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Metagenomics for Bacteriology 

Erika del Castillo 
Tufts University School of Medicine

Jacques Izard 
University of Nebraska–Lincoln

jizard@unl.edu

The study of bacteria, or bacteriology, has gone through transforma
tive waves since its inception in the 1600s. It all started by the 
visualiza tion of bacteria using light microscopy by Antonie van Leeu
wenhoek, when he first described “animalcules.” Direct cellular ob
servation then evolved into utilizing different wavelengths on novel 
platforms such as electron, fluorescence, and even near-infrared mi
croscopy. Understand ing the link between microbes and disease 
(pathogenicity) began with the ability to isolate and cultivate organ
isms through aseptic methodolo gies starting in the 1700s. These tech
niques became more prevalent in the following centuries with the 
work of famous scientists such as Louis Pasteur and Robert Koch, and 
many others since then. The relationship between bacteria and the 
host’s immune system was first inferred in the 1800s, and to date is 
continuing to unveil its mysteries. During the last century, research
ers initiated the era of molecular genetics. The discov ery of the first-
generation sequencing technology, the Sanger method, and, later, the 
polymerase chain reaction technology propelled the mo lecular ge
netics field by exponentially expanding the knowledge of rela tionship 
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between gene structure and function. The rise of commercially avail
able next-generation sequencing methodologies, in the beginning of 
this century, is drastically allowing larger amount of information to be 
acquired, in a manner open to the democratization of the approach. 

Healthy Hosts and Microbiomes 

Cooperation and association, in their broadest meanings, are ubiq
uitous and part of the evolutionary processes between bacteria and 
host. This mutually beneficial association has sustained coevolution 
through diff erent habitats. 

Microbiota–host cooperation starts from the moment development 
be gins in the environment outside of the genetic progenitors, for ex
ample, the microbiota changes from postlarvae stage to the adult 
stage in an oyster, throughout the different stages of metamorphosis 
for the frog, and from birth to adulthood for mammals.1–4 Interestingly, 
it seems that individual-specific strains, when established, are stable in 
an environment even if their relative abundance changes over time.5,6 

To redefine the concept of health, the Human Microbiome Project 
(HMP) consortium recruited subjects without sign of proinflammatory 
condition or disease.7,8 The studies from the acquired metagenomic 
data sets, from multiple body sites, show that diversity of microbes 
is key to health.7,8 Other studies have shown that the microbiome in
fluences a wide spectrum of biological events including the immune 
function and behavior of the host.9–12 

Our life expectancy has drastically improved in the last 100 years. 
The impact of these changes on the ancestral mutualistic relation
ships between humans and microbes has to be part of those pro
gresses but is not well understood. A study on calcified dental plaque 
has shown that from the Neolithic (remains dated 7550–5450 years 
before present) to the medieval times, the oral microbiota was more 
diverse than the pres ent oral microbiota and was relatively stable.13 

A study of 1400-year-old coprolites from northern Mexico shows a 
more diverse gut microbiota compared with those of modern urban
ized populations, however, more similar to rural populations with dif
ferent modern lifestyles.14 Many questions remain as we are just at 
the beginning of our understanding on how our own microbiomes 
are key to our survival. 
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What about Disease? 

Human diseases are not a new burden. At a middle-age monastic site 
in Germany, adult skeletons were recovered with evidence of mildto
severe periodontitis (oral microbial infection leading to tooth loss). Us
ing DNA extracted from the teeth of the skeletons, researchers were 
able to recon struct the genome of a known pathogen, Tannerella for-
sythia,15 and iden tify the molecular signatures of other periodontitis
associated species. 

The treatment of disease has been an interest of any society, and 
microbial modification has always been a component of treatment. 
While plantbased therapy was probably the way to treat diseases in 
Neolithic times, refined chemical compounds are now available as 
pharmaceuticals. Regardless of the source, the microbiome can be 
targeted by these anti microbials modifying community structure and 
metabolic potential.16,17 Next-generation sequencing is providing a 
greater depth of understand ing of the broader effect during treat
ment as well as host microbiome recovery posttreatment.18 

Medical challenges where antimicrobial therapy has been 
unsuccess ful have led to new approaches, such as fecal transplants. 
Refractory recurrent Clostridium difficile infections do not respond to 
appropriate antibiotic therapy. Fecal transplants offer the possibil
ity of a rapid re modeling of the receiver gut microbiome toward its 
donor’s transplant profile, and at the same time eliminate C. difficile 
challenge.19,20 

Treatment successes and failures might have to be revisited in the 
context of the host–microbiome relationship. Therapeutic drugs alter 
the host–microbiota composition and can colocalize specific bacteria 
to lymphoid tissue or cells where they can synergistically modulate 
and influence the efficacy of the therapeutic drugs.21 Thus, in addi
tion of be ing the target, the microbiome can also act as a modulator 
of treatment efficacy by altering the expected effect.21,22 A thorough 
understanding of the molecular bases of host–microbiota interactions 
could lead to the development of new therapeutic strategies for treat
ing human disorders, as well as decreasing the toxicity of some of the 
present treatments. 

While new approaches are being designed, the realms of traditional 
eastern and western medicine are slowly beginning to intersect with 
our in creased understanding of the microbiome role in health and 
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disease. Tradi tional Chinese medicine has been widely used for mil
lennia in the treatment of various diseases in East Asian countries. The 
analysis of tongue coating, a fundamental practice in Chinese med
icine, has been used as a basis to differentiate the microbiota in the 
case of hot and cold syndromes.23 The observed differences suggest 
that tongueassociated microbiomes could be used as a novel holis
tic biomarker to subtype human host populations. 

Food, Biotransformation, and Life 

Since food and nutrition are essential to the survival of all living be
ings on Earth, it comes as no surprise that the first metagenomic stud
ies have focused on the gut microbiota. As the body of publication is 
significant, we will look at two cross-pollinations among fields.

The comparative genomic analysis of the genome of the giant 
panda uncovered the presence of the enzymes associated with a car
nivorous digestive system while lacking the enzymes to digest cel
lulose, the princi pal component of their bamboo diet. The apparent 
metabolic contradic tion was resolved while studying their gut micro
biome. The study shows that Clostridia bacteria appear to be the mi
crobial symbionts bridging this necessary metabolic gap.24 Without 
the presence of Clostridia in the gut microbiome, the panda would 
not be able to survive on a diet of bamboo. The presence of stable 
and specific cellulose-degrading spe cies in gut microbiome has al
lowed the giant panda to transition from a carnivore to a herbivore 
lifestyle, illustrating a coevolutionary process between the host and 
its gut microbiome. 

This importance in energy balance has been underlined in meta
bolic transfer from bacteria to the host in obesity, in voluntary diet 
modifica tion, as well as in the forced change of diet due to habitat 
loss.25–27 In both humans and mouse models, it has been shown that 
changes to the gut ratio of Bacteroidetes/Firmicutes modulate the ca
pacity for energy harvest, with a decrease of Bacteroidetes being asso
ciated with obesity. This correlation allowed for a better understand
ing of the physiology of the Australian sea lion metabolism. Their gut 
has a dominant composi tion of Firmicutes predisposing this aquatic 
mammal toward an excess of body fat needed for thermoregulation 
within their cold oceanic habi tat.25,28,29 Microbiota balance or dysbiosis 
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depends on the context and physiology of the host. The numbers of 
bacteria or genes by themselves do not provide a complete story: a 
largerscale analysis is required to un derstand the intricacy of the mi
crobiome relationships sustaining life.25–27 

Some Practical Usage of the Microbiomes 

The utilization of bacteria in food production by many societies/
civiliza tions/cultures predates modern microbiology. In Asia, before 
the end of the first millennia AD, a low-temperature lactic acid-based 
fermentation process was used to preserve food for the winter sea
son. Now kimchi is known worldwide. Metagenomic analysis of the 
kimchi fermentation process led to a greater understanding of micro
bial community compo sition, pH, and respiration-associated function 
modulation during this monthlong process.30

During the middle ages, the Europeans developed the process to 
produce the cheese products that we still enjoy. Today, the Italian 
Mozzarella, Grana Padano, and Parmigiano Reggiano cheeses, while 
from different geographic regions, are all produced by microbial com
munities with similar metabolic functionality, composed of thermo
philic, acidu ric, and moderately heatresistant lactic acid bacteria.31 A 
few additional examples of the ubiquitous use of microbiota in food 
are the prepara tion of cocoa bean in the Americas, the fermentation 
of millet to make boza drink in the Middle East, and the fermentation 
of teff to make the sourdough-risen flatbread injera in Africa. 

The soil microbiome around the plant rhizosphere is modified by 
plant roots exudates. In agriculture, metagenomics approaches offer 
the potential to modify soil microbiome structure using blends of phy
tochemicals that might support beneficial microbiota with the goal of 
enhancing crop yields, sustainability, and fend off infections by max
imizing a healthy plant–soil interaction.32 

In aquaculture, metagenomics approaches can help in the design 
of preventive strategies with the goal of enhancing the health of the 
fishes by the manipulation of their gut microbiota. Recently, the gut 
microbi ota of commercially valuable warm-water fishes, including the 
channel catfish and the largemouth bass, has been characterized with 
the goal of growth optimization and disease control.33 
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Our Societal Choices Influence the Microbiomes 

As we move toward a better understanding of the intersection of hu
man behaviors (both individual and societal), the human microbiome, 
and the environments in which humans live, the overall complexity 
drastical ly increases. The choices we make either as an individual or 
as a society influence our interactions with the diverse microbiomes 
surrounding us. Furthermore, the impact is not limited to us and can 
be positive, neutral, or negative to others. For example, the microbial 
communities in the drinking water distribution systems depend on the 
source of water, the tubing material (copper, stainless steel, or poly
vinyl chloride), and the regimen and selection of disinfection meth
ods on drinking water by private and municipal water services lead
ing to a safe drinking water.34–36 Although the microbiota present in 
the drinking water sources might be regionally or locally determined, 
the need for clean and safe drinking water is universal. 

Architectural choices of our homes, schools, and hospitals, by the 
design of the airflow, the temperature, the relative humidity, and the 
in teractive surfaces in the different sections of the rooms or build
ings, in fluence the surrounding surface and aerosol microbiota.37,38 

Our choice of mode of transportation, whether private or public, also 
has an influ ence that might be as equivalent to our exposure to the 
outdoor condi tions from the same environment, showing that safety 
exist also in num bers.39,40 

At a larger scale, how different societies use the land and water re-
sources can have long distance and long-term effects in the microbi
ome of those environments. Hurricanes, for example, are able to aero
solize a large amount of microbial cells to the upper troposphere that 
can po tentially influence the hydrological cycle, clouds, and climate.41 

The mi crobiome–society interaction is bidirectional and until recently 
we have been largely blind to this relationship. 

Recent developments create greater optimism for a better manage
ment of our inner ecology as well as the biosphere. These events in
clude a wider spread of scientific theories, as shown by the large num
ber of individuals taking online scientific courses,42,43 the increasing 
strength of citizen science,44,45 and a greater access to scientific tools 
through open-source software and scientific literature from open-ac
cess pub lishing.46 
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Diving into a Detailed View of the Scales Involved 

Looking at a smaller scale, the coexistence of microorganisms in com-
munities, microbial networking, and community development are at 
the center of the dynamic aspect of the microbiomes. Bioinformatic 
ap proaches are allowing us to redefine our understanding of the 
relation ships between members within the communities, as well as 
the rules of association, competition, and exclusion. 

Metagenomic approaches are finally allowing an in-depth compara-
tive analysis of multiple sites within an individual and across popu
lations. The first large-scale effort of this type was performed in the 
Sargasso Sea at different oceanic sampling stations.47 More recently, 
in the cohort of the HMP, a study of 18 body sites was performed, 
and later was complemented by an additional selection reaching an 
overview of 22 human body habitats.7,48 This biogeography is associ
ated with the presence of relationship networks of diverse structures. 
Traditional microbiology has shown that these relationships can lead 
to direct physical interactions associated with the succession of bio
film formation, ultimately leading to an interactome.49 When analyz
ing next-generation sequencing data, this network expands to co-
occur rence networks, where phylotypes are typically, but not always, 
pres ent together at a site.8,23,50 Although we are far from understand
ing all of these relationships, a metabolic interdependence exists, be
cause of a degradation cascade of nutriments that affect both the mi
crobiome and the host. 

Within a microenvironment, horizontal gene transfer seems to be a 
competitive option to complement the panel of functional capabilities, 
as shown by the analysis of available genomes.51 In the specific case of 
the human gut bacterium Bacteroides plebius, the genetic exchange 
oc curred with a marine bacteria. This gene transfer facilitates seaweed 
di gestion in some Japanese individuals carrying B. plebius enhanced 
by this genetic addition.52 Another available option in multispecies 
commu nities is to use mutualistic cooperation to both enhance nu
triment intake and protecting themselves from the host.41,42,53,54 

The complexity of the interactions becomes more apparent as we 
go deeper into the details of the massive data sets. The initial find
ings on the gut microbiome, from the MetaHIT project, indicates that 
microbial genes outnumber human genes by more than 100fold, 
predicting over 3 million bacterial genes in the gut alone.55 Multiple 
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scales of observation are needed, from the atomic structure modifica
tion of proteins during an enzymatic digest to the gradient of mole
cules within the cell, the che motactic abilities of cells to improve their 
nutrient uptake or flee toxics, the surface protein providing direct in
teraction with other cells and to the assemblage of cells forming bio
films, and the surface to which the biofilm associates. These integrated 
scales of interactions, mechanistic events, and optimizations are cru
cial for survival, dormancy, or ability to thrive. It is up to us to under
stand the rules that have been in place for million of years.

What Would Help to Further the Leap? 

Metagenomics heavily relies on reference databases to improve the 
anal ysis phase for phylogenetic, metabolic, and functional content 
includ ing hypothetical small RNAs and proteins. Assessing the biodi
versity in greater details also presents the challenge of validation in 
the laboratory as it is a more controlled environment. 

Bacterial Systematics 
For over 140 years, the world of bacterial systematics has been evolv
ing because of technological and conceptual advances.56 As of 2013, 
the number of validly named taxa rose to about 2000 genera and 
10,600 species from 29 phyla (list graciously maintained by Dr Euzéby, 
avail able at www.bacterio.net). To this list, additional organisms depos
ited in culture collections are awaiting naming after isolation and ge
nome se quencing during large-scale efforts such as the HMP57,58 (list 
available at www.hmpdacc.org). Beyond traditional methods, whole
genome study allows proper positioning in the phylogenetic hier
archy. However, the move to whole-genomes phylogenetic analysis 
has been curbed, until recently, by the limited number of wholege
nome and highquality ge nomic sequence drafts. Additionally, new 
tools need to be developed to go further and define strain-level phy
logeny based on genetic content.59 This will undoubtedly bring some 
conflicts with the present classifica tion as it happened when the 16S 
rRNA gene phylogenetic classification competed with the phenotypic 
classification.56 Concurrently, databases such as the Ribosomal Data
base Project, Greengenes, SILVA, Human Oral Microbiome Database, 

http://www.bacterio.net
http://www.hmpdacc.org
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and others expand beyond officially named bacteria and maintain our 
ability to do 16S rRNA gene phylogenetic analyses.60–63 

Bacterial Quantitation 
Refined quantitative analysis to study the relative abundance of differ-
ent bacteria will have to take into account the copy number of genes 
including the 16S rRNA gene. As shown in Table 1, the number of 16S 
rRNA genes can vary from 1 to 15 with no specific correlation to ge
nome size, GC%, or membership to a specific genus or phylum. For 
example, two strains of the Firmicutes Bacillus subtilis differ by two 
copies (8 vs. 10), and their genome size by 4% (Table 1). Within the 
Proteobacteria, the GC% range from 14% to 75%, while the number 
of ribosomal operon varies from 1 to 15. Thus, the interpretation of 
microbial diversity and abundances, (relative abundance distribution, 
estimate of abundance of different taxa, overall diversity, and similarity 
measurements) based on the phylogenetically informative 16S rRNA 
gene quantitation, should consider the variation in both the abun
dance of organisms and the op eron copy numbers per genome. Re
fined analyses will only be available for a small community where all 
the partners are defined. A software is available that estimates both 
16S rRNA gene copy number and abun dance of organisms.64 Further 
efforts need to be spent to relate these 16S rRNA gene copy number 
with genome copy number as discussed in the text below. 

Not all bacteria conform to the patterns of genome organization, 
chromosomal replication initiation, elongation, termination, and ge
nomic segregation during cell division exemplified by Escherichia coli, 
whose genome is distributed in one chromosome and has only one 
genome copy per cell. To be truly quantitative, we will also need to 
understand the ploidy of each organism in function of the experimen
tal condi tions (Table 2). The biological significance of polyploidy will 
depend on the system studied and might be involved in diverse func
tions such as DNA recombination among genome copies, replace
ment of deleteri ous mutations through homologous recombination 
of genomes, or to mitigate the accumulation of deleterious muta
tions over time.65–69 Ad ditionally, the cells can replicate asynchronously, 
displaying a heteroge neous DNA content.70,71 We must contend with 
the fact that the genome copy number can change in the different 
phases of growth and that more than one ploidy can be observed in 
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Table 1. 16S rRNA Gene Copy Numbers in a Subset of Bacterial Genomes 

Phylum  Average 16S  Organism Name  16S rRNA  Genome  GC%e  
 rRNA Gene   Gene  Size (bp)d,e 
 Copies in   Copy  
 Phyluma   Numberb  

Actinobacteria  3.1 ± 1.7  Frankia sp. Cc13  2  5,433,628  70.1 
  Frankia sp. EuI1c  3  8,815,781  72.3 
  Kineococcus radiotolerans SRS30216  4  4,956,672  74.2 
Bacteroidetes  3.5 ± 1.5  Candidatus Sulcia muelleri DMIN  1  243,933  22.5 
  Tannerella forsythia ATCC 43037  2  3,405,521  47.0 
  Porphyromonas gingivalis ATCC 33277  4  2,354,886  48.4 
Cyanobacteria  2.3 ± 1.2  Synechocystis sp. PCC 6803  2  3,947,019  47.3 

Deinococcus-   2.7 ± 1.0  Thermus thermophilus HB-8 2  2,116,056  69.5  
   Thermus  Deinococcus radiodurans R1  3  3,284,156  66.6 

Firmicutes  5.8 ± 2.8  Lactobacillus casei ATCC 334  5  2,924,325  46.6 
  Staphylococcus aureus JH1  6  2,936,936  33.0 
  Streptococcus pyogenes M1 GAS (SF370)  6  1,852,441  38.5 
  Bacillus subtilis W23  8  4,027,676  43.9 
  Bacillus subtilis 168  10  4,215,606  43.5 
  Brevibacillus brevis NBRC 100599  15  6,296,436  47.3 
Proteobacteriac  2.2 ± 1.3 (α)  Bartonella henselae Houston-1  2  1,931,047  38.2 
  Erythrobacter litoralis HTCC2594  1  3,052,398  63.1 
 3.3 ± 1.6 (β)  Candidatus Zinderia insecticola CARI  1  208,564  13.5 
 2.7 ± 1.4 (δ)  Anaeromyxobacter dehalogenans 2CPC  2  5,013,479  74.9 
  Desulfovibrio vulgaris Hildenborough  5  3,773,159  63.2 
 3.0 ± 1.1 (ε)  Helicobacter pylori 26695  2  1,667,867  38.9 
  Campylobacter jejuni 269.97  3  1,845,106  30.4 
 5.8 ± 2.8 (γ)  Buchnera aphidicola (Acyrthosiphon pisum)  1  655,725  26.3
  Francisella tularensis FSC147  3  1,893,886  32.3 
  Aggregatibacter actinomycetemcomitans D7S-1  6  2,309,073  44.3
    Haemophilus influenzae 86-028NP  6  1,914,490  38.2 
  Escherichia coli K-12 MG1655 7  4,641,652  50.8 
  Yersinia pestis 91001  7  4,803,217  47.7 
  Klebsiella pneumoniae HS11286  8  5,682,322  57.1 
  Vibrio cholerae N16961  8  4,033,464  47.5 
  Vibrio vulnificus MO6-24/O  9  5,007,768  47.0 
  Aeromonas veronii B565  10  4,551,783  58.7 
  Vibrio natriegens ATCC 14048  13  5,131,685  45.0 
  Photobacterium profundum SS9  15  6,403,280  42.0 
Spirochaetes  2.4 ± 1.0  Borrelia burgdorferi N40  1  1,339,539  28.6 
  Treponema denticola ATCC 35405  2  2,843,201  37.9 
  Treponema pallidum Chicago  2  1,139,281  52.8 
Synergistetes  2.5 ± 1.0  Anaerobaculum mobile DSM 13181  2  2,160,700  48.0 
  Thermanaerovibrio acidaminovorans DSM 6589  3  1,848,474  63.8 
Tenericutes  1.6 ± 0.5  Mycoplasma genitalium G-37  1  580,076  31.7 

a. From Vetrovsky and Baldrian.73 

b. From the following sources: ribosomal RNA database (rrnDB).74 
c. Values are provided for each subdivisions. (α) Alphaproteobacteria, (β) Betaproteobacteria, (δ) Deltaproteo bacteria, (ε) 

Epsilonproteobacteria, and (γ) Gammaproteobacteria. 
d. “bp” stands for base pairs. 
e. From National Center for Biotechnology Information (NCBI) Genome Information (NCBI) Genome Information by Organism 

(www.ncbi.nlm.nih.gov/genome ) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Complete Genomes.75

http://www.ncbi.nlm.nih.gov/genome
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Table 2. Genome Copy Numbers Per Cell of a Subset of Bacterial and Archaeal Species 

Phylum  Organism Name  Genome  Ploidy  Generation Time, Growth  References  
  Copy   Phase Environment-Free  
  Number   Living/Facultative- 
  (Average or   Obligate Symbiont  
  Range)    

Bacteroidetes  Blattabacterium sp.  323–353  Polyploid  Obligate endosymbiont of Lopez 
  10–18  Polyploid   cockroach Blattella oreintalis     Sanchez et al.76   
    Obligate endosymbiont of  
    cockroach Periplaneta americana 
 Candidatus Sulcia  140–880  Polyploid Obligate endosymbiont of Woyke et al.77  
    muelleri DMIN     green sharpshooter  
    Draeculecephala minerva 
 Aphanizomenon  84–122 Polyploid  Akinetes (dormant  Sukenik et al.78  
    ovalisporum   1–4  Oligoploid  sporelike cells)  
    Vegetative cells 
 Synechococcus  4 Oligoploid  Exponential and stationary phaes Griese et al.67  
    PCC 7942        (generation time 1440 min) 
 Synechocystis  218  Polyploid  Exponential phase Griese et al.67   
 PCC 6803  58  Linear phase 
 Motile wild-type   58    (1200 min) Stationary phase 

Deinococcus-  Deinococcus  10  Oligoploid  Exponential phase Hansen,79 
  Thermus    radiodurans  4–8    Stationary phase   Minton80 
 Thermus  4–5  Oligoploid  Exponential and stationary Ohtani et al.81 
    thermophiles HB8    phase (slow growth conditions)    

Firmicutes  Epulopiscium sp. 20,000–  Polyploid  Symbiont of the  Mendell et al.,82 
  Type B    400,000   unicornfish Naso Angert83  
  49,000–   tonganus  
    120,000    symbiont  
 Lactobacillus lactis  2  Diploid  Doubling time 223 min  Michelsen  
   subsp. lactis IL1403     (slow growing culture)    et al.,84 

Proteobacteria  Azotobacter vinelandii  >40  Polyploid  Late exponential phase Nagpal et al.,85 
  >80   Early stationary phase Maldonado  
  >100     Late stationary phase     et al.86 
 Buchnera sp.  120  Polyploid  Obligate endosymbiont of Komaki and 
  (50–200)   the aphid Acyrthosiphon pisum;  Ishikawa69,87 
    genome copy number varies with 
    host developmental stage   

 Caulobacter crescentus 2.1  Monoploid  Doubling time 93 min  Pecoraro et al.68 
 Desulfovibrio vulgaris  4  Oligoploid  Doubling time 2400 min  Postgate et al.88 

 Escherichia coli  2.5/1.2a  Monoploid  Doubling time 103 min Pecoraro  
  6.8/1.7a  Merooligoploid   Doubling time 25 min     et al.68

 Neisseria  3  Oligoploid  Exponential phase  Tobiason  
   gonorrhoeae      (generation time 60 min)    and Seifert89 

 Pseudomonas putida  20/14a  Polyploid  Doubling time 46 min  Pecoraro et al.68 
  Wolinella succinogenes 0.9  Monoploid  Doubling time 96 min  Pecoraro et al.68 

Spirochaetes  Borrelia hermsii  5  Oligoploid  Late exponential phase Kitten and  
  14 (12–17)  Polyploid   (maintained in laboratory)  Barbour90  
    Isolated from mice 

Euryarchaeota  Methanococcus  55  Polyploid  Exponential phase  Hildenbrand  
   maripaludis  30   Stationary phase    et al.91 
 Methanothermobacter  2  Diploid  Exponential phase  Majernik et al.92  
   thermoautotrophicus  1–2   Stationary phase 

a. Based on gene copy number near origin/gene copy number near the termini.
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a population.70,72 An understanding of the role of polyploidy and rep
lication will provide insights into the extent the structure and content 
of the genome influences the pheno typic features of cells with mul
tiple genomes, as well as influence the data from each “omics” plat
forms. In some remarkable cases there is a complementation of the 
physiology of both hosts and their polyploid symbionts, and these 
functional interactions remain to be elucidated. 

Defining What Is a Strain 
Bacteria, both in the laboratory and in nature, are studied at the 
popula tion level. Bacterial populations are not composed of millions 
of iden tical individuals. During cell duplication, the genomes of indi
vidual cells are subjected to mutations, producing a genetically het
erogeneous population within a species. Largescale metagenomic 
studies reveal that microbial communities are predominantly orga
nized in sequencediscrete populations, and the genomes of the or
ganisms within those populations share higher than 94% average 
nucleotide identity (ANI). These sequencediscrete populations are 
important units within natural microbial communities. Bacteria that 
belong to a particular popula tion, but of different environment, sig
nificantly show less genetic identity to other co-occurring popula
tions, typically less than 80–85% ANI. This genetic metric offers higher 
resolution than the widely used 16S rRNA gene sequencing analy
sis.93,94 Defining strain might be contextual at first, until we have a 
more complete view of cell evolution. To facilitate the process, cul
ture-independent “omics” techniques (transcriptomics, proteomics, 
and metabolomics) might further refine the taxonomi cal assignment 
and provide ecologically relevant properties of natural microbial pop
ulations. Quantification of yet-to-be-cultivated bacteria can be im
proved with the characterization of ecologically appropriate genes 
and pathways in sequencediscrete populations, which uniquely de
fine the population genomic signatures. 

Expanding Gene Catalogs 
Identifying the genetic content of a microbiome is the first layer 
pro vided by the new generations of sequencing machines. From a 
metage nome or a metatranscriptome, the avalanche of information 
needs to be transformed in order to go beyond a simple comparison 
of gene counts. Genomic sequences from reference genomes are used 
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in multiple aspects of the analysis, including gene definition, gene 
function, taxonomy, and so on. The first genome sequenced was iso
lated from the bacteria Haemophilus influenza in 1995.95 Since then, 
the number of genome sequences has been growing rapidly and can 
be found in international depositories comprising DNA Data Bank of 
Japan (DDBJ), the Eu ropean Nucleotide Archive (ENA), and the genetic 
sequence database of the National Center for Biotechnology Informa
tion (NCBI) of the United States (GenBank), as well as more special
ized repositories. How ever, the number of reference genomes needs 
to increase to keep pace with advancements in metagenomics. Be
yond cultivability, gene catalogs and single cell genomes will increase 
the pool of information to infer ad ditional layers of analysis.96–101 

Making Reference Strains Available 
Presently, the number of cultivable strains deposited in reference 
strain depositories that are not yet sequenced is decreasing because 
of inter national efforts. The next frontier is in obtaining strains that 
were previ ously thought to be uncultivable. Some of the strains pre
viously classi fied as “yet-to-be-cultivable” are now deposited at the 
American Type Culture Collection (ATCC) and sequenced by the means 
of the HMP,99 awaiting further functional studies. 

For a successful understanding of the microbiome and its interac
tion with the environment, novel largescale investigations into the bi
ology of single organisms and ecological models that integrate phy
logenetic and functional relationships among organisms are required. 
Bacterial isolates available now or in the future will enable both bio
chemicalbased study of their dynamic genomes and culturebased 
studies of their functional role in microbial communities. This will aid 
in improving as sembly and annotation of metagenomes, and in quan
tification of micro bial communities in their residing habitats. 

Metabolic Potential 
Bacteria exist in a wide range of environments and have extremely di-
verse physiological capabilities. Microbiome functionality can be de
rived either from genebased knowledge or the intersection of other 
omics including metagenomics. Metabolism is key for the living cell. 
Databases such as KEGG, MetaCyc, Carbohydrate-Active enZYmes Da
tabase (CAZy), and Braunschweig Enzyme Database (BRENDA) con
siderably enhance our ability to create inferences leading to a greater 
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understanding of single species or a complex community.102–105 How
ever, metabolism is not the only cell function, of which many as
pects still remain unknown. For example, there is a large number of 
conserved proteins in international depositories for which a func
tion needs to be identified to improve our understanding of the 
proteome.106–108 

Learning About Archaea 
Most previous work has focused on bacteria, as information about 
archaea is still nascent. Limited information is emerging about hu
man– archaeal associations and the role of these organisms in human 
physiol ogy. Much remains to be known about archaeal phylogenetic 
diversity, abundance, and biochemistry in situ. Current molecular ap
proaches can reveal the genomic dynamics of methanogenic archaea 
associated with humans. These include Methanobrevibacter smithii, 
a methane producer predominant in human colon and also pres
ent in the vagina, Methanobrevibacter oralis, which has been associ
ated with subgingival diseases and is capable to thrive at low pH in 
the stomach, and various other methanogens including Methanos-
phaera stadtmanae, Methanobre vibacter millerae, and Methanobrevi-
bacter arboriphilus.91,109–112 In the up coming years, we need to expand 
our understanding of the role of archaea in the human microbiomes, 
as their transcripts are overabundant compared with their cell rela
tive abundance.113

In closing, novel approaches are essential to properly integrate 
metage nomics, proteomics, lipidomics, and metabolomics in a com
prehensive and integrative conceptual framework. Proper annotation 
of data sets is the first step in this direction by using minimum in
formation standards when depositing the data sets and the annota
tions, and standardizing the names of body sites as well as of other 
descriptive components.114–116 This opportunity is offered to all of us. 
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