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When assessing a certain characteristic or trait using a multiple item measure, 

quality of that measure can be assessed by examining the reliability. To avoid multiple 

time points, reliability can be represented by internal consistency, which is most 

commonly calculated using Cronbach’s coefficient alpha. Almost every time human 

participants are involved in research, there is missing data involved. Missing data means 

that even though complete data were expected to be collected, some data are missing. 

Missing data can follow different patterns as well as be the result of different 

mechanisms.  One traditional way to deal with missing data is listwise deletion, in which 

every observation with at least one missing value is discarded. Modern missing data 

techniques include multiple imputation and maximum likelihood estimation, which use 

the observed data to create an estimate for the missing values in order to utilize the whole 

sample size. The present study sought to examine the effect of missing data on coefficient 

alpha under certain conditions as well as to compare multiple imputation to listwise 

deletion in its effectiveness to handle missing data across those conditions. The results 

indicated that coefficient alpha is sensitive to numerous factors in the presence of missing 

data such as reliability level, sample size, missing data percentage, and missing data 

mechanism. As expected, there was little difference between listwise deletion and 



 

 

multiple imputation when data were missing completely at random, but multiple 

imputation performed better when data were missing at random and missing not at 

random. While listwise deletion always underestimated the true reliability, multiple 

imputation only underestimated the true reliability when data were missing not at 

random.
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INTRODUCTION 

When assessing a certain characteristic or trait using a multiple item measure, 

researchers are often concerned with the quality of the measure. The quality can be 

determined by examining the validity and reliability of that measure. Obtaining the same 

result over multiple assessments of the same measure is defined as its reliability. It is the 

precursor to validity (i.e. validity of a measure cannot be determined without that 

measure being reliable) and the focus of this study. 

To consider reliability from classical test theory perspective, it is important to 

look at the classical test theory model (i.e.  X = T + e). In this model, the observed score 

X is composed of the true score T and an error term e. Since each of those terms is 

associated with a specific variance, reliability can be defined as the ratio of true score 

variance to observed score variance. The more observations vary from one assessment to 

the next, the lower will be the reliability of the measure and vice versa. Since the true 

scores can never be observed, reliability cannot be calculated, only estimated. Methods to 

estimate reliability will be discussed in more detail below. 

Since reliability is a proportion, it can range between 0 and 1, while higher 

numbers indicate higher reliability. While it is evident that a higher reliability is 

desirable, it is important to consider the context in which it is being estimated. The 

attenuation paradox (Loevinger, 1954) describes the trade-off between reliability and 

validity. Maximization of reliability is only reasonable as long as it is not at the expense 

of validity. Standardized tests are usually recommended to have reliabilities of 0.7, 0.8, 

and 0.9 for low-stakes, medium-stakes, and high-stakes conditions respectively (Bonett, 

2002). 
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The way reliability is estimated depends on the attribute of interest. Stability 

refers to the consistency of results over time. For example, a test can be administered at 

two different time points, with a certain time interval between them. In that case, 

reliability is the correlation between the test results of the two time points. When 

equivalence is of interest instead, two alternate versions of a measure can be used for 

assessment and reliability can be estimated by correlating their results. Both of those 

attributes require multiple assessments of a measure, which can be expensive and time 

consuming. A third attribute of reliability is internal consistency and only requires one 

measure to estimate reliability. It is based on the assumption that items testing the same 

construct should be correlated (Kimberlin & Winterstein, 2008). Ideally, when reliability 

is estimated, all three attributes are taken into account. Fortunately, researchers argue that 

when internal consistency indexes are calculated correctly, they accurately reflect 

stability and equivalence in addition to internal consistency (Wainer & Thissen, 1996). 

When estimating internal consistency, the most evident conventional approach 

was to split the measure into two halves and calculate the correlation between them, 

referred to as the split-half method (Spearman, 1910; Brown, 1910). This method, 

however, reduces the sample size of the measure and underestimates reliability. Over 

time, researchers have improved upon the original idea, resulting in two internal 

consistency measures that are used today. Cronbach's coefficient alpha (Cronbach, 1951) 

is used with strictly unidimensional measures, while McDonald‘s coefficient omega 

(McDonald, 1999) relaxes that requirement. Despite both being considered equivalent 
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alternatives, coefficient alpha is more commonly reported in social science studies and 

will be used to estimate reliability in this study as well. 

Cronbach’s coefficient alpha is a function of all possible split-half coefficients for 

a measure, as well as a special case of the split-half reliability estimate (Cronbach, 1951). 

It is calculated based on the essentially tau-equivalent model, which assumes that that all 

items measure the same latent variable and that that they are measured on the same scale, 

but they can be measured with a varying degree of precision and have different error 

variances (Graham, 2006). In this case, precision refers to the equality of the strength of 

items. For example, a strongly worded item can result in a different response than a more 

weakly worded item. Coefficient alpha is not a test of unidimensionality, as researchers 

sometimes falsely believe, but rather a lower bound estimate of reliability (Miller, 1995).  

Reliability, and hence also internal consistency, is not an intrinsic property of a 

measure, instead it depends on the sample variability in a specific case. This variability is 

influenced by multiple factors such as the number of items on a test, covariances between 

items, as well as a large sample are generally associated with higher reliability. There 

have been conflicting opinions on whether the number of response categories influences 

reliability, with the most popular being that an increase of reliability with the number of 

categories levels off after a certain point. Furthermore, there are factors that will not be 

discussed in this study, such as time restrictions or item selection, but which may also 

affect the reliability of a measure. 

When estimating reliability, much like with other statistics, nonresponse is almost 

always involved. Nonresponse means that even though complete data were expected to 
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be collected, some data are missing. The data may be missing for an item, a measure, or 

in longitudinal studies, for a time point and follow different patterns and mechanisms. 

The three missing data mechanisms are used to determine whether values are missing at 

random or if there is a reason for their missingness, either observed or unobserved. They 

can have a large effect on sample statistics, especially because they are hard or even 

impossible to be identified. 

The most common approach to handle the missing data is listwise deletion. 

However, deleting the whole observation if they have one or more missing values not 

only decreases the sample size, but it only returns unbiased results when data are missing 

completely at random. To deal with this problem, researchers have developed single 

imputation methods, which replace the missing values with predicted values. These 

methods range from simply using the mean to creating a regression equation and using 

the dependent variable as the predicted value.  

Modern missing data handling methods, such as multiple imputation and 

maximum likelihood estimation also work when data is only missing at random. While 

maximum likelihood deals with the missing data during the model fitting procedure, 

multiple imputation creates complete data sets with imputed values before running the 

analysis. Even though an effort has been made to find methods to handle missing data 

when the data are missing not at random, those methods are still far from being 

convenient. Since both modern missing data handling methods tend to provide similar 

results (Schafer & Graham, 2002), this study focuses on multiple imputation only. 
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This study‘s objective is to examine the effect of missing data on coefficient alpha 

under certain conditions, such as varying sample size, missing data percentage, and 

missing data mechanism. In addition, multiple imputation is compared to listwise 

deletion in its effectiveness to handle missing data across the above conditions.
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LITERATURE REVIEW 

Quality of Measures.  

Measurement uses the assignment of numbers to observations in order to quantify 

certain phenomena. In social sciences and other related fields, these phenomena such as 

intelligence or depression are often theoretical constructs that are not directly measurable. 

Therefore, psychometrics is concerned with the development of measures to quantify 

these constructs. A commonly used example of measuring attitudes, character, and 

personality traits is the Likert scale (Likert, 1932). Likert scales consist of multiple items 

measuring the same construct, in which each item has multiple, usually five or seven, 

response options. These options range from one extreme, such as “strongly agree”, to 

another extreme, such as “strongly disagree”. However, factors such as whether the 

positive or the negative option is on the left, choice of the measure, and reverse coding 

can influence the way participants respond to questions (Hartley, 2013).  

The goal of measurement is to capture the true underlying characteristics to 

represent the construct of interest as precisely as possible. Therefore, the quality of 

measures should be assessed every time they are used for assessment. Key indicators of 

the quality of measures are reliability and validity (i.e., Kimberlin & Winterstein, 2008). 

Validity is an assessment of the extent to which a measure is accurately assessing the 

phenomenon that it is intended to represent (Cronbach & Meehl, 1955). Reliability is the 

consistency of the measure, the extent to which a measure would provide the same results 

in successive administrations of that measure, with different persons, on different 

occasions, under different conditions (Drost, 2011). In other words, it is the magnitude of 

the error of measurement (Cronbach, 1951).  
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When the measure consists of multiple items, reliability is also the extent to which 

all of the items measure the same phenomenon. It is impossible to determine whether a 

measure accurately measures what it intends to if it is not consistent from one 

administration to the next. Hence, a measure must be reliable before validity can be 

assessed. 

Measurement Models. 

In the ideal world, our observed scores, X, would be measured without 

measurement error. However, it is more realistic to believe that all observed scores 

contain error. The classical test theory model, X = T + e, reflects this latter case. This true 

score model assumes that the observed score X consists of true score T, which is the 

underlying score that would be obtained if there was no error in the measurement, plus an 

error term e (Downing, 2004). The true score is latent, meaning that it is unobserved. 

Since the true score is the average of all the observed scores a person would obtain if 

their score was assessed an infinite number of times, each observed score will contain a 

certain amount of error (i.e., e = X - T). This error can be positive or negative, but it does 

not bias the measure in a systematic way, so that the mean of the error term is expected to 

be 0 (Allen & Yen, 1979).  

In the classical test theory model, reliability is defined as the ratio of true score 

variance to total observed score variance (Cronbach, 1951). There are no parameters 

given to divide the observed variance into true score and error variance. Therefore, the 

division can be done an infinite number of ways (Graham, 2006). It is impossible to 

estimate reliability, unless the measure is made of multiple items. Even with multiple 
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items, there are still numerous ways to partition the variance. In order to estimate 

reliability of items in a measure, it is necessary to make assumptions about the 

relationship of those items. This results in a number of measurement models with 

different requirements for the data (Graham, 2006). 

The parallel model is the most restrictive model. It assumes that all of the items 

are exactly the same (i.e., they measure the same latent variable) are measured on the 

same scale, have the same degree of precision, and the same amount of error (Raykov, 

1997a, 1997b). A precise measure is one in which values of the measured items are close 

together, while in an imprecise measure the values are widely spread out. For example, a 

5-point Likert scale assessing anxiety with answer options from “strongly agree” to 

“strongly disagree” contains two items, one being “I feel nervous sometimes” and the 

second being “I almost always feel nervous”. Even though those two items measure the 

same latent variable and are on the same scale, they will possibly result in differences in 

precision, because one is more strongly worded than the other. With each item j for 

individual i, the parallel model can be applied to the classical test theory model, so that 

(Graham, 2006) 

Xij = Ti + ei     (2.1) 

The tau-equivalent model is less restrictive, as it allows for a different error 

variance for each item. As in the parallel model, the tau-equivalent model also assumes 

that the items measure the same latent variable, are measured on the same scale, and have 

the same degree of precision (Raykov, 1997a, 1997b). Therefore, all unique variance 

associated with an item is due to the error variance, so that (Graham, 2006) 
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Xij = Ti + eij     (2.2) 

The essentially tau-equivalent model is less restrictive than the tau-equivalent 

model, as it relaxes the assumption of equal precision. Essential tau-equivalence still 

assumes that that all items measure the same latent variable and that that they are 

measured on the same scale, but they can be measured with a varying degree of precision 

(Raykov, 1997a). With  being an additive constant for each individual item, this model 

can be mathematically represented as (Graham, 2006) 

Xij = (j + Ti) + eij    (2.3) 

The congeneric model is the least restrictive model, because it only requires the 

assumption that each item measures the same latent variable. The items could be 

measuring different scales, at different degrees of precision, and with different amounts 

of error (Raykov, 1997a). The congeneric model assumes a linear relationship between 

true scores and observed scores, with not only an additive constant, but also a 

multiplicative constant , so that (Graham, 2006) 

Xij = [ j+ j (Ti)] + Eij    (2.4) 

Reliability. 

Measurement scales almost always include some amount of measurement error. 

As outlined in the classical test theory model, the true score can never be actually 

observed. Instead, it is the average score a person would obtain if they took a measure an 

infinite number of times (Allen & Yen, 1979). Consequently, a person’s observed score 

will vary around the true score to some degree, so that all of the terms in the classical test 

theory model have their own specific variance. Based on the classical test theory model, 
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reliability is defined as the ratio of true score variance (2
True) to total observed score 

variance (2
Total) (Streiner, 2003): 

Reliability = 
𝜎𝑇𝑟𝑢𝑒

2

𝜎𝑇𝑜𝑡𝑎𝑙
2     (2.5) 

Reliability provides a tool of estimating the amount of measurement error in 

assessments (Downing, 2004). As a proportion of variances its range is from 0 to 1, in 

which 0 is no reliability at all and 1 is perfect reliability. As discussed below in this 

study, an estimate of reliability may, however, be outside of that range. 

The size of the optimal reliability for a given measure depends on what it is 

intended to measure. The dependency of the reliability coefficient on the sample makes a 

determination of objective guidelines difficult. Similarly to the low-stakes, medium-

stakes, and high-stakes guidelines for cognitive measurements mentioned above, some 

recommendations have been suggested for psychological tests as well. Steinborn, 

Langner, Flehmig, and Huestegge (2017) proposed that a reliability estimate of 0.9 or 

higher is considered high, a reliability estimate between 0.8 – 0.89 is sufficient, and a 

reliability below 0.8 is problematic. 

The implication is that higher reliability is better, but this is only the case to a 

certain point. Loevinger (1954) described the attenuation paradox as the trade-off 

between reliability and validity. A maximization of reliability inevitably results in a 

decrease of validity. For instance, if half of the observations on a test were perfectly 0 

(i.e., half of the participants made zero scores) and the other half of the observations were 

perfectly 1 (i.e., half of the participants made perfect scores), then the reliability 
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coefficient would be 1. However, this is not desirable for obvious reasons. Therefore, 

maximization of reliability is only desirable as long as it is not at the expense of validity. 

Reliability is not an intrinsic property of a measure. Rather, a measure's reliability 

varies across different circumstances. Reliability is just as dependent on the sample 

variability in a specific case as are other statistics of the measure, such as item difficulty 

or discrimination. Therefore, reliability estimators reflect a characteristic of test scores, 

not the test itself (Yin & Fan, 2000). Moreover, a test's scores are not determined to be 

either reliable or unreliable in all conditions, but determined to be reliable or unreliable 

for a particular sample. The reason for this is that reliability coefficients are parameter 

estimates instead of sample statistics. Therefore, they will always include sampling error 

to some degree and will change depending on the specific sample used to estimate 

reliability (Streiner, 2003). 

Unfortunately, only observed scores are available when a measure is 

administered. It is not possible to determine how the observed score variance is divided 

into true score variance and error variance. Hence, reliability as the proportion of true 

score variance to total observed score variance cannot be directly measured, but has to be 

estimated instead. There are several approaches to estimating reliability. 

Reliability Attributes. 

Stability is one of three distinct attributes of reliability outlined by Drost (2011). It 

refers to the consistency of results across time. It can be measured by administering a test 

at two different points in time and correlating the results with each other. The interval 

between the measurements should be long enough to prevent the results from the first 



12 

 

administration to influence the results from the second administration (Kimberlin & 

Winterstein, 2008), but not so long that important resources such as time and money are 

wasted and results are potentially biased because of maturation between time points. 

When stability is the attribute of interest, reliability is estimated using the test-retest 

approach. In this case, the same measure is administered twice after a period of time and 

the correlation between the scores of the two assessments is calculated. One disadvantage 

of this approach is the need for multiple time points, resulting in a longitudinal design. 

Furthermore, depending on the length of the time period between the two assessments, 

the results at the first time point could influence the results at the second time point and 

bias the reliability estimate. 

The second attribute equivalence refers to the test being used by different 

administrators or alternate measures being administered. When two or more judges 

evaluate a performance, then the level of agreement between their evaluations, referred to 

as the inter-rater reliability estimate, determines equivalence. Another method to evaluate 

equivalence is to administer two alternative forms of the same test and calculate the 

correlation between them. 

Internal consistency is the third reliability attribute, which measures the 

equivalence of individual items on the same test. Researchers frequently use 'internal 

consistency' interchangeably with 'homogeneity' (Heale & Twycross, 2015). However, it 

is important to make a distinction between those terms to correctly estimate reliability 

(i.e., Cronbach, 1951). This distinction will be discussed below.  
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Internal consistency is based on the assumption that items measuring the same 

construct should be correlated (Kimberlin & Winterstein, 2008). Estimates of reliability 

measuring internal consistency have the advantage that only one admission of the 

measure is needed and are therefore used most frequently. Examples of internal 

consistency estimates are discussed below. 

Even though the categorization of reliability into stability, equivalence, and 

internal consistency suggests different ways to estimate reliability, Wainer and Thissen 

(1996) argue that when internal consistency indexes are calculated correctly, they 

accurately reflect stability, such as test-retest correlation; as well as equivalence, such as 

correlation between alternate forms. For example, consider a measure A with a specific 

mean covariance between items. Then we sample from a pool of items with the same 

mean covariance as measure A without replacement to create two new tests (tests B and 

C) of the same length. The reliability estimate between measures B and C provides the 

coefficient of equivalence. When this process is repeated over and over, their mean 

would be the internal consistency of measure A (Cronbach, 1951).  

Internal Consistency Estimates. 

The definition of reliability is the extent to which a measure would provide the 

same results in successive administrations of that measure. Therefore, the most evident 

conventional approach to estimate internal consistency was to split the measure into two 

halves and calculate the correlation between them, referred to as the split-half method 

(Spearman, 1910; Brown, 1910). However, splitting the measure shortens it to half of its 

length, causing an underestimate of reliability (Streiner, 2003).  
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Spearman (1910) and Brown (1910) simultaneously developed a method, now 

referred to as Spearman-Brown Prediction Formula, which converts the split-half 

correlation into an estimate of reliability that takes into account that the correlation was 

calculated using only half of the test. A disadvantage of the Spearman-Brown Prediction 

Formula is the numerous ways to split each measure with each resulting in a different 

reliability coefficient. It also produces a biased estimate of reliability, which could either 

be an over- or an underestimate based on how the measure is split. This is due to the 

assumption that each added item increases reliability by the same amount (Kuder & 

Richardson, 1937). 

Kuder and Richardson (1937) developed a formula to estimate reliability for 

binary items, referred to as Kuder-Richardson Formula 20, which is based on variance 

instead of correlation between items. Specifically, it provides a reliability estimate that is 

based on the number of items, the probability of not passing or passing an item (i.e., a 

coding of “0” and “1,” respectively), and the overall variance of the measure. A second 

version is the Kuder-Richardson Formula 21, which is similar to the Kuder-Richardson 

Formula 20 but assumes that all items are equally difficult. However, the limitation of 

both Kuder-Richardson Formulas is that they can only be used with binary items. 

Cronbach (1951) solved that problem with his coefficient alpha, which can be used with 

continuous data, partial credit, and Likert scale (Zhang & Yuan, 2016).  

Cronbach’s coefficient alpha is calculated under the assumption that the measure 

is unidimensional and hence that the item covariances are the same. Therefore, it is a 

lower bound rather than an exact representation of reliability in cases where a measure 
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may be multidimensional. McDonald’s (1999) coefficient omega relaxes this assumption 

and can be used with measures that are not strictly unidimensional. 

While Cronbach’s alpha and coefficient omega are both used as equivalent 

alternatives, Cronbach’s alpha has been the most commonly used measure in numerous 

areas of research (Cortina, 1993) and is often reported with the use of measures that 

consist of multiple items (Downing, 2004; Zhang & Yuan, 2016). 

Cronbach’s Coefficient Alpha. 

Cronbach’s coefficient alpha is a function of all possible split-half coefficients for 

a measure, as well as a special case of the split-half reliability estimate (Cronbach, 1951). 

If a measure was split in half in all-possible ways, then the average between all of the 

split-half estimates is coefficient alpha. Reliability is defined, as previously mentioned, 

by the proportion of true score variance to observed score variance. Cronbach’s 

coefficient alpha takes into account the number of items, so that the coefficient is the 

ratio of interitem covariance to total variance multiplied by k/(k-1) (Cronbach, 1951). It is 

estimated by the following formula (Streiner, 2003): 

𝑘

𝑘−1
(1 −

∑ 𝑣𝑎𝑟(𝑥𝑗)𝑘
𝑗=1

𝑣𝑎𝑟(𝑥0)
)     (2.6) 

In which k refers to the number of items on the measure of interest, var(xj) refers to the 

variance associated with a specific item j, and refers to the total observed score variance. 

It can also be written as: 

𝛼 =  
𝑘∗ 𝑐𝑜𝑣(𝑥𝑗,𝑥𝑚)

𝑣𝑎𝑟(𝑥𝑗)+ (𝑘−1) ∗ 𝑐𝑜𝑣(𝑥𝑗,𝑥𝑚)
    (2.7) 

in which j and m are items with an average interitem covariance of j ≠ m. To calculate the 

average interitem covariance, the correlation between each pair of item is calculated. For 
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example, if a measure had three items, then the correlation between item 1 and item 2, 

between item 2 and item 3, and between item 1 and item 3 is calculated. All of those 

correlations are averaged across to obtain the average interitem covariance. Therefore, 

Cronbach’s alpha will increase when correlations between items increase. This means 

that if a measure would simply ask the same question over and over, assuming no 

measurement error, then coefficient alpha would equal 1 (Zhang & Yuan, 2016). 

Technically, since reliability is the proportion of variance in the observed scores 

attributable to the total variance, its range is between 0 and 1. However, it is possible in 

some cases to obtain a negative estimate of reliability (e.g., a negative coefficient alpha). 

This could be the case if either the reverse questions were not reverse coded, leading to 

negative correlations between items (Streiner, 2003), or if there are different constructs 

that items belong to, leading to the variance of the individual items exceeding their 

shared variance (Henson, 2001). Both of those cases indicate that the items are not 

measuring what they are intended to, which points to problems with the original scale.  

Coefficient alpha is calculated based on the essentially tau-equivalent model, 

which assumes that that all items measure the same latent variable and that that they are 

measured on the same scale, but they can be measured with a varying degree of precision 

and have different error variances (Graham, 2006). As a result, a common misconception 

between researchers is that coefficient alpha is a measure of unidimensionality (i.e., 

Cortina, 1993; Schmitt, 1996). To show that this assumption is wrong, it is important to 

define the difference between internal consistency and homogeneity (Cortina, 1993). 

While internal consistency refers to how a set of items is interrelated, homogeneity refers 
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to the unidimensionality of those items. Internal consistency is a necessary, but not 

sufficient condition for homogeneity. For instance, a set of items can be relatively 

interrelated and still represent multiple dimensions. On the contrary, homogeneity is 

necessary to accurately estimate reliability using coefficient alpha. Since coefficient 

alpha is a measure of item interrelation, it underestimates reliability when homogeneity is 

not present. Hence, coefficient alpha is not a test of unidimensionality, but rather a lower 

bound estimate of reliability (Miller, 1995). 

Factors Influencing Internal Consistency. 

There are numerous factors that can influence the internal consistency of a 

measure. Coefficient alpha is simply a function of the number of items, item variances, 

and covariances between items. These components can be used to determine the 

influences on internal consistency.  

Test length, or the number of items in a measure, affects the internal consistency 

directly. There is a strong positive correlation between the number of items and internal 

consistency, as measured by multiple reliability coefficients (Javali, Gudaganavar, & Raj, 

2011). That is, when other factors stay the same, internal consistency of a measure 

increases as the length of a scale increases. For example, a scale with more than 14 items 

will have a coefficient alpha of about .70, even if the correlations between items are only 

.30 (Cortina, 1993). 

Sample size (i.e., the number of observations available for a measure) impacts the 

item variances of that measure in that a larger sample size generally results in smaller 

variance. Since the total variance is in the denominator of the mathematical 
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representation of reliability, a smaller total variance results in larger reliability. Sample 

size is not only one of the biggest challenges of a study's design because finding a 

balance between too small and too large is difficult (Bonett, 2002), but also has an effect 

on the reliability of the measures used. While Yurdugül (2008) found that for an unbiased 

estimate of reliability using coefficient alpha a sample size of 30 is sufficient with a large 

first eigenvalue and 100 is adequate with a smaller first eigenvalue, Ercan, Yazici, Sigirli, 

Ediz, and Kan (2007) argue that sample size is not important for coefficient alpha and 

estimates are stable even with very small sample sizes. 

Number of response categories is a factor with different opinions about its 

influence on reliability. As Lissitz and Green (1975) point out, there have been numerous 

conflicting opinions on this topic, including the 7-point scale as the optimal number, 

independence of response category number and reliability, and a positive relationship 

between number of response categories and reliability. In their simulation, Lissitz and 

Green (1975) found that there is an increase in reliability with an increase in the number 

of response categories up to five categories. With more categories, the effect levels off. It 

is also important to note that the optimal number of response categories is dependent on 

the interests and objectives of a specific study more than on a recommended standard 

(Lissitz & Green, 1975). 

Covariances between items represent the degree to which the items are related to 

each other, in other words it is the amount of shared variance between them. An item's 

communality is the extent to which each item correlates with at least one other item on 

the scale. As the correlations between items increase, coefficient alpha also increases 
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(Cortina, 1993). As mentioned above, asking the exact same question over and over in 

one scale would result in an coefficient alpha of 1 for that scale (Zhang & Yuan, 2016). 

Symonds (1928) described 25 factors that influence reliability of measures in his 

paper. Most of those factors are concerned with the stability of the measure, rather than 

the internal consistency, and will not be discussed further in this paper. However, it is 

important to note that in addition to those mentioned above there are several different 

factors that can influence the reliability of a measure and to keep them in mind when 

talking about reliability. Some examples of those factors are time restrictions, item 

difficulty and discrimination, instructions, item selection, and scorer reliability 

(Symonds, 1928). 

 Missing Data. 

Almost every time human participants are involved in research, there is missing 

data involved. With surveys and other measures that involve multiple items, an important 

type of missing data is nonresponse. Nonresponse means that even though complete data 

were expected to be collected, some data are missing. Nonresponse of one participant can 

apply to the complete measure or only certain parts of it.  

Types of Nonresponse. 

In survey methodology, data can be missing due to unit nonresponse, when no 

data are collected for the participant at all for that specific measure. For instance, this is 

due to the participant not being at home or refusing to participate in the study. In item 

nonresponse participants could answer parts of the survey, but leave some of the 

questions blank. This occurs because the participant does not know the answer, refuses to 
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answer, or a processing error such as wrong data entry, interviewer error, computer-

assisted questionnaire programming error, or post-survey processing decisions which 

exclude parts of the data (Cuesta & Fonseca, 2014). In longitudinal studies, a participant 

may be present for some of the data collection time points, but may be missing for others, 

resulting in wave nonresponse. For example, attrition occurs when participants leave the 

study and do not return. This is the case when participants move away or with older 

populations, when participants die while the study is in progress. 

Missing Data Patterns. 

When item nonresponse is examined for the whole sample, certain patterns of 

nonresponse can be observed based on the location, or distribution, of the missing values. 

The pattern of missing data provides information about the configuration of observed and 

missing values in the data (Enders, 2010).  

The univariate pattern shows a structure where responses on only one variable are 

missing. For instance, this is the case when an item that does not apply to a number of 

participants or when an exam question is very difficult. 

The unit nonresponse pattern can be observed when some items are complete and 

other items have missing values for a subset of the participants. For instance, when a 

question asks whether participants smoke or not and then follows up with smoking 

behavior questions only for those who answered yes. 

The monotone pattern is typically associated with a longitudinal design. As the 

study goes on, an increasing number of observations are missing for the measures 

administered later in time. This pattern resembles a staircase and is usually due to 
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participants who drop out of the study and never return. In terms of scale measures, this is 

the case for measures with time restrictions. The items at the end of the measure have an 

increasing amount of missingness. 

The general pattern is most commonly observed and shows a seemingly random 

distribution of missing values throughout the data. The random pattern describes the 

location rather than the reason for missingness, so the data could still be systematically 

missing (i.e., with a certain missing data mechanism). 

The planned missing pattern is used to reduce the number of items answered by 

each individual, while still collecting data on a large amount of items. This is the case 

when participants are divided into blocks and only respond to a certain portion of the 

items. 

The latent variable pattern only applies to latent variable analyses such as 

structural equation models. Missing data follow this pattern when values for the indicator 

variables are available, but the latent variables are missing for the entire sample. Missing 

data algorithms can be used in that case, even though latent variable models may not be 

seen as missing data problems. 

Missing Data Mechanisms. 

Missing data mechanisms provide information about the relationship between the 

missing data and the variables in the model, if there is a relationship at all. These 

mechanisms were first described by Rubin (1976) and have been continuously used in 

research ever since. However, these mechanisms are only theoretical, since it is very 

difficult to impossible to find out which missing data mechanism is present in the data. 
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Therefore, researchers can rarely be sure about the true reason for missing data (Enders, 

2010).  

The three mechanisms are missing completely at random (MCAR), missing at 

random (MAR), and missing not at random (MNAR). As described in Enders (2010), the 

complete data Ycom consists of two parts, the observed data Yobs and the missing data Ymis. 

The probability distribution p for each of the missing data mechanisms shows how the 

missing data indicator R depends on Ycom, Yobs, Ymis, and a parameter  that describes the 

relationship between R and the data. 

The three missing data mechanisms described by Rubin (1976) can be further 

described by whether they result in ignorable or nonignorable missingness. When 

estimates calculated from the data set are unbiased even in the presence of missing data, 

missingness is ignorable and no further adjustment is necessary. However, if the missing 

data are nonignorable, the estimates from the data set will be biased and need to be 

adjusted. 

Missing data that follows the MNAR pattern are nonignorable, because the 

variable that causes the missingness is not measured. In this case, the absence of data on 

the outcome variable is related to the value on that variable. For example, in a study 

conducted on weight loss, participants who gain weight over the course of the study may 

be more likely to drop out of the study or not report their weight. Another example at the 

item level, poorly worded or confusing items may be intentionally omitted by participants 

and therefore considered MNAR (Parent, 2013). For example, items that ask about 

feelings towards a husband or boyfriend may be intentionally omitted by women in same-
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gender relationships. If sexuality is not assessed in the survey, then there is no way to 

find out why data points are missing and the type of missingness is classified as MNAR. 

The distribution of MNAR can be written as: 

p(R|Yobs, Ymis, )     (2.8) 

 

Data that are MAR show missingness due to a variable that is included in the 

dataset. In other words, the probability that data are missing depends on observed data 

and not on missing data. For example, when there is a speed limit on an exam people 

with slower reading speed are more likely to have some items missing. As long as 

reading speed is included as a variable, the missing data mechanism is considered MAR. 

As another example and using the previous item-level example, for the missing data to be 

MAR, sexuality needs to be assessed by the survey. When data are missing due to a MAR 

mechanism, modern missing data techniques, such as maximum likelihood estimation 

(MLE) and multiple imputation (MI) are most widely used. For MAR, the distribution 

can be described as: 

p(R|Yobs, )     (2.9) 

 

The MCAR mechanism is a special case of MAR and requires that the reason for 

why data are missing is completely unrelated to the study. As an example, this would be 

the case in the unit nonresponse and the wave nonresponse type of missingness if 

participants got sick on the day of data collection. In the item nonresponse case this might 

happen when a participant does not see a question or a machine malfunctions when 
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administering a survey on the computer. Similar to MAR, when data are MCAR the 

assumptions are met so that modern missing data techniques may be used to handle the 

missing data. MCAR is also the only mechanism that can be potentially detected, by 

using a multivariate extension of the t-test, as proposed by Little (1988). The distribution 

of MNAR is: 

p(R| )     (2.10) 

 

Of course, preventing the occurrence of missing data is best. If there are no 

missing data to begin with, no methods are needed to adjust for them. Parent recommends 

ensuring that all items are applicable to all respondents. Furthermore, pilot studies can 

help to determine missing data patterns. Since MNAR is the data mechanism that is most 

difficult to deal with after the data are collected, it is the most important one to prevent. 

Therefore, it is very important to include questions that are related to the missing values 

to at least transform the MNAR missing data into MAR. For instance, as described in the 

previous item-level example, including a question about sexuality changes missing data 

on questions relating to a boyfriend for participants in same-sex relationships from 

MNAR to MAR. 

Dealing with Missingness. 

Most statistics, including coefficient alpha, would be impossible to calculate with 

an incomplete dataset. Therefore, either the dataset must be reduced, until sufficient 

information is reached, or the missing values must be imputed. The most common ways, 

but also the least effective, are listwise deletion and pairwise deletion. Listwise deletion 
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results in the deletion of each case that contains missing data, including the variables that 

do have observed values. This can result in an elimination of a large number of cases, 

wasting resources and causing lower statistical power (Enders, 2010). Pairwise deletion 

only deletes cases when they have missing data on one or more of the variables used for 

the statistic calculated, such that different statistics are based on different sample sizes. 

The problem with using these methods is that they assume the MCAR mechanism and 

will produce biased estimates if that assumption is violated (Enders, 2010). Even though 

these methods, most commonly listwise deletion, are still the default option in most 

statistical programs, they are being increasingly criticized in methodological literature 

and are slowly falling out of favor (Little & Rubin, 2002). 

To prevent the problem of sample size reduction and the assumption of missing 

data being MCAR, another option is to impute the missing values based on the observed 

values. Imputing values replaces the missing values with a value that is calculated from 

the rest of the data that are complete. The decision to impute values has to make sense. 

For example, if a participant answers “no” to the question “Do you smoke?”, then it does 

not make sense to impute that participant’s answers on smoking behavior. Traditional 

methods of imputing missing values rely on single imputation, where each value is only 

imputed once. In more modern missing data handling methods values are imputed 

multiple times, resulting in variability of the imputed values. 

Single Imputation Methods. 

The most basic single imputation is arithmetic mean imputation (Wilks, 1932); 

that is, inserting the mean of the variable into all of the values that are missing. This 
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approach is very straightforward, but the problem is that imputing values from the center 

of the distribution decreases variability, thereby resulting in a severe distortion of the 

results even when the data are MCAR (Enders, 2010). For example, a decrease in 

standard error results in a larger test statistic as well as a higher probability of rejecting 

the null hypothesis. This imputation method is heavily criticized in methodological 

research (e.g., Enders, 2003; Schafer & Graham, 2002). 

A second option is regression imputation (Buck, 1960), with the idea that a 

regression model based on variables being correlated with each other. The observed 

variables can be used to predict the missing variables, so that the regression model 

includes observed variables as predictor variables and the missing variable as the 

outcome variable. Since regression is used to make predictions, this method intuitively 

makes sense. However, the imputed values will fall exactly on the regression line, which 

causes an overestimation of the correlations and R2, even when the data are MCAR 

(Enders, 2010).  

Stochastic regression imputation was introduced to solve this overestimation. 

Stochastic regression imputation works the same way as regression imputation, but 

includes an error term into the predictions. This error term is randomly drawn from a 

normal distribution with a mean of zero and variance equal to the residual variance from 

the regression equation. Of all the single imputation methods, stochastic regression is the 
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only one that can provide unbiased parameter estimates under the MAR missing data 

mechanism (Enders, 2010). 

Furthermore, the hot-deck imputation (Roth, 1994; Myers, 2011) is used to 

replace a missing value with a value that was obtained from other respondents. For 

example, the missing value can be replaced by a value randomly drawn from all of the 

other observed values, or from a subset of respondents who scored similarly as the 

respondent with the missing value on a set of matching variables (Enders, 2010).  

Similarly, cold-deck imputation also uses a donor value to replace the missing 

value in the dataset (Shao 2000). However, in this case the value is obtained from 

anything other than reported values on the same item in the current data set (e.g. values 

from a previous item). 

Averaging the available cases (Enders, 2010) is specific to multiple-item 

questionnaires measuring one construct. Researchers are often interested in a scale score 

(i.e., the average or the sum of the responses) rather than the individual responses. To 

obtain a complete scale score without throwing away cases, the average of available cases 

is used. 

Last observation carried forward (Enders, 2010) can be used in longitudinal 

designs where participants have missing data for some of the time points, but not for 

others. In that case, the last observed value is used to replace the missing value.  

Modern Missing Data Methods. 

Compared to single imputation, modern missing data methods do not have to 

make the assumption that data are MCAR, but only MAR. They differ from listwise and 
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pairwise deletion in that they can use all of the observed data, without reducing the 

sample size. The two most successful methods that methodologists currently consider as 

state of the art are maximum likelihood estimation within the expectation-maximization 

algorithm and multiple imputation (Schafer & Graham, 2002). A big distinction between 

the two missing data techniques is that multiple imputation creates imputed values before 

running the analysis, while likelihood methods deal with the missing data during the 

model-fitting procedure. Overall, the two approaches have been shown to produce similar 

results, if the same data analysis model is used (Schafer & Graham, 2002). The 

increasing focus on missing data methods has been part of the reason why these methods 

are slowly becoming common procedure. Most statistical programs include maximum 

likelihood estimation and multiple imputation as missing data procedures in their 

packages. 

Maximum Likelihood Estimation for Handling Missing Data. 

Originally, MLE is a process that has not been specifically developed for the 

purpose of dealing with missing data. Instead, it is a way to estimate population 

parameters based on their likelihood from a certain sample (Enders, 2010). Even though 

using maximum likelihood estimation in the presence of missing data is not a new 

concept (e.g., Edgett, 1956), it has only recently been implemented into statistical 

programs and become accessible to researchers with limited methodological background 

(Schafer & Graham, 2002). In literature, maximum likelihood data handling is often also 

referred to as full estimation maximum likelihood (FIML) or direct maximum likelihood. 

This method can now be found in most statistical packages, even though the 
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utilization may still be limited or only available for certain analyses (Enders, 2010). 

The first step of maximum likelihood estimation (MLE) is to either determine the 

distribution of the variable or variables or assume a particular distribution. Typically, the 

distribution is assumed to be normal or multivariate normal in the multivariate case. From 

this distribution a probability density function is developed that indicates the probability 

of obtaining a certain value for that specific distribution, also called the likelihood. To 

identify parameters from a sample of data, the likelihood of individual cases is 

multiplied, resulting in a likelihood for the sample. For a more useful metric, the natural 

logarithm of likelihood values is used instead of individual values (Enders, 2010). 

Assuming that the likelihood is a differentiable function, then the first and second 

derivatives are used to maximize the probability density function. The first derivative is 

set to 0 to determine the locations of the extrema (i.e., one or more minima and/or 

maxima). If the second derivative at that location is negative, the extrema is known to be 

a maximum of the function, while a positive second derivative indicates a minimum of 

the function. The goal is to identify population parameters with the highest likelihood 

(i.e. the global maximum of the log-likelihood function) of producing the particular 

sample (Enders, 2010). However, estimating more complex models can require a 

collection of equations with one or more unknowns. Since solving for unknown 

parameter values in a set of equations can be complex, an iterative optimization algorithm 

can be used with advanced applications of maximum likelihood estimation (Enders, 

2010). The iterative optimization algorithm used with missing data is the expectation-

maximization algorithm described below. 
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The advantage of using MLE to handle missing data is that it yields unbiased 

parameter estimates under the MAR missing data mechanism. However, it may still result 

in biased parameter estimates when the missing data are MNAR (Enders, 2010). 

Expectation-Maximization Algorithm. 

The expectation-maximization (EM) algorithm is an iterative optimization 

algorithm performed to estimate unknown parameters for data with missing values 

(Dempster, Laird, & Rubin, 1977). The expectation-maximization algorithm does not 

“fill in” the missing data, but rather maximizes the complete log-likelihood function to 

estimate the unknown parameter. This is done by iterating between two steps, the 

expectation step and the maximization step. The two steps described below are alternated 

between and the process is continued until convergence (i.e., the estimates of the 

parameter are almost identical; Dempster et al., 1977). 

In the E- (expectation) step, the expectation of the log-likelihood function of an 

unknown parameter is calculated. Although the complete-data likelihood cannot be 

determined with a portion of the data missing, it is possible to compute the expectation of 

the log-likelihood function with respect to the distribution of the missing data with an 

initial guess about the parameter (e.g., a mean vector and a covariance matrix). In 

subsequent iterations, this initial guess is replaced with an estimated value from the M-

step. With this information, a set of regression equations are created to predict the 

missing values from the observed values (Enders, 2010). 

In the M- (maximization) step, the revised estimate of the parameter (e.g., a new 

mean vector and covariance matrix) is obtained by maximizing the expectation function 
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obtained in the E-step. The updated estimate of the parameter is used for the next E-step 

to start a new iteration (Enders, 2010). 

Multiple Imputation. 

In situations where a complete data set is needed multiple imputation (MI) can be 

used to estimate the missing values to produce a complete data set (Rubin, 1987). An MI 

analysis is performed using three distinct steps: the imputation phase, the analysis phase, 

and the pooling phase. Once the data set is imputed with values replacing the missing 

values, traditional statistical analysis methods can be used on the now complete data set. 

Similar to MLE, MI can also be used with data that are MAR, but may be biased with 

MNAR data (Enders, 2010). 

The ultimate goal of the imputation phase is to generate m complete data sets, 

each containing different imputed values. This phase is divided into an imputation step 

and a posterior step. In the imputation step, a set of plausible values is developed. There 

are multiple ways to develop these values such as propensity scoring, Markov Chain 

Monte Carlo, and regression. For example, in the regression method the criterion in each 

regression equation is the variable with missing values, respectively, so that the observed 

values on other variables can be used to predict the missing values. The purpose of the 

posterior step is to vary the regression coefficients used in the imputation step, so that 

each data set contains different imputed values. This is done by adding a residual term to 

each element in both the mean vector and covariance matrix that were used in the 

imputation step. This creates a new set of plausible estimates from a sampling 

distribution (Enders, 2010). 
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The analysis phase is then used to analyze each of the complete data sets 

generated in the previous step, resulting in m statistical analyses. This step yields m 

estimates of the parameters of interest, which are then combined in the pooling phase to 

obtain a single estimate (Enders, 2010). 

Rather than using a single parameter estimate, in the pooling phase all of the m 

parameter estimates obtained in the analysis phase are combined. Using the usual formula 

for the mean, an arithmetic average of the m estimates can be defined as the multiple 

imputation point estimate (Rubin, 1987). The resulting pooled parameter estimates not 

only include the finite-sample variation, but also reflect missing data uncertainty (Schafer 

& Graham, 2002). 

Coefficient Alpha in the Presence of Missing Data. 

It is important to note that when examining the effect of missing data on 

reliability, specifically on Cronbach’s coefficient alpha as an estimate of reliability, it is 

assumed that “presence of missing data” is equivalent to listwise deletion. Reliability 

coefficients cannot be calculated on incomplete data using traditional estimation 

methods, hence this assumption is necessary to make. 

The missing data mechanism of the missing values has an important effect on the 

estimation of coefficient alpha. While reliability estimates are expected to be unbiased at 

least in the MCAR case (Enders, 2004; Izquierdo & Pedrero, 2014), Enders (2003) has 

shown that even with MCAR data, the estimation can be biased. MAR and MNAR 

missing data conditions will lead to biased estimates of coefficient alpha (Enders, 2003). 

Another important factor is the amount of missing data. A higher amount of 



33 

 

missing data results in a decrease in sample size. As previously discussed, a smaller 

sample size is associated with higher total observed score variability and consequently a 

smaller coefficient alpha. Therefore, coefficient alpha will underestimate reliability when 

a large amount of missing data is present (e.g., Izquierdo & Pedrero, 2014). 

Justification for Current Study. 

Despite the large amount of studies published on missing data, most of those 

studies are concerned with outcomes measured on a continuous scale, yet behavioral 

science is often concerned with item-level analyses as well (Enders, 2003). Little 

attention has been paid to reliability in the presence of missing data, even though it plays 

a ubiquitous role on measurement and applied research. Not only is there a lack of 

methodological research on this topic, but also applied studies often fail to report the 

method for handling missing data. When no indication on missing data handling is given, 

it is most likely to be listwise deletion, the default in most statistical software (Enders, 

2004). This study aims to examine the effect of missing data on reliability under different 

missing data mechanisms. Furthermore, the goal is to examine whether and how this 

effect changes when modern missing data methods are used.  
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METHOD 

Data Generation. 

In contrast to other research focused on reliability and missing data, in this study 

data were simulated with specific population reliability values to begin with, in contrast 

to letting the reliability vary as a function of interitem correlations. Three populations 

with about one million observations and ten items each were drawn from a multivariate 

normal distribution. Since changing the number of items would have influenced the 

population reliability, it was held constant.  

Coefficient alpha was used to create population reliability with three levels, which 

were achieved using a correlation matrix. The correlation matrix was composed of 

interitem correlations, which were chosen to create a specific reliability value. The means 

were set at 3.5 for half of the items, and 2.5 for the other half, to create two different 

levels of items. Using a depression questionnaire as an example, this would mean that 

participants selected higher values for the first five items and lower values for the second 

five items, on average. Subsequently, missing values were only inserted on items with a 

mean of 2.5. Each of the three populations was rounded and truncated to contain response 

options from one to five in order to mimic results from a common Likert-type scale. 

Hence, each of the three populations had about one million ordinal observations. 

For each population, samples were drawn with two different sample sizes (n = 

100, n = 500). Missing data was inserted into those samples based on the missing data 

mechanism of interest (MCAR, MAR, MNAR) and the missing data rate (pmiss = .05, 

pmiss = .15). For each condition, the process of sample selection, missing data insertion, 
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and reliability estimation was repeated 1000 times. For each of the replicated samples, 

coefficient alpha was calculated using listwise deletion first. Then the missing values 

were imputed using multiple imputation and coefficient alpha was calculated again. This 

resulted in 72 between-group cells with 1000 coefficient alpha values. They were 

analyzed by calculating bias, standardized bias, RMSE, and confidence interval coverage. 

R (Version 1.2.1335) was used for all data generation and analysis performed in this 

study.  

Independent Variables. 

Reliability Level. 

As mentioned above, populations with different reliability levels were created 

using Cronbach’s coefficient alpha. Reliability values of 0.7, 0.8, and 0.9 were used. This 

aligns with the reliability suggestions made by Langner et al. (2017), so that 0.9 

represents a high reliability, 0.8 a sufficient reliability, and 0.7 a problematic reliability. 

The correlation matrix was determined by trial and error to result in the target 

reliabilities, so that interitem correlations of about .25, .38, and .60 made up the 

correlation matrix respectively.  

Sample Size. 

In this study sample size is defined as the number of observations for the total 

scale. For example, with a sample size of 100, each observation contains data for each of 

the 10 items, resulting in 1000 data points total. A decrease in sample size increases the 

total observed score variability in a sample and is expected to decrease coefficient alpha. 

To examine this effect, two different sample sizes are used. The small sample size 
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condition includes 100 observations and results from the goal to balance a small sample 

size while still being able to calculate coefficient alpha with a high level of missing data 

using listwise deletion. The large sample size condition includes 500 observations and 

aims to contain enough observations to be considered a large sample size in social 

sciences. 

Missing Data Percentage. 

Missing data were imposed on half of the items; this was considered more 

realistic than all items containing missing data. Specifically, missing data were imposed 

on the items with a mean of 2.5, so that with 10 items total there were five items with 

missing data and five items without missing data. The two percentages of missing data 

used were 5% and 15%. These percentages are based on the complete number of data 

points. For example, for the 5% condition with a sample size of 100, 50 data points were 

deleted. Divided by the number of items that were targeted for missing values, each item 

was missing 10 data points, which is 10% of that item. Similarly, for the 15% condition 

and a sample size of 100, each item had 30 missing cases and a final missing data 

percentage of 30%. 

Missing Data Mechanism. 

Missing data were generated using the MCAR, MAR, and MNAR missing data 

mechanisms. For the MCAR condition, random values were deleted for the first five 

items. Each of those items had the same amount of missing data, so that each item 

contained one fifth of the total missing data points. 

For the MAR condition, each missing value item was paired with an item without 



37 

 

missing data, so that the likelihood of missingness was dependent on observed items. For 

example, item 1 was paired with item 6, item 2 was paired with item 7, and so on. Three 

different probabilities were assigned to different values on the complete item. The 

probability to have missing values was very high for low values on the complete item, 

lower for medium values, and very low for high values. This is based on the idea that 

participants with lower scores are more likely to have missing values. Hence, at the end 

each observation was paired with a certain probability to have missing values. Those 

probabilities were then used to delete values. 

The MNAR condition was created similarly to the MAR condition. Instead of 

using items without missing values to create probabilities, values on the item for which 

values were deleted were used. For example, if an observation had a low data point on the 

first item, they were more likely to have a missing value on that item. The size of 

probabilities was kept the same as in the MAR condition. 

Missing Data Techniques. 

Two missing data techniques were used, listwise deletion and multiple 

imputation. Listwise deletion is a common traditional method to deal with missing data, 

while multiple imputation and maximum likelihood estimation are modern missing data 

handling techniques.  

Listwise deletion is the default method to handle missing data in most statistical 

programs. However, it has been shown to only produce unbiased results under the MCAR 

condition. It is very difficult if not impossible to determine the missing data mechanism 

in a real-world scenario. In this study, listwise deletion is used under the MAR and 



38 

 

MNAR conditions as well, to examine the effect on reliability estimation. To use listwise 

deletion in the simulation, observations with at least one missing value on any item were 

discarded. Specifically, coefficient alpha was calculated on complete observations only. 

The package “Multiple Imputation by Chained Equations” (MICE) was used for 

multiple imputation. The method of imputation used linear regression to predict values 

that fit best in place of the missing values. For each incomplete data set, 10 complete data 

sets were created. Even though multiple imputation theory as well as the default in R 

claim that five data sets are sufficient for unbiased results, Graham et al. (2007) suggest 

that more data sets might be needed, especially as missing data percentage increases. 

Therefore, 10 data sets were considered a balance between a sufficient number of data 

sets and minimal computational effort. The number of iterations for the estimation 

process of the imputed values was set at 15, as recommended by van Buuren and 

Groothuis-Oudshoorn (2011). For each of the 10 resulting complete data sets, coefficient 

alpha was calculated and pooled together, so that for each sample with missing data, there 

was one final alpha value combined from the complete data sets created through multiple 

imputation. 

Maximum likelihood estimation was considered as a third missing data handling 

technique but was not implemented due to the lack of appropriate package to use with 

coefficient alpha. Even though modern missing data techniques are suggested to be 

straightforward to implement (Schafer & Graham 2002), there are still limitations to the 

practicality of their implementation.  
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Dependent Variables. 

Standardized Bias. 

Standardized bias was obtained by calculating raw bias first. When calculating 

raw bias, it is necessary to consider the value to which the computed coefficient alpha 

values are compared. In this case, the aim is to examine the deviation from the population 

value. Hence, bias was calculated by subtracting the appropriate population reliability 

value from the coefficient alpha value calculated from a sample drawn from that 

population. For example, when a sample was drawn from the population with reliability 

of 0.8, then 0.8 was subtracted from the resulting reliability estimate of that sample.  

Since a certain raw bias may not be comparable across the whole metric of 

coefficient alpha, the standard deviation of samples with no missing data was used to 

compute standardized bias. Even though this is not very common, it has previously been 

used in missing data research (Enders, 2003). In this study, samples with the two sample 

sizes (N =100, 500) were drawn out of each of the three populations and their standard 

deviations were calculated without inserting any missing data. This resulted in six 

different standard deviation values based on sample size and population reliability. For 

each final reliability estimate, raw bias was divided by the appropriate standard deviation. 

For example, when a sample of 100 containing missing data was drawn from the 

population with reliability of 0.9, then its bias was divided by the standard deviation of a 

complete sample of size 100 drawn from a population with reliability of 0.9. If αsample is 

the coefficient alpha value computed in each of the 72 between-group cells, αpopulation is 

the population reliability, and σcomplete is the standard deviation from the complete sample, 
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then the standardized bias is 

standardized bias = 
𝛼𝑠𝑎𝑚𝑝𝑙𝑒−𝛼𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝜎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒
.   (3.1) 

 

Root Mean Square Error. 

Root Mean Square Error (RMSE) is the standard deviation of the residuals and is 

used to measure the difference between the estimated and the observed values. In this 

case, the predicted values are the population reliability values. RMSE is calculated 

between each of the 72 between-group cells and a vector of corresponding population 

reliability values. For example, for a condition in which samples were drawn out of a 

population with a reliability of 0.7, RMSE was calculated between the resulting vector of 

alpha values and a vector of the same length that contained only values of 0.7. RMSE 

was computed using the “hydroGOF” package in R. RMSE was calculated using the 

formula 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑟−𝑃)2𝑛

𝑖=1

𝑛
 ,    (3.2) 

in which P is the population reliability value out of which the sample was taken, Or is the 

coefficient alpha value for each of the sample replications, and n is the number of sample 

replications, which in this study was always 1000. 

Confidence Interval Coverage. 

The confidence interval for each of the alpha values was computed using the 

“psychometric” package in R. Two-sided intervals were created based on the number of 

observations (N=100, 500), the number of items (k=10), and with a confidence level of 

95%. For each of the 72 between-group cells, the percentage of coefficient alpha values 
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that fall within the interval was calculated.
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RESULTS 

Reliability Level. 

Standardized Bias. 

The level of reliability had a noticeable impact on the standardized bias. The 

smallest absolute values of standardized bias occurred when reliability was 0.7. The 

average standardized bias was -3.02 for listwise deletion and -0.76 for multiple 

imputation at a reliability level of 0.7. In contrast, the highest absolute values of 

standardized bias occurred when reliability was 0.9. The average standardized bias was -

5.29 for listwise deletion and 1.59 for multiple imputation at a reliability level of 0.9. The 

sign for standardized bias was always negative when listwise deletion was used, causing 

an underestimate of the population reliability. The lowest average bias for listwise 

deletion was -11.66 at a sample size of 500 and a missing data rate of 15%. For multiple 

imputation, the sign was negative at all reliability levels when sample size was 100 and 

15% of data were missing. In addition, the sign was negative at a reliability level of 0.8 

with both sample sizes at a missing data percentage of 5%. The highest average 

underestimate for multiple imputation was -1.79 at a reliability level of 0.7, sample size 

of 100, and a missing data percentage of 15%. The highest average overestimate for 

multiple imputation was 0.84 at a reliability level of 0.9, sample size of 500, and a 

missing data rate of 15%. The difference in standardized bias between listwise deletion 

and multiple imputation was generally large, with the difference in the largest average 

standardized bias being 9.87. This is partially due to missing imputation both under- and 

overestimating reliability under varying conditions and thereby lowering the average 

bias. 
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Root Mean Square Error. 

Generally, RMSE was observed to be lower for higher reliability and higher for 

lower reliability for both listwise deletion and multiple imputation. These results are 

visible in Figures 1-4, which show the RMSE levels for each of the different conditions 

comparing listwise deletion to multiple imputation, different reliability levels, as well as 

different missing data mechanisms.  
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Figure 1. RMSE when n = 100 and pmiss = 0.05 

 

Figure 2. RMSE when n = 100 and pmiss = 0.15 
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Figure 3. RMSE when n = 500 and pmiss = 0.05 

 

Figure 3. RMSE when n = 500 and pmiss = 0.15 
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Specifically, the highest average RMSE of 0.11 for listwise deletion occurred at a 

reliability level of 0.7, while the lowest RMSE of 0.06 occurred at a reliability of 0.9. The 

highest RMSE of 0.04 for multiple imputation was observed at a reliability of 0.7, while 

the lowest RMSE of 0.02 was observed at a reliability of 0.9. Lower RMSE values 

occurred consistently for multiple imputation as compared to listwise deletion, regardless 

of the reliability level. Specific ratios between RMSE values for listwise deletion and 

RMSE values for multiple imputation are presented in Table 1.  
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Table 1. RMSE Ratios for LD and MI 

RMSE Ratios for LD and MI 

  LD/MI 

Sample 

size 

Missing 

data (%) 

MCAR MAR MNAR 

  Coefficient alpha = 0.7 

100 5 1.31 1.50 1.52 

100 15 2.79 4.29 3.43 

500 5 1.14 1.70 1.94 

500 15 1.27 3.17 3.68 

  Coefficient alpha = 0.8 

100 5 1.33 1.84 1.85 

100 15 2.93 5.52 3.72 

500 5 1.14 2.17 2.71 

500 15 1.10 4.52 4.93 

  Coefficient alpha = 0.9 

100 5 1.36 2.45 2.67 

100 15 3.36 7.63 5.49 

500 5 1.03 3.21 4.36 

500 15 0.99 6.62 7.20 

Note. MCAR = missing completely at random; MAR = missing at random; MNAR = 

missing not at random; LD = listwise deletion; MI = multiple imputation. 

 

The lowest ratio of 0.99 was observed under the MCAR condition and a reliability 

level of 0.9 for a sample of size 500 with 15% missing data. The highest ratio of 7.2 was 

observed under MNAR condition and with other factors being the same. In general, the 
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average ratio was higher for higher reliability, with listwise deletion showing RMSE 

values 2.31 times higher than listwise deletion for a reliability of 0.7 and 3.87 times 

higher than listwise deletion for a reliability of 0.9. The ratio difference was higher 

between reliabilities of 0.8 and 0.9 (1.06) than between reliabilities of 0.7 and 0.8 (0.50). 

Confidence Interval Coverage. 

Overall, Table 2 shows that confidence interval coverage decreased as reliability 

increased for both listwise deletion and multiple imputation.  
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Table 2. Confidence Interval Coverage for LD and MI 

Confidence Interval Coverage for LD and MI 

  MCAR MAR MNAR Total 

Sample 

size 

Missing 

data 

(%) 

LD MI LD MI LD MI LD MI 

  Coefficient alpha = 0.7   

100 5 0.86 0.93 0.83 0.95 0.81 0.94 0.83 0.94 

100 15 0.59 0.90 0.44 0.89 0.39 0.87 0.47 0.89 

500 5 0.88 0.91 0.72 0.91 0.68 0.95 0.76 0.92 

500 15 0.57 0.53 0.09 0.52 0.02 0.62 0.23 0.56 

  Coefficient alpha = 0.8   

100 5 0.89 0.95 0.79 0.95 0.76 0.96 0.81 0.95 

100 15 0.57 0.90 0.25 0.89 0.19 0.77 0.34 0.85 

500 5 0.89 0.91 0.55 0.92 0.45 0.94 0.63 0.92 

500 15 0.62 0.46 0.00 0.43 0.00 0.55 0.21 0.48 

  Coefficient alpha = 0.9   

100 5 0.87 0.96 0.63 0.96 0.59 0.96 0.70 0.96 

100 15 0.59 0.94 0.06 0.91 0.02 0.79 0.22 0.88 

500 5 0.90 0.90 0.20 0.91 0.11 0.94 0.40 0.92 

500 15 0.63 0.37 0.00 0.35 0.00 0.53 0.21 0.42 

  Total   

  0.74 0.81 0.38 0.80 0.34 0.82   

Note. MCAR = missing completely at random; MAR = missing at random; MNAR = 

missing not at random; LD = listwise deletion; MI = multiple imputation. 
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Specifically, the highest average confidence interval coverage for both listwise 

deletion (57%) and for multiple imputation (83%) occurred at a reliability level of 0.7. 

The lowest average confidence interval coverage for both listwise deletion (38%) and 

multiple imputation (80%) occurred at a reliability level of 0.9. The decrease in average 

confidence interval coverage was higher for listwise deletion (19%) than for multiple 

imputation (3%). 

Sample Size. 

Standardized Bias. 

Manipulating sample size had an effect on standardized bias for both missing data 

techniques. The absolute value of standardized bias was smaller for the small sample size 

than for the large sample size for both listwise deletion (-3 compared to -4.79) and 

multiple imputation (-0.34 compared to 0.49). This effect was larger for listwise deletion 

at 1.79 than for multiple imputation at 0.15. Interestingly, the sign of the standardized 

bias changes between the sample sizes for multiple imputation. While for the small 

sample size coefficient alpha underestimated the population reliability when multiple 

imputation was used, it overestimated the population reliability for the large sample size, 

on average. 

Root Mean Square Error. 

The pattern for RMSE was opposite to the pattern for standardized bias for both 

missing data techniques. For listwise deletion, RMSE was higher when sample size was 

100 (0.10) than when sample size was 500 (0.06), with a difference of 0.04. Similarly, 
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RMSE for multiple imputation was higher when sample size was 100 (0.03) than when 

sample size was 500 (0.02), with a difference of 0.01.  

Confidence Interval Coverage. 

Reliability estimates occurred within the confidence interval more often when 

sample size was small than when sample size was large. Specifically, average confidence 

interval coverage for listwise deletion was 56% when sample size was small and only 

41% when sample size was large. Average confidence interval coverage for multiple 

imputation was observed to be 91% when sample size was small and 70% when sample 

size was large. Interestingly, the change in confidence interval coverage was larger for 

multiple imputation (21%) than for listwise deletion (15%). 

Missing Data Percentage. 

Standardized Bias. 

Standardized bias was affected by the missing data percentage as well. For 

listwise deletion, average standardized bias increased from -1.33 at a missing data 

percentage of 5% to -6.47 at a missing data percentage of 15%. Conversely, for multiple 

imputation average standardized bias decreased from 0.13 at a missing data percentage of 

5% to 0.03 at a missing data percentage of 15%. Again, this could be due to multiple 

imputation both under- and overestimating reliability, so that the averaging across values 

results in smaller average standardized bias. 

Root Mean Square Error. 

Overall, higher RMSE values occurred for the high missing data percentage than 

for the low missing data percentage for both missing data techniques. There was only a 
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small decrease in RMSE between the 5% missing data (0.02) and the 15% missing data 

(0.03) conditions when multiple imputation was used. Thereby, even the high average 

RMSE value for multiple imputation was lower than the low average RMSE for listwise 

deletion (0.04). Furthermore, the difference between the low and high average RMSE 

values for listwise deletion (0.09) was much higher than the difference between the low 

and high average RMSE values for multiple imputation (0.01). These results are 

displayed in Table 3. 
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Table 2. RMSE for LD and MI 

RMSE for LD and MI 

  MCAR MAR MNAR Total 

Sampl

e size 

Missin

g data 

(%) 

 

LD 

 

MI 

 

LD 

 

MI 

 

LD 

 

MI 

 

LD 

 

MI 

  Coefficient alpha = 0.7   

100 5 0.06 0.05 0.07 0.05 0.07 0.05 0.07 0.05 

100 15 0.15 0.05 0.22 0.05 0.22 0.06 0.20 0.05 

500 5 0.03 0.02 0.04 0.02 0.04 0.02 0.04 0.02 

500 15 0.05 0.04 0.13 0.04 0.15 0.04 0.11 0.04 

  Coefficient alpha = 0.8   

100 5 0.04 0.03 0.05 0.03 0.06 0.03 0.05 0.03 

100 15 0.10 0.04 0.19 0.04 0.20 0.05 0.16 0.04 

500 5 0.02 0.02 0.03 0.01 0.04 0.01 0.03 0.01 

500 15 0.03 0.03 0.13 0.03 0.15 0.03 0.10 0.03 

  Coefficient alpha = 0.9   

100 5 0.02 0.02 0.03 0.01 0.04 0.01 0.03 0.01 

100 15 0.05 0.02 0.13 0.02 0.14 0.03 0.11 0.02 

500 5 0.01 0.01 0.03 0.01 0.03 0.01 0.02 0.01 

500 15 0.02 0.02 0.10 0.02 0.12 0.02 0.08 0.02 

  Total  

  0.05 0.03 0.10 0.03 0.11 0.03  

Note. MCAR = missing completely at random; MAR = missing at random; MNAR = 

missing not at random; LD = listwise deletion; MI = multiple imputation. 

 



54 

 

Confidence Interval Coverage. 

Reliability estimates were observed within the confidence interval more often 

when missing data percentage was small than when missing data percentage was large. 

Specifically, average confidence interval coverage decreased from 69% at 5% missing 

data to 28% at 15% missing data when listwise deletion was used. For multiple 

imputation, average confidence interval coverage decreased from 94% at 5% missing 

data to 68% at 15% missing data. Hence, the difference between the two missing data 

percentages was larger for listwise deletion (41%) than it was for multiple imputation 

(26%). 

Missing Data Mechanism. 

Standardized Bias. 

The missing data mechanism used to add missing values had a noticeable impact 

on the standardized bias for both missing data techniques. For listwise deletion, 

standardized bias were lowest for MCAR conditions and highest for MNAR conditions 

(Table 4).  
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Table 4. Standardized Bias for LD and MI 

Standardized Bias for LD and MI 

  MCAR MAR MNAR Total 

Sample 

size 

Missing 

data (%) 

 

LD 

 

MI 

 

LD 

 

MI 

 

LD 

 

MI 

 

LD 

 

MI 

  Coefficient alpha = 0.7   

100 5 -0.21 0.13 -0.72 0.10 -0.83 -0.14 -0.59 0.03 

100 15 -0.74 0.32 -3.31 0.44 -3.56 -0.83 -6.13 -1.79 

500 5 -0.04 0.56 -1.28 0.51 -1.44 0.06 -0.92 0.38 

500 15 -0.33 1.79 -5.83 1.80 -7.20 -1.72 -4.45 0.62 

  Coefficient alpha = 0.8   

100 5 -0.25 0.14 -1.00 0.15 -1.10 -0.08 -0.78 -0.16 

100 15 -0.87 0.27 -4.90 0.44 -5.40 -1.18 -3.72 -0.16 

500 5 -0.14 0.65 -2.07 0.01 -2.45 0.07 -1.55 -0.30 

500 15 -0.24 2.14 -10.13 2.15 -11.97 -2.13 -7.45 0.72 

  Coefficient alpha = 0.9   

100 5 -0.20 0.20 -1.84 0.24 -2.15 -0.01 -1.40 0.14 

100 15 -1.03 0.28 -8.14 0.70 -9.02 -1.19 -5.38 -0.07 

500 5 0.00 0.86 -3.75 0.84 -4.44 0.33 -2.73 0.68 

500 15 -0.22 2.35 -16.53 2.38 -18.67 -2.21 -11.66 0.84 

  Total  

  -0.36 0.80 -4.96 0.81 -5.69 -0.75  

Note. Standardized bias values are expressed on standard error units. Situations in which 

listwise deletion resulted in lower standardized bias are denoted in bold. MCAR = 

missing completely at random; MAR = missing at random; MNAR = missing not at 

random; LD = listwise deletion; MI = multiple imputation. 
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The lowest standardized bias occurred at a reliability level of 0.9 with a sample 

size of 500 and 5% missing data (0.00), while the highest occurred at a reliability level of 

0.9 with a sample size of 500 and 15% missing data (-18.67). The difference in average 

standardized bias was higher between MCAR and MNAR (4.6) compared to the 

difference between MAR and MNAR (0.73). Surprisingly, comparing average 

standardized bias for coefficient alpha calculated using multiple imputation under MCAR 

(0.80), MAR (0.81), and MNAR (-0.75), the missing data mechanism had little effect on 

the absolute value of the standardized bias. However, it did influence the sign. The results 

showed that when multiple imputation was used under MCAR and MAR conditions 

coefficient alpha overestimated the reliability. However, under MNAR conditions, 

coefficient alpha underestimated the reliability in all conditions except with sample size 

of 500 and 5% missing data. Another interesting finding is that under the MCAR 

condition for a sample size of 500, listwise deletion showed smaller bias than multiple 

imputation for both missing data percentages and all reliability levels. 

Root Mean Square Error. 

The RMSE pattern was also observed to be different between listwise deletion 

and multiple imputation. When listwise deletion was used, average RMSE was lowest 

under the MCAR condition (0.05) and highest under the MNAR condition (0.11). The 

difference in RMSE was higher between MCAR and MAR (0.05) than between MAR 

and MNAR (0.01). When multiple imputation was used, no difference between the 

average RMSE for the MCAR, MAR, and MNAR conditions was observed (all 0.03). 
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The average RMSE ratio between listwise deletion and multiple imputation was lowest 

for MCAR (1.65) and very similar for MAR (3.72) and MNAR (3.63). 

Confidence Interval Coverage. 

The confidence interval coverage between the missing data mechanisms followed 

the same pattern as standardized bias and RMSE. For listwise deletion, average 

confidence interval coverage was highest under MCAR (74%) and lowest under MNAR 

(34%) conditions, with the difference being higher between MCAR and MAR (36%) than 

between MAR and MNAR (4%). There was little difference in average confidence 

interval coverage for multiple imputation under the MCAR (81%), MAR (80%), and 

MNAR (82%) conditions. 
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DISCUSSION 

To the best of this researcher’s knowledge, there has been no research comparing 

listwise deletion and multiple imputation for reliability. Despite the clear superiority of 

modern missing data methods demonstrated in current research, such as using the EM 

algorithm to estimate reliability compared to traditional techniques (Enders, 2003), the 

implementation of these methods into practice is slow. Because multiple imputation is a 

potentially attractive missing data handling method, this study compared it to listwise 

deletion in terms of standardized bias, RMSE, and confidence interval coverage under 

varying conditions such as reliability level, sample size, missing data percentage, and 

missing data mechanism. 

Reliability Level. 

Overall, reliability level did affect the dependent variables. Absolute standardized 

bias were higher for higher levels of reliability in the case of both listwise deletion and 

multiple imputation, RMSE was lower for higher levels of reliability, and confidence 

interval coverage was lower for higher levels of reliability. This means that overall 

standardized bias increased as reliability increased. A possible reason for this could be 

that for lower reliability values, there is a comparative equal proportion of values below 

and above the population reliability, because it is bound between 0 and 1. For higher 

reliability values, there is a smaller proportion of values above, possibly making 

underestimation more likely than overestimation. Therefore, for lower reliability values 

bias are more frequently both positive and negative, resulting in lower average bias. The 

same pattern was found for confidence interval coverage. Overall, confidence interval 
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coverage decreased as reliability increased for both listwise deletion and multiple 

imputation. The decrease in confidence interval coverage and decrease in standardized 

bias for higher levels of reliability was expected as well as consistent with previous 

research (Enders, 2003).  

Generally, the pattern for RMSE was observed to be decreasing as reliability 

increases for both listwise deletion and multiple imputation. In contrast to standardized 

bias, RMSE uses squared values and therefore the average represents the average squared 

distance from the predicted reliability value rather than the relative distance influenced by 

the sign. This could be a reason for why RMSE values behaved opposite of standardized 

bias values. As mentioned above, the decrease in RMSE could be due to the proportion of 

values above and the below a given reliability value. For example, since there are many 

values below and above a reliability of 0.7, bias can be the same size both in the negative 

and in the positive direction. However, there are fewer values above a reliability of 0.9 

than for a reliability of 0.7, so that positive bias for a reliability of 0.9 can only be smaller 

than for the reliability of 0.7. This would result in larger bias, but in smaller RMSE. 

Sample Size. 

Sample size had an effect on the dependent variables for both missing data 

techniques as well. As expected, higher sample size resulted in lower RMSE than a 

smaller sample size. However, standardized bias and confidence interval coverage 

behaved opposite of this expectation. For a higher sample size standardized bias were 

higher than for a smaller sample size, on average. Similarly, confidence interval coverage 
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was lower for higher sample size than for lower sample size. Interestingly confidence 

interval coverage decreased more for multiple imputation than for listwise deletion. 

The reason for the inconsistency between standardized bias, RMSE, and 

confidence interval coverage can have two reasons. Firstly, with a larger sample size, the 

denominator in the standardized bias calculation is smaller and the confidence interval is 

smaller as well. That way, the calculation of both standardized bias and confidence 

interval coverage is dependent on sample size, while the calculation of RMSE is not. 

Secondly, the amount of missing data is measured in percentages, so that the same 

missing data rate would result in more missing values total for the larger sample size than 

for the smaller sample size. Due to these inconsistencies it is difficult to determine 

whether sample size had a noticeable influence on reliability when missing data was 

present. 

Missing Data Percentage. 

As expected, standardized bias was higher, RMSE was higher, and confidence 

interval coverage was lower for the 15% missing data percentage than for the 5% missing 

data percentage for both missing data techniques. Evidently, as there are more missing 

data, it is more difficult to get a precise estimate of the reliability. Furthermore, an 

important finding is that with more missing data, the RMSE ratio between listwise 

deletion and multiple imputation is higher. That means that as the amount of missing data 

increases the more important it is to pick a missing data technique that will produce the 

most accurate results. 
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Missing Data Mechanism. 

The missing data mechanism played an important role in the reliability estimates. 

For listwise deletion, standardized bias increased, RMSE increased, and confidence 

interval coverage decreased when comparing the missing data mechanism in the direction 

MCAR, MAR, and MNAR. For multiple imputation, the absolute standardized bias and 

the confidence interval coverage stayed very similar across every missing data 

mechanism. Interestingly, while with multiple imputation coefficient alpha overestimated 

reliability under the MCAR and MAR conditions, under MNAR conditions, it 

underestimated the reliability in almost all conditions. Since MNAR does not provide 

information on why data is missing (i.e. the information itself is missing), it is possible 

that this phenomenon is due to multiple imputation basing predictions on observed 

values, which are not the reason for missingness. 

Interestingly, listwise deletion showed lower standardized bias than multiple 

imputation under MCAR conditions when sample size was 500, as denoted in bold in 

Table 1. Furthermore, the RMSE ratio between listwise deletion and multiple imputation 

is lowest under MCAR conditions and highest under MNAR conditions. This means that 

while for both missing data techniques RMSE increased for worse missing data 

mechanism conditions, this increase was much larger for listwise deletion.  

Arguably, these findings most clearly show the advantage of multiple imputation 

compared to listwise deletion. While with multiple imputation it is possible to get results 

that are close to the population value (e.g. RMSE < 0.07) under all missing data 
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conditions, the performance of listwise deletion decreases by a lot (up to RMSE = 0.22) 

as soon as the missing data condition is not MCAR. 

Missing Data Techniques. 

Overall, multiple imputation performed better than listwise deletion under all 

conditions when data were missing under the MAR and MNAR mechanism. This is 

demonstrated by all of the dependent variables. However, under MCAR conditions, the 

two techniques performed very similarly, with listwise deletion even demonstrating better 

results in some cases. Unfortunately, it is very difficult to determine the mechanism 

underlying the missing data. Based on the results of this study, listwise deletion would be 

reasonable to use with coefficient alpha under the MCAR condition. Using Little’s test of 

missing completely at random (Little, 1988), it is possible to determine that that 

mechanism is present. When both MAR and MNAR mechanisms are present, it is more 

reasonable to use multiple imputation with missing data. 

The third missing data technique to be implemented was maximum likelihood 

estimation. However, to this researcher’s best knowledge a package for maximum 

likelihood estimation with coefficient alpha is not currently available in R. This shows 

that even though modern missing data techniques have been shown to produce the most 

stable results with missing data, especially under certain conditions as discussed above, 

these techniques are not yet easily accessible. Especially those not experienced with 

research methods might find it much more difficult to implement modern missing data 

techniques than traditional missing data techniques such as listwise deletion. 
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Conclusion 

Limitations. 

Like all research, the present study is not without limitations. Due to a lack of 

resources and time constraints, it was not possible to exhaust all possible ways to deal 

with missing data. For example, it might be informative to examine the effect of other 

missing data techniques such as pairwise deletion or maximum likelihood estimation. 

Even though maximum likelihood estimation for coefficient alpha was not available in R, 

it is available in other programs. It would be particularly interesting to compare the 

performance of multiple imputation and maximum likelihood estimation, since those two 

techniques are seen as the current state of art. 

Along this same line, the factors influencing reliability were limited to few 

categories each. This could be expanded by focusing on one specific factor while holding 

the others constant. For example, sample size could be gradually increased to examine its 

effect more closely. Similarly, the missing data percentage or reliability level could also 

include more categories for more detailed information. Previous research has examined 

the number of items as a factor (Enders, 2003), which was not included in the current 

study. 

Another limitation of this study is that the scale of observations simulated was to 

be ordinal to assimilate Likert type data with specific answer categories. In this case, only 

ordinal values from one to five were included in the data simulation. As a result, it is not 

possible to make inferences beyond the conditions specified in this study. 
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Future Directions. 

Future research will focus on how additional missing data techniques (e.g., 

pairwise deletion, maximum likelihood estimation) compare to listwise deletion and 

multiple imputation. Additionally, factors such as number of items and number of 

response categories will be modified. This would allow the researcher to examine their 

influence on coefficient alpha with missing data. Finally, given the difficulty of 

implementing modern missing data techniques in this study, future research will focus on 

making these techniques accessible to researchers without thorough methodological 

training. A logical procedure to include is a comparison of ways to implement different 

missing data techniques across statistical programs, evaluating their accessibility and 

utility. 

Summary. 

Reliability is a necessary attribute of every multiple item measure, commonly 

estimated by Cronbach’s coefficient alpha. The current study demonstrated that 

coefficient alpha is sensitive to numerous factors in the presence of missing data. It is 

influenced by reliability level, sample size, missing data percentage, and missing data 

mechanism. When researchers calculate reliability in the presence of missing data, they 

should take these factors into account in order to evaluate possible bias in their reliability 

estimate. 

The current study has provided evidence that when conditions are good (i.e. low 

missing data percentage, MCAR, large sample size), listwise deletion and multiple 

imputation produce very similar results. However, specifically when data are missing 
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under MAR and MNAR conditions, multiple imputation is advantageous. It produces 

fewer bias, a lower RMSE, and higher confidence interval coverage than listwise 

deletion. Therefore, unless researchers can be certain that their data is missing under 

MCAR conditions and their sample is large, they should consider using multiple 

imputation as their missing data technique. 

Necessary to consider for practical use is also the direction of bias for the missing 

data techniques. When using listwise deletion, coefficient alpha is generally an 

underestimate of the true reliability. However, when multiple imputation is used, 

coefficient alpha is an overestimate when data are MCAR and MAR. However, when 

data are MNAR, coefficient alpha underestimates the true reliability. This is important to 

consider when estimating reliability in the presence of missing data. 
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APPENDIX C: R SYNTAX 

# CREATE 3 POPULATIONS WITH DIFFERENT ALPHAS -------------------- 

 

items <- 10 

kv <- c(1:items) 

mu <- rep(3,items) 

mu1 <- c(2.5, 2.5, 2.5, 2.5, 2.5, 3.5, 3.5, 3.5, 3.5, 3.5) 

pop.size <- 1110000 

 

corr <- c(.251999, .380799,.598699) 

populations <- list() 

 

for (a.value1 in 1:3) { 

  sigma <- matrix(corr[a.value1], items, items) 

  diag(sigma) <- 1 

 

  set.seed(13) 

  data <- as.data.frame(MASS::mvrnorm(pop.size, mu, sigma)) 

  populations[[a.value1]] <- round(data, 0)  

 

  num.deleted <- c(seq(-100,0),seq(6,100))  

  for (column in seq_along(populations[[a.value1]])) { 

    populations[[a.value1]] <- populations[[a.value1]][ ! populations[[a.value1]][, column] 

%in% num.deleted, ] 

} } 

names(populations) <- c("pop1", "pop2", "pop3") 

   

# SAMPLE GENERATION FOR DIFFERENT CONDITIONS ---------------------- 

nsamp <- 1000  

m.iter <- 15  

n.imp <- 10  

alphaAnalysis <- numeric(n.imp)  

alphacollect <- matrix(NA, nrow = nsamp, ncol = 72) 

 

#MCAR generation for 4 conditions(repeat for the 3 populations) ------------------ 

 

alpha.ld.mcar.c1 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mcar.c1 <- matrix(NA, nrow = nsamp, ncol = 3)  

alpha.ld.mcar.c2 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mcar.c2 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.ld.mcar.c3 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mcar.c3 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.ld.mcar.c4 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mcar.c4 <- matrix(NA, nrow = nsamp, ncol = 3) 
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sample.size <- 100 

missp <- .05 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2)  

 

set.seed(20) 

for (pop.mcar.c1 in 1:3) { 

  samp.mcar.c1 <- 1 

  while (samp.mcar.c1 <= nsamp) { 

    mcar.sample <- populations[[pop.mcar.c1]][sample(nrow(populations[[pop.mcar.c1]]), 

sample.size), ] 

    for (item.mcar.c1 in 1:5) { 

      mcar.sample[, item.mcar.c1][sample(1:sample.size,n.miss)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mcar.c1[samp.mcar.c1, pop.mcar.c1] <- psych::alpha(mcar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mcar.sample,n.imp,maxit = m.iter,method ='norm.predict', 

print = FALSE) 

      for (iter.mcar.c1 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mcar.c1) 

        alphaAnalysis[iter.mcar.c1] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mcar.c1[samp.mcar.c1,pop.mcar.c1] <- mean(alphaAnalysis) 

    } }, warning = function(w) { 

      samp.mcar.c1 = samp.mcar.c1 - 1 

      force(do.next) 

    }) 

    samp.mcar.c1 = samp.mcar.c1 + 1 

  } } 

 

sample.size <- 100 

missp <- .15 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(25) 

for (pop.mcar.c2 in 1:3) { 

  samp.mcar.c2 <- 1 

  while (samp.mcar.c2 <= nsamp) { 

    mcar.sample <- populations[[pop.mcar.c2]][sample(nrow(populations[[pop.mcar.c2]]), 

sample.size), ] 

    for (item.mcar.c2 in 1:5) { 
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      mcar.sample[, item.mcar.c2][sample(1:sample.size,n.miss)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      solve(cor(mcar.sample, use = 'complete.obs')) 

      alpha.ld.mcar.c2[samp.mcar.c2, pop.mcar.c2] <- psych::alpha(mcar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mcar.sample,n.imp,maxit = m.iter,method ='norm.predict', 

print = FALSE) 

      for (iter.mcar.c2 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mcar.c2) 

        alphaAnalysis[iter.mcar.c2] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mcar.c2[samp.mcar.c2,pop.mcar.c2] <- mean(alphaAnalysis) 

      }}, warning = function(w) { 

        samp.mcar.c2 = samp.mcar.c2 - 1 

        force(do.next) 

      }, error = function(e) { 

        samp.mcar.c2 = samp.mcar.c2 - 1 

        force(do.next) 

      }) 

    samp.mcar.c2 = samp.mcar.c2 + 1 

  } } 

 

sample.size <- 500 

missp <- .05 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mcar.c3 in 1:3) { 

  samp.mcar.c3 <- 1 

  while (samp.mcar.c3 <= nsamp) { 

    mcar.sample <- populations[[pop.mcar.c3]][sample(nrow(populations[[pop.mcar.c3]]), 

sample.size), ] 

    for (item.mcar.c3 in 1:5) { 

      mcar.sample[, item.mcar.c3][sample(1:sample.size,n.miss)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mcar.c3[samp.mcar.c3, pop.mcar.c3] <- psych::alpha(mcar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mcar.sample,n.imp,maxit=m.iter,method ='norm.predict', 

print = FALSE) 

      for (iter.mcar.c3 in 1:n.imp) { 
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        completed <- mice::complete(tempPop, iter.mcar.c3) 

        alphaAnalysis[iter.mcar.c3] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mcar.c3[samp.mcar.c3,pop.mcar.c3] <- mean(alphaAnalysis)  

      }}, warning = function(w) { 

      samp.mcar.c3 = samp.mcar.c3 - 1 

      force(do.next) 

    }) 

    samp.mcar.c3 = samp.mcar.c3 + 1 

  } } 

 

sample.size <- 500 

missp <- .15 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mcar.c4 in 1:3) { 

  samp.mcar.c4 <- 1 

  while (samp.mcar.c4 <= nsamp) { 

    mcar.sample <- populations[[pop.mcar.c4]][sample(nrow(populations[[pop.mcar.c4]]), 

sample.size), ] 

    for (item.mcar.c4 in 1:5) { 

      mcar.sample[, item.mcar.c4][sample(1:sample.size,n.miss)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mcar.c4[samp.mcar.c4, pop.mcar.c4] <- psych::alpha(mcar.sample,use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mcar.sample,n.imp,maxit=m.iter,method ='norm.predict', 

print = FALSE) 

      for (iter.mcar.c4 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mcar.c4) 

        alphaAnalysis[iter.mcar.c4] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mcar.c4[samp.mcar.c4,pop.mcar.c4] <- mean(alphaAnalysis) 

      } 

    }, warning = function(w) { 

      samp.mcar.c4 = samp.mcar.c4 - 1 

      force(do.next) 

    }) 

    samp.mcar.c4 = samp.mcar.c4 + 1 

  } } 

 

#MAR generation ------------------------------------------------ 
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alphaAnalysis <- numeric(n.imp) 

alpha.ld.mar.c1 <- matrix(NA, nrow = nsamp, ncol = 3)  

alpha.mi.mar.c1 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.ld.mar.c2 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mar.c2 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.ld.mar.c3 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mar.c3 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.ld.mar.c4 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mar.c4 <- matrix(NA, nrow = nsamp, ncol = 3) 

 

sample.size <- 100 

missp <- .05 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mar.c1 in 1:3) { 

  samp.mar.c1 <- 1 

  while (samp.mar.c1 <= nsamp) { 

    mar.sample <- populations[[pop.mar.c1]][sample(nrow(populations[[pop.mar.c1]]), 

sample.size), ] 

    for (item.mar.c1 in 1:5) { 

      itemplus.mar.c1 <- item.mar.c1 + 5 

      p.mar <- ifelse(mar.sample[, itemplus.mar.c1] <= 2, 0.99, ifelse(itemplus.mar.c1 <= 

4, 0.01, 0.05)) 

      mar.sample[, item.mar.c1][sample(1:sample.size,n.miss,prob = p.mar)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mar.c1[samp.mar.c1,pop.mar.c1] <- psych::alpha(mar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mar.sample,n.imp,maxit=m.iter,method ='norm.predict', print 

= FALSE) 

      for (iter.mar.c1 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mar.c1) 

        alphaAnalysis[iter.mar.c1] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mar.c1[samp.mar.c1,pop.mar.c1] <- mean(alphaAnalysis) 

      } 

    }, warning = function(w) { 

      samp.mar.c1 = samp.mar.c1 - 1 

      force(do.next) 

    }) 

    samp.mar.c1 = samp.mar.c1 + 1 

  } } 
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sample.size <- 100 

missp <- .15 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mar.c2 in 1:3) { 

  samp.mar.c2 <- 1 

  while (samp.mar.c2 <= nsamp) { 

    mar.sample <- populations[[pop.mar.c2]][sample(nrow(populations[[pop.mar.c2]]), 

sample.size), ] 

    for (item.mar.c2 in 1:5) { 

      itemplus.mar.c2 <- item.mar.c2 + 5 

      p.mar <- ifelse(mar.sample[, itemplus.mar.c2] <= 2, 0.99, ifelse(itemplus.mar.c2 <= 

4, 0.01, 0.05)) 

      mar.sample[, item.mar.c2][sample(1:sample.size,n.miss,prob = p.mar)] <- NA  

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mar.c2[samp.mar.c2,pop.mar.c2] <- psych::alpha(mar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mar.sample,n.imp,maxit=m.iter,method ='norm.predict', print 

= FALSE) 

      for (iter.mar.c2 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mar.c2) 

        alphaAnalysis[iter.mar.c2] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mar.c2[samp.mar.c2,pop.mar.c2] <- mean(alphaAnalysis) 

      } 

    }, warning = function(w) { 

      samp.mar.c2 = samp.mar.c2 - 1 

      force(do.next) 

    }) 

    samp.mar.c2 = samp.mar.c2 + 1 

  } } 

 

sample.size <- 500 

missp <- .05 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mar.c3 in 1:3) { 

  samp.mar.c3 <- 1 



78 

 

  while (samp.mar.c3 <= nsamp) { 

    mar.sample <- populations[[pop.mar.c3]][sample(nrow(populations[[pop.mar.c3]]), 

sample.size), ] 

    for (item.mar.c3 in 1:5) { 

      itemplus.mar.c3 <- item.mar.c3 + 5 

      p.mar <- ifelse(mar.sample[, itemplus.mar.c3] <= 2, 0.99, ifelse(itemplus.mar.c3 <= 

4, 0.01, 0.05)) 

      mar.sample[, item.mar.c3][sample(1:sample.size,n.miss,prob = p.mar)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mar.c3[samp.mar.c3,pop.mar.c3] <- psych::alpha(mar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mar.sample,n.imp,maxit=m.iter,method ='norm.predict', print 

= FALSE) 

      for (iter.mar.c3 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mar.c3) 

        alphaAnalysis[iter.mar.c3] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mar.c3[samp.mar.c3,pop.mar.c3] <- mean(alphaAnalysis) 

      } 

    }, warning = function(w) { 

      samp.mar.c3 = samp.mar.c3 - 1 

      force(do.next) 

    }) 

    samp.mar.c3 = samp.mar.c3 + 1 

  } } 

 

sample.size <- 500 

missp <- .15 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mar.c4 in 1:3) { 

  samp.mar.c4 <- 1 

  while (samp.mar.c4 <= nsamp) { 

    mar.sample <- populations[[pop.mar.c4]][sample(nrow(populations[[pop.mar.c4]]), 

sample.size), ] 

    for (item.mar.c4 in 1:5) { 

      itemplus.mar.c4 <- item.mar.c4 + 5 

      p.mar <- ifelse(mar.sample[, itemplus.mar.c4] <= 2, 0.99, ifelse(itemplus.mar.c4 <= 

4, 0.01, 0.05))  

      mar.sample[, item.mar.c4][sample(1:sample.size,n.miss,prob = p.mar)] <- NA  

    } 



79 

 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mar.c4[samp.mar.c4,pop.mar.c4] <- psych::alpha(mar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mar.sample,n.imp,maxit=m.iter,method ='norm.predict', print 

= FALSE)  

      for (iter.mar.c4 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mar.c4) 

        alphaAnalysis[iter.mar.c4] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mar.c4[samp.mar.c4,pop.mar.c4] <- mean(alphaAnalysis) 

      } 

    }, warning = function(w) { 

      samp.mar.c4 = samp.mar.c4 - 1 

      force(do.next) 

    }) 

    samp.mar.c4 = samp.mar.c4 + 1 

  } } 

 

#MNAR generation --------------------------------------------------------------------------- 

alphaAnalysis <- numeric(n.imp) 

alpha.ld.mnar.c1 <- matrix(NA, nrow = nsamp, ncol = 3)  

alpha.mi.mnar.c1 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.ld.mnar.c2 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mnar.c2 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.ld.mnar.c3 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mnar.c3 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.ld.mnar.c4 <- matrix(NA, nrow = nsamp, ncol = 3) 

alpha.mi.mnar.c4 <- matrix(NA, nrow = nsamp, ncol = 3) 

 

sample.size <- 100 

missp <- .05 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mnar.c1 in 1:3) { 

  samp.mnar.c1 <- 1 

  while (samp.mnar.c1 <= nsamp) { 

    mnar.sample <- populations[[pop.mnar.c1]][sample(nrow(populations[[pop.mnar.c1]]), 

sample.size), ] 

     

    for (item.mnar.c1 in 1:5) { 

      p.mnar <- ifelse(mnar.sample[, item.mnar.c1] <= 2, 0.99, ifelse(item.mnar.c1 <= 4, 

0.01, 0.05))  
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      mnar.sample[, item.mnar.c1][sample(1:sample.size,n.miss,prob = p.mnar)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mnar.c1[samp.mnar.c1,pop.mnar.c1] <- psych::alpha(mnar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mnar.sample,n.imp,maxit=m.iter,method ='norm.predict', 

print = FALSE)  

      for (iter.mnar.c1 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mnar.c1) 

        alphaAnalysis[iter.mnar.c1] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mnar.c1[samp.mnar.c1,pop.mnar.c1] <- mean(alphaAnalysis) 

      } 

    }, warning = function(w) { 

      samp.mnar.c1 = samp.mnar.c1 - 1 

      force(do.next) 

    }) 

    samp.mnar.c1 = samp.mnar.c1 + 1 

  } } 

 

sample.size <- 100 

missp <- .15 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mnar.c2 in 1:3) { 

  samp.mnar.c2 <- 1 

  while (samp.mnar.c2 <= nsamp) { 

    mnar.sample <- populations[[pop.mnar.c2]][sample(nrow(populations[[pop.mnar.c2]]), 

sample.size), ] 

    for (item.mnar.c2 in 1:5) { 

      p.mnar <- ifelse(mnar.sample[, item.mnar.c2] <= 2, 0.99, ifelse(item.mnar.c2 <= 4, 

0.01, 0.05)) 

      mnar.sample[, item.mnar.c2][sample(1:sample.size,n.miss,prob = p.mnar)] <- NA  

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mnar.c2[samp.mnar.c2,pop.mnar.c2] <- psych::alpha(mnar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mnar.sample,n.imp,maxit=m.iter,method ='norm.predict', 

print = FALSE) 

      for (iter.mnar.c2 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mnar.c2) 
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        alphaAnalysis[iter.mnar.c2] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mnar.c2[samp.mnar.c2,pop.mnar.c2] <- mean(alphaAnalysis)  

      } 

    }, warning = function(w) { 

      samp.mnar.c2 = samp.mnar.c2 - 1 

      force(do.next) 

    }) 

    samp.mnar.c2 = samp.mnar.c2 + 1 

  } } 

 

sample.size <- 500 

missp <- .05 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mnar.c3 in 1:3) { 

  samp.mnar.c3 <- 1 

  while (samp.mnar.c3 <= nsamp) { 

    mnar.sample <- populations[[pop.mnar.c3]][sample(nrow(populations[[pop.mnar.c3]]), 

sample.size), ] 

    for (item.mnar.c3 in 1:5) { 

      p.mnar <- ifelse(mnar.sample[, item.mnar.c3] <= 2, 0.99, ifelse(item.mnar.c3 <= 4, 

0.01, 0.05)) 

      mnar.sample[, item.mnar.c3][sample(1:sample.size,n.miss,prob = p.mnar)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mnar.c3[samp.mnar.c3,pop.mnar.c3] <- psych::alpha(mnar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mnar.sample,n.imp,maxit=m.iter,method ='norm.predict', 

print = FALSE) 

      for (iter.mnar.c3 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mnar.c3) 

        alphaAnalysis[iter.mnar.c3] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mnar.c3[samp.mnar.c3,pop.mnar.c3] <- mean(alphaAnalysis) 

      } 

    }, warning = function(w) { 

      samp.mnar.c3 = samp.mnar.c3 - 1 

      force(do.next) 

    }) 

    samp.mnar.c3 = samp.mnar.c3 + 1 

  } } 
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sample.size <- 500 

missp <- .15 

missn <- missp * (items * sample.size) 

n.miss <- missn/(items/2) 

 

set.seed(20) 

for (pop.mnar.c4 in 1:3) { 

  samp.mnar.c4 <- 1 

  while (samp.mnar.c4 <= nsamp) { 

    mnar.sample <- populations[[pop.mnar.c4]][sample(nrow(populations[[pop.mnar.c4]]), 

sample.size), ] 

    for (item.mnar.c4 in 1:5) { 

      p.mnar <- ifelse(mnar.sample[, item.mnar.c4] <= 2, 0.99, ifelse(item.mnar.c4 <= 4, 

0.01, 0.05)) 

      mnar.sample[, item.mnar.c4][sample(1:sample.size,n.miss,prob = p.mnar)] <- NA 

    } 

    delayedAssign("do.next", {next}) 

    result <- tryCatch({ 

      alpha.ld.mnar.c4[samp.mnar.c4,pop.mnar.c4] <- psych::alpha(mnar.sample, use = 

'complete.obs')$total$raw_alpha 

      tempPop <- mice::mice(mnar.sample,n.imp,maxit=m.iter,method ='norm.predict', 

print = FALSE) 

      for (iter.mnar.c4 in 1:n.imp) { 

        completed <- mice::complete(tempPop, iter.mnar.c4) 

        alphaAnalysis[iter.mnar.c4] <- psych::alpha(completed)$total$raw_alpha 

        alpha.mi.mnar.c4[samp.mnar.c4,pop.mnar.c4] <- mean(alphaAnalysis) 

      } 

    }, warning = function(w) { 

      samp.mnar.c4 = samp.mnar.c4 - 1 

      force(do.next) 

    }) 

    samp.mnar.c4 = samp.mnar.c4 + 1 

  } } 

 

alphacollect <- data.frame( 

  alpha.ld.mcar.c1, alpha.ld.mcar.c2, alpha.ld.mcar.c3, alpha.ld.mcar.c4, 

  alpha.mi.mcar.c1, alpha.mi.mcar.c2, alpha.mi.mcar.c3, alpha.mi.mcar.c4, 

  alpha.ld.mar.c1,  alpha.ld.mar.c2,  alpha.ld.mar.c3,  alpha.ld.mar.c4, 

  alpha.mi.mar.c1,  alpha.mi.mar.c2,  alpha.mi.mar.c3,  alpha.mi.mar.c4, 

  alpha.ld.mnar.c1, alpha.ld.mnar.c2, alpha.ld.mnar.c3, alpha.ld.mnar.c4, 

  alpha.mi.mnar.c1, alpha.mi.mnar.c2, alpha.mi.mnar.c3, alpha.mi.mnar.c4 

  ) 

labels <- c( 

  "a1-MCAR-ld-c1", "a2-MCAR-ld-c1", "a3-MCAR-ld-c1", 



83 

 

  "a1-MCAR-ld-c2", "a2-MCAR-ld-c2", "a3-MCAR-ld-c2", 

  "a1-MCAR-ld-c3", "a2-MCAR-ld-c3", "a3-MCAR-ld-c3", 

  "a1-MCAR-ld-c4", "a2-MCAR-ld-c4", "a3-MCAR-ld-c4", 

   

  "a1-MCAR-mi-c1", "a2-MCAR-mi-c1", "a3-MCAR-mi-c1", 

  "a1-MCAR-mi-c2", "a2-MCAR-mi-c2", "a3-MCAR-mi-c2", 

  "a1-MCAR-mi-c3", "a2-MCAR-mi-c3", "a3-MCAR-mi-c3", 

  "a1-MCAR-mi-c4", "a2-MCAR-mi-c4", "a3-MCAR-mi-c4", 

   

  "a1-MAR-ld-c1", "a2-MAR-ld-c1", "a3-MAR-ld-c1", 

  "a1-MAR-ld-c2", "a2-MAR-ld-c2", "a3-MAR-ld-c2", 

  "a1-MAR-ld-c3", "a2-MAR-ld-c3", "a3-MAR-ld-c3", 

  "a1-MAR-ld-c4", "a2-MAR-ld-c4", "a3-MAR-ld-c4", 

   

  "a1-MAR-mi-c1", "a2-MAR-mi-c1", "a3-MAR-mi-c1", 

  "a1-MAR-mi-c2", "a2-MAR-mi-c2", "a3-MAR-mi-c2", 

  "a1-MAR-mi-c3", "a2-MAR-mi-c3", "a3-MAR-mi-c3", 

  "a1-MAR-mi-c4", "a2-MAR-mi-c4", "a3-MAR-mi-c4", 

   

  "a1-MNAR-ld-c1", "a2-MNAR-ld-c1", "a3-MNAR-ld-c1", 

  "a1-MNAR-ld-c2", "a2-MNAR-ld-c2", "a3-MNAR-ld-c2", 

  "a1-MNAR-ld-c3", "a2-MNAR-ld-c3", "a3-MNAR-ld-c3", 

  "a1-MNAR-ld-c4", "a2-MNAR-ld-c4", "a3-MNAR-ld-c4", 

   

  "a1-MNAR-mi-c1", "a2-MNAR-mi-c1", "a3-MNAR-mi-c1", 

  "a1-MNAR-mi-c2", "a2-MNAR-mi-c2", "a3-MNAR-mi-c2", 

  "a1-MNAR-mi-c3", "a2-MNAR-mi-c3", "a3-MNAR-mi-c3", 

  "a1-MNAR-mi-c4", "a2-MNAR-mi-c4", "a3-MNAR-mi-c4" 

  ) 

 

colnames(alphacollect) <- labels 

 

#CONTROL condition (no missing data) ---------------------------------------------- 

 

alpha.con1 <- data.frame() 

alpha.con2 <- data.frame() 

alpha.con <- data.frame() 

 

sample.size <- 100 

set.seed(20) 

for (pop.con in 1:3) { 

  for (samp.con in 1:nsamp) { 

    con.sample <- populations[[pop.con]][sample(nrow(populations[[pop.con]]), 

sample.size), ] 
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    alpha.con1[samp.con,pop.con] <- psych::alpha(con.sample)$total$raw_alpha 

  } } 

 

sample.size <- 500 

set.seed(20) 

for (pop.con in 1:3) { 

  for (samp.con in 1:nsamp) { 

    con.sample <- populations[[pop.con]][sample(nrow(populations[[pop.con]]), 

sample.size), ] 

    alpha.con2[samp.con,pop.con] <- psych::alpha(con.sample)$total$raw_alpha 

  } } 

 

alpha.con <- data.frame(alpha.con1, alpha.con2) 

 

#ANALYSIS OF THE FINAL DATA SET OF ALPHAS ---------------------------- 

 

depvars <- data.frame(matrix(NA, nrow = 72, ncol = 4)) 

rownames(depvars) <- labels 

colnames(depvars) <- c("raw bias", "std bias", "RMSE", "CI coverage") 

 

# raw and standardized bias 

alphameans <- (rep(c(.7,.8,.9), length.out = 72)) 

column.means <- colMeans(alphacollect) 

for (obs.rawbias in 1:72) { 

 depvars[obs.rawbias, 1] <- column.means[obs.rawbias] - alphameans[obs.rawbias] 

} 

sd.unordered <- apply(alpha.con, 2, sd) 

sd.ordered <- rep(c(rep(sd.unordered[1:3], times = 2), rep(sd.unordered[4:6], times = 2)), 

length.out = 72) 

for (obs.stdbias in 1:72) { 

  depvars[obs.stdbias, 2] <- depvars[obs.stdbias, 1] / sd.ordered[obs.stdbias] 

} 

 

# RMSE 

alpha.predict <- data.frame(matrix(rep(c(.7,.8,.9), each = nsamp, times = 24), ncol = 72, 

byrow = FALSE)) 

for (obs.rmse in 1:72) { 

  depvars[obs.rmse, 3] <- hydroGOF::rmse(alphacollect[ ,obs.rmse], alpha.predict[ 

,obs.rmse]) 

} 

 

# Confidence interval coverage 

conf.inter <- data.frame(matrix(NA, nrow = 3, ncol = 2)) 

number <- c(.7, .8, .9) 
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for (obs.conf in 1:3) { 

  conf.inter[obs.conf,1] <- psychometric::alpha.CI(number[obs.conf], 10, 100, level = 

0.95, onesided = FALSE)$LCL 

  conf.inter[obs.conf,2] <- psychometric::alpha.CI(number[obs.conf], 10, 100, level = 

0.95, onesided = FALSE)$UCL 

} 

for (obs.conf in 4:6) { 

  conf.inter[obs.conf,1] <- psychometric::alpha.CI(number[obs.conf - 3], 10, 500, level = 

0.95, onesided = FALSE)$LCL 

  conf.inter[obs.conf,2] <- psychometric::alpha.CI(number[obs.conf - 3], 10, 500, level = 

0.95, onesided = FALSE)$UCL 

} 

 

fun <- numeric(length = nsamp) 

conf.predict <- rep(c(1,2,3,1,2,3,4,5,6,4,5,6), times = 6) 

for (obs.conftf in 1:72) { 

  for (sep.alpha in 1:nsamp) { 

   if (alphacollect[sep.alpha,obs.conftf] > conf.inter[conf.predict[obs.conftf],1] && 

alphacollect[sep.alpha,obs.conftf] < conf.inter[conf.predict[obs.conftf],2]) { 

     fun[sep.alpha] <- 1 

   } else {fun[sep.alpha] <- 0} 

  } 

  depvars[obs.conftf,4] <- sum(fun)/nsamp 

} 
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