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Polyhydroxybutyrate (PHB) is bacteria synthesized polymer that has comparable 

mechanical properties as petroleum-based plastics and high biocompatibility. Current commercial 

PHB production process is not cost effective. Raw materials make up about 50% of the production 

cost. Lignocellulosic biomass are cheap, abundant feedstocks that can be converted into PHB to 

add profit and sustainability to lignocellulosic biorefinery. Lignocellulosic biorefinery upstream 

process produces polymeric sugar rich stream and lignin-enriched stream. Polymeric sugars are 

then hydrolyzed into a sugar stream with glucose, xyloseand arabinose mainly present. To the 

best of the author’s knowledge, limited studies have been done on sugar mixture conversion into 

PHB. For lignin, previous research achieved a PHB production ranging from 0.13 to 1 g/L, which 

is too low to be economical. The primary objectives of this research were twofold: (1) process 

development of polymeric sugars conversion into PHB, with a focus on sugar mixture conversion 

into PHB by Burkholderia sacchari DSM 17165, and (2) process development of lignin into PHB 

by Cupriavidus necator DSM 545, with a focus on enhancing PHB production using various types 

of supplements. For sugar mixture conversion into PHB, first, shake flask (250 mL) scale 

statistical experimental design and modeling were performed to optimize sugar mixture ratio and 

process variables for maximal PHB production; second, bioreactor scale (3L) fed-batch 

cultivation was conducted to produce PHB from simulated corn fiber sugar mixture. The highest 

PHB production reached 67 g/L for 4:2:1 (glucose:xylose:arabinose) mixture at 41 h 
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corresponding to an accumulation of 77% of cell dry weight. Corresponding sugar conversion 

efficiency and productivity were 0.33 g PHB/g sugar consumed and 1.6 g/L/h, respectively, which 

are comparable to or higher than most previous studies. For lignin conversion into PHB, first, 

shake scale (250 mL) study achieved 10-fold increase (0.2 to 2.1 g/L) in PHB production by 

optimizing supplement formulations with Plackett-Burman and central composite designs. 

Second, fed-batch cultivation at bioreactor scale (1.7 L) were conducted to enhance PHB 

production to 4.5 g/L. This is the highest PHB production from lignin that the author has been 

aware of in the literature.  
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CHAPTER I 

1. Research objectives and brief description of studies 

The overall objective was to develop an efficient process for PHB production from 

lignocellulosic biomass. This objective was decomposed into two supporting objectives: (1) 

Optimizing PHB production from sugar mixture of lignocellulosic biomass by Burkholderia 

sacchari DSM 17165 and (2) Enhancing PHB production from lignin with supplements by 

Cupriavidus necator DSM 545. These two supporting objectives were realized by the following 

studies. 

i) Statistical design and modeling to optimize sugar mixture ratio and process 

variable for PHB maximal production at shake flask scale (chapter III): 

Upstream processing of lignocellulosic feedstock generated a sugar stream with 

glucose, xylose and arabinose being the main sugars (Aristidou and Penttila, 2000; 

Cesario et al., 2014). However, how ternary sugar ratio affects PHB production by 

B. sacchari DSM 17165 and how sugar mixture ratio interacts with other process 

variables have not been studied before to the best of the author’s knowledge. An 

advanced experimental design called combined mixture-process design was 

employed to build a statistical model and then to derive the optimal conditions that 

led to maximum PHB production. This study was performed in the 250 ml shake 
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flask scale. The model could provide references for optimizing PHB production for 

different types of sugar mixture streams. 

ii) Statistical design and modeling to enhance PHB production from lignin with 

supplements at shake flask scale (chapter IV): In previous studies, multiple 

enzymes and chemicals have been widely studied in their roles in lignin structural 

and molecular changes and low molecular aromatic compound conversion 

(Beckham et al., 2016; Chen and Wan, 2017a; Linger et al., 2014; Paliwal et al., 

2012). In this study, oxidative enzymes (laccase and aryl alcohol oxidase (AAO)), 

and their mediators (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid 

(ABTS) and hydroxybenzotriazole (HOBT)), surfactants (Aerosil R816 silica 

nanoparticle and Tween 80) and DMSO were added as supplements to see if PHB 

production can be enhanced. Plackett-Burman design, powerful in screening many 

variables with small number of experimental runs, was used in the screening study. 

Central composite design, one of the most commonly used designs under response 

surface methodology, was used to find the optimal conditions that leads to maximal 

PHB production. 

iii) Non-destructive determination of PHB production from APL using flow 

cytometry (chapter V): Traditional PHB quantification method is methonolysis at 

105 °C and resultant compound quantification using gas chromatography-mass 

spectrometer (GC-MS). This method is time consuming and requires the use of 

organic solvents. A quick and non-destructive method to determine PHB 

production from APL is important to monitor bacterial cell and/or PHB 

accumulation during fermentation. On the other hand, APL has insoluble 
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substances and is dark, which makes quantitation of cells through visible light 

absorbance difficult. Flow cytometry with fluorescence staining was used to count 

cells and quantitate PHB content through fluorescence intensity. PHB granules 

were stained by certain dyes (for example, Nile Red) and exhibited fluorescence in 

flow cytometry. However, the insoluble particles in APL may interfere with 

bacterial cells. A sample preparation method was developed using Nile Red 

staining and flow cytometry to quantify bacterial cells and PHB concentration. A 

linear relationship was constructed to predict PHB concentration based on 

fluorescence intensity acquired from a flow cytometer.  

iv) Fed-batch cultivation to produce PHB from simulated sugar mixture at 

bioreactor scale (chapter VI): After obtaining the optimal conditions for sugar 

mixture conversion into PHB at shake flask scale in chapter III, it is necessary to 

study PHB production from sugar mixture at bioreactor scale. Previous studies have 

studied PHB production from wheat straw sugar mixture and xylose rich sugar 

mixtures at bioreactor scale (Cesario et al., 2014; Raposo et al., 2017). However, 

bioreactor scale production of PHB from corn fiber derived sugar stream was not 

studied before. PHB productions from three different types of simulated corn fiber 

sugar mixtures were demonstrated at bioreactor scale (3 L) under fed-batch mode. 

Cell and PHB production, cell and PHB productivity, and sugar conversion 

efficiencies into cell and PHB were evaluated.  

v) Fed-batch lignin conversion into PHB at bioreactor level (chapter VII): After 

obtaining the optimal conditions for lignin conversion into PHB at shake flask scale 

in chapter IV, it is necessary to study PHB production from lignin at bioreactor 
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scale. First, lignin conversion into PHB under the same optimal conditions derived 

from chapter IV was performed at 1.3 L bioreactor scale. To further enhance PHB 

production, fed-batch cultivation under two different feeding strategies were 

applied: single pulse feeding of 300 mL medium and 4 pulses feeding of 75 mL 

medium each time. PHB production and productivity were evaluated. 
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CHAPTER II 

2. Literature review: Towards cost-effective PHA production: recent 

advances in feedstocks, strains and process development 

Abstract 

Polyhydroxyalkanoates (PHAs) have been actively studied in academia and industry for 

their properties comparable to petroleum-derived plastics and high biocompatibility. However, the 

major limitation for commercialization is their high cost. Feedstock costs, especially carbon costs, 

account for the majority of the final cost. Adapting cheap feedstocks for PHA production and 

associated strain and process development are critical for a cost-effective PHA production. In this 

study, waste materials from different sources, particularly lignocellulosic biomass, were proposed 

as suitable feedstocks for PHA production. Strains involving in the conversion of these feedstocks 

into PHA were reviewed. Newly isolated strains were emphasized. Related process development, 

including the factors that affect PHA production and fermentation modes, was elaborated upon.   

2.1. Introduction 

Due to their environment-friendly and sustainable nature, bioplastics have been of great 

interest to partially replace synthetic plastics from petroleum for the last few decades. As one of 

the three types of  fully degradable bioplastics (thermoplastic starch, polylactides and 
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polyhydroxyalkanoates) (Endres and Siebert-Raths, 2011; Rohrbeck et al., 2013), microbial 

produced polyhydroxyalkanoates (PHAs) are a unique family of polyesters that can be produced 

by more than 300 bacteria and a wide range of archaea (Bernd, 2003). These polyesters function 

as storage compounds under microbial unbalanced growth when essential nutrients such as 

nitrogen, phosphorus and oxygen are limited and carbon is excessive (Anderson and Dawes, 1990; 

Gasser et al., 2014; Zou and Chen, 2007). PHAs deposit within cells as spherical intracellular 

inclusions and can reach a concentration of 90% of dry cell weight in some bacteria (Spiekermann 

et al., 1999; Sudesh et al., 2000). There are over 150 constituents of PHAs exhibiting varying 

physicochemical properties that have been identified by varying the monomer compositions (Chen 

and Wu, 2005). Detailed physical properties comparisons between different PHAs and 

conventional petroleum-based polymers can be found in Anjum et al. (2016). PHAs have 

demonstrated for many applications, such as packaging containers, bottles, wrapping films, bags, 

fibers and medical devices such as surgical pins, bone screws and controlled drug delivery carriers 

(Glazer and Nikaido, 2007; Tanaka et al., 2004). PHAs were used as biofuels or fuel additives to 

develop hydroxyl-alkanoate methyl esters (HAMEs) to enhance the combustion heat of ethanol 

(Wang et al., 2010; Zhang et al., 2009). The most common PHAs are poly(3-hydroxybutyrate) 

(PHB), poly(3-hydroxybutyratre-co-3-polyhydroxyvalerate) and poly(3-hydroxyoctanoate-co-3-

polyhydroxyhexanoate), with PHB as the most common (Laycock et al., 2013). A degradability 

study conducted by Singh et al. (2013) showed PHB synthesized by Bacillus subtilis was 

completely degraded after 30 days in compost with 25% moisture.  

In recent years, PHAs have gained much attention in both research and industry. Without 

any doubts, they are valuable materials with versatile properties (Mozejko-Ciesielska and Kiewisz, 

2016). The major drawback for PHAs is that they are not cost competitive compared to plastics 
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from petroleum. For example, commercial PHB produced by microbes is still around 3 times more 

expensive than petroleum-based plastics. In 2018, the price of PHB was around $3.50/kg 

(Aramvash et al., 2018), while the prices of petroleum-based plastics such as polyethylene and 

polypropylene were around $1.20–$1.30/kg (Platts, 2019). Reviews on PHA production at 

commercial scale, commercial PHA manufacturers and their production capacity can be found in 

Snell et al. (2015), Anjum et al. (2016) and Dietrich et al. (2017a).  

The final costs of PHAs mainly depend on the price of feedstocks added as a carbon source 

for microbial growth (Mozejko-Ciesielska and Kiewisz, 2016). Raw materials make up about 50% 

of the production cost in which carbon sources account for 70-80% of the total cost (Choi and Lee, 

1999; Khanna and Srivastava, 2005; Mozumder et al., 2015). Cheap and readily available 

feedstocks such as industrial, agricultural, municipal and food-based wastes that are rich in carbon 

are desirable feedstocks for PHA production. Particularly, wastewater treatment incorporated with 

PHA production has been studied intensively, but compositions of wastewater vary greatly. For 

example, an analysis based on experimental results at laboratory scale and detailed data from 

German waste water treatment plants showed that 20% and 120% of current biopolymer 

production could be produced at Germany and EU treatment plants, respectively (Pittmann and 

Steinmetz, 2016). Another type of cheap feedstock are lignocellulosic biomass feedstocks. These 

feedstocks are abundant, cheap and sustainable, do not compete with the human food chain and 

can be used as the major carbon sources for PHB production (Saratale et al., 2019). Lignocellulose 

feedstocks have a relatively consistent quality. Recent advances in PHA production by multiple 

strains using waste materials and lignocellulosic feedstocks are reviewed in this study. 

Another major limitation for the industrial production of PHAs is to maintain optimal 

bacterial growth conditions and to maximize PHA titer, accumulation in cells and productivity. 
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Process development associated with the aforementioned cheap feedstocks are discussed in this 

study. Some waste feedstocks and lignocellulosic feedstocks require pretreatment processes for 

the carbon sources to be available for PHA conversion. Related pretreatment processes are briefly 

discussed. Specifically, fed-batch cultivation strategies are the most commonly used fermentation 

strategy to create nutrient limitation conditions, divert more carbon sources into PHA formation, 

and enhance cell density and PHA productivity. The advances of downstream processing for PHA 

manufacturing will not be discussed here, the reader can refer to Kosseva and Rusbandi (2018). 

Because PHB is the most common PHA, PHB production is emphasized in this study.  

2.2. Feedstocks and strains 

2.2.1 Waste feedstocks 

Wastes from industrial, agricultural, municipal, food and other sources are produced in 

massive amounts. Conversion of these wastes into PHA would create profit and solve waste 

disposal problems. As shown in Fig. 2.1, there are three major pathways for PHA synthesis 

(pathway I, acetyl-CoA to 3-hydroxybutyryl-CoA, pathway II, fatty acid degradation and pathway 

III, fatty acid biosynthesis) (Anjum et al., 2016; Philip et al., 2007). Pathway I and III use sugars 

as a carbon source and pathway III uses fatty acids as a carbon source (Anjum et al., 2016). 

Therefore, sugar and/or fatty acid containing wastes could be the best candidates for PHA 

production (Rodriguez-Perez et al., 2018). Based on the pathways, Gomez Cardozo et al. 

(2016) defined two types of wastes: sugar waste (i.e. wastes rich in simple carbohydrates such as 

glucose, sucrose, fructose, saccharose or stachyose) and fatty waste (i.e. wastes with high contents 

in fatty acids such as myristic, palmitic, stearic, oleic, linoleic, linolenic butyric, acetic or propionic 

https://www.sciencedirect.com/topics/social-sciences/candidate
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acids). PHA yields were around 0.6–0.8 g/g for fatty substrates, and around 0.3–0.4 g/g for sugar 

substrates (Cruz et al., 2016).  

 

Fig. 2.1. PHA biosynthetic pathways (Philip et al., 2007).  

Specifically, in recent years, PHAs have been produced from cheese whey (Colombo et al., 

2016; Pais et al., 2016), municipal wastewater and solid waste (Bengtsson et al., 2017; Korkakaki 

et al., 2016a; Morgan-Sagastume et al., 2015), spend coffee grounds (Obruca et al., 2014b), waste 

cooking oil (Sharma et al., 2017; Tufail et al., 2017; Valentino et al., 2011; Walsh et al., 2015), 

cane molasses (Shasaltaneh et al., 2013), agro-industrial waste (Elain et al., 2016), phenol (Zhang 
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et al., 2018), food waste (Ravindran and Jaiswal, 2016), non-food crops such as ryegrass (Kataria 

et al., 2018) and sweetwater, a by-product from sugar cane refining (Yatim et al., 2017). There are 

a few reviews discussing feedstocks that can be converted into PHA depending on their origin and 

physical forms. For example, PHA production feedstocks including industrial byproducts, waste 

fats and oils, lignocellulosic raw materials, agricultural and household waste materials, glycerol, 

sugars and wastewater were discussed in Anjum et al. (2016). Pakalapati et al. (2018) mainly 

focused on reviewing agricultural, industrial and food–derived waste conversion into PHA. 

Depending on their origin, the waste streams have been classified as agro-alimentary, industrial 

not agro-alimentary, food, urban wastes and synthetic substrate (Rodriguez-Perez et al., 2018).  

Some feedstocks are good candidates and can be easily transformed into 

readily consumable carbon, i.e. simple carbohydrates or volatile fatty acids (VFAs) such 

as acetate, propionate, butyrate or lactate, for PHA production only after necessary 

physicochemical or biologic pretreatments. Pretreatments to adjust waste to an appropriate feed 

stream is highly suggested by Rodriguez-Perez et al. (2018). The outcomes of pretreatment include 

increasing carbon sources availability, diluting the concentration of organic matter, regulating pH, 

controlling temperature, sterilizing waste materials, removing suspended solids and minimizing 

potential inhibitory effects on PHA production strains (Rodriguez-Perez et al., 2018). For example, 

for physicochemical pretreatment, mild acid pretreatment (pH 3-5) was mostly applied to dairy 

effluent, paper mill effluent and sugar cane molasses to improve PHA production (Gomaa, 2014; 

Munir et al., 2015; Rathika et al., 2018). Cane molasses pretreated with H2SO4 led to a significant 

increase (~50%) of PHA production and biomass of B. subtilis and Escherichia coli (Gomaa, 

2014). In terms of biological pretreatment, mixed hydrolytic bacterial culture was used to raw 

waste materials and PHA production increased by almost 4 fold (Kumar et al., 2016b). For olive 
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oil mill waste, acidogenic fermentation increased VFA concentration for enhanced PHA 

production (Campanari et al., 2017).  

2.2.2 Lignocellulosic feedstocks 

Lignocellulosic feedstocks are generally considered as the most abundant organic materials 

on earth with estimated global quantities at about 80,000 Mt (Obruca et al., 2015). For most strains, 

pretreatment and hydrolysis processes are required prior to using the feedstocks for PHA 

production. Efficient pretreatment processes involving physicochemical, alkaline and biological 

reactions and subsequent hydrolysis on different lignocellulosic feedstocks have achieved high 

sugar yield for biofuel production for the last decade (Ding et al., 2018; Ding et al., 2019; Frederick 

et al., 2016; Li, 2015; Li et al., 2018a; Li et al., 2010; Liu et al., 2015; Ramachandriya et al., 2013; 

Socha et al., 2014; Suryawati et al., 2009). After pretreatment and hydrolysis, the carbon stream 

contains sugars with glucose, xylose and arabinose as the main sugars (Aristidou and Penttila, 

2000; Cesario et al., 2014), organic acids (levulinic acid, lactic acid, formic acid and acetic acid), 

microbial inhibitors (furfural and hydroxymethylfurfural (HMF)), and lignin derivatives (i.e. 

vanillin, phenols). The carbon streams after these pretreatments can also be used for PHA 

production. In other words, PHA production can be incorporated into biofuel production. For 

example, pentoses that are not utilized for biofuel production, organic acid and lignin derivatives 

can be converted into PHA by certain microorganisms. However, there are a few challenges for 

conversion of carbon streams from lignocellulosic feedstocks into PHA, such as catabolite 

repression in terms of sugar conversion, and that most organic acids, inhibitors and lignin 

derivatives are inhibitory to most PHA-producing strains. Recent advances of how to address these 

challenges are stated below. 
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Most previous studies on lignocellulosic biomass conversion to PHA have focused on 

sugars, specifically on glucose or glucose and xylose (Brodin et al., 2017; Cesario et al., 2014; Dai 

et al., 2015; Pan et al., 2012a; Raposo et al., 2017). Due to catabolite repression, glucose is 

consumed quickly and other sugars accumulate to a high concentration that may inhibit the growth 

of microorganisms. Experiments were conducted to evaluate the sugars consumption rate and 

statistical models were derived to find the optimal sugar mixture ratio. For softwood hemicellulose 

hydrolysate fermented by Paraburkholderia sacchari to produce PHB, sugars were depleted at 

different rates in the following order: glucose, mannose, xylose, galactose, and arabinose (Dietrich 

et al., 2019). Genetic engineering approaches were attempted to eliminate catabolite repression. 

Using engineered E. coli, a glucose/xylose switching strategy (glucose was used for cell growth at 

the initial stage and xylose was used for polymer production at the feeding stage) was employed 

to enhance poly(lactate-co-3-hydroxybutyrate) production. The enhanced polymer production may 

be caused by channeling of the metabolic flux from acetyl-CoA towards polymer production over 

into the tricarboxylic acid cycle in the xylose-fed cultures (Hori et al., 2019). A E. coli ndh 

knockout strain was found to simultaneously utilize glucose and xylose to accumulate PHB 1.9-

fold higher than the control strain (Huo et al., 2017).  

Except for levulinic acid, most organic acids, inhibitors and lignin derivatives, especially 

furfural and HMF, are inhibitory for most PHA-producing organisms (Dietrich et al., 2017b). 

Levulinic acid obtained after acid pretreatment resulted in synthesis of poly-3HB-3HV synthesis 

by Burkholderia sacchari, and levulinic acid was preferred over xylose or glucose (Ashby et al., 

2018). Levulinic acid can also induce synthesis of poly-3HB-3HV by Pseudomonas putida (Martin 

and Prather, 2009) and C. necator (Jaremko and Yu, 2011; Kachrimanidou et al., 2014). For other 

compounds, detoxification is necessary. Detoxification significantly promoted PHA production 
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from spent coffee grounds by Haloferax halophila (Kovalcik et al., 2018). An alternative way to 

minimize inhibitor content is to apply a short period (<2 min, 190-200 °C) of liquid hot water/dilute 

acid pretreatment (Laser et al., 2002). The PHA-producing bacterium H. mediterranei was found 

to tolerate polyphenols present in medium containing 25% olive mill wastewater (Alsafadi and Al-

Mashaqbeh, 2017). Applying high initial cell density inoculum could overcome growth inhibition 

(Dietrich et al., 2017b). Some strains can even metabolize these inhibitory compounds at a 

relatively low level. For softwood hemicellulose hydrolysates, all potential inhibitors (i.e. volatile 

fatty acids and furans) except phenols were metabolized by P. sacchari  (Dietrich et al., 2017b). 

However, for Burkholderia sp. F24, the metabolites of HMF and furfural (HMF is converted to 

hydroxymethyl-furoic acid and furfural to 2-furoic acid) are still inhibitory (Lopes et al., 2014). 

From a different view, these inhibitory compounds can be extracted and become valuable 

ingredients. For example, oils and phenolics extracted from spent coffee ground were proposed by 

Kovalcik et al. (2018) to be used for active substances in cosmetic formulation (Ribeiro et al., 

2013) and UVB absorbent in sunscreens (Marto et al., 2016) . 

Lignin valorization into PHA has attracted more attention in recent years. Aromatic 

compounds in lignin can be ring-opened by bacteria via the β-ketoadipate pathway and converted 

to PHA from acetyl-CoA through fatty acid synthesis. Alkaline pretreatment is preferred as a 

fractionation method because it can preserve over 90% of sugars in solids and over 50% lignin is 

dissolved in alkaline pretreatment liquor (APL) (Kim and Holtzapple, 2005; Xu and Cheng, 2011).  

PHA/PHB production from APL/lignin derivatives ranged from 0.13 to 1.0 g/L (Berezina et al., 

2015; Linger et al., 2014; Liu et al., 2017; Shi et al., 2017; Si et al., 2018; Wang et al., 2018). It 

should be noted that in these studies, APL was obtained from combinatorial H2SO4 pretreatment 

followed by NaOH pretreatment, which is more efficient than single alkaline pretreatment, and 
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PHB production reached 1.0 g/L (Liu et al., 2018). However, such PHB/PHA concentrations are 

still too low to be economical.  

2.2.3 Strains 

An detailed list of microorganisms that can produce PHAs can be found in Anjum et al. 

(2016). In recent years, many newly isolated strains have been reported. Special strains, including 

strains that directly degrade cellulose, or metabolize non-regular carbon sources such as CO2 and 

methane, are reviewed below. The dominant microorganisms present in mixed microbial culture 

for wastewater treatment, and halophilic microorganisms that are tolerant to high salinity are also 

mentioned. Burkholderia species that can metabolize sugar mixtures, grow and produce PHA 

quickly, and accumulate high PHA in cells, are emphasized. 

There are many newly isolated PHA-producing strains found in recent years. Rhodococcus 

equi, isolated from fertile soil, converted palm kernel oil into PHB (Altaee et al., 2017). 

Microbacterium sp. produced PHA from molasses, whey and ground sesame (Osman et al., 2016). 

B. pumilus converted cow dung into PHB (Devi et al., 2018). Lysinibacillus sp. was isolated and 

produced P(3HB-co- 3-hydroxydodecanoate-co-3-hydroxytetradecanoate) from glucose for the 

first time (Mohapatra et al., 2016). Wickerhamomyces anomalus growing on sugar molasses and 

palm oil produced PHA (Ojha and Das, 2018). Pandoraea sp. was able to convert crude glycerol 

from biodiesel production into PHA (De Paula et al., 2017). Cyanobacteria were widely studied 

for accumulation of PHB in photoautotrophic systems (Carpine et al., 2018; Gupta et al., 2013; 

Singh et al., 2017). At large scale, PHA production was conducted by cyanobacteria from the 

effluent gases of a power plant (Troschl et al., 2017) and from German and European municipal 

wastewater treatment plants (Pittmann and Steinmetz, 2017). Archaea can also produce PHB from 
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various substrates (Danis et al., 2015; Hermann-Krauss et al., 2013). There are some strains that 

can produce PHA directly from nonpretreated cellulose/cellulosic biomass. Saccharophagus 

degradans was used to convert cellulose directly into PHA (Sawant et al., 2017). Avicel or tequila 

bagasse was used as the sole carbon source fed to S. degradans to produce PHA in one study 

(Munoz et al., 2008). An isolate from termite gut identified as B. cereus was found to degrade 

cellulose and produce PHA (Cibichakravarthy et al., 2017). These strains have the potential to 

eliminate the pretreatment and hydrolysis for lignocellulosic substrates.  

Some other strains do not consume regular carbon sources like sugar or fatty carbon 

sources for PHA synthesis. For example, some are able to fix CO2, such as microalgae 

Chlorella minutissima, Synechococcus subsalsus, and Spirulina sp. (Costa et al., 2018), 

cyanobacteria (Troschl et al., 2017), B. cereus (Maheshwari et al., 2018), and chemolithotrophic 

oleaginous bacteria Serratia sp. (Kumar et al., 2016a). A methanotroph Methylocystis hirsuta, 

could consume methane and produce PHB simultaneously under continuous operation (Garcia-

Perez et al., 2018).  

Wastewater contains many complex substrates; thus, the strategy is to enrich the substrates 

with PHA-storing microorganisms (microbial mixed culture) for feedstocks treatment and PHA 

production. Mixed cultures have the advantage that they do not need sterile conditions; therefore, 

reducing cost, and they are better than pure cultures to adapt to complex substrates (Reis et al., 

2011). Also, mixed culture from activated sludge for producing PHA has the ability to tolerate 

toxic substrates such as phenol (Zhang et al., 2018). Research identifying the dominant strains in 

mixed microbial cultures is active. For a mixed microbial culture converting wood hydrolysates 

into PHB, actinobacteria and α- and β-proteobacteria were dominant groups in bioreactors (Dai et 

al., 2015). Comamonas, Azoarcus and Thauera were the dominant PHA-accumulating bacteria 
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genera (Fra-Vazquez et al., 2019). For a mixed culture converting wastewater into PHA, the 

dominate phyla were Proteobacteria, Acidobacteria and Firmicutes (Amulya et al., 2016). The 

genera of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in 

glucose-enriched mixed microbial cultures (Cui et al., 2016). Mainly four classes of bacteria, γ-

Proteobacteria, Cellvibrio sp., an uncultured bacterium and Pseudomonas sp., were identified in 

the final stable system for PHA production in a microbial consortium from waste activated sludge 

(Huang et al., 2016).  

Many wastewater plants produce high salinity wastewater. Halophilic microorganisms 

were widely studied for their ability to tolerate high salt conditions (Stanley et al., 2018). Another 

unique ability of Halomonas sp. are that they can grow in non-sterile media (Chen et al., 2017; 

Yin et al., 2015). Under non-sterile conditions, 83 g/L cell dry weight containing 61% P(3HB-co-

4HB) was achieved in 48 h in a 1,000-L pilot fermentor with a productivity of 1.04 g/L/h (Chen et 

al., 2017). However, too high salt concentration inhibits cell growth and PHA production. The 

optimal salt concentration for both cellular growth and PHB production was 45 g/L for B. 

megaterium (Rodriguez-Contreras et al., 2016). 

It is important to mention that Burkholderia species are important PHA producing strains. 

B. sacchari is a hexose and pentose-consuming bacterium that naturally grows to high cell 

densities and accumulates up to 75% of its cell dry weight as PHAs (Gomez et al., 1996a) . B. 

sacchari’s specific growth rate is also faster than the commonly studied PHA-accumulating C. 

necator (Gomez et al., 1996b), and it has been shown that B. sacchari can produce PHA 

copolymers with processing properties superior to polyhydroxybutyrate (PHB) by changing the 

carbon source (Mendonca et al., 2014). Fine-tuning of PHA composition under fed-batch 

conditions was obtained by adding 4-hydroxybutyrate precursors to sucrose as the substrates 
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(Miranda De Sousa Dias et al., 2017). A few studies have demonstrated that this strain can produce 

PHB >100 g/L using lignocellulosic feedstock hydrolysates (Cesario et al., 2014; Raposo et al., 

2017).  

2.3. Process development 

2.3.1 Factors that affect PHA production 

PHA pathways have been understood very well, but there are still aspects not known in 

terms of the physiology of PHA-producing microbes. Optimization of culture is important for 

empirical study, especially for large scale processes in industry. The full composition of the media 

are vital for PHA production. Concentration of trace metals, i.e. Fe, B, Cu, Mn, Mo, Zn, and 

salinity were found to highly affect PHA production yield (Alsafadi and Al-Mashaqbeh, 2017; 

Chen et al., 2015; Palmeiro-Sanchez et al., 2016). Culture conditions include carbon, nitrogen, 

phosphate source and concentration, dissolved oxygen, pH, the ratios of carbon to nitrogen and 

phosphate, trace elements and supplements levels can affect PHB titer and productivity. 

Supplements refer to substances that are not essential to microbial growth, but may enhance PHA 

production greatly. 

Carbon to nitrogen (C/N) and carbon to phosphate (C/P) ratios are the most important 

factors that affect PHA content in cells and monomer composition in PHAs. Directing carbon 

metabolic flow towards PHA instead of cellular mass by limiting nitrogen is one of the most 

convenient culture strategies. The appropriate C/N ratio differs depending on the substrate and the 

microorganisms applied. The maximum PHB content was 89 wt% after 7.6 h under ammonium 

starvation, 77 wt% after 9.3 h under ammonium limitation and 69 wt% after 4.4 h under 

ammonium excess, for γ-proteobacterium dominant culture growing on synthetic medium 
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(Johnson et al., 2010). PHA content of 65% w/w in C. necator was achieved with C/N ratio of 20 

when growing on dilute acid pretreated sugarcane bagasse (Yu and Stahl, 2008). The C/N ratio 

was optimized to 42-48 using C. necator to transform plant oils into PHA and the copolymers had 

3HB as the major components (88-98 mol%) (Lee et al., 2008).  

A minimum concentration of nutrients is necessary for PHA production and accumulation, 

but a too high nutrient concentration causes inhibition (Colombo et al., 2016). It is noticeable that 

waste substrates available for PHA production contain varying levels of nutrients. In the case of 

PHA production from municipal wastewater using activated sludge, substrate specific uptake rates 

were found to be dependent on the cellular P content and PHA production capacity is lost when 

the C/P ratio is over 300. Among potassium, manganese and nitrogen limitation for PHB produced 

by M. hirsuta, nitrogen starvation resulted in the highest PHB content (Garcia-Perez et al., 2018). 

No PHA was produced using a complete or magnesium-deprived medium using P. aeruginosa 

growing on fatty acid (Impallomeni et al., 2018). For PHA produced from pineapple peel waste by 

C. necator, the best fermentation conditions were pH 9, C/N: 11, C/P: 6 and a fermentation time 

of 60 h (Vega-Castro et al., 2016). The ratios of C/N and C/P determined the monomer 

compositions of PHAs (Valentino et al., 2015). Therefore, only some waste streams that have an 

appropriate C/N/P ratio can be used without the addition of nutrients (N and or P) and monomer 

composition in PHA can be regulated by adjusting the C/N and C/P ratios. 

Supplements may enhance PHA production significantly. For C. necator, Luria broth (LB) 

and Bonnarme's media, both supplemented with 10 g/L sodium glutamate, were found to be the 

most efficient media that enhanced overall PHA productivity 33 times comparing to traditional 

cultivation methods (Berezina, 2013). Cell debris generated from PHA recovery increased cell 

growth and PHA synthesis remarkably since the cell debris can be readily assimilated by the cells 
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as the nutrients, besides, a large amount of aqueous waste was avoided (Yu, 2012). NaCl up to 

8 g/L was used as external stress factor to enhance PHB yield; however, NaCl concentration at 

16 g/L was found to inhibit production of PHB (Azizi et al., 2017). For lignin conversion into 

PHA, supplements are vital to enhance PHA production. Oxidative enzymes (laccase, aryl alcohol 

oxidase and lignin peroxidase), mediators (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid 

(ABTS) and hydroxybenzotriazole (HOBT)), and surfactants, such as Tween-80, were found to 

improve PHA production by different bacteria (Li et al., 2019a; Liu et al., 2018; Xie et al., 2015; 

Zhao et al., 2016).   

Dissolved oxygen (DO) control was mostly limited for enhancement of PHA production. 

Nath et al. (2008) reported an increase in PHB production by 0.8-fold by limiting DO levels. They 

proposed that the decreased DO shifted the flux of acetyl-CoA towards PHB accumulation as 

opposed to the TCA (tricarboxylic acid) cycle. Multiple studies maintained DO at 20% to enhance 

PHA production and DO was mostly maintained by adjusting agitation speed and aeration rate 

(Cesario et al., 2014; Hermann-Krauss et al., 2013; Kachrimanidou et al., 2016). Kim (2000) 

achieved higher PHB concentration, PHB content and productivity from Azotobacter 

chroococcum with oxygen limitation than without oxygen limitation. Controlling agitation speed 

can be used as a control strategy when hexoses and pentoses are both present in the substrate 

medium. For B. sacchari, when the stirring speed was kept high at 1200 rpm, only glucose was 

consumed; when the stirring speed was kept low at 900 rpm,  xylose and arabinose consumption 

was triggered (Cesario et al., 2014).  

For most microbes producing PHA, the favorable pH is around 7.0, though B. megaterium, 

had an optimal pH of 9 for dairy and sea water conversion into PHA (RamKumar Pandian et al., 

2010). Neutral pH operation has been shown to induce higher dehydrogenase enzyme activity and 
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substrate degradation than acidic and alkaline pH at microaerophilic environment, which 

correlated well with higher PHA production. Neutral pH showed better PHA synthesis (56%) than 

basic (44%) and acidic (28%) redox microenvironments (Amulya et al., 2016). The optimum pH 

was 7.0 for P(3HB-co-3HV) copolymer synthesized by C. necator. The copolymer content 

dropped dramatically to 40% when the initial pH was 6.5 and to 60% when the initial pH was 8.5 

(Lee et al., 2008). For wheat straw hydrolysate fermentation by B. sacchari, the pH was adjusted 

to be 6.8 (Cesario et al., 2014). Acidic  pH conditions (4.5-5.8) were found to completely suppress 

B. cereus sporulation (Kominek and Halvorson, 1965; Valappil et al., 2007), which was shown to 

cause low PHB productivity in the genus Bacillus (Wu et al., 2001). Mixed microbial cultures can 

have higher tolerance for a wide pH range. For PHA production from cheese whey using mixed 

microbial culture, fluctuating pH led to PHAs of different compositions (Gouveia et al., 2017). 

Montiel-Jarillo et al. (2017) demonstrated that enrichment of a mixed microbial culture without 

pH control (pH ranging 8.8 to 9.2, averaged pH: 9.0) was feasible to accumulate PHA.  

Optimization research has been active for maximal PHA production. At shake flask scale, 

advanced experimental design were used to optimize media formulations and growth conditions. 

Mixture design to study media formulation (Li et al., 2019b; Yang et al., 2010), Plackett-Burman 

design to screen important factors (Berekaa and Al Issa, 2016; Li et al., 2019a; Sabapathy et al., 

2019; Zihayat et al., 2019) and response surface methodology (central composite and Box-

Behnken design) to find optimal conditions (Das and Grover, 2018; Dey and Rangarajan, 2017; 

Kumar et al., 2016a; Li et al., 2019a; Ojha and Das, 2018; Sabapathy et al., 2019) were widely 

used. Under most of the cases, multiple inhibitors are present and form a mixture. Mixture design 

was employed to evaluate how an inhibitor mixture affected P. sacchari growth and PHB 

production  (Dietrich et al., 2017b). At bioreactor scale, for kinetics study on bacterial growth and 



22 

 

 

 

PHA production, mostly modified logistic equations are fitted to experimental data. Commonly 

applied models include Monod, Contois, Herbert, and Luedeking–Piret type kinetics models (Das 

and Grover, 2018; Divyashree et al., 2009; Gaudy et al., 1971; Raje and Srivastava, 1998; 

Sakthiselvan and Madhumathi, 2018; Sonnleitner et al., 1979). Subsequently, numerical analyses 

are applied to find the optimal point for maximum PHA titer and productivity.  

Because PHAs are intracellular products, coproduction with other extracellular products 

are proposed in a multi-purpose biorefinery platform. For example, PHA and polyphenols, volatile 

fatty acids, biogas were co-produced from red grape pomace (Martinez et al., 2016). Co-production 

with ethanol and hydrogen seems promising as they do not compete for the same metabolites 

(Kumar and Kim, 2018). Co-production of PHA and rhamnolipids was realized using B. 

thailandensis from sunflower cooking oil (Kourmentza et al., 2018). A B. sacchari cell factory 

was proposed to produce PHB, xylitol and xylonic acid from xylose-rich sugar mixtures (Raposo 

et al., 2017). A review of co-production of value-added products along with PHA can be found in 

Li et al. (2017) and Kumar and Kim (2018). PHA production can be incorporated into biofuel and 

microalgae lipids production (Koller et al., 2017). An integrative approach was proposed to 

produce hydrogen and PHA from mixed culture (Patel et al., 2016). Hemicellulose hydrolysates 

and crude glycerol can be produced as by-products on a large scale during various second 

generation biofuels’ production (Jiang et al., 2016). These by-products can be converted into 

PHA. This would create the potential to offset production cost of biofuels and reduce the overall 

production cost of PHAs. 
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2.3.2 Fermentation strategy 

Fed-batch strategy has been observed to be an efficient strategy to improve PHA 

concentration and PHA content in cells on different strains. For substrate cost reduction, using 60-

Brix syrup and fed-batch cultivation yielded a 77% cost reduction compared with using refined 

cane sugar and batch cultivation when producing PHB using Azohydromonas lata (Wisuthiphaet 

and Napathorn, 2016). Most fed-batch strategies focus on carbon source feeding. Stanley et al. 

(2018) used salt tolerant strain H. venusta and studied several feeding strategies including pH-

based fed-batch and variants of pulse feeding (glucose as carbon source). PHA content 88.12% of 

the dry cell weight was achieved with a high concentration (~ 100 g/L) single pulse method. A net 

8.65-fold increase in PHA concentration using this feeding strategy was realized when compared 

to batch studies (Stanley et al., 2018). pH-based feeding caused most of the carbon flux to divert 

towards biomass formation (PHA content only 39%). Similarly, for PHA production from acid-

pretreated red algae using B. megaterium, pulse feeding led to higher cell dry weight and PHA 

production compared to pH-stat feeding (Alkotaini et al., 2016). Fed-batch strategy is also applied 

to carbon and nitrogen concurrent feeding. Feeding both carbon and nitrogen during fed-batch 

mode is found to be optimal compared to only supplying carbon or nitrogen (Norhafini et al., 

2019). Feeding carbon and nitrogen both twice  in a pulse feeding mode was found to be the most 

optimal strategy achieving 92 wt% accumulation of the total biomass, with the highest PHA 

concentration (46 g/L) and yield (Yp/x) of 11.5 g/g. Norhafini et al. (2019) proposed the strategy of 

keeping C/N ratio constantly at the optimal ratio during the active PHA-producing phase and 

feeding C. malaysiensis at 36 and 72 h.  

Similar to the idea of pulse feeding of a carbon source, as the most widely applied strategy 

in wastewater treatment for PHA production with microbial mixed culture selection, feast-famine 
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strategy could greatly enrich PHA producing bacteria and is regarded as the state of the art 

(Fradinho et al., 2016; Morgan-Sagastume et al., 2015). The feast-famine strategy consists in the 

intermittent feeding of the substrate, where the external substrate or oxygen is taken up and 

accumulated intracellularly as PHA (feast phase), followed by phases without substrate or oxygen 

addition that favors cell growth on storage products (famine phase), thus creating a selection 

pressure for organisms capable of storing PHA (Reis et al., 2003). During the period of starvation 

(famine phase), bacteria with the ability of polymer-storage gained a selection advantage as they 

are able to use the stored polymers as a carbon and energy source. Cyclic feast-famine regimes 

consist of repeatedly alternating disposability (feast phase) or absence of substrate (famine phase) 

aerobic dynamic feast/famine feeding strategy in a pulse wise mode of substrate addition. Under a 

feast-famine regime, enrichment of PHA-producers was established on low VFA-containing 

streams (Korkakaki et al., 2016b). DO limitation was incorporated into the feast-famine strategy 

to perform an aerobic feast and anoxic famine regime to enhance PHA production and reduce 

oxygen use (Basset et al., 2016).  

There are also a few studies doing solid state fermentation and continuous fermentation, 

which are important at large scale in industry. For solid state fermentation, PHA was produced 

from tapioca industry waste, palm jaggery and horse gram flour by B. megaterium 

(Sathiyanarayanan et al., 2013), soy cake and sugarcane molasses by C. necator (Oliveira et al., 

2007), polyurethane foams by B. sphaericus (Jena et al., 2015). Continuous production of PHB is 

an efficient strategy to reduce production cost and improve sustainability in terms of life cycle 

assessment (Lopar et al., 2013). Tan et al. (2011) implemented a 14-day unsterile and continuous 

production of PHB by Halomonas TD01. Two fermenters were used where the first one was 

intended to accumulate cell mass and the second was used to promote PHB fermentation with 
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nitrogen deficient medium. As a result, PHB conversion efficiency was more than 50% in the 

second fermenter compared with less than 30% in the first fermenter. Overall, a high PHB 

productivity (0.26 g/L/h) was achieved (Tan et al., 2011). Hafuka et al. (2011) developed a 

continuous-feeding regimen and PHB was produced over 259 h (8 draw-fill cycles), but the PHB 

concentration and content decreased with increasing operation time.  

Mixed microbial culture is a promising fermentation mode for PHA production from 

wastewater. In mixed microbial cultures, controlling the substrate concentration, maintaining 

oxygen flow rate and control of the N and P concentration will increase PHA storage in cells (Din 

et al., 2012). A few studies proved mixed cultures are better than pure cultures. For example, 

Ashby et al. (2005) used mixed cultures (P. corrugate and P. oleovorans), glycerol as substrate, 

reported high content of PHA and maximum utilization of substrate when both of the strains are 

used compared to monocultures of each species. Kourmentza et al. (2009) used both mixed 

cultures and pure cultures for PHA production and reported that mixed cultures were more efficient 

in terms of better final yields and PHA and faster accumulation rates than individual cultures. 

2.4. Conclusion and future perspectives 

PHAs are promising substitutes for petrochemical-derived plastics due to their mechanical 

properties and high biocompatibilty. The realization of a cost-effective PHA production relies on 

the microorganisms applied, feedstocks, substrates, feeding strategies, and culture conditions. 

Using cheap feedstocks as substrates can reduce the product cost and realize the commercialization 

of PHA at large scale. Most waste feedstocks have complex compositions. Pretreatment of waste 

materials to make readily consumable carbon is the key for successful conversion of waste 

feedstocks into PHA. Mixed microbial culture is promising for complex feedstocks and feasible 

https://www.sciencedirect.com/topics/immunology-and-microbiology/substrate-concentration
https://www.sciencedirect.com/topics/immunology-and-microbiology/pseudomonas
https://www.sciencedirect.com/topics/immunology-and-microbiology/pseudomonas-oleovorans
https://www.sciencedirect.com/topics/chemical-engineering/glycerol
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to operate at unsterile conditions and large scale. PHA production can be incorporated into biofuel 

production from lignocellulosic feedstocks to offset the production cost for both PHA and biofuel 

production. Under the multi-purpose biorefinery platform, coproduction of various valuable 

products, especially extracellular products that can be separated from PHA easily, increase the 

profit of large scale PHA manufacturing. Process development associated with complex feedstocks 

such as waste feedstocks and lignocellulosic feedstocks requires more research. Most PHA 

production research has been performed at small scale, which is unlike commercial PHA 

manufacturing. Strain stability such as thermo-tolerance and osmosis resistance should be 

considered. More work should be done to scale up successful lab-scale processes followed by life 

cycle and economic assessment to evaluate process feasibility. Continuous fermentation and mixed 

microbial culture for specific feedstocks should be studied more. 
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CHAPTER III 

 

3. Optimization of polyhydroxybutyrate production by experimental design 

of combined ternary mixture (glucose, xylose and arabinose) and process 

variables (sugar concentration, molar C:N ratio) 

Abstract 

Polyhydroxybutyrate (PHB) is a biodegradable plastic that is comparable with some 

petroleum based plastics in terms of mechanical properties. Conversion of lignocellulosic 

feedstocks to PHB could make a lignocellulosic biorefinery more profitable and sustainable. 

Glucose, xylose and arabinose are the main monomer sugars derived from pretreatment and 

hydrolysis of herbaceous feedstocks. Burkholderia sacchari DSM 17165 is a bacterium strain that 

can convert all three sugars into PHB. However, the effects of three sugar ratio in mixture, sugar 

concentration, molar C:N ratio and their interactions on PHB production have not been studied 

before. In this study, a combined mixture-process experimental design was employed. A seven-

run mixture design for sugar ratio combined with a 32 full factorial design for process variables 

was performed to optimize PHB production. A polynomial model combining mixture and process 

variables was built based on experimental data and optimum conditions for different types of sugar 

streams were derived and validated. Highest PHB production (3.81 g/L) was achieved with 
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arabinose-only culture under sugar concentration of 25.54 g/L and molar C:N ratio of 74.35. 

Results provide references for manipulation of sugar mixture and process control to maximize 

PHB production.    

3.1. Introduction 

Polyhydroxybutyrate (PHB) is a biodegradable polymer consisting of 3-hydroxybutyrate 

that can reach a degree of polymerization of 2,000. Due to its mechanical properties that are 

comparable to many petroleum-based plastics, PHB has been produced in industry for decades 

(Aramvash et al., 2018). PHB is also widely applied in the pharmaceutical industry due to its 

biocompatibility (Koller, 2018). One of the major approaches for PHB production is through 

microbial cultivation (Tokiwa and Calabia, 2004). PHB is a product of unbalanced growth in 

bacteria and is used as an energy and carbon storage material (Kessler and Witholt, 2001). Recent 

research showed accumulation of PHB in photoautotrophic systems such as cyanobacteria 

(Carpine et al., 2018; Gupta et al., 2013; Singh et al., 2017). However, commercial PHB produced 

by microbes is still around 3 times expensive than petroleum-based plastics. Recent price of PHB 

was around 3.5 USD/kg (Aramvash et al., 2018), 3 times expensive than petroleum-based plastics 

such as polyethylene and polypropylene, which is around 1.2–1.3 USD/kg (Platts, 2019). Raw 

materials make up about 50% of the production cost (Choi and Lee, 1999; Khanna and Srivastava, 

2005; Mozumder et al., 2015). Lignocellulosic biomass feedstocks are abundant, cheap and 

sustainable, do not compete with the human food chain and can be used as the major carbon sources 

for PHB production (Saratale et al., 2019). Some expensive precursors, such as levulinic acid (4-

ketovaleric acid), a precursor substrate to produce co-polyesters containing both 3-hydroxybutyric 

acid (3HB) and 3-hydroxyvaleric acid (3HV) (Gorenflo et al., 2001), can also be derived from 

hydrothermolysis pretreatment of lignocellulosic feedstocks. One characteristic of lignocellulosic 
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feedstocks is that they have a high molar carbon to nitrogen (C:N) ratio (47-57:1) (Al-Kaisi and 

Guzman, 2013), which makes them suitable substrates for unbalanced bacterial growth and 

accumulation of PHB.  

Carbon forms in lignocellulose biomass are mainly polysaccharides (cellulose and 

hemicellulose) and the aromatic polymer lignin (Saratale et al., 2013). In a lignocellulosic biomass 

refinery, cellulose and hemicellulose can be hydrolyzed into a sugar stream consisting of monomer 

sugars including glucose, xylose, galactose, arabinose and mannose. For the last decade, upstream 

pretreatment and hydrolysis technologies have successfully produce a sugar yield over 90% from 

multiple lignocellulosic biomass and pretreatment methods (Hamalainen et al., 2016b; He et al., 

2017; Heng et al., 2017; Liu et al., 2015; Obruca et al., 2014a; Roberto et al., 1995; Saha et al., 

2015; Saratale et al., 2018a; Saratale et al., 2018b; Silva et al., 2004). For commercial PHB 

production, it is best to convert all of these sugars into PHB. In a lignocellulosic biorefinery, 

glucose, xylose and arabinose are the main sugars present (Aristidou and Penttila, 2000; Cesario 

et al., 2014) and the ratios of these three sugars in sugar streams can vary greatly depending on 

upstream lignocellulosic biomass sources and pretreatment methods (Table 3.1). Sugar streams 

containing sugar mixtures can also be acquired from existing commercial lignocellulosic fuel 

production facilities. For example, Silva et al. (2014) proposed the production of PHB associated 

with ethanol production from lignocellulose by converting sugars remaining after glucose 

conversion to ethanol (rich in xylose and arabinose) to PHB. As a PHB accumulating bacterium 

isolated from the soil of a sugar-cane plantation in Brazil, Burkholderida sacchari DSM 17165 is 

capable of converting glucose, xylose and arabinose into PHB (Bramer et al., 2001; Cesario et al., 

2014). Glucose is converted into PHB via acetyl-CoA by the Entner Doudoroff pathway. Xylose 

and arabinose are converted into PHB via acetyl-CoA through the pentose phosphate pathway 
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(Lopes et al., 2011). In fact, previous studies have attempted to produce PHB from defined glucose, 

xylose and arabinose ternary mixtures and lignocellulosic feedstock hydrolysates (Cesario et al., 

2014; Saratale and Oh, 2015). For the effect of sugar mixture, B. sacchari DSM 17165 was found 

to prefer glucose over arabinose and xylose for metabolism and PHB accumulation due to carbon 

catabolite repression (Lopes et al., 2011). Previous studies showed process variables such as initial 

sugar concentration and C:N ratio are important factors affecting PHB production (Choi and Lee, 

1999). However, knowledge on how ternary sugar ratio affects PHB production and how sugar 

mixture interacts with other process variables to affect PHB production were not much to the best 

of our knowledge. It is necessary to understand how sugar ratio and process variables affect PHB 

production. 

B. sacchari DSM 17165 was used in this study to produce PHB from ternary sugar mixtures 

(glucose, xylose and arabinose). The overall goal of this study is to enhance PHB production by 

optimizing the conditions of sugar mixture and two process variables (initial sugar concentration 

and molar C:N ratio). Seven-run mixture design is a good statistical design to study the effect of 

mixture component ratio on response variables (Cornell, 2011). The mixture design was combined 

with a 32 full factorial design for process variables to evaluate the interaction effect of sugar 

mixture ratio and process variables. The objectives of this study were 1) to study the effect of sugar 

mixture ratio, sugar concentration and molar C:N ratio on PHB production; 2) to construct a 

response surface model through regression on sugar mixture ratio and process variables; and 3) to 

obtain the optimum conditions leading to maximum PHB production for different types of sugar 

streams based on the model. To the best of the author`s knowledge, this is the first study looking 

into the effect of sugar ratio, sugar concentration and C:N ratio on PHB production using a 

combined mixture-process experimental design. The models obtained in this study can be applied 
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to manipulate sugar streams from different sources and process variables to maximize PHB 

production. In the context of lignocellulosic ethanol and fuel production, multiple research studies 

have been done to engineer strains that can co-ferment three sugars (Aristidou and Penttila, 2000; 

Wisselink et al., 2009; Xiao et al., 2011), however, the process control of sugar ratio was not well 

studied. The approach in this study may be extended to manufacture other fermentation products 

such as lignocellulosic fuels using mixed sugars as the carbon source. 

3.2 Materials and methods 

3.2.1 Microorganism and inoculum  

B. sacchari DSM 17165 in the form of dried pellets was purchased from the German 

Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). B. sacchari 

DSM 17165 was revitalized and sub-cultured with seed medium (meat extract 3 g/L, meat peptone 

5 g/L, glucose 30 g/L) for at least two generations until the OD reached 10 at 24 h. B. sacchari 

culture was conducted at 29 °C at 250 rpm in 20 mL working medium in 250 mL Kimax baffled 

flasks with silicone sponge closure throughout the study unless specified. B. sacchari culture of 

OD 10 was preserved at -80 °C with 30% glycerol in 2 mL aliquots and used for pre-culture 

preparation. One aliquot of B. sacchari culture was inoculated to seed medium and B. sacchari 

was cultured to obtain late exponential phase culture with an optical density (OD) of 8-10. Then, 

B. sacchari culture was washed with sterile 0.89% sodium chloride solution twice and used as 

inoculum. Inoculum was added to each flask to achieve an initial OD of 2. 

3.2.2 PHB production  

B. sacchari DSM 17165 in the PHB production medium contained alternatively glucose, 

xylose or arabinose as the carbon source in varying concentrations described later, (NH4)2SO4 as 
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the nitrogen source in varying concentrations based on varying molar C:N ratio described later, 

salts (Na2HPO4·2H2O, 2.9 g/L; KH2PO4, 1.5 g/L; MgSO4·7H2O, 0.2 g/L; CaCl2·2 H2O: 0.01 g/L; 

Fe(NH4) citrate: 0.06 g/L) and trace elements (1 mL/L) as described previously in Ramsay et al. 

(1990). The MgSO4·7H2O, CaCl2·2H2O and Fe(NH4) citrate solutions were autoclaved separately. 

PHB production was conducted at 29 °C at 250 rpm as described in Section 3.2.1, but with 15 mL 

working volume in the same 250 mL flask and cultivation was stopped at 72 h for PHB 

quantification as described in Section 3.2.4.  

For the experimental design, PHB production was conducted in three stages. First, single 

variable experiments (Fig. 3.1) were conducted to evaluate the effect of two process variables 

(sugar concentration and C:N ratio) using a “one factor at a time “approach on four sugar mixtures. 

The four mixtures were denoted as glucose, xylose, arabinose and equal (Fig. 3.1). Glucose, xylose 

and arabinose mean only glucose, xylose or arabinose were present. Equal means that three sugars 

were of equal concentration in the mixture. Initial sugar concentrations varied from 10 to 50 g/L 

with 10 g/L increments at a fixed molar C:N ratio of 50 (Fig. 3.1a); molar C:N ratios ranged from 

20 to 100 with increments of 20 at a fixed sugar concentration of 30 g/L (Fig. 3.1b). Two flasks 

per treatment were run each time for each treatment condition. Second, based on the results of the 

single variable experiments, a combined mixture-process variable design was employed (Fig. 3.2). 

The mixture design structure consisting of 7 runs is shown in Figs. 3.2a and c. For process 

variables, a 9 run (32) full factorial (Fig. 3.2b) was applied to study the effect of initial sugar 

concentrations (10, 20 and 40 g/L) and C:N ratio (40, 60 and 80). By combining a mixture design 

and a process variables design, there were a total of 63 (7*9) treatment combinations (Fig. 3. 2c). 

Again, two flasks per treatment condition were run. A total of 126 flasks were run in three batches 

due to the limitation of incubator space. Each batch contained 21 treatment conditions (42 flasks) 
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and was associated with one of the three sugar concentrations. The 21 treatment conditions were 

assigned to 42 flasks with two flasks per treatment randomly. Experimental data from the 

combined mixture-process design (Table 3.2) was used to derive the polynomial model described 

in Section 3.2.3. Third, using the model derived from the second stage, optimum conditions leading 

to the maximal PHB production was derived and validated by running an additional set of 

experiments under the optimum condition. Validation experiments were also run in two flasks per 

condition. 

3.2.3 Response surface and optimum conditions 

3.2.3.1 Polynomial model fitting 

A special cubic model (Equation 3.1) proposed by Scheffe (1958) was used to fit the 7-run 

mixture design, and a quadratic linear polynomial model (Neter et al., 1996) (Equation 3.2) was 

used to fit the full factorial design (Cornell, 2011). Equation 3.1 has 7 terms and equation 3.2 has 

9 terms. The combined model (Equation 3.3) is a result of multiplication of Equations 3.1 and 3.2 

(Cornell, 2011). The combined model contained 63 terms. The random effect of batch was ignored. 

Model reduction was performed manually and lack of fit was checked for the reduced model.  

𝑌𝑀 = 𝑏𝐴𝐴 + 𝑏𝐵𝐵 + 𝑏𝐶𝐶 + 𝑏𝐴𝐵𝐴𝐵 + 𝑏𝐴𝐶𝐴𝐶 + 𝑏𝐵𝐶𝐵𝐶 + 𝑏𝐴𝐵𝐶 𝐴𝐵𝐶                     (3.1) 

𝑌𝑃 = 𝑏0 + 𝑏𝐷𝐷 + 𝑏𝐸𝐸 + 𝑏𝐷𝐸𝐷𝐸 + 𝑏𝐷2𝐷2 + 𝑏𝐸2 𝐸2 + 𝑏𝐷2𝐸𝐷2𝐸 + 𝑏𝐷𝐸2 𝐷𝐸2 + 𝑏𝐷2𝐸2 𝐷2𝐸2 (3.2) 

𝑌 = 𝑌𝑀 ∗ 𝑌𝑃                             (3.3) 

where A, B and C denote glucose, xylose and arabinose in coded level, respectively, and D and E 

denote sugar concentration and molar C:N  ratio, respectively.  

The combined polynomial Equation 3.3 was implemented using GLM procedure in SAS 

9.3 (SAS Institute Inc., Cary, NC). Analysis of variance (ANOVA) and testing of model adequacy 
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used p-values < 0.05 as statistically significant. Response surface plots of sugar mixture and full 

factorial process variables to exhibit interaction effects were plotted using Design Expert 11 (Stat-

Ease, Inc., Minneapolis, MN). 

3.2.3.2 Optimization by sequential quadratic programming and validation experiment 

Sequential quadratic programming (SQP) and global search methods have been used in 

multiple previous research studies to obtain optimal conditions from response surface models 

(Chen et al., 2005; Liou et al., 2018; Nocedal and Wright, 2006; Sreeraj et al., 2013). SQP is a 

type of quasi-newton optimization method that can identify optimum solution with fast 

convergence (Nocedal and Wright, 2006). Its disadvantage is that it may identify a local optimum 

instead of the global (Rentizelas and Tatsiopoulos, 2010). In order to search for the global 

optimum, the concept of global search optimization procedure (Ugray et al., 2007) was combined 

with the SQP method. Both the SQP and global search were implemented using the Global 

Optimization toolbox of MATLAB 2014a (MathWorks, Inc., Natick, MA, USA). Sequential 

quadratic programming was performed using build-in function “optimoptions” with “fmincon” 

and “sqp” algorithm. Global search was conducted using function “createOptimProblem” with 

“GlobalSearch” algorithm. The model obtained from Section 3.2.3.1 was formulated as an 

objective function that was optimized to obtain the maximum PHB production and the 

corresponding optimum conditions. The function “fmincon” for SQP is used to find the minimum 

value of a polynomial equation. Therefore, -1 times Y in Equation 3.3 was used as the objective 

function. The steps of using SQP and global search to find the optimum were expressed below. 

Step one: set objective function (fun): 𝑓𝑢𝑛 = −𝑌. Y is from Equation 3.3. 
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Step two: set constraints for independent variables. The basic constraints are: 𝐴 + 𝐵 + 𝐶 =

1; 10 ≤ 𝐷 ≤ 40;  40 ≤ 𝐸 ≤ 80. These constraints are from the experimental setup for combined 

mixture-process design. One of the objectives of this study was to use the polynomial model to 

derive optimum conditions for different types of sugar streams. Therefore, additional constraints 

can be applied to the mixture components A, B and C based on different types of sugar streams. 

In this study, four types of sugar mixtures were defined as corn stover, corn fiber, hemicellulose 

rich and global maximum. For corn stover type sugar stream, xylose concentration is 

approximately one-half of glucose concentration and these two sugars are the dominant sugars 

(Saha et al., 2005; Saha et al., 2016). Additional constraints for corn stover type sugar stream are: 

0.5 ≤ 𝐴 ≤ 0.7;  0.15 ≤ 𝐵 ≤ 0.3;  0.05 ≤ 𝐶 ≤ 0.2 . For corn fiber type sugar streams, glucose, 

xylose and arabinose are approximately in equal proportions with one of them usually less than 

other two depending on feedstock sources and pretreatment method (Gaspar et al., 2007; 

Noureddini and Byun, 2010; Samala et al., 2012). Additional constraints for corn fiber type sugar 

stream are: 0.4 ≤ 𝐴 ≤ 0.6;  0.1 ≤ 𝐵 ≤ 0.3;  0.3 ≤ 𝐶 ≤ 0.5. Hemicellulose rich sugar streams are 

high in xylose with other sugars in much smaller amounts compared to xylose (Pan et al., 2012a). 

Additional constraints for hemicellulose rich sugar stream are: 0.05 ≤ 𝐴 ≤ 0.15;  0.55 ≤ 𝐵 ≤

0.7;  0.2 ≤ 𝐶 ≤ 0.35. These constraints for mixtures were set based on the literature data in Table 

3.1. Global maximum means no additional constraints were set for mixtures.  

Step three: apply SQP and global search to find the maximum PHB production and 

corresponding optimal conditions.  

After obtaining the optimal conditions, validation experiments were performed by running 

an additional set of experiments using the optimal conditions. 
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3.2.4 PHB quantification by gas chromatography-mass spectrometer (GCMS) 

PHB concentration was determined according to the methods described by Dai et al. (2015) 

and Braunegg et al. (1978). Dried cell biomass was methanolyzed at 105 °C in an acidified 

methanol (5% H2SO4, v/v, 2 mL) and chloroform (2 mL) mixture for 3 h. Sodium hydroxybutyrate 

(Sigma-Aldrich, MO, USA) was used as an external standard. After 3 h, 1 mL deionized water 

(18.2 MΩ-cm) was added to the mixture and vortexed. The methyl-ester derivatives were extracted 

from the lower chloroform layer and passed through a column containing anhydrous sodium 

sulfate before being injected into a GC-MS.  

The GC-MS was equipped with a Trace 1310 Gas Chromatograph, ISQ QD single 

quadrupole mass spectrometer (ThermoScientific, Waltham, MA, USA) and TG-5MS (30 m x 

0.25 mm ID x 0.25 film) capillary column (ThermoFisher Scientific, Waltham, MA, USA). The 

temperature profile was held at 60 °C for 5 min, increased to 220 °C at a rate of 30 °C/min and 

held at 220 °C for 5 min. The injector temperature was 230 °C, and the injection mode was splitless 

(1 µL). The pressure of the carrier gas (helium) was 142 kPa (18 psi). MS transfer line temperature 

was 250 °C, ion source temperature was 220 °C and ionization mode was electron ionization. The 

ionization energy was 70 eV and selective ion monitoring (SIM) mode was used. Methyl-ester 

derivative was confirmed with SIM at 43, 71, and 74. Solvent delay was 3 min. Each 

chromatogram was analyzed with Chromeleon 7 chromatography studio (ThermoFisher Scientific, 

Waltham, MA, USA).  
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3.3 Results and discussion 

3.3.1 Single variable experimental results  

Single variable experimental results are shown in Fig. 3.1. For the effect of sugar 

concentration on PHB production, molar C:N  ratio was held at 50 (Fig. 3.1a). The effects of sugar 

concentration on glucose and arabinose only mixtures were similar; for both glucose and arabinose 

only mixtures, highest PHB productions were observed with sugar concentration 20 g/L. For 

xylose only mixture, PHB production decreased with increasing sugar concentration and highest 

PHB production was observed with sugar concentration 10 g/L. This implied that high xylose 

concentration caused much higher stress than the other sugars in terms of PHB production. For the 

equal mixture, highest PHB productions were observed with sugar concentration 40 g/L. To study 

the effect of molar C:N  ratio, sugar concentration was held at 30 g/L (Fig. 3.1b). The highest PHB 

production for glucose only mixtures were observed when the ratio was 40. PHB production for 

xylose only mixtures were much lower compared with other sugar mixtures across all molar C:N  

ratios. Since the xylose only mixture produced the highest PHB with sugar concentration of 10 g/L 

(Fig. 3.1a), it is expected that the high sugar concentration (30 g/L) used in the experiments to 

study the C:N ratio caused stress and resulted in low PHB production (Fig. 3.1b). The arabinose-

only mixture had the highest PHB when the C:N ratio was 80. The equal mixture had the highest 

PHB when the C:N ratio was 60. Based on the first stage experimental results, the levels of sugar 

concentrations were set as 10, 20 and 40 g/L and the levels of molar C:N ratio were set as 40, 60 

and 80 for next step combined mixture-process variable design (Fig. 3.2). 
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3.3.2 Combined mixture-process variable results and polynomial model fitting  

Combined mixture-process experimental design and observed experimental values for 63 

treatment combinations are shown in Table 3.2. The highest PHB production in Table 3.2 was 3.67 

g/L, which is 20% higher than the highest PHB produciton (3.07 g/L for equal mixture at sugar 

cocentration 40 g/L and C:N ratio 50) in Fig. 3.1. The combined mixture-process variable design 

clearly achived higher PHB production than single variable expeirmental design.  

For model fitting, initially, a full model containing 63 terms with zero degrees of freedom 

for lack of fit was fit to the experimental data in Table 3.2. The full model showed a coefficient of 

determination (R2) of 0.93. Variable reduction was performed manually by dropping terms that 

were insignificant from the highest order. The p-value for the term of interaction between ABC 

and D2E2 in Table 3.3 was > 0.05. Therefore, this interaction term was dropped and lack of fit was 

checked to be 0.93. If any more terms were dropped, the lack of fit became significant and 

R2 dropped dramatically (from 0.93 to 0.7). Therefore, a reduced model with 62 terms (only 

dropping interaction term ABCD2E2) was used as the final model (Table 3.3). The parameter 

estimates and modeling fitting results for the final model are shown in Table 3.3. The final model 

had a highly significant p-value (<0.0001) and non-significant lack of fit (p-value = 0.566 > 0.05), 

indicating the final model was adequate to explain the experimental data. The coefficient of 

determination (R2 =0.93) of the final model demonstrated good correlation between experimental 

and predicted values of the response. 

3.3.3 Effect of mixture, process variables and their interaction  

The response surface plots of 7 mixtures based on the final model in Table 3.3 are presented 

in Fig. 3.3. In Table 3.2, it is noteworthy that at sugar concentrations of 10 g/L, PHB production 
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of xylose only mixture was greater than that of glucose only mixture for all molar C:N  ratios and 

greater than that of arabinose only mixture for the molar C:N ratio of 80. Similarly, xylose only 

mixture was found to produce more PHB than glucose at sugar concentration 10 g/L, but with a 

molar C:N  ratio of 19 (Cesario et al., 2014). In Figs. 3.3a and 3.3d for process conditions (10, 40) 

(sugar concentration in g/L, molar C:N  ratio) and (10, 60), arabinose only mixture had the highest 

PHB production and the mixture of glucose and xylose at equivalent concentrations led to higher 

PHB production than glucose or xylose-only cultures. At 10 g/L, when the molar C:N  ratio 

increased to 80, more PHB was produced using xylose-only mixture than the mixture of glucose 

and xylose at equivalent concentrations. For sugar concentrations of 10 and 20 g/L, the trend of 

PHB production affected by the mixture was similar to that of Cesario et al. (2014), but PHB 

concentrations were lower in this study, which was probably due to the use of yeast extract in 

Cesario et al. (2014).  

Trends of process conditions (10, 40), (20, 60) and (20, 80) (Figs. 3.3a, 3.3e and 3.3h) were 

similar, in which an additional increment of arabinose in mixture increased PHB production more 

than an additional increment of glucose or xylose. In fact, arabinose only mixture produced the 

highest PHB among all process conditions except for process conditions (10, 80), (20, 40) and (40, 

60). The reason that arabinose produced higher PHB than glucose remians unknow and reuqires 

furthur research. At process conditions (10, 80), (20, 40) and (40, 60), highest PHB productions 

were obtained with xylose-only mixture, mixture of glucose and xylose at equivalent 

concentrations and glucose-only mixtures, respectively. For sugar concentration at 40 g/L, the 

lowest concentration of PHB was produced in xylose-only mixture among all mixtures. Similarly, 

in the study of Cesario et al. (2014), PHB volumetric productivities were found to be 0.13, 0.08 

and 0.09 g/(L* h) for glucose, xylose and arabinose-only cultures, respectively. In this study, B. 
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sacchari produced more PHB in arabinose or glucose-rich mixtures than in xylose-rich mixtures 

at high sugar concentration (40 g/L) (Figs. 3.3c, 3.3f and 3.3i).  

PHB is an energy storage product triggered by nitrogen limitation. The effect of molar C:N 

ratio on different sugar mixtures differed. For most previous studies applying nitrogen limitation 

for PHB production, the molar C:N ratio ranged from 20 to 60 for glucose and arabinose rich sugar 

streams (Cesario et al., 2014; Garcia-Torreiro et al., 2016; Kalaiyezhini and Ramachandran, 2015; 

Raposo et al., 2017; Rodriguez-Contreras et al., 2015). Based on the results of this study, for xylose 

rich streams from such as rice straw or corn cob, the molar C:N ratio should be increased to 80 

and the sugar concentration should be low at around 10 g/L since PHB concentrations were much 

higher when xylose concentration was at 10 g/L and molar C:N ratio was increased to 80 (Table 

3.2 and Figs. 3.3a, 3.3d and 3.3g). Increasing the molar C:N  ratio can increase PHB accumulation 

in bacteria cells, but high molar C:N ratios limit cell growth (Kalaiyezhini and Ramachandran, 

2015). This may explain that for some mixtures in Table 3.2, PHB production at the molar C:N 

ratio 60 was higher than the other two ratios (40 and 80). High molar C:N ratio also decreases the 

PHB formation rate (Choi and Lee, 1999), therefore, increasing the fermentation time. Future work 

should be performed to study PHB production kinetics in terms of the effect of molar C:N ratio 

for certain sugar mixtures. 

3.3.4 Optimum condition and validation results 

Optimum PHB conditions and the corresponding PHB production are shown in Table 3.4. 

For four types of sugar mixtures, validation results from the model were close to the experimental 

results based on the optimum conditions derived from the model, indicating the model described 

in Table 3.3 is valid to predict PHB production from varied sugar mixtures and process variables. 
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The global maximum (the greatest PHB production) was found to be 3.815 g/L using arabinose-

only culture at a sugar concentration of 25.54 g/L and a C:N ratio of 74.34. This is in accordance 

with the plots shown in Figs. 3.3e and 3h that show arabinose only culture led to the highest PHB 

production with sugar concentration of 20 g/L and C:N ratio at 60 and 80. The response surface 

plots for the arabinose only culture with process variables changing are shown in Fig. 3.4. It is in 

accordance with the optimal condition of arabinose concentration of 25.54 g/L and a C:N ratio of 

74.34 (Fig. 3.4a). However, the surface in Fig. 3.4a looks flat when increasing the C:N ratio from 

74.34 to 80. Another response surface plot with the C:N ratio changing from 60 to 85 is shown in 

Fig. 3.4b. It is clear to see that PHB production starts to decrease after C:N ratio of 74.34.  

Corn fiber type sugar stream produced higher PHB than corn stover type sugar stream and 

hemicellulose rich sugar stream produced the lowest PHB. For different sugar stream in Table 3.1, 

it is expected that PHB production from highest to lowest will be in the following order: corn fiber, 

wheat bran and spend coffee ground > corn stover, switchgrass, sugarcane bagasse, softwood, 

hardwood and rich husk > rice straw and corn cob. For either corn stover or corn fiber type sugar 

streams, only around 2.0 g/L PHB was produced from 40 g/L sugar concentration, which implies 

that large amounts of sugar were left after the fermentation. It is also expected that large amounts 

of sugars were left for other two types of sugar streams (hemicellulose rich and global maximum). 

Future work should be conducted to recover the sugars and improve the sugar conversion to PHB. 

Application of fermentation strategy such as fed-batch may also increase cell and PHB production 

3.4 Conclusion 

In this study, the effects of sugar mixture, sugar concentrations and carbon to nitrogen ratio 

on PHB production were studied and a well-fitting polynomial model was built. Optimum 
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conditions for four typical types of sugar streams were derived for maximum PHB production. 

Validation results were close to predicted values based on the optimum conditions. At low sugar 

concentration (10 g/L), greater PHB concentrations were produced using xylose than using 

glucose. At high sugar concentration (40 g/L), glucose and arabinose dominant cultures produced 

higher PHB than xylose dominant culture. These results can provide reference of manipulating 

certain sugar amounts in different sugar mixture stream and associated process variables to 

maximize PHB production. 
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Table 3.1 Sugar mixture (glucose, xylose and arabinose) proportions reported in previous 

literature. 

Feedstocks Pretreatment 

method 

Glucose, 

% 

Xylose, 

% 

Arabinose, 

% 

References 

Corn stover White rot fungi 65 23 2 Saha et al. (2016) 

Wheat bran  Dilute sulfuric 

acid 

43 35 22 Liu et al. (2010) 

Rice straw* Dilute sulfuric 

acid 

21 67 12 Roberto et al. (1995) 

Spend coffee ground  Dilute sulfuric 

acid 

7 NA 51 Obruca et al. (2014a) 

Sugarcane bagasse* Dilute sulfuric 

acid 

42 57 1 Silva et al. (2004) 

Rice husk Alkaline (NAOH) 80 15 5 Heng et al. (2017) 

Swtichgrass Hythermolysis 96 3 1 Liu et al. (2015) 

Eastern red cedar 

(hardwood) 

Acid bisulfite 96 3 1 Liu et al. (2015) 

Spruce (softwood) Steam explosion 71.5 8 1 Hamalainen et al. 

(2016a) 

Corn stover Dilute sulfuric 

acid 

56 37 6 Saha et al. (2015) 

Corn cob Dilute oxalic acid 22 71 6 He et al. (2017) 

Corn fiber Hydrothermolysis 32 40 27 This lab 

Note: NA means not applicable, for feedstocks labeled with *, sugar streams were from the liquid 

fractions after pretreatment. In the literature, some of the sugar mixtures were reported as 

concentrations (g/L) in the original literature, they were converted to percentage for comparison. 

Summation of three sugar mixtures were not 100 due to the presence of galactose and mannose.  

 

Table 3.2. Experimental values of 63 treatment combinations from the combined mixture-

process experimental design  

Mixture proportions  Process variable settings (sugar conc. (g/L), molar C/N)) 

Glucose Xylose 
Arabino

se 

 
10, 40 10, 60 10, 80 20, 40 20, 60 20, 80 40, 40 40, 60 40, 80 

1 0 0 
 0.48 

(0.11) 

0.81 

(0.07) 

0.35 

(0.05) 

1.72 

(0.29) 

1.16 

(0.29) 

0.64 

(0.12) 

0.94 

(0.19) 

2.17 

(0.21) 

1.97 

(0.10) 

0 1 0 
 1.53 

(0.06) 

1.92 

(0.53) 

2.68 

(0.57) 

0.86 

(0.07) 

1.16 

(0.15) 

1.29 

(0.12) 

0.57 

(0.09) 

0.49 

(0.01) 

1.02 

(0.28) 

0 0 1 
 3.67 

(0.46) 

2.52 

(0.02) 

2.21 

(0.05) 

1.82 

(0.33) 

3.43 

(0.01) 

3.53 

(0.37) 

2.07 

(0.11) 

1.64 

(0.02) 

2.42 

(0.26) 

0.5 0.5 0 
 2.04 

(1.22) 

2.16 

(0.77) 

0.80 

(0.54) 

2.24 

(0.18) 

1.01 

(0.06) 

1.20 

(0.24) 

1.49 

(0.19) 

2.06 

(0.12) 

1.12 

(0.10) 

0.5 0 0.5 
 2.74 

(0.12) 

1.20 

(0.28) 

0.44 

(0.03) 

1.16 

(0.02) 

2.05 

(0.18) 

0.73 

(0.05) 

2.33 

(0.02) 

1.59 

(0.19) 

1.80 

(0.41) 

0 0.5 0.5 
 1.93 

(0.15) 

1.63 

(0.16) 

1.31 

(0.19) 

1.41 

(0.17) 

2.21 

(0.08) 

1.09 

(0.24) 

1.89 

(0.08) 

1.94 

(0.10) 

1.18 

(0.23) 

0.33333

3 

0.33333

3 

0.33333

3 

 1.66 

(0.00) 

2.23 

(0.29) 

0.83 

(0.36) 

1.36 

(0.18) 

1.66 

(0.02) 

2.78 

(0.32) 

1.86 

(0.18) 

2.06 

(0.24) 

2.25 

(0.06) 

Note: values are shown as mean (standard deviation) of two replicates. 
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Table 3.3. Paramter estimates and model fitting for combined mixture-process final model  

Model 

Parameter  

 Coefficient 

 Interaction with  

Intercept (b0) 

Interaction 

with D 

Interaction 

with E 

Interaction 

with DE 

Interaction 

with D2 

Interaction 

with E2 

Interaction 

with D2E 

Interaction 

with DE2 

Interaction 

with D2E2 

A  -14.2754466 1.4999318 0.4394633 -0.0418529 -0.0321835 -0.0032142 0.0009211 0.0002875 -0.0000063 

B  6.5382201 -0.5804532 -0.1794871 0.0191352 0.0120048 0.0019903 -0.0004156 -0.0001899 0.000004 

C  36.9968533 -3.5407457 -1.0404525 0.1096012 0.0695478 0.0071714 -0.0021995 -0.0007671 0.0000157 

AB  -82.6510675 9.0799541 3.3936149 -0.3462563 -0.1819441 -0.0305147 0.0068859 0.0029773 -0.0000589 

AC  95.7301327 9.5095409 -2.9266359 -0.3462563 0.1932354 0.0213655 -0.0060154 -0.0022423 0.0000459 

BC  -59.6108006 6.0281791 2.0819316 -0.2183860 -0.1267103 -0.0192235 0.0047436 0.0020088 -0.0000437 

ABC  -342.8622676 16.124429 10.6557613 -0.4570364 -0.1667196 -0.0722796 0.0034943 0.0024145 drop 

Model fitting  P value         

Model  <0.0001         

Lack of fit  0.566         

R2  0.93         

Note: A, B and C denote glucose, xylose and arabinose in coded level, D and E denote sugar 

concentration and molar carbon to C: N ratio. Drop means the highest order term (interaction 

between ABC and D2E2) was dropped. 

 

Table 3.4. Optimal conditions and validation results for different types of sugar streams  

Defined sugar streams Glucose Xylose Arabinose Sugar conc. 

 (g/L) 

            Molar  

C/N 

Experimental 

PHB Conc. (g/L)   

Predicted 

 PHB Conc. (g/L) 

Corn stover 0.5  0.3  0.2 40             69.97 2.085 (0.136) 2.153 (0.636) 

Corn fiber 0.4  0.2 0.4 40             80 2.210 (0.011) 2.310 (0.671) 

Hemicellulose rich 0.15  0.65  0.2 25.54             58.77 1.783 (0.001) 1.370 (0.641) 

Global maximum 0 0 1 25.54             74.35 3.813 (0.601) 3.974 (0.675) 

Note: Experimental results are reported in the form of mean (standard deviation) (n=2), 

predicted values are reported in the form of mean (95% confident interval). 
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Fig. 3.1. Effect of sugar concentration (a) and molar C:N ratio (b) on PHB production on four 

sugar mixtures.  
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Fig. 3.2 Response illustration of combined mixture-process experimental design. 
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Fig. 3.3 Response surface plots (a-i) for ternary mixture combining with process variables 

treatment combinations. 
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Fig. 3.4 Response surface plot affected by two process variables (sugar concentration and C:N 

ratio) for arabinose only sugar mixture.  
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CHAPTER IV 

4. Enhancement of polyhydroxybutyrate (PHB) production by 10-fold 

from alkaline pretreatment liquor with an oxidative enzyme-mediator-

surfactant system under Plackett–Burman and central composite 

designs 

Abstract 

In this study, Plackett–Burman and central composite designs were applied to improve 

polyhydroxybutyrate (PHB) production from alkaline pretreatment liquor (APL) by Cupriavidus 

necator DSM 545 using a supplement system consisting of oxidative enzymes (laccase, aryl 

alcohol oxidase (AAO)), mediators (ABTS, HOBT), DMSO, silica nanoparticle Aerosol R816 and 

surfactant Tween 80. First, screening experiments under Plackett-Burman design showed R816, 

ABTS and Tween 80 could significantly enhance PHB production. Additional experiments 

showed that HOBT and DMSO could be removed, and laccase and AAO were needed to remain 

in the system. Second, a central composite design was applied to obtain the optimum supplemental 

levels of R816, ABTS and Tween 80. Under optimum conditions, theoretical maximum PHB 

production (1.9 g/L) was close to experimental PHB production (2.1 g/L). With the supplement 

system, a 10-fold increase was achieved compared to PHB production (0.2 g/L) without any 

supplements.  
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4.1. Introduction 

Lignin is an energy-dense, heterogeneous polymer comprising 15-30% of lignocellulosic 

biomass, and it is the second most abundant biopolymer on Earth after cellulose (Linger et al., 

2014). However, the recalcitrance and heterogeneity of oligomeric and polymeric lignins from 

lignin-rich streams make lignin valorization a challenge (Salvachua et al., 2015). Therefore, 

lignocellulosic feedstock biorefineries produce renewable fuels, chemicals and polymers mostly 

from polymeric sugars (Cesario et al., 2014; Frederick et al., 2016; Li et al., 2018a; Liu et al., 

2015; Wang et al., 2014) and leave huge amounts of waste lignin. In fact, lignin is generally burned 

to produce heat and power for the facilities of lignocellulosic biorefineries. Using a lignocellulosic 

ethanol process as an example, it has been estimated that only 40% of the lignin obtained from 

biomass is needed to meet process power requirements; therefore, 60% of the lignin could be used 

for producing higher value products without affecting the existing uses of lignin (Sannigrahi et al., 

2010). By 2030, with 25% of transportation fuels being replaced by biofuels in the US, around 50 

billion of cellulosic ethanol from about 1 billion tons of biomass will be produced in the 

biorefineries, therefore producing 0.3 billion tons of lignin, substantially more than necessary to 

power these biorefineries (Shen et al., 2018). Besides, conversion of lignin to value-added products 

is likely to compensate for the extra costs caused by upstream pretreatment processes that have 

high capital costs in lignocellulosic biorefineries (Ragauskas et al., 2014).  

Lignin-enriched streams are typically accessible from lignocellulosic feedstock 

pretreatment or as residual solids after enzymatic hydrolysis (Salvachua et al., 2015). Alkaline 

pretreatment can typically preserve over 90% of sugars in solids and dissolve over 50% lignin in 

alkaline pretreatment liquor (APL) (Kim and Holtzapple, 2005; Xu and Cheng, 2011). Aromatic 

compounds in APL can be ring-opened in bacteria via the β-ketoadipate pathway and converted 
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further to carbon and energy storage compounds such as polyhydroxyalkanoates (PHA) from 

acetyl-CoA through fatty acid synthesis. PHAs, of which polyhydroxybutyrate (PHB) is the most 

abundant, are polyesters of hydroxyalkanoates (3-hydroxybutyrate in the  case of PHB) 

synthesized by bacteria and accumulated as granules in the cytoplasm of cells (Lee, 1996). The 

degree of polymerization of 3-hydroxybutyrate in PHB can reach 2,000, which makes PHB 

comparable to many petroleum based plastics in terms of mechanical properties. PHB is also 

widely applied in the pharmaceutical industry due to its biocompatibility. In the context of a 

lignocellulose biorefinery, conversion of lignocellulosic feedstocks into PHB can add profit and 

increase sustainability. Most previous studies on lignocellulosic conversion to PHB/PHA have 

focused on sugars (Brodin et al., 2017; Cesario et al., 2014; Dai et al., 2015; Pan et al., 2012a; 

Raposo et al., 2017). There are only limited studies on lignin conversion into PHB/PHA with 

production ranging from 0.13 to 1 g/L (Berezina et al., 2015; Linger et al., 2014; Liu et al., 2017; 

Shi et al., 2017; Si et al., 2018; Wang et al., 2018). The greatest PHA concentration observed in 

these studies was 1.0 g/L using Pseudomonas putida (Liu et al., 2017). The substrate for that study 

was alkaline pretreatment liquor (APL) that was produced from a combination of 

H2SO4 pretreatment followed by NaOH pretreatment (Liu et al., 2017). Such PHA concentrations 

are too low to be economical. 

Cupriavidus necator DSM 545, was found to convert benzoic acid into PHB, but PHB 

production was only 0.4 g/L (2 g/L cell dry weight with 20% PHB content inside cells) under a 

fed-batch mode (Berezina et al., 2015). Because microbial assimilation of aromatic compound 

conversion is feasible if the aromatic rings of the compounds are less than five (Bandounas et al., 

2011; Taylor et al., 2012). In previous studies, multiple enzymes and chemicals have been widely 

studied in terms of their roles in lignin structural and molecular changes and low molecular 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pseudomonas-putida
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aromatic compound conversion (Beckham et al., 2016; Chen and Wan, 2017a; Linger et al., 2014; 

Paliwal et al., 2012). Oxidative enzymes (laccase and aryl alcohol oxidase (AAO)), mediators 

(2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and hydroxybenzotriazole 

(HOBT)) were found to enhance lignin depolymerization by laccase (Brenelli et al., 2018; 

Christopher et al., 2014; Xie et al., 2017; Zhao et al., 2016). These enzymes and mediators were 

tested as supplements in this study. Generally, surfactants were found to decrease surface tension, 

increase oxygen and mass transfer, and improve availability of substrates to microorganisms in 

fermentation broth (Pulido-mayoral and Galindo, 2004). Aerosil R816 silica nanoparticle 

(hereafter referred to as R816), which is slightly hydrophobic, but is dispersible in water, was 

hypothesized in this study to enhance PHB production based on the aforementioned mechanisms. 

A nonionic surfactant, such as Tween 80, was hypothesized in this study to enhance APL 

conversion into PHB because previously it was found to enhance lignin oxidation and 

depolymerization by manganese peroxidase (Hofrichter, 2002). Lignin solubility was increased by 

up to 70% by addition of 2% dimethyl sulfoxide (DMSO) into aqueous media (Brzonova et al., 

2017). R816, Tween 80 and DMSO were also tested as supplements in this study. These enzymes 

and chemicals have the potential to enhance lignin conversion to PHB, but their effects on 

enhancing PHB production from APL have not been studied much. 

In this study, a supplement system consisting of these enzymes and chemicals was applied 

to C. necator DSM 545 to enhance PHB production from APL. The objective of this study was 1) 

to screen the supplements that can enhance PHB production and 2) to obtain the optimum 

conditions (optimum levels for supplements) that lead to maximal PHB production. In the view of 

process control, knowing the effects of these supplements on PHB production enhancement can 

help to optimize PHB production. 
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4.2. Materials and methods 

4.2.1. Microorganisms, inoculum and AAO production 

C. necator DSM 545, a Gram-negative Proteobacteria and the model organism for PHB 

production was used to produce PHB from APL. C. necator DSM 545 in the form of freeze-dried 

pellets was purchased from the German Collection of Microorganisms and Cell Cultures (DSMZ, 

Braunschweig, Germany). C. necator DSM 545 was revitalized and subcultured with seed medium 

(meat extract 3 g/L, meat peptone 5 g/L, glucose 30 g/L) for at least two generations until the OD 

reached 10 at 24 h. C. necator culture was conducted throughout the study at 33 °C at 250 rpm in 

25 mL working medium in 250 mL baffled flasks with silicone sponge closures unless specified. 

C. necator culture of optical density (OD) 10 at the wavelength of 600 nm and the path length of 

1 cm was preserved at -80 °C in 30% glycerol in 2 mL aliquots and used for inoculum preparation. 

One aliquot of C. necator culture was inoculated to seed medium and cultured for around 24 h to 

obtain late exponential phase culture with an OD of 8-10. Then the culture was washed with sterile 

0.89% sodium chloride solution twice and used as inoculum. Inoculum was added to each 

experimental flask to achieve an initial OD of 5. 

Aspergillus nidulans, a filamentous fungus, was used to produce AAO. A. nidulans, a 

mutant strain with the identifier A773, was obtained from the Functional Genetics Stock Culture 

(FGSC, Manhattan, Kansas, U.S.). The A. nidulans strain was further genetically modified as 

described elsewhere (Pardo-Planas et al., 2017a; Segato et al., 2012). Myceliophthora thermophila 

AAO was overexpressed and secreted by the resulting genetically engineered A. nidulans. AAO 

was produced by growing A. nidulans in a medium containing 40 g/L maltose, 10 g /L glucose, 6 

g/L NaNO3, 1.52 g/L KH2PO4, 1.52 g/L KCl, 0.52 g/L MgSO4·7H2O, 0.001 g/L pyridoxine, and 
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trace of FeSO4·7H2O and ZnSO4·7H2O. The medium was adjusted to pH 6.5 using 6 M NaOH 

solution and autoclaved at 121 °C for 20 min. Enzyme production was carried out at 37 °C and 

agitated at 250 rpm for 72 h. The AAO activity was determined by spectrophotometric assay, 

which was based on the oxidation of veratryl alcohol and the reduction of 2, 6-dichlorophenol 

indophenol (DCPIP) (Pardo-Planas et al., 2017b). The absorbance of the reaction at 600 nm (ɛ600= 

21,000 M-1·cm-1) was monitored at 1 cm path length and 50 °C for 2 min. Each reaction contained 

0.1 ml of 2 mM DCPIP, 0.1 ml of 250 mM veratryl alcohol, 0.1 ml of 50 mM phosphate buffer 

(pH 7.0), and 0.7 ml of enzyme sample. One unit of AAO activity was defined as the reduction of 

one µmol of DCPIP per min. The AAO used in this study had an activity of 535 U/L. 

4.2.2 APL preparation 

Corn stover was used as the lignocellulosic material for making APL. Corn stover was 

collected from Rogers Memorial Farm (Lincoln, NE, USA) in 2017, and it was air dried and 

ground in a hammer mill (Schutte Buffalo, NY, USA) equipped with a 2.36 mm sieve. To obtain 

lignin-enriched liquor, alkaline pretreatment on corn stover was carried out in a 1 L bench top 

pressure reactor (Parr Reactor Model 4848, Parr Instrument Co., Moline, IL, USA). The reactor 

was loaded with 60 g corn stover (dry basis) and 540 mL alkaline solution to achieve a liquid-to 

solid mass ratio of 10:1. The alkaline solution was prepared by dissolving 4.2 g NaOH in 540 mL 

deionized water to achieve a NaOH loading of 0.07g NaOH/g corn stover. The operating 

conditions were agitating at 500 rpm, heating to 140 °C and holding for 30 min. The pretreatment 

conditions were near-optimum in terms of preserving cellulose and hemicellulose in the solids 

while preserving lignin in the liquid according to previous studies (Chen et al., 2013; Karp et al., 

2014; Linger et al., 2014). At the end of the reaction, the heating mantle was removed, and the 

reactor was cooled using an internal cooling coil. Liquid fractions of the slurries were separated 
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from the solids under vacuum filtration using Whatman #4 filter paper. APL was prepared by 

neutralizing the liquid fractions to pH 6.8 with 5 M HCl and autoclaving at 121 °C for 20 min.  

4.2.3 PHB production  

PHB production base medium contained APL (5 mL) as the carbon source, (NH4)2SO4 (0.1 

g/L) as the nitrogen source, salts (Na2HPO4·2H2O, 2.9 g/L; KH2PO4, 1.5 g/L; MgSO4·7H2O, 

0.2 g/L; CaCl2·2 H2O: 0.01 g/L; Fe(NH4)citrate: 0.06 g/L) and trace elements (1 mL/L) as 

described previously (Ramsay et al., 1990). The MgSO4·7H2O, CaCl2·2 H2O and Fe(NH4)citrate 

solutions were autoclaved separately. PHB production was conducted at 32.5 °C at 250 rpm as 

described in Section 4.2.1, but with a 20 mL working volume and cultivation was stopped at 7 

days (168 h) for PHB quantification as described in Section 4.2.4.  

To enhance PHB production, an oxidative enzyme-mediator-surfactant system was applied 

under Plackett-Burman and central composite designs. The experiments were carried out in three 

stages. First, seven supplements (laccase, AAO, DMSO, R816, ABTS, HOBT and Tween-80) 

were considered as seven independent variables in a Plackett-Burman design to screen the 

variables that could significantly enhance PHB production. Some follow up experiments were 

performed to see if the non-significant variables can be removed from the system. Laccase (L2157-

10KU, 50 units/mg solids activity), ABTS and HOBT in the form of 1-hydroxybenzotriazole 

hydrate were purchased from Sigma-Aldrich (St. Louis, MO, USA). AAO was prepared as 

described in Section 4.2.1. DMSO was purchased from Fisher Scientific (Waltham, MA, USA). 

R816 (Aerosil® R816, 12 nm average primary particle size) was donated by Evonik (Essen, 

Germany). Tween-80 was purchased from Acros Organics (Geel, Belgium). Second, a central 

composite design was employed to build a polynomial equation based on results from the Plackett-
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Burman Design. Third, the optimum conditions were derived from the polynomial equation by 

ridge analysis and validated by running an additional set of experiments. Details of the three-stage 

statistical design, modeling and experimental data analyses are shown in Section 4.2.5. 

4.2.4 PHB quantification by gas chromatography-mass spectrometer (GCMS) 

PHB concentration was determined according to the methods described by Braunegg et al. 

(1978). Dried cell biomass was methanolyzed at 105 °C in acidified methanol (5% H2SO4, 

v/v, 2 mL) and chloroform (2 mL) mixture for 3 h. Sodium hydroxybutyrate (Sigma-Aldrich, MO, 

USA) was used as an external standard. After 3 h, 1 mL deionized water (Milli-Q, 18.2 MΩ 

cm) was added to the cooled mixture and vortexed. The methyl-ester derivatives were extracted 

from the lower chloroform layer and passed through a column containing anhydrous sodium 

sulfate before being injected into a GC-MS.  

The GC-MS was equipped with a Trace 1310 Gas Chromatograph, ISQ QD single 

quadrupole mass spectrometer (ThermoScientific, Waltham, MA, USA) and TG-5MS (30 m x 

0.25 mm ID x 0.25 film) capillary column (ThermoFisher Scientific, Waltham, MA, USA). The 

temperature profile was held at 60 °C for 5 min, increase to 220 °C at a rate of 30 °C/min, then 

hold at 220 °C for 5 min. The injector temperature was 230 °C, and the injection mode was splitless 

(1 µL). The pressure of the carrier gas (helium) was 142 kPa (18 psi). The MS transfer line 

temperature was 250 °C, ion source temperature was 220 °C and ionization mode was 

electron ionization. The ionization energy was 70 eV and selective ion monitoring (SIM) mode 

was used. Methylated methyl-ester derivative was confirmed with SIM at 43, 71, and 74. Solvent 

delay was 3 min. Data were analyzed with Chromeleon 7 chromatography studio (ThermoFisher 

Scientific, Waltham, MA, USA). 



78 

 

 

 

4.2.5 Statistical design, modeling and analysis 

4.2.5.1 Plackett–Burman Design 

A 7-factor-8-run Plackett-Burman design experiment was conducted (Table 4.1). The 

selection of low (-1) and high (1) levels for each factor (Table 4.1) was based on previous literature. 

Two replicates per run were performed when conducting the experiments. A total of sixteen flasks 

were randomly assigned to 8 runs. For statistical modeling, the first-order polynomial linear model 

shown in Equation 4.1 was employed.  

Y = β0 + ∑ β𝑛
7
𝑛=1 𝑥𝑛          (4.1) 

where Y is the predicted response (PHB concentration (g/L), further called PHB production 

throughout the study), β0 is the model intercept, βn is the linear coefficient and 𝑥𝑛 is the coded 

level of the independent variable. The model for Equation 4.1 was implemented using ‘lm’ 

function in the “FrF2” package using “R-language” software/environment (Gronmping, 2014). 

The main effects plot for Plackett–Burman Design was obtained using ‘MEPlot’ function. 

Significant level was set as p-value < 0.05. The significant independent variables were considered 

for further optimization using a central composite design. Because supplements were not essential 

nutrients for fermentation, non-significant supplements may be removed. Follow up experiments 

were carried out to see if the non-significant variables could be removed. 

4.2.5.2 Central composite design 

The central composite design, one of the most commonly used designs with response 

surface methodology, is usually used to evaluate how independent variables affect the measured 

response with fewer experimental run requirements than equivalent factorial designs. This 

procedure was used to understand the overall (linear, interaction, and quadratic) effects of 
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independent variables. Independent variable levels and design structure were shown in Table 4. 2. 

The selection of five levels of three independent variables (Table 4.2) is explained in Section 4.3.1 

based on results from Plackett-Burman design. When performing the experiments, three flasks per 

run were applied to run # 1 through 14 as three replicates and six flasks were applied to run 15 as 

six replicates. A total of 48 flasks were randomly placed in two identical incubators (Model I26, 

New Brunswick Scientific, Edison, NJ, USA) with 24 flasks in each incubator. The effect of 

incubator was found to be non-significant (p-value < 0.05) and removed from the model. The 

polynomial quadratic model shown in Equation 4.2 was employed to fit the experimental data.   

Y = 𝑏0 + ∑ 𝑏𝑛
3
𝑛=1 𝑋𝑛 + ∑ 𝑏𝑛𝑛

4
𝑛=1 𝑋𝑛 

2 + ∑ ∑ 𝑏𝑛𝑚
3
𝑚=2

2
𝑛=m−1 𝑋𝑛𝑋𝑚                                               (4.2) 

where Y is the predicted PHB production (g/L); b0 is the intercept; bn is the linear 

coefficient; bnn is the quadratic coefficients and bnm is the cross product coefficients. Xn and Xm are 

independent variables. 

The model in Equation 4.2 was fit to experimental data generated from the central 

composite design using RSREG procedures in SAS 9.3 (SAS Institute Inc., Cary, NC). The fitted 

model was evaluated based upon the model sufficiency (R2), regression parameter significance (p-

value) and test for lack of fit. P-values < 0.05 was set as statistically significant. Response surface 

and contours graphs for fitted Equation 4.2 were used to illustrate the surface near the optimum 

conditions and were plotted using MATLAB R2014a (MathWorks, Inc., Natick, MA, USA).   

4.2.5.3 Optimum condition and validation 

Ridge analysis was conducted using the ridge max option of the same RSREG procedure 

in Section 4.2.5.2 to obtain the optimum condition that led to maximum PHB production. Ridge 

analysis can evaluate the nature of the stationary point from the output of REREG and find the 
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maximum response value along the path of steepest ascent. Validation experiments were 

performed by running an additional set of experiments under the optimum conditions. 

4.3 Results and discussion 

4.3.1 PHB production-screening 

Without any supplements added, PHB production was found to be 0.21 g/L using the base 

medium as described in Section 4.2.3. Using the supplement system under the Plackett-Burman 

design, PHB production is shown in Table 4.1. After fitting a first order polynomial model, the 

coefficient of determination (R2) was 0.98 (Table 4.3), which indicated a good fit. Three 

supplements R816, ABTS and Tween 80 were found to have significant effects on PHB production 

(Table 4.3). R816 is a silica nanoparticle that can lower interfacial surface tension (Zargartalebi et 

al., 2015). The fact that it enhanced PHB production may be related to decreased surface tension 

because decreased surface tension was found to increase oxygen and mass transfer and improve 

availability of substrates to microorganisms in fermentation broth (Pulido-mayoral and Galindo, 

2004). ABTS has been a successful mediator of laccase to produce low molecular weight lignin 

(Brenelli et al., 2018; Christopher et al., 2014). Nonionic surfactants, such as Tween-80, have been 

found reducing the amount of lignin remaining in the pretreated material and improve cellulolytic 

enzyme performance (Borjesson et al., 2007; Cao and Aita, 2013). These facts indicate that 

enhanced PHB production by these three supplements may be caused by lower molecular lignin 

availability to C. necator. 

Because supplements are not essential nutrients, non-significant supplements identified 

from Plackett-Burman design may be removed from the system. Follow up experiments were 

conducted to see how PHB production was affected by removing non-significant factors. These 
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experiments were conducted based on the conditions of run #2 in Table 4.1 because PHB 

production of run #2 was the highest. First, both DMSO and HOBT were removed from the 

supplement system and PHB production was 1.95±0.21 g/L, which was not significantly different 

from 2.05±0.37 g/L (PHB production of run #2 in Table 4.1). Supplementing DMSO was expected 

to increase lignin solubility (Brzonova et al., 2017) and conversion into PHB; however, DMSO at 

the levels in Table 4.1 did not enhance APL conversion to PHB in this study. The fact that DMSO 

could be removed was important because DMSO is expensive. Mediators (ABTS and HOBT) are 

low molecular weight oxidants that act as electron carriers between laccase and lignin substrates 

(Raj and Krishnan, 2018). HOBT was one of the most successful mediators of laccase that has 

been used in lignin degradation and biobleaching of kraft pulps (Christopher et al., 2014). Laccase-

HOBT system was applied to treat lignin first and increased lipid yield by 10 times during 

subsequent Rhodococcus opacus fermentation (Xie et al., 2017). However, HOBT did not enhance 

APL conversion to PHB at the levels in Table 4.1, either. Therefore, both DMSO and HOBT were 

removed from the supplement system.  

AAO and laccase were also found to be non-significant factors from Plackett-Burman 

design. However, after removing DMSO and HOBT, PHB production decreased to 1.57±0.10 g/L 

when AAO was also removed; and PHB production further dropped to 0.71±0.18 g/L when 

removing laccase. Because removing laccase and AAO caused significant drop in PHB production, 

it was necessary to keep laccase and AAO in the supplement system. Previous studies have shown 

that laccase enhanced lignin conversion to PHB-like energy storage materials, such as lipids, by 

Rhodococcus opacus (Zhao et al., 2016). For example, laccase supplementation on R. opacus cell 

culture led to an exponential increase of cell growth and 17-fold increase of lipid production from 

kraft lignin (Zhao et al., 2016). Zhao et al. (2016) found that laccase improved the uptake of the 
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lower molecular weight lignin molecules by R. opacus. This may also explain how laccase 

enhanced lignin conversion to PHB in this study. The role of AAO may lie in lignin degradation 

by supplying hydrogen peroxide for the oxidation of aromatic substrates (Ferreira et al., 2015).  

The strategy for the central composite design was to vary three significant supplements 

with laccase and AAO being kept at the levels in run #2 (laccase 2 U/mL and AAO 20 U/mL). The 

overall effects of these three supplements were evaluated and the optimum conditions leading to 

maximum PHB production were derived. To determine the levels of the three significant 

supplements used for central composite design, it was necessary to look at the main effects of the 

7 factors in the Plackett-Burman design (Fig. 4.1). From low to high levels of R816, PHB 

production decreased. Increases in ABTS and Tween 80 resulted in increased PHB production. 

Therefore, R816 at low level (0.02%, m/w) and ABTS and Tween 80 at high levels (5 mM and 

2.5%, respectively) were used as the center point (run # 15 in Table 4.2) in central composite 

design. The experimental levels for cube (-1 and 1) and star (-1.682 and 1.682) points were set 

around the experimental levels of the center points. The differences between the start and center 

points were set to be less than the differences between the two levels in Plackett-Burman design 

in Table 4.1. Use Tween 80 as an example, the difference (0.841) between level -1.682 (1.159) 

and level 0 (2) in central composite design is less than the difference (1.5) between level -1 (0.5) 

and level 1 (2). With the levels of three significant factors varying in Table 4.2, laccase and AAO 

were kept in the supplement system with the same levels of run #2 in Table 4.1 (laccase 2 U/mL 

and AAO 20 U/mL), while DMSO and HOBT were removed. 
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4.3.2 PHB production-central composite design 

Experimental PHB production from the central composite design is shown in Table 4.2. 

PHB production increased from 0.48 to 1.28 g/L by increasing Tween 80 from 1.5 (run #3) to 2.5% 

(run #7). PHB production increased from 0.55 to 1.28 g/L by increasing ABTS from 4 mM (run 

#5) to 6 mM (run #7). The highest PHB production was obtained at the center point (run #15). The 

parameter estimates for the model and model fitting are shown in Table 4.4 after fitting the 

experimental data using RSREG procedure with ridge max option. A significant model (p < 

0.0001) with non-significant lack of fit (p = 0.07) and a R2 of 0.90 was obtained (Table 4.4). The 

analyses results indicated that the model (Equation 4.3) was adequate to fit the experimental data. 

PHB concentration = −24.11 + 783.33 ∗ R816 + 4.36 ∗ ABTS + 6.46 ∗ Tween80 + 2.88 ∗
R816 ∗ ABTS − 23.89 ∗ R816 ∗ Tween80 + 0.25 ∗ ABTS ∗ Tween80 − 19050 ∗ R8162 −
0.47 ∗ ABTS2 − 1.71 ∗ Tween802                                                                                                  (4.3) 

The overall effects were exhibited by plotting two factors as the independent variables and 

PHB production as the dependent variable with the third factor fixed at its optimum level (Fig. 

4.2). After plotting the surfaces, predicted PHB production values at the levels of -1.682 and 1.68 

(Table 4.2) for three independent variables were found to be negative. Because the edges of a 

predicted surface are suspect, the surfaces near the boundaries (levels of -1.682 and 1.68) were cut 

off and only the surface near the optimum conditions are shown in Fig. 4.2. The response surface 

plots were consistent with the maximum PHB production at the optimum condition. All three 

factors (R816, ABTS and Tween 80) showed a clear quadratic effect, which was consistent with 

the significant effects (p < 0.0001) of quadratic terms in Table 4.4. All linear effects of three factors 

were highly significant (p < 0.0001) while the interaction effects of R816 with ABTS, and with 

Tween 80 were not significant (p > 0.05).    
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4.3.3 Optimum condition and validation 

According to ridge analysis (Table 4.5), maximum PHB production was predicted to be 

1.94 ± 0.08 g/L under the optimum condition (R816, 0.019%, ABTS 5.23 mM, Tween 2.12%, as 

highlighted in Table 4.5). As can be noticed, this condition is close to the center point condition in 

the central composite design. The experimental result under the optimum condition showed a PHB 

concentration of 2.12 ± 0.30 g/L, which was close to and validated the predicted result from ridge 

analysis. It is extraordinary that the supplement system (R816, 0.0196%, ABTS 5.23 mM, Tween 

80 2.12%, laccase 2 U/mL and AAO 20 U/mL) improved PHB production by 10-fold from 0.21 

to 2.12 g/L. To the best of the authors’ knowledge, such a PHB production was higher than any 

previously reported PHB/PHA production (Berezina et al., 2015; Linger et al., 2014; Liu et al., 

2017; Shi et al., 2017; Si et al., 2018; Wang et al., 2018). If APL is prepared more efficiently as 

the approach in Liu et al. (2017) and fed-batch mode is applied to optimize PHB production, PHB 

production is expected to be higher than 2.12 g/L.  

The trend of estimated PHB production changing with three variables in Table 4.5 is 

consistent with the graphs in Fig. 4.2. Table 4.5 also provides us guidance for optimizing PHB 

production by manipulating the levels of three supplements. For example, because ABTS is an 

expensive supplement, it is practically meaningful at large scale if its usage can be reduced while 

high PHB production is maintained. This can be realized by reducing ABTS usage from 5.2288 to 

5.1172 mM and Tween 80 usage from 2.1188 to 2.058%, while increasing R816 from 0.01967 to 

0.01983%. As a result, PHB production is predicted to be 1.93 g/L, which is only slightly lower 

than 1.94 g/L. In this way, the production cost can be lowered. As many research groups have been 

working on screening new strains or engineering existing strains for lignin conversion to PHB (Lin 

et al., 2016; Numata and Morisaki, 2015; Si et al., 2018; Tomizawa et al., 2014), the supplement 
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system in this study can be used by geneticists to study gene expression involved in lignin 

conversion to PHB and metabolic pathways modulation to enhance lignin conversion into PHB. 

In terms of lignin structural changes, structural changes of lignin triggered by this supplement 

system should be studied in future studies to understand the mechanism during lignin 

depolymerization and conversion.  

4.4 Conclusion 

In this study, PHB production was improved by 10 fold from 0.21 to 2.12 g/L with a 

supplement system (R816 0.019%, ABTS 5.23 mM, Tween 80 2.12%, laccase 2 U/mL and AAO 

20 U/mL) by C. necator DSM 545. Plackett-Burman and subsequent central composite designs 

proved to be an effective approach to screen significant factors and to optimize PHB production. 

Polynomial models fit experimental data well and the optimum conditions were validated. The 

models can be used to manipulate supplement usage to optimize PHB production. With a higher 

PHB production than any previous reported, this study will be the first step for efficient lignin 

valorization into valuable products such as PHB. The supplement system described in this study 

can be used to study the metabolic pathways and lignin structural changes to help understand the 

mechanisms. Future work will focus on scaling up the PHB production under the optimum 

conditions and improve PHB productivity. With more efficient pretreatment technologies and 

applying fermentation strategies such as fed-batch strategy, PHB production is expected to be 

higher. 
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Table 4.1. PHB production for 8 runs with 7 factors in Plackett-Burman design  

Run 

# 

Laccase 

(U/mL) 

AAO 

(U/mL) 

DMSO 

(v/v, %) 

R816 

(m/v, %) 

ABTS 

(mM) 

HOBT 

(mM) 

Tween 80 

(v/v, %) 

PHB  

(g/L) 

1 2 (1) 5 (-1) 0.5 (-1) 0.1 (1) 1 (-1) 5 (1) 2 (1) 0.61 (0.01) 

2 2 (1) 20(1) 0.5 (-1) 0.02 (-1) 5 (1) 1 (-1) 2 (1) 2.05 (0.37) 

3 2 (1) 20(1) 2 (2) 0.02 (-1) 1 (-1) 5 (1) 0.5 (-1) 0.50 (0.13) 

4 0.5 (-1) 20(1) 2 (2) 0.1 (1) 1 (-1) 1 (-1) 2 (1) 0.45 (0.22) 

5 2 (1) 5 (-1) 2 (2) 0.1 (1) 5 (1) 1 (-1) 0.5 (-1) 0.21 (0.03) 

6 0.5 (-1) 20(1) 0.5 (-1) 0.1 (1) 5 (1) 5 (1) 0.5 (-1) 0.38 (0.01) 

7 0.5 (-1) 5 (-1) 2 (2) 0.02 (-1) 5 (1) 5 (1) 2 (1) 1.70 (0.11) 

8 0.5 (-1) 5 (-1) 0.5 (-1) 0.02 (-1) 1 (-1) 1 (-1) 0.5 (-1) 0.29 (0.01) 

Note: 7 factors were shown as real values (coded levels). PHB values are shown as mean (standard 

deviation) (n=2).  DMSO denotes dimethyl sulfoxide, R816 denotes Aerosil R816 hydrophobic 

silica, ABTS denotes 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), HOBT denotes 1-

hydroxybenzotriazole hydrate, v/v denotes volume/volume, m/v denotes mass/volume. The 

selection of low (-1) and high (1) levels for each factor was based on previous literature.   

 

Table 4.2. The central composite design strucutre and experimental PHB production 

Run # 
Factors  Response 

R816 (m/v, %) ABTS (mM) Tween 80 (v/v, %)  PHB (g/L) 

1 0.015 (-1) 4 (-1) 1.5 (-1)  0.27 (0.05) 

2 0.025 (1) 4 (-1) 1.5 (-1)  0.22 (0.07) 

3 0.015 (-1) 6 (1) 1.5 (-1)  0.48 (0.16) 

4 0.025 (1) 6 (1) 1.5 (-1)  0.52 (0.19) 

5 0.015 (-1) 4 (-1) 2.5 (1)  0.55 (0.22) 

6 0.025 (1) 4 (-1) 2.5 (1)  0.28 (0.06) 

7 0.015 (-1) 6 (1) 2.5 (1)  1.28 (0.33) 

8 0.025 (1) 6 (1) 2.5 (1)  1.06 (0.29) 

9 0.0116 (-1.682) 5 (0) 2 (0)  0.54 (0.24) 

10 0.0284 (1.682) 5 (0) 2 (0)  0.35 (0.12) 

11 0.02 (0) 3.318 (-1.682) 2 (0)  0.20 (0.06) 

12 0.02 (0) 6.682 (1.682) 2 (0)  0.72 (0.25) 

13 0.02 (0) 5 (0) 1.159 (-1.682)  0.28 (0.07) 

14 0.02 (0) 5 (0) 2.841 (1.682)  0.88 (0.18) 

15 0.02 (0) 5 (0) 2 (0)  1.91 (0.20) 

Note: 7 factors were shown as real values (coded levels). PHB production values are shown as 

mean (standard deviation) of 3 replicates for run #1-14 and of 6 replicates for run#15. For 

experimental levels for cube (-1 and 1) and star (-1.682 and 1.682) points were set around the 

experimental levels of center points. The differences between the start and center points were set 

to be less than the differences between the two levels in Plackett-Burman design in Table 2. Use 

Tween 80 as an example, the difference (0.841) between level -1.682 (1.159) and level 0 (2) in 

central composite design is less than the difference (1.5) between level -1 (0.5) and level 1 (2).  
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Table 4.3. ANOVA for 8-run Plackett-Burman design and mode fitting 

 

 

 

 

 

 

 

 

Note: the 8 degrees of freedom of pure error are from the duplicate of 8 runs (1*8=8). 

Table 4.4. Parameter estimates and model fitting for polynomial model  

Parameter DF Estimate (standard error) t Value Pr > |t| 

Model 9   <.0001 

Intercept 1 -24.11 (2.15) -11.23 <.0001 

R816 1 783.33 (81.50) 9.61 <.0001 

ABTS 1 4.34 (0.45) 9.65 <.0001 

Tween 80 1 6.46 (0.81) 7.93 <.0001 

R816* R816 1 -19050 (1539) -12.38 <.0001 

R816* ABTS 1 2.88 (8.28) 0.35 0.7303 

ABTS * ABTS 1 -0.47 (0.04) -12.23 <.0001 

R816* Tween 80 1 -23.89 (16.56) -1.44 0.1575 

ABTS * Tween 80 1 0.25 (0.08) 3.03 0.0044 

Tween 80 * Tween 80 1 -1.71 (0.15) -11.12 <.0001 

Residual   Mean square F value Pr > F 

Lack of fit 5 0.0798 2.26 0.0709 

Pure error 33 0.0352   

Total error 38 0.0411   

Fit diagnostics     

R2  0.90   

Note: the 33 degrees of freedom of pure error are pooled from the triplicates of run # 1-14 and six 

replicates for run # 15 in Table 5 (14*2+5=33).  

Source  DF SS MSE F value P-value 

Model 7 6.78 0.97 47.03 < 0.0001 

Laccase 1 0.072 0.072 3.49 0.099 

AAO 1 0.084 0.084 4.06 0.079 

DMSO 1 0.056 0.056 2.72 0.138 

R816 1 2.093 2.093 101.58 < 0.0001 

ABTS 1 1.543 1.543 74.93 < 0.0001 

HOBT 1 0.009 0.009 0.46 0.518 

Tween 80 1 2.925 2.925 141.97 < 0.0001 

Pure error 8 0.165 0.021    
Total 15 6.947    

R2 0.98     
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Table 4.5 Ridge of steepset ascent for R816, ABTS, Tween 80, and esimated PHB production 

and standard error  

R816 ABTS Tween 80 Estimated PHB production Standard error 

0.02 5 2 1.88844 0.08258 

0.01983 5.11719 2.05791 1.92716 0.08196 

 0.01967 5.22879 2.11867 1.94418 0.08015 

0.0195 5.33637 2.1813 1.93957 0.07736 

0.01934 5.44099 2.24521 1.91341 0.07396 

0.01917 5.54335 2.31004 1.86572 0.07055 

0.019 5.64397 2.37554 1.79652 0.06809 

0.01884 5.74321 2.44155 1.70584 0.06784 

0.01867 5.84135 2.50796 1.59368 0.07114 

0.0185 5.93858 2.57467 1.46005 0.0789 

0.01833 6.03506 2.64164 1.30496 0.09131 

 

 

Fig. 4.1. Main effect of 7 factors from Plackett-Burman design. The squares below and above the 

middle horizontal line correspond to PHB production of the low (-1) and high (1) levels, 

respectively in Table 4.2.  
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Fig. 4.2. Response surface and contour plot exhibiting overall effects of ABTS and R816 (A), 

Tween 80 and R816 (B), Tween 80 and ABTS (C) on PHB production.  

A 

B 
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CHAPTER V 

5. Flow cytometry for quantitation of polyhydroxybutyrate production by 

Cupriavidus necator using alkaline pretreated liquor from corn stover  

Abstract 

Alkaline pretreated liquor (APL) from lignocellulosic feedstock pretreatment is a lignin-rich 

stream. Polyhydroxybutyrate (PHB), a type of biodegradable polymer was synthesized from APL 

by Cupriavidus necator DSM 545 and a high yield (2.1 g/L) was obtained in an earlier study 

(Chapter 4). It is of interest to monitor PHB production and cell enumeration from APL rapidly in 

the view of process control. However, APL has insoluble substances and is dark, which makes 

quantitation of cells through visible light absorbance difficult. Flow cytometry can count cells and 

quantitate PHB content through fluorescence intensity after fluorescence staining. However, the 

insoluble particles in APL may interfere with bacterial cells. A sample preparation method was 

developed using Nile Red staining and flow cytometry to quantify bacterial cells and PHB 

concentration. A linear relationship with good fitness (R2=0.9939) was constructed to predict PHB 

concentration (0.2-2.1 g/L) based on fluorescence intensity acquired from a flow cytometer. A 

linear relationship (R2=0.8614) between cell number and fluorescence intensity was also 

established. The good correlation between PHB concentration and fluorescence intensity indicates 
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the potential of applying flow cytometry for quantitation of PHB from APL and other media that 

is dark and contains insoluble particles. 

5.1. Introduction 

Lignocellulosic biomass biorefinery adds profit and promotes sustainability to the 

agricultural industry and rural economy. Multiple bioproducts (ethanol, butanol, succinic acid, 

lipids, enzymes) and their corresponding process design were studied for the past decades (Chen 

and Wan, 2017b; Ding et al., 2018; Ding et al., 2019; Faga et al., 2010; Frederick et al., 2016; Li 

et al., 2019a; Li et al., 2019b; Li et al., 2018a; Liu et al., 2015; Ramachandriya et al., 2013). 

Lignocellulosic feedstocks have a high carbon to nitrogen ratio (47-62:1) (Al-Kaisi and Guzman, 

2013; Slininger et al., 2016), which makes them suitable substrates for unbalanced bacterial growth 

and accumulation of polyhydroxyalkonoate (PHA), which is a class of polymers bacteria produce 

for energy storage. One of the most common PHAs, poly-D-3-hydroxybutryate (PHB), is a 

biodegradable polymer that has mechanical properties comparable to many petroleum-based 

plastics. PHB is also widely applied in the pharmaceutical industry due to its biocompatibility. 

Commercial PHB produced by microbes is still 3 times more expensive than petroleum-based 

plastics (Aramvash et al., 2018). Raw materials make up about 50% of the production cost of PHB 

(Choi and Lee, 1999; Khanna and Srivastava, 2005; Mozumder et al., 2015). Conversion of 

inexpensive lignocellulosic feedstocks into PHB could decrease costs and increase sustainability 

of lignocellulosic bio-refineries. 

Most research on lignocellulosic conversion into PHB has focused on sugars (Brodin et al., 

2017; Cesario et al., 2014; Dai et al., 2015; Pan et al., 2012a; Raposo et al., 2017). Lignin 

comprises 15-30% of lignocellulosic biomass (Linger et al., 2014), but there are only a few studies 
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on lignin conversion into PHAs (Berezina et al., 2015; Li et al., 2019a; Linger et al., 2014; Liu et 

al., 2017; Si et al., 2018; Wang et al., 2018). The greatest PHA concentration observed in these 

studies was 2.1 g/L of PHB using Cupriavidus necator growing on alkaline pretreated liquor (APL) 

(Chapter 4). APL is a lignin-enriched streams accessible from lignocellulosic feedstock alkaline 

pretreatment (Salvachua et al., 2015). Other lignin sources for PHB production used in previous 

studies include residual lignin resulting from enzymatic hydrolysis of lignocellulosic biomass and 

Kraft lignin generated from the pulping and paper industry (Liu et al., 2017; Salvachua et al., 2015; 

Zakzeski et al., 2010). During lignin conversion into PHB by microbes, it is important to monitor 

rapidly bacterial cell accumulation and PHB production. Monitoring microbial cell growth through 

visible light absorbance is difficult since lignin is insoluble in water and their lignin suspensions 

are dark. For PHB production monitoring, the conventional method to quantify PHB is 

chromatographic analysis, which is time consuming and requires use of organic solvent to extract 

PHB from microbial cells. Fluorescence staining followed by flow cytometry has been studied for 

rapidly quantifying PHB production (Garcia-Torreiro et al., 2017; Kacmar et al., 2006; Linger et 

al., 2014; Zuriani et al., 2013). Flow cytometry can also be used for cell counting. Fluorescence 

increase has been used to confirm accumulation of PHA grown in APL (Ragauskas et al., 2014; 

Salvachua et al., 2015), but the APL fed to bacteria in these two studies were filtered either through 

0.2 or 3 µm filters, which makes media much more clear than unfiltered APL and flow cytometry 

much easier. In commercial scale industry, it is highly likely that APL will be directly fed to 

bacteria without filtration for PHA/PHB production. To the best of the authors’ knowledge, flow 

cytometry has not been applied to quantitate PHB produced from lignin or dark cultures with 

insoluble particles. Challenges are present because lignin suspensions contain insoluble 

substances, which may block the system of flow cytometry and interfere with bacterial cells. 



98 

 

 

 

Sample preparation to deal with the inference of large insoluble particles in APL has not been 

studied. 

The objective of this study was to develop a sample preparation method and subsequent 

flow cytometry setup for quantitation of cell number and PHB produced from lignin. Cell culture 

containing PHB produced from APL by C. necator was used to develop the method. This study 

proposes the potential of applying flow cytometry to quantify C. necator cells and PHB 

concentration on bacteria growing on APL.  

5.2 Materials and methods 

5.2.1 Microorganism, inoculum and PHB production 

C. necator DSM 545 in the form of dried pellets was purchased from the German 

Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). C. necator 

was revitalized and subcultured with seed medium (meat extract 3 g/L, meat peptone 5 g/L, glucose 

30 g/L) for at least two generations until the OD reached 10 at 24 h. C. necator culture was 

conducted throughout the study at 32.5 °C at 250 rpm in 25 mL working medium in 250 mL Kimax 

baffled flasks with silicone sponge closure (Chemglass Life Sciences, New Jersey, USA) unless 

specified. C. necator culture of OD 10 was preserved at -80 °C with 30% glycerol in 2 mL aliquots 

and used for preculture preparation. One aliquot of C. necator culture was inoculated to seed 

medium and cultured for around 24 h to obtain late exponential phase culture with an optical 

density (OD) of 8-10. Then the culture was washed with sterile 0.89% sodium chloride solution 

twice and used as inoculum. Inoculum was added to each experimental flask to achieve an initial 

OD of 5. 
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5.2.2 PHB production from APL with supplements 

APL was prepared as described in a previous study (chapter IV). Briefly, corn stover was 

pretreated with 0.07 g NaOH/g corn stover and a 10% (dry basis corn stover/alkaline solution) 

solid loading in a 1L bench top pressure reactor (Parr Reactor Model 4848, Parr Instrument Co., 

Moline, IL, USA). The operating conditions were agitating at 500 rpm agitation, heating to 140 °C 

and holding for 30 min. After the reaction, the reactor was cooled using an internal cooling coil. 

The liquid fractions of the slurries were separated from the solids under vacuum filtration using 

Whatman #4 filter paper. APL was prepared by neutralizing the liquid fractions to pH 6.8 with 

5 M HCl and autoclaving at 121 °C for 20 min. 

PHB production medium (20 mL) contained APL (5 mL) as the carbon source, (NH4)2SO4 

(0.1 g/L) as the nitrogen source, salt (Na2HPO4·2H2O, 2.9 g/L; KH2PO4, 1.5 g/L; MgSO4·7H2O, 

0.2 g/L; CaCl2·2 H2O: 0.01 g/L; Fe(NH4) citrate: 0.06 g/L) and trace elements (1 mL/L) as 

described previously in Ramsay et al. (1990) and and supplements. The MgSO4·7H2O, CaCl2·2 

H2O and Fe(NH4) citrate solutions were autoclaved separately. PHB production was conducted at 

32.5 °C at 250 rpm as described in Section 5.2.1, but with 20 mL working volume and cultivation 

was stopped at 7 days (168 h) for PHB quantification as described in Section 5.2.3. Five 

supplements included silica nanoparticle R816 (hereafter referred to as R816), 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid (ABTS), Tween 80, laccase and acryl alchohol oxidase 

(AAO) were added to the medium to enhance PHB production. For these supplements, R816 

(Aerosil® R816, 12 nm average primary particle size) was donated by Evonik (Essen, Germany). 

Tween-80 was purchased from Acros Organics (Geel, Belgium). Laccase (L2157-10KU, 

50 units/mg solids activity), ABTS were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

AAO (535 U/L) was prepared as described in a previous study (chapter IV). PHB production was 

https://www.sciencedirect.com/topics/engineering/operating-condition
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conducted with varied supplements levels under a central composite design shown in Table 1 

(chapter IV) and corresponding PHB production ranged from 0.22 to 2.12 g/L for 15 different 

samples.   

For their usage, laccase and AAO were kept at 2 and 20 U/mL, respectively. Other three 

supplements were applied under a central composite design (Table 5.1). One sample from each 

run # in Table 5.1 were used for flow cytometry. These 15 samples covered a wide range of PHB 

concentrations. PHB quantification can be found in Section 5.2.3. Out of these 15 samples, 10 

samples were chosen as training samples to build the calibration curve. For these 10 samples, their 

PHB concentrations have the following summary statistics (in g/L): mean 0.76, standard deviation 

of 0.58, median 0.53, maximum 2.12 and minimum 0.21. The other 5 samples were used as 

validation samples. Medium without inoculation was used as APL control samples. 

5.2.3 PHB quantification by gas chromatography-mass spectrometer (GCMS) 

PHB concentration was determined according to the methods described by Braunegg et al. 

(1978). Dried cell biomass was methanolyzed at 105 °C in acidified methanol (5% H2SO4, 

v/v, 2 mL) and chloroform (2 mL) mixture for 3 h. Sodium hydroxybutyrate (Sigma-Aldrich, MO, 

USA) was used as an external standard. After 3 h, 1 mL deionized water (Milli-Q, 18.2 MΩ 

cm) was added to the mixture and vortexed. The methyl-ester derivatives were extracted from the 

lower chloroform layer and passed through a column containing anhydrous sodium sulfate before 

being injected into a GC-MS.  

The GC-MS was equipped with a Trace 1310 Gas Chromatograph, ISQ QD single 

quadrupole mass spectrometer (ThermoScientific, Waltham, MA, USA) and TG-5MS (30 m x 

0.25 mm ID x 0.25 film) capillary column (ThermoFisher Scientific, Waltham, MA, USA). The 
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temperature profile was held at 60 °C for 5 min, increased to 220 °C at a rate of 30 °C/min and 

held at 220 °C for 5 min. The injector temperature was 230 °C, and the injection mode was splitless 

(1 µL). The pressure of the carrier gas (helium) was 142 kPa (18 psi). MS transfer line temperature 

was 250 °C; ion source temperature was 220 °C with electron ionization as ionization mode. The 

ionization energy was 70 eV and selective ion monitoring (SIM) mode was used. Methylated 

methyl-ester derivative was confirmed with SIM at 43, 71, and 74. Solvent delay was 3 min. Data 

were analyzed with Chromeleon 7 chromatography studio (ThermoFisher Scientific, Waltham, 

MA, USA).  

5.2.4 Fluorescence microscopy 

Before flow cytometry, fluorescent microscopy (EVOS™ FL Auto Imaging System, 

ThermoFisher) was used to confirm PHB accumulation in cells. The procedure for sample 

preparation was as follows. The cell culture having 2.12 g PHB/L was used. One mL cell culture 

was subjected to filtration using a 3 µm PTFE syringe filter (Tisch Scientific, Ohio, USA) to 

remove large insoluble particles of APL in cell culture. Filtered cell culture was centrifuged at 

17,000 rpm for 3 min and washed with 10 mM phosphate buffered saline (PBS) twice. Washed 

cell pellets were dispersed in 100 µL PBS and 3 µL Nile Red stock solution (1 mg Nile Red/mL 

dimethyl sulfoxide (DMSO)) was added to the cell suspension for staining. The mixture was 

vortexed and incubated in the dark at room temperature for 30 min. After incubation, Nile Red 

stained cells were washed twice with PBS. Washed cells were dispersed in 100 µL PBS and 

subjected to image acquisition with a red fluorescent protein (RFP) light cube and 100× oil 

immersion objective. Red was chosen to be the pseudo color. 
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5.2.5 Flow cytometry 

A flow cytometer (FACS Aria II, BD Biosciences, San Jose, CA) with a 488 nm 

wavelength laser coupled with 610/20 nm detection was utilized to measure the fluorescence 

intensity after staining. The flow cytometry signals (side scatter vs. forward scatter and side scatter 

vs. fluoresence intensity) were collcted. Cell cultures were subjected to the same procedure 

(filtration, washing, Nile Red staining and subsequent washing) as described in Section 5.2.4. To 

study the effect of Nile Red loading on fluorescence intensity, cell culture containing 2.1 g/L PHB 

was used. Instead of using only 3 µL Nile Red stock solution in Section 5.2.4, different loadings 

(1, 3, 5, 7 and 10 µL) of Nile Red stock solutions were added to the 100 µL cell suspension. The 

100 µL cell suspension was added to 1 mL PBS and the mixture was loaded into the flow 

cytometer. The Nile Red loading leading to the highest fluorescence intensity was used to stain all 

15 samples in Section 5.2.2 for building the calibration curve between PHB concentration and 

fluorescence intensity and testing the model performance.  

When performing flow cytometry, data recording was stopped at 1 min for each sample 

and the flow rate was selected at the level “medium”. Collected signals were processed by 

FACSDiva software (BD Biosciences, San Jose, CA) to generate forward and side scatter and 

mean of fluorescence in arbitrary units (reported as fluorescence intensity). The fluorescence 

intensity is the mean of all of the cells in a sample. The regions of bacterial cells and Nile Red 

stained cells were determined by removing the signals of all control samples (PBS, Nile Red 

stained APL control samples, Nile Red non-stained cells + APL samples). Nile Red stained APL 

control samples were prepared with the same staining procedure as the samples applied on APL 

control samples. Nile Red non-stained cells+APL samples are the cell culture without Nile Red 

staining.  
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The signals showing fluorescence intensity were also reported as Nile Red+ events. Beads 

of size 5 µm (ACFP-50-5, Spherotech Inc, IL, USA) with known number (106 particles/mL) were 

added with the cell culture and cell number (denoted as Nile Red+ Cell) was calculated based on 

Equation 5.1. 

Nile Red+ Cell # = (Nile Red+ events #/beads #) * (beads concentration/beads solution volume)              

(5.1) 

where Nile Red+ events and beads # were acquired from flow cytometry, beads concentration=106 

particles/mL, beads solution volume=25 µL.    

5.2.6 Statistical analyses  

All experiments were run in duplicate. Analysis of variance (ANOVA) was implemented 

using GLM procedure in SAS 9.3 (SAS Institute Inc., Cary, NC). Multiple mean comparisons 

were performed using Tukey’s test using p-values <0.05 as statistically significant. 

5.3 Results and discussion 

5.3.1 PHB production 

To the best of the authors’ knowledge, PHB production of 2.1 g/L was the highest among 

all studies producing PHB/PHA from APL (Li et al., 2019a; Linger et al., 2014; Liu et al., 2017; 

Si et al., 2018). PHB production ranging from 0.2 to 2.1 is a wide range based on previous research 

(Li et al., 2019a; Linger et al., 2014; Liu et al., 2017; Si et al., 2018). The proposed process for 

APL conversion to PHB from corn stover is illustrated in Fig. 5.1. After 3 µm filtration and 

centrifugation, white cell pellets can be clearly seen while there were still some lignin particles 
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(black substances) in the bottom of the right centrifuge tube (Fig. 5.1). The washed pellets were 

used for Nile Red staining and flow cytometry. 

5.3.2 Fluorescence microscopy 

C. necator cells stained with Nile Red are shown in Fig. 5.2. Cells showed rod shapes. 

Transmitted light image overlaying with fluorescent image showed how PHB granules distributed 

inside bacterial cells. It was noticeable that C. necator cells formed different clusters (green circles 

in Fig. 5.2A) and different brightness (Fig. 5.2B). Red spots of different sizes and shapes inside 

one bacterial cell were believed to be caused by different sizes of PHB granules. The larger PHB 

granules are, the more likely that granules picked up more Nile Red and showed a brighter red 

color.  

5.3.3 Flow cytometry 

Flouresence intensity changing with different Nile Red loading (1, 3, 5, 7, and 10 µL 

stocking solution) is shown in Fig. 5.3. Nile Red loading of 3 µL showed much higher fluorescence 

intensity than Nile Red loading of 1 µL (p-value < 0.05). When increasing Nile Red loading to 5, 

7 and 10 µL, the fluorescence intensities among these loadings were not significantly different 

from the intensity from 3 µL (p-value > 0.05). Therefore, 3 µL Nile Red loading was chosen for 

cell staining and subsequent flow cytometry.  

The flow cytometry signals (side scatter vs. forward scatter and side scatter vs. fluoresence 

intensity) of different samples are shown in Fig. 5.4. In Fig. 5.4, side scatter signals, forward scatter 

signals and fluoresence intensity are denoted as SSC-A, FSC-A and NR-A, respectively. Side 

scatter signal reflect the morphology of cells. The more irregular the cells are, the greater the side 

scatter signal will be. For example, irregular cells could refer to the clusters of multiple cells in 
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Fig. 5.2. Forward scatter signals reflect the size of the cells. The larger the cells are, the higher 

forward scatter signal will be. Fluoresence intensity was used to correlate with the Nile Red stained 

PHB in the cell culture. Higher fluoresence intensity means more Nile Red was detected and more 

PHB absorbed Nile Red. However, particles other than Nile Red stained cells may also exhibit 

fluoresence. Therefore, it is important to select regions of interest to exclude the signals of paticles 

in PBS and APL. 

Flow cytometry was applied to control samples including PBS, Nile Red non-stained 

cells+APL, and Nile Red stained APL control samples and as described in Section 5.2.5 to exclude 

the signals of non Nile Red stained cells. Sample having 2.12 g/L PHB was used as the example 

shown in Fig. 5.4. Based on the side and forward scatter signals (SSC-A and FSC-A), the selected 

region for all particles excluding particles in deionized water was shown in the oval shape in the 

“1” plots in Fig. 5.4. Based on side scatter signals (SSC-A) and fluoresence intensity (NR-A), the 

selected region for Nile Red stained cells was shown in the trapezoid shape in the “2” plots in Fig. 

5.4.  

In Fig. 5.4A, salt particles in PBS solution produced some signals in both side scatter vs. 

forward scatter and side scatter vs. fluorescence intensity plots. Most signals (99.2%) appear 

outside the region in Fig. 5.4A-2, meaning that 99.2% particles in PBS were excluded in the 

selected region. Fig. 5.4B shows the signals of Nile Red non-stained cells + APL samples. In Fig. 

5.4B-1, Nile Red non-stained cells and APL showed a wide range of sizes and morphology. In Fig. 

5.4B-2, there were only 0.01% events in the selected region. Therefore, in Figs. 5.4A-2 and 5.4B-

2, particles in the region can be neglected. In Fig. 5.4B, beads of size 5 μm were shown on the 

right top corner of the plot and they were separated well from the cells.  
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As mentioned in Section 5.3.1, there were still some lignin particles in the samples after 3 

µm filtration. It was important to see how these lignin particles interfered with Nile Red stained 

cells. In Fig. 5.4C-1, lignin particles in APL showed a wide range of sizes and morphology. There 

were fluorescence intensity signals for Nile Red stained APL (Fig. 5.4C-2). This was expected 

because lignin was previously reported to exhibit fluorescence (De Micco and Aronne, 2007; 

Kaliyan and Morey, 2010). In Fig. 5.4C-2, there were some lignin particles in the selected region 

for Nile Red stained APL control samples, but the number of events only account for 5.6% of the 

total 2780 events, meaning 94.4% of the lignin particles are outside the region. In Fig. 5.4D, signals 

of Nile Red stained cells were shown. Nile Red+ cells and other particles overlapped in Fig. 5.4D-

1, but separated well in Fig. 5.4D-2 by the selected region. There is a clear boundary between Nile 

Red+ cells and other particles in Fig. 5.4D-2.  Inside the regions, there are some lignin particles 

based on Fig. 5.4C-2. However, Nile Red+ cells account for 43.3% of a total of 21, 244 events. 

After calculation, there is only around 2% ((2780 × 5.65%) / (21,244 × 43.3%) = 1.7%) lignin 

particles in the selected region in Fig. 5.4D-2.  Therefore, we believe the region in Fig. 5.4D-2 

separates Nile Red+ cells well from other particles.  

Two distinct clusters of Nile Red+ signals were exhibited for some cultures. One of the 

examples is shown in Fig. 5.5B of which the PHB concentration is 0.7 g/L. These two regions 

indicate two different fluoresence intensities. These two distinct clusters can be caused by the 

different sizes of PHB granules inside cells. The presence of cell clusters (circle in Fig. 5.2A) and 

single cells in Fig. 5.2 could also be the reason of two distict regions of Nile Red+ signals in Fig. 

5.5. 

The linear relationship between fluorescence intensity and PHB concentration showed a 

R2 of 0.9939 for the calibration data (Fig. 5.6A). This R2 value indicated good correlation between 
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experimental and predicted values of the response (Guan and Yao, 2008; Joglekar and May, 1987). 

The mean square error (MSE) for validation dataset is 0.0273. Low MSE implies the linear 

equation can predict PHB concentration accurately from fluorescense intensity. There is also a 

linear relationship between fluorescence intensity and cell number (Fig. 5.6B); however, the R2 

value of 0.8614 was lower than for the relationship between fluorescence intensity and PHB 

concentration (Fig. 5.6B). This probably caused by cells having varying PHB content. Therefore, 

monitoring fluorescence intensity to predict PHB concentration is more accurate than using it to 

predict cell number. 

5.4 Conclusion 

In this study, fluorescence microscopy using Nile Red staining confirmed PHB 

accumulation inside C. necator cells. Cell number was counted using 5 µm beads and PHB 

concentration was calculated based on fluorescence intensity. The developed sample preparation 

method worked well and a linear relationship with good fitness (R2=0.9939) was constructed to 

predict PHB production from fluorescence intensity. The good correlation for a wide range of PHB 

concentrations indicates the potential of applying flow cytometry for PHB concentration 

measurement.  For next-step research, the approach described in this study should be tested for 

monitoring real time PHB production from inoculation to the end of fermentation from APL 

culture by C. necator, and adapted to test PHB or other copolymers ([P(3HB-co-4HB), [P(3HB-

co-3HV)], and [P(3HB-co-3HV-co-4HB)]), etc.) production from other media that are dark and 

contain insolubles.   
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Table 5.1. Supplements (R816, ABTS and Tween 80) formula under a central composite design 

structure for PHB production  

Run # 
Factors  Response 

R816 (m/v, %) ABTS (mM) Tween 80 (v/v, %)  PHB (g/L) 

1 0.015 (-1) 4 (-1) 1.5 (-1)  0.2605 

2 0.025 (1) 4 (-1) 1.5 (-1)  0.2215 

3 0.015 (-1) 6 (1) 1.5 (-1)  0.5587 

4 0.025 (1) 6 (1) 1.5 (-1)  0.5092 

5 0.015 (-1) 4 (-1) 2.5 (1)  0.4292 

6 0.025 (1) 4 (-1) 2.5 (1)  0.281 

7 0.015 (-1) 6 (1) 2.5 (1)  1.1081 

8 0.025 (1) 6 (1) 2.5 (1)  1.3961 

9 0.0116 (-1.682) 5 (0) 2 (0)  0.66 

10 0.0284 (1.682) 5 (0) 2 (0)  0.4905 

11 0.02 (0) 3.318 (-1.682) 2 (0)  0.2408 

12 0.02 (0) 6.682 (1.682) 2 (0)  0.7392 

13 0.02 (0) 5 (0) 1.159 (-1.682)  0.2866 

14 0.02 (0) 5 (0) 2.841 (1.682)  0.9852 

15 0.02 (0) 5 (0) 2 (0)  2.12 

Note: 3 factors were shown as real values (coded levels). PHB production values are one sample 

randomly selected from three replicates in each run. The values in bold are randomly chosen as 

validation samples and other 10 samples were training samples to build calibration curves. Laccase 

and AAO were kept at laccase 2 U/mL, AAO 20 U/mL, respectively. 

 

 

Fig. 5.1 Process of APL conversion to PHB from corn stover. 

 

 

  



109 

 

 

 

  

  

Fig. 5.2 Nile Red stained C. necator cells containing PHB under fluorescence microscopy. A: 

transmitted light image overlaying with fluorescent image, circle in green are clusters of multiple 

cells; B, fluorescent image. 

 

 

.  

Fig. 5.3 The effect of Nile Red loading on fluorescence intensity of the stained cell culture 

containing 2.1 g/L PHB. Data expressed were the mean values and standard deviations of two 

replicates. 
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Fig. 5.4 An example to show how to select the region for Nile Red stained bacterial cells. A: PBS, 

B: cells, C: Nile Red stained APL, D: Nile Red stained cells.  In each subplot (A-D), 1 represents 

side scatter vs. forward scatter, 2 represents side scatter vs. fluorescence intensity. 
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Fig. 5.5 Two portions of Nile Red indicating different sizes of PHB granules inside bacterial cell. 

A, side scatter vs. forward scatter and B, side scatter vs. fluorescence intensity. 

 

 

   

Fig. 5.6 Linear correlation between fluorescence intensity and PHB concentration (A) and between 

fluorescence intensity and cell number (B). Data expressed were the mean values and standard 

deviations of two replicates. 
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CHAPTER VI 

6. Fed-batch polyhydroxybutyrate production from simulated corn fiber 

sugar mixtures  

Abstract 

Corn fiber, one of the main byproducts from the corn processing industry, is a potential raw 

material for production of valuable products. Polyhydroxybutyrate (PHB) is a biodegradable 

bioplastic that is comparable with many petroleum based plastics in terms of mechanical properties 

and is highly biocompatible. Corn fiber conversion into PHB could make corn biorefineries more 

profitable and sustainable. Glucose, xylose and arabinose are the main monomer sugars derived 

from upstream corn fiber processing. Burkholderia sacchari DSM 17165 is a bacterium strain that 

can convert all three sugars into PHB. Sugar streams from upstream corn fiber processing can have 

various sugar mixture ratios depending on pretreatment and enzymatic hydrolysis conditions. In 

this study, fed-batch mode was applied to produce PHB on three simulated corn fiber sugar 

mixtures (glucose:xylose:arabinose=4:2:1, 2:2:1, 1:2:1). The highest PHB concentration produced 

was 67 g/L for 4:2:1 mixture at 41 h corresponding to an accumulation of 77% of cell dry weight 

as PHB. Corresponding sugar conversion efficiency and productivity were 0.33 g PHB/g sugar 

consumed and 1.6 g/L/h, respectively. Results provide references for process control to maximize 

PHB production from real sugar streams derived from corn fiber. 
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6.1. Introduction 

Multiple valuable bioproducts (ethanol, butanol, succinic acid, lipids, enzymes and 

polyhydroxybutyrate) and their corresponding process designs using various cellulosic feedstocks 

have been studied for the past decade (Chen and Wan, 2017b; Ding et al., 2018; Ding et al., 2019; 

Faga et al., 2010; Frederick et al., 2016; Li et al., 2019a; Li et al., 2019b; Li et al., 2018a; Liu et 

al., 2015; Ramachandriya et al., 2013). These bioproducts have potential to add profit and promote 

sustainability in the agricultural industry and rural economy. One potential cellulosic feedstock 

that can be used to produce the products mentioned above is corn fiber. Corn fiber constitutes 

~10% of the corn (Van Eylen et al., 2011) and has low value, as its use is limited to animal feeds, 

primarily for ruminant animals (Rausch and Belyea, 2006). Polyhydroxybutyrate (PHB) is a 

polymer of particular interest due to its comparable mechanical properties to many petroleum-

based plastics and its high biocompatibility. Commercial PHB produced by microbes is still 3 

times more expensive than petroleum-based plastics (Aramvash et al., 2018). Raw materials make 

up about 50% of the production cost of PHB (Choi and Lee, 1999; Khanna and Srivastava, 2005; 

Mozumder et al., 2015). Corn fibers as raw materials for PHB production exhibit a few advantages. 

Corn fibers are inexpensive cellulosic feedstocks, and contain a small amount of lignin (<10%) 

(Schell et al., 2004). Corn fiber conversion into PHB can be incorporated into corn biorefinery 

without considering the logistic costs of raw materials supply. Therefore, corn fiber conversion 

into PHB could increase the value of corn crops, decrease costs of PHB production, and promote 

sustainability of corn biorefineries. 

Typical corn fiber contains 30-50% arabinoxylan and 15-20% cellulose (Gaspar et al., 

2005). After upstream processing of corn fiber, a sugar stream consisting of monomer sugars 

including glucose, xylose, galactose, arabinose and mannose is derived, with glucose, xylose and 
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arabinose being the main sugars present (Bischoff et al., 2010; Gaspar et al., 2007; Yoo et al., 

2016). The ratios of glucose, xylose and arabinose vary depending on upstream pretreatment 

conditions. Three representative sugar mixture ratios are shown in Table 6.1. Burkholderida 

sacchari DSM 17165 is capable of converting glucose, xylose and arabinose into PHB (Bramer et 

al., 2001; Cesario et al., 2014). An earlier study (Chapter 3) has optimized the sugar mixture ratio 

for maximizing PHB production by B. sacchari DSM 17165 at shake flask scale. Previous studies 

have studied PHB production from wheat straw sugar mixture and xylose rich sugar mixtures at 

bioreactor scale (Cesario et al., 2014; Raposo et al., 2017). However, bioreactor scale production 

of PHB from corn fiber derived sugar streams was not studied before.  

In this study, PHB production from three types of simulated sugar mixture 

(glucose:xylose:arabinose=4:2:1, 2:2:1 and 1:2:1) were demonstrated at bioreactor scale (3 L) 

under fed-batch mode. The ratio 4:2:1 mimics the sugar mixture from 2% NaOH pretreated corn 

fiber (Table 6.1), representing glucose-rich sugar mixture. The ratio 2:2:1 mimics the sugar 

mixture from untreated corn fiber (Table 6.1), representing sugar mixture that has similar 

concentrations of glucose and xylose. The ratio 1:2:1 mimics the sugar mixture from 1% H2SO4 

(Table 6.1), representing xylose-rich sugar mixture. For these three sugar mixtures, arabinose 

concentration is half of xylose concentration. Cell and PHB production, cell and PHB productivity, 

and sugar conversion efficiency into cells and PHB were evaluated. To the author’s best 

knowledge, this study is the first to conduct fed-batch PHB cultivation from simulated corn fiber 

sugar mixtures at bioreactor scale. The approach in this study may be extended for process control 

to maximize PHB production from real sugar streams derived from corn fiber. 
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6.2 Materials and methods 

6.2.1 Microorganism and inoculum  

B. sacchari DSM 17165 in the form of dried pellets was purchased from the German 

Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). B. sacchari 

DSM 17165 was revitalized and sub-cultured with seed medium (meat extract 3 g/L, meat peptone 

5 g/L, glucose 30 g/L) for at least two generations until the OD reached 10 at 24 h. B. sacchari 

culture was conducted at 29 °C at 250 rpm in 20 mL working medium in 250 mL Kimax baffled 

flasks with silicone sponge closure throughout the study unless specified. B. sacchari culture of 

OD 10 was preserved at -80 °C with 30% glycerol in 2 mL aliquots and used for pre-culture 

preparation. One aliquot of B. sacchari culture was inoculated to seed medium and B. sacchari 

was cultured to obtain late exponential phase culture with an optical density (OD) of 8-10. Then, 

B. sacchari culture was washed with sterile 0.89% NaCl solution twice and used as inoculum. Four 

flasks of seed culture were combined in 30 mL sterile 0.89% NaCl solution as the inoculum to 

initiate bioreactor production of PHB. The initial OD was around 0.5 in the bioreactor. 

6.2.2 PHB production under fed-batch mode 

The initial medium composition for the fed-batch culture was (per L): sugar mixture, 40 g; 

yeast extract: 1.2 g; (NH4)2SO4, 4.0 g; KH2PO4, 3.0 g; CaCl2·2H2O: 0.03; EDTA, 0.04 mg; 

MgSO4·7H2O, 1.25 g, Fe(NH4)citrate: 0.36 g and trace elements solution, 20 mL, antifoam: 0.1 

mL. The trace elements solution has the following composition (per L) (Kim et al., 1994): H3BO3, 

0.3 g; Na2MO4·2H2O, 2.25 g; MnCl2·4H2O, 2.25 g; MnSO4·5H2O, 0.5 g; CaC12 . 2H2O, 2 g; 

Na2B4O7·10H2O, 0.23 g; (NH4)6Mo7O24, 0.1 g; 35% HC1 10 mL. The initial sugar mixtures 

contained glucose, xylose and arabinose in the ratio of 4:2:1, 2:2:1 and 1:2:1, respectively for three 
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types of simulated corn fiber sugar mixtures. Sugar mixture was sterilized with 0.2 μm Nalgene® 

Rapid-Flow™ filter units (Rochester, NY, USA). CaCl2, MgSO4, and trace elements are autoclaved 

separately. The pH was adjusted to 6.8 with NH4OH (5 N). 30 mL inoculum described in Section 

6.2.1 was added into the bioreactor to start the cultivation.  

 Commercial glucose in the form of dextrose monohydrate was kindly donated by Roquette 

Americas Inc. (Geneva, IL, USA). Xylose was donated by DuPont Nutrition & Biosciences (New 

Century, KS, USA). Arabinose were purchased from Hofman International Inc. (Calgary, Alberta, 

Canada). Yeast extract and antifoam 204 were purchased from Sigma-Aldrich (St Louis, MO, 

USA). 

Fed-batch cultivation was carried out at 29 °C with a working volume of 1.7 L in a 3-L 

bioreactor (BioFlo 115, New Brunswick Scientific Co., NJ, USA) equipped with a 6-Blade 

Rushton impeller and temperature, pH and dissolved oxygen (DO) control. The reactor was 

sterilized in situ at 121 °C for 20 min, cooled and then inoculated with the inoculum described in 

Section 6.2.1. Culture pH was monitored by a pH-mV controller (Metter Toledo 405-DPAS-SC-

K8S/225) and maintained at 6.8 by automatic addition of 5 N NH4OH through the control unit in 

the bioreactor. The temperature was controlled using a heating jacket covering the reactor from 

outside. The mixing was carried out by a mechanical stirrer connected to the control device to 

adjust the mixing speed according to the DO level during the reaction phase. DO level was 

maintained at 20% saturation by adjusting the speed of the agitator as well as the flow rate of sterile 

air with cascade control. DO level was measured using an in situ DO probe (O2 Sensors Series 

6800 InPro®; Mettler Toledo). The minimum stirring speed and aeration rate was set as 400 rpm 

and 3.6 Lair/min. Profiles of sugar consumption, PHB production and cell biomass production was 

monitored. For fed-batch feeding, four pulse feedings were applied to add sugar mixture into the 
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medium at around 15, 23, 29 and 35 h for three sugar mixtures. Two pulse feeding regimes, namely 

low and high feeding regimes, were applied. For low feeding regime, sugar mixture of 40 g/L 

based on the medium volume was added at each pulse feeding. For high feeding regime, sugar 

mixture of 80 g/L based on the medium volume was added at the first pulse feeding and 40 g/L 

was added for each of the other three pulse feedings. To compare cell and PHB productivities with 

previous studies (Cesario et al., 2014; Raposo et al., 2017), Fed-batch cultivation was stopped at 

41 h. Sampling was performed every 4-6 h to determine residual sugar, cell and PHB 

concentrations in the media. 

6.2.3 Analytical methods 

6.2.3.1 Sugar and cell biomass measurement 

Sugar (glucose, xylose and arabinose) concentrations at different sampling times were 

determined using a high performance liquid chromatograph (HPLC, Model 1100, Agilent 

Technologies, Santa Clara, CA, USA). The HPLC was equipped with a Bio-Rad Aminex HPX-

87H column (Bio-Rad, Sunnyvale, CA, USA) at 65 °C and a refractive index detector (RID). The 

mobile phase was 12 mM NaHCO3 running at a flow rate of 0.6 mL/min. The mobile phase 12 mM 

NaHCO3 was used to eliminate interference from the peak of xylonic acid at the similar relative 

retention time to xylose (Raposo et al., 2017; Zhang et al., 2017). The total run time for each 

sample was 30 min. Cell biomass was determined gravimetrically after centrifugation (13,000 rpm 

(12054 rcf), 5 min) and drying (105 h, 24 h) 2 mL culture samples.  
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6.2.3.2 PHB quantification by gas chromatography-mass spectrometer (GCMS) 

PHB concentration was determined according to methods described previously (Braunegg 

et al., 1978; Li et al., 2019a). Dried cell biomass was methanolyzed at 105 °C in acidified methanol 

(5% H2SO4, v/v, 2 mL) and chloroform (2 mL) mixture for 3 h. Sodium hydroxybutyrate (Sigma-

Aldrich, MO, USA) was used as an external standard. After 3 h, 1 mL deionized water (18.2 MΩ-

cm) was added to the mixture and vortexed. The methyl-ester derivatives were extracted from the 

lower chloroform layer and passed through a column containing anhydrous sodium sulfate before 

being injected into a gas chromatograph with a mass spectrometer (GC-MS) (Trace 1310 Gas 

Chromatograph, ISQ QD single quadrupole mass spectrometer, ThermoScientific, Waltham, MA, 

USA) and a TG-5MS (30 m x 0.25 mm ID x 0.25 film) capillary column (ThermoFisher Scientific, 

Waltham, MA, USA). The temperature profile was held at 60 °C for 5 min, increased to 220 °C at 

a rate of 30 °C/min and held at 220 °C for 5 min. The injector temperature was 230 °C, and the 

injection mode was splitless (1 µL). The pressure of the carrier gas (helium) was 142 kPa (18 

psi). MS transfer line temperature was 250 °C, ion source temperature was 220 °C and ionization 

mode was electron ionization. The ionization energy was 70 eV and selective ion monitoring (SIM) 

mode was used. Methyl-ester derivative was confirmed with SIM at 43, 71, and 74. Solvent delay 

was 3 min. Each chromatogram was analyzed with Chromeleon 7 chromatography studio 

(ThermoFisher Scientific, Waltham, MA, USA).  

6.3 Results and discussion 

6.3.1 Fed-batch PHB cultivation on sugar mixture (glucose: xylose: arabinose=4:2:1) 

Residual sugars, cell and PHB production profiles of fed-batch PHB cultivation on sugar 

mixture (glucose: xylose: arabinose=4:2:1) are shown in Figs. 6.1 (low feeding regime) and 6.2 
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(high feeding regime). Under both feeding regimes, after each pulse feeding, three sugars were 

consumed simultaneously but at different rates (Figs. 6.1A and 6.2A). Glucose was consumed the 

fastest (2.5 and 3.0 g/h), followed by xylose (1.3 and 1.3 g/h) and arabinose was consumed the 

slowest (0.6 and 0.8 g/h) under low and high feeding regimes, respectively. This is consistent with 

previous findings showing that B. sacchari DSM 17165 metabolized xylose slowly compared to 

glucose (Guaman et al., 2018) and it preferentially consumed xylose over arabinose (Kang et al., 

1998; Lopes et al., 2011). Similarly, for real sugar streams from softwood hemicellulose 

hydrolyzate fermented by B. sacchari to produce PHB, sugars were depleted at different rates in 

the following order: glucose, mannose, xylose, galactose, and arabinose (Dietrich et al., 2019). 

Under both feeding regimes, PHB production kept increasing (Figs. 6.1B and 6.2B). Cell and PHB 

production, productivity, and sugar conversion efficiency at the end of the cultivation (41 h) can 

be found in Table 6.2. The high feeding regime led to higher PHB production, similar cell PHB 

content (%) and productivity, and slightly higher sugar conversion efficiency compare to the low 

feeding regime. This was due to more carbon source being fed to the bacteria, which led to higher 

cell growth and PHB production under the high feeding regime.  

6.3.2 Fed-batch strategy on sugar mixture (glucose: xylose: arabinose=2:2:1) 

Fed-batch PHB cultivation on sugar mixture (glucose: xylose: arabinose=2:2:1) is shown 

in Figs. 6.3 (low feeding regime) and 6.4 (high feeding regime). Similarly, three sugars 

consumption rates differed in the same order: glucose, xylose and arabinose (Figs. 6.3A and 6.4A). 

Xylose concentration was observed to accumulate over time for both feeding regimes. For the low 

feeding regime, cell and PHB production increased quickly and did not increase much after 26 h 

(Fig. 6.3B). For the high feeding regime, cell and PHB production kept increasing through the 

cultivation time (Fig. 6.4B). For PHB production, productivity and sugar conversion efficiency at 
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41 h, low and high feeding regimes showed similar performances (Table 6.2). The high feeding 

regime did not enhance PHB final concentration and productivity compared to the low feeding 

regime as was observed for sugar mixture 4:2:1. It indicates there is no need to apply the high 

feeding regime for sugar mixture 2:2:1.  

6.3.3 Fed-batch strategy on sugar mixture (glucose: xylose: arabinose=1:2:1) 

Fed-batch PHB cultivation on sugar mixture (glucose: xylose: arabinose=1:2:1) is shown 

in Figs. 6.5 and 6.6. Similar to other two mixtures, three sugars were consumed at the same time 

but at different rates (Figs. 6.5A and 6.6A). The first pulse feeding occurred at 17 h, PHB 

concentration under the high feeding regime was 8 g/L (Fig. 6.6B), which was only half of 16 g/L 

PHB observed under the low feeding regime (Figs. 6.5B). Overall, the high feeding regime 

exhibited lower PHB production, productivity and sugar conversion efficiency. The lower PHB 

production and productivity, and sugar conversion efficiency could by caused by xylose 

accumulation (Fig. 6.6B).  

6.3.4 Summary of cell and PHB production, productivity and sugar conversion efficiency 

Fed-batch strategy by pulse feeding the carbon source is one of the most commonly applied 

fed-batch strategies to enhance PHB production, productivity and sugar conversion efficiency 

(Norhafini et al., 2019; Quillaguaman et al., 2008; Stanley et al., 2018). A summary of cell and 

PHB production, productivity and sugar conversion efficiency is shown in Table 6.2. Overall, the 

highest PHB concentration, conversion rate (PHB, g/g sugar) and productivity (PHB, g/L/h) was 

observed with sugar mixture 4:2:1 under the high feeding regime. The lowest PHB concentration, 

conversion rate and productivity were observed with sugar mixture 1:2:1 under the high feeding 

regime. Similarly, in Cesario et al. (2014), sugar mixture having glucose/xylose ≈ 2 showed higher 
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PHB production, conversion rate and productivity than sugar mixtures having glucose/xylose 

between 1.2 and 1.4. These results indicate that glucose-rich sugar mixture exhibited higher PHB 

production and productivity, and sugar conversion rate, compared to other two sugar mixtures. For 

sugar mixture 4:2:1 under the high feeding regime, PHB content of 77% and PHB conversion rate 

of 0.33 g/g sugar were achieved, which were comparable or higher than most of the previously 

reported studies using Burkholderia species to produce PHB from sugar mixtures (Cesario et al., 

2014; Keenan et al., 2006; Obruca et al., 2014a; Pan et al., 2012b; Silva et al., 2004; Silva et al., 

2014). Under fed-batch strategies, alternative feeding strategies, such as feeding nitrogen at certain 

time points (Quillaguaman et al., 2008), feeding carbon and nitrogen at constant ratio (Norhafini 

et al., 2019), and other control strategies, such as pH-based (Stanley et al., 2018), and DO-stat 

feedback control (Raposo et al., 2017) could be tested in the future to determine if PHB production 

and productivity, and sugar conversion efficiency can be further enhanced.  

Due to slow metabolism rates of xylose and arabinose by B. sacchari, carbon catabolite 

repression is always a challenge for sugar mixture conversion into PHB (Guaman et al., 2018; 

Kang et al., 1998; Lopes et al., 2011). In this study, for three sugar mixtures, glucose and arabinose 

were not accumulated in high concentrations, but for mixtures 2:2:1 and 1:2:1, xylose 

accumulation was observed in concentrations > 30 g/L. Cesario et al. (2014) reported that xylose 

concentration above 30 g/L were inhibitory to B. sacchari growth. For mixture 2:2:1, this may 

explain that why high feeding regime did not enhance PHB production and productivity compare 

to low feeding regime. It should be noted that xylose concentrations were higher than 30 g/L 

starting form 15 h under the high feeding regime (Fig. 6.4A). By looking at the curves in Figs. 

6.3B and 6.4B, after first pulse feeding at 21 h, lower cell and PHB concentrations were observed 

with the high feeding regime (32 and 16 g/L) than with the low feeding regime (40 and 25 g/L). 
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For mixture 1:2:1, xylose accumulation may also explain the lower PHB production and 

productivity, and sugar conversion efficiency compared to other two mixtures, and the lower PHB 

production and productivity under high feeding regime compared to low feeding regime. Under 

both feeding regimes, there were certain time windows during cultivation that xylose concentration 

was greater than 30 g/L (Figs. 6.5A and 6.6A). Similar to sugar mixture 2:2:1 under the high 

feeding regime, xylose concentrations were higher than 40 g/L for most of the time starting from 

15 h. 

To avoid xylose accumulation, Raposo et al. (2017) applied a higher feeding rate by using 

a stirring speed trigger of 900 rpm for glucose-rich mixture (glucose/xylose=1.5) and lower 

feeding rate by using a stirring speed trigger of 700 rpm for xylose-rich mixture 

(glucose/xylose=0.8). Similarly, for wheat straw hydrolyzates, when stirring speed was kept high 

at 1200 rpm, only glucose was consumed; when stirring speed was kept low at 900 rpm, xylose 

and arabinose consumption was triggered (Cesario et al., 2014). Another study used a novel 

glucose/xylose switching strategy (glucose was used for cell growth (at the initial stage) and xylose 

was used for polymer production (at the feeding stage)) to enhance poly(lactate-co-3-

hydroxybutyrate) production using engineered Escherichia coli (Hori et al., 2019). The enhanced 

polymer production may be caused by channeling of the metabolic flux from acetyl-CoA towards 

polymer production over into the tricarboxylic acid cycle in xylose-fed cultures (Hori et al., 2019). 

These process control strategies should be tested on the ternary sugar mixtures in future studies. 

In addition to process control, strain development has been active to overcome catabolite 

repression by isolating new strains or engineering B. sacchari and other bacteria. A Bacillus sp. 

isolate was found to preferentially utilize glucose and arabinose, delaying the use of xylose (Lopes 

et al., 2009). A few studies used engineered mutant forms of B. sacchari or E. coli to avoid xylose 
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accumulation (Guaman et al., 2018; Jarmander et al., 2015; Lopes et al., 2011; Silva et al., 2004). 

Pseudomonas species such as Pseudomonas pseudoflava was also found to metabolize all three 

sugars (Dietrich et al., 2013). There is a lack of molecular tools to engineer B. sacchari DSM 

17165 (Guaman et al., 2018). Development of molecular tools to engineer B. sacchari DSM 17165 

will be helpful to enhance PHB production, productivity and sugar conversion efficiency of this 

strain. 

6.4 Conclusion 

In this study, fed-batch strategy with pulse carbon source feeding was applied to produce 

PHB from three different kinds of sugar mixtures under two feeding regimes. The highest PHB 

concentration 66 g/L, conversion rate 0.33 g PHB g/g sugar and productivity 1.65 g/L/h was 

observed with sugar mixture 4:2:1 under the high feeding regime. For sugar mixture 2:2:1, there 

was not much difference between high and low feeding regimes. For sugar mixture 1:2:1, the low 

feeding regime exhibited higher PHB production, productivity and sugar conversion efficiency 

than the high feeding regime. High feeding regime works for glucose-rich sugar mixtures and low 

feeding regime is preferred for xylose and arabinose rich sugar mixture. Alternative strategies 

should be explored to avoid xylose accumulation if the high feeding regime is applied to sugar 

mixtures 2:2:1 and 1:2:1.  
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Table 6.1. Previous reported sugar mixture (glucose, xylose and arabinose) proportions from 

upstream corn fiber processing  

Types Glucose, % Xylose, % Arabinose, % Simulated ratio in this study 

(glucose:xylose:arabinose) 

References 

2% NaOH 

treated 
50.2 26.7 13.1 4:2:1 

Gaspar et al. 

(2007) 

Untreated 24.3 28.4 18.3 2:2:1 
Yoo et al. 

(2016) 

*H2SO4 (1%) at 

121 °C for 1 h 
32 44 24 1:2:1 

Bischoff et al. 

(2010) 

Note: for type*, the sugar proportions are converted from sugar concentration in g/L after 

hydrolysis. Other two types of sugar mixtures are converted from their polymer composition by 

multiplying corresponding conversion factor (1.11 for glucose, 1.136 for xylose and arabinose).  

 

Table 6.2. PHB production, productivity and sugar conversion effieciency from three different 

sugar mixtures under two feeding regimes at 41 h  

Sugar 

mixture 

Feeding 

regime 

PHB production Sugar conversion efficiency Productivity 

PHB, 

g/L 

CDW, 

g/L 

PHB 

(%) 

PHB, g/g 

sugar 

CDW, g/g sugar 
PHB, 

g/L/h 

CDW, 

g/L/h 

4:2:1 
Low 54.2 68.2 79.5 0.30 0.38 1.32 1.66 

High 67.5 87.2 77.3 0.33 0.42 1.65 2.13 

2:2:1 
Low 46.4 67.2 69.1 0.26 0.38 1.13 1.64 

High 49.3 66.4 74.2 0.25 0.34 1.20 1.62 

1:2:1 

Low 44.0 77.6 56.7 0.24 0.42 1.07 1.89 

High 36.9 72.2 51.2 0.22 0.43 0.90 1.76 
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Fig. 6.1. Residual sugars (A), cell and PHB production (B) profiles for sugar mixture 4:2:1 under 

low feeding regime.  
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Fig. 6.2. Residual sugars (A), cell and PHB production (B) profiles for sugar mixture 4:2:1 

under high feeding regime. 
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Fig. 6.3. Residual sugars (A), cell and PHB production (B) profiles for sugar mixture 2:2:1 

under low feeding regime. 
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Fig. 6.4. Residual sugars (A), cell and PHB production (B) profiles for sugar mixture 2:2:1 

under high feeding regime. 
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Fig. 6.5. Residual sugars (A), cell and PHB production (B) profiles for sugar mixture 1:2:1 

under low feeding regime.  
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Fig. 6.6. Residual sugars (A), cell and PHB production (B) profiles for sugar mixture 1:2:1 

under high feeding regime. 
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CHAPTER VII 

7. Fed-batch cultivation and adding supplements to increase yields of 

polyhydroxybutyrate production by Cupriavidus necator from corn stover 

alkaline pretreatment liquor   

Abstract 

In a lignocellulosic biorefinery, lignin is a waste material that is mostly burned to generate 

heat and power. Valorization of lignin into valuable products such as polyhydroxybutyrate increase 

profit and make lignocellulosic biorefineries more economically viable. Alkaline pretreatment 

liquor from corn stover is an example of a lignin-enriched stream. An earlier study at 250 mL 

shake flask scale in our lab reported PHB production from APL by C. necator 545 reached 2.1 g/L 

with supplements (laccase 2 U/mL, AAO 20 U/mL, silica nanoparticle Aerosol R816 0.02%, 

ABTS 5 mM and Tween 80 2% (Chapter 4). In this study, APL conversion into PHB under the 

same conditions was performed at 1.3 L bioreactor scale and PHB production reached 3.3 g/L. To 

further enhance PHB production, fed-batch cultivation with two different feeding strategies were 

applied. Under single pulse feeding of 300 mL medium, PHB production reached 4.0 g/L. Under 

4 pulses feeding of 75 mL medium each time, PHB production reached 4.5 g/L. This is the highest 

PHB production from lignin that the authors are aware of in literature.  
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7.1. Introduction 

Lignocellulosic biomass biorefineries add profit and promote sustainability in agriculture 

and rural economies. Multiple bioproducts (ethanol, butanol, succinic acid, lipids, enzymes, 

polyhydroxybutyrate) and their corresponding process designs were extensively studied over the 

past decade (Chen and Wan, 2017b; Ding et al., 2018; Ding et al., 2019; Frederick et al., 2016; Li 

et al., 2019a; Li et al., 2019b; Li et al., 2018a; Liu et al., 2015). However, most of these bioproducts 

were produced from polymeric sugars of lignocellulosic biomass because of the recalcitrance and 

heterogeneity of lignin (Salvachua et al., 2015). As an energy-dense polymer comprising 15-30% 

of lignocellulosic biomass and the second most abundant biopolymer on Earth after cellulose 

(Linger et al., 2014), lignin resulting from lignocellulosic biorefineries can be used as a feedstock 

for value-added products to improve the sustainability and economic feasibility of the biorefinery 

(Xie et al., 2016).  

For the process of lignin conversion into bioproducts, generally it consists of two steps: 1) 

lignin polymer deconstructed and depolymerized into low molecular weight lignin; 2) low 

molecular weight lignin can be ring-opened in microorganisms via the β-ketoadipate pathway and 

converted further to bioproducts. Only low molecular weight lignins (aromatic ring # less than 

five) can pass the cellular membranes of microbes and enter cellular metabolism (Bandounas et 

al., 2011; Taylor et al., 2012). There are several previous studies converting lignin into different 

kinds of bioproducts (lipids, fatty acids, polyhydroxybutyrate, muconic acid and vanillin) (Da 

Silva et al., 2009; Kohlstedt et al., 2018; Li et al., 2018b; Linger et al., 2014; Shi et al., 2017; Wei 

et al., 2015). Most of these studies directly converted Kraft lignin or alkaline pretreatment liquor 

(APL) into bioproducts, and therefore, obtained low bioproduct yield and the bioconversion 

process required a long time. An early study at 250 mL shake flask scale in our lab applied a 
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supplement system consisting of oxidative enzymes (laccase, aryl alcohol oxidase), mediator (2,2'-

azino-bis(3-ethylbenzothiazoline-6-sulphonic acid. ABTS), surfactant (Tween-80) and silicon 

nanoparticle (Aerosil R816) enhanced polyhydroxybutyrate (PHB) production by 10 fold (0.2 to 

2 g/L) from APL (Chapter 4), given the assumption that these supplements could enhance lignin 

depolymerization and lignin availability to microorganisms. It is important to test PHB production 

with the supplement system under a larger scale and to obtain the productivity of lignin conversion 

into PHB.  

The objectives of this study were 1) to evaluate PHB production at bioreactor scale (1.3 L) 

with the same supplement system described in Chapter 4 and 2) to enhance PHB production under 

a fed-batch mode. In this study, bioreactor (1.3 L) scale PHB production with the same supplement 

system in previous shake flask scale PHB production (Chapter 4) was conducted. After that, fed-

batch mode was applied to enhance PHB production by two different feeding strategies: single 

pulse feeding and 4 pulses feeding. The parameters obtained in batch and fed-batch modes can be 

used to perform process control for PHB production at bioreactor scale. 

7.2 Materials and methods 

7.2.1 Microorganism, media and bioreactor  

C. necator DSM 545, a Gram-negative Proteobacteria that can convert aromatic 

compounds and lignin into PHB (Berezina et al., 2015; Li et al., 2019a), was used in this study. 

For inoculum preparation, one aliquot of -80 °C glycerol preserved C. necator culture was 

inoculated to 25 mL seed medium (meat extract 3 g/L, meat peptone 5 g/L, glucose 30 g/L) and 

cultured for around 24 h to obtain late exponential phase culture with an OD of 8-10. Four flasks 
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of 25 mL seed culture were combined and washed with sterile 0.89% sodium chloride solution 

twice and used as inoculum.  

For medium composition, APL prepared from NaOH pretreatment (Chapter 4) was used 

as the carbon source. Other components in the media included (NH4)2SO4 (0.1 g/L) as the nitrogen 

source, salts (Na2HPO4·2H2O, 2.9 g/L; KH2PO4, 1.5 g/L; MgSO4·7H2O, 0.2 g/L; CaCl2·2 H2O: 

0.01 g/L; Fe(NH4)citrate: 0.06 g/L) and trace elements (1 mL/L) as described previously (Ramsay 

et al., 1990). The supplement system contained the following five supplements: silica nanoparticle 

R816 0.019% (hereafter referred to as R816), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 

acid (ABTS) 5.23 mM, Tween 80 2.12%, laccase 2 U/mL and aryl alchohol oxidase (AAO) 

20 U/mL (Chapter 4). For these supplements, R816 (Aerosil® R816, 12 nm average primary 

particle size) was donated by Evonik (Essen, Germany). Tween-80 was purchased from Acros 

Organics (Geel, Belgium). Laccase from Rhus vernicifera (L2157-10KU, 50 units/mg solids 

activity), and ABTS (A1888) were purchased from Sigma-Aldrich (St. Louis, MO, USA). AAO 

(535 U/L) was prepared as described in a previous study (Chapter 4).   

Batch and fed-batch cultivation was conducted in a 0.7 L working volume in a 1.3 L 

bioreactor. The bioreactor (Model BioFlo115, New Brunswick Scientific, NJ, USA) was equipped 

with a 6-Blade Rushton Impeller and temperature and pH control, dissolved oxygen monitoring 

and constant aeration. Process control is described in Section 7.2.2. 

7.2.2 Culture conditions 

7.2.2.1. Batch cultivation 

The reactor containing APL was sterilized in situ at 121 °C for 20 min, cooled and then 

inoculated with the inoculum described in Section 7.2.1. The initial OD for the batch culture was 
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around 0.5. Culture pH was monitored by a pH-mV probe (Metter Toledo 405-DPAS-SC-

K8S/225) and the initial pH was adjusted to 6.8 by automatic addition of 5 N H2SO4 or NaOH 

through the control unit in the bioreactor. Under controlled pH condition, pH was maintained by 

automatic addition of 5N H2SO4. Under free pH condition, pH control was turned off. The 

temperature was controlled using a heating jacket covering the reactor from outside. The mixing 

was carried out by a mechanical stirrer connected to the control device to adjust the mixing speed 

according to the DO concentration during the reaction phase. DO concentration was maintained at 

20% air saturation by cascade controlling the speed of the agitator as well as the flow rate of sterile 

air. The minimum values for speed of the agitator and airflow were 400 rpm and 0.7 L/min, 

respectively. The dissolved oxygen concentration in the fermenter was measured using an in situ 

DO probe (O2 Sensors Series 6800 InPro®; Mettler Toledo). Sampling was conducted at certain 

time points and PHB was quantified as described in Section 7.2.3. 

7.2.2.2. Fed-Batch cultivation 

Fed-batch cultivation was conducted with two different feeding strategies: single pulse 

feeding of 300 mL medium and 4 pulses feeding of 75 mL medium each time. The medium is 

composed of APL, (NH4)2SO4, salts and trace elements as described in Section 7.2.1 without 

supplements. The single pulse feeding time was at 28 h. The 4 pulses feeding time was at 28, 36, 

45, 56 h. Culture pH and DO control was the same as described in Section 7.2.2.1. Sampling was 

conducted at certain times and PHB was quantified as described in Section 7.2.3. 

7.2.3 PHB quantification by gas chromatography-mass spectrometer (GCMS) 

PHB concentration was determined according to the methods described by Braunegg et al. 

(1978). Dried cell biomass was methanolyzed at 105 °C in acidified methanol (5% H2SO4, 
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v/v, 2 mL) and chloroform (2 mL) mixture for 3 h. Sodium hydroxybutyrate (Sigma-Aldrich, MO, 

USA) was used as an external standard. After 3 h, 1 mL deionized water (Milli-Q, 18.2 MΩ 

cm) was added to the cooled mixture and vortexed. The methyl-ester derivatives were extracted 

from the lower chloroform layer and passed through a column containing anhydrous sodium 

sulfate before being injected into a GC-MS.  

The GC-MS was equipped with a Trace 1310 Gas Chromatograph, ISQ QD single 

quadrupole mass spectrometer (ThermoScientific, Waltham, MA, USA) and TG-5MS (30 m x 

0.25 mm ID x 0.25 film) capillary column (ThermoFisher Scientific, Waltham, MA, USA). The 

temperature profile was held at 60 °C for 5 min, increased to 220 °C at a rate of 30 °C/min, then 

held at 220 °C for 5 min. The injector temperature was 230 °C, and the injection mode was splitless 

(1 µL). The pressure of the carrier gas (helium) was 142 kPa (18 psi). The MS transfer line 

temperature was 250 °C, ion source temperature was 220 °C and ionization mode was 

electron ionization. The ionization energy was 70 eV and selective ion monitoring (SIM) mode 

was used. Methylated methyl-ester derivative was confirmed with SIM at molecular weight of 43, 

71, and 74. Solvent delay was 3 min. Data were analyzed with Chromeleon 7 chromatography 

studio (ThermoFisher Scientific, Waltham, MA, USA).  

7.3 Results and discussion 

7.3.1 Batch cultivation 

In the previous shake flask scale study during which PHB production increased from 0.2 

to 2.1 g/L with supplements (chapter 4), pH was not controlled. In this study, first, batch cultivation 

under the condition of free pH (pH not controlled) and without supplements was conducted. DO, 

stirring speed, pH and PHB production profiles were shown in Fig. 7.1. PHB production reached 
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0.33 g/L at 12 h (Fig. 7.1B), which is 0.6 times higher than 0.21 g/L at 168 h obtained in shake 

flask scale (Chapter 4). PHB production became stable at around 0.2 g/L after 36 h (Fig. 7.1B). 

The pH kept increasing from 6.8 to 8.8 at 56 h (Fig. 7.1B). The pH kept increasing to a maximum 

of 9.2 at 84 h and decreased to 9.0 at 144 h. DO dropped to 20% at around 5 h and stirring speed 

was increased to maintain 20% DO (Fig. 7.1A). After PHB production decreased and became 

stable at around 0.22 g/L, DO became stable at around 40% and stirring speed dropped back to 

400 rpm (Fig. 7.1A).  

Second, PHB production were conducted under the condition of controlled pH and without 

supplements (Fig. 7.2). PHB production reached 0.32 g/L at 12 h (Fig. 7.2B), which is similar to 

the PHB production under the condition of free pH and no supplements (Fig. 7.1B). This indicates 

that pH had no effect on PHB production under the condition of no supplements. The patterns of 

DO and stirring speed changing with time were similar between free pH (Fig, 7.1A) and controlled 

pH (Fig. 7.2A). DO dropped to 20% at around 5 h and stirring speed was increased to maintain 

20% DO (Fig. 7.2A). DO became stable at around 40% and stirring speed dropped back to 400 

rpm after PHB production became stable (around 0.22 g/L). It was significant that PHB production 

reached the maximum value of 0.3 g/L at 12 h. In other studies, for PHA/PHB production from 

lignin using other strains, it took several days for PHB production to reach the maximum value of 

1.0 g/L (Linger et al., 2014; Shi et al., 2017). It indicated that C. necator DSM 545 is an efficient 

strain to produce PHB from lignin compared to other strains.   

Previous studies showed that the optimal pH for AAO is around 5-6 (Carro et al., 2015; 

Ferreira et al., 2005). Laccase relative activity dropped to 40% of the activity at pH 7 (Wan et al., 

2010). Although the high pH (around 9) resulting from free pH condition showed no effect on 

PHB production without supplements (Fig. 7.2B), high pH may affect enzyme activity when 
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supplements are added. Therefore, supplements were added by controlling pH at 6.8. Batch PHB 

production with supplements is shown in Fig. 7.3. DO dropped to 20% at around 9 h and became 

stable at around 34% from 19 h (Fig. 7.3A). PHB production reached a maximum of 3.34 g/L at 

30 h, decreased to 3.0 g/L at 44 h and became stable (Fig. 7.3B). Similar to the 10-fold yield 

increase in the shake flask study (Chapter 4), the addition of supplements increased PHB 

production 10 fold from 0.33 to 3.34 g/L under batch fermentation mode.  

7.3.2 Fed-batch cultivation 

Fed-batch mode is a widely applied strategy to increase product concentration during cell 

cultivation. It is useful for lignin conversion because aromatic compounds in lignin are inhibitory 

to many enzymes and microorganisms. Previous studies have shown fed-batch cultivation 

increased PHA/PHB production by 0.52-1.08 fold (Liu et al., 2017; Shi et al., 2017). Two feeding 

strategies were applied with a total feeding volume of 300 mL medium: single pulse feeding and 

4 pulses feeding. Single pulse feeding of 300 mL was initiated at 28 h, which is around the time 

point that highest PHB production was achieved in batch mode. After the feeding, DO dropped to 

20% quickly and stirring speed was increased to maintain 20% DO (Fig. 7.4A). In around one 

hour, DO became stable again at around 34%. PHB production increased from 3.56 g/L at 28 h to 

4.02 g/L at 42 h (Fig. 7.4B). A 13% increase was achieved with single pulse feeding of 300 mL in 

14 h.  

To further decrease the inhibitory effect of lignin on enzymes and microorganisms, 4 pulses 

feeding with a smaller volume (75 mL) each was applied in another fed-batch study. It can be seen 

that DO dropped to 20% and correspondingly stirring speed was increased after each pulse feeding 

(Fig. 7.5A). PHB production kept increasing after the first 3 pulse feedings (28, 36, 45 h) and PHB 
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concentration reached 4.47 g/L at 56 h (Fig. 7.5B). However, PHB production decreased after the 

fourth pulse feeding (4.06 g/L at 63 h). This can be explained by accumulated aromatic compounds 

that are not metabolized by the microorganism reaching inhibitory levels from the increasing APL 

being fed. The highest PHB production 4.47 g/L was 34% higher than that observed in batch 

fermentation with supplements and 12.55 times higher than that observed without supplements.  

An overview of PHB production, time to reach maximum concentration and productivity 

under different strategies in this study is presented in Table 7.1. Fed-batch strategies achieved the 

higher PHB production (4.0 and 4.5 g/L) that that of batch cultivation (3.0 g/L) but they took 

longer time (42 and 56h). Therefore, batch fermentation with supplements showed the highest 

productivity of 0.111 g/L/h. With supplements, both fed-batch fermentation strategies showed 

lower productivities than batch fermentation. Single pulse feeding exhibited slightly higher 

productivity (0.096 g/L/h) than 4 times pulse feeding (0.08 g/L/h). Further study can be conducted 

to optimize the feeding time under fed-batch condition to increase PHB productivity. A 

comparison of PHA/PHB production between this study and previous studies are summarized in 

Table 7.2. This study achieved the highest PHB production (4.5 g/L) and productivity (0.080 

g/L/h). This is the highest PHB production and productivity from lignin that the authors are aware 

of in literature. 

7.4 Conclusion 

In this study, at bioreactor scale (1.3 L), fed-batch fermentation strategies were conducted 

to enhance PHB production with a supplement system developed in a previous shake flask scale 

study (Chapter 4). Under batch fermentation, the addition of supplements increased PHB 

production from 0.33 g/L to 3.3 g/L and PHB productivity of 0.111 g/L/h was achieved. Both fed-
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batch strategies increased PHB production and lowered PHB productivity compared to batch 

cultivation. The highest PHB production of 4.5 g/L was obtained under fed-batch strategy with 4 

times pulse feeding, and the corresponding PHB productivity was 0.08 g/L/h. The supplements 

and fermentation strategies in this study can be used as references to enhance other bioproducts 

production from lignin.  

 

 Table 7.1. PHB production from APL by C. necator DSM 545 cultivated in bioreactor  

Mode Strategy PHB 

(g/L) 

Time to reach maximum 

concentration (h) 

Productivity 

(g/L/h) 

Batch Free pH w/o supplements 0.33 12 0.028 

 Controlled pH w/o supplements 0.32 12 0.027 

 Controlled pH w supplements 3.34 30 0.111 

Fed-

batch 

Single pulse (300 mL) w 

supplements 

4.02 42 0.096 

4 times pulse (each 75 mL) w     

supplements 

4.47 56 0.080 

Note: w/o denotes without, w denotes with. 
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Table 7.2. A comparison of PHA/PHB production with previous studies 

Lignin 

(derivatives) 

form 

Organisms Scale and strategy Cell 

(g/L) 

PHB/PHA 

(g/L) 

Productivity 

(g/L/h) 

References 

APL C. necator DSM 

545 

Bioreactor (1.3 L) 

and fed-batch 

NA 4.5 0.080 This study 

APL C. necator DSM 

545 

Shake flask (250 

mL) and batch 

NA 2.1 NA (Chapter 4) 

APL*  Pseudomonas. 

putida KT2440 

Shake flask (250 

mL) and fed-batch 

5.3 1.0 NA Liu et al. 

(2017) 

APL P. putida 

KT2440 

Bioreactor (14 L) 

and fed-batch 

0.79 0.25 0.005 Linger et al. 

(2014) 

APL C. basilensis 

CGMCC 4240 

Shake flask (100 mL 

working volume) and 

fed-batch** 

3.99 0.8 NA Si et al. 

(2018) 

Kraft lignin C. basilensis 

CGMCC 4240 

Shake flask (100 mL 

working volume) and 

fed-batch** 

NA 0.32 NA Shi et al. 

(2017) 

Vanillic acid Recombinant P. 

putida A514 

Shake flask (100 mL 

working volume) and 

batch** 

0.71 0.25 NA Wang et al. 

(2018) 

Benzoic acid C. necator DSM 

545 

Shake flask (300 

mL) and repeated 

fed-batch with partial 

withdrawal 

2 0.4 0.0018 Berezina et 

al. (2015) 

*Note: in the study of Liu et al. (2017), APL was obtained from combinatorial H2SO4 

pretreatment followed by NaOH pretreatment of corn stover, which was more efficient than other 

alkaline pretreatment processes in Linger et al. (2014), Chapter 4 and Si et al. (2018). 

**Note: the paper did not mention the flask volume; 100 mL is the working volume. 
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Fig. 7.1. Time course of PHB production by C. necator DSM 545 under the condition of free pH 

and without supplements.   
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Fig. 7.2. Time course of PHB batch production by C. necator DSM 545 under the conditions of 

controlled pH (6.8) and without supplements. 
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Fig. 7.3. Time course of PHB batch production by C. necator DSM 545 under the conditions of 

controlled pH (6.8) and with supplements.  
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Fig. 7.4. Time course of PHB fed-batch production (single pulse feeding) by C. necator DSM 545 

under the conditions of controlled pH (6.8) and with supplements. Single pulse feeding of 300 mL 

was initiated at 28 h. 
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Fig. 7.5. Time course of PHB fed-batch production (4 times pulse feeding) by C. necator DSM 

545 under the conditions of controlled pH (6.8) and with supplements. The 4 pulses feeding times 

are at 28, 36, 45, 56 h. 
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CHAPTER VIII 

8. Conclusion and Future work 

The research work presented in this dissertation developed efficient processes for sugar 

mixture and lignin conversion into PHB. Shake flask and bioreactor scale studies were conducted 

for both carbon sources. At shake flask scale, advanced experimental designs including combined 

mixture-process, Plackett-Burman and central composite deigns were employed. At bioreactor 

scale, fed-batch cultivation strategy with different carbon source feeding regimes were tested. The 

major findings are listed in the summary of results. Recommendations for future work are 

proposed. 

8.1. Summary of results 

(1) For sugar mixture conversion into PHB, at shake flask scale (250 mL), results from 

combined mixture-process design showed that interactions existed between sugar mixture ratios 

and process variables in terms of affecting PHB production. Optimal conditions were derived from 

the statistical models when dealing with different sugar streams derived from upstream 

lignocellulosic pretreatment and hydrolysis. At bioreactor scale (3L), the highest PHB production 

reached 67 g/L for 4:2:1 (glucose:xylose:arabinose) mixture at 41 h corresponding to an 

accumulation of 77% of cell dry weight. Corresponding sugar conversion efficiency and 

productivity were 0.33 g PHB/g sugar consumed and 1.6 g/L/h, respectively, which are comparable 

to or higher than most previous studies. 

(2) For lignin conversion into PHB, first, at shake flask scale (250 mL), the developed 

supplement system enhanced lignin conversion into PHB by 10-fold from 0.2 to 2 g/L. At 
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bioreactor scale (1.7 L), fed-batch cultivation further enhanced PHB production to 4.5 g/L. This is 

the highest PHB production from lignin that the author has been aware of in the literature. 

(3) A sample preparation method was developed to predict PHB concentration using 

fluorescence intensity from flow cytometry. The linear relationship with good fitness (R2=0.9939) 

between PHB concentration and fluorescence intensity indicates the potential of applying flow 

cytometry for quantitation of PHB from APL and other media that are dark and contain insoluble 

particles.  

8.2. Recommendation for future work 

(1) For sugar mixture conversion, the optimal conditions derived from the statistical model 

at shake flask scale and fed-batch PHB production at bioreactor scale are based on pure ternary 

sugar mixtures. Real sugar mixture streams contain other sugars in small amounts and other non-

sugar compounds such as organic acids. The optimal conditions at shake flask scale and fed-batch 

PHB production at bioreactor scale should be tested on real sugar mixture streams.  

(2) Supplements used in lignin conversion into PHB are expensive. For example, laccase 

is extracted from plant. Future work should be conducted to produce the supplement in a cheap 

way. In terms of genetics, supplements used in this study can be used by geneticists to study gene 

expression involved in lignin conversion to PHB and metabolic pathways modulation to enhance 

lignin conversion into PHB. For lignin structural changes, structural changes of lignin triggered 

by the supplement system should be studied to understand the mechanism during lignin 

depolymerization and conversion. 
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