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The online advertising ecosystem leverages its massive data collection capability to

learn the properties of users for targeted ad deliveries. Many Android app developers

include ad libraries in their apps as a way of monetization. These ad libraries contain

advertisements from the sell-side platforms, which collect an extensive set of sensitive

information to provide more relevant advertisements for their customers. Existing

efforts have investigated the increasingly pervasive private data collection of mobile

ad networks over time. However, there lacks a measurement study to evaluate the

scale of privacy leakage of ad networks across different geographical areas. In this

work, we present a measurement study of the potential privacy leakage in mobile

advertising services conducted across different locations. We develop an automated

measurement system to intercept mobile traffic at different locations and perform data

analysis to pinpoint data collection behaviors of ad networks at both the app-level

and organization-level. With 1,100 popular apps running across 10 different locations,

we perform extensive threat assessments for different ad networks. Meanwhile, we

explore the ad-blockers behavior in the ecosystem of ad networks, and whether those

ad-blockers are actually capturing the users private data in the meantime of blocking

the ads.

We find that: the number of location-based ads tends to be positively related to

the population density of locations, ad networks collect different types of data across

different locations, and ad-blockers can block the private data leakage.
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Chapter 1

Introduction

Digital advertising market has changed dramatically since the invention of mobile

devices. Based on the statistic of Statista [6], desktop ad spending remains roughly

the same (about 30 billion U.S. dollars) from 2011 to 2019, while mobile ad spending

grows from 1.57 million U.S. dollars in 2011 to 50.84 billion in 2017. The tremendous

growth in mobile ad spending is mainly due to the increasing popularity of mobile

devices and apps. Based on the Flurry Analytics data [8], an average U.S. consumer

spends 5 hours a day on mobile apps, which allows ad networks to collect private

information through the mobile traffic. In particular, the mobile advertising networks

have quickly become the primary users of location data. High-accuracy location-

based mobile advertising (LBMA) allows advertisers to launch a targeted advertising

campaign with 5–20 times better response rates. A customer survey [9] shows a

majority (51%) of U.S. mobile device users are in favor of location-based targeted ads

due to their relevancy. However, despite its popularity, the privacy implications of

LBMA require further scrutiny.

Existing works on mobile privacy have identified privacy leakage issues through

mobile ad libraries using static analysis [13], dynamic analysis [14], and network traffic

analysis [21]. A recent study has identified different privacy leakage behaviors across

different app versions [22]. Yet, factors relevant to LBMA, i.e., the differences in
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private information collection behaviors of mobile ad networks across different apps,

organizations, and locations, have not been well investigated.

The primary challenge to identify geographical patterns of mobile privacy leakages

resides in the astronomical number of geolocation involved. To collect the mobile

traffic, the researcher must physically go to each location and collect mobile traffic.

Naive approaches that spoof GPS signals can be easily detected by cross-referencing

the GPS coordinates with the devices’ network profiles, and users’ regular activities.

To combat this, we develop a sophisticated method to reduce the location sample

size and bypass location verification. Since mobile tracking is evolved from web track-

ing, the advertisers engaging in web tracking also be likely adopt mobile tracking. The

relationship of mobile in-app tracking and web tracking from the same ad networks

is useful for understanding the ad networks’ private data collection capabilities. We,

therefore, identify the hot zones and cold zones for mobile privacy study using the

physical locations of the advertisers whose websites contain online tracking contents.

To bypass location verification, we consistently spoof the GPS coordinates, network

profile, and user activities, so they appear coherent in the eyes of ad networks.

Our method also allows us to understand how mobile ad networks aggregate infor-

mation across multiple apps and the role of ad blockers play in this system. With the

lack of tracking cookies in mobile apps, ad networks incorporate ad libraries in mobile

apps to track users’ private information. Ad libraries are embedded in multiple apps

with different granted permissions. By linking the permission profiles of different ac-

tive apps at different locations to the same ad network, we may understand how the

ad network fuse user’s information for targeted advertising. With some many users

use ad blockers on their phone or tablet, we may raise the concern the ad blockers’

capability of gathering users’ data.

There are several challenges in the study of mobile ads ecosystem: There are
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a large number of ad networks in the market and each of them may have different

targeting mechanisms and privacy policy, several ad networks may belong to the same

organization, in order to fully understand the severity of privacy leakage, we need to

associate these ad networks to their main organization, ad networks are using different

ways to identify user’s location, we need to take this into consideration while faking

our device’s location, there are some popular apps that implement SSL pinning which

we could not intercept their traffic at all, older versions of Android has some technique

called SSL unpinning but sometimes those popular apps require a newer versions of

Android to run. We are trying to address these challenges in our measurement study.

Based on our extensive measurement with real-world apps, we discover that: 1)

mobile web ads and mobile in-app ads contact a similar set of popular third-party

domains. 2) Although the mobile ad network traffic are more secure, the low adoption

of HTTPs at the advertisers’ side still lead to the leakage of private information; 3)

different ad networks present different private information collection behaviors across

different locations, some of which reveal special interests in collecting some particular

types of private information; 4) most ad networks can infer users’ precise location

even if they do not collect the fine-grained GPS coordinates; 5) ad blockers can block

a lot of private information leaked to third parties without gathering the data.

Our contributions are summarized below.

• We design an efficient privacy leakage measurement system to conduct a location-

based study by automatically adjusting the locations, conducting traffic collec-

tion, and performing traffic analysis. We develop domain classification mech-

anisms to classify the collected domains into ad network domains, advertiser

domains, and location-based ad domains.

• We identify the private data collection behaviors of ad networks at the orga-
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nization level. It is alarming that the ad network organizations can collect a

comprehensive set of users’ private information by aggregating data from mul-

tiple apps.

• We conduct extensive measurement to expose ad networks’ information collec-

tion behaviors across different locations. Our results suggest that ad networks

have different private information collection behaviors at different locations;

specifically, they collect different types of private information across different

cities. Location leakage by ad networks is particularly disconcerting, as most ad

networks can either collect or infer precise locations. The ad blockers can block

a lot of ads and they stopped significant personal information leakage towards

the advertisers or third parties also. According to our result, the ad blockers

do not have the feasible access to the data they blocked.
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Chapter 2

Related Work

The existing privacy research on the mobile ad networks mainly focuses on the ma-

licious uses of advertising contents, which include malicious adSDKs and malicious

ad creative. Earlier studies suggested that adSDKs often have poor security and

exhibit fraudulent behaviors [11]. Consequently, the new SSPs and DSPs have incor-

porated security features into their products [24]. Researchers have raised concerns

of malicious advertisers recently [24, 25], who can obscure the apps’ background to

hide malicious activities. In response, most DSPs are rapidly improving their screen-

ing process to filter out malicious ads and require a minimum number of targeted

audiences to prevent individual targeting [25].

Demetriou et al. [12] presents the first measurement system to bring to light the

potential risk of ad libraries in mobile apps. Recently, researchers have discovered

that the third-party ad libraries in mobile apps misuse their inherited permission and

access rights to learn and track users’ private information without explicit consent [22,

20, 21]. Both static and dynamic analyses tools have been developed to detect privacy

leakage in mobile apps.

Static Analysis Approaches. Static analysis is largely scalable and has a low

overhead to perform, and it identifies potential privacy leakage through application

code analysis. Static analysis of application binaries has been used to detect malicious



6

data flows [13], malware classification [17], and user activity analysis [27]. The changes

across different versions of ad libraries [10] have made the mobile systems more vulner-

able because of the adjustments in permission requests across platform/app versions.

Dynamic Analysis Approaches. Existing studies have provided useful tools to

identify the misuse of privacy data through dynamic tainting analysis [14]. The loca-

tion leakage through location-based services (LBS) has been analyzed [19, 16, 15]. In

this paper, we analyze apps across different cities in the United States to understand

the behaviors of mobile ad networks across different locations. We also consider cross-

application privacy leakage by aggregating the collected private information from the

same ad domain across multiple apps. For improving the coverage of dynamic analy-

sis, researchers have developed “UI Monkeys” to automate the input generation [26].

Customizable tools like Android Studio’s Monkey1 and Appium2 allow researchers to

provide a customized simulation of app interactions.

1https://developer.android.com/studio/test/monkey
2http://appium.io/docs/en/about-appium/intro/
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Chapter 3

Background

3.1 Mobile Advertisement Ecosystem

The digital advertising ecosystem consists of four types of entities: audiences and

publishers, sell-side platforms (SSPs), demand-side platforms (DSPs), and advertis-

ers, as shown in Fig.3.1. Audiences are the users who watch the ads when they

interact with the contents of a publisher. Publishers are the owners of websites or

apps that serve ads, which include SSP toolkits, such as analytic scripts and adver-

tising libraries (adSDKs for Mobile). DSPs facilitate purchasing ad slots and serving

ads on behalf of an advertiser. SSPs facilitate selling the ad spaces to the highest

bidder in a publisher’s content by auctioning them to DSPs. Advertisers are entities

that have ads to display. Advertisers may upload the actual ad content, known as ad

creatives, to a DSP, or host them on their servers and provide URLs for the DSP to

display.

In the web ad environment, the third party cookie has been the universal tool

for tracking host information to provide targeted ads. Any website that uses the ad

domain can access the cookie of this particular ad domain, which allows for cross-site

targeted advertising. In contrast, mobile in-app ad environment does not use shared

cookies for tracking. Instead, the mobile advertisement ecosystem relies on applica-
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Figure 3.1: Mobile advertisement ecosystem.

tion stimulus, which collects private data protected by the permissions. Our analysis

includes a detailed inspection of the tracking data that comes through as macro pa-

rameters in the Uniform Resource Locator (URL) of the network communications

from mobile devices.

Apparently, the more information SSPs can provide to the bidders, the higher

bids they will get. Therefore, SSPs are motivated to collect a variety of information,

such as: mobile advertising identifiers (MAIDs), locations, network profiles, device

types, etc.

3.2 Problem Definition

The goal of this research is to gain insights into the different privacy leakage behav-

iors of multiple ad libraries across different apps, organizations, and locations, and

determine if the cross-application ad libraries can correlate the multiple instances of
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TABLE 3.1: List of PII categories and types

Unique Identifier Advertising ID, Android ID
(device ID), Hardware se-
rial, IMEI, IMSI, MAC ad-
dress

Personal Informa-
tion

data of birth (DOB), email
address, first and last name,
gender

Location-related GPS location, IP address,
zip code

User Credentials username, password

TABLE 3.2: Supported location granularity of top 30 mobile ad networks

Supported finest location granular-
ity

# of ad networks

Up to country level 7
Up to city and business address level 15
Up to zip code level 4
Precise Address level 4

leaked private information for more precise ad targeting. We combine and analyze

traffic from different domains that belong to the same organization to achieve a more

accurate estimation of collected information by these organizations.

Personally identifiable information (PII) has been defined by NIST in 2010 as “any

information that can be used to distinguish or trace an individual’s identity”. Such

information is often collected by the third-party services or ad networks without users’

consent. Leveraging existing studies [21, 22, 23], we summarize a PII list containing

15 elements. We categorize these private elements into four categories, including: (1)

Unique Identifier, (2) Personal Information, (3) Location information, and (4) User

Credentials, listed in Table 3.1.

3.3 Threat Model

We define three main threats that induce users’ PII leaks for mobile ad networks.
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Threat from a organization with multiple domains. Popular ad networks

usually contain multiple third-party services to aggregate more comprehensive private

information from different domains. The ad networks are able to collect users’ private

information across multiple apps. Therefore, the organization-level privacy leakage

study is of utmost importance to understand the power of these organizations.

Threat from adware. Some app developers may collect sensitive information

via ad network libraries or other third-party services either directly or indirectly.

It is difficult to tell whether such collection is necessary for the app’s functionality.

Specifically, adware has been designed to actively collecting private information to

serve more ads.

Threat from network eavesdroppers. Networks eavesdroppers may get pri-

vate information by listening to the network communications. Some of the private

information may be leaked in plaintext via HTTP. For instance, we know that the

ad blockers can help us to block a lot of annoying ads from the advertisers, and they

play the role as middle men in this system, but no one can guarantee their innocuous

besides the claim they made for themselves. In our study, we try to evaluate the

severity of such privacy leakage and understand what information an eavesdropper

can obtain. Meanwhile, we want to know whether those ad blockers behave the same

way as they claimed.
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Chapter 4

Location-Based Measurement Platform

Our measurement platform mainly consists of two components: location-based traffic

measurement and traffic analysis. Fig. 4.1 shows the overall structure of our measure-

ment platform to collect and analyze traffic to identify privacy leakage of ad networks

across different locations.

In-app advertising and mobile web advertising both have their advantages and

limitations in the eyes of advertisers. According to eMarketer [4], mobile apps account

for nearly 86% of time spent using smartphones. But a few top apps dominate the

app usage. In fact, based on a recent study [3], the top 5 apps takes nearly 85%

of the total app usage time, which means advertisers may need to spend most of

their budget on a handful dominating companies. On the other hand, mobile web

advertising may have less usage time, but there are more websites than apps on the

market. Some large publisher either do not have apps or their customers tend to use

websites more, suggesting that mobile web advertising may reach a more diverse set

of audiences. Thus, in-app and mobile web advertising are both popular in today’s

mobile advertising ecosystem, which guide the design of our traffic measurement

system.
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Figure 4.1: The proposed platform consists of traffic measurement and traffic
analysis. Mitmproxy has been set up as a transparent HTTPS proxy. ¬ The mobile
client initiates a connection to the server.  The router redirects the connection to
mitmproxy. ® mitmproxy dynamically generates certificates for the connected hosts
and signs it with its own certificate. ¯ The mitmproxy connects to the server via
router, and establishes a TLS connection. ° The server with the matched certificate
responds to the client. ± ² ³ The router will redirect the response to the mitmproxy,
and then forward it to the client.

4.1 Traffic Measurement

Our traffic measurement consists both real mobile devices and emulators, a wireless

router, and a workstation. Mitmproxy [2] is used to intercept the traffic generated

by mobile apps. We install Mitmproxy certificate on the mobile device to decrypt

the HTTPs traffic. We also use Monkey, a popular input generation tool used ex-

tensively [23, 22], to automate the app interaction by randomly injecting user event

sequences. We let Monkey interact with each app for five minutes in order to generate

enough traffic for analysis. All the traffic between the app and its contacted server

would go through the Mitmproxy and the router, where the traffic is intercepted and

logged.

The location-based study of this paper requires a system to generate genuine loca-

tion information for large-scale measurement. We use Inspeckage module in Xposed

framework to change the locations. To automate the location change, we use Sele-
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nium to automatically change the GPS locations through Inspeckage’s web interface.

Many ad networks cross reference the GPS coordinates with the device’s IP address.

Therefore, We set up a VPN service to fake the IP addresses, which are configured

to be consistent with the faked GPS locations.

As for the study of mobile web tracking, we aim to identify advertisers engaging in

location-based ads. Thus, we query the Yelp Fusion API and select local businesses

in different cities whose websites support mobile browsers. We use the proxy service

Crawlera to query the websites with fake mobile user agents, and record sites that

return no user agent errors.

To study the behavior of ad blockers, we selected ten popular andorid ad blcoker

apps to test the capability for each of them. We first run the ad blocker app, and

then for each app, we let it run for ten minutes with auto event injection by Monkey.

We use the same methodology we proposed above to capture all the traffics. Since

for this small part, location changing is not one of our concerns, so we do not apply

the IP changing and fake GPS to this part.

4.2 Traffic Analysis

For analysis, we focus on identifying and extracting information from network traffic

related to the ad networks. We propose a domain classification mechanism to extract

the third-party domains, ad network domains, advertise domains, and location-based

ad domains. Meanwhile, we catogorize different types of ad blockers.

4.2.1 Identify third-party domains

Domains can be classified as first-party domains and third-party domains, and the

owner of first-party domains are the app’s owner. To differentiate between the first-
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party and third-party domains, for each app in our dataset, we first extract the

developer information in the app’s webpage. Then, we identify the maximal number

of apps that have been developed by the same developer, which we assume will use the

same first-party domains. This number is defined as the threshold for identifying the

third-party domains. After we extract all the domains in our traffic, we count each

unique domain. To avoid bias, we only count once if the domain appears multiple

times in one app. We identify all the third-party domains, whose number of appear-

ance is higher than the threshold. Because it is possible that potential third-party

domains may be counted less than the threshold, we use other methods described

below to help catch the missing third-party domains.

4.2.2 Identify ad network domains

We first generate a list of ad network domains using the publicly available information

and two domain organization mapping list on GitHub [7, 5]. This list will be used to

identify the ad networks appeared in the collected traffic. There are some unpopular

ad networks that are not included in any lists. To identify all the possible ad network

domains in our traffic, we utilize the DuckDuckGo search engine to query each network

domain and get descriptive information of each domain. Bi-grams and tri-grams of the

descriptive texts are used as their features to classify the domains into ad network

domains and non-ad network domains. We construct our training set using 2,000

non-ad network domains from Alexa, and another 2,000 randomly picked ad network

domains from EasyList for training and testing. In the end, the domain classification

accuracy is around 70%.

To improve the classification performance, we also use three classification engines,

i.e., VirusTotal, McAfee, and OpenDNS, to generate the domain classification result

to be our ground truth. For each unique domain we find in the traffic, we query the
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classification engines for every domain which provide us the related information such

as category, subdomains, and the feedback of Whois lookup for the queried domains.

If one of the engines considers the domain as an ad domain, we will add it to our

list. We evaluate the performance using our ground-truth data with labels, and the

domain classification accuracy can achieve 92%. Although this list may not cover all

the ad networks in the market since these engines cannot recognize all the domains,

we consider it to be sufficient for our study. The ad network results contain not only

all the popular ad networks in AppBrain, but also many small ad networks which

have insignificant market shares.

4.2.3 Identify advertiser domains

The advertiser domains can also be observed in the traffic served by the ad net-

works. The advertiser domains are associated with businesses that post ads through

ad networks. In order to identify advertisers, we refer to the three popular domain

categorization services mentioned above - VirusTotal, McAfee, and OpenDNS. If any

of these three services categorize the domain into advertisements (ad networks), ap-

plication and software download, web analytics, and other web related categories, we

consider them as non-advertisers. We consider all the remaining domains associated

with other categories (shopping, education, travel, etc) as advertiser domains, and

remove the ones that could not complete the categorization of all three engines. To

further improve the accuracy of the advertiser list, we utilize Yelp API and query the

top 1,000 business domains for each category (if available) at different locations. We

add any domains that appeared in our Yelp results to enrich our advertiser domain

list.
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4.2.4 Identify location-based ad domains

After classifying the advertisers’ domains, we still need to identify whether the ad-

vertiser’s related ads are location-based ads. To verify it, we have to identify the

relationship between the advertiser domain and the specific locations of the served

ads. Here, we consider the local ads as the location-based ads, which can be confirmed

by Yelp. Simply relying on Yelp’s query results may not be sufficient in identifying

the local businesses. To differentiate the local business with all the advertisers, we

crawl all the advertiser domains and check if the front page of each domain contains

the city name or not. By combining the yelp local business list and web crawling

result, we can identify the location-based ad domains.

4.2.5 Identify ad blocker types

There are majority of two types of ad blockers, the first one is based on the blacklist

and whitelist, and the second one is based on the VPN to filter all the ad related

traffics. The first type generally need to require the root access of the phone in

order to change the system settings based on their predefined blacklist and whitelist.

Therefore, all the traffics fall into the blacklist will be blocked by the system which

are those ads. Vise versa, the second type do not need the root access and they

normally have their own VPN built on their server, all the outgoing and incoming

traffics will go through their VPN before reach the phone. In another words, the

traffics that lands on the phone have been filtered by the VPN server without any

ads. To differentiate those ad blockers, we used the detector built in the android

system. After we launch the app, we go to the system setting to check whether there

is a new VPN running. To further identify whether those VPN ad blockers’ capability

of capturing our PII data on their server side. we need to identitfy the exact VPN
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protocols those ad blockers used, and we use wireshark as our tool to verify this.

First, we make sure their is no VPN running on the phone, and we start to dump

all the traffics by launching the VPN ad blockers. Then we use wireshark to check

all those dumped traffics. There is a column in wireshark called ”protocol”, and we

first go through all the traffics manually to see whether wireshark can help us to

identify the VPN protocols. Unfortunately, wireshark only provides us the protocols

like TCP, HTTP, or TLS, etc., which are not the ones we are looking for. In the end,

we find out there are regular ports used for each of the VPN protocols, and we start

to filter traffics through regular ports, which help us to exclude some protocols.

4.2.6 Identify PII leaks

Mitmproxy provides a standard method of reading and parsing the captured traffic.

We use Mitmproxy to extract the information from the traffic flows including the

domains and any PIIs. For PII leakage study, we first extract the HTTP/HTTPs re-

quest URL, response URL, and request/response contents. By integrating the domain

organization mapping lists mentioned above [7, 5], we generate a complete leakage

parameter dictionary for every organization. Then, we look up the leakage parame-

ter dictionary to identify the known PIIs values (including hashed values with MD5,

SHA1, SHA256, and SHA512) and evaluate the severity of ad networks’ PII leakage

at different levels including app-level and organization-level across different locations.
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Algorithm 1 PII Leakage Identification Algorithm
INPUT: Predefined PII list (according to Table 3.1), Domain organization mapping list.
OUTPUT: PII leakage of each app

1: for each App do
2: for each location do
3: Extract Gets and Posts URLs from captured traffic flows
4: Extract key-value pairs from the URLs
5: Match the key-value pairs with hashed PII values in PII list
6: if find a match then
7: Log the key-value pair as a PII leakage for the app
8: Extract domains associated with the key-value pair
9: Match domains to the domain organization mapping list
10: if find a match then
11: Log the key-value pair as a PII leakage for the matched organization
12: else
13: Log the key-value pair as a PII leakage for “Others” organization
14: end if
15: end if
16: end for
17: end for
18: Return PII leakage results
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Chapter 5

Measurement Results And Analysis

In this section, we present our measurement results based on extensive experiments.

We first compare the mobile web ad tracking and in-app ad tracking behaviors. Then,

we expose the organization-level cross-app privacy leakage based on the traffic analysis

results. Finally, we study the ad networks’ data collection behaviors across different

locations, i.e., different cities, rural/urban areas. We use 8 Moto G4 mobile devices

with the Android 4.4.4 (compatible with JustTrustMe) or Android 7.1.2 framework

to automatically launch traffic measurement and analysis. For apps that fail to run

on Android 4.4.4, we rerun them on Android 7.1.2 without SSL unpinning.

5.1 Measurement Dataset

We have collected two traffic datasets to facilitate the measurement study. Dataset 1

contains traffic from 1,100 popular apps running at two locations (i.e., Lincoln, Ne-

braska and New York City), while Dataset 2 contains the traffic from 110 apps (ran-

domly selected from the 1,100 apps of Dataset 1) running across 10 different locations,

detailed in Table 5.6. Within these two datasets, we removed the apps that fail to

generate network traffic in all the locations. In the end, we collect 63.0 GB traffic

data: Dataset 1 contains 814,117 traffic flows from 1,026 apps across 2 locations, and



20

Dataset 2 contains 535,655 traffic flows from 110 apps across 10 locations.

5.2 Mobile Web Ad Tracking vs. In-app Ad Tracking

Mobile web ad tracking allows ad networks to collect users’ private information during

web browsing activities. We collect the HTTP request/response URLs related to

mobile web ad tracking and compare them against in-app ad tracking results.

Fig. 5.2 shows the number of third-party domains embedded in the landing page

of web ads sorted by domain names, and the number of third-party domains in the

traffic of mobile apps.

Finding 1: mobile web ads and in-app ads contact a similar set of popular

third-party domains. For both types of ad tracking, googleapis.com is the most

popular third-party domain. Despite such similarities, we also find some third-party

domains (especially these ad network domains) only exist in the mobile traffic for

in-app ads, such as flurry.com, unity3d.com, applovin.com, mopub.com, etc. The

reason is that: different from in-app ad tracking that tracks both ad networks’ and

advertisers’ domains, web ad tracking only tracks the advertisers’ domains. Please

refer to [18] for detailed result.

Our experimental results in Figure 5.1 show the distribution of HTTP field values

in the collected network traffic from the ad libraries, and the two rightmost columns

show that most advertisers specify their landing URLs in HTTP (more than 95%)

rather than HTTPS (less than 5%). The reason is that many third-party contents

embedded within the landing pages are loaded over HTTP, which can cause mixed-

content errors if the original sites are upgraded to use HTTPS. The low adoption

rate of HTTPS in web ad deliveries is likely to continue since third parties use HTTP

by default to better serve HTTP referrer headers and advertise the sources of the
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Figure 5.1: HTTP field distribution among all the ad libraries

redirected traffic.
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Figure 5.2: Third party domains for mobile web ads and in-app ads.

Finding 2: mobile web ads have a significantly lower adoption rate of

HTTPs than mobile in-app ads. We also compare the total percentage of

HTTP/HTTPs traffic flows originated from domains related to web and in-app location-

based ads. As shown in Table 5.1, we can see that HTTP traffic dominates in the web
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ad traffic. The reason is that many landing pages contain third-party HTTP content,

which can cause mixed-content errors if the landing pages upgrade to HTTPs. The

low adoption rate of HTTPs in mobile web ads is likely to continue as long as third

parties continue to use HTTP by default. On the other hand, mobile in-app ads

mostly carry HTTPs traffic. The reason is that in-app ads do not use HTTP refer-

rer headers to indicate the sources of the redirected traffic, and thus will not incur

mixed-content errors. Without such legacy issue, mobile in-app ads tend to adopt

HTTPs for secure app-server communications.

TABLE 5.1: Comparison of HTTP/HTTPs traffic from web/in-app advertiser do-
mains.

HTTP traffic (web/in-app) HTTPs traffic (web/in-app)
84.8% / 18.48% 15.2% / 81.52%

(a) Oahu (b) Lincoln

Figure 5.3: Heatmap of location requests in landing URLs on the island of Oahu and
Lincoln.

Finding 3: mobile web ads request location via landing URLs leading to

privacy leakage concerns. In our web ad traffic, we discover a significant amount of

advertisers who seek location information via the landing URLs’ macro parameters,

without explicitly expressing their purposes. These reckless behaviors allow eaves-

droppers to collect and infer sensitive information about users’ by observing the ad

traffic passing through the network. Fig. 5.3 shows the heatmap of location requests
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TABLE 5.2: Number of unique domains identified in each category

Dataset All domains Top-level domains Ad domains Location-based
ad domains

Dataset 1 7,208 2,532 970 208
Dataset 2 4,398 1,760 539 141

(with hot zones and cold zones) in landing URLs of mobile web ads on the island of

Oahu and Lincoln. We can see that the location requests tend to be positively related

to the population distribution. These observations motivate us to further investigate

the privacy leakage through mobile ad networks across different organizations, as well

as various locations with an emphasis on the hot zones.

5.3 Organization-level Cross-app Privacy Leakage

The advertising organizations usually own multiple ad networks, and it is conceiv-

able that they tend to aggregate data from these ad networks to achieve a better

user profiling for targeted ad delivery. In this section, we expose the organization-

level data collection behaviors of popular ad networks. We also identify the different

organization-level privacy leakage behaviors across different locations.

AppBrain [1] provides a list of the ad network popularity based on the number of

installs of related apps. Similarly, we rank these ad networks based on the collected

network traffic of Dataset 1, the result of which can be found in [18]. The result

indicates that AdMob (i.e., Google ad network) is observed in the traffic flows of

601 (i.e., 58.58%) app, demonstrating the wild popularity of Google’s ad network.

Moreover, Unity 3d, ranked second, is observed in 180 (17.54%) apps’ traffic flows.

This result is consistent with the ad network popularity list of AppBrain website.

Table 5.2 presents the number of domains identified in each domain category.

Within all the domains in Dataset 1 (or Dataset 2), we identify 2,532 (or 1,760)

unique top-level domains by combining multiple sub-domains. These domains belong
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Figure 5.4: Number of total ads and location based ads in each city (Dataset 2).

to 496 (or 247) different organizations. Using the domain classification methods in

Section 4.2, we can identify 970 (or 539) unique ad domains and 208 (or 141) unique

location-based ad domains, respectively. Location-based advertisement constitutes

21.44% (or 26.16%) of all the captured advertisements.

Finding 4: the number of location-based ads across different cities is pos-

itively correlated with the population density. Fig. 5.4 shows the number of

location-based ads in each city based on the Dataset 2. The result shows that the

number of location-based ads is positively related with the population density of the

cities, which is similar to the phenomenon observed in the mobile web ad marketing

environment. A similar trend is observed with Dataset 1. In New York, we identified

782 unique advertisers and 173 unique location-based advertisers, while in Lincoln we

identified 322 unique advertisers and 72 unique location-based advertisers.
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TABLE 5.3: Top 10 ad organization list of PII leakage severity in all locations sort
by average PII leakage flow count per app.

Organization Average # of PII Leakage
per app

# of PII Leakage Types

LKQD 3,399 3
AOL 360 3
Facebook 322 11
SpotX 279 6
Tapjoy 211 9
Heyzap 184 6
Google 80 15
AppsFlyer 70 7
MoPub 54 2
Applovin 37 2

We examine the app-level privacy leakage and find that Game apps are leaking

private information over a large number of flows, and they leak different types of PII

information. The detailed result can be found in [18]. These top-ranked apps all

interact with multiple ad networks (i.e., 8 ad networks on average), and the orga-

nizations behind these ad networks are able to aggregate a considerable amount of

private information.

Finding 5: Popular ad networks generally collect more diverse types of PII

data. For data aggregation at the organization level, Table 5.3 shows the top 10 list

of the ad organizations ranked by the PII leakage severity in terms of average leakage

flow counts per app (i.e., total leakage flow counts of an ad network divided by the

number of apps associated with this ad network) across all the locations. In general,

the result indicates that some popular ad networks (e.g., Facebook) generate a large

amount of PII leakage flows per app. A considerable number of flows from LKQD,

a video ad platform (which is included in multiple apps, such as cjvg.santabiblia and

com.july.ndtv), leak private information, although it only leaks three different types

of PII information. The top 5 ad organizations ranked by the number of unique PII
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leakage types are: Google, Facebook, Amazon, ironSource, and Tapjoy. This indi-

cates that the big companies with popular ad networks collect most types of privacy

information. It is worth noting that Amazon collects 11 types of PII information,

while we only find 736 flows carrying private information that are associated with

Amazon ad domain within our datasets.

TABLE 5.4: Location related privacy leakage observed in Dataset 1

City name GPS IP address Zip code Total
New York 32,826 29,161 5,857 67,844
Lincoln 25,761 20,765 4,691 51,217

TABLE 5.5: The mean and standard deviation (STD) of PII leakage flow across 10
locations

PII Type Mean STD
Advertising ID 7,762.22 2,311.37
IP address 1,585.85 922.73
GPS 2,072.31 804.21
MAC address 778.83 751.83
Android ID 1,214.82 245.68
email 407.72 103.26
gender 112.69 50.59
IMEI 93.35 46.13
Hardware serial 13.17 4.95

5.4 Location-based Private Data Collection of Ad Networks

Ad networks extensively collect users’ location information. Table 5.4 shows that

the ad networks collect location information in the format of GPS, IP address, and

zip code. We observe that New York has more location-related leakage compared

with Lincoln. This result complies with our assumption that ad networks in larger

cities will initiate more location related requests and collect more location data. The
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TABLE 5.6: PII leakage severity at each location.

City name # of PII leakage Ad networks with maximal
collected PII

Las Vegas 22,328 AdMob
Albuquerque 17,699 LKQD
Honolulu 16,996 LKQD
Washington,
D.C.

16,005 LKQD

Charleston 14,576 AdMob
Blacksburg 14,069 AdMob
Houston 13,095 AdMob
Los Angeles 11,875 LKQD
Lincoln 10,808 AdMob
New York 10,140 AdMob

TABLE 5.7: The PII type that is most frequently leaked by the ad networks based
on 2 datasets.

PII Type Ad Network Collected Times
Advertising
ID

LKQD 72,185

IP Address LKQD 34,584
GPS LKQD 28976
MAC address Tapjoy 5,364
Android ID Tapjoy 7,690
email Google 4,403
gender Appodealx 343
IMEI Fyber 87
Hardware Se-
ries

Charboost 27

experiment with Dataset 2 presents similar phenomenon, which we omit here due to

page limitation.

Before we unveil the details of ad network collection behaviors across different

locations, we evaluate the difference among the leaked PIIs across different locations.

Table 5.5 shows the mean and standard deviation for the number of PII leakage flows

of each PII type to measure the magnitude of the differences across 10 locations.

From this table, we can see that the number of PII collections varies significantly

across locations, while the Advertising ID, IP address, and GPS location are the
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most collected PII types for these mobile ad networks. This observation indicates

that the ad networks behave differently in collecting users’ private information across

different locations.

Finding 6: The number of ad networks’ PII leakage flows differs across

different cities. To further identify the private data collection behaviors of ad net-

works across different locations, we extract the traffic flows related to the ad domains,

measure the total number of PII leakage flows and the number of PII leakage types at

each location. Table 5.6 shows the number of PII leakage flows vary across different

locations. In addition, AdMob collects the maximal number of privacy-leaking flows

within 6 cities. It is worth noting that AdMob collects the most privacy-leaking flows

in almost all cities, while LKQD collects the most privacy-leaking flows in 4 cities,

but it keeps quiet (i.e., collects negligible amount of privacy-leaking flows) in other

cities, maybe due to its failure in the ad space bidding in these cities. Fig. 5.5 shows

the different number of PII leakage types of ad networks across different locations.

Overall, AdMob collects the most types of PIIs across all locations.

These ad networks present different behaviors across different locations, and we

suspect that different ad networks may be interested in different PII types. In Table

5.7, we show the number of times that each ad network collects the corresponding

PII information. We show the ad network with the maximal collection times, which

indicates that the ad network is most interested in the corresponding PII. LKQD has

the most interests in the Advertising ID, IP address, and GPS, while Google is most

interested in email address.

We examine the privacy policy of all the ad networks, and we find that all the ad

networks claim to collect both fine-grained location (GPS) data and coarse-grained

location (IP address) data, which we have confirmed using our measurement study.

Even though all the ad networks claim to collect both fine-grained and coarse-grained
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location data, they are still different from each other in terms of the number of

decimals in the collected GPS location data. To put it into context, when the decimals

of GPS data are 3 digits, it can be used to identify the neighborhood or street which

is precise to 111.32 meters at the equator. Moreover, when it reaches to 6 digits, it

can be used to identify the individuals with the precision of 111.21 millimeters at the

equator.
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Figure 5.5: The leaking PII types of top 10 ad networks across different locations.

Finding 7: most ad networks collect fine-grained GPS location data. Table

5.8 presents all the ad network location leakage severity. Among the 35 ad networks,

28 of them have collected user’s fine-grained location (i.e., the number of decimals is

greater than or equal to 6). We consider these ad networks to be aggressive in collect-

ing precise locations since they have the ability to locate individuals very precisely.

As a result, these ad networks can provide advertisers with a precise location target-

ing service. Moreover, among these ad networks, 7 of them collect location data with

the 15 digits decimal accuracy, indicates at least 7 digits in the GPS data are useless.

Potential malicious ad network or attacker can take advantage of these extra digits

to embed some users’ sensitive information and send to the server without getting

spotted.
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TABLE 5.8: The ad networks’ location leakage severity.

Ad Networks # of decimals
in collected
GPS

# of valid
decimals

Sitescout, Mopub,
Google, Appodeal,
mediabrix.com, ad-
srvr.org, Amazon

15 8

Nexage, algovid.com,
adhigh.net, LKQD,
fqtag.com, AdColony

14 8

xAd, Flashtalking 13 8
Facebook, advertis-
ing.com

8 8

1rx.io, PubMatic 7 7
OpenX, Yandex, In-
neractive, SpotX,
Casale Media,
Unity 3D, smartad-
server.com, Stream-
Rail, Smaato

6 6

Vungle, AdBuddiz,
Heyzap, Applovin

3 3

Adform, Millenial Me-
dia, InMobi

1 1

5.5 Rural Area vs. Urban Area Location-based Mobile Track-

ing

The aforementioned experiments prove the different tracking behaviors of mobile ad

networks across different cities. As shown in Table 3.2, most ad networks support

location-based ads with respect to different cities. We set up an experiment to verify

whether these ad networks behave the same at rural area and urban area in the

same city. We select 10 popular apps, which collectively include 29 ad libraries. The

details of these selected apps can be found in [18]. We also pick two locations, i.e., the

Downtown and Lake Ray Roberts, in a large city Dallas for comparison. We further



31

randomly pick 5 points in the Downtown area, and 5 points in the Lake area. To

avoid the time variability, two comparative tests (i.e., one in Downtown and one in

Lake) are performed simultaneously using the same apps with the same recorded user

inputs. We run each app for 10 minutes, test it 10 times at each point, and collect

the network traffic.

Finding 8: More diverse group of mobile ad networks show up in rural

area, which results in more PII leakage. We notice similar number of PII leakage

for most PII types at these two different locations, while significant difference can be

observed for four PII types as shown in Table 5.9. Generally, the rural area (i.e., Lake)

collects more PII data than the urban area (i.e., Downtown), which is counterintuitive.

Delving into the traffic, we notice a more diverse group of ad networks in the Lake

area, who collect more PII information. Notably, LKQD and Tappx collect most of

the PII information in the Lake area, but both never show up in the Downtown area.

This can be attributed to the less competition in the Lake area for the ad bidding

system, which brings in “less competitive ” players in mobile ad business. On the

other hand, the Downtown area is a highly competitive area for mobile ad networks,

where “more competitive” players win with a high probability.

TABLE 5.9: Location related privacy leakage for rural/urban area

Location Average # of
GPS

Average # of
IP

Average # of
Ad ID

Average # of
Android ID

Downtown 10 42 35 22
Lake 47 144 131 210

TABLE 5.10: PII leakage w/o ad blockers

Ad blcokers Average # of
GPS

Average # of
IP

Average # of
Zip code

Average # of
Android ID

without ad-
blockers

118 56 210 74

with adblockers 47 32 75 49
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5.6 The Data Collection of Ad Blockers

Finding 9: Ad Blockers can efficiently block the PII leakage without gath-

ering the user’s PII. There are different kinds of ad blockers as we mentioned in

the section 4.2.5, so here we listed all the attributes that related to the ad blockers we

explored in this paper as shown in Table 5.11. As we can tell, half of the ad blockers

we explored used VPN and half of them used blacklist approach. Meanwhile, we

are based on the regular ports that are used by different VPN protocols to filter the

traffic which we listed in Table 5.12. In the traffic, we didn’t find any UDP packages,

and we found the port 443 has been largely used, so we could narrow down the VPN

types to OpenVPN or SSTP, which both of are identified to be secure VPN protocols.

In another words, based on our experiments, those ad blockers do not have feasible

access to the users’ traffic. The last objective for us is to explore the capabilities of

ad blockers in the process of leaking users PII to those third-parties. As shown in

Table 5.10, majority of ad blockers can block a lot of ad traffics and PII leakage at

the same time.
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TABLE 5.11: Ad blcoker attributes

Ad blocker
Name

Root needed Blacklist VPN VPN
Types

Mobile
App or
Browser

AdGuard No No Yes OpenVPN
or SSTP

App

AdClear No No Yes OpenVPN
or SSTP

App and
Browser

AdAway Yes Yes No / App and
Browser

Brave No Yes No / Browser
Block This No No Yes OpenVPN

or SSTP
App and
Browser

Ad Lock No No Yes OpenVPN
or SSTP

App and
Browser

Ad Blocker Plus No Yes No / App and
Browser

TABLE 5.12: VPN Type and Regular ports

VPN Types TCP regular ports UDP regular ports Security level
OpenVPN 502, 501, 443, 110, 80 1194, 1197, 1198,

8080, 9201, 53
very secure

L2TP / 500, 1701, 4500 not secure
PPTP 1723 / not secure
IKEv2 / 500, 1701, 4500 not secure
SST 433 / very secure
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Chapter 6

Discussions and Future Work

SSL pinning and input automation. We investigate the private data collection

behaviors of ad networks across different locations. We use real devices for our mea-

surement study to avoid the emulation detection mechanism of some sophisticated

apps. Higher version of Android system has implemented a stricter rule in preventing

SSL unpinning, in which the developers can prevent traffic interception by trusting

only specific/allowed certificates. As a result, we cannot decrypt HTTPs traffic from

several apps which only work with high Android version. Also, SSL unpinning does

not work with all the apps, This is a common limitation of traffic analysis on Android

devices. Our results are based on the traffic of the apps that could be captured. We

also use Monkey to automate the user input generation, and the proposed study will

benefit from the advancement of input generation tools [26] to improve the coverage.

App execution time. Our automated platform only executes one app for 5 or 10

minutes. However, in location-based advertising, the app’s execution time can be

a key element that impacts the traffic collection results. Some advertisers prefer to

provide their location-based ads during a specific time of the day so that they can

maximize the effectiveness of their ad delivery. For future study, we will record all the

timestamps of our traffic and find out which period of time is the golden collection

time for different ad networks, and how these ad networks’ behaviors will change at
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a different time.

Traffic obfuscation. Obfuscation has been used by apps to encrypt users private

data like username, password, or email. As mentioned in Section 4.2, we hash all

the known PII values with different hash functions to match traffic. However, if the

malicious ad networks or attackers intentionally try to evade our analysis, they can

steal the users’ PII without getting spotted by using customized hash functions or

encryptions.

VPN Protocol Identification. In this paper, we used the regular ports to find out

the potencial VPN protocols used by those ad blockers. However, we only explored

limited number of ad blocker apps, and our approach to find out the protocol types

can be enhanced. For instance, different VPN types have different handshakes when

we connect to the VPN server, and one idea is to find out the patterns of handshakes

in the traffic for different VPN protocols, so we could use that as our ground truth

to further evaluate our result.
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Chapter 7

Conclusion

In this paper, we present a measurement study for privacy leakage in location-based

mobile advertising service. We proposed and implemented a transverse measurement

platform for mobile ad networks capable of location spoofing, domain classification,

and privacy leakage detection. We performed extensive threat measurements and as-

sessments with the collected traffic data. Our findings show that mobile web tracking

and in-app tracking share a similar set of third-party domains, and the exceedingly

high percentage of HTTP requests in mobile web ads becomes a vulnerable point

inciting eavesdropping attacks. Our results verified that ad networks perform differ-

ently across different locations, and most ad networks can extract precise locations.

Alarmingly, there is little correlation between ad network size and their location in-

formation leakage severity since both large and small ad networks could collect or

infer fine-grained location information. The ad blockers can effectively block a lot of

traffics that related to PII leakage, and they do not have the feasible access to the

user’s data.
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