University of Massachusetts Amherst

A study of the grades of freshmen at the University of Massachusetts.

Hall Gerald Buzzell
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Buzzell, Hall Gerald, "A study of the grades of freshmen at the University of Massachusetts." (1950).
Masters Theses 1911 - February 2014. 2743.
Retrieved from https://scholarworks.umass.edu/theses/2743

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

A STUDY OF THE GRADES OF FRESHMEN AT THE UNIVERSITY OF MASSACHUSETTS

BUZZELL - 1960

A STUDY OF THE GRADES OF FRESHIGEN
 AT THE UNIVERSITY OF MASSACHUSETMS

BI
HALL GERALD BUZZELL

A problem submitted in partial fulfillment of the requirements for the Haster of Science Degree

University of Massachusetts

1950

TABLE OF CONTENTS 1850 Gitt

H
H

TABLE OF CONTINTS

PAGT
Table of Contents 111
List of Scatter Diagrams vi
Chapter I ... The Introduction 1
Present Day Binrollments 1
Admissions and withdrawals in Our Colleges 1
Order of Mortality 2
Causes for Leaving 2
Procedures for Detemining Admission 2
History of College mintrance Requirements 3
Admission Standards 4
Methods of Verifying the Problem 5
Chapter II -- Review of Past Studies on the prediction of Success in College Mathematics 6
Prediction of College Success 6
Overall Frediction 6
Summary 10
Chapter III -- Statement of Problem and Outline of Procedure 12
Statement of Problem 12
Subjects and Materials 12
General Procedure 12
Chapter IV - Organization of Data 14
The Comparison of High School Averages End College
Averages in Nathematics 14

PAOE

The Comparison of High School Averages and College Aversges in English 17
A Comparibon of Pirgt Year Averagee vs. Gradec on the Achievement Feste 19
A Comperimon of Pirst Xoaz. Wathemation Averegen vs. Grades on the kehievement Testa 22
A Comparison of the Iumericel. Purt of the Achieve- ment Test हnd Firet Year Matheration Averages 22
A Comparisoin of the Achievezont Test end Birot Year Bneligh Avoraces 26
A Conperisol of the Verbal part of the Achievement Test and the Piret Year zinglish Averagea 28
A Comparisun of the Firat Semester and Becond Scmee- ter Grades in Hathemtics 30
A Comparison of the dehievement rest end righ School Avercges 32
A wultiple Correletion of College Mathemtice ve. Hich Schocl Grader and the Achiovoment Temts 32
Chapter V - Hentetement of Probler, Conclusions ard IImitations 35
Statement of Problem 35
Conclusions 36
Limitetions 38
Appendices 39
Card Used for Obtaining Data 39
PaOL
Bibliogranhy 40
Pert I - Periodicnis 40
Part II - 300\%8 41

LIST OP SGATMG DIAGKAS

PASE
HuMgin I -- High Sehool Averuge vi. College Averace in Mothematice 15
Mumxar II -- High School hrerage vs. Collece average in miglish 18
IUMciA III -- Birst Year iverage vs, Achievement Fests 20
Hunsiar IV \rightarrow Achievement Tent ve, Pirat Yoar Math- amatics Grades 23
Humpan V-. The Lumerical Part of the hehievement Test ve. Firgt Yeer Mathemetics Avex- age ... 24LULBER VI -- Achievement Test vs. Pirst YearInglish Grades27
Mvucian VII -- The Verbal part of the hehievement Tent va. Jixst Veur Jinglish Arexage. 29
มutasir VIII -- Firot semester ve, second Semester Grades in Lathematics 31
HUBEXII IX ‥ Achleveraent Test vs. High Sohool Avex- ages 33

CHAPTER I

INTRODUCTION

CHAPTKR I

INTHODUCTION

The acceptance or rejection of over a million applicents for admission into our Colleges and Univeroities is one of the gravest problems of our present day education program. Our Colleges ean take only a limited number of these applicants and upon their choice rests the education of the nation.

Present Day Tinrollments -- With the end of World War Two, college enrollment in the United States increased greatly.

Colleges all over the country expanded their facilities in order to accommodete the veteran student. In 1939 there were about $1,400,000$ students in colleges and in 1948 there were $2,408,249$ students enrolled in colleges In the United States. (1) This increase in enrollment has put a great strain on the educational system of this country.

Admisgions and Withdrawals in Our Colleges -- Ruth Strang wrote in 1934 that each year Americen colleges admit one third of million students. Of the number, epproximately sixty-five percent leave the institution without graduating. Nortality (withdrawal from college)
(1) Collier's Yearbook, - (1948 and 1949)
is ususlly higher among men although there are marked institutional differences. (2) The greatest mortility is found in the expected order: freshmen, sophomores, juniors and seniors. The type of institution influences mortality. Colleges with high selective standards of selection and orientation everage fifty percent or higher.

Order of Mortality -- Colleges of arts and sciences within universities show highest gross mortelity. However in net mortality the colleges rank as follows: Home Fconomics, Commerce, Aericulture, Liberal Arts and Sciences, Engineering, Education and Law.

Causes for Leaving -- A major cause of leaving college before graduetion is failure to do satisfactory work. It is also generally recognized that many students tend to be misfits in the college they have entered. These facts indicate the need for a study of the admission policies of colleges and universities and for research directed toward identifying the items of information on which adrnission should be based.

Procedures for Determining Admission -- In most colleges procedures for determining admission involve using one or more of the following types of data for the identification of students supposedly able or likely

[^0]to maintain an acceptable level of achievement. (3)

1. High School Diploma
2. High School Transcript
3. High School Subject Certipicates
4. Rank in High school Class
5. College mintrance mxamination
6. Ixamination by Institution
7. Intelligence or Aptitude Tests
8. Principal's Recommendation
9. Personcl Interview

History of College Entrance Requirements -- Until
about 1870 each American college selected 1 ts own students primarily by examinations in subjects and according to local stendards. Since there were no general stendards as to what constituted a college, there could be no general standards or procedures for admission. In 1871 the inspecting and accrediting of high schools by universities was first undertaken. (4) The year 1892 saw the first cooperative setting of standards between colleges and secondary schools. By 1915 the so-called Carnegie Unit, based on semester hours of study under standard conditions, had become generally used by those colleges which admitted students on the besis of secondary school work. For other institutions the College mintrance Sxamination Boerd provided
(3) Kurani, H. A. - Selecting the College Student in America. p. 124.
(4) Duffus, R. I. - Democracy Inters College. D. 244.
a meens of unifomity. (5) by 1219 most Dastern institutions were sdritting stuients on the basis of the College Board zxemination rather then preparatory school certiricetes.

After 1919 some institutions edministered intelligencs tests as meane of guidence or of determinimg the admiesion of students not presenting appropriate certiflestes or unita.

In 1926 the Collece Board adopted "acholestio - aptitude tests" as wiplerentary instruments. In recent years, edmission procedures have been expanded to inelude the inspection of the studente' social and economic backeround, personal characteristice, and educational and rocational plans. Comprehonsive achieverment teets in verious subjects heve been used at the time of admiasion for selecting atudents in cursiculums and subjects.

Admission Standards - Admission standerds are inoreasingly being defined in terms of specific knowledee and skill and apecific traits directiy meesured instead of time spont under tandard conditions in eecondaxy sehool.

There is still, however, much veriation among institutions in regurd to the besia of admiasion. About aixtythree percent require complete transerint of high school. eredits. (6) About twenty-thres percent of the colleges

[^1]admit atudents on the basis of the high school diploma. Many of the colleges have now done away with the college Entrance wxamination as method of entrance.

As long as the aims and standards of the different colleges and even curriculums within colleges difer so widely, it is impossible to determine general admission criteria. Bach institution must do its own research to determine its own admission standerds.

With the magnitude of this admissions problem in mind, one can only hope to do his part in trying to determine the validity of his own institution's admission standards.

Kethods of Verifying the Problem -- By reviewing the achievements of students in the University of Massachusetts and comparing their records with the standerds of admissions that were used, it is hoped that the admissions officers will be helped in their choice of possible candidates, and that the great waste of human effort will be lessened by fewer students dropping out of this institution end by better grades keing obtained for those who are admitted.

CAAPTM II

 0\% 3uccess In coLxens umaratrics.

CHAPTLR II

REVILW OF PAST STUDIIS ON THE PRJTICTION OF SUCCHES IN COLLEGE MATHAKATICS
prediction of College Success .- There has been much work done by oducators all over this country with the one goel in view: that of predioting success in college. Fach of these educators tries to find a formula for keeping the failure from ever getting into college. He wants the thousands of failures in college replaced by students who will make a success in college, and he hopes to make this replacement before the fallure even enters college.

As can be seen by college records, these educators have failed to find such a formula. All that they have succeeded in doing is to cut down the failures to some extent, and to bring their findings to the eyes of the public. This chapter will review the findings of some of these educators. As will be soen from this review not all of the results agree.

Overell prediction -- In the study made by Ruth Byrons (1) in 1935, one finds a correlation of .459 between the inielligence test scores and college freshman grades. Her study was based on 250 students registered in the
(1) Byrons, Ruth and Hennon, V.A.C. - "Long Range Prediction of College Achievement" School and Society XII (June 29, 1935). pp. 877-880.

University of Wisconsin. Ruth Byrons comes to the rather definite conclusion that lack of ability can be determined in a high school student.

A study by Rosenfeld(2) in 1938 made on 200 students that attended both the Detroit elementary schools and Wayne University shows a correlation of .46 between the Aávanced Intelligence Test and success as measured by the honor point averages in Wayne University.

Crawford and Burnham ${ }^{(3) \text {, in 1932, found a corre- }}$ lation of .47 between College Intrance Board Exemination grades and average college freshman gredes, while a correlation of .57 we found between average high school grades and average college freshman grades. This reveals that the high school grades are much better for prediction than the College Entrance Exemination. Their study was made on 3,277 Yale students.

In 2935 rickon (4) found that high school grades were the best rethod of predicting success in college. His study concerned the relative value of the rinnesota College Aptitude test and average high school grades. He

[^2]found correlations of from .55 to .68 between average high school grades and grades obtained in the freshman year at college.

Minzner (5) in 1940 devotes an entire chapter of his Master's Thesis to a review of the studies made by educators on the correlation of different criteria with college success. He comes to no definite conclusions in this chapter but he does review the findings of most of the educators that did this type of work up to 1940.

Not as much work has been done on success in the specific subjects as in the overall field of college success, but the results of these works will be put down in this chapter. Minzner in 1940 devotes several pages to a review of the studies of educators before 1940 on the prediction of success in specific subjects in college. This study will try not to duplicate kinzner's findings.

In 1945 Leonard (6) found the following correlations. Average correlation between general mental tests and college success in Tinglish is .38 and in Mathematics . 36 . Averoge correlation between general achievement tests and college success in Inglish is .42 and in mathematice .45 .
(5) Kinzner, Raymond A. - WPrediction of Grades in College Physios." Master's Thesis, 1941. Massachusetts State College.
(6) Leonard, J. Paul - "College Entrance Requirements, Can We Face the Ividence on?" School Review (June, 1945). pp. $327-335$.

Leonerd then states, "There is obviously little relationship between general college success and scores on achievement tests, mental tests, aptitude tests".

Keller ${ }^{(\eta)}$ states thet other attempts have been made to discover the relationship between scores on tests in special subjects in High School and success in these same subjects in College. Such correlations as the following are typicel: in English . 64 ; and in Kathemetics . 61.

In a study at the University of Oregon, C. F. Kossack(8) tates that of the different factors he considered for determining a student's possible success in a first course in college mathematics, the two most important factors were the student's grade on a placement test, and his high school mathematics score. He found that the score on a psychological test, the scholastic high school rank, and the number of years since graduation were not important. scott ${ }^{(9)}$ found in 1941 that the number of mathematics courses taken in high school had a slight significance in predicting probable success in college mathematics.
(7) Keller, M. W. and Joneh, H.F.S. MMeasures for Predicting success in a First Course in College Wathematics". The isethematics Teacher. XII (December, 1948). D. 350.
(8) Kossack, C.F. Mrathematios Placement at the University of Oregon". The American Wathematical Monthly. XIIX (Apri1. 1942) - p0. 234-237.
Scott, W.M. and Gill, J.P. MA Prediction of Pupil Success in College Algebran. The Hathematics Teacher. XXXIV, (April, 1941). pp. 357-359.

From a study of about 900 engineering students, Irick (10) concluded that the score on the mathemetics placement or training test was the best single factor for predicting a student's success in a first course in college mathematics. High school grades and rank in the bigh school graduating classes were next in predictive value.

Douglass and Hichaelson(11) found that the average mark in high school mathematics hed a definite correlation with the average college mark in every field. The data also indicated that, in the prediction of success in elementary college mathematics, the average high school grade in mathematics and the average high school mark in all subjects are of approximately equal merit.

Summary -- This chapter shows that there has been much work done on the prediction of success in college. Some of the studies do not agree and some of them coincide almost perfectly. As the subject in each study is the human being, this disagreement is only to be expected. It is very oncouraging to find that every study shows that high son 001 grades are one of the best methods of predicting success in college.
(10) Irick, Por. AA Study of Pactors Related to Ingineering Wathematics at Purdue University". Master's Thesis, 1945. Purdue University.
(11) Douglase, H.R. and Michaelson, J.H. "The Relation of High School Wathematics to College Marks and of the Other Fectors to College Marks in Mathematics". School Review. XIIV (October 1936). pp. 615-619.

The following pages of this study will be devoted to the predictive values of high school grades, and entrence tests in the University of Massachusetts. The results will be compared with past studies and a conclusion will be at least suggested.

CHAPTER III

STATENENT OF PROBLEM AND OUTLINE OF PROCEDURE.

CHAPTEK III

STATEMENT OF PROSLITL ARD OURLINE OF PROCLDURE

Statement of Problem -- This problem is primarily a study of the methods used in selecting students for entrance into the University of iliassachusetts. It does not criticize or condone the methods of acceptence. It merely compares the methods with the results obtained by the students of the class of 1951 in the University of Massachusetts.

Subjects and Materials .- The class of 1951 was selected for the study, as it is the first class since the war that is not predominantly veterans. The class was first divided up into three groups, veterans, transfers, and those students direct from high school. The veterans and transfers had to be oliminated to a greet degree, as their high school records were not available. This problem is the study of the records of about three hundred and fifty students from the class of 1951 at the University of Massachusetts. It does not include about fifty students whose high school records were not available.

General Procedure -- All of the material had to come from the records' office and this necessitated a set of cards on which to write each student's high school and college records. The appendix contains a replica of one of these cards.

A separate card web made out for each student, and as many of the blanks on the card were filled in as was possible from the University's records.

It is unfortunate that the records at the University of Massachusetts do not give the student's high school average in all subjects. Other studies reveal that the high school average gives a higher correlation with college grades than any other criterion.

After these cards were complete, several scatter diagrams were made from the caras. This problem pictures these scatter diagrams and tries to explain in a logicel way the importance of each.

CHAPTER IV

ORGAVIZATION OF DATA

GHAPTZR IV

ORGAMIZATION OP DATA

This chapter is a presentation of the facts found in the examination of the deen's records at the university of Kassachusetts. It is a record of the scholastic achievement of the students in the cless of 1951 at the University of lisssachusetts.

The Comparison of High School Averages and College
Averages in Mathematios -- The most common method of selecting students for college is by their high school everage. This is one of the methods used in the University of Massachusetts. On page 15 there is a scatter diagram, No. I, made from the class of 1951 at the University of Massachusetts. It plots the high school mathematics averege of each student against his firstyear mathematics average in college.

Results of Study -- Scatter diagram lio. I shows a correlation of 46 between high school and college sverges in methomatics. This correlation is not very high, yet a study of the scatter diagram reveals many very interesting facts.

Record of Students Whose High School Averages were 90 or Above -- In the class of 1951 there were firtyseven students who received a 90 or better average in high school mathemotics. Of these fifty-seven students, eleven received an averege of 90 or above in matheratics

First Year Mathematics Average

SCATTER DIAGRAM I. Sis Scatter Diagram
Is Made Up of the High School Mathematics trarages And the pirat Yean College Averages In Mathematics.
in college while only two failed the course. There were twenty-six who received grades in the eighties, fourteen in the seventies and four in the sixties. This shows that only 3.5% of the students that were in the above group failed and that 19.3% maintained a 80 average in college. Even more revealing is the fact that from this group 89.5% received a grade of at least 70% and 96.5% completed the mathematics requirements. These students certainly would appear to be good risks so far as college mathematics is concerned.

Records of Students Whose High School averages

were in the Sixties -- In the class of 1951 there were only seven students that had high school matheratics averages in the sixties. Of this group none received a grade of bettor then 80 in college mathematics. Three were in the seventies, two were in the sixties and two failed the course. This reveals that 35% of this group failed to meet the minimum college requirement in mathemetics.
overall Picture in the Stuay of High Sohool Avereges -- This scatter diagram shows that 7.7% of the students that begin mathematics in the University of Wassachusetts fail to pess the mathematics requirements in the first year. It shows that those students who received a 90 average in high sohool mathematics have a much better chance of passing college mathematics then does a student Who berely passed mathematics in high school.

This scatter diagram also shows that of the 33 students that receired 90 in college mathematics, 33% were from the 90 high school group, 61% were from the 80 high school average group, 6% were from the 70 high school average group and not a single student from the 60 high school average group was above 90%.

It would seem from these results that the better a student is in high school matheratics, the better he will. be in college mathematics. As is seen from the scatter diagram, there are meny exceptions, but as a general rule it will be more true than not. It also seems fris to suggest that no student whose grade is below 70 in high school mathematics should be admitted into the University of Messechusetts unless other qualificetions are found which out-weigh the probability of little success in Breshman Jiathematics.

The Comparison of High School Averages and ColLege Averages in Jnglish -- Scatter Diagram No. II plote the high school English average of each student against his first-year English average in college.

Results of Study -- Scatter Diagram INo. II shows a correlation of 28 between high sohool and college averages in English. This is a rather low correlation, yet a closer exemination of the scatter diagram reveals some interesting facts.

Records of Students Whose High School Averages
were 90 or Above -- In the class of 1951 there were 78

F1rst Iear Enclish Average

students who received a 90 or better sverage in high school Bnglish. From this group three recelved a 90 average in college mgitsh while only one failed. Twenty-geven recelved an 80 arerege, thisty-three re. ceived a 70 average and four received a 60 averace. This reveals thet from the group 3.8% received a grede of $90,47.5 \%$ received a grade of $80,42.2 \%$ received a grade of $70,5.2 \%$ receivea a grade of 60 , while only 1.3\% failed.

Recorda of Students Whose High School Averages were Below ? -- In this group there were only four students. Ione of these students received a grade of better then 80%, yet all of them pascod the freshmen Inglish requirements. Seventy-five percent of this group were in the 70 range and 25% were in the 60 range.

Overall Picture -- This comparison of high school averages and college averages in Inglish reveals the need of another criterion for the selection of students. High school grades in English should not be used to any grest extent in the selection of entering students at the University.

A Comperison of Pirst Year Averages VB. Grades on the Achievement mests - A very popular means of admission into some colleges is the college achievement test. Scatter Diagram No. III plots the firat year average of

Percentile on the Achievement Test

SCATtER DLAGRAY III mi s Scatter Diagram Is Made Up or The First Year college Averages ina he Students Percentiles On The Achievement rest.
students in the class of 1951 againgt the grades that these some students received in an achievement test given by the University of Massechusetts upon admittance into the school.

Results of Study -- Scattex Diagram lio. III shows a correlation of .37 between the achievement test and grade of students in their first year of college. As can bo seen from the scatter diagram there is a slight trend for those pupils who did well on the achievement test to áo well in college, but there are so many exceptions that there cen be little use for this particular achievement test.

Average Grades 䈌thin the Different Percentiles -The average grade in the separate percentiles is shown by the red ine on scatter diagram No. III. As can be seen from the scatter diagrem, the highest averaces are in the upper 20 percentile while the lowest ones are in the lower 20 percentile. This average is at ε high of 77% in the 8 th and 9 th percentile and et a 10 of 70.5% in the lst percentile.
overall Picture of the Achievement Test ae a Menas of forecesting Pirst Toar College Averages -- It is readily seen from Scattier Diggram NJ. III that if the achieverient test could be given to all students applying for admission into college and could be used as a method of admission, that the students would be admitted who would tend to do better work in the University.

A Comparison of first Year Mathematics Averages

 V8. Grades on the Achieverent Tests -- Scatter Diagram No. III reveals that the achievement test is of little use in forecasting a student's freshman average. This fact alone should not lead one to throw out the test as useless. A closer examination may show the test to be a good messure for testing students in certain subjects. The first course that was exemined was the freshman mathemetics course. The achievement test percentiles were plotted against the mathematics averages of the different students from the class of 1951 at the University of Massachusetts.Results of Study -- Scetter Diagram No. IV shows a correlation of . 214 between the achievement test percentiles and a student's grades in mathematics.

Overall Picture of Scatter Diagram No. IV -This scatter diagram shows a slight trend for the better students to do well in the achievement test, yet the exceptions are so numerous as to prohibit any extensive use of the scatter diagram.

A Comparison of the Numerical Part of the Achievement Test snd First Year Mathematics Avereses -- A closer examination of the achleveraent test reveals that it is made up of two perts. The two parts are composed of a verbal section and a numerical section. Scatter Diagram No. V plots the percentiles received in numerical part of the achievement test against the math-

Percentils on the Achievenent Test

SCATIER DLAGRAL IV. Tmis Scatter Diagran Is Made Up of The First Icar Yathematices Arerager And the Studente Percentiles On we Achievement Test.

Percentile on the Namberieal Section of the Achierament Test

SGATEER DIAGRAM V. This Scatter Diagram
It Made Up Of The First Ioar Matheratics
Averages And the Students Porcentiles
On Th Numerical Section of the Achievement
Teat.
ematics averages of the different students from the olass of 1951 in the University of Massachusetts.

Results of Study - Scatter Diagram No. V shows a correlation of 39 between the numerical part of the achievement test and the college mathematics grades. This correlation is rather low and would seem to be of little use. A closer look at the scatter diagram will nevertheless reveal that not a single student in the upper ten percentile received a grade of less than seventy percent in mathematics in his first year in college.

Comperison of the Unper and Lower Ten Percentile - In the upper ten percentile, one finds about 24% of the students above 90 in their college mathematics, about 34% in the eighties and 42% in the seventy range. In the lowest percentile one finds 5% of the students in the 80 bracket, 34% in the 70 bracket, 37% in the 60 bracket and about 24% in the group that failed the course.

Overall Picture of Scatter Diagram No. V -- This scatter diagram shows a decided trend for those studenta who do well in the numericel section of the achievement test to do well in college mathematics. As one sees from the scatter diagram, there are still many fliers on the chart. It shows that this section of the achievement test may be used as an aid for choosing students for
college, yet it must not be used as the only means of acceptance.

A Comparison of the Aohievement Test and. First

 Year Inglish Averages -- Scatter Diagram No. VI plots the results on the achievement test against the first year Rnglish grades of all the students in the class of 1951 at the University of liassechusetts.Results of Study -- Scatter Diagram No. VI shows a correlation of 43 between the achievement test and the college English grades. Although this correlation is not too high it is high enough to be of some use. A look at the scatter diagram reveals that there is a decided trend for the better results on the achievement test to do better in English. There are some fliers in this diagram but they are to be expected.

Records of Students of the Unper and Lower Ten

percentile -- In the upper ten percentile one finds thet the class average is 78.7% while in the lower ten percentile it is only 68.0%. One also finds that in the upper ten percentile 6% of the students received grades of above $90,41 \%$ received $80,44 \%$ received $70,9 \%$ received 60 and no students failed the course. In the lower ten percentile one finds no students above 90 , only 4% of the students received $80,39 \%$ received $70,44 \%$ received 60 and 13\% failed the course.

Overall Picture of Scatter Diagram NO. VI -- Scatter Diacrom No. VI shows a very decided trend for the better

Percentile on the Achievement post

SCATMER DIACRAM VI, Tie Scatter Diagram
Is Mace Up of the First Your Finglish A forages And the students' Percentiles on tho Achieve
students on the achievement test to do better in college English: There are several iliers in the chart but not enough to discredit the chart. This scatter diagram reveals a method of choosing the better students for Inglish. It is not fool-proof, yet it is a good barometer for picking out the better ingilsh students.

A Comparison of the Verbal part of the Achievement Test and the Pirst Year Fnglish Averages -- Scatter Diagram No. VII plots the percentiles received in the verbal part of the achievement test againgt the English Everages of the different students from the class of 1951 in the University of Massechusetts.

Results of Study -- Scatter Diagram No. VII shows a correlation of 49 between the verbal part of the achievement test and the college English grades. Although this is not as high as one could hope for, it is by far the best correlation found thus far in this problem. In this chart one sees that the better results on the verbal section of the achievement test do point to the better students in college inglish. There are a few fliers but they are the exception rather than the rule.

Records of Students of the Uppor and Lower Ten Percentile - In the upper ten percentile 5% of the students recelved a grade of above 90 in college English While no person from this group failed to attain a passing grade of 60 . Forty percent of the students from

Percentile on tho Verbal section of the Achievement rest

SGATIESA DLAGRMM VIT. This Scatter Diagram Is Wade Up of the First Year English Averages And The students? Percentiles on The Verbal section of the Nchiovament fest.
this group attained an 80 average, 45% attained a 70 average and 10% attained a 60 average. In the lower ten percentile one finds that no person attained a 90 average in English, 3.5% of the students had grades of $80,41.5 \%$ grades of $70,38 \%$ grades of 60 and $1 \% \%$ of this group failed the course.

Overall Picture of Scatter Diagram No. VII -Scatter Diagram No. VII shows a very decided trend for the better students on the verbal section of the achievement test to do better in college maglish. This is by far the best means found in this problem for forecssting the future inglish work of a student in the University of Hassachusetts. There are still some fliers in the chart, yet there will be some fliers as long as human achievements are studied.

A Comparison of the Pirst Semester and Second

 Semester Grodes in Hathematics -- Scatter Diagram Iio. VIII plots the pirst semester mathematice grade in college against the second semester grade. As is to be expected it does follow a definite pattern.Results of Study -- Scatter Diagrom No. VIII shows e correlation of 49 between the first and second semester grades in mathematics. This correlation is not as high as one might wish for, but does follow a definite pattern.

Overall Picture of Scatter Diagram No. VIII -- A closer examination of the scatter diagram reveals that

Socond Senastor Ifathonatics Avorngo

Hade Up of the First Senoster And Bacond Senoster
Matherntice ivaragea.
there are many student that do not do as well the second semester as the first. This is probably due to the fact that the first course in mathemetics at the University of Massachusetts is a review of high school methematics, while the second semester does contain many new and foreign concepts in mathemetics.

A Comparison of the Achievement Test and High School Averages -- Scatter Diagram No. IX plots the percentiles received on the achievement test against the high school everages of the different students from the class of 1951 in the University of Massechusetts.

Results of Study -- Scatter Diagram No. IX shows a correlation of 23 between the achievement test and high school grades. This is a rather low correlation and would seem to be of little or no use.

Overall Picture of Scatter Diagram No. IX -- A

 possible explanation for the low correlation between high school grades and the achievement test at the University of Massachusetits may be that the two criteria do not test the seme thing. If this is the case then a multiple correlation will reveal it.
A Hultiple Correlation of College Mo.thematics vs.

 High School Grades and the Achiovement Tests -- A review of this study shows a correlation of .46 between college mathematics and high school grades: a correlation of .21 between college mathematics and the achieve-
Percentile on Achievement Test

SCATPER DIAGRAM D. This Scatter Diagram Is Made Up of the High School Averages And The Percentiles On The Achievement rest.
ment test, and .23 between high school grades and the achievement test. These results suggest a multiple correlstion.

Results of Study - A multiple correlation of college mathematics vs. high school grades and the achievement test reveals a correlation of . 54. Mis correlation is much better than any other found in this study. It reveals that both the achievement test and high school grades should be used to select entering students at the University of inassmchusetts. It shows that even though the separate methods of selection are not too accurete, when used together they make up, to some degree, each other's deficiencies.

Qverall Picture -- This study can only show that a combination of high sohool grades and rank on the achievement test should be used as a meens of acceptance or rejection into the University of liassechusetts. It reveals that each method of selection is testing a different capacity of the student. Together these methods of selection should tend to increase the caliber of the entering students a.t the university of HEssachusettB.

CHAPTER V

RESTATEMENT OF PROBLRE, CONCLUSIONS, AND LIMITATIONS.

CHAPTER V

HUSTATLMGIT OF PROBLIT, COMCLUSIONS, AIN LIHITATIOAS

Statement of Problem -- This problem is a study of the methods used in selecting students for entrance into the University of Massachusetts. It compares the methods of selection with the resulting recorás of these students in college. It attempts to correlate these comparibons and tries to decide the validity of the methods of selection. It compares the results of the achievement tests that all entering freshmen are required to take. It correlates the results of these tests with the student's freshman records. All of these correletions taken together are shown below:

CORREIATIOISS

(1) High School Averages in wethematics
(2) High School Averages in English
(3) Percentiles on Achievement Test
(4) Percentiles on the Numerical Section of the Achievement test.
(5) Percentiles on the Verbal Section of the Achievement Test
(6) High School Averages in Hathematics and English
(7) First Year Grades in College Mathemstics
(8) First Year Grades in College English
(9) First Year College Averages
(10) First Semester Grades in College Kathometics
(11) Second Semester Grades in Colleze Kathemetics

$$
\begin{array}{ll}
r_{1.7}=.46 & r_{4.7}=.39 \\
r_{2.8}=.28 & r_{3.8}=.43 \\
r_{9.3}=.37 & r_{5.8}=.49 \\
r_{3.7}=.21 & r_{10.11}=.49
\end{array}
$$

$$
\begin{aligned}
& \boldsymbol{r}_{3.6}=.23 \\
& \mathbf{r}_{7.63}=.54
\end{aligned}
$$

Conclusions -- The conclusions formulated from this problem are as follows:

The correlation between high school mathematics and college mathematics $1 s, 46$.

The correlation between high school Tnglish and college English is .28.

The correlation between first year averages and grades on the achlevement test is $.3 \%$.

The correlation between college mathematics and grades on the achievement test is $\mathbf{2 1}$.

The correlation between college mathematics and grades on the numerical part of the achievement test is . 39 .

The correlation between college Inglish and grades on the achievement test is .43 .

The correlation between college English and grades
on the verbal part of the achievement test is .49 .
The correlation botween first and second semester grades in college mathematics is .49 .

The correlation between the achievement test and high school grades is $\cdot 23$.

The multiple correlation of college methematics vs. high school grades and the achievement test is .54.

The problem reveals thet none of the methods of selection at the University of Nassachusetts have a high enough correlation to warrant their use as the only method for acceptance or rejection of a candidate.

Wany students in the class of 1951 at the University of hiassachusetts did well in college even though their high school grades in Bnglish and wathematics were poor. This would indicate that other qualifications of a student may overcome a deficiency in English and Wathemetics.

Many atudents in the class of 1951 at the University of Massachusetts did well in college even though they were in a low percentile on the achievement test. This indicates that a low grade on the achievement test may be overcome by a student, and therefore the schievement test must not be used as the only method of acceptance or rejection of a candidate.

The high school record is a good method of selecting students for entrance into the University of Massa-

APPMNDICES

The following is a facsimile of one of the cards used to record the date found in the records of the University of Hassachusetts:

Hath.
Physics
Plane Geometry
in High School
Algebra 1
in College Algebra 2 Solid Geometry Trigonometry

Chemistry Review Wath.
in High School
in College
College - Math.

Hath.

Math。
Math.
Hath.
High School Average
$\bar{\square}$
in High School
in College
Aptitude Test \qquad
Tntrance Inxam \qquad
Remarks:
Pirst Semester Average \qquad

BIBLIOGRAPHY

PARTI I

ARTICLISS

Douglass, The Relations of High school Preparation and Certain Factors to Academic Success at the University of Oregon", University of Oregon Publication. September, 1931. pp. 12-13.

Byrons, Ruth and Hennion, V.A.C. "Long Range Prediction of College Achievement." School and Society. XII (June 29, 1935). pp. 877-880.

Rosenfeld, M.A. and Hemzak, C.I. "Long Range Prediction of College Harks." School end Society. XIVII (January 22, 1938). pp. 127-128.

Crawford, A.B. and Burnham, P.S. MEntrance Examinetions and College Achievement." School and Society. XXXVI (September 10, 1932). pp. 344-352, 378-384.

Ficken, C. i. NPredicting Achierement in the Liberal Arts Colleges." School and Society. XIII (October 12, 1935). pp. 518-520.

Leonard, J. Paul, "College-inntrance Requirements, Can We Face the Evidence On? School Review (June, 1945). pp. 327-335.

Keller, M.W. and Jonal, H.F.S. MIreasures for Predicting Success in a First Course in College Mathemetics." The Mathematics Teacher. XII (December, 1948). p. 350.

Kossack, C.F. Marthematics Placement at the University of Oregon." The American Mathematical Monthly. XLIX (Apri1, 1942). pp. 234-237.

Scott, H.W. and Gill, J.P. "A Prediction of Pupil Success in College Algebra." The Mothematics Teacher. XXXIV (April, 1941). pp. 357-359.

Douglass, H.R. and $\mathbb{1}$ chaelson, J.k. "The Relation of High School Mrethematics to College Marks and of the Other Factors to College larks in Wathematics." School Review. XIIV (October, 1936). pp. 615-619.

BIBLIOGRAPHY

PART II

BOOKS

The Work of the College Entrance Examination Boerd 1901-1925. New York: Ginn, 1926. pp. vi f 300.

Bent and Kroneburg, Principles of Secondary Fducation. New York: McGraw-Hill Company, 1941. pp. xili 7 594.

Collier's Yearbook. New York: P.F. Collier and Son Corporation, 1949. pp. xxi $/$ 922.

Monroe, Walter S., Faitor, Encyclopedia of Educational Research: New York: The Macmillan Company, 1941. pp. xxili +1344.

Finzner, Raymond A. Prediction of Grades in College Physics." Master's Thesis. The Kassachusetts State College, 1941. pp. xi f 85.

Irick, P.E. "A Study of Pactors related to Engineering Mathematics at Purdue University." Master's Thesis. Purdue University, 1946. pp. ix $f 7 \overline{4}$.

Strang, Ruth, Personal Development and Guidance in College and Secondary School. New Yoxk and London: Harper and Brothers, 1934. pp. vii t 341.

Kurani, H. A., "Selecting the College Students in America." Contributions to Fducation, N. 503. Teachers Col.. 1931. pp. 1 / 124.

Duffus, R. I. Democracy Enters College. Scribner, 1936. pp. xi 327.

Problem approved bys \qquad caleex H Prume

[^0]: (2) Strang, Ruth - Personal Develooment and Guidance in College and Secondary Schoo1. p. 341.

[^1]: (5)

 The Work of the Collese mintrence IWaminetian Bourd. 3. 300 .
 (6) Lonroe, Walter s. Jd. - Incyclonedie of 綡ucctional Regorrch. p. 252.

[^2]: (2) Rosenfeld, M.A. and Nemzak, C.L. Nong Range Prediction of College Marks" School and Society XLVII (Jenuary 22, 1938). pp. 127-128.
 (3) Crawford, A.B. and Burnham, P.S. Mintrance Examinations and College Achievement" School and Society XXXVI (September 10, 1932). pp. 344-352, 378-384.
 (4) Ficken, O.E. "predicting Achievement in the Liberal Arts Colleges" School and Society XIII (October 12, 1935). pp. 518-520.

