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As agricultural implement designs have progressed in recent years, there has been an 

increase in hydraulic power demand from the tractor.  Current power estimation 

standards do not accurately estimate hydraulic power demand for implements designed 

with higher hydraulic power requirements.  Several stakeholders, including agricultural 

producers, tractor and implement manufacturers, and government agencies would benefit 

from accurate published data on these power requirements. 

While an increasing amount of operational data available on the Controller Area 

Network (CAN) of tractors has assisted researchers in more easily obtaining machinery 

performance data, hydraulic control valve flow rate and pressure measurements are not 

currently publically available on modern tractor CAN systems.   Thus, this study 

attempted to determine the minimal amount of additional instrumentation needed to 

measure these parameters.   

Results validated that CAN-reported valve spool position could successfully predict 

flow rate when the tractor’s pump was capable of producing a sufficient flow rate to 

satisfy the overall tractor and implement flow demand.  However, this message failed to 

predict flow rate in all valves whenever the pump became flow-limited due to 



 

circumstances including multiple valves actuated simultaneously, low engine speeds, or 

high circuit pressure requirements.  A customized orifice flowmeter was found to be a 

compact, cost-effective solution to estimate flow rate under such flow-limited pump 

conditions.  A flow rate prediction method was tested incorporating temperature 

compensation using CAN-reported valve spool position in flow-sufficient conditions and 

the orifice flowmeter in flow-limited conditions.  Mean absolute errors below 3 Lpm 

(5.5% MAPE) were observed between the predicted flow rate and measurements from a 

laboratory-based turbine flowmeter for various simulated tests. 

Once determining the flow rate prediction methodology was acceptable, hydraulic 

power requirements were analyzed between two no-till air drills utilized for small grain 

planting operations in Eastern Nebraska.  To allow a CAN data logger to serve as the sole 

data acquisition system, a customized instrumentation integration device, the Sensor 

CAN Gateway (SCANGate), was developed and used to publish all added pressure 

sensor data onto the CAN bus.  In addition to quantifying both planters’ hydraulic power 

requirements, comparisons were made between the time and fuel requirements per area 

for both operations. 
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Chapter 1: Thesis Introduction and Goals 

How much power does an agricultural implement require?  This question generally 

cannot be easily answered without the consideration of numerous parameters.  The 

complexity of the possible levels within these parameters further complicates the ability 

to answer this question.  While some parameters can be controlled independently by the 

operator, others are dependent on factors difficult to quantify such as field conditions and 

weather.  While academic research has been conducted over decades attempting to 

quantify power requirements for various operations, continued research is needed to 

improve estimated predictions and account for the latest machinery technology. 

As part of a larger effort towards determining modern implement power requirements 

across different crops, sizes, manufacturers, and field conditions, work conducted for this 

thesis focused on determining methods to measure hydraulic power demand.  The overall 

purpose of this thesis was to determine the simplest auxiliary sensor instrumentation 

method capable of effectively inferring agricultural implement hydraulic power 

requirements.  In total, four chapters included in this thesis dissect the challenges 

encountered towards achieving this goal, detail solutions developed to overcome these 

challenges, and provide results on the success in these solutions. 

Using machine CAN messages available on modern tractors eliminates the need for 

additional sensors for variables that are reported in a standard format.  However, if 

additional sensors are needed to log all necessary variables for a machinery performance 

study, a data acquisition system that effectively merges machine CAN messages with 

auxiliary sensor data is needed.  Chapter 2 focuses on the development of an effective 
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method to allow a CAN data logger to serve as the sole data acquisition system for 

studies requiring auxiliary sensor installation.   

Of the standardized CAN messages commonly available on modern tractors, the 

estimated flow rate message based on hydraulic control valve spool position is analyzed 

in great detail in Chapter 3 to determine the ability it possesses in representing actual 

flow rate.  Specific objectives included assessing the accuracy with which the message 

predicted rate, developing a prediction matrix defining when the message represented 

flow rate, and determining the amount of additional instrumentation needed to infer 

hydraulic power demand. 

Building upon the results of Chapter 3, Chapter 4 assesses the accuracy of using a 

combination of CAN-indicated valve spool position and the pressure drop across a 

customized orifice flowmeter to predict flow rate.  Consideration towards incorporating 

temperature effects on both flow rate prediction methods is given and discussed. 

Successful implementation of a prediction method using these inputs eliminates the 

potential difficulties of installing a turbine flowmeter between the tractor and implement. 

Chapter 5 discusses a field machinery performance study for two no-till air drills 

planting small grains.  In addition to quantifying hydraulic power demanded by the 

implement, the overall power, time, and fuel requirements for the operation were 

analyzed amongst different field terrains and varying vehicle speeds.  Assessing 

hydraulic power involved the deployment of the simplified auxiliary sensor 

instrumentation method developed in a lab setting and discussed in Chapters 3 and 4. 
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Chapter 2: Integration of Auxiliary Sensor Data to Tractor ISOBUS 

for Field Data Collection  

2.1. Introduction 

For years, researchers have relied on additional sensors connected to data acquisition 

systems to measure variables needed to better understand agricultural machinery 

performance.  This pursuit, in some instances, resulted in modifications to tractor 

components to fit the necessary sensors and data acquisition systems on the machinery 

(McLaughlin et al., 1993).   

As technology has evolved, sensors have been incorporated into tractor and 

implement designs to improve functionality, efficiency, and reduce emissions (Stone et 

al., 2008).   The need for multiple sensors and controllers to communicate with one 

another in the simplest possible infrastructure led to the development of the Controller 

Area Network (CAN).  To allow components from different manufacturers to 

communicate with one another on CAN bus systems, standards including SAE J1939 and 

ISO 11783 were developed to establish benchmarks including common connectors, bus 

physical structures, and message protocols on heavy duty machinery (Stone et al., 1999).  

As a result, messages published in a standard format could be decoded into engineering 

units.  Thus, logging CAN Bus data can be valuable in measuring machinery 

performance characteristics without the installation of additional sensors (Darr, 2012).  

As a result, agricultural machinery systems researchers have focused on using the 

CAN bus as a data acquisition device for tractor and implement studies in recent years.  

Examples of engineering variables available in a standard CAN message format on 
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modern tractors include fuel rate, engine speed, engine load percentage, GPS position, 

wheel slippage, and vehicle ground speed (Al-Aani et al., 2016; Molari et al., 2013; Pitla 

et al., 2016; Pitla et al., 2014).  From measuring these quantities with CAN data, 

researchers have determined field capacity and efficiencies, conducted time studies, and 

measured fuel usage and engine power requirements for various field operations 

involving a tractor and implement (Al-Aani et al., 2016; Kortenbruck et al., 2017; Pitla et 

al., 2016; Pitla et al., 2014). 

 In many instances, the sensors and methods used to determine the engineering 

variables reported on the CAN bus are not traceable.  Thus, studies have been conducted 

attempting to validate the accuracy of certain CAN messages on the tractor (Marx et al., 

2015; Rohrer, 2017).  Results from these studies have varied.  Some variables, such as 

engine speed and fuel rate, closely matched sensor data measured in a lab setting (Marx 

et al., 2015; Rohrer, 2017).  However, CAN reported engine torque percentage was found 

to be significantly different than measured torque on a dynamometer connected to an 

engine (Rohrer, 2017).  Thus, the acceptance of error associated with the CAN 

measurement method must be acknowledged when using CAN variables rather than 

traceable auxiliary sensors as a measurement device. 

 Despite many variables being available on the CAN Bus, other variables that could be 

beneficial in machinery performance studies are either published in a proprietary format 

on the CAN Bus (at the decision of the manufacturer) or not measured at all.  Thus, to 

measure these variables, additional auxiliary sensors must still be incorporated.  For 

studies where both CAN and added sensor data need collected, the ability to merge and 

synchronize the two forms of data is required. 
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Methods for merging CAN and added sensor datasets have varied in past studies.  

Some studies collected CAN data and added sensor data using two separate data 

acquisition systems (Burgun et al., 2013; Lacour et al., 2014; Marx et al., 2015).  In post-

processing, the two datasets were synchronized using the superposition of at least two 

variables, one from each data acquisition system, that were directly related to one 

another.  Other studies utilized a data acquisition system featuring software to 

simultaneously merge both CAN and analog data connected to inserted modules of the 

data acquisition system (Hanigan, 2018; Rohrer, 2017).  While the latter data acquisition 

method eliminates potential difficulty in merging datasets, the combination of purchase 

price associated with these systems and preference to use existing resources may hinder 

the ability for the method to be commonly used depending on the scope and background 

of a study. 

2.2. Objectives 

The goal of this study was to enable a CAN data logger to serve as the data 

acquisition system for agricultural machinery studies involving the addition of sensors to 

measure necessary operational parameters.  To accomplish this goal, specific objectives 

included 1) developing a hardware and software system that could seamlessly merge field 

performance sensor data into CAN Messages, 2) interfacing the device with modern 

agricultural machinery, and 3) investigating the effects of added sensor data (sampling 

frequency and total message number) on bus load. 
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2.3. Materials and Methods 

2.3.1. ECU Selection 

An electronic controller unit (ECU) was needed in this study to publish sensor data 

over the CAN bus to enable data collection with a CAN data logger.  Certain features 

were prioritized in selecting an ECU, including the number of input ports available, the 

ease in programming the unit to convert sensor data into CAN messages, and the ability 

to handle rugged field conditions.  The ECU (PLUS+1 MC024-110, Danfoss North 

America, Ames, Iowa) selected excelled in each criteria.   

While an adequate number of analog and digital input ports were available on the 

ECU directly, if more inputs were needed than available on the ECU, an expansion 

module (IX024-010, Danfoss North America, Ames, Iowa) could be added to create more 

inputs.  For both the ECU and expansion module, the input pins were configurable to 

allow for flexibility in usage with different combinations of sensor types.  The input 

capabilities for both devices are listed in table 2.1. 

Table 2.1: Danfoss PLUS+1 ECU and expansion module input configuration 

Maximum Number of Input Types 
Available for Device 

MC024-110 
ECU 

IX024-010 
Expansion 

Module 
Total 14 18 

Digital 11 13 
Analog 8 12 

Frequency 5 7 
Temperature / Rheostat 2 4 

 

The selected ECU was programmable via a graphical programming proprietary 

software (PLUS+1 GUIDE, Danfoss North America).  Within the ECU application 

programming software, numerous settings for the ECU were adjustable to properly 
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configure it to a given CAN application, including the CAN Bus baud rate and input and 

output pin configuration.  CAN messages were produced by the ECU through using a 

special CAN transmit block within a given application.  Other configurable components 

and functions allowed the transmitted CAN messages to contain analog voltage readings 

from various ECU input pins.  Figure 2.1 illustrates a sample sub-application from the 

created program.   

 

Figure 2.1:  Plus+1 GUIDE sub-application programmed for CAN message transmission using input pin 
readings.  

For each CAN message created by the added ECU, consideration to the SAE J1939 

and ISO 11783 standards was given in forming the identifier and data byte arrangement.  

As most connected sensors would supplement a CAN message not published in a 

standard format, the identifier for the created message typically was set to the standard 

identifier associated with that data.  For measured variables not defined by either 

standard, rather than creating additional messages, sensor data were instead placed in data 

bytes not used by other created messages following a standard format to reduce the 

number of messages required to be published over the bus.  Additionally, the frequency at 
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which the messages were published could be adjusted within the CAN transmit function 

block.  As shown in figure 2.2, the function utilized an oscillator and positive trend 

component to allow adjustment to the message frequency. 

 

Figure 2.2: Within the CAN TX function block, adjustment to the message frequency was made by altering 
the oscillator period that was tied to the Transmit CAN component “send” setting. 

2.3.2. CAN Connection Location 

Typically, there are two main CAN bus channels on a tractor.  One, intended for 

tractor related messages, is commonly referred to as the tractor bus, while the other, 

intended for implement related messages, is known as the ISOBUS.  ISOBUS channels 

on tractors today have a baud rate, which defines the rate of data that can be transmitted 

over the bus, of 250 kbit/s, while the tractor bus is either 250 kbit/s or 500 kbit/s.  A 

standard J1939 message containing 8 data bytes is 128 bits in length excluding stuffing 

bits (Kvaser, 2019; Voss, 2018).  These baud rates have been selected to accommodate 

the expected number of messages published over the bus.   

While the baud rate defines the maximum rate that data can be transmitted, in reality, 

the bus load, or percentage of the baud rate used, should be kept lower.  Deere (2018) 
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suggests that bus loads 45% and greater increase potential for communication errors to 

occur, while according to Kvaser (2019), most systems are designed with a corresponding 

bus load maintained below 50%.  Additionally, certain implements with ISOBUS 

compatibility do not work with bus loads higher than 25% (Deere, 2018).  Unlike the 

tractor bus, the bus load on the ISOBUS varies with different implements connected to 

the tractor.  For implements that do not feature ISOBUS technology, sufficient room for 

the addition of auxiliary sensor data exists.  However, there are advantages in placing 

auxiliary sensor data on the tractor bus if there is available room due to no change in 

required bus load based on the implement used. 

Two standard tractor CAN connection ports that were considered for connection of 

the added ECU were the CAN diagnostic port and the ISOBUS breakaway connector 

(IBBC).  The addition of sensor data to the machine CAN was simplest through 

connection into one of these two ports.  The diagnostic port, which allows for connection 

of a CAN data logger or diagnostic tool into either channel, is typically located in the 

tractor cab.  The IBBC, generally located behind the tractor cab, allows an implement to 

communicate with the tractor CAN system via the ISOBUS channel.  For either port, an 

additional port connection was needed to allow the CAN data logger or implement CAN 

system to simultaneously function.  Benefits of using the diagnostic port included the 

ability to connect into either bus, a more suitable environment for the ECU, and better 

access to the ECU to troubleshoot issues if they would occur.  Benefits of using the IBBC 

included a closer location to sensor installation for implement data collection studies and 

the elimination of running additional wiring to the cab of the tractor.  In an attempt to 
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minimize data acquisition components in the tractor cab, connection to the IBBC on the 

back of the tractor was selected for this study. 

2.3.3. Electronics Enclosure Development 

A customized electronics device, henceforth referred to as the Sensor CAN Gateway 

(SCANGate), was developed to integrate sensor data to the ISOBUS through the ECU.  

The SCANGate fulfilled several goals, including providing power to all sensors, 

connecting sensor outputs to the necessary ECU input pins, and connecting the ECU to 

the CAN system. 

To connect to the tractor IBBC, an ISOBUS implement connector was used.  As 

shown in figure 2.3 and elaborated in table 2.2, the connector pair featured 9 pins total.  

To allow implements access to the ISOBUS, the SCANGate featured an additional IBBC.  

A wiring harness to power all pins in the added IBBC was routed from the ISOBUS 

implement connector to the added IBBC.  No terminating bias circuit (TBC) was needed 

at the end of the SCANGate bus segment due to the added IBBC featuring a TBC 

internally.  Thus, only 8 wires made up the harness (no TBC disconnect).   

Table 2.2: ISOBUS breakaway connector pin description 

Pin Number Description 
1 Pass through ground 
2 ECU Ground 
3 Pass through power 
4 ECU Power 
5 TBC Disconnect 
6 TBC Power 
7 TBC Return 
8 CAN high 
9 CAN low 
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Figure 2.3: ISOBUS breakaway connector.  Numbered pins represent pin number in Table 2.2. Figure from 
Powell Agriculture. 

To power both the ECU and all added sensors, power and ground were provided from 

the ECU power and ground pins.  While it was anticipated that all future sensors would 

have input voltage ranges compatible with the tractor battery voltage (12-24V DC), 5 V 

(DC) could also be provided to sensors from the ECU.  To connect the ECU to the CAN 

bus, a pigtail from the CAN high and low wires was routed to the ECU CAN pins.  

Terminal blocks were fastened to the side of the enclosure box to allow easy connection 

of the sensor wires to power, ground, and the necessary ECU input pins.  Figure 2.4 

shows a picture of the resulting SCANGate electronics enclosure and wiring harness. 
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Figure 2.4: The SCANGate electronics enclosure and wiring harness with hardware components labelled. 

2.3.4. SCANGate Data Collection Method 

For studies that were to incorporate the SCANGate, all data were to be collected 

using a CAN data-logger connected to a tractor’s CAN diagnostic port.  The logger 

selected for use (Pro 2xHS v2, Kvaser AB, Mölndal, Sweden) featured the ability to 

incorporate filters to log selected desired CAN messages to an SD card.  Due to the raw 

format of the resulting log files output by the CAN data-logger, a Matlab program was 

developed to convert raw CAN data into engineering units to facilitate data analysis from 

various tests.  Figure 2.5 provides a flow diagram detailing the data collection method 

utilized. 
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Figure 2.5: Block diagram detailing the addition of sensor data to the ISOBUS that can be logged and 
post-processed into engineering units. 

2.3.5. Bus Load Test Equipment and Procedures 

A modern tractor (6145R, Deere & Company, Moline, Ill.) was selected to test the 

developed SCANGate.  Due to the tractor’s physical design and the desire to use the 

SCANGate for mobile tests in the future, a customized mounting bracket was built to 

secure the device (figure 2.6b).  The bracket located the SCANGate behind the tractor 

cab between the three point hitch, hydraulic valve assemblies, and just below the rear 

window opening path. 

 

Figure 2.6: (a) JD 6145R tractor used for this study with (b) SCANGate and bracket mounted on rear. 
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The selected tractor’s virtual terminal featured a Diagnostics Center tool (figure 2.7) 

that displayed various machine CAN performance statistics, including bus load (listed as 

bus utilization).  The tool also provided an effective message count over a given time 

period among other information for each machine ECU.  While the Diagnostics Center 

could not validate the transmission of individual messages and log data contained in these 

messages like the CAN data logger, the tool was sufficient for providing CAN system 

performance information. 

 

Figure 2.7: Diagnostics Center page on tractor’s virtual terminal displaying effective ISOBUS bus load.   

After plugging the SCANGate into the tractor’s IBBC, a CAN bus-to-USB interface 

(Danfoss CG-150, Danfoss North America, Ames, Iowa) was used to connect a computer 

to the tractor CAN diagnostic port.  This connection allowed the computer to download 

programmed applications to the ECU using a service tool software (Plus+1 Service Tool, 

Danfoss North America, Ames, Iowa).  Upon successful download, the ECU began 

publishing CAN messages on the ISOBUS.   

Different applications were developed and downloaded to the added ECU to 

determine the effect of the number of messages published and their set frequencies on the 
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ISOBUS bus load.  In total, 5 different number of messages (1,2,4,6,8) were each tested 

at 5 different message frequencies (1,2,5,10,20 Hz). All data bytes in every SCANGate 

CAN message transmitted were set to broadcast at a constant value (255).  Additionally, 

all SCANGate messages were broadcast with lowest priority to ensure existing CAN 

messages would broadcast first.   

An additional variable altered amongst different applications downloaded to the ECU 

was the source address contained within the CAN message identifier.  Different numbers 

were tested to determine the interaction the added messages would have with the CAN 

system, including the Diagnostics Center pages on the virtual terminal.  

2.4. Results and Discussion 

Table 2.3 details other ISOBUS ECU names listed in the Diagnostics Center of the 

tractor’s virtual terminal and their respective source address. For all of the messages 

output over the ISOBUS, the Diagnostics Center tool on the virtual terminal reported a 

bus load percentage that fluctuated closely around 15%.  In comparison, the reported 

tractor bus load percentage with a 500 kbit/sec baud rate fluctuated around 45%, which 

indicated there was limited room for additional messages. 
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 Table 2.3: ISOBUS ECUs Listed on Tractor Virtual Terminal 

Source Address (Hex) Device Name Shown 
1C StarFire – Vehicle Navigation 
26 Vehicle Terminal Implement 
2A Vehicle Guidance 
2B Implement Message Service 
D2 Documentation for Operational Information 
ED Precision Farming Reprogramming 
EE Sequence Controller Implement 
F0 Tractor ECU 
F7 Task Controller 
FB JDLink (Machine Monitoring System) 
FC Mobile Processor (GreenStar) 

 

Based on the existing ISOBUS ECU source addresses listed in the Diagnostics 

Center, three added ECU source addresses were tested.  Values included a standard J1939 

source address (248), an existing ISOBUS ECU source address (247), and a number 

reserved for future assignment in the J1939 standard (246).  CAN messages with a source 

address of 248 were listed under new ECU on the Diagnostics Center labeled “File Server 

/ Printer,” which matched the description defined by the J1939 standard for that source 

address.  CAN messages with a source address of 247 did not show up under a different 

ECU, but were instead included within the Task Controller ECU message count along 

with the existing messages transmitted by that ECU.  CAN messages with a source 

address of 246 were not displayed on the Diagnostics Center page but were recorded by a 

data logger.    From this test, it was determined that the preferred node number was a 

standard J1939 source address value that was not used among existing ISOBUS ECUs, 

such as 248. 

Table 2.4 details the overall ISOBUS bus load displayed by the Diagnostics Center 

for different applications containing varying combinations of added message and 
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message rate levels.  All messages were successfully broadcasted at their assigned rates 

for the lowest priority assignment.  As graphically shown in figure 2.8, a linear 

relationship was observed between the total number of added messages per second and 

increase in bus load.  Due to the whole percentage precision level in the reported bus 

load, there appeared to be little change in bus load at a lower range of total messages. 

However, the linear trend was far more prominent at higher ranges of total messages.  

From a best-fit line equation, it was estimated that each added message per second would 

increase bus load by approximately .053% for a 250 kbit/s baud rate, which was similar 

to the expected increase assuming 128 bits per message.   

Table 2.4: Total ISOBUS Bus Load for Various Added Message Numbers and 
Frequencies 

Bus Load (%) 
Sampling Rate (Hz) 

1 2 5 10 20 

Number 
of 

Added 
Messages 

1 15.5 16 16 16 17 
2 16 16 16 17 18 
4 16 16 17 18 20 
6 16 16 18 19 22 
8 16 16.5 18 20 24 
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Figure 2.8: Graphical representation of corresponding bus load for different total added messages per 
second to the ISOBUS. 

 𝑦𝑦 =  0.0533𝑥𝑥 + 15.71 (Eq. 1) 

 where 
𝑦𝑦    = bus load (%) 
x    = total added messages per second 

 

 

2.5. Conclusions 

Being able to utilize CAN messages for data logging is beneficial in that it eliminates 

the need to install additional sensors to the tractor for measurements that can be obtained 

from the bus.  However, due to a limited number of messages encoded in a standard 

format on current agricultural machinery, there are instances when additional sensors are 

still required to effectively conduct certain machinery performance studies. 

While multiple companies have developed data acquisition systems capable of merging 

CAN messages with added sensor data into a common output file, the SCANGate 

developed in this study allows for a CAN data logger to serve as the sole data acquisition 

system for studies requiring additional sensors.  The primary limitation to the SCANGate 
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solution is the amount of room available on the CAN bus.  Results from this study found 

that the increase in bus load by the SCANGate can accurately be determined due to a 

linear relationship with the total number of additional messages the SCANGate will 

transmit per time interval.  The ability to sample sensor data at lower frequencies and fit 

all sensor data into a minimal number of messages increases the likelihood that the 

SCANGate will work.  Results found that bus load increased by only 1% if less than 15 

additional messages were broadcast per second by the SCANGate.  With knowledge of 

the existing bus load requirements of a tractor and implement, it can be determined 

whether the SCANGate will allow a CAN data logger to serve as the data acquisition 

system for a given field study based on the amount of added sensor data to be collected.    



20 

 

Chapter 3: Assessment of Control Valve Spool Position and Flow Rate 

Relationship in Load Sensing Fluid Power Systems 

3.1. Introduction 

For decades, agricultural producers have relied on tractors to supply implement power 

necessary to carry out a variety of different in-field tasks. Power is transmitted from the 

tractor’s engine to the implement through at least one of three forms. These forms are the 

drawbar or three-point hitch to provide draft power to an implement, the power take-off 

(PTO) to provide rotational power, and the hydraulic system to provide either linear or 

rotational power (Stoss et al., 2013). 

The incorporation of hydraulics to power implements is an increasing trend in modern 

agricultural machinery. Love (2012) estimated that 14 percent of all power generated by 

agricultural tractors was devoted to fluid power components. Manufacturers now offer 

hydraulic systems capable of producing flow rates exceeding 435 Lpm (115 gpm) on 

larger models (Nebraska Tractor Test Laboratory, 2016b).  Additionally, some 

manufacturers now offer the PTO as an added option instead of a standard feature on 

their highest power tractor models (“Build and Price,” 2019; “Options for 9370R Cab 

Tractor,” 2019). In anticipation of usage with tractors lacking a PTO drive, some 

implement manufacturers now offer equipment with functions previously controlled by 

the PTO instead powered by hydraulics.  For example, grain cart manufacturers have 

begun offering models with discharge augers powered by hydraulic motors (“DEMCO 

Harvest Equipment,” 2018). 
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On agricultural machinery, hydraulic power is generated by at least one pump 

powered by the tractor’s engine that displaces oil through tractor and implement circuits 

that convert hydraulic power to mechanical power.  There is a corresponding pressure 

requirement the fluid must achieve to overcome parasitic losses and perform mechanical 

work.  As shown in equation 2, the power requirement of the pump is a function of the 

oil’s flow rate and pressure requirement. 

 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘𝑘𝑘) =  
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑀𝑀𝑀𝑀𝑀𝑀) ∗  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐿𝐿𝐿𝐿𝐿𝐿)

60 � 𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑘𝑘𝑘𝑘�
 

(Eq. 

Error! 

Bookmark 

not 

defined.2) 

Despite the increasing usage of hydraulics, fluid power systems on mobile equipment 

applications possess an estimated efficiency of just 21.1 percent (Love, 2012).  

Inefficiencies stem from several components within the hydraulic system.  However, 

Love (2012) estimates that 43 percent of losses occur in control valves and 25 percent 

occur from power requirements for the fan and charge pump.  To gain an understanding 

of how these losses occur, knowledge of the hydraulic system is needed. 

3.1.1. Tractor Hydraulic System Background 

Hydraulic pumps on modern tractors are responsible for supplying hydraulic power 

both to functions on a connected implement as well as internal tractor functions, 

commonly referred to as primary functions.  Examples of primary functions include 

steering, braking, and control of the three-point hitch.  The pump typically supplies 

energy to an accumulator that provides control to these primary functions; the 
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accumulator can provide temporary pressurized fluid for primary functions should power 

loss occur (Cundiff, 2001).  Connections to implement circuits occur at auxiliary control 

valve or power beyond ports. 

To improve hydraulic power production and transmission efficiency, most modern 

tractors utilize a load-sensing, pressure-compensated (LSPC) auxiliary piston pump 

design.  Pump displacement is controlled by a swash plate angle; thus, the flow rate 

produced by the pump is a function of engine speed and swash plate angle.  Two 

compensators within the pump are used to control a piston that adjusts the swash plate 

angle.  One, commonly referred to as the pressure compensator, is engaged when the 

maximum tolerable working pressure is reached at the pump outlet.  When engaged, the 

pressure compensator moves the swash plate towards zero pump displacement.  The 

other, commonly known as the flow compensator, is used to control the pump 

displacement in the operating pressure range below the pressure compensator setting. 

For hydraulic circuits connected to a load-sensing system, a system of shuttle valves 

is used to determine the highest pressure requirement of all functions in the hydraulic 

system, commonly referred to as the load sense pressure.  The flow compensator balances 

the force generated by fluid pressure at the pump with the combination of forces 

generated by the load sense pressure and a compressed spring within the compensator 

(Dell, 2017).  The compensator works with the LSPC pump to attempt to maintain a 

constant pressure difference, commonly referred to as margin pressure, between the 

pump and load sense fluid pressures.  When the difference between the pump and load 

sense pressure is less than the margin pressure setting in the flow compensator, the swash 

plate angle increases, if possible, to achieve a higher flow rate.  If the difference between 
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pump and load sense pressure is greater than the margin pressure setting, the control 

piston decreases the swash plate angle to reduce the pump flow rate. 

  Auxiliary control valves used with LSPC pumps feature an adjustable main spool 

that creates a variable-sized fluid passageway controlled by the spool’s position.  

Depending on the passageway size and fluid flow rate passing through the valve, a 

certain pressure drop occurs across the spool.  The auxiliary control valve features an 

additional pressure compensator to attempt to maintain a constant pressure difference 

across the spool.  Thus, flow rate through a control valve can solely be dictated by valve 

spool position.  Each valve’s load sense pressure is recorded just beyond the main spool 

on the load side.  Therefore, the pressure difference between pump and load sense closely 

represents the pressure drop that occurs across the control valve with the highest load 

sense pressure.  A higher pressure drop occurs across the pressure compensators in 

control valves with lower load sense pressures to maintain the constant pressure drop 

across the main spool to allow flow rate to be maintained for a given valve spool 

position. 

Although using valve pressure compensators effectively allows multiple control 

valves to each receive their requested flow rate from a single LSPC pump, the pump 

output power efficiency is reduced.  As illustrated in figure 3.1 and detailed in table 3.1, 

the resulting power produced by the pump is a product of the flow rate needed for all 

functions and the highest load sense pressure of the system.  However, the implement 

power requirement is the sum of each individual circuit’s product of flow rate and 

pressure requirement.  Thus, the product of flow rate and difference in magnitude 

between the highest load sense and pressure requirement of each lower load sense valve 
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is wasted power.  Additional wasted power occurs by a magnitude of the product of the 

total system flow rate and margin pressure setting.  All wasted power is converted into 

heat, which increases fluid temperature.  To prevent the fluid from reaching low 

viscosities, which can cause excessive hydraulic component wear and eventual failure, 

the system must cool the hydraulic fluid, adding an additional system energy loss. 

 

Figure 3.1: Hydraulic power delivery breakdown for single pump.  Through this figure, it is seen that 
individual valve flow rate and pressure measurements are needed to determine implement power. 

Table 3.1: Power Values Derived from Figure 3.1 

Value Represented Equation of Value 

Margin Pressure Setting 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝4 − 𝑝𝑝3 

Valve #1 Power Requirement 𝑃𝑃1 = 𝑝𝑝3 ∗ 𝑓𝑓1 

Valve #2 Power Requirement 𝑃𝑃2 = 𝑝𝑝2 ∗ (𝑓𝑓2 − 𝑓𝑓1) 

Valve #3 Power Requirement 𝑃𝑃3 = 𝑝𝑝1 ∗ (𝑓𝑓3 − 𝑓𝑓2) 

Implement Power Requirement 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃1 + 𝑃𝑃2 + 𝑃𝑃3 
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Pump Power Produced 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝4 ∗ 𝑓𝑓3 

Wasted Power 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 

Pump Power Efficiency 
𝜀𝜀 =

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

 

Stoss et al. (2013) discussed how manufacturers have begun incorporating multiple 

pumps on tractors to more efficiently provide power for implements.  Division of high 

and low pressure functions to different pumps reduces the power wasted at the control 

valves.  Additionally, the evolution of digital hydraulics has a strong potential to 

drastically reduce inefficiencies throughout the hydraulic system (Breidi et al., 2017).  

Digital hydraulics presents the opportunity to more precisely deliver the desired flow rate 

to each control valve.   

3.1.2. Means to Measure Implement Hydraulic Power Components 

Because implement power is the product of each individual circuit’s fluid pressure 

requirement and flow rate, both variables of each control valve must be measured to 

accurately determine this quantity.   

For implements where only one control valve is used at a time, measuring total flow 

rate sent to the tractor’s control valve stack, as done by Lacour et al. (2014), is suitable.  

However, complications in flow rate measurements inferred at the pump with swash plate 

angle and engine speed exist due to the pump also potentially supplying flow to primary 

tractor functions and internal leakages which are dependent on the fluid pressure, the 

viscosity of the fluid, and the area of the leakage path (Srivastava et al., 2012).  Similarly, 

measurement of the load sense and return fluid pressures are effective pressure 

measurements in instances when only one valve is used at a time.  Pressure measurement 
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at the pump is not suitable as it would not account for losses in the tractor hydraulic 

system design between the pump and implement circuit.   

Unfortunately, methods capable of measuring flow rate and pressure for single-valve 

usage would not be effective for many implements that require multiple control valves 

actuated simultaneously.  When this is the case, the flow rate and pressure of each valve 

must be measured individually.  Potential methods to measure these quantities are 

discussed below. 

3.1.2.1. CAN Bus Messages 

As technology has progressed in agricultural machinery designs, rather than adding 

sensors and a data acquisition system for machinery data collection studies, researchers 

have utilized CAN messages derived from existing sensor hardware on machines to 

obtain available data of interest.  Certain CAN messages produced by the machinery are 

encoded in a format defined by either the SAE J1939 or ISO 11783 standards.  Anyone 

with access to the standard can interpret these messages into engineering units.  However, 

many engineering variables are either not currently reported on the CAN Bus of modern 

agricultural machinery or are instead published in a propriety format at the discretion of 

the manufacturer.  If valve flow rates and pressures on the inlet and outlet of the valve are 

logged on the CAN Bus in a standard format, implement hydraulic power magnitude can 

be inferred through CAN data. 

3.1.2.2. Flowmeters / Pressure Sensors 

If the CAN bus does not directly offer the needed flow rate and pressure variables in a 

standard format, other methods must be explored.  Ideally, a direct measurement of fluid 

flow rate and pressure is preferred to an indirect method; thus, the addition of flowmeters 
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and pressure sensors are needed.  Pressure sensors are needed on both the extend and 

retract sides of each control valve due to the potential for pump flow being sent through 

either valve side and to account for fluid flow restrictions to tank that could vary by 

tractor design.  Unlike pressure sensors, a single flowmeter can be installed on either 

valve side.  Circuits featuring single-rod cylinders with differing flow rates entering and 

exiting the cylinder require knowledge of cylinder bore and rod dimensions to prevent the 

need for multiple flowmeters on each circuit. 

 The feasibility of adding sensors to machinery that accurately measure such variables 

is an important criteria to consider.  The selected flowmeter for use must be capable of 

fitting between the valve stack behind the tractor cab and the attached implement 

hydraulic circuit.  Due to potential for flow moving in either direction, the flowmeter 

must be capable of measuring bidirectional flow rate.  Compatible turbine flowmeters 

available require uninterrupted flow lengths equivalent to 10 times the port diameter size 

upstream and 5 times the port diameter downstream of the sensor (Badger Meter, 2018).  

Roeber et al. (2016) tested hose bend angles both upstream and downstream of a turbine 

flowmeter and concluded measurement accuracy was sufficient for any hydraulic hose 

bend angle.  However, alternative means to measure flow rate are preferred due to 

minimal room between the tractor and implement conflicted with the long upstream and 

downstream hose-length requirements for turbine flowmeter accuracy. 

Indirect methods of determining flow rate, using quantities that were simple to 

measure and required minimal space, were considered.  Unlike turbine flowmeters, 

orifice flowmeters offer a compact solution.  These flowmeters rely on the standard 

orifice equation (equation 3), derived from Bernoulli’s equation, to infer flow rate as a 
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function of the pressure drop measured across an orifice. The same relationship between 

pressure drop and flow rate occurs in fluid flow path geometry changes, commonly 

referred to as minor losses.  Given that minor losses commonly exist in a hydraulic 

system, the estimation of flow rate from a minor loss versus an orifice flowmeter would 

eliminate the creation of an additional system loss. 

 𝑄𝑄 = 𝐶𝐶𝑑𝑑𝐴𝐴�
2∆𝑝𝑝 
𝜌𝜌

 (Eq. 3) 

 

where 
𝑄𝑄    = flow rate 
Cd  = discharge coefficient 
𝐴𝐴    = orifice area 
∆𝑝𝑝  = pressure drop across orifice 
ρ     = fluid density 

 

 

Manring (2005) proposed a model based on the standard orifice equation to predict 

flow rate produced from a control valve.  Shown in equation 4, the model determines 

flow rate as a function of the valve’s pressure drop and spool linear position.  If a 

constant pressure drop can be maintained across the valve spool, as is intended in load 

sensing hydraulic system designs, then flow rate that passes through the valve can 

theoretically be modeled by the valve spool position alone.  However, pressure drop must 

also be monitored for any instance when the constant pressure drop across the valve spool 

cannot be maintained.   

 𝑄𝑄 =  
1
2
𝑄𝑄𝑜𝑜 + 𝐾𝐾𝑞𝑞𝑥𝑥 + 𝐾𝐾𝑐𝑐∆𝑝𝑝 (Eq. 4) 

 

where 
𝑄𝑄   = flow rate 
x   = control valve spool position  
𝑄𝑄𝑜𝑜 = nominal flow rate when x = 0. 

𝐾𝐾𝑐𝑐 ≡
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

= 𝐶𝐶𝑑𝑑�
2Δ𝑝𝑝
𝜌𝜌

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿
�
𝑜𝑜
= flow gain coefficient 

 



29 

 

𝐾𝐾𝑐𝑐 ≡
𝛿𝛿𝛿𝛿
𝛿𝛿Δ𝑝𝑝

= 𝐴𝐴𝐶𝐶𝑑𝑑
�2𝜌𝜌Δ𝑝𝑝

�
𝑜𝑜
= pressure flow coefficient 

 

3.2. Objectives 

The main goal of this study was to determine the feasibility of quantifying 

agricultural implement hydraulic power requirements using existing machinery CAN 

messages.  Specific objectives to accomplish this goal included 1) confirming whether 

hydraulic pressure and flow rate measurements were available on a modern tractor’s 

CAN system, 2) assessing the accuracy of the CAN messages at reporting the actual 

pressures and flow rates, and 3) determining the minimal additional instrumentation 

needed if CAN messages alone cannot provide information to determine implement 

hydraulic power consumption. 

3.3. Materials and Methods 

3.3.1. Equipment / Materials Used 

Two modern tractors of the same model number (6145R, Deere & Company, Moline, 

Ill.) were selected for use in this study.  Test results from the Nebraska Tractor Test 

Laboratory for this model indicated that the maximum system fluid pressure achieved 

was 20.5 MPa, while the maximum flow rate achieved at rated engine speed was 115.8 

Lpm through a single outlet and 116.8 Lpm through three outlets (Nebraska Tractor Test 

Laboratory, 2016a).  Both selected tractors featured auxiliary control valves with 

electronically adjustable spools.  Control valve settings that could be adjusted from the 

tractor’s virtual terminal included a maximum spool position setting (on a range of 0 to 

10 in 0.04 increments) and detent time length.  A lever for each valve was provided in the 
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cab to control the valve actuation direction, percentage of maximum spool position 

setting, and the initiation of detent or float mode.  

An investigation was conducted on available standard hydraulic-related CAN 

messages published on the selected tractors.  Table 3.2 details relevant hydraulic 

messages outlined in either the ISO 11783 or SAE J1939 standard.  The standard 

message for extend and retract port flow rates and pressures was not available on either 

tractor.  The only hydraulic-related variables published on the CAN bus in a standard 

format were engine speed, hydraulic fluid temperature, and estimated flow rates.  It was 

determined that estimated flow rate, published as a percentage, was directly related to 

each valve’s spool position. While the CAN reported estimated flow percentage did not 

directly match the input setting from the virtual terminal, it maintained a constant 

percentage for each actuated position.  With ability to collect valve spool position data 

for each control valve on the CAN bus, the focus of this study was directed towards 

understanding the scenarios during operation when the estimated flow message 

accurately predicted flow rate.  
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Table 3.2: SAE J1939 / ISO 11783 assigned PGNs related to hydraulics  

PGN Identifier Description Availability 
on Tractor 

Hexadecimal Decimal   
F004 61444 Engine Speed Available 

    

F008 61448 Hydraulic fluid pressure at 
pump  Unavailable 

    
FE10 
FE11 
FE12 
FE13 
FE14 

65040 
65041 
65042 
65043 
65044 

Extend port and retract port 
estimated flow for 

auxiliary valves numbered 
0,1,2,3, and 4, respectively 

Available 

    
FE20 
FE21 
FE22 
FE23 
FE24 

65056 
65057 
65058 
65059 
65060 

Extend port and retract port 
pressure and measured 

flow for auxiliary valves 
numbered 0,1,2,3, and 4, 

respectively 

Unavailable 

    

FE68 65128 Hydraulic oil temperature 
and level Available 

 

A testing apparatus was developed to simulate connected implement circuits and 

measure fluid flow rate.  The apparatus (figure 3.2) featured two duplicate circuits 

containing a turbine flowmeter (Flo-tech Activa F6206-AVB-NN, Badger Meter, 

Milwaukee, Wisc.) that served as the baseline flow rate measurement and an adjustable 

flow control valve, or needle valve, to allow adjustment to the circuit pressure 

requirement.   An analog pressure gauge was also incorporated into the circuit to provide 

the operator with an estimated circuit fluid pressure during testing.   



32 

 

 

Figure 3.2:  (a) Schematic of the (b) hydraulic testing apparatus used throughout the study. 

In order to understand hydraulic system performance characteristics, including power 

magnitudes, pressure was measured on the extend and retract ports of each control valve 

and the pump and load sense diagnostic ports available on the tractor (figure 3.3).  All 

pressure measurements were conducted using a common electronic pressure sensor 

(Omega PX309, Omega Engineering Inc., Norwalk, Conn.).  To measure control valve 

pressures, sensors were added to tee fittings with ISO quick couplers to allow location 

between the control valve and implement. 

 

Figure 3.3: Common pressure sensor locations included (a) on the extend and retract port immediately 
beyond each valve and (b) on diagnostic ports of the pump and load sense. 
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3.3.2. Data Collection Method 

To synchronize data collection, auxiliary sensor data were published as CAN 

messages to the tractor’s ISOBUS.  This allowed for all data to be logged with a CAN 

data logger.  An electronic controller unit (ECU) (Danfoss MC024-110, Danfoss North 

America, Ames, Iowa) was programmed through a graphically programmable proprietary 

software (Danfoss PLUS+1 GUIDE, Danfoss North America) to convert analog sensor 

data into CAN messages.  A customized electronics enclosure (figure 3.4), named the 

Sensor CAN Gateway (SCANGate), was developed to house the selected ECU and 

connect it to the tractor CAN system using an implement-end ISOBUS breakaway 

connector (IBBC).  Furthermore, the SCANGate supplied power to the sensors and 

connected their output readings to the ECU.  For this study, the SCANGate published 

three additional CAN messages containing all auxiliary sensor data at a frequency of 4 

Hz. 
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Figure 3.4: Picture of the developed SCANGate design with hardware components labelled. 

The tractor’s in-cab CAN diagnostic port was accessed to enable two different data 

logging systems (figure 3.5) to be utilized throughout the study.  A standalone data-

logger (Pro 2xHS v2, Kvaser AB, Mölndal, Sweden) saved CAN bus data to an SD card.  

A CAN bus-to-USB interface (Danfoss CG-150, Danfoss North America, Ames, Iowa), 

logged messages to a connected computer through a proprietary software (Danfoss 

CANKing, Danfoss North America).  Various filters were incorporated for both data 

logging methods to only record desired messages from the bus.   
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Figure 3.5: CAN data loggers used in study included (a) Danfoss CG-150 CAN-to-USB interface and (b) 
Kvaser Memorator Pro 2xHS v2 standalone CAN data logger. 

Log files generated by either data logger were produced in a raw hexadecimal format.  

A MATLAB program was created to post-process the CAN log files.  Steps in the data 

post-processing included sorting different messages by their parameter group number 

(PGN), converting raw data bytes into engineering units, and resampling calculated 

engineering values to common time intervals.  Additionally, neutral valve position and 

transient data points were filtered out of the dataset to isolate data with steady-state flow 

characteristics.  Additional MATLAB programs used the filtered dataset to further 

analyze each test’s results.  Figure 3.6 provides a flow diagram detailing the data 

collection method utilized. 
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Figure 3.6: Block diagram detailing the addition of sensor data to the ISOBUS that can be logged and 
post-processed into engineering units. 

3.3.3. Test Types 

Tests analyzing different variables’ effects on the ability to predict flow rate using the 

estimated flow rate CAN message were developed and executed.  Variables of interest 

included engine speed, implement load, the usage of multiple control valves, and 

hydraulic fluid temperature.  Three input variables were adjusted for each test setup: 1) 

the needle valve setting representing implement load, 2) the engine speed, and 3) the 

spool position of each control valve.  While it was preferred to be able to control the 

circuit pressure requirement, the associated pressure requirement would change for a 

given needle valve setting as flow rate changed.  With exception to the temperature test, 

the fluid was always preheated to a stable value prior to testing to eliminate any potential 

effects of fluid temperature.  This was particularly important given all power produced by 

the needle valve circuit was converted to heat, which could increase fluid temperature 

quickly during a test.  Discussion on specific tests and their purpose is presented in 

greater detail in the following sections. 



37 

 

3.3.3.1. Variable Engine Speed Test 

The purpose of the variable engine speed test was to determine the effect of engine 

speed on the flow rate produced through a control valve for a given spool position setting.  

Two spool position settings were used in this test; one corresponded to a mid-level 

estimated flow percentage while the other was fully open to maximize the passageway 

area.  In either case, valve spool position was held constant for the test duration.  The 

circuit needle valve was set to a low pressure requirement setting held constant over the 

test duration to prevent the pressure compensator from engaging due to high system 

pressure.  Different engine speeds ranging from low to high idle were tested.  Typically, 

at each engine speed, the control valve was placed into detent between 10 to 20 seconds 

to gather a sufficient amount of data.   

3.3.3.2. Variable Implement Pressure Requirement Test 

A variable implement pressure requirement test was conducted to evaluate the effects 

of different simulated implement pressure requirements on flow rate for a given valve 

spool position.  A high idle engine speed was maintained to ensure the pump was not 

flow-limited for reasons other than pressure magnitude.  The control valve spool was 

preset to be actuated to a constant position correlating to a mid-level estimated flow 

percentage throughout the test duration.  Different needle valve settings were tested to 

simulate different implement pressure requirements ranging from the lowest achievable 

pressure requirement with a fully open needle valve to a setting that resulted in maximum 

system pressure.  Similar to the variable engine speed test, the control valve was placed 

into detent between 10 to 20 seconds to gather a sufficient amount of data for each tested 

implement pressure requirement setting. 
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3.3.3.3. Multiple Valve Test 

Due to the likelihood of multiple control valves actuated simultaneously in field 

operations with implements, testing of multiple valves was conducted.  The purpose of 

these tests was to validate expected flow rate distribution between multiple valves for 

different anticipated cases.  According to Dell (2017), distribution of flow rate amongst 

multiple valves in LSPC systems was dependent on where the valve pressure 

compensator is located.  If located before the main spool, known as pre-spool 

compensation, a valve with a lower fluid pressure requirement would receive all flow 

before a valve with a higher fluid pressure requirement received any flow (Dell, 2017).  If 

located after the spool, known as post-spool compensation, flow would be divided based 

on spool position setting in each valve (Dell, 2017).   Location of valve compensators in 

each tractor was unknown prior to testing. 

Three scenarios with multiple valves actuated simultaneously were tested.  Two of 

these involved only two valves.  In one test, different needle valve settings were used in 

each valve, while the other test featured similar needle valve settings in both valves.  The 

third test featured a third valve also actuated, but connected to no circuit.  Load check 

valves within the control valve prevented a flow rate from being produced through the 

third valve.  Therefore, the desired flow rate produced through the third valve would 

never be achieved.  This, in theory, would send the pump pressure to its maximum 

system pressure setting. 

For all tests, all tested valves were placed into continuous detent.  Each test featured 

one connected valve that was held at a constant spool position correlating to a mid-level 

estimated flow percentage for the test duration.  The other connected valve, after starting 
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fully closed, had its spool position increased in approximately 10% estimated flow rate 

increments roughly every 10 seconds, or enough time to collect a sufficient amount of 

steady-state data.  Once the valve was fully-open, its spool position was reduced at the 

same increments over a similar timeline until the valve was fully closed.  For the test with 

three valves actuated, the unconnected valve maintained a constant, low-spool position 

setting throughout the test.  To prevent potential flow-limited circumstances, a high 

engine speed was maintained and needle valve settings on each circuit were always set at 

positions that prevented the pressure compensator engaging at high flow rates. 

3.3.3.4. Fluid Temperature Test 

A temperature test was conducted to determine if fluid temperature affected flow 

rates produced at a particular valve spool position.   Unlike the other variables tested, 

fluid temperature was not easily adjustable by changing an input variable.  As fluid 

temperature increased as work was performed, the hydraulic oil temperature at the 

beginning of each test was required to be at ambient air temperature.  Engine speed and 

circuit pressure parameters were set such that they would not hinder the pump’s ability to 

produce a requested flow rate.  However, a needle valve setting that resulted in a higher 

circuit pressure requirement was preferred to create more wasted power, thus increasing 

fluid temperature at a faster rate.  A valve was placed into continuous detent for a single 

valve spool position throughout the test duration.  Hydraulic oil temperature was 

monitored on the tractor’s virtual terminal to determine when a steady-state temperature 

was maintained. 
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3.4. Results & Discussion 

3.4.1. Effect of Engine Speed on Hydraulic Flow Rate Delivery 

A variable engine speed test was conducted at a valve spool position corresponding to 

an estimated flow rate percentage CAN message of 54%.   Table 3.3 details results for the 

mean measured flow rate and pressure difference between pump and load sense for 

different engine speeds tested.  At the two lowest tested engine speeds, the actuated valve 

was not able to achieve the consistent flow rate seen at higher engine speeds.  Thus, the 

estimated flow rate CAN message did not accurately predict actual flow rate in instances 

where the pump was flow-limited due to engine speed. 

Table 3.3: Variable Engine Speed Test Results at 54% Estimated Flow Rate 

Engine Speed 
(rpm) 

Mean Flow 
Rate (Lpm) 

Flow Rate 
Variance (Lpm) 

Pump - LS 
Mean Pressure 

Difference (MPa) 
848.87 46.47 0.0275 1.704 
1072.06 58.63 0.0367 2.176 
1239.02 58.88 0.0154 2.509 
1381.59 58.90 0.0184 2.505 
1536.26 58.91 0.0181 2.496 
1641.47 58.85 0.0206 2.499 
1780.36 58.82 0.0124 2.509 
1924.77 58.85 0.0178 2.509 
2055.67 58.89 0.0210 2.501 
2240.52 58.93 0.0249 2.486 

 

Additionally, the pressure difference between the pump and load sense at low engine 

speeds failed to maintain the constant difference seen at engine speeds where flow rate 

was constant.  From the test, it is inferred that the margin pressure setting of the pump’s 

flow compensator was approximately 2.50 MPa.  When the pump reached a flow-limited 

condition, the pressure difference between pump and load sense dropped below the 
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margin pressure magnitude.  Therefore, monitoring the difference between pump and 

load sense is beneficial in determining when the estimated flow rate CAN message will 

accurately predict flow rate in a control valve. 

Having determined that at lower engine speeds, the tested tractor’s pump was 

potentially incapable of meeting control valve flow rate requests, another variable engine 

speed test was conducted with a fully open valve (estimated flow rate CAN message of 

100%) to quantify the flow rate available to a control valve at different engine speeds.  

Figure 3.7 shows the resulting linear relationship observed between engine speed and the 

measured flow rate through the control valve.  Equation 5 details the resulting line of best 

fit, which had a coefficient of determination (R2) of 0.9997. 

 

Figure 3.7: Measured flow rate versus engine speed test for a fully open spool. Line of best fit given in 
equation 5. 

 𝑞𝑞 = 0.0546𝑛𝑛 + 0.1961 (Eq. 5) 
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 where 
           q = flow rate produced from valve (L min-1) 
           n = engine speed (rpm) 

 

   

Equation 5 provides an understanding of the minimum engine speed needed for an 

implement to achieve its hydraulic functions based on its flow rate requirement.   

Typically, engine speed would not be used to adjust the desired flow rate for an 

operation; however, if an operation required a high flow rate, the engine speed setting 

could limit the ability for the pump to achieve the requested flow rate.  This issue could 

occur for tractors equipped with IVT or CVT transmissions where lower engine speeds 

must be set to ensure proper implement functions.  

3.4.2. Effect of Pressure Requirement on Control Valve Flow Rate  

A variable implement pressure requirement test was conducted at a valve spool 

position generating a 69% estimated flow rate CAN message.  Figure 3.8 details flow 

rate, circuit pressure requirement, and the difference between pump and load sense 

pressure measurements for different tested needle valve settings.  The data shown 

illustrate the system’s ability to maintain a consistent flow rate for a given control valve 

setting over varying implement loads resulting in different fluid pressure requirements.  

However, at the highest two pressure requirements tested, the resulting flow rate 

delivered from the control valve was below the measured flow rate seen at lower fluid 

pressures.  Thus, the pump could not maintain a consistent flow rate at high pressures for 

this valve position.  Therefore, estimated flow rate CAN message cannot be used to 

predict flow rate for circuits with fluid pressures at maximum system pressure. 
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Figure 3.8: Flow rate, implement pressure, and pressure difference between pump and load sense versus 
time for a variable implement load test. 

Unlike the engine speed test results, where the pressure difference between the pump 

and load sense indicated flow-limited conditions, the pressure difference between the 

pump and load sense pressures maintained the nominal margin pressure value throughout 

the test despite the reduction in flow rate at high implement pressures.  Upon 

investigation of each individual pressure measurement (figure 3.9), the pump fluid 

pressure reached a maximum magnitude (~20.25 MPa) over the last two trials, where 

flow rate was reduced.  Additionally, the load sense magnitude did not change between 

the last two tested implement loads despite the implement pressure requirement 

increasing in the last test.  Thus, the load sense did not accurately represent the highest 

circuit pressure requirement when the pump was at its maximum pressure magnitude.   
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Figure 3.9: Pressure measurements for conducted implement load test 

Characteristics of the pressures measured in this test indicated that the load sense 

system of the selected tractor contained a signal relief valve.  According to Dell (2017), 

load sense signal relief valves are commonly used in systems with post-spool 

compensated valves.  At implement circuit pressure requirements higher than the signal 

relief valve setting, the effective system load sense pressure sent to the pump was the 

relief valve setting (~17.75 MPa).  While it is possible the pump was destroked by the 

pressure compensator upon reaching the maximum pressure setting (20.5 MPa), the 

addition of the signal relief valve to the load sense system allows the flow compensator to 

also destroke the pump.  As previously discussed, the flow compensator reduces pump 

displacement when pump pressure exceeds the sum of the load sense signal and margin 

pressure.  Given the load sense signal becomes the constant relief valve pressure setting 

when the implement circuit pressure exceeds this value, the pump would destroke to 

maintain a constant pump pressure equal to the sum of margin pressure and the relief 
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valve setting.  This aligns with results obtained in this test where the difference between 

pump and load sense did not change even in flow-limited conditions.  Thus, with this 

design, the pump pressure compensator could simply serve as a failsafe in the event 

issues arose with the flow compensator. 

From this test, it was determined that when the pump was at its maximum system 

pressure setting, potential existed for at least one valve to be flow-limited.  Rather than 

detecting flow-limited circumstances using the pressure difference between pump and 

load sense, instead detection must be made by monitoring the pump pressure magnitude. 

3.4.3. Effect of Multiple Actuated Control Valves on Flow Rate Delivery  

3.4.3.1. Flow Rate Distribution: Different Valve Load Sense Requirements 

Table 3.4 breaks down mean flow rate and pressure measurements of different spool 

position combinations for a multiple valve test conducted with different load settings 

between two control valves.  As shown in the table, valve 1, the valve with the lower load 

setting, was held at a constant spool position while adjustments in spool position were 

made to valve 2, the valve with the higher load setting.  A relatively constant flow rate in 

valve 1 was maintained independent of valve 2’s spool position, while the flow rate in 

valve 2 was relatively constant at spool positions 60% and greater.  When flow rate was 

constant in valve 2, the difference in pressure measurement between pump and load sense 

dropped below the margin pressure setting.  Thus, flow rate was limited in the circuit 

with a higher pressure requirement, while the circuit with a lower pressure requirement 

still was flow-sufficient.  This flow distribution characterized valves featuring pre-spool 

compensation.  Therefore, valve spool position still closely related to flow rate for valves 
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with lower pressure requirements than the system load sense even when the pump 

became flow-limited. 

Table 3.4: Multiple Valve Test: Different Valve Load Requirements Mean Results 

Estimated 
Flow 

Rate #1 
(%) 

Estimated 
Flow 

Rate #2 
(%) 

Flow 
Rate 
#1 

(Lpm) 

Flow 
Rate 
#2 

(Lpm) 

Valve #1 
Pressure 
(MPa) 

Valve #2 
Pressure 
(MPa) 

Pump - 
Load 
Sense 
(MPa) 

60 10 67.08 0.77 3.775 0.246 2.596 
60 20 67.11 17.56 3.800 0.646 2.576 
60 30 67.05 29.25 3.842 1.260 2.552 
60 40 66.77 43.05 3.862 2.828 2.512 
60 50 67.66 55.94 4.036 4.897 2.446 
60 60 67.08 57.84 3.977 5.236 1.602 
60 70 66.89 58.08 3.949 5.283 1.416 
60 80 66.75 58.22 3.926 5.306 1.316 
60 90 66.61 58.34 3.918 5.330 1.248 
60 100 66.52 58.48 3.913 5.352 1.206 

  

3.4.3.2. Flow Rate Distribution: Similar Valve Circuit Pressure Requirements 

Table 3.5 details mean flow rates, pressure requirements, and resulting differences 

between pump and load sense pressures for a multiple valve test with similar implement 

load settings in both valves.  Results indicated the pump became flow-limited as valve 2 

reached a spool position corresponding to an estimated flow rate message of 60%.  Both 

valves had similar circuit pressure requirements with spool positions corresponding to 

60% estimated flow. When the pump became flow-limited, both valve 1 and valve 2 

achieved a lower flow rate than requested.  Thus, the estimated flow rate message did not 

properly represent flow rate in either valve under flow-limited conditions. 
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Table 3.5: Multiple Valve Test: Similar Valve Load Requirements Mean Results 

Estimated 
Flow 

Rate #1 
(%) 

Estimated 
Flow 

Rate #2 
(%) 

Flow 
Rate 
#1 

(Lpm) 

Flow 
Rate 
#2 

(Lpm) 

Valve #1 
Pressure 
(MPa) 

Valve #2 
Pressure 
(MPa) 

Pump 
Pressure 
(MPa) 

Pump - 
Load 
Sense 
(MPa) 

60 10 66.741 0.970 4.122 0.284 7.483 2.605 
60 20 66.846 17.255 4.138 0.533 7.468 2.576 
60 30 66.955 28.725 4.144 1.014 7.454 2.550 
60 40 66.730 42.303 4.151 1.864 7.407 2.512 
60 50 66.310 55.878 4.164 3.038 7.369 2.470 
60 60 61.853 62.652 3.683 3.712 6.193 1.692 
60 70 60.909 63.352 3.572 3.766 6.022 1.593 
60 80 60.434 63.729 3.509 3.800 5.936 1.406 
60 90 60.140 63.994 3.472 3.829 5.879 1.316 
60 100 59.881 64.247 3.450 3.855 5.840 1.251 

 

Minor changes in flow rate continued to occur in both valves as spool position 

changed in valve 2 under flow-limited circumstances (contrary to the multiple valves test 

with different load settings).  When multiple valves are simultaneously actuated, the total 

pressure requirement of each circuit must be the same in order for both valves to receive 

flow.  When different implement circuit pressure requirements exist, in flow-sufficient 

conditions, the pre-spool compensator in the lower load sense valve introduces additional 

resistance to its circuit to prevent excessive flow rates from occurring.  However, the pre-

spool compensator would not intervene when a valve did not receive its full requested 

flow.  Therefore, changes in resistance to one circuit must result in resistance changes to 

the other to maintain equilibrium allowing both valves to receive flow.    

When increasing the spool position in valve 2, the resistance to pass fluid through the 

valve decreased.  With reduced resistance, the flow rate in valve 2 increased.  However, 

to achieve the higher flow rate, the pressure requirement increased through the valve 2 
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circuit.  With limited total flow rate available, flow rate decreased in valve 1.  Decreased 

flow rate decreased the pressure required to achieve the new flow rate through the valve 1 

circuit.  Thus, the change in flow rate worked to continuously balance the pressure 

requirements in both valves.  This explains why flow rate continued to change in both 

valves when changing spool position in valve 2 after the pump became flow-limited. 

When both valves were flow-limited, a potential incorrect assumption that could be 

drawn is that the load sense in both valves were the same.  However, with flow rate 

continuing to change in both valves and flow rate directly impacting the pressure 

requirement of both circuits, the load sense of each valve changed as spool position in 

valve 2 continued to increase.  Thus, the load sense pressure measurement only 

represented the higher load sense valve, although both valves had similar load sense 

requirements.  If load sense pressure were used as a method to predict flow rate in flow-

limited valves, this could negatively affect estimates.  However, differences in load sense 

between flow-limited valves did not affect pump displacement as the pump was already 

at maximum displacement. 

Unlike the simulated implement circuit tested, most implement circuits likely have 

relatively constant pressure requirements independent of flow rate to move a cylinder or 

motor.  However, pressure requirements of a circuit will change slightly by flow rate due 

to any minor losses that exist in an implement circuit.  Implement manufacturers may 

attempt to reduce power inefficiencies for multiple valves actuated simultaneously by 

sizing their cylinders and motors to have similar fluid pressure requirements.  Thus, the 

possibility of implements having similar load requirements is quite realistic.  Therefore, 

the possibility of having multiple valves simultaneously flow-limited exists.  Similarities 
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between the system load sense pressure and the pressure measured in each circuit can be 

used to identify both valves as flow-limited. 

3.4.3.3. Flow Rate Distribution: High Flow Rate Request versus Flow Capability  

 For the multiple valve test involving actuation of three valves, the two valves that 

connected to the test stand had the same similar load settings as the multiple valve test 

discussed in section 3.4.3.2.  The only difference between these tests was the continuous 

actuation of the third valve not connected to any circuit.  Thus, comparisons between the 

two tests could be made. 

Mean recorded flow rate and pressure measurements for the connected valves during 

the test are shown in table 3.5.  Comparing test results provided in tables 3.4 and 3.5, 

both connected valves received their requested flow rate until valve 2 reached a spool 

position corresponding to an estimated flow message of 60%.  The greatest difference in 

mean flow rate for valve 1 between tests was 2.91 Lpm, when valve 2 had an estimated 

flow rate of 20%.  In comparison, the greatest difference in flow rate for valve 2 between 

tests was 1.06 Lpm, which occurred when valve 2 had an estimated flow rate of 50%.  
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Table 3.6: Multiple Valve Test: Three Valves (Two Connected) Results 

Estimated 
Flow 

Rate #1 
(%) 

Estimated 
Flow 

Rate #2 
(%) 

Flow 
Rate 
#1 

(Lpm) 

Flow 
Rate 
#2 

(Lpm) 

Valve #1 
Pressure 
(MPa) 

Valve #2 
Pressure 
(MPa) 

Pump 
Pressure 
(MPa) 

Pump - 
Load 
Sense 
(MPa) 

60 10 63.83 0.84 3.510 0.238 17.323 2.579 
60 20 63.91 17.73 3.503 0.496 20.332 2.516 
60 30 64.59 29.28 3.593 0.956 20.330 2.507 
60 40 64.65 41.55 3.694 1.689 20.256 2.492 
60 50 65.09 54.82 3.862 2.773 17.727 2.128 
60 60 62.00 63.08 3.630 3.639 6.152 0.770 
60 70 60.91 63.92 3.524 3.708 5.934 0.756 
60 80 60.42 64.34 3.478 3.756 5.868 0.756 
60 90 60.11 64.60 3.442 3.782 5.808 0.748 
60 100 59.88 64.83 3.424 3.809 5.782 0.752 

 

As seen in table 3.5, pump pressure was near maximum system pressure when the 

desired flow rate in both connected valves was attained.  However, when the connected 

valves became flow-limited, pump pressure dropped to similar magnitudes seen in the 

test with only the two connected valves actuated.  Because of the pre-spool compensation 

flow distribution used in this system, where a valve with a lower circuit pressure 

requirement receives requested flow before a valve with a higher requirement, the 

unconnected valve did not receive any flow from the pump unless the two connected 

valves were satisfied.  When no flow was available for the unconnected valve, the pump 

pressure dropped. 

As for the difference between pump and load sense pressures, the margin pressure 

difference between the two variables was maintained when the two connected valves 

received their requested flow rate.  As proven in the variable pressure requirement test 

discussed in 3.4.2, due to a signal relief valve incorporated into the load sense signal, the 
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margin pressure difference between pump and load sense exists when the pump is at the 

maximum system pressure despite the unconnected valve not achieving its desired flow 

rate.  However, observing the high pump pressure indicated the estimated flow rate 

message in the unconnected valve would inaccurately predict flow rate.  Simultaneously, 

comparisons of circuit pressure requirements in the connected valves to the pump 

pressure indicated that flow rate still correlated to valve spool position in the connected 

valves.  Once the connected valves were flow-limited, the lack of correlation between 

valve spool position and flow rate could be identified by the pressure difference between 

pump and load sense being less than margin pressure and circuit pressure requirements 

that closely resembled the load sense. 

3.4.4. Effect of Fluid Temperature on Flow Rate 

A fluid temperature test was conducted at a valve spool position correlating to an 

estimated flow rate message of 84%.  Results for the mean flow rate and pressure 

difference between pump and load sense measurements for different oil temperatures are 

shown in table 3.7.  Additionally, a graphical representation of the relationship observed 

between fluid temperature and flow rate is provided (figure 3.10).  A temperature 

increase of 40°C was seen throughout testing.  At the coldest oil temperature tested 

(27°C), the mean flow rate was 3.97 Lpm, or 3.98%, lower in magnitude than the flow 

rate measured at the observed steady-state oil temperature (67°C).  Despite changes in 

flow rate for a given valve position, the pressure difference between pump and load sense 

was essentially unchanged at different temperatures.   

Table 3.7: Relevant Variable Fluid Temperature Test Data 
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Valve Spool 
Position (%) 

Oil 
Temperature 

(°C) 
Mean Flow 
Rate (Lpm) 

Difference 
vs. Flow 

Rate at 67°C 
(%) 

Pump - LS 
Pressure (MPa) 

84 27 95.72 -3.98 2.515 
84 30 96.41 -3.29 2.510 
84 35 97.07 -2.64 2.534 
84 40 97.40 -2.30 2.546 
84 45 97.91 -1.79 2.542 
84 50 98.29 -1.41 2.525 
84 55 98.76 -0.94 2.537 
84 60 99.39 -0.30 2.527 
84 65 99.61 -0.09 2.538 
84 67 99.69 0.00 2.540 

 

 

Figure 3.10: Flow rate versus oil temperature for an 84% estimated flow rate spool position. 

Despite all of the fluid power produced being converted to heat and a high flow rate 

maintained, it took just under 15 minutes to achieve a stable fluid temperature in this test.   

While the expectation is that most agricultural machinery field data would occur at a 

stable fluid temperature, flow rates will differ within a given flow-sufficient spool 

position across different fluid temperatures. 
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3.5. Conclusions 

Because hydraulic control valve flow rate is not interpretable on existing agricultural 

machinery CAN systems, the accuracy of predicting flow rate using valve spool position, 

which was available in a standard encoded CAN message, was investigated.  It was 

determined from this study that while valve spool position closely related to flow rate in 

flow-sufficient conditions, the two quantities were unrelated in at least one valve when 

the fluid power system became flow-limited.  Any combination of low engine speeds, 

multiple valves actuated simultaneously, or high implement pressure requirements 

presented opportunities where flow-limited conditions occurred. 

Additionally, no hydraulic fluid pressure measurements were published in a standard 

format on the CAN bus of the selected tractors.  Thus, hydraulic power requirements 

cannot be determined using existing machine CAN data alone.  With the addition of 

pressure sensors needed to determine implement hydraulic power consumption, data from 

these sensors could additionally be used to determine when valve spool position would 

accurately predict flow rate.  Using the test results from this study, figure 3.11 

summarizes how to use pressure measurements to determine if valve spool position can 

predict flow rate. 
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Figure 3.11: Flowchart detailing how to determine if valve spool position could be used to predict flow 
rate for a given data point using pump, load sense, and implement pressure. 

For implement operations where the pump was neither in a flow-limited condition nor 

at its maximum pressure during usage, flow rate for a valve position was relatively 

constant.  However, minor changes in flow rate were observed based on changes in 

hydraulic oil temperature.  Thus, for a more accurate flow rate prediction using valve 

spool position, compensation for fluid temperature should be considered.   

An additional method must be utilized to predict hydraulic flow rate for instances 

when valve spool position will not accurately represent flow rate.  Due to the difficulty in 

installing turbine flowmeters between the tractor and implement, given the relationship 

between flow rate and pressure drop across a minor loss, potential for using a measured 

pressure drop across a minor loss to predict flow rate is worthy of examination.  Further 

work related to flow rate prediction using this method is discussed in Chapter 4. 
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Chapter 4: Investigation of Utilizing CAN Messages and Minimal 

Added Sensors to Predict Agricultural Implement Hydraulic Power 

Requirements 

4.1. Introduction 

A growing power source demand required by agricultural implements is hydraulics.  

Fluid power, initially added to agricultural machinery to raise implements at the end of a 

field pass, now is utilized for numerous functions (eg. fans, augers, implement folding, 

planter unit downforce, tractor primary functions) through cylinders and motors (Stoss et 

al., 2013).   

Modern tractors commonly feature a load sensing pressure compensated (LSPC) 

pump to allow hydraulic control valves to command pump flow rate and reduce power 

losses when an implement is not requesting hydraulic power.  However, despite improved 

efficiency in utilizing these pumps over other designs, Love (2012) estimated that fluid 

power system usage on mobile equipment applications in the US possessed a power 

efficiency of just 21.1%.  While power losses stemmed from several hydraulic system 

components, 43% of losses were attributed to valves and 25% to power usage in charge 

pumps and cooling systems (Love, 2012).  With room for improvement in mobile 

equipment fluid power systems, there is value in understanding agricultural implement 

hydraulic power requirements and the efficiency in providing this power to them by 

various tractor designs. 

Because implement power requirements are a function of each individual circuit’s 

fluid pressure requirement and flow rate, both variables of each circuit must be measured 
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to accurately determine this quantity.  Despite usage of CAN data becoming a more 

effective way to measure agricultural machinery performance characteristics, direct flow 

rate and pressure measurements are not typically published in a standard format on 

modern tractors.  While the addition of sensors would allow for these quantities to be 

directly measured, turbine flowmeters present potential issues due to high costs and long 

upstream and downstream uninterrupted flow length requirements (Badger Meter, 2018).  

Despite Roeber et al. (2016) concluding turbine flowmeter measurement accuracy to be 

acceptable for any hose bend angle, the ability to avoid using these flowmeters is desired 

given limited space between the tractor and implement. 

As an alternative to turbine flowmeters, numerous industries utilize differential 

pressure flowmeters to estimate fluid flow rate.  These differential pressure devices 

include venturis, standard orifice plates, v-cones, and wedge flowmeters (Hollingshead, 

2011).  Each differential pressure flowmeter relies on measured changes in pressure 

energy to predict flow rate.  For example, the standard orifice equation (eq. 6) can be 

used with an orifice to quantify flow rate as a function of the pressure drop, fluid density, 

passageway area, and discharge coefficient. 

 𝑄𝑄 = 𝐶𝐶𝑑𝑑𝐴𝐴�
2∆𝑝𝑝 
𝜌𝜌

 (Eq. 6) 

 

where 
Q    = flow rate 
Cd  = discharge coefficient 
A    = orifice area 
Δp  = pressure drop across orifice 
ρ     = fluid density 
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Manring (2005) derived a model from the standard orifice equation to predict control 

valve flow rate as a function of the valve’s spool position and pressure drop across the 

spool.  Load sensing circuits attempt to maintain a constant pressure drop across the 

control valve main spool to enable spool position to dictate flow rate.  Thus, a standard 

CAN message found on modern tractors related to valve spool position, referred to as the 

estimated flow message in the ISO 11783 standard, can be beneficial in predicting flow 

rate. 

Numerous past studies have worked to quantify the relationship between the 

discharge coefficient magnitude used in the standard orifice equation and the fluid’s 

Reynold’s number for a given orifice.  As fluid viscosity is inversely related to Reynold’s 

number, and a fluid’s temperature is inversely related to its viscosity, increased fluid 

temperature subsequently increases Reynold’s number.  As Reynold’s number increases 

under laminar flow conditions, the resulting discharge coefficient decreases.  This results 

in a decreased pressure drop across minor losses for a given flow rate as temperature 

increases.  In fluid power systems, inefficiencies result in a proportion of produced power 

converted into thermal energy.  Despite the tractor’s cooling system working to reduce 

heat effects, hydraulic oil temperature will substantially increase during an operation until 

a minimum steady-state temperature can be maintained.  Thus, regardless of whether 

valve spool position or a determined pressure drop is utilized to predict flow rate, careful 

consideration must be given to changes in the effective discharge coefficient due to 

changes in fluid temperature. 
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4.2. Objectives 

The goal of this study was to develop an effective method to determine implement 

circuit flow rates during field operations without a turbine flowmeter.  Specific objectives 

to accomplish this goal included 1) developing a compact minor loss device to predict 

flow rate using the standard orifice equation, 2) forming a flow rate prediction method 

using an input of valve spool position, and 3) assessing an effective method to 

compensate both flow rate prediction methods for temperature effects.  The accuracy of 

the developed method was to be determined through comparing predicted versus 

measured flow rates for sample test data simulating different conditions expected for 

various implements. 

4.3. Materials and Methods 

4.3.1. Equipment / Materials Used 

Two modern tractors of the same model number (6145R, Deere & Company, Moline, 

Ill.) were selected for use in this study.  Hydraulic-related variables logged from existing 

machine CAN messages available on both tractors included engine speed, hydraulic fluid 

temperature, and estimated flow rate percentage based on valve spool position. 

A testing apparatus was developed to simulate connected implement circuits and 

measure fluid flow rate.  The apparatus (figure 4.1) featured two duplicate circuits 

containing a turbine flowmeter (Flo-tech Activa F6206-AVB-NN, Badger Meter, 

Milwaukee, Wisc.) that served as the baseline flow rate measurement and an adjustable 

flow control valve, or needle valve, to allow adjustment to the circuit pressure 

requirement.   An analog pressure gauge was also incorporated into the circuit to provide 

the operator with an estimated circuit fluid pressure during testing.   
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Figure 4.1:  (a) Schematic of the (b) hydraulic testing apparatus used throughout the study. 

All pressure measurements were conducted using a common electronic pressure 

transducer (Omega PX309, Omega Engineering Inc., Norwalk, Conn.).  Pressure was 

measured on the extend and retract ports of each control valve and the pump and load 

sense diagnostic ports available on the tractor (figure 4.2).  To measure control valve 

pressures, sensors were added to tee fittings with ISO quick couplers to allow location 

between the tractor control valves and implement. 

 

Figure 4.2: Common pressure sensor locations include (a) on the extend and retract port immediately 
beyond each valve and (b) on diagnostic ports of the pump and load sense. 

(a) 
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4.3.2. Data Collection Method 

To synchronize data collection, sensor data were published as CAN messages to the 

tractor’s implement bus (ISOBUS).  This allowed for all data to be logged with a CAN 

data logger.  An electronic controller unit (ECU) (Danfoss MC024-110, Danfoss North 

America, Ames, Iowa) was programmed through a graphically programmable proprietary 

software (Danfoss PLUS+1 GUIDE, Danfoss North America) to convert analog sensor 

outputs into CAN messages.  A customized electronics enclosure (figure 4.3), named the 

Sensor CAN Gateway (SCANGate), housed the ECU and connected it to the tractor CAN 

system using an implement-end ISOBUS breakaway connector (IBBC).  Furthermore, the 

SCANGate supplied power to the sensors and connected their output readings to the 

ECU.  For this study, three additional messages containing all added sensor data were 

broadcast at a frequency of 4 Hz. 

 

Figure 4.3: Picture of the developed SCANGate design with hardware components labelled. 
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The tractor’s in-cab CAN diagnostic port was accessed to enable a standalone data-

logger (Pro 2xHS v2, Kvaser AB, Mölndal, Sweden) to log CAN data to an SD card.    

Various filters were utilized by the data logger so that only desired messages were 

recorded.  Given the log files were produced in a raw hexadecimal format, a MATLAB 

program was created to post-process test data.  Steps in the data post-processing included 

sorting different messages by their parameter group number (PGN), converting raw data 

bytes into engineering units based upon the ISO 11783 standard, and resampling 

calculated engineering values to common time intervals. 

4.3.3. Minor Pressure Drop Selection 

While selecting an existing minor loss to predict flow rate in flow-limited 

circumstances was preferred to prevent creation of another system loss, other criteria 

contended with available options.  No alterations to existing tractor components were 

preferred, limiting pressure measurement locations to diagnostic ports and between the 

control valve stack and implement.  Thus, the only measurable existing minor losses were 

across the control valve’s main spool using the pump and load sense diagnostic ports and 

the quick coupler connection in the valve stack using the load sense and control valve 

pressure sensors.  Issues with either method exist when the system load sense would not 

accurately represent a flow-limited valve’s load sense.  As highlighted in chapter 3, this 

can occur in high pressure requirement scenarios or when multiple valves are flow-

limited due to similar pressure requirements. 

Due to potential for the system load sense to be unable to represent a flow-limited 

valve, only added minor losses were considered.  As highlighted by Lipták and Venczel 

(1982), due to the anticipated quadratic relationship between flow rate and pressure drop, 
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the added loss needed to produce a pressure drop of sufficient magnitude to distinguish 

low flow rates.  While a larger added loss would enable measurement of low flow rates 

with greater accuracy, the added loss needed to remain small enough to prevent a 

substantial system loss limiting implements from performing their necessary functions.   

Three potential added minor losses were explored: 1) an additional ISO coupler pair 

using two pressure tee fittings (figure 4.4a), 2) an assembly of common fittings that 

reduce the passageway area from 19.05 mm (0.75”) to 9.53 mm (0.375”) (figure 4.4c), 

and 3) a customized orifice fitting which reduced the flow passageway to a 7.94 mm 

(0.313”) diameter circular opening in either flow direction (effective beta ratio of 0.417) 

(figure 4.4d).  Each of these configurations required significantly less space than a 

turbine flowmeter and did not require any additional support structure to secure the 

sensors for harsh field conditions.  A variable spool position test (discussed in greater 

detail in section 4.3.4.1) was used to determine which minor loss offered the best orifice 

flowmeter solution.  The selected orifice flowmeter was to be replicated to allow indirect 

flow rate measurement on multiple valves simultaneously. 
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Figure 4.4: Different proposed minor loss additions included a) an additional ISO Coupler pair using two 
pressure tee fittings or b) an individual assembly featuring a reduction in port size using c) standard fittings 

or d) a custom machined fitting. 

4.3.4. Conducted Flow Rate Relationship Tests 

4.3.4.1. Variable Spool Position Test 

A test was developed to simultaneously define the flow rate produced for different 

valve spool positions and the corresponding pressure drop experienced across an orifice 

flowmeter for that flow rate.    Hydraulic oil was preheated to a temperature that the 

tractor cooling system could maintain to minimize changes in fluid viscosity throughout 

the test.  Engine speed was kept at a non-flow-limiting magnitude and the needle valve on 

the tested circuit was fixed to a larger opening to prevent high-pressure conditions from 

occurring such that valve spool position would not accurately represent flow rate. 
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The control valves on both tractors featured the ability to maintain any input spool 

position setting over a desired time length using the valve’s detent control.  Both the 

spool position setting and detent time length were controlled from the tractor virtual 

terminal (figure 4.5).  Two valve actuation methods were utilized.  One method was to 

place the control valve into detent for 15 seconds for each tested spool position to obtain 

enough data to determine the expected flow-sufficient flow rate for that position.  The 

other method was to place the control valve into continuous detent, and adjust the spool 

position every 10-20 seconds while the valve was in detent.  For either method, 10-20 

spool positions were tested to define trends between the magnitudes of flow rate and the 

CAN-reported estimated flow rate percentage. 

 

Figure 4.5: Screen displayed by the tractor virtual terminal detailing the flow and time settings for detent 
control on SCV 1 of the tractor under test. 

In post-processing, the mean flow rate and pressure drop among steady-state data for 

each tested valve spool position were calculated.  Using these mean values, the 

relationship between flow rate and reported valve spool position as well as flow rate and 

orifice flowmeter pressure drop could be assessed.  If a quantifiable relationship existed 

between the two variables, a best-fit equation was found using MATLAB’s Curve Fitting 

Toolbox. 
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To accurately predict flow rate for valves actuated in either flow direction, tests were 

conducted for each valve and orifice flowmeter in both flow directions.  While the valve 

flow directions could be defined by the “extend” and “retract” nomenclature, the orifice 

flowmeter flow directions were defined by the nomenclature, “implement” and “tractor,” 

which represented which direction flow was moving towards.  This was due to the 

potential for the orifice flowmeter to be located on either valve port side.  The ability to 

distinguish the difference between directions was feasible when post-processing test data 

due to the estimated flow rate message being positive when the valve was actuated in the 

extend direction and negative when actuated in the retract direction.  Comparisons were 

made between different valves, replicated orifice flowmeters, and flow directions to 

determine whether differing relationships existed between flow rate and the associated 

input variable for different valves and orifice flowmeters. 

4.3.4.2. Oil Temperature Analysis Tests 

As the relationship between flow rate and corresponding pressure drop across a loss 

varies with fluid temperature, a test was conducted to analyze fluid temperature effects on 

the flow rate-valve spool position and flow rate-orifice flowmeter pressure drop 

relationships observed in the variable spool position tests.  A standard CAN message for 

hydraulic fluid temperature broadcasted on the tractor under test was used to measure 

temperature. Precision in the reported message was to the nearest degree Celsius. 

Each test began with the fluid temperature equivalent to the ambient laboratory 

temperature (23-28°C).  Engine speed and circuit pressure requirements were set to levels 

that would not hinder the pump’s ability to produce a requested flow rate.  The selected 

valve was placed into continuous detent and a single valve spool position was maintained 
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throughout the test duration.  Hydraulic oil temperature was monitored on the tractor’s 

virtual terminal to determine when a stable temperature was achieved.  Once this 

temperature was achieved, the test run for that spool position was complete. 

In post-processing the test data, the mean flow rate and pressure drop across the 

orifice flowmeter was found for each degree Celsius observed in fluid temperature.  This 

allowed for the evaluation of the relationship between flow rate and temperature for a 

given valve spool position as well as flow rate and pressure drop for varying 

temperatures.     

To test whether flow rate-temperature relationships varied for different flow rate 

magnitudes and spool position settings, oil temperature analysis tests were conducted at 

spool positions with estimated flow rate CAN messages of 44%, 54%, 64%, 74%, and 

84%.  To make comparisons between the different tests, the proportion of observed flow 

rate to the anticipated flow rate at preheated fluid temperatures was used. 

4.3.5. Flow Rate Prediction Function Methodology and Validation 

Using determined flow rate prediction methods with inputs of valve spool position 

and pressure drop, a MATLAB function was developed to predict flow rate for given test 

data.  Due to potential for conditions where valve spool position cannot accurately predict 

flow rate, the function utilized a decision matrix (figure 4.6) based upon pressure 

measurements at the pump and load sense diagnostic ports and between the control valve 

and simulated implement circuit to determine whether valve spool position or the orifice 

flowmeter should be used to predict flow rate for a given valve. 
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Figure 4.6: Flowchart detailing the methods used to determine when valve spool position could be used to 
predict flow rate for a given data point. 

Several test datasets were processed through the developed MATLAB function to 

assess the accuracy of the developed methods in predicting flow rate.  Several scenarios 

within these tests existed, including consistent steady-state flow rate at both flow-limited 

and flow-sufficient conditions, changes in fluid temperature, high pump pressure , 

actuation of multiple valves simultaneously, and transient conditions created by varying 

engine speed or valve spool position frequently. 

After predicting flow rate for a given test dataset, another MATLAB function was 

developed to determine the accuracy of the flow rate prediction.  By comparing the 

differences in predicted versus measured flow rate for each data point, a mean absolute 

error (MAE), mean absolute percentage error (MAPE), and root mean squared error 

(RMSE) were determined for a given dataset. Additionally, for tests where predominately 

steady-state conditions occurred, another function was used to organize the test data by 
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the different levels of a factor tested.  This allowed for the previously mentioned statistics 

and mean error to be computed for each level tested. 

4.4. Results and Discussion 

4.4.1. Pressure Drop Prediction Method 

4.4.1.1. Determination of Selected Pressure Drop 

Results from a variable spool position test comparing proposed orifice flowmeters are 

provided graphically in figure 4.7.  It was seen that the standard fittings orifice resulted in 

the lowest pressure drop for a given flow rate.  Meanwhile, the ISO coupler pair created 

the largest added system loss.  As anticipated, a quadratic relationship existed between 

flow rate and pressure drop for each added minor loss.  

 

Figure 4.7: Flow Rate – Pressure Drop Relationship for three proposed added pressure drops. 

To decipher the necessary pressure measurement precision needed to distinguish 

lower flower rates for each proposed orifice flowmeter, a best-fit curve was found 

relating flow rate and pressure drop.  It was determined that a linear/cubic rational fit 

provided the best approximation to the observed datasets.  While the structure of a power 
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fit more closely related to the standard orifice equation, because a negative pressure drop 

was observed across the ISO coupler pair and customized orifice fitting at low flow rates, 

the rational fit was better able to account for this phenomenon.  Table 4.1 details the 

curve of best fit found for each proposed orifice flowmeter.  

Table 4.1: Minor Loss Flow Rate Prediction Comparisons 

Added 
Pressure 

Drop 

Best-Fit Equation[a] R2 of 
Best-Fit 
Equation 

Pressure Drop 
@ 45 Lpm – 

Pressure Drop 
@ 40 Lpm 

ISO Coupler 
Pair 𝑄𝑄 =

1363∆𝑝𝑝 + 112.6
∆𝑝𝑝3 − 4.769∆𝑝𝑝2 + 13.89∆𝑝𝑝 + 7.245

 
0.9958 59.8 kPa 

Standard 
Fittings 𝑄𝑄 =

446.0∆𝑝𝑝 + 1.157
∆𝑝𝑝3 + 3.851∆𝑝𝑝2 + 0.322∆𝑝𝑝 + 0.516

 
0.9135 6.5 kPa 

Customized 
Orifice 
Fitting 

𝑄𝑄 =
359.5∆𝑝𝑝 + 12.85

∆𝑝𝑝3 − 2.541∆𝑝𝑝2 + 3.620∆𝑝𝑝 + 0.986
 

0.9943 30.7 kPa 

[a] Q has units of L min-1; Δp has units of MPa. 

Using the best-fit equations, the pressure measurement precision needed to 

distinguish a 40 Lpm versus 45 Lpm flow rate for each proposed orifice flowmeter was 

determined and provided in Table 4.1.  It was determined from these values the required 

precision to decipher the two flow rates for the standard fittings orifice was 6.5 kPa.  

Because the precision of the pressure transducers used was 7 kPa, the standard fittings 

configuration was determined unsuitable.  While the ISO coupler (59.8 kPa) provided 

greater precision in distinguishing the difference between 40 Lpm and 45 Lpm than the 

customized orifice (30.7 kPa), both methods were determined feasible.  Considering 

lower power loss magnitude, a more condensed package, and reduced potential for fluid 

leakage at the quick coupler, the customized machined orifice fitting was selected for the 

duration of the study. 
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After determining the customized orifice fitting served as the best added pressure 

drop to use as an orifice flowmeter, further testing was conducted on two devices 

designed to the same dimensional specifications.  These devices are distinguished by the 

nomenclature “Orifice 281” and “Orifice 295” below. 

4.4.1.2. Flow Rate-Pressure Drop Relationship at Preheated Oil Temperature 

Figure 4.8 provides a graphical representation comparing the flow rate-to-pressure 

drop relationship between the two replicated orifice flowmeters in both flow directions 

(implement and tractor).  In the tractor flow direction, for both orifices tested, a negative 

pressure difference occurred across the device at low flow rates (<25 Lpm).  To quantify 

the relationships between flow rate and pressure drop, a linear/cubic rational fit (eq. 7) 

was used.  As previously mentioned, despite a power best-fit equation more closely 

aligning to the standard orifice equation, the rational best-fit equation provided a better 

correlation due to its ability to work with negative pressure drop inputs. 

 𝑄𝑄𝑝𝑝.𝑠𝑠𝑠𝑠 =  
𝑐𝑐1𝑛𝑛,𝑜𝑜𝑜𝑜∆𝑝𝑝 + 𝑐𝑐0𝑛𝑛,𝑜𝑜𝑜𝑜

𝑐𝑐3𝑑𝑑,𝑜𝑜𝑜𝑜∆𝑝𝑝3 + 𝑐𝑐2𝑑𝑑,𝑜𝑜𝑜𝑜∆𝑝𝑝2 + 𝑐𝑐1𝑑𝑑,𝑜𝑜𝑞𝑞∆𝑝𝑝 + 𝑐𝑐0𝑑𝑑,𝑜𝑜𝑜𝑜
 (Eq. 7) 

 
Where 
𝑄𝑄𝑝𝑝.𝑠𝑠𝑠𝑠   = predicted flow rate at steady-state temperature 
∆𝑝𝑝  = measured pressure drop 
𝑐𝑐𝑛𝑛,𝑜𝑜𝑜𝑜 = nth power coefficient of orifice “o” in direction “q” 
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Figure 4.8: Comparison of flow rate-to-pressure drop relationship between two customized orifice 
flowmeters in (a) implement flow direction and (b) tractor flow direction. 

To determine whether separate best-fit equations were needed to define the flow rate-

pressure drop relationship between the two orifices and each flow direction, the 95% 

confidence intervals of each best-fit equation coefficient were compared.  As detailed in 

table A.2 in appendix A, no significant differences existed between the confidence 

intervals of the tractor flow direction coefficients of each orifice.  To validate that a 
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single best-fit curve was suitable for use between the two orifice flowmeters in the tractor 

flow direction, fit statistics defining how well each orifice dataset related to the 

determined best-fit curve were analyzed.  As provided in Table 4.2, data correlated to the 

best-fit curve from both orifices had an RMSE around 0.5 L min-1 and MAPE less than 

1%.  This was an acceptable error level, allowing a single equation to be used.  

Table 4.2: Orifice Statistics for Tractor Flow Direction Best-Fit Curve 

 Orifice 281 Orifice 295 
Root Mean Squared Error (RMSE) (Lpm) 0.5574 0.4919 

Mean Absolute Error (MAE) (Lpm) 0.4446 0.3748 
Mean Absolute Percentage Error (MAPE) (%) 0.9192 0.7951 

 

While no significant differences existed between the two orifice best-fit equation 

coefficients in the tractor flow direction, the quadratic denominator coefficients between 

the two orifice equations were significantly different in the implement flow direction 

(table A.2).  As shown in table A.3, various pressure drop magnitudes input into the two 

implement flow direction best-fit equations resulted in flow rate differences between 

5.5% and 6.5% in magnitude.   These differences further validated the need to distinguish 

which orifice flowmeter was used with each valve to reduce flow rate prediction error 

despite a single best-fit equation needed for the tractor flow direction. 

When comparing the best-fit equation coefficients for the two flow directions of each 

orifice, both orifices had significant differences in various coefficients between the two 

flow directions.  Both orifice 281 and 295 had significant differences in the zero-order 

numerator coefficient, while orifice 281 also had significant differences in the linear 

numerator and quadratic denominator coefficients.  As detailed in table A.4, lower 

pressure drop magnitudes corresponding to flow rates under 70 Lpm input into the two 
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flow direction best-fit equations resulted in flow rate differences of 5% and greater for 

both orifices.  These differences further validated the need to identify which flow 

direction was occurring when predicting flow rate using an orifice flowmeter in each 

valve.    

From these results, identification of which orifices were used with each valve and 

which flow direction occurred for each data point were taken into account in the flow rate 

prediction algorithm to minimize flow rate prediction error when using the added 

pressure drop.  The resulting linear/cubic rational fit equation for each orifice and flow 

direction is provided in table A.2 in Appendix A. 

4.4.1.3. Effect of Fluid Temperature on Flow Rate-Pressure Drop Relationship 

Due to the design and execution of the oil temperature tests, because temperature 

impacted flow rates produced for a given valve spool position on the tractor, the flow rate 

magnitude, in addition to the pressure drop across the orifice, varied slightly within a 

given test run.  Rather than compare the flow rate to pressure drop ratio across different 

temperatures observed during the test, instead, the ratio between measured flow rate to 

predicted flow rate was used.  The predicted flow rate was determined by inserting the 

orifice flowmeter pressure drop into the corresponding preheated oil flow rate-pressure 

drop best-fit equation found through work discussed in 4.4.1.2.  This method allowed for 

effective comparison between different oil temperature tests conducted at different flow 

rate magnitudes dictated by spool position setting.  

Figure 4.90 provides a graphical representation comparing the measured to predicted 

flow rate proportion across fluid temperatures for each oil temperature analysis test 

conducted.  Although it was unknown what the flow rate proportion would be at cooler 
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temperatures, upon reaching the near steady-state preheated fluid temperature, the 

measured flow rate should theoretically closely match the predicted flow rate as the 

predicted flow rate was derived from a test conducted at a similar fluid temperature.  

However, in reality, subtle prediction errors based on the measured pressure drop 

occurred in some of the test runs, which negatively impacted the actual flow rate 

proportion relationship with temperature. 

 

Figure 4.9: Measured flow rate to predicted flow rate at steady-state temperature for different fluid 
temperatures. 

To account for errors in flow rate prediction, an adjustment was made to each 

observed proportion.  Shown in equation 8, an offset representing the difference in 

predicted versus measured flow rate at 66°C was added to each predicted flow rate at 

different temperatures. This assisted in ensuring a temperature compensation would not 

adjust a steady-state temperature value that theoretically would accurately be predicted 
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by the steady-state best-fit equation.  Using this method, a closer temperature relationship 

appeared to exist between the different tests (figure 4.1). 

 𝑝𝑝𝑚𝑚𝑚𝑚.𝑇𝑇.𝑎𝑎𝑎𝑎𝑎𝑎 =  
𝑄𝑄𝑚𝑚.𝑇𝑇

𝑄𝑄𝑠𝑠𝑠𝑠.𝑇𝑇 + (𝑄𝑄𝑚𝑚.66 − 𝑄𝑄𝑠𝑠𝑠𝑠.66)
 (Eq. 8) 

 

where 
𝑝𝑝𝑚𝑚𝑚𝑚.𝑇𝑇.𝑎𝑎𝑎𝑎𝑎𝑎 = adjusted measured to expected flow rate proportion 
T  = temperature (°C) at corresponding data point 
𝑄𝑄𝑚𝑚.𝑇𝑇 = measured flow rate (L min-1) 
𝑄𝑄𝑠𝑠𝑠𝑠.𝑇𝑇 = predicted flow rate using preheated best-fit eq. (L min-1) 
𝑄𝑄𝑚𝑚.66 = measured flow rate for data at 66°C 
𝑄𝑄𝑠𝑠𝑠𝑠.66 = predicted flow rate for data at 66°C 

 

 

 

Figure 4.10: Measured flow rate to adjusted predicted flow rate for different fluid temperatures. 

A linear/linear rational best-fit curve (eq. 9) provided the best correlation between 

adjusted flow rate proportions versus fluid temperature observed between four 

temperature test runs combined in the analysis. When comparing this best-fit curve to 

data from these four tests, a RMSE of 0.009 and MAPE of 0.72% existed.  Given this 
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strong fit was associated with four varying flow rate magnitudes, it was determined that 

temperature effects could be compensated independently of the flow rate magnitude. 

 𝑡𝑡𝑝𝑝 =  �
1.060𝑇𝑇 − 7.818

1𝑇𝑇 − 3.868
� (Eq. 9) 

 where 
𝑡𝑡𝑝𝑝 = temperature adjustment coefficient 
𝑇𝑇  = hydraulic oil temperature (°C) 

 

 

4.4.1.4. Derived Pressure Drop Prediction Method 

Having determined that temperature effects on flow rate prediction can be assessed 

independent of flow rate magnitude, the model shown in equation 10 was determined 

suitable for flow rate prediction.  Thus, after calculating the expected flow rate at steady 

state oil temperature based on a given pressure drop across an orifice flowmeter, an 

adjustment to the prediction can be made by multiplying a temperature compensation 

coefficient based on the CAN-indicated fluid temperature.  Different empirical equations 

dependent on orifice and flow direction were to be used to determine the expected 

preheated oil temperature flow rate, while equation 9 from section 4.4.1.3 was used to 

obtain the temperature compensation coefficient. 

 𝑄𝑄 =  𝑡𝑡𝑝𝑝𝑄𝑄𝑝𝑝.𝑠𝑠𝑠𝑠 (Eq. 10) 

 

where 
𝑄𝑄𝑝𝑝 = predicted flow rate using orifice flowmeter (L min-1) 
𝑡𝑡𝑝𝑝 = temperature compensation coefficient 
𝑄𝑄𝑝𝑝.𝑠𝑠𝑠𝑠 = expected flow rate at steady-state temperature (L min-1) 
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4.4.2. Valve Spool Position Prediction Method 

4.4.2.1. Flow Rate-Valve Spool Position Relationship at Steady-State Fluid 

Temperature 

Figure 4.11 provides a graphical representation of the mean flow rate and pressure 

difference between pump and load sense for different extend direction valve spool 

positions conducted on valve 1 of tractor A.  Despite maintaining a high engine speed and 

suitable pressure requirement, the pump did not satisfy the valve’s flow rate request at 

high spool positions (86% and greater estimated flow CAN message).  However, a 

strongly correlated best-fit curve could be used to relate flow-sufficient spool positions.   

 

Figure 4.11: Relationship between flow rate and pressure differential between the pump and load sense for 
different valve spool positions. 

Figure 4.12 compares mean flow rates measured for extend direction spool positions 

of a control valve on each tested tractor.  From the figure, it appeared that the control 

valve design used on both tractors differed from one another despite both tractors being 
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the same make and model.  Tractor B’s control valve design possessed a relatively better 

linear relationship between flow rate and estimated flow rate percentage, while tractor A 

had a higher order polynomial relationship between the two quantities.  Thus, different 

polynomial fit types were used between the two tractors. 

 

Figure 4.12: Comparison of valve flow rates in extend direction between two tractors tested.  

 Table 4.3 details the mean flow rate measured for different spool positions in the 

retract direction for two control valves on tractor B.  Overall, valve 2 had a flow rate that 

was on average 3.03% higher than valve 1 for the positions tested, with higher 

differences occurring at low flow rates.  Based on these differences, separate best-fit 

curves were found for each valve.  When comparing the 95% confidence intervals of the 

coefficients for each best-fit curve (Appendix A), no two variables were determined 

significantly different from one another.  However, to minimize prediction error, it was 

determined it was necessary to find different best-fit curves for each valve on each 

tractor. 
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Table 4.3: Comparison of Different Valves on Tractor B 

Estimated 
Flow Rate 

(%) 

Retract Direction Flow Rate 
(Lpm) Difference 

(%) Valve #1 Valve #2  
20 14.17 14.90 5.18 
24 20.54 21.42 4.27 
30 25.81 26.93 4.33 
34 32.02 32.98 2.99 
40 37.80 39.10 3.43 
44 45.12 46.57 3.22 
50 51.75 52.96 2.34 
54 58.22 59.49 2.17 
60 63.99 66.05 3.22 
64 70.62 73.34 3.85 
70 77.36 79.96 3.36 
74 83.93 86.90 3.54 
80 89.97 92.57 2.89 
84 97.98 100.06 2.12 
90 106.56 108.44 1.76 
94 114.41 114.51 0.09 

 

Table 4.4 details the mean flow rate measured for spool positons in the extend and 

retract flow direction for valve 2 on tractor B.  From analyzing the table, while a low 

difference in flow rate existed at high spool positions, high differences were seen in 

measured flow rate at low spool positions.  Thus, separate best-fit curves were found for 

each control valve direction.  In comparing the 95% confidence intervals for each 

coefficient between the two best-fit equations (Appendix A), the quadratic coefficients 

between the two best-fit curves were significantly different from one another.  Thus, 

separate best-fit curves were needed between the two flow directions for each valve. 

Table 4.4: Comparison of Valve Flow Directions - Tractor B 

Estimated Flow 
Rate (%) 

Extend 
Direction 

(Lpm) 

Retract 
Direction 

(Lpm) 

Difference 
(%) 
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20 16.95 14.17 17.89 
24 22.76 20.54 10.26 
30 27.99 25.81 8.11 
34 34.65 32.02 7.91 
40 40.59 37.80 7.12 
44 48.96 45.12 8.16 
50 54.96 51.75 6.02 
54 61.83 58.22 6.02 
60 67.20 63.99 4.89 
64 74.63 70.62 5.53 
70 79.97 77.36 3.32 
74 87.49 83.93 4.16 
80 92.25 89.97 2.51 
84 99.68 97.98 1.72 
90 106.19 106.56 -0.35 
94 114.87 114.41 0.40 
100 119.52 118.96 0.47 

 

Based on the results, separate best-fit curves were found for each valve and valve 

direction for both tractors.  All best-fit equations found followed a format shown in 

equation 11.  However, the cubic term for valve equations on tractor B were determined 

unnecessary.  The resulting equation coefficient estimates and confidence intervals are 

listed in Appendix A.  

 𝑄𝑄𝑣𝑣.𝑠𝑠𝑠𝑠 =  𝑐𝑐3.𝑣𝑣𝑣𝑣𝑥𝑥3 + 𝑐𝑐2.𝑣𝑣𝑣𝑣𝑥𝑥2 + 𝑐𝑐1.𝑣𝑣𝑣𝑣𝑥𝑥 + 𝑐𝑐𝑜𝑜.𝑣𝑣𝑣𝑣 (Eq. 11) 

 

where 
𝑄𝑄𝑣𝑣.𝑠𝑠𝑠𝑠   = predicted flow rate at steady-state temperature 
x       = estimated flow rate (%) 
𝑐𝑐𝑛𝑛.𝑣𝑣𝑣𝑣 = nth power coefficient of valve “v” in direction “d” 

 

4.4.2.2. Effect of Fluid Temperature on Flow Rate-Valve Spool Position 

Relationship 

As the valve spool position flow rate prediction method predicted a constant flow rate 

for a given valve spool position, a single flow-rate was predicted for a given temperature 
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test.  Thus, rather than comparing the observed flow rate for given temperatures to the 

predicted flow rate at steady-state temperature, comparisons instead were made to the 

observed flow rate at a near-steady state temperature.  A proportion was found relating 

the measured flow rate to the flow rate observed at 66°C for each temperature of each 

test. 

Figure 4.13 details the relationship between measured-to-steady-state flow rate and 

fluid temperature for different valve spool positions for a given valve.  At the lowest fluid 

temperatures, the resulting flow rate was as low as 95% of the measured flow rates at 

steady state temperature.  Overall, a common relationship was maintained among 

different spool positions.  A quadratic/linear rational empirical curve (eq. 12) provided 

the best fit relating the mean proportion among all tests for each temperature.  When 

compared to the data collected from each test, the predicted proportions using the best fit 

curve had a .002 RMSE.  Thus, a single curve could compensate flow rate prediction for 

fluid temperature effects independent of spool position setting under flow-sufficient 

conditions. 
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Figure 4.13: Comparison of fluid temperature tests at different valve spool positions. 

 𝑡𝑡𝑣𝑣 =  
. 000639𝑇𝑇2 + 0.960𝑇𝑇 − 8.964

𝑇𝑇 − 8.464
 (Eq. 12) 

 Where: 
         x  = fluid temperature (°C) 

               𝑡𝑡𝑣𝑣 = temperature coefficient using valve spool position 

 

 

4.4.2.3. Derived Valve Spool Position Prediction Method 

Because the proportion of flow rate produced at different fluid temperatures to flow 

rate at steady-state temperature was consistent for different flow rate magnitudes, valve 

spool position and fluid temperature effects could be determined independent of one 

another.  Thus, after determining the expected flow rate at steady state temperature for a 

given estimated flow percentage magnitude, an adjustment to the prediction could be 

made by multiplying the prediction by a temperature coefficient based on the CAN-

indicated fluid temperature (eq. 13).  Different empirical equations dependent on valve 

and flow direction were to be used to determine the expected preheated oil temperature 
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flow rate, while equation 12 from section 4.4.2.2 was used to obtain the temperature 

compensation coefficient. 

 𝑄𝑄𝑣𝑣 =  𝑡𝑡𝑣𝑣𝑄𝑄𝑣𝑣.𝑠𝑠𝑠𝑠 (Eq. 13) 

 
where 
𝑄𝑄𝑣𝑣   = predicted flow rate using valve spool position method 
𝑡𝑡𝑣𝑣     = temperature coefficient using valve spool position 
𝑄𝑄𝑣𝑣.𝑠𝑠𝑠𝑠  = predicted flow rate at steady-state temperature 

 

 

4.4.3. Flow Rate Prediction Validation Results 

4.4.3.1. Steady State Test 

A variable valve position test dataset which featured mostly steady-state flow 

conditions at varying flow rate magnitudes was used to test the prediction algorithm.  

Figure 4.14 provides a graphical representation of the predicted versus measured flow 

rates throughout the test duration.  
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Figure 4.14: Resulting predicted flow rate versus measured flow rate for steady-state test. 

As the orifice flowmeter was expected to predict flow rate independent of system 

conditions, prediction accuracy was compared between the developed flow rate 

prediction function using valve spool position when possible versus using only the orifice 

flowmeter.  As shown in table 4.5, the prediction function had a lower MAE, MAPE, and 

RMSE than the pressure drop method.  Thus, using valve spool position when possible 

within the prediction function resulted in a more accurate flow rate prediction. 
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Table 4.5: Valve Position Test Flow Rate Prediction Accuracy - Overall 

Performance Statistic 
Magnitude – 
w/ Valve Spool 
Position 

Magnitude – 
Orifice 
Flowmeter Only 

Mean Absolute Error (MAE) (Lpm) 1.032 2.294 
Mean Absolute Percentage Error (MAPE) (%) 2.088 6.347 
Root Mean Squared Error (RMSE) (Lpm) 1.602 2.841 
 

To further analyze when errors occurred with both prediction methods, the associated 

accuracy statistics were found for each tested valve spool position.  As seen in table 4.6, 

while using only the pressure drop method resulted in higher absolute errors and RMSE, 

the mean flow rate prediction for a given valve position did not greatly differ from the 

method using valve spool position when possible.  Additionally, the overall MAPE, 

MAE, and RMSE values from the orifice flowmeter prediction were inflated due to 

higher variance in prediction at the lowest flow rates.  At flow rates greater than 60 Lpm, 

the MAPE was no higher than 3.03%.  This was likely due to the need for higher 

precision to detect changes in flow rate resulting from the quadratic relationship between 

flow rate and pressure drop. 

Table 4.6: Valve Position Test Flow Rate Prediction Accuracy – Individual Levels 

Measured 
Flow 
Rate 

(Lpm) 

Prediction Function Flow Rate Orifice Predicted Flow Rate 
Mean 
Error 
(Lpm) 

MAE 
(Lpm) 

MAPE 
(%) 

RMSE 
(Lpm) 

Mean 
Error 
(Lpm) 

MAE 
(Lpm) 

MAPE 
(%) 

RMSE 
(Lpm) 

10.21 0.98 1.05 10.91 1.36 0.38 3.56 35.10 4.44 
26.37 -0.47 0.49 1.82 0.63 0.72 2.34 8.85 2.95 
36.44 0.11 0.35 0.98 0.59 -0.39 1.83 5.04 2.26 
48.13 0.25 0.44 0.93 0.96 -0.26 2.47 5.13 3.03 
61.19 -0.08 0.41 0.66 0.44 -0.36 1.77 2.89 2.21 
74.68 -0.49 0.53 0.71 0.65 1.88 2.27 3.03 2.73 
88.99 0.62 0.68 0.77 0.87 1.03 1.55 1.73 2.06 
103.22 -0.07 0.50 0.47 1.37 -1.03 1.88 1.82 2.31 
117.95 -2.56 2.56 2.17 2.88 2.70 2.71 2.29 3.07 
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4.4.3.2. Temperature Test 

To validate the adjustments made based on fluid temperature, a temperature test was 

processed through the flow rate prediction program.  Two different valve positions total 

were tested beginning at a fluid temperature of 22°C and ending the test at 58°C.  Figure 

4.15 provides a visual representation of predicted versus measured flow rates throughout 

the test duration. 

 

Figure 4.15: (a) Comparison in predicted versus measured flow rate and (b) error distribution for a steady 
state test with high variance in fluid temperature. 
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Table 4.7 presents the improvement level in accuracy the program achieved when 

utilizing the temperature compensation adjustment for both the prediction using only the 

pressure drop and for the method incorporating valve spool position when possible.  

Similar to the steady state test results, incorporating valve position when possible 

provided a more accurate flow rate prediction.  While temperature compensation 

improved both predictions, the level of improvement was greater in the added pressure 

drop method.  This aligns to the larger compensation factor seen at low temperatures for 

the added drop versus valve spool position prediction method from the temperature 

compensation development results.   

Table 4.7: Temperature Test Flow Rate Prediction Accuracy 

Performance 
Statistic 

No Temperature 
Compensation 

Temperature 
Compensation 

Prediction 
Program 

Only Added 
Drop 

Prediction 
Program 

Only Added 
Drop 

MAE (Lpm) 1.256 3.983 0.347 0.898 
MAPE (%) 1.892 6.084 0.491 1.261 
RMSE (Lpm) 1.535 4.569 0.435 1.140 

 

4.4.3.3. Maximum System Pump Pressure Test 

Another variable valve spool position test, but with an additional valve not connected 

to any circuit also continuously actuated, was processed through the prediction program. 

This served as a valid test to determine the accuracy in valve prediction with the valve’s 

pre-spool compensator engagement required to maintain flow rate.  Additionally, it tested 

the ability for the orifice flwometer to predict flow rate at high pump pressures.  The vast 

majority of flow rate data were in steady-state conditions.  Figure 4.16 provides a visual 

representation of the predicted and measured flow rates throughout the test duration.   
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Figure 4.16: (a) Comparison in predicted versus measured flow rate and (b) error distribution for a 
variable valve position test with a stalled pump.  

As provided in table 4.8, the prediction program error was higher for this test in 

comparison to the steady-state test.  It was inferred this increased error stemmed from 

differences in flow rate produced for a given spool position between being the highest 

load sense and using the pre-spool compensator to maintain flow rate when other circuits 

had a higher load sense. However, with a mean absolute error below 5%, it was deemed a 
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separate prediction algorithm for instances with the pre-spool compensator engaged to 

maintain desired flow rate was not necessary.  While utilizing valve spool position when 

possible in the prediction program still resulted in a reduced error versus solely using the 

orifice flowmeter, the difference in error decreased from the steady-state test. 

Table 4.8: Maximum System Pressure Pump Test Flow Rate Prediction Accuracy 

Performance Statistic Prediction 
Program 

Orifice 
Flowmeter Only 

Mean Absolute Error (Lpm) 2.424 2.888 
Mean Absolute Percentage Error (%) 4.076 6.887 
Root Mean Squared Error (Lpm) 3.247 3.782 

 

4.4.3.4.  Multiple Valve Test – Steady State Conditions 

A multiple valve test with one valve (valve 1) maintained at a constant spool position 

while making adjustments to the other (valve 2) in increments similar to the variable 

valve position test was processed through the flow rate prediction program.   Two 

repetitions of this actuation method were performed during the test; however, the second 

repetition, which began at a time stamp of 375 seconds, had a third valve attached to no 

circuit actuated to generate the maximum system pressure.  Comparisons in the measured 

versus predicted flow rate are provided in figure 4.17.  As seen in the figure, while the 

prediction error magnitude did not greatly change between the two repetitions in valve 2, 

the error magnitude increased in valve 1 when the third valve was actuated.  Similar to 

comparisons between the maximum system pressure versus steady-state test data, 

prediction accuracy decreased when a flow-sufficient valve went from being the highest 

load sense valve to a lower load sense valve. 
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Figure 4.17: Comparison in predicted versus measured flow rate for (a) valve 1 and (b) valve 2 and error 
distribution for both (c) valve 1 and (d) valve 2 for steady state multiple valve test. 

When analyzing the resulting prediction accuracy statistics, it is notable that while 

valve 2 had a lower MAE and RMSE than valve 1, the MAPE of valve 2 was 89.9%.  
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Due to the program predicting a positive flow rate at a low valve spool position where 

minimal flow rate was occurring, the percentage error was inflated by these data points.  

When excluding these low flow rate conditions, which was not expected during actual 

field operations, the MAE for valve 2 dropped to 3.66%.   

Table 4.9: Steady-State Multiple Valve Test Flow Rate Prediction Accuracy 

Performance Statistic Valve #1 Valve #2 
Mean Absolute Error (Lpm) 2.240 1.758 
Mean Absolute Percentage Error (%) 3.50 89.9 
Root Mean Squared Error (Lpm) 2.859 2.354 

 

4.4.3.5. Multiple Valve Test – Transient Conditions 

In addition to the steady-state multiple valve test, a multiple valve test with a high 

proportion of transient flow rate data was processed through the flow rate program. 

Changes in flow rate frequently occurred due to changes in engine speed or valve 

position in either valve.  This resulted in both valves featuring both flow-sufficient and 

flow-limited conditions.  Figure 4.18 shows the changes in flow rate and the associated 

prediction at given times throughout the test.  As seen in table 4.10, while the error was 

slightly higher in valve 2, both valves had MAPEs below 6%. 
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Figure 4.18: Comparison in predicted versus measured flow rate for (a) valve 2 and (b) valve 3 and error 
distribution for both (c) valve 2 and (d) valve 3 for transient multiple valve test. 

 

 



93 

 

Table 4.10: Transient Multiple Valve Test Flow Rate Prediction Accuracy 

Performance Statistic Valve #2 Valve #3 
Mean Absolute Error (Lpm) 2.633 1.653 
Mean Absolute Percentage Error (%) 5.334 3.573 
Root Mean Squared Error (Lpm) 3.319 3.175 

 

4.5. Conclusions 

From variable valve spool position tests conducted at flow-sufficient conditions, 

strongly correlated best-fit curves were found relating flow rate to both valve spool 

position and the pressure drop across the customized orifice flowmeter developed for this 

study.  However, tests conducted across varying hydraulic oil temperatures determined 

that the flow rate relationship to either valve spool position or pressure drop changed at 

different fluid temperatures due to changes in fluid properties.  Analysis between 

different temperature tests determined that the change in flow rate at different 

temperatures was a proportion of the expected flow rate magnitude at the determined 

preheated temperature of 66℃.  Thus, the finalized flow rate prediction equation used for 

both valve spool position and pressure drop featured a temperature compensation 

coefficient that adjusted the steady state flow rate prediction by a proportion determined 

by the measured fluid temperature. 

The developed flow rate prediction program that incorporated the flow rate prediction 

equations met prediction accuracy goals across a variety of tests processed through the 

program.  While predicting flow rate using the orifice flowmeter method alone resulted in 

a similar mean error for different positions held over several seconds, the prediction 

program incorporating valve spool position when possible consistently produced a lower 

mean absolute and root mean squared error.  The error magnitude varied for different 
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tests. Higher errors were seen for instances when the orifice flowmeter predicted lower 

flow rate magnitudes, a valve’s spool position predicted flow rate but the valve did not 

have the highest pressure requirement in the system, and the proportion of transient data 

was higher.  However, even at these conditions, the mean absolute error was maintained 

below 3 Lpm, and the mean absolute percentage error was held below 5.5 percent.  Based 

on the prediction accuracy results from this test, it was determined that the combination 

of instrumentation and flow rate prediction program could be used in place of turbine 

flowmeters to predict hydraulic flow rate for implement hydraulic circuits.  This work 

validated the ability to use these methods for agricultural machinery performance studies 

in field conditions.  
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Chapter 5: Analysis of Hydraulic Power Requirements and Machinery 

Performance Characteristics for Small Grain Planting Operations 

5.1. Introduction 

For agricultural row crop producers, a critical component to enable success for their 

operation is the selection of properly-sized implements and tractors that power them to 

accomplish required tasks throughout the year.  For a given implement, the size selected 

may be determined from a wide variety of factors, including but not limited to the 

expected usage per year, amount of time available to accomplish the work within the 

growing season, ownership costs, capital labor costs, and power requirements the tractor 

must provide for the given field terrain and operator preferences (Edwards, 2017).     

While the producer must pair a tractor that is capable of providing sufficient power to 

an implement, selecting a tractor with a far greater power capability in comparison to the 

requirement has drawbacks, including reduced efficiency and increased costs (White, 

1977).  Thus, there is an incentive for pairing a tractor to an implement that provides 

sufficient power, but minimize drawbacks with increased power capabilities. 

While some producers may select a tractor for their operation based on the 

implements to be used with it, others may select their implement based on their tractors in 

their fleet.  While a tractor may possess the overall power capability to work with a 

particular implement, it may not have the ability to provide the power take off (PTO) or 

hydraulic power components the implement demand.  Examples include modern large 

tractors that do not feature an optional PTO or older tractors fitted with hydraulic pumps 

that produce insufficient flow rate requirements.  There are potential alternatives to 



96 

 

account for the lack of these power components, including the addition of a PTO-

powered hydraulic pump to the implement to provide additional hydraulic power or 

conversion kits for implement functions normally powered by the PTO to instead be 

hydraulically powered.  Nonetheless, the ability for the producer to know the overall 

implement power requirements, as well as of each power form, would be beneficial in 

selecting implements for operations based on the tractor’s capabilities. 

The American Society of Agricultural and Biological Engineers (ASABE) developed 

Standard D497.7, entitled “Agricultural Machinery Management Data,” to assist in 

predicting implement power requirements.  The standard provides empirical equations 

that can be used to estimate either draft force or rotational power requirements for a given 

implement.  However, the standard lists several equations with an allowable error of 

50%.  Additionally, the studies conducted to determine the empirical coefficients 

provided in the standard were developed in the 1990’s (Harrigan and Rotz, 1995; Rotz 

and Muhtar, 1992).  Due to the high allowable error range of the empirical equations and 

the date of the current standard’s origin, the usefulness of the predicted power 

requirements using the standard is limited. 

5.2. Objectives 

The goal of this study was to assess the performance of similar tractor designs paired 

with two different no-till air drills for small grain planting operations.  Specific objectives 

included 1) assessing tractor power usage across different terrain, 2) determining time 

and fuel requirements per area for different fields planted with the given machinery, and 

3) analyzing hydraulic power requirements for both implements. 

Gabe Stoll
Mention how different pumps are available within a given model to provide differing max flow rates.
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5.3. Materials and Methods 

5.3.1. Machinery Background 

Two different small grain planting operations were analyzed in this study.  A wheat 

crop was planted with a row crop tractor (8320R, Deere & Company, Moline, Ill.) and 

no-till air drill (NTA2007, Great Plains Manufacturing, Salina, Kan.) with a 6.1 m (20 ft.) 

working width.  A rye cover-crop was planted with a similar row crop tractor model 

(8320RT, Deere & Company, Moline, Ill.), but with tracks rather than tires, and a no-till 

air drill (JD 1990, Deere & Company, Moline, Ill.) with a 12.2 m (40 ft.) working width. 

Both crops were planted in rows spaced 19.05 cm (7.5 in.) apart.  Both tractor and planter 

combinations are shown in figure 5.1.  In total, roughly 647.5 hectares (1600 acres) of rye 

cover crop and 55.5 hectares (137 acres) of wheat crop planting operations were 

analyzed.    

 

Figure 5.1: (a) JD 8320R with Great Plains NTA2007 no-till air drill used throughout wheat planting 
operation and (b) JD 8320RT and (c) JD 1990 no-till air drill used throughout rye planting operation. 



98 

 

The planter used for the wheat crop featured a hydraulically-powered fan for the 

material delivery system.  In addition to planting seed, dry fertilizer was also applied on 

each row with the operation.  Other implement functions that used tractor hydraulic 

power included weight transfer and wing folding, opener lifting, and visual field markers.  

In comparison, the planter used for the rye cover crop also used tractor hydraulic power 

for a fan to move seed to each opener, opener lifts, and wing folding.  However, unlike 

the planter used for wheat planting, downforce to keep the openers engaged was done 

using the opener lift circuit as opposed to using weight transfer using the wing folding 

circuit for rye planter.  Pressure control valves were used to control the fluid pressure 

magnitude supplied to both the downforce function on the rye planter and the weight 

transfer function on the wheat planter.  Additionally, the wheat planter featured a bypass 

valve within the weight transfer circuit to reduce wasted power when used with load-

sensing, closed center hydraulic systems.  However, the operator for the wheat planting 

opted to leave this bypass valve closed due to past issues during operation.  Neither 

implement possessed functions that required the tractor power take off (PTO). 

5.3.2. Data Collection Method 

Numerous desired machine operating parameters were available in a standard 

controller area network (CAN) message format on each tractor’s ISOBUS.  Table 5.1 

details the list of messages that were available for logging.  However, hydraulic pressure 

and flow rate measurements needed to assess hydraulic power were not available through 

standard CAN messages.  Thus, the addition of sensors to the tractor were needed to 

measure these quantities. 
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Table 5.1: Standard CAN Messages Available for Interpretation on Tested Tractors 

Parameter Group Number 
(PGN) (Hexadecimal) 

Reported Variables of Interest 

F004  Engine Speed, Engine Torque 
FE11 
FE12 
FE13 
FE14 

Estimated Hydraulic Valve Flow Rate Percentage  
(from Valve Spool Position) 

FE43 PTO Speed 
FE45 3 Point Hitch Position, Draft Sense 
FE48 Wheel-Indicated Vehicle Speed, Total Distance 
FE68 Hydraulic Fluid Temperature 
FEE3* Reference Engine Torque, Engine Lug Curve Data Points 
FEE8 GPS Bearing, Vehicle Speed, Pitch, and Altitude 
FEF2 Fuel Rate 
FEF3 GPS Latitude, Longitude Coordinates 

*Message typically published following SAE J1939 Transport Protocol (PGN: EB00) 

Efforts were made to convert all sensor signals into CAN messages published on the 

ISOBUS.  Thus, all data could be recorded with a standalone CAN data logger (Pro 2xHS 

v2, Kvaser AB, Mölndal, Sweden) plugged into the tractor’s CAN diagnostic port.  A 

customized electronics enclosure, named the Sensor CAN Gateway (SCANGate), was 

developed to power the added sensors and convert sensor signals into CAN messages that 

were published on the ISOBUS using an electronic controller unit (ECU) (Danfoss 

MC024-110, Danfoss North America, Ames, Iowa).  In total, 3 additional CAN messages 

were published to the ISOBUS at 4 Hz.  To connect the ECU into the tractor’s ISOBUS, 

an implement-end ISOBUS breakaway connector (IBBC) plug on the SCANGate 

connected into the tractor’s IBBC.  While the planter used for wheat planting did not 
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feature any ISOBUS components, the planter used for the rye planting had ISOBUS 

components that also required connection to the tractor IBBC.  To allow the implement to 

also connect into the ISOBUS, the planter’s IBBC was plugged into a second breakaway 

connector on the SCANGate. 

Due to the preference of not placing sensor cables in the cab, and in being closer to 

the sensor locations, the SCANGate was mounted behind the tractor cab.  Specific 

locations varied between the two tractors due to available room with each tractor design 

(figure 5.2).  Thus, customized mounting brackets were used with each tractor to properly 

secure the SCANGate. 

 

Figure 5.2: Location of the SCANGate varied between the two tractors.  The device was mounted (a) 
directly behind the tractor cab for the rye cover crop tests and (b) on the quick hitch for the wheat tests. 

5.3.3. Hydraulic Power Sensor Instrumentation and Calibration Testing 

All hydraulic pressure measurements were conducted using a common electronic 

pressure transducer model (Omega PX309, Omega Engineering Inc., Norwalk, Conn.).  

Because flowmeters required significant upstream and downstream uninterrupted flow 
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lengths (Badger Meter, 2018), a flow rate prediction method was used for field data 

collection.   

Due to the load sensing hydraulic system design on both tractors, flow rate could be 

estimated using valve spool position when the pump produced sufficient flow to satisfy 

each valve position’s requested flow rate.  However, at least one valve’s spool position 

would not accurately predict flow rate if the total requested flow rate could not be 

provided by the pump.  Thus, a customized orifice flowmeter (figure 5.3) was added to 

each implement hydraulic circuit of interest to predict flow rate in these circumstances.  

The selected added pressure drop featured a customized orifice fitting which reduced the 

flow passageway to a 7.94 mm diameter circular opening in either flow direction 

(effective beta ratio of 0.417). 

 

Figure 5.3: (a) Added system loss used to predict flow rate in flow-limited circumstance.  System loss 
featured a (b) customized orifice fitting with a 7.94 mm diameter opening. 

Pressure was measured on both the extend and retract ports of each control valve in 

order to determine each circuit’s pressure requirements.  With pressure sensors already 

utilized on one port side with the orifice flowmeter, a single pressure sensor in a separate 

fitting assembly was added to the other port side when possible.  However, for the fan 

circuits on both planters, a return line was connected to the tractor’s sump port to 
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eliminate back pressure instances from occurring that could damage the fan.  Thus, it was 

always assumed the return supply had no backpressure for fan circuits. Therefore, power 

could be determined solely from the pressure measurement at the flow outlet with the 

orifice flowmeter sensors.    

In addition to pressure measurements utilized for flow rate prediction and implement 

pressure demands, as detailed in chapter 3, pump and load sense pressures needed 

measured to determine whether valve spool position accurately predicted flow rate on all 

valves at a given time.  At high pump pressures and instances where the difference 

between pump and load sense pressures was less than the nominal margin pressure value, 

at least one valve would be flow-limited.  Therefore, pressure sensors were added to the 

pump and load sense test diagnostic ports on each tractor.  Although both tractors had 

pump pressure diagnostic ports available behind the tractor cab, neither tractor had load 

sense diagnostic ports in the same location.  Instead, load sense diagnostic ports were 

available at the hydraulic pump located underneath the chassis. 

Calibration tests were conducted on each tractor to determine the relationship 

between valve spool position and flow rate.  Prior testing discussed in chapter 4 found 

that the actual-to-estimated flow rate relationship varied for different valves and valve 

actuation directions.  Thus, tests were conducted on each valve of interest in both 

actuation directions. A simulated implement circuit containing a turbine flowmeter (Flo-

tech Activa F6206-AVB-NN, Badger Meter, Milwaukee, Wisc.) to serve as the baseline 

flow rate measurement and a needle valve to allow adjustment to the circuit pressure 

requirement was connected to the tractor.  The calibration test was conducted at an 

engine speed and implement load setting that would not hinder the valve’s requested flow 
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rate from being attained.  Upon actuating the valve into continuous detent for a given 

direction at a low spool position, the spool position was gradually increased in the 

smallest possible increments (0.04 on a dimensionless scale of 0 to 10) until the valve 

spool was fully open.  From there, valve spool position was gradually decreased until 

fully closed.  While there was concern that the reported estimated flow rate message 

would not account for valve hysteresis effects, results from testing showed no difference 

in flow rate magnitude for given estimated flow rate messages values regardless of the 

valve spool direction.  Calibration testing revealed a linear relationship observed between 

flow rate and reported estimated flow rate percentage correlating to lower flow rates, but 

a nonlinear relationship seen between the two variables at spool positions correlating to 

higher flow rates. Thus, piece-wise empirical calibration equations were utilized to 

predict flow rate using valve spool position.  Equations found from the tests are listed in 

appendix A.  

5.3.4. Post-Data Processing Program 

All data were analyzed post-operation using a customized Matlab program developed 

for this study.  Various methods in the post-processing analysis are discussed below. 

As the CAN data logger produced all log files in a raw format, the first step in the 

program was to convert the raw messages into engineering measurements.  This involved 

sorting different messages by their parameter group number (PGN), converting raw data 

bytes into engineering units based upon the ISO 11783 standard, and resampling 

calculated engineering values to common time intervals.  While standard functions within 

Matlab’s Vehicle Network Toolbox application would also convert the raw log files, it 
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was determined a customized function that only accounted for data bytes of interest 

resulted in a faster processing time. 

While the post-processed dataset contained all of the necessary pressure readings to 

determine implement hydraulic power requirements, further work was needed to 

determine the predicted flow rate.  A Matlab function was developed to determine flow 

rate through each hydraulic control valve of interest.  The function predicted flow rate 

using both the valve spool position method and the orifice flowmeter for all data points.   

Flow rate prediction using these methods required utilization of the estimated flow rate, 

pressure drop across the orifice flowmeter, and fluid temperature at each data point.  

From work conducted in chapter 4, it was preferred to use the valve spool position 

method over the orifice flowmeter to predict flow rate when valve spool position 

accurately represented flow rate.  Thus, following a process shown in figure 5.4 using 

different pressure measurements, it was determined when the valve spool position 

method was accurate.  Thus, the predicted flow rate was derived from the valve spool 

position prediction when valid and the orifice flowmeter method when the valve spool 

position prediction was invalid. 
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Figure 5.4: Flow chart defining the determination of whether a given post-processed data point could be 
predicted using valve spool position. 

Upon determining all predicted flow rates, the next step in the program was to 

analyze the field data.  In general, there were four different vehicle states that occurred 

throughout the field operation.  These states were when the planter was actually planting 

seed (working), the tractor was being repositioned so it could begin planting again within 

a field (turning), the tractor was stopped for any potential reason (stoppage), and the 

tractor was being moved from one field to the next (traveling).  It was critical to decipher 

these different states to be able to determine field efficiency and make comparisons in 

performance characteristics both within and amongst each vehicle state. 

To understand when each vehicle state occurred within a data file, the standard CAN 

messages for vehicle wheel speed and hydraulic control valve estimated flow rate 

associated with the planter’s folding and opener circuits were used.  To effectively 
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determine all notable characteristics of each vehicle state occurrence, data were processed 

chronologically.   A function was utilized to determine whether the first valve actuation 

for the folding circuit was to fold or unfold the implement.  If the first actuation was 

unfolding, the implement began in a traveling mode; otherwise, it was either working, 

turning, or stopped initially.  After determining the status of the first point, a decision 

matrix utilizing the CAN messages of interest was used to determine each data point’s 

vehicle status (figure 5.5). 

 

Figure 5.5: Flow chart defining decision matrix used to distinguish different work states. 

With distinction between different vehicle states, numerous performance 

characteristics were determined.  These included field efficiency both including and 
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excluding stoppage occurrences and the total time and fuel usage of the field operation 

excluding traveling states and stoppages if desired.  Additionally, upon estimating the 

effective field size using the implement width and sum of all work pass lengths, the time 

and fuel requirements per acre were determined.  Finally, comparisons were made in fuel 

and power values between each of the states. 

In addition to comparisons within a given field, comparisons were made between 

different fields.  The standard CAN message for elevation reported from the GPS was 

used to determine topographic traits of each field.  Two statistics from the work pass 

elevation data were determined.  The mean standard deviation in reported elevation 

within each row quantified how much change in elevation existed within each row.  An 

increasing amount of elevation change within a row resulted in varying pitches both 

potentially within the row and from one row to the next.  The standard deviation of the 

mean reported elevations of each work pass quantified the change in elevation from one 

row to the next.   An increasing standard deviation in mean elevation amongst the work 

passes indicated an increasing tractor roll angle throughout the operation. 

For field comparisons, characteristics of the working vehicle state were analyzed.  

The effects of field terrain on fuel rate, ground speed, engine torque, and engine speed 

were explored.  To better understand each field, work passes were sorted by uphill versus 

downhill passes.  While it was expected that the pitch CAN message would aid in 

distinguishing the difference between rows, it was determined that a positive pitch was 

reported for terrain where no change in elevation existed between points.  Additionally, 

when comparing fields, the mean positive pitch magnitude between points with no 
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elevation change slightly varied between fields.  Thus, a function was used to adjust all 

pitch data to correct for the error in measurement.   

5.4. Results and Discussion 

5.4.1. Comparison of Implement Hydraulic Power Requirements 

Due to being the state that required a substantially higher overall power requirement, 

hydraulic power requirements were analyzed across working states only.  During a work 

pass, the fan and downforce circuits were actuated continuously for both planters.  As the 

opener circuit was only actuated at the beginning and end of turning states and the wing 

circuit was only actuated at the beginning and end of travel states, they were excluded 

from implement hydraulic power requirement analysis.   

A statistical analysis was conducted to determine whether differences existed in flow 

rate and pressure requirements for both circuits among uphill versus downhill passes, 

vehicle speeds, and fluid temperatures.  Due to the wheat being planted on ground with 

minimal elevation change, only the rye fields were considered for the analysis.  Results 

provided in greater detail in appendix B concluded that slope and vehicle speed did not 

affect the resulting flow rate and pressure requirements for either circuit.  Fluid 

temperature, however, resulted in a higher pressure but lower flow rate for both circuits. 

However, these differences would only exist at the beginning of a field operation.  

Differences in fan flow rate and pressure requirements existed among the tested fields.  

This was presumed to be due to differences in operator setting between fields.   Given 

these results, implement hydraulic power requirements were able to be determined 

independent of different field and operating conditions.    
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Mean estimates and confidence intervals were found for the mean work pass flow rate 

and pressure requirements for each circuit for both planters (table 5.2).  In comparing 

planters, the wheat planter had a significantly higher fan flow rate but lower fan pressure 

requirement than the rye planter.  While the downforce and weight transfer circuit flow 

rates were not significantly different from one another, the rye planter had a significantly 

higher pressure requirement. 

Table 5.2: Mean Work Pass Hydraulic Flow Rate and Pressure Requirements 

 Flow Rate (Lpm) Pressure (MPa) 
Circuit Mean Value 95% C.I. Mean Value 95% C.I. 
Rye Fan 38.27 (38.14,38.41) 15.80 (15.78,15.82) 
Rye Downforce 
(D.F.) 

14.77 (14.08,15.46) 19.47 (19.44,19.50) 

Wheat Fan 47.83 (47.44,48.21) 13.24 (13.19,13.29) 
Wheat Weight 
Transfer (W.T.) 

15.28 (14.92,15.63) 18.95 (18.94,18.96) 

 

Taking the product of the flow rate and pressure measured in each circuit, an 

estimated implement hydraulic power requirement was determined. Table 5.3 details the 

inferred implement hydraulic power requirement at the mean estimate and confidence 

interval bounds (from table 5.2) for each circuit for both planters.  In comparing planters, 

the wheat fan circuit had a slightly higher power requirement than the rye fan circuit, but 

the downforce and weight transfer circuit power requirements did not greatly differ.  The 

slightly higher fan power requirement in the wheat planter could potentially be due to the 

incorporation of fertilizer with the planter.  Given the wheat planter contained half the 

number of row units (32) versus the rye planter (64), the corresponding power 

requirement per row unit was over double the magnitude for the wheat planter versus the 

rye planter. 
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Table 5.3: Mean Work Pass Hydraulic Power Requirements and Tractor Delivery 

Planter 

Implement Requirements (kW) Tractor Power (kW) 

Mean Estimate 
Corresponding 
Power at C.I. 

Bounds 
Mean Estimate 

Corresponding 
Power at C.I. 

Bounds 
Rye Fan 10.08 (10.04,10.12) 17.21 (16.92,17.51) Rye D.F.  4.789 (4.567,5.011) 
Wheat Fan 10.55 (10.46,10.64) 19.93 (19.68,20.17) Wheat W.T. 4.829 (4.715,4.942) 

 

Due to both tractors having a hydraulic system featuring a single pump, the 

magnitude in hydraulic power produced by the tractor was a function of the sum of 

implement circuit and primary tractor function flow rates and the highest pressure 

requirement among all the implement circuits.  Primary tractor hydraulic function flow 

rates were excluded from measurement in this study.  However, the estimated power 

required from the pump for the implement alone using individual circuit estimates (from 

table 5.2) was determined (table 5.3).  From this table, it was seen that the rye planter 

required less tractor hydraulic power than the wheat planter.  In addition, the pump power 

efficiency was better for the rye planter (86.4%) versus the wheat planter (77.2%) due to 

the wheat planter fan’s lower pressure and higher flow rate requirement.  A fan motor 

with a smaller displacement would assist in improving the efficiency of the wheat planter.  

With similar pump pressure magnitudes, the addition of primary tractor functions into the 

hydraulic power calculations would not greatly affect the performance relationship 

between the two planters. 

Due to the weight transfer and downforce circuit design using pressure control valves, 

fluid pressure produced by the pump was at its maximum magnitude when the circuit was 

actuated despite the actual pressure requirement of the circuit being less than the stalled 
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pump pressure.  While the implement’s downforce or weight transfer circuit power 

requirements were determined as a function of the measured flow rate and pressure 

measurement on the delivered flow side only, in reality, the pressure magnitude was 

determined by the tractor’s stalled pump pressure setting.  If the bypass valve in the 

weight transfer circuit on the wheat planter had been properly used, the pressure 

requirement would have instead been determined by the bypass valve setting.  While the 

bypass valve would have increased the circuit’s flow rate, the tractor’s pump would have 

more efficiently provided power.  If the implement circuit could be paired with the 

tractor’s hydraulic system to provide only the necessary pressure requirement, a notable 

pressure reduction could occur without the increase in flow rate. 

5.4.2. Effect of Different Field Terrain on Vehicle Performance 

Figure 5.6 illustrates the within-row and among-row elevation variance observed for 

each tested field between both crops.  As seen in the figure, a far greater terrain variety 

existed for the rye cover crop planting applications versus the wheat planting.  Thus, 

analysis of differing terrain on effective fuel rates and produced engine power was done 

only for selected rye fields.   
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Figure 5.6: Breakdown of estimated pitch and roll for different conducted fields using elevation work pass 
data. 

In total, four fields were selected for analysis of differing field terrains.  These fields 

were selected on the premise of analyzing a field with low pitch and roll, high pitch but 

low roll, high roll but low pitch, and a high pitch and roll.  Table 5.4 breaks down each 

selected field’s standard deviation both within each row and among rows.  Higher 

standard deviations in elevation within each row indicated a field with higher pitch 

characteristics. Higher standard deviations in mean elevation among different rows 

indicated a field with higher roll characteristics.  Figure 5.7 details the geographical 

vehicle state breakdown for each field.  

Table 5.4: Selected Field Pitch and Roll Characteristics 

Field Type Within-Row Elevation 
Standard Deviation (m) 

Among-Row Elevation 
Standard Deviation (m) 

Flat Field 1.24 1.84 
Pitch Field 5.53 1.80 
Roll Field 1.89 6.32 
Pitch and Roll Field 4.95 6.10 
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Figure 5.7: Field shape and vehicle state differentiation for the selected (a) high pitch, low roll field, (b) 
high pitch, low roll field, (c) low pitch, low roll field, and (d) low pitch, high roll field.  Different marker 

colors distinguish working (green), turning (yellow), and stopped (red) vehicle states.  

Figure 5.8 provides the engine speed and torque measurements, along with the 

corresponding fuel rate, over working data seen for the pitch and roll field.  From this 

figure, it can be seen that the engine attempted to maintain a given engine speed 

throughout the field work, but instances occurred where the engine speed became 

governed by the respected engine torque due to limitation in engine power.  Additionally, 

the figure illustrates that fuel rates greater than 60 L/h indicated instances where the 

engine was on the lug curve.    
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Figure 5.8: Torque vs engine speed for work passes on the pitch and roll field. 

Figure 5.9 provides a graphical representation of the relationship seen between engine 

power and fuel rate for the pitch and roll field.  As shown in the figure, based on the 

collected data, a linear relationship existed between engine power and fuel rate.  Thus, 

analysis of fuel rate could be used to also characterize power requirements.   

 

Figure 5.9: Relationship between fuel rate and engine power seen in the pitch and roll field. 
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To understand the effects of power-limited circumstances on vehicle ground speed, 

the relationship between engine torque and ground speed was analyzed.  According to the 

operator, while a constant ground speed was attempted to be maintained during working 

vehicle states, a reduction in ground speed was required to cross ditches within a given 

work pass.  Figure 5.10 illustrates the engine torque versus ground speed relationship for 

the selected pitch and roll field.  Two vehicle ground speeds (9.5 km/h and 16 km/h) 

appeared to contain all power-sufficient data.  While the tractor was able to maintain the 

9.5 km/h set point, it appeared there were several instances within the field where the 16 

km/h ground speed set point could not be maintained due to the tractor’s engine 

becoming power-limited, indicated by fuel rates approaching and exceeding 60 L/h.  

Thus, vehicle speeds between 10 and 15 km/h predominately represented instances where 

the engine was power limited, resulting in speeds below the desired 16 km/h setting. 

 

Figure 5.10: Torque versus GPS-indicated ground speed for roll and pitch field. 

Figure 5.11 illustrates the proportion of vehicle speed observed for each of the four 

field types.  While all four fields had a proportion of field data in the 9-11 km/h range, 
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the pitch and roll field had a far higher percentage in the range (26.3%) versus the next 

closest field (15.8% for the roll field).  When comparing the low pitch, low roll field 

versus the pitch field, both of which had a similar percentage of working vehicle state 

data in the 8-11 km/h range, the flat field had a higher percentage of data in the desired 

15-17 km/h range (64.6%) versus the high pitch, low roll field (54.7%).  When observing 

when power-limited instances occurred between uphill and downhill passes for the high 

pitch, low roll field, as illustrated in figure 5.12, nearly twice the proportion of uphill pass 

data (42.3%) fell in the 11-15 km/h region versus the downhill pass data (21.7%).  A 

similar observation was seen in the high pitch, high roll field (38.8% for uphill passes 

versus 19.8% for downhill passes). Thus, an increasing pitch resulted in a higher 

percentage of data points in a presumed-power limited condition for this operation.  

 

Figure 5.11: Vehicle speed distribution over working vehicle state data for the selected (a) high pitch, low 
roll field, (b) high pitch, high roll field, (c) low pitch, low roll field, and (d) low pitch, high roll field. 

Gabe Stoll
11.8% for pitch vs 12.3% for flat.. don’t know if this is needed in the text.
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Figure 5.12: Proportion of uphill and downhill data at given vehicle speeds for the selected (a) high pitch, 
low roll field, (b) high pitch, high roll field, (c) low pitch, low roll field, and (d) low pitch, high roll field. 

Figure 5.13 illustrates the variation in fuel rate for working vehicle state conditions 

for each field. As anticipated from the results of the ground speed analysis, a higher 

proportion of working vehicle state data had a fuel rate magnitude of 60 L/h or greater for 

the high pitch, low roll field (33.2%) versus the low pitch low roll field (23.1%).  When 

comparing uphill versus downhill passes for the high pitch, high roll field (figure 5.14), 

45.8% of uphill pass data had a fuel rate above 60 L/h, while downhill passes only had 

18.5% of its data above 60 L/h.  However, while the pitch field’s uphill passes possessed 

a greater proportion of data with fuel rates 60 L/h or greater than the low pitch, low roll 

field, downhill passes had a lower mean fuel rate (46.47 L/h) versus the low pitch, low 

roll field downhill passes (49.41 L/h). 
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Figure 5.13: Proportion of working vehicle state data at given fuel rates for the selected (a) pitch field, (b) 
pitch and roll field, (c) flat field, and (d) roll field.  

 

Figure 5.14: Proportion of uphill and downhill work passes at given fuel rates for the selected (a) pitch 
field, (b) pitch and roll field, (c) flat field, and (d) roll field. 
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Table 5.5 shows the mean vehicle speed and fuel rate seen for each of the four fields 

examined.  Despite the high pitch, high roll field having a greater spread in distribution of 

fuel rate and vehicle speeds than the low pitch, low roll field, both fields had nearly 

identical mean ground speeds and fuel rates.  From this result, it appeared the resulting 

mean fuel rate was determined by the vehicle’s mean ground speed instead of the amount 

of elevation change within the field.   

Table 5.5: Mean Vehicle Speed and Fuel Rate for Selected Fields 

 Mean Vehicle Speed 
(km/h) 

Mean Fuel Rate  
(L/h) 

Flat Field 14.38 50.34 
Pitch Field 14.30 50.30 
Roll Field 13.87 48.81 
Pitch and Roll Field 12.94 46.63 

 

While the tractor used for the rye cover crop planting became power-limited at 

various instances throughout the field operation, the tractor used with the wheat planting 

operation was power-sufficient throughout the operation.  Shown in figure 5.15, the 

engine’s lug curve could not be defined based on the measured engine speed and torque 

across the field operation, indicating a lack of power-limited occurrences. 
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Figure 5.15: Engine speed and torque and respective fuel rate map for selected wheat field planting 
operation. 

Figure 5.16 shows the distribution in vehicle speeds and fuel rates for the wheat 

planting working state data.  With 76.5% of vehicle speeds between 8 and 10 kilometers 

per hour, it is apparent the desired ground speed for the operation was around 9 km/h.   

Additionally, with similar distributions in fuel rates between uphill and downhill work 

passes, it appears the field terrain had minimal effect on changes in field power 

requirements as anticipated by the low variation in elevation. 

 

Figure 5.16: Distribution of (a) vehicle speed and (b) fuel rate over working states for selected wheat 
planting field. 
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From these results, while the rye tractor was appropriately sized for the rye planter, a 

reduction in tractor size would be possible to accomplish the same field work with wheat 

planter.  Several factors contribute to lower power requirements for the wheat planter 

versus the rye planter, including a lower operating ground speed, half the working width, 

and less field elevation variability in the wheat fields versus the rye fields. 

5.4.3. Comparison of Field Performance Characteristics 

Based on the apparent relationship seen between mean fuel rate and mean vehicle 

speed, the relationship between the two quantities was compared among each field 

logged.  As mean vehicle speed increased, so also increased the corresponding fuel rate 

(figure 5.17).  Also seen within the figure, the mean vehicle ground speed was generally 

independent of the field’s pitch, with several examples of high pitch fields with a high 

vehicle speed and low pitch fields with a low vehicle speed.  It is presumed that vehicle 

speed was determined based on whether the previous crop was corn or soybeans and how 

many ditches were located within the field. 
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Figure 5.17: Mean working state fuel rate versus ground speed for all rye fields 

While increasing vehicle speed resulted in higher mean fuel rates, the effects of 

vehicle speed on time and fuel requirements per area were also analyzed.  The fuel 

requirement for working and turning vehicle states generally decreased per area as 

vehicle speed increased (figure 5.18).  Additionally, considering only time needed for 

working and turning, the area planted per time consistently increased as mean working 

state vehicle speed increased (figure 5.19).  With a goal of minimizing fuel and time 

requirements, the operator is at an advantage to plant at higher ground speeds.  However, 

the planter’s seed placement ability at higher speeds for given terrain conditions may 

hinder the operator from being able to go faster.  While a far lower number of wheat 

fields were logged, the same trend was seen in the reduction of fuel and time 

requirements per area by maintaining a higher mean vehicle speed. 
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Figure 5.18: Comparison in fuel requirements per area for rye fields of varying mean vehicle speeds  

 

Figure 5.19: Comparison in effective area covered per time for rye fields of varying mean vehicle speeds. 

A comparison in various performance characteristics between the wheat and rye 

planting operations is provided in table 5.6.  As seen from the table, the tractor and 

planter combination used for the rye planting far outperformed the tractor and planter 

combination used with the wheat planting.  Benefits of a lower field cost and increased 
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planting rate stemmed from the increased planter width, faster maintained ground speed, 

and a higher mean field efficiency, which were dependent on turning time for each field. 

Table 5.6: Comparison of Machinery Performance Characteristics between Crops 

Measurement 
Overall Means 

Wheat Fields Rye Fields 
Working Width (m) 6.1 12.2 
*Efficiency (%) 73.4 84.7 
**Ground Speed (km/h) 8.486 12.46 
*Area / Time (ha/h) 3.311 12.56 
*Fuel / Area (L/ha) 9.309 3.400 

* Only considers working and turning states, ** Only considers working states 

5.5. Conclusions 

Using standard hydraulic control valves and wheel-indicated ground speed CAN 

messages published on the selected tractors, different vehicle states were able to be 

classified for planter field operations.   This allowed for power and fuel analysis to be 

conducted for working states among different fields. 

In analyzing hydraulic power demand for the rye planter, a statistical analysis 

determined that factors such as field terrain and vehicle speed had no significant 

interaction effect on hydraulic power requirements of the fan and downforce circuits 

actuated during the working state.  Comparisons between the rye and wheat planters 

found that while the overall implement hydraulic power demand was similar between the 

two implements, the rye planter required less tractor hydraulic power due to a more 

efficient design with more similar pressure requirements between the fan and downforce 

circuit.  Analyzing from a per-row unit basis, the wheat planter required over twice the 

amount of power per row unit compared to the wheat planter.  Testing of more 

implements of differing sizes and manufacturers is needed to determine the relationship 
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between row unit and overall hydraulic power demand, but results from this study found 

could not determine a relationship existed. 

As for overall time, fuel, and power requirements, in comparing the two tractor-

implement pairings, the rye planting far outperformed the wheat planting operation.  The 

wheat planting required 274% more fuel and 377% more time to cover the same area the 

rye planter required.  Several factors likely contributed to the stark difference between the 

operations.  These included the rye planter having a larger working width, a higher 

vehicle speed, and a tractor that was less oversized to handle the implement power 

requirements.  Comparisons within fields of the rye planting operation found that time 

and fuel requirements per area decreased as vehicle speed increased, validating improved 

efficiency when a higher percentage of the tractor’s power capability was used. 

Based on the results from this study, it was determined that the tractor-implement 

pairing used for the rye planting operation offered both a lower hydraulic power 

requirement and reduced time and fuel costs to the operator in comparison to the tractor-

implement pairing used with the wheat planting operation.  From the data analyzed, it 

appeared a lower power tractor was feasible for usage with the wheat planter than what 

was used.  If the ownership costs associated with a lower power tractor are substantially 

lower than the increased operating costs and the producer can afford the increased time 

requirement, the producer may still be financially ahead to use the wheat planter versus 

the rye planter.  However, this study concluded when considering the operating costs 

alone, the rye planting operation was the better option of the two.  
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Chapter 6: Overall Conclusions and Future Work 

From the studies discussed in detail throughout this thesis, multiple accomplishments 

were made in improving the ability to conduct field performance studies investigating 

implement power requirements.   

The development of the Sensor CAN Gateway (SCANGate) allowed for a CAN data 

logger to serve as the sole data acquisition system for field machinery performance 

studies where added sensors were needed in addition to logging existing CAN messages 

on the machine to measure all necessary variables.  The box converted sensor readings 

into CAN messages that were published on the ISOBUS.  The SCANGate was used 

across all studies in this thesis. 

For field studies involving the measurement of implement hydraulic power 

requirements, an effective method predicting flow rate utilizing valve spool position and 

an added minor loss to the system was developed.  Usage of this method provided a more 

compact solution versus using a turbine flowmeter to measure flow rate. 

Finally, for machinery performance field operation studies, differentiation between 

vehicle states was established using standard hydraulic valve and wheel-indicated ground 

speed CAN messages.  This allowed for numerous performance analyses to be conducted 

among common vehicle states between differing field shapes, implement sizes, vehicle 

speeds, and topography characteristics. 

Going forward, the inclusion of variables needed to determine drawbar and power 

take off (PTO) power requirements should be added to field analysis studies to truly 

determine the requirements for different implements.  This would provide the ability for 
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numerous analyses to be conducted comparing similar implements but with differing 

sizes or designs.   

Additionally, further work discussing fuel and time requirements per area for 

different tractor and implement combinations could be explored.  For example, while for 

this study, it was determined the larger implement used less fuel per area than the smaller 

implement, perhaps when downsizing the tractor on the smaller implement, this 

relationship may change.  Another factor to further assist producers would be 

incorporating machinery ownership costs.  This, combined with fuel and time costs, 

would help a producer to determine the most economical machinery cost solution for 

their operation.  

As agricultural machinery technology continues to advance, value exists in 

determining expected power requirements associated with implements and the 

performance and associated costs with different combinations of tractor and implement 

pairings.  In an industry striving to meet the global food demands in the coming years, 

work devoted in this field will assist in equipping producers with the proper machinery 

needed utilized in the most cost effective and sustainable method.    
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Appendix A– Flow Rate Prediction Equations 

A.1. Orifice Best-Fit Determination Tables 

 𝑦𝑦𝑠𝑠𝑠𝑠 =
𝐴𝐴𝐴𝐴 + 𝐵𝐵

1𝑥𝑥3 + 𝐶𝐶𝑥𝑥2 + 𝐷𝐷𝐷𝐷 + 𝐸𝐸
 (Eq. 14) 

 
where 
yss = flow rate at steady-state fluid temperature (L min-1) 
x   = pressure difference across added loss (MPa) 
A,B,C,D,E determined by orifice and flow direction. 

 

 
Table A.1: Orifice Flowmeter Flow Rate Prediction Coefficients 

Orifice 
Number / 
Direction A B C D E 
281 / I 120.9 -1.287 -1.791 1.583 0.1926 
281 / T 232.4 8.688 -2.189 2.635 0.5119 
295 / I 314.8 -1.102 -2.632 3.625 0.5612 
295 / T 232.4 8.688 -2.189 2.635 0.5119 

*I = Implement Flow Direction, T = Tractor Flow Direction 

Table A.2: Orifice Flowmeter Flow Rate Prediction Coefficient 95% Confidence 
Intervals 

 A B C D E 

281 / I (77.53, 
164.3) 

(-2.071,     
-0.5030) 

(-1.893,     
-1.690) 

(1.285, 
1.882) 

(0.06809, 
0.3171) 

281 / T (171.5, 
293.3) 

(5.794,     
11.58) 

(-2.386,     
-1.992) 

(2.110,   
3.160) 

(0.3478, 
0.6760) 

295 / I (88.63, 
541.0) 

(-2.873,     
0.6689) 

(-3.356,     
-1.908) 

(1.605,   
5.644) 

(0.0449, 
1.078) 

295 / T (171.5, 
293.3) 

(5.794,     
11.58) 

(-2.386,     
-1.992) 

(2.110,   
3.160) 

(0.3478, 
0.6760) 

*I = Towards Implement Flow Direction, T = Towards Tractor Flow Direction 
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Table A.3: Comparison of Implement Flow Direction Flow Rates between Orifices 

Pressure 
Drop 
(MPa) 

Orifice 
281 Flow 

Rate 
(Lpm) 

Orifice 
295 Flow 

Rate 
(Lpm) 

Difference 
(%) 

0.025 7.51 10.41 38.55 
0.075 25.80 27.49 6.58 
0.125 37.94 39.22 3.38 
0.175 47.30 48.19 1.88 
0.225 55.20 55.56 0.65 
0.275 62.27 61.94 0.53 
0.325 68.82 67.67 1.68 
0.375 75.03 72.95 2.77 
0.425 80.98 77.91 3.79 
0.475 86.69 82.63 4.68 
0.525 92.16 87.16 5.42 
0.575 97.36 91.54 5.98 
0.625 102.24 95.78 6.31 
0.675 106.72 99.89 6.40 
0.725 110.73 103.87 6.20 
0.775 114.20 107.70 5.69 
0.825 117.06 111.39 4.84 
0.875 119.24 114.91 3.63 
0.925 120.70 118.24 2.04 
0.975 121.41 121.36 0.05 
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Table A.4: Comparisons of Expected Flow Rate for Different Flow Directions 

Pressure 
Drop 

(MPa) 

Tractor Flow 
Direction 

(Lpm) 
Implement Flow 
Direction (Lpm) 

Difference in 
Directions (%) 

Both Orifices 281 295 281 295 
-0.01 13.11 X X X X 
0.04 29.30 14.02 16.37 -52.13 -44.14 
0.09 40.44 29.87 31.41 -26.15 -22.32 
0.14 49.04 40.96 42.13 -16.48 -14.08 
0.19 56.19 49.79 50.53 -11.40 -10.07 
0.24 62.46 57.39 57.56 -8.12 -7.85 
0.29 68.16 64.28 63.72 -5.68 -6.51 
0.34 73.45 70.72 69.30 -3.72 -5.66 
0.39 78.46 76.84 74.47 -2.06 -5.09 
0.44 83.25 82.72 79.35 -0.64 -4.69 
0.49 87.85 88.36 84.01 0.58 -4.38 
0.54 92.29 93.75 88.49 1.59 -4.12 
0.59 96.56 98.86 92.83 2.38 -3.87 
0.64 100.67 103.62 97.03 2.94 -3.62 
0.69 104.58 107.97 101.10 3.24 -3.33 
0.74 108.29 111.83 105.03 3.27 -3.01 
0.79 111.77 115.13 108.83 3.01 -2.63 
0.84 114.98 117.78 112.46 2.44 -2.19 
0.89 117.89 119.75 115.93 1.58 -1.67 
0.94 120.49 120.99 119.19 0.42 -1.07 

 

A.2. Lab Study Tractor Valve Position Flow Rate Predictive Equations 

 𝑦𝑦𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑥𝑥3 + 𝐵𝐵𝑥𝑥2 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 (Eq. 15) 

 

where 
yss = flow rate (L min-1) 
x   = valve spool position (%) 
A,B,C,D determined by tractor, valve number, and actuation 
direction 
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Table A.5 Tractor A (JD 6145R) Valve Position Flow Rate Coefficients 

Valve / 
Direction 

A B C D 

1E -1.77E-4 0.0352 -0.4609 6.925 
1R -1.51E-4 0.0314 -0.3714 3.924 
2E -1.22E-4 0.0265 0.0897 -0.9486 
2R -2.74E-4 0.0496 -1.123 16.49 
3E -4.11E-5 0.0159 0.5139 -7.014 
3R -2.63E-4 0.0504 -1.320 19.75 

*E = Extend Direction, R = Retract Direction 

Table A.6: Tractor A (JD 6145R) Coefficient 95% Confidence Intervals 

 A B C D 

1E (-2.261E-4, 
-1.275E-4) 

(0.0271, 
0.0432) 

(-0.8833,     
-0.0386) 

(-0.1765, 
14.03) 

1R (-1.65E-4,   
-1.37E-4) 

(0.0290, 
0.0339) 

(-0.5026,     
-0.2402) 

(1.743, 
6.104) 

2E (-2.55E-4, 
1.15E-5) 

(5.52E-3, 
0.0475) 

(-0.9472, 
1.127) 

(-16.90, 
15.00) 

2R (-3.48E-4,   
-2.01E-4) 

(0.0369, 
0.0624) 

(-1.816,       
-0.4308) 

(4.836, 
28.14) 

3E (-6.49E-5,   
-1.73E-5) 

(0.0122, 
0.0196) 

(0.3333, 
0.6946) 

(-9.755,       
-4.273) 

3R (-3.61E-4,   
-1.65E-4) 

(0.0335, 
0.0674) 

(-2.244,       
-0.3962) 

(4.190, 
35.30) 

*E = Extend Direction, R = Retract Direction 

Table A.7: Tractor B (JD 6145R) Valve Position Flow Rate Coefficients 

Valve / 
Direction* 

A B C D 

1E 0 3.38E-4 1.269 -7.704 
1R 0 2.59E-3 1.023 -6.507 
2E 0 4.32E-3 1.277 -8.934 
2R 0 1.74E-3 1.136 -8.145 

*E = Extend Direction, R = Retract Direction 
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Table A.8: Tractor B (JD 6145R) Coefficient 95% Confidence Intervals 

 A B C D 

1E X (-6.22E-4, 
1.298E-3) 

(1.163, 
1.375) 

(-10.23,       
-5.183) 

1R X (1.77E-3, 
3.41E-3) 

(0.9256, 
1.121) 

(-9.106,       
-3.908) 

2E X (-3.45E-4,   
1.21E-4) 

(1.189, 
1.365) 

(-11.17,       
-6.694) 

2R X (9.87E-4, 
2.49E-3) 

(1.049, 
1.223) 

(-10.42,       
-5.866) 

*E = Extend Direction, R = Retract Direction 

 

A.3. Field Study Tractor Valve Position Flow Rate Predictive Equations 

 𝑦𝑦𝑠𝑠𝑠𝑠 = �
𝐶𝐶𝐿𝐿𝑥𝑥 + 𝐷𝐷𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ≤ 55

𝐴𝐴𝑥𝑥3 + 𝐵𝐵𝑥𝑥2 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 > 55 (Eq. 16) 

 

where 
yss = flow rate (L min-1) 
x   = valve spool position (%) 
A,B,C,D,CL,DL determined by tractor, valve number, and 
actuation direction 

 

 
Table A.9: Wheat Tractor (JD 8320R) Valve Position Flow Rate Coefficients 

Valve / 
Direction* 

𝐶𝐶𝐿𝐿 𝐷𝐷𝐿𝐿 A B C D 

1E 0.8737 -18.68 -9.19E-5 0.0359 -1.734 32.6 
1R 0.8596 -10.41 6.54E-4 -0.1608 14.95 -407.6 
2E 0.8966 -17.69 -1.67E-4 0.0476 -2.231 38.74 
2R 0.8448 -10.05 2.80E-4 -0.0834 9.807 -297.1 
3E 0.9204 -19.37 -3.69E-4 0.0925 -5.440 113.1 
3R 0.8879 -11.00 -6.18E-5 -7.13E-3 4.094 -153.1 
4E 0.905 -20.39 -2.19E-4 0.0649 -3.906 85.74 
4R 0.9597 -10.79 2.84E-4 -0.0911 10.50 -301.1 

*E = Extend Direction, R = Retract Direction 
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Table A.10: Wheat Tractor (JD 8320R) Coefficient 95% Confidence Intervals 

 𝐶𝐶𝐿𝐿 𝐷𝐷𝐿𝐿 A B C D 

1E (0.8477, 
0.8997) 

(-19.78,     
-17.58) 

(-4.02E-4, 
2.19E-4) 

(-0.0364, 
0.1081) 

(-7.252, 
3.784) 

(-105.5, 
170.7) 

1R (0.8116, 
0.9077) 

(-12.27,     
-8.547) 

(-3.18E-4, 
9.90E-4) 

(-0.2380,   
-0.8363) 

(9.128, 
20.76) 

(-551.5,     
-263.7) 

2E (0.8732, 
0.9200) 

(-18.68,     
-16.69) 

(-3.56E-4, 
2.145E-5) 

(3.75E-3, 
0.0915) 

(-5.580, 
1.117) 

(-44.96, 
122.4) 

2R (0.7950, 
0.8946) 

(-12.03,     
-8.067) 

(-3.59E-5, 
5.97E-4) 

(-0.1570,   
-9.84E-3) 

(4.189, 
15.43) 

(-437.7,     
-156.6) 

3E (0.9037, 
0.9372) 

(-20.08,     
-18.66) 

(-6.37E-4, 
-1.01E-4) 

(0.0301, 
0.1549) 

(-10.20,     
-0.6769) 

(-5.977, 
232.1) 

3R (0.8367, 
0.9391) 

(-12.99,     
-9.02) 

(-4.46E-4, 
3.22E-4) 

(-0.965, 
0.0821) 

(-2.723, 
10.91) 

(-323.5, 
17.36) 

4E (0.8784, 
0.9316) 

(-21.55,     
-19.23) 

(-5.56E-4, 
1.18E-4) 

(-0.0136, 
0.1434) 

(-9.898, 
2.086) 

(-64.19, 
235.7) 

4R (0.8963, 
1.023) 

(-13.18,     
-8.396) 

 (-1.71E-5, 
7.389E-4) 

(-0.197, 
0.0149) 

(2.415, 
18.58) 

(-503.2,     
-99.03) 

*E = Extend Direction, R = Retract Direction 

Table A.11: Rye Tractor (JD 8320RT) Valve Position Flow Rate Coefficients 

Valve / 
Direction 

𝐶𝐶𝐿𝐿 𝐷𝐷𝐿𝐿 A B C D 

2E 0.9118 -17.30 4.55E-4 -0.1015 9.510 -257.6 
2R 0.8664 -10.67 4.56E-4 -.1186 11.86 -332.8 
4E 0.8825 -16.36 2.34E-4 -0.0503 5.588 -160.8 
4R 0.9053 -11.00 8.59E-4 -0.2075 18.35 -483.1 

*E = Extend Direction, R = Retract Direction 

Table A.12: Rye Tractor (JD 8320RT) Coefficient 95% Confidence Intervals 

 𝐶𝐶𝐿𝐿 𝐷𝐷𝐿𝐿 A B C D 

2E (0.8894, 
0.9341) 

(-18.22,     
-16.37) 

(6.023E-5, 
8.499E-4) 

(-0.1935,     
-.00964) 

(2.495, 
16.52) 

(-433.0,        
-82.29) 

2R (0.8262, 
0.9066) 

(-12.22,     
-9.11) 

(7.58E-5, 
8.38E-4) 

(-0.2065,    
-0.0291) 

(5.093, 
18.64) 

(-502.3,     
-163.4) 

4E (0.8567, 
0.9082) 

(-17.45,     
-15.27) 

(-5.49E-5, 
5.22E-4) 

(-0.1175, 
0.01684) 

(0.4617, 
10.71) 

(-288.9,     
-32.61) 

4R (0.8485, 
0.9621) 

(-13.14,     
-8.857) 

(6.29E-4, 
1.09E-3) 

(-0.2604,    
-0.1546) 

(14.36, 
22.33) 

(-581.8,     
-384) 

*E = Extend Direction, R = Retract Direction 
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Appendix B – Field Hydraulic Power Variable Statistical Analyses 

A statistical analysis was conducted to determine whether geographical topography, 

vehicle speed, or fluid temperature impacted the resulting flow rate and pressure 

requirements for the fan and downforce circuits on the rye planter.  The mean flow rate 

and pressure seen within each work pass for both circuits for different fields served as the 

data sets used in the analysis.  Each variable was blocked by field to exclude effects that 

may vary within each field.   Table B.1 details the associated levels with each factor 

tested.  In addition to main effects, interaction effects were tested between field and 

slope, and slope and vehicle speed.  The SAS outputs below detail results from the 

analysis. 

Table B.1: Factors and Levels Tested for Implement Hydraulic Variable Field 
Statistical Analysis  

Factors  
(SAS variable) 

Levels shown in 
SAS Program 

Description of Level 

Field Number 
(field_num) 1-23 Given field where data was 

collected 

Field Topography 
(slope) 

1 Work pass defined as uphill for a 
given field 

2 Work pass defined as downhill for 
a given field 

Vehicle Ground 
Speed  
(spd) 

0 Mean work pass ground speed less 
than 10.5 km/h 

1 Mean work pass ground speed 
between 10.5 km/h and 14 km/h 

2 Mean work pass ground speed 
greater than 14 km/h 

Hydraulic Oil 
Temperature  
(temp) 

0 Mean work pass oil temperature 
below 50°C 

1 Mean work pass oil temperature 
between 50°C and 65°C 

2 Mean work pass oil temperature 
greater than 65°C 
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Figure B.1: SAS output detailing results for the fan flow rate.  From the results, significant differences only 
existed between fields and fluid temperatures. 
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Figure B.2: SAS output detailing results for the fan pressure requirements.  From the results, significant 
differences only existed between fields and fluid temperatures. 
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Figure B.3: Plot illustrating differences in pressure between uphill versus downhill passes across different 
fields.  From this figure, it is seen that overall, despite a lower p-value, great deviation does not exist. 
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Figure B.4: SAS output detailing results for the downforce flow rate analysis.  From the results, significant 
differences only existed between fluid temperatures. 
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Figure B.5: SAS output detailing results for the downforce pressure requirements.  From the results, 
significant differences only existed between fluid temperatures. 
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