each device to one or more

physical Channels as either a sensor or an actuator (not shown in Listing 2).
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4.6.2 Extracted Behavioral Rule Models

The second set of specifications required by the Formal Analyzer are the models

generated by the Behavioral Rule Extractor. These specifications extend the base

specifications described in Section 4.6.1 with specific relations for each individual

IoT app. Listing 3 partially shows the Alloy specification generated for the

MaliciousApp from Section 4.2.

Listing 3 Excerpts from the generated specification for MaliciousApp (Listing 1)

1 one sig MaliciousApp extends IoTApp {
2 presence : one PresenceSensor,
3 location : one Location }
4 { rules = r0 }
5 one sig r0 extends Rule {}{
6 triggers = r0_trg0
7 conditions = r0_cnd0 + r0_cnd1
8 actions = r0_act0 }
9 one sig r0_trg0 extends Trigger {} {

10 devices = MaliciousApp.presence
11 attribute = PresenceSensor_Presence
12 no values }
13 one sig r0_cnd0 extends Condition {} {
14 devices = MaliciousApp.location
15 attribute = Location_Mode
16 values = Location_Mode.values - Location_Mode_Home }
17 one sig r0_cnd1 extends Condition {} { ... }
18 one sig r0_act0 extends Action {} {
19 devices = MaliciousApp.location
20 attribute = Location_Mode
21 values = Location_Mode_Home }

First, the new signature MaliciousApp extends the base IoTApp by adding fields

for a PresenceSensor device and a Location as well as constraining the inherited rules

field to contain only r0, defined on Line 5 as an extension of Rule. As described

in Section 4.5, the Behavioral Rule Extractor generates the tuples for the triggers,

conditions, and actions of each app’s rules from the behavioral rule graph. In

this case, the entry point node corresponding to the presenceHandler method is

translated into the r0_trg0 signature (Line 9), while the condition nodes correspond

with r0_cnd0 and r0_cnd1 (Lines 13, 17). Lastly, the action node from that path
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of the BRG generates r0_act0 (Line 18). Each of the apps analyzed would be

translated into a similar specification; the bundle of these specifications define all

apps in the system, analyzed by the bounded model checker.

4.6.3 Safety/Security Properties

Figure 4.5: Counterexample from Alloy for running example.

To provide a basis for precise analysis of IoT app bundles against safety and

security violations and further to automatically identify possible scenarios of their
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Listing 4 Example Alloy assertion for property G3.12.

1 assert G3_12 {
2 no r : IoTApp.rules, a : r.actions {
3 // DON'T open the door...
4 a.attribute = CONTACT_SENSOR_CONTACT_ATTR
5 a.values = CONTACT_SENSOR_OPEN
6 // ... WHEN ...
7 ((some r' : r.*are_connected, t : r'.triggers {
8 // ...smoke is detected
9 t.attribute = SMOKE_DETECTOR_SMOKE_ATTR

10 t.values = SMOKE_DETECTOR_IS_SMOKE }) or
11 (some r' : r.*are_connected, a' : r'.actions {
12 // ...mode is away
13 a'.attribute = MODE_ATTR
14 a'.values = MODE_AWAY })) }}

occurrences given particular conditions of each bundle, we designed specific Alloy

assertions. These assertions express properties that are expected to hold in the

extracted specifications. Specifically, each assertion captures a specific type of

safety and security properties, considering our safety goals for IoT app interactions

(cf. Section 4.3). In total, we define 36 safety properties, as summarized in Table 4.1.

The property check is then formulated as a problem of finding a valid trace

that satisfies the specifications, yet violating the assertion. The returned solution

encodes an exact scenario (states of all elements, such as Devices) leading to the

violation.

As a concrete example, Listing 4 formally expresses property G3.12 from

Table 4.1. The assertion states that no rule (r) should have an action (a, Line 2) that

results in a contact sensor (i.e., the door) being opened (Lines 4-5) while also being

connected to another rule (r’) that either (1) was triggered by the smoke detector

(Lines 7-10) or (2) sets the home mode to Away (Lines 11-14). If Alloy can find a

trace containing such an r and r’, that trace will be presented as a counterexample,

along with the information useful in finding the root cause of the violation. Given

our running example, the analyzer automatically generates the counterexample
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depicted in Figure 4.5. The rule FireAlarmApp/r0 (thick border) violates the assertion

by opening the contact sensor (i.e., door) despite its connection to rules higher in

the chain that were (1) triggered by the smoke detector (FireAlarmApp/r1) and (2)

set the home mode to Away (MaliciousApp/r0).

Our ability to detect violations in complex chains of interaction across both

cyber and physical channels sets our work apart from other research in the area,

as does our ability to analyze the conditional predicates of each rule.

4.7 Evaluation

This section presents our experimental evaluation of IotCom, addressing the

following research questions:

• RQ1: What is the overall accuracy of IotCom in identifying safety and

security violations compared to other state-of-the-art techniques?

• RQ2: How well does IotCom perform in practice? Can it find safety and

security violations in real-world apps?

• RQ3: What is the performance of IotCom’s analysis realized atop static

analysis and verification technologies?

Experimental subjects. Our experiments are all run on a multi-platform dataset

of smart home apps drawn from two sources: (1) SmartThings apps: We gathered

404 SmartThings Classic apps from the SmartThings public repository [152]. These

apps are written in Groovy using the SmartThings Classic API platform. (2) IFTTT

Applets: We used the IFTTT dataset provided by Bastys et al. [76]. This dataset is

in JSON format, with each object defining an IFTTT applet. These applets cover



74

a broad spectrum of services, so we filtered the dataset to extract the 55 applets

specifically related to SmartThings.

Safety and Security Properties. We use a set of 36 safety and security proper-

ties for all of our experiments, each encoded as an Alloy assertion as described

in Section 4.6.3. Table 4.1 defines the property set, grouped according to the

corresponding goal from Section 4.3. To preserve the validity of our research,

we adapted these properties from those used by other approaches in the lit-

erature [34, 35, 36, 78]. Some of these properties are general, considering the

interaction between rules with no regard to specific triggers, conditions, or actions.

For example, (G1.1) NO repeated actions considers a case where two apps both send

the same command to the same device in response to a single event. Repeated

actions could force the device to activate multiple times, increasing wear on the

device and violating the very definition of our goal.

Others are more system- or situation-specific, such as (G3.12) DON’T open the

door WHEN smoke is detected or mode is away. The majority of such situation-specific

properties consider the values for the various state attributes of each device in the

system and tend to collect under (G3) No unsafe states.

We performed all the experiments on a MacBook Pro with a 2.2GHz 2-core

Intel i7 processor and 16GB RAM. We used Alloy 4.2 for model checking.

4.7.1 Results for RQ1 (Accuracy)

To evaluate the effectiveness and accuracy of IotCom and compare it against other

state-of-the-art techniques, we used the IoTMAL [153] suite of benchmarks. This

dataset contains custom SmartThings Classic apps, for which all violations, either

singly or in groups, are known in advance—establishing a ground truth.
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Table 4.1: Safety and Security Properties

Property Description
Goal 1 Properties

G1.1 NO repeated actions on a device from a single event
G1.2 NO repeated actions on a device from exclusive events
G1.3 DON’T turn on the AC WHEN mode is away
G1.4 DON’T turn on the bedroom light WHEN door is closed
G1.5 DON’T turn on dim light WHEN there is no motion
G1.6 DON’T turn on living room light WHEN no one is home
G1.7 DON’T turn on dim light WHEN no one is home
G1.8 DON’T turn on light/heater WHEN light level changes

Goal 2 Properties
G2.1 NO action enabling a condition of another rule
G2.2 NO action disabling a condition of another rule
G2.3 NO action contradicting another action from a single event
G2.4 NO action contradicting itself from a single event

Goal 3 Properties
G3.1 NO action triggering another unintentionally
G3.2 DON’T turn off heater WHEN temperature is low
G3.3 DON’T unlock door WHEN mode is away
G3.4 DON’T turn off living room light WHEN someone is home
G3.5 DON’T turn off AC WHEN temperature is high
G3.6 DON’T close valve WHEN smoke is detected
G3.7 DON’T turn off living room light WHEN mode is away
G3.8 DON’T turn off living room light WHEN mode is vacation
G3.9 DO set mode to away WHEN no one is home
G3.10 DO set mode to home WHEN someone is home
G3.11 DON’T turn on heater WHEN mode is away
G3.12 DON’T open door WHEN smoke is detected or mode is away
G3.13 DON’T turn off security system WHEN no one is home
G3.14 DON’T turn off the alarm WHEN smoke is detected
G3.15 DON’T unlock the door WHEN light level changes
G3.16 DON’T lock the door WHEN smoke is detected
G3.17 DON’T open the door WHEN smoke is detected and heater is on
G3.18 DON’T unlock the door WHEN smoke is detected and heater is on
G3.19 DON’T open the door WHEN motion is detected and fan is on
G3.20 DON’T unlock the door WHEN motion is detected and fan is on
G3.21 DON’T open the door/window WHEN temperature changes
G3.22 DON’T set mode WHEN temperature changes
G3.23 DON’T set mode WHEN smoke is detected
G3.24 DON’T set mode WHEN motion is detected and alarm is sounding

We faced two challenges while evaluating the accuracy of IotCom against the

state-of-the-art: (1) Most analysis techniques, except IoTSAN [34], are not available.

SOTERIA [35] was evaluated using the IoTMAL dataset, but the tool is not publicly

available. Therefore, we rely on the results provided in the technical report [6].

(2) The violations in the IoTMAL dataset do not involve physical channels. For
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Table 4.2: Safety violation detection performance comparison between
SOTERIA, IoTSAN and IotCom. True Positive (TP), False Positive (FP),
and False Negative (FN) are denoted by symbols 2�, 4, 2, respectively.

(X#) represents the number # of detected instances for the
corresponding symbol X.

Test Cases SOTERIA* IoTSAN IotCom

Individual Apps
ID1BrightenMyPath 2� 2� 2�
ID2SecuritySystem 2� 2† 2�

ID3TurnItOnOffandOnEvery30Secs 2� 2 2�
ID4PowerAllowance 2�2 (22) (2�2)

ID5.1FakeAlarm 2 2 2
ID6TurnOnSwitchNotHome 2� 2� 2�

ID7ConflictTimeandPresenceSensor 2� 2‡ 2�
ID8LocationSubscribeFailure 2� 2� 2�

ID9DisableVacationMode 4 2 2�
Bundles of Apps

Application Bundle 1 2� 2� 2�
Application Bundle 2 2� 2† 2�
Application Bundle 3 2� 2† 2�
Application Bundle 4

# 2 2‡ 2�
Application Bundle 5

# 2 2 2�
Application Bundle 6

# 2 2 2�
Precision 90% 100% 100%

Recall 66.7% 25% 93.8%
F-measure 76.6% 40% 96.8%

* results obtained from [6] † IoTSAN did not generate the Promela model
‡ SPIN crashing # Benchmarks involving physical channels related violations.

evaluating this capability of the compared techniques, we developed three bundles,

B4–B6, available online from the project website [151].

Table 4.2 summarizes the results of our experiments for evaluating the accuracy

of IotCom in detecting safety violations compared to the other state-of-the-art

techniques. IotCom succeeds in identifying all 9 known violations out of 10 in the

individual apps, and all violations in 6 bundles of apps. Furthermore, IotCom

identifies two violations in the test case ID4PowerAllowance–namely, (G1.1) NO
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repeated actions and (G2.4) NO action contradicting itself. Since IotCom captures

schedule APIs, it can identify the second violation unlike SOTERIA and IoTSAN.

IotCom misses only a single violation, in test case ID5.1FakeAlarm. This app

generates a fake alarm using a smart device API not often used in SmartThings

apps. Neither SOTERIA nor IoTSAN detected this violation.

IotCom also successfully identifies potential safety and security violations aris-

ing from interactions between apps. Test bundles B1− B3 exhibit such violations

using only virtual channels of interaction. Bundles B4− B6 define violations due

to physical interactions between apps. For example, B4 contains an interaction viola-

tion over the temperature channel that can result in the door being unlocked while

the user is not present, violating (G3) No unsafe behavior, while B5 and B6 contain

unsafe behavior and infinite actuation loop, respectively. SOTERIA and IoTSAN

cannot detect such violations that involve interactions over physical channel.

4.7.2 Results for RQ2 (IotCom and Real-World Apps)

We further evaluated the capability of IotCom to identify violations in real-world

IoT apps. We partitioned the subject systems of real-world SmartThings and IFTTT

apps into 37 non-overlapping bundles, each comprised of 6 apps, in keeping with

the sizes of the bundles used in prior work [34, 102]. The bundles enabled us to

perform several independent experiments. IotCom detected 1332 safety/security

violations across the analyzed bundles of real-world IoT apps. Figure 4.9 illustrates

how the detected violations were distributed among the three goals as shown in

Table 4.1. According to the results, IotCom detects violations of 20 of the safety

and security properties, where 62.16% of the bundles (23 of 37) violate at least one

property. In the following, we describe some of our findings.
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4.7.2.1 Violation of (G1) No Unintended Behavior
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A: AllLightsOff
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dark
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Figure 4.6: Example violation of G1 (No unintended behavior): Lights continually
turn off and on. The violation occurs via the luminance physical channel.

The chain of interactions shown in Figure 4.6 results in a loop that could

continually turn a switch on and off, violating Goal 1. The loop involves three

SmartThings apps: RiseAndShine, TurnItOnXMinutesIfLightIsOff, and LightsOnWhe-

nIArriveInTheDark. RiseAndShine contains a rule activating some switch when

motion is detected. LightsOnWhenIArriveInTheDark controls a group of switches

based on the light levels reported by light sensors. TurnItOnXMinutesIfLightIsOff

switches a switch on for a user-specified period, then turns it back off.

When RiseAndShine activates its switch, it could trigger LightsOnWhenIAr-

riveInTheDark via the luminance physical channel, switching all connected lights

off. This event triggers TurnItOnXMinutesIfLightIsOff, which may re-enable one

of the lights. This changes the luminance level, entering into an endless loop be-

tween LightsOnWhenIArriveInTheDark and TurnItOnXMinutesIfLightIsOff. IotCom

is uniquely capable of detecting this violation due to our support of physical

channels, scheduling APIs, and arbitrarily long chains of interactions among apps.
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4.7.2.2 Violation of (G2) No Unpredictable Behavior
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Figure 4.7: Example violation of (G2) No unpredictable behavior: Both “on” and “off”
commands sent to the same light due to the same event. The violation happens

via the luminance physical channel.

The three apps shown in Figure 4.7 lead to potentially unpredictable behavior

due to competing commands to the same device, violating Goal 2. They also

interact in part over a physical channel that could not be detected by approaches

that only consider virtual interaction between apps. The IFTTT applet Garage-

DoorNotification activates a switch when the garage door is opened. This triggers

the action of SmartThings app TurnItOffAfter, which will turn off the light after

a predefined period. At the same time, GarageDoorNotification may also have

triggered the IFTTT applet LightWarsOn via a light sensor, interacting over the

physical luminance channel. LightWarsOn would attempt to turn the light back on,

producing an unpredictable result—a race condition—depending on which rule

was executed first.
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Figure 4.8: Example violation of (G3) No unsafe behavior: Cyber coordination
between apps may leave the door unlocked when no one is home. The first rule is

guarded by a condition that the home owner not be present.

4.7.2.3 Violation of (G3) No Unsafe Behavior

Figure 4.8 depicts a chain of virtual interactions that could lead to a door being

left unlocked if misconfigured. The SmartThings app LockItWhenILeave locks the

door when the user leaves the house, as detected by a presence sensor. The lock

action triggers the IFTTT applet Unlock Door, which unlocks the door again. This

violates (G3) No unsafe behavior by potentially leaving the door unlocked when the

user leaves the house.

This example also demonstrates IotCom’s unique ability to consider logical

conditions when evaluating interactions. The code of LockItWhenILeave does not

specify a particular value for the presence sensor in the trigger for its rule; the

entry method is invoked by any change to the presence sensor. Instead, the

rule uses a condition to ensure it is only invoked when the user is not present.

Other tools, particularly those that require manual specification of the initial

system configuration for analysis, may miss this violation by only considering the

interaction when the user is present. IotCom does not have such a limitation, and

correctly identifies the violation.
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4.7.3 Results for RQ3 (Performance and Timing)

The last evaluation criteria are the performance benchmarks of static model ex-

traction and formal analysis of IotCom on real-world apps drawn from the Smart-

Things and IFTTT repositories.

Figure 4.10 presents the time taken by IotCom to extract rule models from the

Groovy SmartThings apps and IFTTT applets. This measurement is done on the

datasets collected from two repositories: 404 SmartThings apps drawn from the

SmartThings public repository [152] and 55 IFTTT applets from the dataset used

by Bastys et al. [76]. The scatter plot shows both the analysis time and the app

size. According to the results, our approach statically analyzes 98% of apps in

less than one second. As our approach for model extraction analyzes each app

independently, the total static analysis time scales linearly with the number of

apps.

Figure 4.9: Distribution of detection violations across three goals (cf. Section 4.3).

We also measured the verification time required for detecting safety/security

violations and compared the analysis time of IotCom against that required by

IoTSAN [34]. We checked all 36 safety and security properties against each bundle.

Based on our results, the time required by the Formal Analyzer scales based on

the number of rules per bundle rather than the number of apps. This is to be
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Figure 4.10: Scatter plot representing analysis time for behavioral rule extraction
of IoT apps using IotCom.

Figure 4.11: Average time required to analyze all properties related to each goal by
number of rules in the analyzed bundle.

expected, given that our analysis compares fine-grained rule-to-rule interaction.

Nguyen et al. [34] manually specify the initial configuration for each app in

the bundle as part of the model checked by IoTSAN; IotCom does not require

specification of a single initial configuration, instead exhaustively checking all

configurations that fall within the scope of the app model. To perform a fair

comparison between the two approaches, we generated initial configurations for
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Figure 4.12: Verification time by IotCom and IoTSAN to perform the same safety
violation detection in a logarithmic scale.

11 bundles of apps and converted them into a format supported by IoTSAN. We

then ran the two techniques considering all valid initial configurations to avoid

missing any violation.

Figure 4.11 depicts the total time taken by each approach to analyze all relevant

configurations (rather than a single, user-selected configuration). Note that the

analysis time is portrayed in a logarithmic scale. The experimental results show

that the average analysis time taken by IotCom and IoTSAN per bundle is 11.9

minutes (ranging from 0.05 to 104.78 minutes) and 216.9 minutes (ranging from

0.33 to 580.91 minutes), respectively. Overall, the timing results show that IotCom

reduces the violation detection time by 92.1% on average and by as much as 99.5%,

and is able to effectively perform safety/security violation detection of bundles of

real-world apps in just a few minutes (on an ordinary laptop), confirming that the

presented technology is indeed feasible in practice for real-world usage.
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4.8 Discussion

IoT apps and devices interact with each other in complex ways. Therefore, a

holistic analysis is crucial to identify safety and security threats that may arise from

multiple such interactions. Celik et al. [6] describe the challenges of analyzing IoT

apps. These include consideration of interactions over physical channels and the

capability to perform cross-platform analysis, which does not limit the analysis to a

single IoT platform (i.e. IFTTT only or Groovy only). Celik et al. also emphasize the

importance of performing a precise program analysis. Accordingly, IotCom has

been designed and implemented to overcome those challenges. IotCom models

each app individually, but composes all the models into a complete picture of the

IoT system to analyze their interactions. Our analysis accounts for interactions

mediated by physical channels, while other approaches focus only on interactions

within the virtual system.

IotCom models time-based APIs (e.g. runIn, sunrise, sunset), but does not

precisely model the relative durations requested in calls to these APIs. Our next

step is to model time more precisely. IotCom does not require initial configurations,

which significantly enhances its capabilities. However, our model does not account

for all variables that could influence the configuration, such as spatial distance

between devices [154]. Also, some SmartThings capabilities—such as switch—are

very general and can be associated with many physical channels. We do not

distinguish between different uses of these general devices. Considering these

additional factors may improve the accuracy.

The novel graph abstraction technique proposed in IotCom makes it practical

for handling on-going and future developments in the domain of IoT apps, like

multiple actions and triggers for conditional triggering [155].
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4.9 Summary

This chapter presents a novel approach for compositional analysis of IoT interaction

threats. Our approach employs static analysis to automatically derive models that

reflect behavior of IoT apps and interactions among them. The approach then

leverages these models to detect safety and security violations due to interaction of

multiple apps and their embodying physical environment that cannot be detected

with prior techniques that concentrate on interactions within the cyber boundary.

We formalized the principal elements of our analysis in an analyzable specification

language based on relational logic, and developed a prototype implementation,

IotCom, on top of our formal analysis framework. The experimental results of

evaluating IotCom against 36 prominent IoT safety and security properties, in the

context of hundreds of real-world apps, corroborates its ability to effectively detect

violations triggered through both cyber and physical channels.
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5 Efficient Signature Generation for Classifying

Cross-Architecture IoT Malware

Internet-of-Things (IoT) devices are increasingly targeted by adversaries due to

their unique characteristics such as constant online connection, lack of protection,

and full integration in people’s daily life. As attackers shift their targets towards

IoT devices, malware has been developed to compromise IoT devices equipped

with different CPU architectures. While malware detection has been a well-studied

area for desktop PCs, heterogeneous processor architecture in IoT devices brings

in unique challenges. Existing approaches utilize static or dynamic binary analysis

for identifying malware characteristics, but they all fall short when dealing with

IoT malware compiled for different architectures. In this chapter, we propose an

efficient signature generation method for IoT malware, which generates distin-

guishable signatures based on high-level structural, statistical and string feature

vectors, as high-level features are more robust against code variations across differ-

ent architectures. The generated signatures for each malware family can be used

for developing lightweight malware detection tools to secure IoT devices. Extensive

experiments with two datasets including 5, 150 recent IoT malware samples show

that our scheme can achieve 85.2% detection rate with 0% false positive rate.
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5.1 Motivation

IoT malware/vulnerability research. The priority of most IoT vendors are func-

tionalities and faster pace of bringing product to market. The security of IoT

systems has not received much attention. The most relevant research focuses

on developing an IoT honeypot [156] called IoTPOT, used to allure malware to

infect emulated IoT devices in the honeypot, which aims at collecting IoT malware

binaries and the corresponding network traffic for further analysis. The malware

binaries have been clustered into four distinct families based on simple command

sequence and unique strings through manual analysis. Yet, they neglect the rich

code-level features that facilitate a fine-grained characterization of IoT malware.

Vulnerability and bug discovery of IoT devices is a problem gaining attentions

recently [157, 158, 159]. Eschweiler et al. [158] utilize graph matching approaches in

conjunction with statistical features extracted from the disassembled binary codes

to detect bugs. However, their goal is to identify similarity between individual

vulnerable functions rather than matching binary files and generating detection

signatures. Recently, Feng et al. [159] employ a scalable search method to improve

the scalability and accuracy of cross-architecture bug search, where both the

structural and statistical features are aggregated to create a high-level feature

vector for vulnerability detection in real-time. All of the above methods use static

analysis to extract features at basic block level using control flow graph (CFG). Yet,

the high computational complexity of processing CFGs hinders their deployment

on IoT devices.

Converting the assembly code to Intermediate Representation (IR) code has

been adopted to handle syntax differences to perform cross-architecture analy-

sis [160]. However, available IR languages/platforms are limited to handle only



88

a few architectures (i.e., MIPS, ARM, x86), which are not suitable for our dataset

that contains malware with more diverse architectures.

IoT malware dataset. Our IoT malware dataset is provided by IoTPOT team,

including two recently-collected datasets: one is collected within a three-month

period between May 2016 and August 2016, and contains 1, 150 malware sam-

ples/binaries; and the other one is collected within a one-year period between

October 2016 to October 2017, containing 4, 000 malware samples/binaries. Every

sample has a MD5 name and a time label. To the best of our knowledge, this IoT

malware dataset is the largest dataset currently available. To date, there are around

7, 000 IoT malware samples targeting smart devices as reported by Kapersky [42].

Therefore, we believe the research on 5, 150 malware set (74% of total amount) can

faithfully reveal the characteristics of most IoT malware. All the malware binaries

are Linux Executable and Linkable Format (ELF) format executable files. Figure 5.1

shows the diverse CPU architectures of the malware samples in our dataset, where

ARM and MIPS are two most popular architectures for IoT malware. The detection

rate of IoT malware is known to be low [161]. Therefore, an accurate and lightweight

cross-architectural detection mechanism that can be deployed on resource-constrained IoT

devices is a pressing need.

Malware statistical, string Features, and string obfuscation/encryption. As men-

tioned earlier, this work aims to develop lightweight IoT malware signatures, which

implies the features used for generating the signatures should be easy to extract,

and also the extracted features can differentiate between malicious and benign

samples. In this work, we consider statistical and string features for clustering

and signature generation of IoT malware families. Table 5.1 presents the statistical

features extracted from exemplar benign and malicious files. It shows a significant

difference between the code statistics features of benign and malicious files.



89

378 378 407 422 456

769

1159 1172

0

200

400

600

800

1000

1200

N
um

be
r	o

f	S
am

pl
es

Figure 5.1: IoT malware distribution based on CPU types

Files Redirect Arithmetic Logical Transfer Total
Benign-1 108719 23117 41817 300822 647654

Benign-2 129662 25204 57020 371085 767334

Benign-3 166767 36143 64249 487340 1025432

Malicious-1 10434 1744 2085 17087 45831

Malicious-2 13283 2104 2427 22513 58558

Malicious-3 5354 3707 408 363 31843

Table 5.1: Number of instructions for benign and malicious binaries

We also extract printable strings from the malware samples, and discover that

the extracted printable strings of many malware samples contain the same string

sequences, yet, they are compiled for different architectures. For instance, our

experimental results show that the same printable strings such as “busybox iptables

-A INPUT -p tcp –destination-port 7547 -j DROP" appeared in different versions of

Mirai for different architecture types, such as MIPS, ARM, PowerPC and Renesas

SH. This implies that IoT malware is developed to infect multiple architectures.

Also, we observe printable strings contain other rich information that can be

used to distinguish between different malware families (see Section 5.2.3). Such
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observation and the fact that printable strings are easy to extract motivate us to

consider printable strings for signature generation.

Some printable strings from malware samples are obfuscated or encrypted.

However, we find that the encrypted/obfuscated printable strings of some malware

samples can also be overlapped, if these samples use the same encryption/obfus-

cation mechanisms. For instance, we find many samples from the same malware

family contain the same encrypted/obfuscated sequences “eGAIM aJPMOG qCD-

CPK oMXKNNC uKLFMUQ", which can be used as signatures to identify samples

from the same malware family.

5.2 Signature Generation of IoT Malware
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Figure 5.2: Detection system architecture

In this section, we present the design of our system that aims to generate

signatures for classifying and detecting IoT malware. The proposed system consists

of two major phases: offline signature generation and online detection/classification. The

offline signature generation takes IoT malware samples as input, which includes

the following five steps, as presented in Fig. 5.2: 1) malware preprocessing, 2)

coarse-grained clustering, 3) fine-grained clustering, 4) cluster merging, and 5)

signature generation for online detection.
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5.2.1 System Overview

The offline signature generation can be conducted at computationally rich cloud-

s/hubs. The malware preprocessing removes non-binary files from the dataset,

and disassembles all the binary files using IDA Pro [162] to retrieve their assembly

codes. After preprocessing, the number of malware samples is reduced to 4,078.

We propose three stages of clustering, including coarse-grained clustering, fine-

grained clustering, and cluster merging. The coarse-grained clustering utilizes

statistical features, while the fine-grained clustering clusters the malware samples

based on their structural similarities computed using Bindiff. The combination of

coarse-grained and fine-grained clustering allows us to decrease the computational

cost of the clustering process, compared to using only fine-grained clustering.

Cluster merging refines the clustering results by merging clusters based on the

similarity of extracted string features in an iterative manner. The cluster merging

allows us to attain more generic malware signatures, thus improving the malware

detection rate. Finally, we generate a succinct signature by integrating string and

statistical features for each malware cluster, which can distinguish between differ-

ent malware clusters. We use string and statistical features due to their capability

in producing distinguishable patterns and ease of extraction. Online detection/-

classification can be conducted on IoT devices by matching the signatures. In the

following sections, we describe the system components.

5.2.2 Clustering IoT Malware

Instead of operating over each individual malware sample, we cluster these samples

into groups, and perform group-level analysis to reduce the computational costs.
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In the end, the malware clustering contains three phases: coarse-grained clustering,

fine-grained clustering, and cluster merging.

Coarse-grained clustering: After generating the assembly codes of the malware

files, statistical features are extracted for each malware file. The statistical features

are then normalized, and used to perform the coarse-grained clustering. We extract

8 high-level statistical features from the assembly codes, including: total number

of functions, total number of instructions, number of redirect instructions, number

of arithmetic instructions, number of logical instructions, number of transfer

instructions, number of segments, and number of call instructions. The high-level

code statistics features are resilient to cross-architecture variations, as they abstract

away the different code syntax.

The average and standard deviation values of these statistical features are

computed for each malware sample. Among the 8 statistical features, we select the

statistical features that can distinguish between different clusters with low standard

deviations. In the end, we retain 6 statistical features by discarding the number

of segments and number of call instructions due to their low distinguishable

capability.

Finally, we use K-means clustering to perform coarse-grained clustering. K-

means is selected due to its high efficiency. The number of clusters K is determined

and validated using DaviesâĂŞBouldin (DB) cluster validity index [163], which is a

standard metric for evaluating cluster results. A lower DB index denotes a better

separation of the clusters and the better tightness inside the clusters. Therefore, the

number of clusters with lowest DB index is selected as the best K for coarse-grained

clustering.

Fine-grained clustering: In the fine-grained clustering phase, we consider code

structural similarity between malware binaries computed using Bindiff. We iter-
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atively compute the pairwise structural similarity between every malware pair

within a cluster derived from coarse-grained clustering. The intuition is that high-

level structural similarity generated by Bindiff is more resilient to cross-architecture

variations [106], and can attain high accuracy in matching functions. This process

yields an N × N similarity matrix (N is the number of malware samples), where

the values in each row represent the similarity scores computed by Bindiff for a

single malware sample against all other malware samples in the dataset.

Here, we utilize a popular binary similarity analysis tool, Bindiff [164], for

computing the similarity between the malware samples in our dataset. Bindiff is

a popular tool for computing structural similarity. It reconstructs Control Flow

Graph (CFG) of each binary file to perform function and basic block matching, and

then compares functions and basic blocks by extracting the graph-based features

such as number of incoming/outgoing edges, the position of basic blocks in the

CFG, etc. In order to tolerate the code differences brought by cross-architecture

compilations, Bindiff abstracts the structural features of a binary file, while ignoring

the specific assembly-level instructions. It retains a trade-off between similarity

analysis accuracy and efficiency by applying a multi-level matching strategy based

on function and basic block level structural attributes. The final result of Bindiff is

a list of matched and unmatched functions from both binaries, based on which the

similarity score (ranging in [0, 1]) is computed [164]. Bindiff is fairly efficient, and

the matches it produces are proven accurate [106]. Therefore, in this clustering

stage, we assign a relatively large cluster number to ensure every cluster is compact

enough to contain all the similar malware samples.

In the fine-grained clustering, we partition the malware samples within each

coarse-grained cluster into multiple fine-grained clusters using the single-linkage

hierarchical clustering. We choose hierarchical clustering, because of its ability
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to find clusters of arbitrary shapes with arbitrary distance metrics. The hierar-

chical clustering takes a matrix of pairwise distances among malware samples

and generates a dendrogram, which is a tree-like data structure to represent the

clustering outcome. Dendrogram cutoff determines the number of clusters. Dis-

tance measurement is critical for performing hierarchical clustering, and we derive

the distance measurements through binary similarity analysis, which identifies

common characteristics of malware samples at different levels including basic

block, function, and file levels.

Rather than converting the similarity score to distance measurement which may

lose accuracies, we propose to utilize similarity scores as features. The rationale lies

on the fact that similar malware samples will have comparative similarity scores

with other samples. Therefore, among N malware samples, each sample will have

N similarity scores as a feature vector, which contains the malware’s similarity

score with itself (i.e., 100%) and with all other malware samples in the dataset.

In order to minimize the impact of this high and ineffective self-similarity score,

for malware A, we replace this self-similarity score with the highest similarity

score of malware A compared with all other samples. Using similarity scores

as features, we compute the distance measurements using Euclidean distance.

The hierarchical clustering is conducted using the calculated distances among all

samples. Similar to the coarse-grained clustering, the best number of fine-grained

cluster is determined using DB cluster validity index for every coarse-grained

cluster.
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5.2.3 Cluster Merging

After splitting the coarse-grained clusters into the fine-grained clusters, some of

the generated clusters may actually share a high similarity, which can then be

merged together. Consequently, we use string features to merge clusters and refine

clustering results. The cluster refinement involves two steps: 1) string feature

analysis: N-gram text analysis is used to extract distinguishable string features

from the printable strings; and 2) merging clusters: clusters are merged based on

the similarity analysis of string features.

String feature analysis: The goal of string feature analysis is to find the string

features that represent all malware samples of each cluster, since string features

exhibit rich contextual information that is suitable for fine-grained analysis. String feature

analysis facilitates the detection of cross-architecture IoT malware, as printable

strings likely remain the same for binaries even when they are compiled differently.

To this end, printable strings are extracted from each malware sample, which are

used as inputs to generate N-gram string vectors, capturing the sequential order

of strings. Punctuation marks, such as “:", “//", “;", are used to segment the

strings. For example, a string vector “wget http://198.12.97.79/bins.sh; chmod

777 bins.sh; sh bins.sh" is segmented into “wget http 198.12.97.79 bins.sh chmod

777 bins.sh sh bin.sh". In order to avoid the overfitting issue, we replace the ip

address with a special word “reIPaddress". Using N-gram, we are able to extract

meaningful word sequences, e.g., “wget http reIPaddress bins.sh", “chmod 777

bin.sh sh" (with 4-gram). For improving the effectiveness of N-gram string feature,

we remove any printable strings that contain less than three characters. We select

N value according to experimental analysis performed to retain a balance between

signature matching accuracy and efficiency, as described in Section 5.3.2.
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Fig. 5.3 illustrates the string feature analysis. For each malware sample, we

extract the N-gram string vectors, and remove the duplicate N-gram string vectors.

Then, we combine the generated N-grams of all malware samples within a single

cluster. Frequency analysis is carried out to identify the most common N-gram

string vectors in each cluster. Consequently, we generate string features for each

cluster, consisting of the top K N-gram strings with the highest appearances

among all the N-gram strings in the combined string vector. The selection of K is

explained in Section 5.3.2, which aims at identifying the distinguishable N-gram

strings while minimizing computational costs. Thus, the top K N-gram strings are

used as features of each cluster to perform cluster merging.

N-gram from S1

.

.

.

.

.

.

.
N-gram from Sn

Frequency 
Analysis

Generate top K 
N-gram

Figure 5.3: String feature analysis (S1,· · · , Sn are n samples in a cluster)

Merging clusters: Cluster merging is performed iteratively to refine the cluster-

ing results, which guarantees the malware clusters are both compact and well-

separated from each other. Algorithm 6 illustrates the cluster merging procedure.

After generating the top K N-gram strings for each cluster, we use Jaccard similar-

ity to compute the inter-cluster similarity scores between different clusters based on

the generated top K N-gram strings for each cluster. Clusters with a high string

similarity score (i.e., higher than a predefined merging threshold) will be merged.

After merging clusters, we evaluate the merged clusters again by recomputing

their top K N-gram string features, and the corresponding inter-cluster similarity
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Algorithm 6 Cluster Merging
Required : τ = merging threshold, |C| is the current number of clusters, JS repre-

sents Jaccard Similarity. ci, cj are two clusters under evaluation, and
SF(ci), SF(cj) are their top K N-gram string features, respectively.

for (each pair of ci, cj) do
if (JS(SF(ci), SF(cj)) ≥ τ) then

Merge clusters ci, cj |C| = |C| − 1 Generate new string feature for every
cluster

end
end

scores. The cluster merging process can be iterated multiple times in sequence

until different clusters bearing low similarities (i.e., lower than the merging thresh-

old), which indicates a set of well-separated and distinguishable clusters. After

performing cluster merging, we can perform lightweight signature generation for

each cluster.

5.2.4 Signature Generation and Online Detection/Classification

The complete signature of each merged cluster contains the top-K N-gram string

feature (SF) extracted using the aforementioned method, and statistical feature

(ST) that represents the average values of each statistical feature. Both SF and ST

can be easily extracted from malware files, making the signature generation fairly

efficient.

The online detection/classification of IoT malware is a signature matching

process, where the matching is performed by computing the similarity between

the extracted signature from the suspicious file and a set of cluster signatures.

Euclidean distance d(STi, STj) is used for measuring similarity of the ST. To facilitate

similarity analysis, we convert the Euclidean distances into similarity scores [165],
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named as Statistical Similarity (SS) and formalized as follows:

SS(STi, STj) =
1

1 + d(STi, STj)
. (5.1)

On the other hand, Jaccard Similarity (JS) is used for computing similarity of the

SF, denoted as JS(SFi, SFj). The Overall Similarity (OS) score for the signature

matching will be a weighted sum of JS and SS, written as follows:

OS(i, j) = w1 · JS(SFi, SFj) + w2 · SS(STi, STj), (5.2)

where w1 + w2 = 1, and OS(i, j) represents the signature matching score between

file i and cluster j. In this research, we give a equal weight (i.e., 0.5) to SF and ST

by default, but the weight can be tuned according to analysis results, e.g., if string

obfuscation is identified, a higher weight can be assigned to ST. After computing

the OS scores between a file and all cluster signatures, we identify the highest

OS score as the file’s suspicion level. Meanwhile, the file can be classified into

the corresponding malware cluster or marked as benign. In our experiment in

Section 5.3, we show that the file’s suspicion level can be either a high value or

a low value, which makes it straightforward to classify a suspicious file as IoT

malware or benign samples.

The YARA tool [166] can be used for generating static signatures based on

a sequence of specific printable strings or bytes belonging to a malware family.

YARA signature for Mirai malware is shown in Listing 5.1, which includes the

printable string signature. While most YARA signatures are manually identified,

the proposed system can facilitate the automated identification of string signatures
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for YARA. Therefore, we can easily incorporate YARA signatures in our system

for malware detection.

1 rule Mirai_1

2 {

3 meta:

4 description = "Mirai Variant 1"

5 author = "Mohannad / @moh"

6 date = "2017-04-16"

7 strings:

8 $dir1 = "/dev/watchdog"

9 $dir2 = "/dev/misc/watchdog"

10 condition:

11 $dir1 and $dir2

12 }

Listing 5.1: YARA Signature for Mirai

5.3 Evaluation

In this section, we evaluate the performance of our solution using the IoT malware

dataset. We first discuss our methodology for selecting the values of K and N,

and then evaluate the multi-stage clustering with cluster refinement method. The

malware detection performance is evaluated in terms of malware detection rate

and false positive rate. We further evaluate our system’s performance in classifying

the testing dataset, and benign linux firmware gleaned from various commercial

product websites.
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5.3.1 Selecting Parameters K and N

Similar to other empirical approaches for selecting N-gram parameter [107, 167],

we also adopt an experimental approach driven by the data to select the best set

of parameters. In our approach, we use a set of values {90, 100, 150, 200, 250} for

selecting K, and a set of values {3, 4, 5, 6, 7} for selecting N, which are the key

parameters for defining top K N-gram string feature. Our intuition is that the

best K and N pair should produce the best clustering results, i.e., the samples in a

cluster should bear high similarity with each other, and different clusters should be

well separated. Thus, different combinations of K and N are considered with the

goal of maximizing the similarity within the same cluster (Intra-cluster similarity),

and minimizing the similarity among clusters (Inter-cluster similarity). Specifically,

the inter-cluster string similarity is defined as the average Jaccard similarity of

string features among different clusters. For intra-cluster string similarity, we

collect the top-K N-gram string features of all malware samples inside each cluster,

and compute the average Jaccard similarity of cluster string features with its

enclosed samples.

Determining best K: We examine the inter-cluster and intra-cluster string similarity

with different K values and fixed N value in order to determine the best K. Fig. 5.4

shows the string similarity results with different K values (when N is fixed as 4),

from which we can see there is a slight increase of both inter-cluster and intra-

cluster string similarity with the increase of K. To strike a balance between the

intra-cluster similarity (the higher the better) and the inter-cluster similarity (the

lower the better), we measure the difference between inter and intra-cluster string

similarity, i.e., the gap between two lines, and select the K with the maximal gap.

In the end, we select the best K = 100. For validation, we evaluate the performance
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Table 5.2: Inter-cluster string similarity with different N values (K=100)

N 3 4 5 6 7

Inter-Cluster 0.162 0.120 0.171 0.162 0.164

by fixing N as other values, and K = 100 always performs best. This process can be

fully automated by measuring the difference between inter-cluster and intra-cluster

similarity.
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Figure 5.4: Inter-cluster and Intra-cluster string similarity with different K values
(N = 4)

Determining best N: By fixing the value of K = 100, we use different N values

to evaluate the inter-cluster string similarity. Table 5.2 shows N = 4 yields the

lowest inter-cluster similarity. Note that we omit the measurement of intra-cluster

string similarity to reduce the computational costs. Thus, we select the best N as 4.

Finally, the string feature of each cluster is generated based on the top-100 4-gram

string vectors. The selection of N is also an automated process by measuring the

inter-cluster similarity w.r.t. different N values.
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5.3.2 Evaluating Malware Clustering

Several mechanisms presented in the literature for evaluating clustering [168]. As

mentioned earlier, DaviesâĂŞBouldin index is used in this work for validating

number of cluster [168]. Because DaviesâĂŞBouldin reflects the ratio between inter

and intra cluster similarity, and the smaller DB value is better. However, after

performing several experiments, we tried to generate clusters contain at least two

malware files. This aims to avoid generating tight clusters that contain only one

file [111]. Fig. 5.5 illustrates the evaluation of coarse-grained clustering based on

DB index, where 10 clusters represents the lowest DB index value 0.77.
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Figure 5.5: DaviesâĂŞBouldin index for evaluating the number of coarse-grained
clusters

The same approach has been also followed to validate fine-grained clustering.

On average DB index 0.6 is used for identifying the number of fine-grained clusters

in each coarse-grained cluster.
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Evaluating cluster merging using string feature: For merging clusters, we com-

pute the similarity scores using cluster string features. Recall that the cluster string

feature represents the top-100 4-gram string vectors of a cluster. Two clusters

will be merged, if the Jaccard similarity score of their cluster string features is

higher than a merging threshold. The merging threshold should be set sufficiently

high to avoid merging dissimilar clusters, but should not be set too high that may

prevent appropriate cluster merging. In this work, we empirically set the merging

threshold as 0.7 [111] to merge clusters that resemble each other. In the end, 153

original clusters are merged into 110 clusters, which are re-evaluated to make sure

they cannot be further merged.

Table 5.3: Summary of Clustering Results. The number of samples that have been
used for performing the clustering is 2000 files (training dataset). Therefore, all
clustering and processing time measurements are based on the training dataset

Entire Dataset Clustering
(Training Dataset)

Processing Time
(sec)

# of
sam-
ples

undetected
by all AV
scanners

undetected
by best AV
scanner

Coarse Fine After
Merge

Coarse Fine After
Merge

4078 2 (%0.49) 45 (%1.1) 10 153 110 0.01 2.48 2.85

Clustering Coherence: The compact of our clustering approach has been also

evaluated based on Virus Total detection results. We selected top-3 scanners

that have high detection rate. Namely, AVG, DrWeb and McAfee. Then, we

followed similar approach to [111] for generating malware families based on the

generated labels by each Virus Total scanner. The malware families are generated

by removing the last section of the generated label string, which is separated

by dot(.). For example, Linux.BackDoor.Fgt is the malware family that will be

generated for the following labels generated by DrWeb (Linux.BackDoor.Fgt.373,

Linux.BackDoor.Fgt.578, Linux.BackDoor.Fgt.11, Linux.BackDoor.Fgt.229).
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Then we check the consistency of each cluster, generated after merging clusters,

by computing the distribution of malware family in each cluster, where it is

expected to have a dominant malware family. The results show cohesion clusters,

as the average malware family distribution is %92 for all clusters among the top-3

Virus Total scanners, as presented in Fig. 5.6, which shows the cohesion of the

generated clusters after performing the merge.
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Figure 5.6: Distribution of cluster cohesion

5.3.3 Evaluating Signature Detection

The cluster signature will include the string feature and statistical feature, gen-

erated using our IoT malware dataset. In this section, we evaluate the detection

accuracy and effectiveness of our cluster signature. A malware sample is detected

if its maximum OS value (i.e., overall similarity in Eq. 5.2) is higher than a detection

threshold. The detection threshold is set as a high value (i.e., 0.7) to reduce false

positive rate.
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For conducting the evaluation of clusters’ signatures, we download a set of

benign firmware binaries from openwrt, while the second part of the IoT malware

dataset (testing dataset) is used for evaluating our approach. All the tested files

are in Linux ELF format. The benign firmware dataset contains 130 samples, while

the testing dataset contains 2078 malware samples. We generate the string and

statistical features for these benign and malware samples. Table 5.4 reports the

evaluation results, it shows the average statistical similarity of the testing dataset

94%, which is much higher than the average statistical similarity of the benign

ELFs. Also, the detection rate based on string signature is 0% for the benign ELFs,

while our solution can successfully detected malcious ELFs with 85.2% detection

rate.

Table 5.4: Statistical similarity of new benign/malicious samples with clusters’
statistical signature and detection rate based on string signatures

Source # of Samples Average statisti-
cal similarity

String Signature
Detection Rate

Benign Firmware 130 41% 0%
Testing Dataset 2078 94% 85.2%

Performance comparison: We also conduct performance comparisons with two

existing works based on API call sequences [103] and operation code (OpCode)

N-grams [107]. The results are shown in Table 5.5, and our detection method can

achieve significant performance improvement by capturing the unique characteris-

tics of IoT malware.

Table 5.5: Performance comparison

Comparison Detection Rate False Positive Rate
API Calls 64.8% 5.1%
OpCode N-gram 66.0% 10.0%
Our solution 85.2% 0%
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5.3.4 Evaluating Runtime Performance

Table 5.3 presents the processing time required for processing and generating

the clusters. Clearly, our approach does not pose overhead, this is the result

of performing the clustering on multi-stages. The merging process took longer

time in comparison with coarse-grained and fine-grained clustering. This is

expected, because the merging process performs the iteration several times until

no similarity score exists above the threshold, and in every iteration N-gram string

analysis is performed again. We also evaluate the runtime performance of our

signature matching mechanism on an ARM platform using QEMU [169]. We run

experiments inside an emulator with ARM Cortex-A9 CPU (0.8GHz to 2GHz) and

256MB of RAM. The running time is 15ms for matching/classifying a new binary

file. Although many IoT devices have lower configurations than our emulator, we

believe the running time performance indicates the efficiency of our mechanism.

In future, we will evaluate our mechanism on real IoT devices.

5.4 Discussion

Evasive techniques: The proposed approach for generating lightweight detection

signatures utilizes printable strings as string features. As a result, our approach

is susceptible to string obfuscation and encryption techniques. To date, the IoT

malware samples are still very premature compared with their sophisticated

PC counterpart, and we have not observed any IoT malware employing code

obfuscation/encryption techniques. We believe the proposed system addresses

a timely need to provide an effective first-line defense on IoT devices, and it

also contributes to a better understanding of IoT malware.On the other hand, we

envision that the sophistication level of IoT malware will definitely grow.



107

Unknown malware: Another caveat is that our system cannot deal with unknown IoT

malware, so that we need to constantly update the signatures as new IoT samples

are discovered. But the update can be conducted offline on a computationally rich

hub. For instance, we can generate updated signatures everyday to keep up the

rapid change of IoT malware. Moreover, as shown in [170], the structural features

suffer from the variations caused by different compilation options, which may

induce false classification results.

Threshold setting: There are multiple thresholds in our system, including: merg-

ing threshold (set as 0.7), sample matching threshold (set as 0.9), and detection

threshold (set as 0.7). Currently, we use empirical approaches to identify an ap-

propriate threshold by evaluating over two opposite training datasets, e.g., one

contains the malware belonging to a family called “insider", and one contains the

samples outside the family called “outsider". The minimum value of all insiders

and maximum value of all outsiders can be identified, and the threshold is set to

the mean of these two values that optimizes the separation of the two different

worlds. This process can be automated to relieve the manual burden. It is evident

that for different datasets, we may need to adjust these threshold accordingly.

5.5 Summary

This chapter investigated the emerging IoT malware detection problem, and

proposed an efficient signature generation and classification mechanism for cross-

architecture IoT malware. Based on static analysis, the proposed mechanism

utilizes string, statistical and structural features for classifying IoT malware, where

Bindiff is used for computing structural similarities, and N-gram printable string

vectors and statistical features are extracted for characterizing the malware families.
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The experimental results show the effectiveness and efficiency of our signature

generation system.
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6 Towards Best Secure Coding Practice for

Implementing SSL/TLS

Developers often make mistakes while incorporating SSL/TLS functionality in

their applications due to the complication in implementing SSL/TLS and their

fast prototyping requirement. Insecure implementations of SSL/TLS are subject

to different types of Man in The Middle (MiTM) attacks, which ultimately makes

the communication between the two parties vulnerable to eavesdropping and

hijacking attacks, thereby violating confidentiality and integrity of the exchanged

information. This chapter aims to support developers in detecting insecure SS-

L/TLS implementation in their codes by utilizing a low-cost cross-language static

analysis tool called PMD. In the end, two insecure implementations of SSL/TLS

have been identified, and subsequently a new PMD rule set is created. This rule set

consists of three rules for addressing hostname validation vulnerability and certificate

validation vulnerability. The rules have been evaluated over 1, 517 code snippets

obtained from Stack Overflow, and the results show that 71% of the code snippets

contain insecure SSL/TLS patterns. The detection rate of our approach is 100%,

while it detects 165 violations inside the vulnerable code snippets in total.
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6.1 Background

This section describes background knowledge about static analysis tools for de-

tecting bugs, and introduces our criteria for selecting the tool to implement our

detection rules. Static analysis and dynamic analysis solutions have been intro-

duced for detecting vulnerability in the applications. Since this work aims at

assisting developers in detecting insecure implementation of SSL/TLS, we will

review and compare some state-of-the-art solutions proposed for detecting pro-

gramming bugs using static analysis techniques.

Several open source static analysis tools are presented for detecting bugs in

Java programs, including:

1. FindBugs [171]: is an open source tool for detecting bugs in Java code. It is a

static analysis tool on Java bytecode, and can be used via command line and

integrated into different IDEs. FindBugs can discover various types of bugs

including problematic coding practice and vulnerabilities. FindBugs rules

can be created using Visitor pattern (Java API). However, this tool does not

detect insecure SSL/TLS implementation patterns.

2. Hammurapi [172]: is an open source tool for analyzing Java source code.

It can be integrated to IDEs, and is developed with scalability in mind.

Hammurapi employs Abstract Syntax Tree (AST), where new rules can be

added to this tool, using java code or XML rules. However, this tool is rather

complicated [173], and does not focus on detecting security vulnerabilities

and insecure implementation patterns.

3. Jlint [174]: is written in C++ for detecting common programming errors in

Java (e.g., race condition). Jlint performs semantic and syntax analysis on



111

Java bytecode for accomplishing its duties. Therefore, Jlint is not intended for

the check and validation of insecure SSL/TLS implementation, nor any kind

of other security checks. Although new rules can be integrated into Jlint, it

will require modifying Jlint’s source code [173], which makes Jlint difficult to

expand.

4. PMD: is an open source tool, which is written in Java and it checks Java

source code for a set of predefined bugs. PMD can be used through com-

mand line, and graphical user interface via the available plugins for various

IDEs. PMD constructs Abstract Syntax Tree (AST), and then examines the

constructed AST for detecting bugs. PMD checks for some security bugs, but

it neither checks insecure cryptographic mechanisms, nor examines SSL/TLS

implementations. PMD rules can be defined using Java code (Visitor pattern)

or XPath queries. This provides more flexibility and makes it easier for

extension.

We define two selection criteria for identifying the optimal tool to develop our

detection rules. The tool should be:

1. open source and is still actively supported by the community.

2. easy-to-use and facilitating the integration of new rules.

Accordingly, PMD has been selected for implementing our new rules to detect

insecure SSL/TLS implementations, because PMD is an open source tool, and can

be easily expanded with new rule sets. Unlike other tools that require changing

the source codes of the tools, or are limited to a specific method for adding new

rules, PMD is flexible, easy-to use, and deemed as a cross-architectural analysis

tool, as it can analyze different programming languages.



112

6.2 Insecure SSL/TLS Patterns

This section explains the commonly identified SSL/TLS vulnerabilities, and de-

scribes the justification behind selecting those vulnerabilities. Then, we present

the code snippets that represent each vulnerability. Two insecure implemen-

tations of SSL/TLS have been widely discussed and reported in the litera-

ture [113, 54, 175, 116, 176].

SSL_Vuln_Ruleset

TrustingAll_CAs Verify method
ALLOW_ALL_HOSTN

AME_VERIFIER

Hostname validation 
vulnerability

Certificate validation 
vulnerability

Figure 6.1: Insecure SSL/TLS implementation patterns

Figure 6.1 summarizes these insecure patterns and a detailed description about

each pattern is as follows:

1. Certificate validation vulnerability: the certificate and all Certificate Authori-

ties (CAs) in the certificate chain of CAs are trusted and not being verified.

As illustrated in Listing 6.1, method (checkServerTrusted) does not perform
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any verification. To fix the vulnerability, it should go over the chain of CAs

that are included in the certificate, and verifies the validity of each CA in

the chain until reaching the root CA. Otherwise, an attacker can replace the

original certificate of the server with a self-signed certificate to be accepted

by the client, since the certificate chain is not verified. As a result, MiTM

attack can be established.

2. Hostname validation vulnerability: two insecure patterns have been identified

under this vulnerability. The last line in Listing 6.1 shows the case when the

developer not only fails to validate the hostname, but he/she also allows

trusting all hostnames. In Listing 6.1, host verification is not performed at all,

because the method (verify) does nothing and always returns true. These are

two most commonly observed vulnerabilities related to hostname validation,

the existence of which allows MiTM attackers to eavesdrop and hijack the

communications, by allowing an attacker to impersonate the host.

1 //Trusting all Certificates Pattern
2 public void checkServerTrusted(X509Certificate[] chain, String authType)
3 throws CertificateException {
4 //do nothing
5 }
6

7 //Allowing all Hostnames Pattern #1

8 SSLSocketFactory sf = new MySSLSocketFactory(trustStore);
9 sf .setHostnameVerifier(SSLSocketFactory.

10 ALLOW_ALL_HOSTNAME_VERIFIER);
11

12 //Allowing all Hostnames Pattern #2

13 HostnameVerifier hostnameVerifier = new HostnameVerifier() {
14 @Override
15 public boolean verify(String hostname, SSLSession session) {
16 return true;
17 }
18 }

Listing 6.1: Insecure SSL/TLS Patterns
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6.3 Proposed PMD Rulesets

The goal of this work is to create new rules for detecting insecure SSL/TLS

implementation patterns. In this section, we describe the architecture of PMD and

the supported methods for creating new PMD rules, introduce our assumption,

and demonstrate the proposed PMD rulesets for accurately detecting the insecure

SSL/TLS implementation patterns.

6.3.1 PMD Rulesets and Rules

Figure 6.2 illustrates the architecture of PMD, which includes the newly proposed

ruleset (described in Section 6.2). A Java class is analyzed by generating its

Abstract Syntax Tree. The analyzer then examines the generated AST against a set

of predefined rules, and finally a report will be generated that displays the detected

bugs. Even though Data Flow Analysis (DFA) has been integrated into PMD, PMD

has not supported creating rules based on DFA yet. PMD rules are organized

based on different categories (formally known as Rulesets), while each ruleset

contains several rules that address a single bug. Therefore, each rule possesses

several properties like a description of the bug, the priority, and the detection rule.

We extend the PMD rules by adding a novel ruleset, which consists of three

rules for detecting the selected insecure SSL/TLS patterns. Figure 6.3 depicts the

structure of PMD rules.

As mentioned earlier, one of the main advantages of using PMD is the support

for different methods to create new rules. In this work, two methods can be used

for creating new PMD rule set and rules:
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PMD Rulesets

Java Class

PMD Engine

AST 
Generator Analyzer

SSL_Vuln_Ruleset

TrustingAll_CAs Verify Method
ALLOW_ALL_HOS
TNAME_VERIFIER

Hostname validation 
vulnerability

Certificate 
validation 

vulnerability

SSL_Vuln_
Ruleset

Figure 6.2: PMD architecture and the proposed PMD rulesets (SSL_Vuln_Ruleset)

PMD Ruleset

PMD Rule 1 PMD Rule 2 PMD Rule n…...

Figure 6.3: PMD ruleset structure

1- Java class: PMD rule can be written as a Java class that extends Abstract-

JavaRule, and Visitor API can then be used for inspecting some properties in the

generated AST of the class under analysis. Then, this rule class can be declared

under a specific PMD ruleset.
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2- XPath quires: this method treats the generated AST as an XML file, then we

can write XPath queries to find specific patterns. PMD provides a handy tool for

designing XPath queries called PMD rule designer,which can be used for generating

the AST for the targeted pattern and creating the XPath query. Listing 6.2 presents

an XPath that have been created using PMD rule designer for the insecure pattern

presented in Listing 6.1.

1 //MethodDeclaration[@Name='checkServerTrusted'

2 and

3 Block[count(*) = 0]]

Listing 6.2: Allowing all Hostnames Pattern #2

In this work, XPath method is utilized for creating the rules, and PMD rule

designer has facilitated and simplified the rule creation process. The designer tool

contains four windows, namely the source code (top-left), XPath query (top-right),

AST & DFA (bottom-left), and the result of XPath query (bottom-right). Our main

assumption here is that the developers strive to detect any insecure implementations, and

develop more secure applications. This is a reasonable assumption as most developers

have already recognized the importance of the security of their applications.

Therefore, the developers apply PMD and the corresponding rulesets to detect the

security vulnerabilities in their applications.

Here are the detailed steps for the developers to construct the SSL_Vuln_Ruleset

to detect SSL/TLS implementation vulnerabilities:

1. Obtaining the source code of PMD, as we want to add new rules, it should

be rebuilt again using Maven after adding new rules.
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2. Using the aforementioned insecure patterns (Listing 6.1) in the source code

window of PMD rule designer to generate new rules.

3. Generating the AST for the provided source code. As depicted in the AST

window, AST is treated as XML file, which consists of nodes and each node

owns specific properties. Accordingly, the XPath query can be created.

4. The XPath query is then generated (buttom-right window), which relates

to the matched pattern in the source code XPath query in this example

(Listing 6.2) is simplified for clarity, but more involved matching criteria can

be integrated for deriving more accurate results and avoid false positive

results. For instance, checkServerTrusted() contains two parameters, and

the data type of each parameter needs to be identified. The developer

can definitely fool this XPath query by adding useless statements (e.g.,

print statements) within the body of checkServerTrusted(). However, this

contradicts our assumption that developers have the intention to identify

insecure implementations (i.e., the developer has no malicious intent).

5. After making sure the XPath query works as intended, a new rule can be

added to the SSL_Vuln_Ruleset. The ruleset is included in an XML file that

contains the definition of a set of rules. The default location of all Java rulesets

is under the following directory PMD-java/src/main/resources/rulesets/java.

6. The new SSL_Vuln_Ruleset location should be declared in the text file rule-

sets.properties, which instructs PMD about the location of all existing

rulesets.

Eclipse PMD plug-in is another easier way for creating the ruleset and its

rules. But this approach limits the usage of the rule into a dedicated machine,
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and reduces automation capabilities for running the evaluation, especially over

a large number of Java classes. In our experiment, we add a single rule using

Eclipse plug-in, and the detection result is presented in Figure 6.4. The error

message displays “Consider verifying the intended certificates and not allowing

all certificates by updating checkServerTrusted() method", which is in fact the

suggestion for resolving the SSL/TLS vulnerability. PMD has successfully detected

checkServerTrusted() is implemented in an insecure manner. PMD also shows other

details about the detected violations, such as the line number, the name of the

violated rule, etc. Suggestions for fixing this error can be also incorporated within

the details of this alert, which would greatly assist the developers not only in

detecting insecure patterns, but also in resolving them.

Figure 6.4: PMD analysis results on Eclipse after adding a new rule

Listing 6.3 presents the definition of one of the detection rules in our SSL_Vuln_-

Ruleset. This rule detects insecure implementations of checkServerTrusted(). Line 3

shows the definition of the ruleset, which includes the the name. The actual rule

is defined between Lines 9-29, and Line 15 states the priority of this rule. Finally,

(Lines 18-22) contain the location where the XPath query (generated using PMD

designer) is defined. To this end, we prove that PMD can tremendously facilitate

the process of creating new rules for detecting new bugs, including SSL/TLS

implementation bugs.

1 <?xml version="1.0"?>

2
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3 <ruleset name="SSL_Vuln_Ruleset">

4

5 <description>

6 This ruleset detects insecure implementation of SSL/TLS

7 </description>

8

9 <rule name="TrustingAllCAs"

10 language="java"

11 message="Consider verifying the intended certificates and not allowing all

↪→ certificates"

12 <description>

13 This is an insecure implementation of SSL/TLS, which trusts ALL

↪→ certificates.

14 </description>

15 <priority>3</priority>

16 <properties>

17 <property name="xpath">

18 <value>

19 <![CDATA[

20 //MethodDeclaration[@Name='checkServerTrusted'

21 and Block[count(*) = 0]] ]]>

22 </value>

23 </property>

24 </properties>

25 <example>

26 <![CDATA[

27 ]]>

28 </example>

29 </rule>

30 </ruleset>
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Listing 6.3: Definition of SSL_Vuln_Ruleset

6.4 Evaluation

This section describes our evaluation approach, including two research questions,

and the results we get to answer each research question.

We conducted the evaluation over a dataset obtained from [54]. This dataset

consists of 1,517 code snippets extracted from Stack Overflow website. However,

these codes cover all cryptographic implementations and are not only limited to

SSL/TLS implementations. Hence, we conducted data filtration over two phases.

In the first phase, codes that contain these keywords (SSL, TLS, ssl, tls, X509

and x509) are shortlisted. In the end, 597 code snippets have be shortlisted after

this phase. This phase provides us all code snippets that contain SSL and TLS

implementation. In the second phase, 263 files are obtained, which contain the

following keywords (verify, checkServerTrusted, ALLOW_ALL_HOSTNAME_-

VERIFIER). The purpose of this filtration phase is shortlisting the code snippets

that are related to the insecure patterns. We focus on answering the following two

research questions:

• RQ1: How well do our detection rules perform in practice, and can they

effectively detect the identified insecure patterns in real-world applications?

• RQ2: What is the runtime performance of PMD after using our rules?

All experiments have been performed on Ubuntu 16.04 virtual machine and

4GB memory. The modifications have been performed on the source code of PMD

version 5.8.1.
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6.4.1 Results for RQ1

The total code snippets that have been analyzed are 263, but 76 snippets could

not be parsed correctly by PMD (will be discussed in Sec 6.5). For the rest of the

code snippets (263− 76 = 187), 54 files do not contain any insecure patterns. We

manually investigate some of these files, and find that they are correctly bypassing

our detection rules. This means the number of True Negative is 54. Therefore, the

total number of the detected (True Positive) insecure SSL/TLS implementation

patterns is (187− 54 = 133), which reflects that %71.12 of the code snippets in

our dataset contain insecure patterns. Figure 6.5 shows the number of vulnerable

snippets and non-vulnerable snippets.

We also have randomly investigated several code snippets that have been

detected by one of our rules to verify if they really contain insecure patterns.

71%

29%

Vulnerable Snippets

Not Vulnerable Snippets

Figure 6.5: Distribution of vulnerability detection using proposed PMD rulesets
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Table 6.1 lists the detection results of the proposed SSL_Vuln_Ruleset in Fig-

ure 6.1. The most common insecure patterns are “Trusting All CAs" and “Allowing

All Hostname Verifier". We discover that several code snippets even contain more

than one insecure patterns.

Table 6.1: Detection results

Matching Insecure Patterns Matched Code Snippets
TrustingAll_CAs 43

Verify Method 18

ALLOW_ALL_HOSTNAME_VERIFIER 40

TrustingAll_CAs & Verify Method 24

TrustingAll_CAs & ALLOW_ALL_HOSTNAME_VERIFIER 8

Verify Method & ALLOW_ALL_HOSTNAME_VERIFIER 0

Figure 6.6 presents the detection results based on the identified two categories

of SSL/TLS vulnerabilities. The number of detection alarms does not match

the number of vulnerable code snippets, because as mentioned earlier a single

vulnerable code snippets can contain more than one insecure patterns.
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Figure 6.6: Detection results according to the types of SSL/TLS Vulnerabilities

The results show the proposed detection rules have correctly identified the

insecure code snippets, and no code snippets have been misclassified (no False
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Positive or False Negative). Therefore, the both detection precision and recall of

our approach are 100%.

6.4.2 Results for RQ2

Measuring the overhead that might be introduced after using the new rules is

crucial. Therefore, we compute the required time for analyzing the code snippets,

which includes the required time for identifying which rule has been violated,

and the time for parsing the generated XML report for each code snippet. The

total analysis time is 144 seconds for the dataset generated after the two phases of

filtration (263 code snippets). On average, the required time for analyzing each

code snippet against our three rules and parsing its XML report is 0.55 second,

which shows the efficiency of the proposed method.

6.5 Discussions

In this section, we provide a discussion on three limitation of our approach for

detecting the insecure patterns. First, after the filtration, we have 187 code snippets,

while some of the snippets cannot be analyzed. Although the current dataset

is sufficient for validating our new rules, in future, we need a larger dataset for

drawing more affirmed conclusions. Also, we observe the duplications in the code

snippets while performing the manual investigation. Furthermore, we performed

a quick validation over the code snippets that have not been parsed, and our

preliminary analysis shows that the AST of those file cannot be generated.

Second, even though the discussed tools in Section 6.1 does not consider the

particular problem that have been addressed in this work, we need to adapt
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and then evaluate these other tools to compare their performance, efficiency and

usability against our proposed approach.

Finally, as discussed in Section 6.3, we assume the developers have the motiva-

tion to find any bugs in his/her code, which is a valid assumption. But there is a

possibility that the developers unintentionally inserts meaningless or debugging

statements, which invalidates our rules. However, this situation can be handled

by adding more conditions to the XPath query to avoid being inappropriately

bypassed. There are also some cases such as the one presented in Listing 6.4,

where a boolean variable holding a “true" value is returned rather than an explicit

“true" value. In this case, PMD Data Flow Analysis should be explored to handle

such cases.

boolean isTesting = true;

HostnameVerifier hostnameVerifier = new HostnameVerifier() {

@Override

public boolean verify(String hostname, SSLSession session) {

return isTesting;

}

}

Listing 6.4: Our rule fails to detect this insecure pattern that is similar to

Listing 6.1

6.6 Summary

This chapter sheds light on a vital implementation issue: insecure coding practices

while implementing SSL/TLS APIs in Java applications. Two common vulner-

abilities have been identified, while three insecure patterns that represent each
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vulnerability have been defined. We employ PMD static analysis tool for imple-

menting our detection rules. After comparing it with other existing open source

tools, we adopt the XPath approach for creating the new rules. In our evaluation

with 187 code snippets from Stack Overflow website, we show that 71% of these

code snippets are vulnerable, as they are discovered to contain various insecure

patterns, which validates the effectiveness of our detection rules.
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7 Conclusion and Future Research

This dissertation contributes to the body of knowledge by combining software

analysis techniques and vulnerability analysis mechanisms. In this dissertation, we

considered three key attributes of the emergent ecosystems that hinder traditional

security analysis. We then study the attributes in a certain software ecosystem, each

study aims to understand the security consequences and challenges, and finally

formalize our solution overcome the challenges. The three security challenges that

we considered are: detecting unsafe interactions between emergent apps, detecting

cross-architecture IoT malware, and propagation of insecure patterns resulted by

code reuse from StackOverflow. We proposed three security analysis frameworks

that can systemically and efficiently detect sophisticated unsafe interactions and

detect cross-architecture IoT malware. Lastly, we promote the best practices of

security APIs such as SSL/TLS. This chapter summarizes our contributions and

discusses potential future research directions:

7.1 Research Summary

The findings of the works conducted in this dissertation are summarized as follows:

• We develop Dina, the first inter-app vulnerability detection tool with the

capability of analyzing dynamically loaded code, to pinpoint the stealthy

inter-app communications that are concealed using reflection and DCL. Dina
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combines static IAC analysis with incremental dynamic analysis to identify

potential IAC vulnerabilities within dynamically loaded code at runtime. We

analyze 3,000 popular benign apps and 14,000 malicious apps to identify their

reflection usage and IAC communications via reflection/DCL. Our results

confirm the prevalent usage of reflection and DCL in popular real-world

apps, wherein surreptitious IAC behaviors concealed by reflective calls have

been observed. We provide detailed case studies to assess how vulnerable

apps can be exploited to launch stealthy attacks through reflection and DCL.

Therefore, we believe further efforts are required to better regulate the usage

of reflection and DCL calls to close the attack avenues without undermining

their utilities.

• We proposed a novel approach and accompanying tool suite, called IotCom,

for compositional analysis of such hidden and unsafe interaction threats in a

given bundle of cyber and physical components co-located in an IoT environ-

ment. IotCom first utilizes a path-sensitive static analysis to automatically

generate an inter-procedural control flow graph (ICFG) for each app. It then

applies a novel graph abstraction technique to model the behavior relevant

to the devices connected to the app as a behavioral rule graph (BRG), which

derives rules from IoT apps via linking the triggers, actions, and logical con-

ditions of each control flow in each app then automatically generates formal

app specifications from the BRG models. Lastly, it uses a lightweight formal

analyzer [150] to check bundles of those models for violations of multiple

safety and security properties arising from interactions among the app’s

rules. The experimental results of evaluating IotCom against 36 prominent

IoT safety and security properties, in the context of hundreds of real-world
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apps, corroborates its ability to effectively detect violations triggered through

both cyber and physical channels.

• We observe the cross-architectural similarity among malware samples from

the same family by investigating two real-world IoT malware datasets consist

of 5, 150 malware samples. Based on this keen observation, we propose a

multi-stage clustering mechanism to cluster these IoT malware samples into

multiple families. We then design an efficient signature generation scheme

to create signatures using reliable and easily extractable string and statistical

features. The string feature is extracted using N-gram text analysis, while the

statistical feature contains the code-level statistics. The experimental results

show the effectiveness and efficiency of our signature generation system.

• We shed the light on a vital implementation issue, insecure coding prac-

tices while implementing SSL/TLS APIs in Java and Android applications.

Two common vulnerabilities have been identified, while three insecure pat-

terns that represent each vulnerability have been defined. Therefore, we

contributed towards establishing secure coding practice for developers by

developing practical and ready to use rule sets (consisting of three rules)

using PMD to detect vulnerable SSL/TLS implementations. These rules can

accurately and efficiently identify potential SSL/TLS vulnerabilities, and help

raise developers’ awareness of insecure SSL/TLS implementation patterns.

7.2 Future Research Directions

The security analysis approaches contributed to this dissertation opens the horizon

for a range of new research opportunities. These research directions include: (1)

Performing cross-platform and cross-domain security analysis, in which unsafe



129

interactions can be resulted due to the interactions between IoT apps, IoT devices

and mobile apps; (2) Analyzing the propagation of vulnerabilities in the evolved

Android applications and identifying its correlation with the code quality; (3)

Investigating security weakness in emergent platforms like robotics platforms. In

the robotics area, Robotic Operating System (ROS) a prominent framework, which

lacks from the security absence; (4) Considering enforcement mechanisms to block

unsafe interactions and allow only safe behaviors. In the rest of this section, we

discuss in more detail some of these potential future work directions.

7.2.1 Cross-platforms interactions

Analyzing the interaction across various platforms, as in this dissertation, we

considered the interaction within the same platform. In Chapter 3, the considered

interactions are within the Android platform, while in Chapter 4, IotCom ana-

lyzes the interactions between IoT apps. However, we partially considered the

cross-platform interaction between IFTTT and Samsung SmartThings platforms in

IotCom. As a future research direction of this work, investigating the security con-

sequences of the whole chain of interactions between Android apps, IoT apps, and

IoT devices. Essentially, applications inter-dependency [177] reflects the presence

of shared resources and services that lead to hazards. For example, SmartThings

provides an Android app, known as a companion app, to install and manage

IoT apps. This companion app can be a valuable target because it constitutes a

centralized point that is trusted by IoT apps and devices [178, 72]. While in the

Robotics area, Android apps can be leveraged to create nodes and manage robots1.
1http://wiki.ros.org/android
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7.2.2 Smelling the Vulnerability in Open Source Android

Applications

In emergent software ecosystems, applications evolve to accommodate new ser-

vices and repair bugs [179]. These updates lead to code smells that can propagate

in the evolved versions of the application [180]. The goal of this work is to perform

correlation analysis to understand the relationship between the evolution of vulner-

abilities and the quality of the code. This understanding will ultimately support

developers in fixing their code and promoting secure code implementations. Con-

ducting the correlation analysis entails specifying a list of insecure patterns, which

can be accomplished in a similar way to our work [58] discussed in Chapter 6.

The vulnerable code patterns can be obtained from security communities such as

the Common Vulnerability Exposures (CVE), the National Vulnerability Database

(NVD), and the Common Weakness Enumeration (CWE).

7.2.2.1 Motivation

Code Smell in Android: the vast majority of existing work focus on detecting

code smells that affect code quality and violate best coding practices. Habchi et.

al, [181, 180] develop Sniffer for detecting only 8 code smells. Sniffer analyzes

the source code at each commit after processing open source projects. This

analysis aims to identify the lifespan of code smell in evolved projects. While

PAPRIKA [182] can analyze binary APKs without the need for the source code.

PAPRIKA considers only 17 code smells. aDOCTOR [183] another code smell

detection tool, and can identify 15 code smells. All prior tools do not consider the

detection of security code smells. Another research streamline aims to identify

vulnerabilities in open source software projects [184, 185]. Both tools perform their



131

empirical analysis by leveraging Snyk [186] to identify vulnerable dependencies

in various open-source projects. While the former performs the analysis on Java

projects, the latter analyzes JavaScript projects. However, none of these works

study the propagation of security vulnerabilities in the context of Android.

Detecting vulnerabilities in Android: The Android vulnerability has been widely

explored [56, 3, 187, 188, 189, 190], but the evolution of vulnerabilities in the

Android platform did not get sufficient attention and the existing work have

examined Android vulnerabilities in isolation of code smell. For example, Wu

et al., [191] does not investigate the evolution of vulnerabilities in Android apps,

instead, this work focuses on studying the propagation of vulnerabilities in the

Android framework based on published patching reports (known as Android

Security Bulletin[192]).

Correlation analysis in Android: In this domain of research, the security aspects

have not been studied on a large scale. Sultana et al., [193] perform a correla-

tion analysis between code smells and the existence of vulnerabilities. But the

experimental analysis is limited to few case studies, where vulnerable and non-

vulnerable versions of the same project are analyzed concerning the detected code

smells. Also, the evolution of these projects has not been considered. Another

study [194] explores the relation between software quality and security. This work

does not consider the evolution of the apps and does not assess the likelihood of

apps to be vulnerable. A limited investigation on the impact of three code smells

memory and CPU has been studied in [195]. While [196] investigates the relation

between code smells and architectural smells. This study studies the correlation

between 19 code smells and 4 architectural smells using 111 Java projects.
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7.2.2.2 Proposed Approach

This section introduces the experimental approach to perform the correlation

analysis. The approach consists of three phases, as depicted in Fig. 7.1. The

pre-processing phase applies selection criteria to identify the Github projects that

will be considered in the analysis. Evolution Tracking phase tracks the evolution of

vulnerabilities and code smells. The tracking phase is performed at the commit

level, for both vulnerabilities and code smells. The Analysis Engine analyzes

the history information generated in the previous phase. The analysis aims to

understand the propagation of code smells and determine the relationship between

the code smells and vulnerabilities in the evolved projects.

Code Smell 
Tracker

Vulnerability
Tracker

Correlation 
Analyzer

Metadata Collection Evolution Tracking Analysis Engine

Evolution 
AnalyzerVulnerability

&
Smell

Detection

Android
Projects

Figure 7.1: Analysis Workflow.

1. Project Metadata Collection: In this step we collect metadata information

about the GitHub projects that will be analyzed. The collected metadata is

leveraged to filter out toy projects. The metadata is identified based on the

criteria used in this related work [197].

2. Evolution Tracking: this phase comprises two main steps: code smell tracker

and vulnerability tracker. In this phase, a set of code smells and vulnerabili-

ties will be tracked by iterating all the projects’ commits.
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3. Analysis Engine: this phase performs the analytical aspects, which involve

the evolution of analyzer and correlation analyzer. The evolution analyzer

identifies the introduction, survival, and removal of code smells and vulnera-

bilities. But the correlation analyzer determines the relation between code

smells and vulnerabilities.

7.2.3 Feature Interaction in Robotics Ecosystem

In Chapters 3 and 4, we address the challenge of detecting unsafe interactions

in the context of Android and Smart home. This challenge can be studied in the

robotics ecosystem. As robots comprise a set of sensing and actuation components

that interact with each other. The robot operating system (ROS) is one of the

prominent frameworks that are used in the robotics ecosystem. Therefore, the

usage of ROS is expected to be growing in industrial applications and academic

research. The security of ROS constitutes a major concern that can dismiss the

development of robotics systems.

The security aspect is not part of ROS’s goals, even security is overlooked

in the next version of ROS (ROS2), except a few security extensions that are

provided for optional use [198]. Therefore, ROS suffers from significant security

weaknesses including plaintext communications, open ports, and unencrypted

storage [199, 200, 201]. The state-of-the-art [202, 199, 203, 204, 205] show the

communication between ROS nodes is a major concern. Therefore, many of the

proposed solutions consider and demonstrated attacks target this limitation. Open

source penetration testing tools have been leveraged to perform the attacks on a

cyber-physical security honeypot developed on top of ROS [199]. The conducted

attacks show ROS suffers from major weaknesses, which allowed performing
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man-in-the-middle attacks [206]. To overcome this challenge, a security layer is

proposed to be deployed on top of the ROS framework in [207]. This security layer

provides integrity and confidentiality by maintaining an authorization server to

enable secure communication between ROS nodes. Similarly, Breiling et al., [200]

proposes a secure communication channel for ROS to handle the communication

between two nodes.

Another experiment discovers over 100 publicly-accessible hosts running a ROS

master, after scanning the whole IPv4 scope [203]. The ability to perform this

experiment using a free network scanning tool represents a major risk, as ROS

master should not be made available on the public Internet. Where accessing the

master node allows the attacker to take control of the connected nodes. This work

takes a further step by attacking some of the discovered ROS nodes and shows how

this attack can have the potential to cause physical harm if used inappropriately.

However, none of these efforts have performed a systematic analysis to explore the

weaknesses of ROS, even none of these approaches have assessed the security of

ROS2. The future research directions in this area are:

• Conducting security analysis for understanding the safe and unsafe behaviors

of ROS nodes. A thorough static analysis can be performed similarly to [208].

• Analysing the usage of ROS APIs and identifying how these APIs can be

abused or misused. Dieber et al., [202] illustrates how some ROS APIs that

are used either for the communication between ROS nodes or ROS nodes

with the master node can be abused to add a fake ROS node.
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7.2.4 Enforcement of Safe Interactions

In Chapters 3 and 4, we present mechanisms for detecting unsafe and undesired

interactions between apps. Both works can be extended by examining enforcement

mechanisms to strengthen detection solutions.

• Enforcement in the context of Android: Dina identifies vulnerable IAC.

This work can be extended by applying a real-time enforcement mechanism

similar to [29, 209]. Where the former requires performing formal verification

to synthesize the enforcement policies, while the latter applies the principle

of least-privilege.

• Enforcement in the context of Smart Home: IotCom can be strengthened

by blocking unsafe interactions in real-time. Several approaches have been

introduced in the smart home area. AutoTap [141] assists end-users in defin-

ing safety properties, it applies a formal method approach to synthesize the

safety properties. Therefore, AutoTap is not intended to perform real-time

enforcement. IoTGUARD [147] enforces a set of predefined policies based

on the run-time model that is generated based on the interaction between

apps at run time. However, IOTGUARD requires instrumenting the apps

before the installation. IoTGUARD does not generate the safety properties

automatically, it assumes the properties given by the user. This is not a prac-

tical approach because the pre-defined properties cannot accommodate all

potential interactions. Therefore the enforcement can be applied to IotCom

by combining the synthesis approach used in AutoTap and the runtime

model used in IOTGUARD.
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