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ABSTRACT 

EFFECT OF TEST CHARACTERISTICS ON ABERRANT RESPONSE PATTERNS 
IN COMPUTER ADAPTIVE TESTING 

SEPTEMBER 2001 

SABAM. RIZAVI, M S. COMPUTER SCIENCE DEPARTMENT OF PESHAWAR 
UNIVERSITY, PAKISTAN 

M.Ed., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ed.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Hariharan Swaminathan 

The advantages that computer adaptive testing offers over linear tests have been 

well documented. The Computer Adaptive Test (CAT) design is more efficient than the 

Linear test design as fewer items are needed to estimate an examinee’s proficiency to a 

desired level of precision. In the ideal situation, a CAT will result in examinees answering 

different number of items according to the stopping rule employed. Unfortunately, the 

realities of testing conditions have necessitated the imposition of time and minimum test 

length limits on CATs. Such constraints might place a burden on the CAT test taker 

resulting in aberrant response behaviors by some examinees. Occurrence of such response 

patterns results in inaccurate estimation of examinee proficiency levels. This study 

examined the effects of test lengths, time limits and the interaction of these factors with 

the examinee proficiency levels on the occurrence of aberrant response patterns. 
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The focus of the study was on the aberrant behaviors caused by rushed guessing 

due to restrictive time limits. Four different testing scenarios were examined; fixed 

length performance tests with and without content constraints, fixed length mastery tests 

and variable length mastery tests without content constraints. For each of these testing 

scenarios, the effect of two test lengths, five different timing conditions and the 

interaction between these factors with three ability levels on ability estimation were 

examined. For fixed and variable length mastery tests, decision accuracy was also looked 

at in addition to the estimation accuracy. Several indices were used to evaluate the 

estimation and decision accuracy for different testing conditions. 

The results showed that changing time limits had a significant impact on the 

occurrence of aberrant response patterns conditional on ability. Increasing test length had 

negligible if not negative effect on ability estimation when rushed guessing occured. In 

case of performance testing high ability examinees while in classification testing middle 

ability examinees suffered the most. The decision accuracy was considerably affected in 

case of variable length classification tests. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The advantages that computer adaptive testing offer over linear tests have been 

well documented. The computer adaptive test (CAT) design is more efficient than the 

linear test design in that with a CAT design fewer items are needed to estimate an 

examinee’s proficiency level to a desired level of precision. This is accomplished by 

sequentially administering items that yield maximum precision at the examinee’s current 

proficiency level. While this is highly desirable, a CAT with an item selection strategy 

that ignores such issues as content balance and exposure rates may compromise the 

validity of the test. Imposing content constraints and exposure controls on the CAT, 

/ 

while enhancing the validity of the test, imposes a considerable strain on the item pool 

and the administration of the CAT. A further issue that places a burden on the CAT test- 

taker is the imposition of limits on time and the minimum number of items that must be 

attempted. In the ideal situation, a CAT will result in different examinees answering 

different numbers of items according to the stopping rule employed. Imposing time 

limits is not employed in the ideal case, since the primary objective is to estimate an 

examinee’s proficiency level with a desired level of precision. Unfortunately, the realities 

of testing conditions such as scheduling and improper test-taking strategies on the part of 

examinees, have necessitated the imposition of time and minimum test length limits. The 

constraints imposed on CATs that stem from validity-related issues as well as those based 
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on the realities of testing conditions may result in an examinee’s proficiency level being 

estimated incorrectly. 

Problems with estimating an examinee’s proficiency level may occur for several 

reasons. An examinee may exhibit an aberrant response pattern such as responding 

correctly to a “difficult” item and incorrectly to an easy item. When such response 

patterns occur, especially with a three-parameter item response model, the likelihood 

function will not have a proper maximum, resulting in an inadmissible estimate for the 

examinee’s proficiency level. Another problem in estimating examinee proficiency is 

that the item response model employed in CAT may not adequately model the examinee’s 

performance. The existence of aberrant response patterns and the attendant inadmissible 

proficiency level estimates have been discovered in several testing programs. 

1.2 Statemeiit of Purpose 

The main purpose of the current study is to examine the reasons behind the 

occurrence of aberrant response patterns and their effect on the estimation of the 

proficiency level of an examinee. (It should be noted that this study is not aimed at 

examining procedures for detecting aberrant response patterns. Numerous procedures 

have been developed for detecting aberrant response patterns using appropriateness 

measurement indices and fit indices; these procedures will be used in identifying items 

that show aberrant response patterns in this study.) In order to explore the issue of 

aberrant response patterns, this study will examine the effect of time constraints on the 

occurrence of aberrant response patterns. The effect of interaction between the examinee 

proficiency level and various time constraints will also be studied. The study will also 
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examine the occurrence of such patterns in a variable length computer adaptive test 

designed for classification purposes. 

An important factor in CAT is that of content constraints. The purpose of 

imposing content constraints is to enhance the validity of the test by ensuring that the 

content domain is represented. In fact, it can be argued that guessing on a relatively easy 

item by an examinee with high ability may be the result of content constraints; examinees 

with high ability value may not know a particular area of content and hence guess on an 

easy item from this content area. This will result in an aberrant response pattern. Thus, 

the existence of content constraints may provide an explanation of why aberrant response 

patterns occur. 

While content constraints are not explicitly imposed in the study, the effects of 

content constraints can be studied to some degree from the proposed design (chapter 4). 

Since the effect of examinees guessing at various points on their response patterns can be 

interpreted from the content-constraint perspective, the net effect of imposing content 

constraints can be examined. 

1.3 Scope 

Aberrant or non-model fitting responses occur when an examinee responds to test 

items in a manner that is not congruent with the underlying test model. This area of 

research has been known as appropriateness measurement in the past (Yi & Neiring, 

1999; Drasgow & Levine, 1986) and as person-fit analysis more recently (Meijer & 

Neiring, 1995; Reise & Due, 1991). A variety of person-fit indices have been proposed to 

detect such aberrance and a great deal of research has been devoted to this issue (Bracey 
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& Rudner, 1992; Kogut, 1987; Kogut, 1986). While a variety of research has been 

conducted on detecting the extent of aberrance in a CAT, hardly any studies looked at the 

effect of test or examinee characteristics on the response pattern aberrance and how that 

aberrance in turn reflects on the ability estimates. 

The present study looked at the issue of aberrance for fixed length achievement tests 

and both fixed and variable length mastery tests. Hence, the effect of test and examinee 

characteristics on the response aberrance was studied in the context of estimation 

accuracy as well as decision accuracy for adaptive tests designed and administered for a 

specific purpose. The research also considered the effect of aberrance on pool utilization 

and vice versa. 

1.4 Outline of the Study 

This research is organized into six chapters. In the first chapter, the background, 

the purpose, and the scope of the study have been considered. Chapter 2 discusses the 

history of computer adaptive testing and presents a description of the various components 

of a computer adaptive test. A pictorial representation of the computer adaptive testing 

process is included at the end of the chapter. Various considerations in the development 

of a CAT pool along with a discussion on response aberrance are presented in chapter 3. 

Chapter 4 describes in detail the design and methodology that was used to conduct the 

study followed by results of the research that constitute the next chapter. Finally, chapter 

6 presents the main findings, limitations of the research and some future reseach 

directions. 
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CHAPTER 2 

AN OVERVIEW OF COMPUTER ADAPTIVE TESTING 

2.1 Introduction of standardized tests 

The term “standardized test” generally means a group administered paper and 

pencil test in which everyone is tested under the same conditions. The idea is to measure 

each individual’s level of knowledge or achievement accurately for a desired purpose. 

During the earliest part of twentieth century, interest increased in the development of 

standardized tests from many different disciplines. Many new test formats that were 

aimed at large scale administration of such tests were being developed by researchers like 

Thorndike, Thurstone, Otis, and Terman (Carlson, 1994). As large scale testing became 

more popular a method was needed that could enable tests to be tailored to each person’s 
/ 

ability and knowledge thus reducing the time spent on the test while increasing the test 

efficiency at the same time. The intent of this chapter is to present a detailed overview of 
% 

the computer adaptive testing in terms of history, theoretical background, and the various 

essential components and procedures involved in the implementation of such tests. 

2.2 History of computer adaptive testing 

The origin of computer adaptive testing can be traced back to the administration 

of Binet’s Intelligence Test in 1908, where the examiner chose the next question or task 

depending upon the examinee’s response on the last question or task administered 

(Hambleton, Swaminathan & Rogers, 1991; van der Linden, 1986; Weiss, 1983). The 

adaptive test brought to people’s attention the concept of tailoring the test to a test taker s 
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ability by selecting the next item to be presented on the basis of performance on the 

preceding items (questions or tasks). After Binet’s work, adaptive testing didn’t gain 

much popularity due to the complexity of it’s implementation (Weiss, 1983). 

The transition of adaptive testing from one-on-one to large group environment 

began in early 1950s when Hick (1951) initiated a testing program where the test 

“branched” into difficult or easy items depending upon the examinees’ responses to 

previous items. The adaptive testing progressed through different stages of two-stage 

branching tests, pyramidal adaptive tests and stratified adaptive tests (for details, see 

Hambleton et al., 1991). In a two stage branching test, an examinee took a routing test 

and then took the next test (also called the “optimum test”) based on the performance on 

the routing test. Unlike two stage tests, pyramidal and stratified adaptive tests involved 

multiple stages where examinees were presented with the same set of items but each 

examine could take those items in a unique pattern. In the former type of test, the next 

item was the next available item with higher or lower difficulty level based upon the 

responses to previous items. The later, however, involved items that had been stratified 

into levels according to their difficulty level, hence, the next item was selected from these 

strata. (Weiss, 1982; Hambleton et al., 1991). The limitations of these tests were that not 

only these tests were mostly fixed length tests but also that they only considered item 

difficulty to create banks or pools of items while ignoring other characteristics like 

guessing and discrimination between various ability levels (Lord, 1980; Carlson, 1994). 

In the late 1960s, Fred Lord initiated a comprehensive research program to pursue 

adaptive testing, focusing on the fact that fixed length tests could be replaced by variable 

length tests where the items were chosen in a way that they provided maximum 
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information about a person (Hambleton & Swaminathan, 1991). The advancement in 

computer technology made it possible for the test specialists to meet the implementation 

needs of adaptive testing and hence create adaptive tests. In US, the development of 

computer adaptive tests (CAT) was facilitated by research and conferences sponsored by 

Office of Naval Research and other agencies. Since the first conference on adaptive 

testing in 1975 (Clark, 1976), there has been an ongoing use of computer adaptive 

techniques to administer more efficient tests. Recently, CATs have become focus of 

testing agencies due to the range of benefits that they offer compared to the paper and 

pencil test. New forms of adaptive tests such as multistage adaptive tests (Patsula & 

Hambleton, 1999) where selectable entity is a mini-test instead of an item, ^-stratified 

multistage tests using item discrimination as a stratification factor (Chang, 1999), and 

ones using innovative models are under research. 

/ 

2.3 Computer Based vs. Computer Adaptive Tests 

At this point it will be helpful if we clarify the two terms “computer based” and 

“computer adaptive”. Some applications of computerized testing use the computer only 

as a medium of presenting the test items. These tests are simply called computer-based 

tests (CBT) and they are no different from the paper and pencil tests except that they are 

administered on a computer. All of the examinees are administered the items in the same 

sequence as they would appear in the paper and pencil form of the test. These tests have 

advantages like rapid scoring, quick reporting and on-demand test delivery (ACE, 1995). 

However, since all the examinees are answering the same questions or items, there is no 

improvement in the test efficiency or precision. However, since CAT can be considered a 
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special kind of CBT, researchers often use the term “Linear on the Fly (LOFT)” test for a 

non-adaptive computer-based test. 

Computer administration of adaptive tests, on the other hand, offers greater 

administrative standardization and much better techniques of item selection and scoring. 

Consider, for example a test designed to measure arithmetic ability at the fourth grade 

level. If the items were of appropriate difficulty for the average fourth grade level, 

/ 

students at this level would be measured with more precision: students above or below 

this level would be measured less precisely. If easier or harder items were added, it 

would not help if the range of difficulty were large. The easier items will be a waste of 

time for the able examinees and harder items may result in guessing thus affecting the 

measurement accuracy. Under a computer adaptive model, a computer program selects 

questions that target a candidate’s ability level; hence different examinees take different 

/ 

versions of the same test. Because of this matching of items to examinees’ abilities, a 

computer adaptive test is more efficient than a conventional paper and pencil or computer 

based test, usually requiring about half as many items to attain an equivalent precision in 

achieving the test goals (Weiss, 1982; Wainer et al., 1990). The relationship between 

“ability” and "getting an item right" has been highlighted well and in detail by the most 

widely used theory behind CAT, that is, item response theory (IRT). It is, therefore, 

essential to understand the importance of this theory in terms of its relationship with 

computerized adaptive testing. The next section of this chapter discusses in detail the 

Item Response Theory and it’s impact on adaptive testing. 
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2.4 Item Response Theory 

Computer adaptive testing has matured to the point that it is now considered as 

an alternative to paper and pencil testing. Test publishers, licensure boards, private 

cooperation and school districts are beginning to implement CAT as an adjunct to or a 

replacement for their current paper and pencil tests. 

Almost every application of CAT in the last 15 years has depended on the use of 

Item Response Theory (Kingsbury & Houser, 1993; Lord, 1980). In reality, the computer 

adaptive testing would not be feasible without item response theory (Hambleton, 

Swaminathan & Rogers, 1991). According to Weiss (1983), “when latent trait theories 

are applied to tests of ability or achievement, they have been known as item characteristic 

curve theory or most recently item response theory”. The latent trait theory is actually a 

set of models defining relationships between the observable variables and the underlying 

traits or constructs. The latent theory existed in one form or the other since early 1990s; 

the idea of this theory is actually implicit in classical test theory that had been used in 

testing since 1920s (Lord & Novick, 1968). The concept of true score in classical test 

theory and latent trait in latent trait theory were considered analogous to each other thus 

treating classical model as a simple case of a latent trait model. 

It is difficult to trace the exact roots of latent theory, however, Mosier, Lawley and 

Guttman can be considered as the main contributors to the development of latent trait 

theory in mid forties. While Mosier (1941) was researching on test development theory 

and Lawley (1943) was focusing on the statistical aspects of the theory, Guttman (1944) 

developed the basics of latent trait theory to solve the scaling problems of attitude 

measurement (Weiss, 1983). Lord (1952) was the first person to actually apply the theory 
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When examinees rushed later in the test (after 75%), a slight drop was observed in 

the estimates for high ability examinees. The estimates for low and middle ability 

examinees generally remained stable when they guessed towards the very end. For some 

low and middle ability examinees, the estimates even improved when they guessed. The 

inaccuracy became evident when examinees started guessing after 75% of the test had 

been administered. The inaccuracy increased as the point in time at which guessing was 

introduced, moved earlier. 

Increasing test length improved estimates by negligibly small amounts when 

guessing occurred later in the test. Increasing test length proved to have adverse effects 

on the estimation accuracy when the guessing started after almost 75-80% of the test had 

been administered. The negativity of increasing the test length was more significant for 

high ability examinees. 

When the CAT was administered with content constraints, the error in estimation 

and the test information was not affected as long as enough items of varying difficulties 

existed in the pool. Same patterns of errors as well as test information were observed as 

in the case when the test didn’t have content constraints. The average information was 

greatly affected when the pool lacked easy items in a content area and the examinees 

rushed to complete the test. In addition to the decrease in average information for that 

particular content area, a significant finding was the increase in average information for 

other content areas when guessing started early (except for very high ability examinees). 

In case of mastery testing, the results were consequential. As guessing was 

introduced, people were incorrectly classified. The number of people who passed the test 

significantly decreased when guessing was introduced. The number of misclassifications 
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was larger for the variable length test compared to the fixed length test. The results 

indicated that examinees around the cut-point suffered most when guessing was 

introduced for both fixed and variable length tests. In case of fixed length CAT, the 

number of incorrectly classified examinees was larger for longer tests. 

When the results from simulations using simulated item parameters were 

compared to those from simulations using AICPA parameters, it was found that the 

estimation for early guessers was better in the former case. 

This study was limited in terms of several factors. The most significant limitation 

of the research was the imposition of time limits in the absence of a time-recording 

option. 

The timing conditions can be simulated more accurately if the examinees’ response times 

are actually recorded by a built-in timer or a clock. Another limitation was the simplicity 

( 

of the test design in terms of test content, item formats and item types. The study focused 

on multiple-choice items only and represented major content strands on the test. 

The adverse effects of the interaction of test and examinee characteristics with 

response aberrance can be reduced to some extent in several ways. Based on the results 

of the study, several suggestions can be made to address the issue. One suggestion is the 

use of a time/information index as introduced by Lou and Wang (2000). The time spent 

on an item could then be a part of the selection algorithm. Another possibility could be to 

build the aberrance flags into the weighted deviations model. In the other words, aberrant 

conditions could be controlled as part of the selection model. 

In case of variable length mastery tests, increasing the minimum test length could 

prevent shorter tests to be administered to examinees. A minimum test length of 25 items 
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proved to be problematic and resulted in numerous false classification decisions when 

aberrance occurred. 

The use of Baysian estimation with stronger priors has proven to provide better 

estimates than Maximum Likelihood estimation as previously discussed in chapter 2. 

The same finding was reinforced by this research. The estimates were largely affected by 

aberrance when the rushed guessing was introduced early in the test. In real testing 

environment, rushed guessing is observed towards the later part of the test for most of 

examinees depicting aberrant response patterns. Hence Bayesian estimation can prove to 

be a better way to estimate ability for majority of the population. It is also expected that 

for early guessers, the MLE would lead to estimates much further from the truth 

compared to Bayesian estimates. Further research is however needed to shed light on this 

result. 

It would be imperative to conclude by emphasizing on the well-stated fact that 

creating richer pools can always reduce the gravity of the problem. Frequently occurring 

aberrance could lead to unexpected utilization of the pool, hence it is highly desirable to 

have a large pool with informative items at all ability levels. 
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APPENDIX A 

ABILITY AND ITEM PARAMETER DISTRIBUTIONS 

I 
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estimates was large. The largest amount of bias was observed in high ability examinees 

while the smallest amount of bias was observed for low ability examinees. For low 

ability examinees, bias was higher for the shorter test when guessing was introduced later 

in the test. For medium and high ability examinees, difference in bias was negligible for 

the two test lengths when examinees guessed later. The differences, however, increased 

when examinees guessed earlier. 

Figure C.4 and C.5 show the administration of a proficiency CAT to a typical low, 

medium and high ability examinee for Audit at two test lengths. The significant drop in 

the estimates for high ability examinees once they guessed early, explains the high values 

for RMSE. The accuracy was somewhat lost when examinees guessed towards the end; 

the loss was greater for high ability examinees. Another significant finding was that the 

estimates decreased significantly for middle ability examinees once they guessed after 
I 

75% of the test had been administered. The estimates decreased further when guessing 

began after half of the test was administered. The estimates, however, remained more 

stable compared to those for low and high ability examinees. 

Figures C.6.a, and C.6.b represent the average test information at 12 ability levels 

for various guessing behaviors at two test lengths. As shown in figure C.6.b, the test 

provided maximum amount of information for middle to high ability examinees and 

minimum amount of information at the tails of the distribution. Similar pattern was 

observed when a shorter test was administered, however, as expected, the information 

was much lower than the 75-item test. The information stayed much more stable across 

the ability levels when compared with longer test in both guessing and non-guessing 

scenarios. When examinees guessed later in the test, the information was lost at most of 
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the ability levels except at higher ability levels. In case of ARE, a difference was that the 

information did not drop at the upper most tail of the distribution as was the case in 

Audit. When we look at figures C.7.a, and C.7.b for the average pool information at 

various ability levels, similar patterns were observed. 

An interesting aspect of the study was to look at the average information that the 

pool provided before item selection algorithm began for each examinee. As mentioned 

earlier, the aberrance in examinee behaviors might have an adverse effect on the pool 

configuration. The selection of unusual number of easy or difficult items during the time 

when examinees rush into guessing could result in a less informative pool for various 

ability levels. For this purpose, Fisher’s information was computed for each item in the 

pool. Information for each item was then summed to obtain the total amount of pool 

information that was available for item selection at the beginning of a CAT. In the 

f 
previous section, reference was made to figures C.7.a, and C.7.b for pool information. 

Looking at the same figures, it was found that guessing also affected the amount of 

information that pool provided for item selection. An interesting finding was that early 

guessing resulted in a pool that provided maximum amount of information at the 

uppermost end of the ability distribution. This finding was specifically apparent when the 

examinees were administered a shorter test. An explanation for this might lie in the fact 

that exposure rates are subject to change significantly when examinees guess very early in 

the test. If each examinee guesses early, easier items must get utilized very quickly. At 

this point, it is useful to look at the pool utilization index. Figure C.8, depicts the plots for 

such index for two test lengths for several guessing scenarios. A slight increase was 

observed in the index when guessing increased. The value of the index was higher when 
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examinees were administered a shorter test indicating more Skewness in the exposure 

rates for items in the pool. 

5.3 Results for Proficiency Testing with Content Constraints using AICPA 
Parameters 

The results for proficiency testing remained very similar when content constraints 

were introduced in the test. The results indicated that the content constraints did not 

seem to have much effect on the aberrance. The existence of sufficient number of easy 

/ 

items in the pool for each content area simplified the complexity of item selection that 

could arise when guessing was introduced. The plots for average test information for 

various content areas in Audit are depicted in figure C.12. Similar plots for a 30-item 

test are shown in figures C.13. The overall average test information is presented in figure 

C.14. The total test information for each examinee was re-scaled as the number of items 

in each content area was variable. The figures indicate that a large amount of information 

provided by the test was attributed to the first content strand. 

In order to look at the effect of guessing when some content areas have fewer 

easier items than others, further simulations were conducted. The difficulty parameter for 

each item in the first content strand was increased by an arbitrarily chosen constant (1.2). 

The change in RMSE and Bias indices by changing the difficulty parameter for a single 

content strand was negligible, although that content area had the largest representation in 

the test. The plots for those indices are shown in Figure C.16. 

The average test information for the various content strands is shown in figures 

C.17 and C.18. The average test information was significantly affected in the first 

content strand. A noticeable drop in the information was observed at all ability levels 
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except for examinees with abilities in the highest range. An interesting finding was that 

the information for other content areas increased for a wider ability range when 

examinees guessed earlier, even though configuration of the pool was not altered for 

those content areas. The information, in this case, decreased for the higher most ability 

levels. 

5.4 Results for Mastery Testing using AICPA Parameters 

The classification decisions were first examined for the fixed length tests for 

Audit and ARE at the test lengths of 30 and 75 items. Table 5.4 presents the results for 

Audit for the test length of 75 items indicating the total number of people passed based on 

the true ability and then based on the estimated ability. The table also shows the overall 

percentage of people who were classified correctly versus those classified incorrectly as 

I 
well as the percentage of misclassifications. Each of these results was then examined for 

Table 5.4: Classification of Masters/Non-Masters (Fixed Length Audit—75 items) 

Guessing points 
During CAT 

People Passed People Classified People Class. 
True Estimate Correctly Incorrectly 

Percentage of 
Misclassifications 

No Guessing 400 371 1139 61 0.05 

After 90% 400 277 1071 129 0.11 

75% 400 149 949 251 0.21 

50% 400 2 802 398 0.33 

25% 400 0 800 400 0.33 

the various guessing scenarios to look the effect of guessing on classification. Table 5.5 

on the other hand shows the classification decisions broken down by ability level. The 

analyses indicated that out of 1200 examinees 400, examinees passed the Audit 

examination if the decisions were based upon their true abilities. The number of people 
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who passed the test was reduced to 371 when the decisions were based on the estimated 

abilities. When the numbers were broken down by ability, it was observed that 

Table 5.5: Percentage of Correctly Classified at each Ability Level (Fixed length 
Audit—75 items) 

Ability People Passed Percentage of Correctly Classified 

Levels True Estimate No Guess After 90% After 75% After 50% After 25% 

1 0 0 100 100 100 100 100 

2 0 0 100 100 100 100 100 

3 0 0 100 100 100 100 100 

4 0 0 100 100 100 100 100 

5 0 0 100 100 100 100 100 

6 0 0 100 100 100 100 100 

7 0 2 98 100 100 100 100 

8 0 14 86 97 100 100 100 

9 100 58 58 18 0 0 0 

10 100 97 97 60 12 0 0 

11 100 100 100 96 42 0 0 

12 100 100 100 100 95 2 0 

examinees only in the higher ability levels (>=0.54) were able to pass the test. Based on 

I 
the estimated ability, 16 out of 371 people who were originally classified in the middle 

ability levels were able to pass the test. The largest reduction in the number of people 

who passed the test based on the estimated ability was observed at the cut-point. In other 

words, the largest number of misclassifications was observed around the cut-point. 

The results were then analyzed for various guessing behaviors. As shown in table 

5.4, it was found that the number of examinees who passed the test, dropped by 
i 

approximately 25% when the examinees started guessing after 90% of the items had been 

administered. The number dropped by 60% when the examinees started guessing after 

75% of the items had been administered and by 99.5% when the examinees started 

guessing very early in the test. In terms of the classification decisions, the number of 

people that were misclassified when there was no guessing, doubled when examinees 
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started guessing after 90/o of the items had been administered. The number of 

misclassifications increased by 4 times when guessing started after 75% of the test length 

and by approximately 6 to 7 times when examinees guess earlier. Out of the total 

population, the percentage of misclassifications increased from 5% to 11% for late 

guessing and 33% for earlier guessing. 

As shown in table 5.5, the percentage of correctly classified increased from 98% 

to 100% for middle ability of 0.1 and from 86% to 97% for middle ability of 0.31 when 

examinees started guessing later in the test. However, the percentage significantly 

dropped (58% to 18%) for examinees at or slightly above cut-score. In other words, the 

accuracy of classification increased for examinees slightly below the cut-score once they 

started to guess. When the examinees started to guess earlier, the percentage of correct 

classifications dropped to 0% for examinees at or above cut-score. 

Table 5.6 depicts the results from the similar analyses for Audit when the test 

length was reduced to 30 items. The overall number of people who passed the test with 

lesser number of items decreased. However as the examinees started to guess randomly 

at a certain point in the test, the number of examinees who passed the test increased when 

compared with the guessing behaviors in a longer CAT. For example, when examinees 

guessed after 75% of the 75-item test was administered, the number of people who passed 

Table 5.6: Classification of Masters/Non-Masters (Fixed Length Audit—30 items) 

Guessing points 
during CAT 

People Passed 
True Estimate 

People Classified 
Correctly 

People Class. 
Incorrectly 

Percentage of 
Misclassifications 

No Guessing 400 366 1116 84 0.07 
After 90% 400 270 1054 146 0.12 

75% 400 192 986 214 0.18 
50% 400 23 823 377 0.31 

25% 400 1 801 399 0.33 
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the test was 149 compared to 192 people on a 30-item test. When guessing occurred after 

half way through the test, the number of examinees passing the test increased from 2 on a 

75-item test to 23 on a 30-item test. The incorrect classifications were therefore more 

frequent in the case of a 75-item test when examinees started guessing relatively early in 

the test. 

Table 5.7: Percentage of Correctly Classified at each Ability Level (Fixed length 
Audit—30 items) 

Ability 
Levels 

People Passed Percentage of Correctly Classified 

True Estimate No Guess After 90% After 75% After 50% After 25% 

1 0 0 100 100 100 100 100 

2 0 0 100 100 100 100 100 

3 0 0 100 100 100 100 100 

4 0 0 100 100 100 100 100 

5 0 0 100 100 100 100 100 

6 0 1 99 100 100 100 100 

7 0 6 94 99 99 100 100 

8 0 18 82 93 98 100 100 

9 100 1 53 53 22 10 0 0 

10 100 89 89 52 22 1 1 

11 100 99 99 88 61 6 0 

12 100 100 100 100 96 16 0 

However, the situation was reversed when guessing occurred earlier. When broken down 

by ability levels, it was found that the decrease in the degree of misclassification or in 

other words increase in the percentage of correctly classified was observed for ability 

levels slightly below the cut-point. The degree of correct classification was decreased at 

ability levels at or slightly above the cut-point. As in the case of 75-item test, the 

classification decisions were accurate for very low and very high abilities. 

When the examinees started to guess towards the end of the test, the differences 

between the proportions of correctly classified for late-guessing and no-guessing 

scenarios remained stable for the two test lengths. The only exception was observed for 
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very high ability examinees, where the proportion dropped by 11% in case of a 30-item 

test compared to 4% drop in the 75-item test. When guessing occurred at the beginning of 

the last quarter of the test (after 75%), the drop in the correct classification rates from no¬ 

guessing scenario was much larger for a longer test for high ability examinees. This was 

due to the fact that the number of correctly classified was higher for those examinees 

when they guessed earlier on the shorter test. For the examinees who were slightly above 

the cut-point, situation was similar to the 75-item test, that is, the percentage of correct 

classifications increased when examinees guessed later and became accurate when 

guessed earlier. The classification decisions for all examinees at or above the cut-score 

were inaccurate in both cases when guessing occurred very early in the test. 

Table 5.8 indicates results for similar analyses when performed for a variable 

length test for Audit. As mentioned earlier, a stopping rule pertaining to the level of 

I 
confidence in pass/fail decisions was employed in this case. The results were much 

Table 5.8: Classification of Masters/Non-Masters (Variable Length Audit) 

Guessing points 
during CAT 

People Passed 
True Estimate 

People Classified 
Correctly 

People Class. 
Incorrectly 

Percentage of 
Misclassifications 

No Guessing 400 363 1133 67 0.06 
After 90% 400 174 974 226 0.19 

75% 400 85 885 315 0.26 
50% 400 4 804 396 0.33 
25% 400 1 801 399 0.33 

similar to the fixed length when guessing occurred very early (after 25%) in the test or did 

not occur at all. Guessing at very early stage in the CAT resulted in highly inaccurate 

classification decisions for examinees at or above the cut-point in all cases. The results in 

this case, however, were much different from the fixed length test when examinees 
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guessed later in the test. In terms of the number of people who passed when there was no 

guessing involved, results were very similar for the fixed and variable length tests. When 

the examinees started to guess after 90% of items had been administered, the number of 

passing examinees dropped from 363 to 174, compared to a drop of 371 to 277 

examinees on a 75-item test and a drop of 366 to 270 examinees on a 30-item test. The 

overall percentage of misclassifications was very similar for all testing modes for no¬ 

guessing situation (5% for75 items, 7% for 30 items and 6% for variable length). The 

proportion of misclassified examinees increased from 11% on 75-item test and 12% on 

30-item test to 19% on variable length CAT when examinees started guessing towards the 

end. Similarly, this proportion was increased from 18% on 75-item test and 21% on 30- 

item test to 26% on variable length test. When broken down by ability, it was observed 

that the accuracy of decisions suffered much more than the fixed length tests for 

( 
examinees at or above the cut-score except those with the highest level of ability. The 

percentage of misclassification at cut-point decreased from 56% when the examinees did 

not guess, to 1% when guessing started after 90% of items had been administered. 

Similarly, these proportions decreased from 92% to 18% and 100% to 56% for the next 

higher levels of ability above the cut- score. The results for these two ability levels were 

rather drastic when compared to fixed length CATs. The drop in the proportion of 

correctly classified people in the above mentioned guessing scenario was approximately 

double for the examinees with ability level slightly higher the cut-point. The drop in 

accuracy was approximately five times the drop for a 30-item fixed length test and 

75 



Table 5.9: Percentage of Correctly Classified at each Ability Level (Variable 
Length Audit) 

Ability 

Levels 

People Passed Percentage of Correctly Classified 
True Estimate No Guess After 90% After 75% After 50% After 25% 

1 0 0 100 100 100 100 100 
2 0 0 100 100 100 100 100 
3 0 0 100 100 100 100 100 
4 0 0 100 100 100 100 100 
5 0 0 100 100 100 100 100 
6 0 0 100 100 100 100 100 
7 0 3 97 100 100 100 100 
8 0 12 88 100 100 100 100 
9 100 56 56 1 0 0 0 
10 100 92 92 18 3 0 0 
11 100 100 100 56 21 3 1 
12 100 100 100 99 61 1 0 

approximately thirteen times for a 75-item test for examinees with abilities much higher 

than the cut-score. 

It would bfe useful to look at the number of items that were attempted by the 

examinees before the test terminated. The following table shows the frequency of 

examinees that attempted a certain number of items. The numbers of items are grouped 

into five classes of 25, 26-30, 31-35, 36-40, 41-45. The results indicated that examinees 

around the cut-point attempted lesser items once they started guessing. It was also 

observed that the earlier they guessed, the lesser items they attempted. However, looking 

at table 5.10, the classification accuracy was adversely affected for slightly higher ability 

examinees above the cut-point and not for the ones below that threshold. In the first 

block of the table, a significant observation was that 67% of the examinees closest to the 

cut-point attempted 41-45 items. This proportion dropped to 4% when guessing was 
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Table 5.10: Number of Items Taken by Examinees at Various Ability Levels 
(Variable length Audit Sub-test) 

No Guess Guessing Introduced after 90% of Items 
25 26-30 31-35 36-40 41-45 25 26-30 31-35 36-40 41-45 

1 100 0 0 0 0 100 0 0 0 0 
2 100 0 0 0 0 100 0 0 0 0 
3 100 0 0 0 0 99 1 0 0 0 
4 100 0 0 0 0 100 0 0 0 0 
5 98 2 0 0 0 96 3 1 0 0 
6 86 4 5 2 3 93 5 2 0 0 
7 64 7 5 6 18 84 11 5 0 0 
8 38 11 7 4 40 54 36 9 0 1 
9 12 13 5 3 67 26 43 21 6 4 

10 41 12 10 4 33 19 38 33 10 0 
11 85 10 3 0 2 56 10 27 5 2 
12 100 0 0 0 0 99 0 1 0 0 

Total 924 59 35 19 163 926 147 99 21 7 

Guessing Introduced after 75% of Items Guessing Introduced after 50% of Items 
25 26-30 31-35 36-40 41-45 25 26-30 31-35 36-40 41-45 

1 100 0 0 0 0 100 0 0 0 0 
2 100 0 0 0 0 100 0 0 0 0 

3 100 0 0 0 0 100 0 0 0 0 
4 100 0 0 0 0 100 0 0 0 0 

5 100 0 0 0 0 99 1 0 0 0 

6 100 o 1 0 0 0 99 1 0 0 0 

7 93 7 0 0 0 98 2 0 0 0 

8 85 12 3 0 0 96 4 0 0 0 

9 68 17 15 0 0 94 6 0 0 0 

10 43 36 16 4 1 91 6 2 1 0 

11 32 37 15 13 3 76 20 4 0 0 

12 58 19 17 5 1 54 31 12 3 0 

Total 979 128 66 22 5 1107 71 18 4 0 

Guessing Introduced after 25% of Items 

25 26-30 31-35 36-40 41-45 

1 100 0 0 0 0 

2 100 0 0 0 0 

3 100 0 0 0 0 

4 99 1 0 0 0 

5 100 0 0 0 0 

6 100 0 0 0 0 

7 100 0 0 0 0 

8 99 1 0 0 0 

9 100 0 0 0 0 

10 99 0 1 0 0 

11 98 2 0 0 0 

12 97 2 1 0 0 

Total 1192 6 2 0 0 
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introduced towards the end of the test. A large number of those examinees attempted 26- 

30 items. 

The next phase of the analyses were performed to look at the estimation 

accuracy of the fixed and variable length mastery tests. As expected, the estimation 

accuracy remained very similar to the proficiency testing for both fixed and variable 

length test. The results of mastery testing are presented in figures C.19 to C.24. An 

interesting fact was observed when we looked at the average information for a variable 

length test. The information monotonically increased till it peaked for examinees around 

the cut-score. After that point it became increasingly less till the uppermost ability level. 

This indicates that the examinees with abilities around the cut-score were presented most 

informative items. The information, in general, was decreased when compared with the 

fixed length mastery tests, being closer to the information provided by 30-item test. 

I 
Interestingly, the peak disappeared when the examinees started guessing. The 

information curve remained relatively flat over the ability levels when examinees 

guessed. As mentioned above, a large number of examinees took longer test when 

guessing was not introduced, while that number significantly decreased when guessing 

was introduced. The average pool information, however, followed a pattern very similar 

to a 30-item fixed length test. 

78 



CHAPTER 6 

CONCLUSION 

The study shed light on some of the most important issues in computerized 

adaptive testing. The purpose of any assessment instrument is not if the information 

obtained on that instrument leads to an incorrect decision. In adaptive testing, an 

incorrect decision at any point in the test can lead to serious discrepancies towards the 

end. Since each item or question that gets administered to an examinee has impact on the 

properties of the remainder of the test, any disruption in the test administration process is 

consequential. 

The act of an examinee rushing into random guessing at any point in the test could 

result in misleading estimates of that examinee’s proficiency. As serious as it is in 

proficiency or achievement tests, the problem of inaccurate estimation could be worse in 

Mastery testing. The declaration of examinees as masters or non-masters on the basis of 

incorrect measures of their ability is no-doubt harmful. 

The results of the study clearly indicate that the error in estimation increases 

significantly once the examinee rushes to finish the test. One could be misled into 

assuming that the low level examinees would be affected most by disruption in the item 

selection algorithm. The results of the study showed that the high ability examinees 

suffered most once they ran out of time. In all cases, the error in estimates was lowest for 

low ability examinees, higher for middle ability examinees and highest for high ability 

examinees. 
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to ability and achievement testing environment (using dichotomous items) thus giving 

shape to item response theory. The item response theory gained researchers’ attention in 

no time resulting in an extensive research by many scientists like Lord and Novick (1968) 

and also in Europe by people like Rasch (1960) who tried to refine the models specified 

by item response theory. The practical implementation of item response theory was made 

feasible through the advent of computers in the late 1960s and that is when item response 

theory and computer adaptive testing merged (Weiss, 1983). The mechanical branching 

rules to select items were in most cases replaced by the item response theory procedures 

and since then item response theory (IRT) dominates the computer adaptive testing. 

2.5 Features of Item Response Theory 

It is desirable at this point to understand the logic behind the use of item response 

I 
theory as the underlying theory behind computer adaptive testing. According to 

Hambleton and Swaminathan (1985), 

These models such as the classical test model, are based upon weak assumptions, that is, the 

assumptions can be met easily by most test data sets, and therefore, the models can and have 

been applied to a wide variety of test development and test score analysis problems The 

purpose of any test theory is to describe how inferences from examinee item responses and /or 

test scores can be made about unobservable examinee characteristics or traits that are measured 

by a test. Presently, perhaps the most popular set of constructs, models, and assumptions for 

inferring traits is organized around latent trait theory.... or item response theory as Lord (1980) 

preferred to call the theory. 

Hence the basic idea behind item response theory is that the test score or test 

performance of an individual can be described by one dominant factor among other 

factors that can effect performance, most commonly known as ability. If we plot the 

traits for various examinees against their performance on various tasks, questions or 

items, we will get a monotonically increasing function in most cases. In case of item 
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response theory where we assume ability as the only prominent factor, this function is 

called item characteristic function. Each item also has an item information function 

measured on the same scale as the ability scale which gives the information provided by 

an item at a certain point on the ability scale (Hambleton, Zaal & Peters, 1991). This 

feature makes item response theory most feasible for use in computer adaptive testing as 

the item can be selected for administration depending upon the amount of information it 

gives at a certain ability level. 

The three main features of item response theory that make it useful over classical 

test theory are as follows, assuming ability being the only trait that the items are 

measuring: 

- The examinee performance, or in more technical language the estimates of ability, are 

independent of the sample of items that are administered to them 

I 
- The item characteristics or in other words estimates of item parameters are independent 

of the sample of examinees taking those items 

- It is possible to find the standard error of measurement for each ability estimate. This is 

a more useful way of determining precision of measurement since it allows for the fact 

that precision may be higher for certain values of ability (Hambleton, 1983). 

Another distinctive feature of IRT is the different kinds of item response models it 

supports. An item response model depends upon the kind of data to be analyzed. The 

response data produced from a test can be dichotomous, polytomous or continuous. The 

dichotomous response pattern consists of only two categories (generally ‘correct or 

‘incorrect’) while the polytomous response pattern consists of three or more categories. 

The continuous response pattern, on the other hand, consists of a very large number of 
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categories. An item response model also depends upon the shape of the distribution of 

the measurement errors. For example, in case of multiple choice dichotomous data, if the 

errors are normally distributed, normal-ogive models are used; whereas for logistically 

distributed errors, logistic models are used. The logistic and normal-ogive distributions 

are very similar; however, the logistic models are mathematically easier to work with. 

Traditionally adaptive tests have taken advantage of logistic IRT models (Kingsbury & 

Houser, 1993), however, recently researchers like Dodd (1990) have discussed the use of 

expanded item response models. The three logistic models are explained as follows: 

2.5.1 Three-Parameter Model 

The most commonly used item response model used for adaptive testing is the 

three parameter model which accounts for the level of difficulty for items or tasks, the 

I 
extent to which the items discriminate among people and the amount of guessing to reach 

the correct response if a person is unable to answer correctly (Bimbaum, 1968). The 

exponential form of the 3-pl model is given as, 

P,(0) = cl+(l-cl) 
exp (Da i {6 - bt) 

1 + exp (Da{ (0 - bt) 

where, 

Pj (0) = probability of a correct response to an item i at an ability level 6 , 

commonly known as Probability Function 

D = scaling factor (adjustment to obtain logistic curve from the normal-ogive curve) 

bj = item difficulty 
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Cj = guessing parameter 

a j = item discrimination 

The concepts of item difficulty and item discrimination are important to 

understand while describing item response models. The ability of an item to discriminate 

among examinees at different levels of ability is called item discrimination. The item 

difficulty is the level of ability at which the item discriminates most effectively. These 

concepts become clearer when we visualize an item characteristic curve. An item 

characteristic curve is obtained when the probability function is plotted against the ability 

distribution of the examinees. A sample item characteristic curve follows: 

ITEM i 

CO CNJ O CN CO 
I i I 

ABILITY 

Figure 1: Typical Item Characteristic Curve 

The lower asymptote c, is the probability of a correct response by the lowest 

ability examinees, in other words, the guessing parameter. If items are being responded 

correctly by even the examinees with very low ability, the value of the lower asymptote 
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will be non-zero which corresponds to a non-zero guessing parameter. If c is zero the 

probability of a correct response corresponding to b on the ability scale is, (l+c)/2. 

2.5.2 Two-Parameter Model 

The point was mentioned earlier that the logistic curves and the normal-ogive 

curves are very similar in properties; Bimbaum (1968) introduced and later adjusted the 

two-parameter normal-ogive function by a scaling factor to obtain the two-parameter 

logistic function. The idea was to replace the normal-ogive model without having to 

change the interpretation of the parameters in the normal-ogiv model. If the items differ 

in terms of their difficulty level as well as their discriminating power while the guessing 

is minimal, the two-parameter model best fits the data. In other words, the two-parameter 

model can be obtained if we omit the guessing factor from the three-parameter model. 

I 
The exponential function of the two-parameter model is given as, 

exp (Da^e-b,)) 

1 + exp(Da^O -b;) 

2.5.3 One-Parameter Model 

The Rasch (1960) or one-parameter model requires one ability parameter {0) for each 

person and one item difficulty parameter, bj, for each item to represent the relationship 

between an examinee and a test item. In other words, it can be considered as a special 

case of the three-parameter logistic model where all items are assumed to have equal 

discriminating power and guessing is minimal (Hambleton & Swaminathan, 1985; Koch 

& Reckase, 1979). The one-parameter model is also used widely in adaptive testing due 

14 



to the ease of computation involved in this model. The exponential form of the 1-pl 

model is given as 

1 + exp(6> - bi) 

The involvement of item response theory in the computer adaptive testing can be 

made clear if we highlight the components of a computer adaptive test. 

2.6 Major Components of a Computer Adaptive Test 

Carlson (1994) states, 

The one-to-one interaction for individual testing no longer requires a test administrator 

who must be specifically trained and scheduled, and who frequently is quite expensive. 

A computer with an appropriate algorithm takes the test administrator’s place. 

The computer algorithm is the heart of computer adaptive testing which can only 

be understood if the various essential components of a CAT are highlighted. A detailed 
I 

list of the various components of a computer adaptive test is compiled in the next section 

as characterized by Carlson (1994), Thissen (1990) and Hambleton et al. (1991): 

2.6.1 Item Pool 

A set of items, questions, or tasks is needed for a test. For a valid and reliable 

test, the quality of items is of special importance. It is important that the items are of a 

certain desired difficulty level, and they discriminate well among the examinee 

population taking the test. The items that have a very low or a very high difficulty level 

tend to have a low discriminating power. Also examinees tend to guess more on items 

with very high difficulty. While maintaining the balance between these characteristics, it 

is also essential to have items tailored to the content on which the ability is measured. 
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Thus a test specialist is faced with quite a few challenges while constructing an item pool. 

In adaptive testing, there is also a need of a large number of items in an item pool to have 

enough items to cover a wide range of abilities as well as to reduce the exposure to the 

same item repeatedly. The most widely used theory behind the computer adaptive testing, 

that is, Item Response Theory also requires a large sample of examinees to conduct item 

analyses and to test it’s various assumptions. 

2.6.2 Item Response Model 

As mentioned in the above section, IRT is the most widely used theory behind 

computer adaptive testing. Adaptive testing can be thought of as one of the most 

successful applications of IRT (Kingsbury & Houser, 1993). An item response model 

describes the function through which we develop a relationship between getting a correct 

I 

response on an item and the ability of a person, corrected for the various factors that can 

affect a response. This relationship then enables us to obtain an estimate of test taker’s 

ability. The ability is either reported directly or converted into a score for ease of score 

interpretation. The choice of a model depends upon the kind of responses we expect on a 

test. A model that fits responses on items that do not involve guessing may not be 

appropriate for data in which a lot of guessing took place. Similarly, if items are targeted 

to discriminate among various test takers, the model should include an item 

discrimination factor. The selection of an item response model is hence critical for 

getting an accurate estimate of an individual’s ability. Hambleton and Swaminathan 

(1985) summarized several models used currently. The list is as follows. 
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Table 2.1: Item Response Models 

Type of responses expected Model 
Dichotomous Latent Linear 

Perfect Scale 
Latent Distance 

One-, Two-, Three-Parameter Logistic/ Normal 
Four Parameter Logistic 

Polytomous Nominal Response 
Graded Response 
Partial Credit 

Continuous Continuous Response 

The distinction among the models is obvious by their titles depending upon the 

type of responses on items on a test. The three-parameter logistic response model is the 

most commonly used model in a computer adaptive testing situation (Hambleton, 

Swaminathan & Rogers, 1991; Weiss, 1983). The main reason behind the three-parameter 

model being the most widely used model in CAT is that it generally fits the multiple 

choice data better than other models accounting for the fluctuations in item 

discrimination, item difficulty, and guessing factors (Hambleton, Swaminathan & Rogers, 

1991). This reasoning seems very acceptable as the model accounts for three parameters 

that can affect an examinee score, instead of just one as in the case of Rasch model. 

It is rare in case of multiple-choice tests to contain items that have equal 

discriminating power or that no guessing occurs during the test. Some researchers 

consider guessing as an “integral part” of adaptive testing and that any model which does 

not allow for guessing can provide misleading results (Wainer et al., 1990). Some 

modifications can be made to account for factors like guessing and discrimination if items 

are acceptably close to a certain model. For example, addition of many choices to items 

may reduce guessing or modifying the model slightly by keeping the discrimination 

parameter as a small constant value might improve model fit. Although three-parameter 
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model is generally considered best to fit the binary response data, the other models can be 

easy to work with and may involve lesser costs. The one- and two- parameter logistic and 

normal-ogive models are also used frequently due to such reasons (Carlson, 1994). 

The item response models are considered fallible but in practice, it’s difficult to 

declare a model to be appropriate for a set of responses (Traub, 1983). However effort 

should be made to select the best model by using several goodness of fit procedures and 

indices. One of the existing calibration procedures is selected to estimate the item 

parameters in order to test the model fit (comparing estimated with true parameters). 

2.6.3 Starting Point and Initial Estimate of Ability 

Test length can be affected by the difficulty level of the initial item (Weiss & 

Kingsbury, 1984). The closer it is to the ability estimate, the lesser number of items are 
/ 

needed to reach to the final estimate of ability. The selection of the first item, however, is 

a complex decision to make. If the initial item is too easy, the test taker may take it too 

lightly and make careless mistakes. If the item is too hard, the test taker may become 

nervous at the very beginning of the test. The situation becomes worse if the examinee 

guesses the answer, since the next item will be more difficult. It is therefore desirable to 

have as much prior information about the examinee as possible in order to administer an 

item at the appropriate difficulty level. In some cases when there is no prior information 

available, the CAT algorithm starts by asking some background questions. Following is 

an example of questions that were chosen for a language proficiency test to select a 

starting point (Laurier, 1990): 

• How many years did you study this language? 

• Did you ever live in an environment where this language is spoken? If so how long ago? 
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• How do you rate your proficiency level on a scale of 1 (beginner) to 7 (advanced)? 

The responses to such questions are then used to obtain a preliminary estimate of 

the examinee’s ability. If there is not much background information available then item 

with the medium difficulty is chosen. From a psychometric point of view, adaptive tests 

will be more efficient if the initial item is of middle difficulty because it is the best 

estimate of an examinee’s ability if no background information is provided (Mills & 

Stocking, 1996). 

2.6.4 Item Selection Strategy 

A computer adaptive test is tailored to the examinee’s level of ability. This 

means, the selection of an item depends upon the responses to the previous items. If the 

response to an item is correct, the next chosen item will be more difficult, while if it is 

_ i 
wrong an easier item will be chosen and the ability is recalculated. In order to achieve 

this selection, several branching techniques can be used. However, IRT involves 

procedures that have resulted in a considerably efficient selection of items, maximum 

information selection and Bayesian item selection techniques being the most promising 

ones (Hambleton, Pieters & Zaal, 1991). 

In maximum information selection technique, at a certain ability level, an item is 

chosen from the item pool that gives the maximum information about the examinee at 

that ability level. The “information” is provided by the item information function 

mathematically described as, 

m= gl 
p(eme) 
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where P\Q) is the first derivative of P(0 )and Q{6) is the probability of getting 

an item wrong at an ability level 6. 

This item selection approach is designed to maximize measurement precision and 

has been preferred by many adaptive testing researchers (Kingsbury & Wiess, 1983) 

because it does not make prior judgments about the ability distribution. Although this is 

the most common technique used to select items, other item selection techniques have 

been considered in the past. 

Bayesian item selection approach is another commonly used approach, which uses 

the posterior variance as the criterion of item selection. In other words, an item that 

minimizes the variance of the posterior ability estimate based on the responses to 

previous items is selected. Using a Bayesian technique solves some of the problems 

encountered with the maximum likelihood approach (Swaminathan & Gifford, 1982; 

Swaminathan & Gifford, 1983). Bayesian estimates can be obtained for zero items 

correct and for perfect as well as aberrant response patterns (Swaminathan & Gifford, 

1985). A number of simulation studies have shown that Bayesian adaptive testing 

technique results in stable, reliable, and valid scores even for very short tests (McBride & 

Wiess, 1983; Jensema, 1974). Researchers continue to find better techniques, such as 

finding utility functions for an examinee to maximize score performance when selecting 

items or using global information to provide an ability estimate closer to the true ability 

estimate (Chang, 1996; Chang & Ying, 1997). 
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2.6.5 Computation of the Provisional Estimate of Ability 

A number of methods currently exist to estimate the ability and item parameters. 

Following is the list of some of the commonly used methods that can be used for 

parameter estimation (Hambleton, Swaminathan & Rogers, 1991). 

Table 2.2: Ability and Item Parameter Estimation Procedures 

Estimation Procedure Model (Brief Explanation) 

Joint maximum likelihood 

(Lord, 1974, 1980) 

One-, Two-, Three- Parameter model (The ability and item 

parameters are estimated simultaneously) 

Marginal maximum likelihood 

(Bock & Aitkin, 1981) 

One-, Two-, Three- Parameter model (The item parameters are 

estimated with ability parameters integrated out) 

Conditional maximum likelihood 

(Anderson, 1972, 1973; Rasch, 1960) 

One-Parameter model only (The likelihood function is 

conditioned on the number right score and the item parameters 

are estimated) 

Joint & Marginal Bayesian estimation 

(Mislevy, 1986; Swaminathan & 

Gifford, 1982) 

One-, Two-, Three- Parameter model (The ability is estimated 

with joint/marginal estimation of item parameters) 

Heuristic estimation procedure 

(Urry, 1974, 1978) 

Two-, Three- Parameter model 

Currently, the two most commonly used estimation procedures for dichotomous 

responses are maximum likelihood, marginal maximum likelihood and Bayesian 

estimation (Hambleton, Swaminathan & Rogers, 1991). Maximum Likelihood 

estimation involves finding the maximum of the logarithm of the joint likelihood function 

(L) which is the product of the probabilities (Pj) of correct response at a given ability 

level. The Maximum Likelihood estimate of ability is then the examinee s ability, which 

makes the likelihood function, a maximum. This relationship can be given as, 

k«„«2,.un\9)=\\p;Q{;-u) 
7=1 
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This method can be very useful, however, the method fails when the number of 

items is small and there is less chance of mixed responses. The Bayesian estimation is a 

possible solution to this problem as it’s not dependent on the number of correct or 

incorrect responses. This technique basically involves modifying the likelihood function 

to include any prior information obtained on the ability distribution (Swaminathan, 

1983). The relationship can be described as, 

f(0\u) = L{u\G)f(6) 

Here, f(6 \u) is the posterior density, where the mode of this function is the “most 

likely to be” value of and can be considered as our desired ability estimate, L(u\ 0) is the 

likelihood function, and f(6) gives us the prior information on the distribution of 6. 

It avoids the problem of response pattern dependency; however, the estimates may be 

biased (Hambleton, Pieters & Zaal, 1991). 

2.6.6 Termination Criterion 

An important consideration in the adaptive testing is when to stop administering 

the test. In most of the cases, measurement precision or test length is the basis for 

terminating a CAT algorithm, however, time may also be a consideration. The CAT 

algorithm can continue until some desired value of standard error of measurement is 

achieved thus varying the number of items administered to each examinee. It is also 

possible to specify different levels of measurement error criteria depending on the ability 

range; more care should be taken at the middle level abilities. It is also possible to fix the 
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testing time and hence get ability estimates with different errors of measurement. It is 

also possible to combine the two conditions, that is, have a fixed minimum number of 

items and a desired measurement error. Numerous studies have been conducted to 

analyze various stopping rules. Stocking (1987), for example, discovered that by using 

standard error of measurement as the stopping rule, it was sufficient to know the 

examinee’s true score and the number of items administered to predict whether the true 

score is over or under estimated. Bergstrom & Gershon (1992) on the other hand used a 

stopping rule based on the confidence in the pass/fail decision in a medical exam where 

items were targeted to the ability of the examinee. The researchers suggested that using 

such a stopping rule in a computer algorithm that uses maximum likelihood estimation 

and Rasch model for item calibration is most efficient. 

j 

2.6.7 Method for Computing the Final Estimate of Ability 

It is usually the same as step 2.6.5; however, another technique can be used to 

estimate the final ability. The following flow chart illustrates the utility of various 

components of a CAT during an administration algorithm: 
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TEST ADMINISTRATION FOR AN EXAMINEE 

Figure 2: Flowchart for a Computer Adaptive Test Administration 
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CHAPTER 3 

CONSIDERATIONS IN THE DEVELOPMENT OF A CAT 

3.1 Brief Overview 

The occurrence of response aberrance in a CAT cannot be understood without a 

clear description of the related issues in a CAT design. The purpose of this part of the 

review is to describe some important considerations in CAT development process. The 

chapter also highlights some of the assumptions that are made for our case study to look 

at the aberrant response patterns in a CAT. The last few sections focus on the examinee’s 

interaction with a CAT leading on to the discussion of response pattern aberrance. 

j 

3.1.1 Development of an Item Pool 

Since the estimate of ability and the choice of the next item administered requires 

the knowledge of the item parameters, one of the main requirements to implement a 

computer adaptive test is a calibrated item pool. A brief explanation of the importance of 

an item pool was given in the section describing the various components, however, a 

detailed description of a calibrated item pool or item bank is needed at this point. 

The introduction of item response theory and the advent of computers have made 

the creation of item pools a reality (van der Linden, 1986). A set of test items, all 

measuring the abilities of an examinee population on a similar construct domain can be 

considered as the beginning of an item pool. At this point all we know about the pool is 

some initial estimates of the quality of items from our previous knowledge about the 
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nature of the test. As soon as a test is administered from the pool, a set of responses is 

available. These responses can be used to score the test as well as to find the parameter 

estimates based on a model selected on the basis of assumptions made about the nature of 

items. The process of estimating item parameters can be viewed as placing the items on a 

measurement scale, commonly known as item calibration. In the case when the 

parameter estimates are obtained for new items to be included in subsequent item pool 

from the responses of an examine during a testing session, it is called on-line calibration 

(van der Linden, 1986), currently used in many adaptive tests. As soon as the item 

parameters are known, the ability parameters can be estimated using the model as the 

measurement model. 

An ideal item pool consists of sufficient number of items whose measure of 

precision follows a rectangular distribution across the entire ability range to be measured. 
I 

However, it is a challenge to achieve such an ideal; in practice there are many constraints 

that come into play while deciding on an adequate item pool in terms of structure and size 

of the pool as well as the quality of items e.g. content representation, item overlap etc. 

3.1.2 Item Exposure 

In conventional testing programs, a set of questions is administered to a large 

group of examinees on a single day. Thus item exposure is limited to a short period of 

time. In adaptive testing, however, the period of time in which items are exposed is 

increased, therefore, a problem of a higher item exposure rate arises, especially for more 

popular items. Most of the testing agencies incorporate item exposure control 

mechanisms into the adaptive testing algorithm. A decision is made before the test 
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administration, about the rate at which the items will be exposed to examinees. For 

example, no more than 20% of the examinee population will see a given item in a large 

scale test (Stocking, 1996; Schaeffer et al., 1995) or 7% in case of smaller scale tests 

(Leucht, et al., 1996). A question arises at this point; what is the most effective way to 

reduce item exposure? Is it a good idea to add more items to a pool to reduce exposure 

within the pool or should there be multiple pools with constant exposure rates? Item 

exposure, in addition to other factors, largely depends upon the size and depth of the item 

pool (Sympson & Hetter, 1985). 

The Sympson and Hetter methodology employs using a large pool of items (both 

discrete and within sets) and development of exposure control parameters for individual 

elements in the pool. The exposure control parameters are lowered for items that might be 

frequently chosen based on their content and/or statistical properties. This implies that 

I 
these items are only administered for some fraction of times they are selected. Similarly 

these parameters are raised for items that are less desirable to be chosen. A well-known 

fact is that using large item pools eliminates many of the security risks and also reduces 

the negative effects of implementing item exposure controls (Leucht et al., 1996; Mills & 

Stocking, 1996). 

In addition to Sympson and Hetter methodology, a number of techniques have 

been recently proposed for reducing exposure rates. A brief definition of some of those 

methodologies is given below: 

a) Sympson & Hetter Conditional Methodology: The technique is an extension 

of the S & H methodology that was described in the previous section. This 

method limits the item exposure differentially across ability levels. In other 
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words, the exposure is controlled conditioned on ability (Stocking & Lewis, 

1995) 

b) A-Stratified: In this approach, the item pool is divided into strata based upon 

the level of item discrimination parameters. The strata with higher a-values 

are used as the test progresses; within each stratum, the item that has the b- 

value closest to the examinee’s current ability estimated is chosen (Chang & 

Ying, 1999). 

c) A-Stratified with b-blocking: This method extends a-stratified method by 

forcing b-parameter values to be evenly distributed across all strata. Both a- 

and b-parameters are, therefore, used in forming the strata (Chang et al., 2000) 

d) Tri-Conditional: This method combines Conditional Sympson & Hetter 

methodology with additional conditioning on context. The technique, in other 

/ 
words, conditions the exposure control on item, ability and test context 

(Parshall et al., 2000). 

e) Stochastic: This method of exposure of control will be employed in this study 

due to its simplified implementation. The method was proposed by Reveulta 

and Ponsoda (1998) and Robin (1999). In this method, items are not allowed 

to be administered more than 100k% of the tests where k is the maximum 

exposure rate. Suppose that a test is administered t times and a is the number 

of times a particular item has been administered in the previous t tests. The 

exposure rate of that item will be a/t that has to be less than k for the item to 

be administered. The item will be available for some tests, and then will be 

unavailable for some other tests. The item will be available again as the 
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quotient a/t decreases and becomes less than k. For example, if thevalue of k 

is 0.25, t is 50 and a for a particular item is 15, the exposure rate of that item is 

hence 0.3. This item will be unavailable for administration until the exposure 

rate becomes less than 0.24. 

3.1.3 Constrained Item Selection 

In a computerized adaptive test, skilled test developers make up an item pool that 

satisfies the usual requirements of matching content specifications. The content validity 

is particularly important in the case of achievement testing where an individual’s 

achievement is measured in a number of content areas at the same time. However the 

issue of content balancing becomes problematic in a CAT. In the adaptive testing, since 

the examinees are presented only with items suited to their ability, it is essential to have 
I 

items representing each content area covering a range of difficulty levels (Schartz, 1986). 

This leads to a large number of items in an item pool representing a wide range of ability 

for various content areas. In addition test developers are faced with the constraints of 

preventing item overlap i.e. item giving away the answer to another item, and item block 

maintenance i.e. keeping item in its current block. In summary, for item selection, the 

algorithm must satisfy constraints on content as well as statistical and intrinsic properties 

of items (Eignor, 1993). 

Hence, in the case of adaptive testing, there may be some trade-off in terms of 

determining which specifications are important and which can be relaxed to take full 

advantage of the measurement models as well as other adaptive test requirements. 
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Stocking and Mills (1996) emphasized the fact that a careful examination needs to be 

done of the content specifications as well as other constraints by relating them to the 

construct being measured. The purpose is to insure whether or not some constraints 

could be relaxed. It is feasible to apply different weights according to the importance of 

certain specifications and restrictions. The adaptive testing algorithm must maintain a 

record of the extent to which the test meets each condition and select items in a way that 

best fulfills the specifications. Item selection strategies such as optimal constrained 

adaptive testing where all items are selected in the form of a “shadow test” at the current 

ability estimate (van der Linden & Reese, 1998) or selection with the sequential 

probability ratio test (Eggen, 1999) are being introduced. However, the Weighted 

Deviations Model using Fisher’s information function still remains popular. The 

adaptive test algorithm implied in this study used the same Weighted Deviations Model 

I 
(WDM) for item selection (Stocking & Swanson, 1993, Stocking, 1996). 

In the WDM approach to item selection, the next item that is selected for 

administration is the item that simultaneously 

(1) is as informative as possible at a test taker’s ability level 

(2) contributes as much as possible to the satisfaction of all other constraints in addition 

to constraints on the item information 

At the same time, it is required that the item 

(3) does not appear in an overlap group containing an item already administered 

(4) is in the current block as the previous item or starts a new block 
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3.1.4 Dimensionality 

Most item response theory models assume that a single ability or latent trait can 

explain an examinee s test performance. However, it is not a simple matter to construct 

items which all measure the same trait, there are many cognitive factors that may account 

for an individual’s response to an item (Traub, 1983; Keitzberg, Stocking & Swanson, 

1978; Ackerman, 1987). For a group of individuals, it is doubtful that each person to 

respond to a single item would use a single cognitive skill or a constant combination of 

skills. For example, a licensure exam may measure several skills, or a history test may 

measure a composite skill of history knowledge, reading and memorization. Wang, 

Wilson and Adams (1995) call these types of multidimensional situations as between- 

item and within-item respectively. The assumption of unidimensionality has always 

undergone a lot of criticism. Laurier (1990) while describing the concerns in the 

application of CAT to various types of testing considers the assumption of 

unidimensionality as the most “formidable” problem. According to Laurier, CAT cannot 

be applied on a Cloze test (where finding a correct word in a context increases the chance 

of finding the next word) because it doesn’t satisfy the condition of independence which 

is a type of unidimensionality. He states 

It (CAT) should never be used to create a diagnostic test that aims at finding 

weaknesses or strengths on various discrete points because this type of test is not 

unidimensional. By the same token, it should not be used on so-called 

“communicative” tests that attempt to measure aspects of the communicative 

competence without isolating the different dimensions in separate sub-tests. 

Traub and Wolf (1981) expressed their difficulty in understanding how a CAT 

could serve useful achievement and diagnostic purposes if constructs like analytical 
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reasoning and reading comprehension are assumed to be unidimensional and assumed not 

to be influenced by factors like instruction, type of text, language background, etc. 

Research has shown that no matter how much effort is put into construction of 

items to maintain unidimensionality of an item pool, it is almost impossible to achieve 

this aim for every individual. Wainer (1983) found that the trait being measured, 

although unidimensional for most of the test population, may be multidimensional for 

some small sub-population. Research, however, also indicated that although the most 

commonly used theory behind CAT relies on unidimensionality, empirical results show 

that the model is suitable when the items in the pool have one dominant dimension 

(Green et al., 1984; Drasgow & Parsons, 1983). Items related to small secondary 

dimensions would tend to have smaller item discrimination values but will not affect 

ability estimate a lot. Thus, a necessary requirement for CAT is that either the item pool 
I 

is unidimensional or has one dominant dimension. The implication in this study of an 

item pool is that the pool is unidimensional. However the issue of response aberrance 

tends to violate this assumption in some cases; this will be discussed later in the chapter. 

3.2 Examinee Interaction and Test Taking Behaviors within a CAT Environment 

3.2.1 Examinee Interaction with a CAT 

Although it seems that the introduction of computers to administer test makes 

things easier on the part of examinees, it’s not quite what we observe. The experience of 

taking a CAT is not as simple as taking a conventional paper and pencil test. Apparently 

it’s just a question appearing on a computer screen and examinee choosing an answer till 
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the test terminates. However, there are a number of unique aspects to CAT that might 

influence an examinee’s performance. 

First, computer based testing is not a familiar mode of testing to many test takers. 

Some people might be irritated by looking at the bright computer screen while others may 

find it fatiguing to scroll through long items. In reality, many people tend not to talk 

about such aspects of a CAT to hide their unease with the computers in general, not to 

look “computer illiterate” (personal experience). In reality, many people even feel uneasy 

with answering through a keyboard or a mouse (Wise, 1997). Another factor that might 

cause anxiety among test takers is the feeling of items getting easier or harder based upon 

their responses. In a CAT, easier items mean poor performance resulting in anxiety in a 

test taker. Also, most of the examinees have some idea that there is a computer algorithm, 

which selects the next item, presented to them and that the CAT is shorter and more 
I 

precise. This creates an additional pressure on a test taker as he or she knows that each 

item has a larger impact on their final score (Wise, 1997). 

Another aspect of CAT that examinees have frequently reported as discomforting 

is the inability to browse, skip through and go back to their answers (Vispoel et al, 1994; 

Wise, 1996). Wise (1996) argued that the examinees are likely to gain scores if they were 

allowed to review and rethink their answer. Denying item review may result in increased 

levels of anxiety as it results in a lack of control over the test. 

Testing time limits also have a great impact on the test takers. Placing a time 

limit on a test is a typical feature of a standardized test. However, time limits serve only 

the interests of the test administrators and work negatively for the test takers. It is even 

more complicated when it comes to CAT, whether it’s fixed or variable length. In case of 
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fixed length CATs, if able examinees are getting harder items and less able examinees are 

getting easier items, the same time limit does not make much sense, as harder items tend 

to require more time to answer. CATs that use measurement precision of an ability 

estimate as the stopping-rule end up in different test lengths for different examinees. It is 

therefore hard to decide a final limit on a testing time. 

The above mentioned factors might result in test anxiety for examinees and test 

anxiety has proven to affect examinee-performance adversely (Hills, 1984; Wise, 1996). 

Another related facet of a CAT that has been researched extensively is the issue of 

response times when a time limit is in place for a test. The following section discusses 

the issue of people responding differently in terms of the time that they take to complete a 

test. 

3.2.2 Examinee Response Times and Test Taking Behavior 

Examinees with the same ability require different amounts of time to complete a 

test item. Researchers have found that many times differences in test-performance may 

be due in part to the differences in the time people take to respond to questions. In other 

words, the difference in response times might affect people’s performance instead of their 

knowledge, skills or ability. It is therefore important for test takers to pace themselves 

while taking a test. 

As mentioned in the previous section, it is possible for test takers to get anxious 

thus taking long to respond or they may just be slow thinkers. Differences in response- 

times of items administered early in the test may not affect performance on those items, 

but may affect the performance towards the later part of the test. As the test taker moves 
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to the later section of the test, either he or she has to leave the items as unanswered or 

simply guess randomly. Schnipke & Scrams (1995) refer to such guessing behavior as 

the “rapid-guessing behavior”. The researchers indicate that it is easy to track such 

behaviors as some test takers respond so quickly towards the end of the test that one 

could not even read the item in that time. Such factors cause the test to be speeded for 

some examinees than the others. Response-time analyses have shown, for example, that 

Hispanics and African Americans spend more time on each item than other groups 

(O’Neil & Powers, 1993; Llabre & Froman, 1987). Also, some groups are better in 

allocating their time for an item according to the item difficulty (Schaffer et al, 1993). 

Schnipke and Pashley (1997) conducted a research study on the response timings 

of two groups of native and non-native English speakers for nationally administered high- 

stakes reasoning test. The test was a 25-item computer-based but non-adaptive test. The 
I 

researchers used survival analytic techniques to look at the distribution of response times. 

The researchers found that the test score was a significant predictor of response-time for 

all items. On the first half of the test, non-native English speakers responded slower on 

average than native speakers while on the last half, they responded much faster and 

rushed by guessing randomly. Generally studies have found that increased overall testing 

time improves scores, but no significant interaction was found with race or gender (Wild 

et al., 1982). Another related finding that was made clear through this study was that 

computer based testing made it much easier to keep track of the response times by each 

examinee for each item. Examinee’s average response time could be obtained by 

combining examinee’s response times on all items. Similarly item’s average response 

time could be obtained by combining all examinees’ responses on that item. 
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Although computer based testing makes it easier to keep track of the response 

times, the issue is not so simple when it comes to the computer adaptive testing. Since, 

each test in a CAT has a unique set of items; the expected completion time is different for 

each test and thus each examinee. For a variable length CAT, the expected completion 

time does not only depend on what items are used but also on how many items are used. 

Hence, it is difficult for test administrators to decide on appropriate time limits on a CAT 

and it is even more difficult for examinees since, unlike P&P tests, they are not exposed 

to the whole test to pace themselves accordingly. In addition, the IRT assumption of 

unidimensionality also gets violated if the extraneous variable of timing impacts the 

performance of some examinees in addition to the construct being measured (Bontempo 

& Julian, 1997; Oshima, 1994). If we look at the past research, we observe that there are 

many unanswered questions when it comes to response-times and pacing correctly on a 
/ 

CAT. 

Regression studies on response-times on a CAT fail to explain the variation in 

response-times. For example, Kingsbury et al (1993) found that none of the variables that 

they included in their study of response-times on a CAT accounted for more than 8% of 

the variance in response-times. The studies where the variance did get explained, the 

results were not what would be expected. 

Bergstrom and Gershon (1994) analyzed response-times on a computer adaptive 

test using a hierarchical linear model. Their finding was in contradiction to some of the 

earlier findings. The researchers included several within and between persons variables 

in their study. The within-variables included difficulty, position, length, graphical nature, 

content category and position of answer key for an item. The between-variables included 

36 



test-anxiety, ethnic background, gender, language, age, and final ability estimate of the 

examinees. Although there were significant differences between examinees, much more 

variation was found within an examinee. The researchers found that the examinees spent 

more time on items they got wrong than on items they got right. Factors like position of 

an answer key, item length, relative item difficulty and the test anxiety significantly 

affected response times. Although, for some examinees it was clear what affected their 

response times but for others, the researchers indicated little understanding of why they 

spent more time on some items than the others. 

Van der Linden et al. (1999) conducted a study to look at the response-time 

distributions in a simulated CAT for ASVAB data. The researchers used a statistical 

model for examinee response-time distributions. The predictions from the model were 

used as constraints on further item selection to adjust for the speededness for all 

/ 

examinees. The researchers observed that the algorithm reduced the effects of 

speededness for examinees that would have otherwise suffered from the time limits. 

Interestingly all those examinees were high ability examinees. The study, which proved 

to be a positive step towards dealing with response-time issue, also re-enforced 

something that was found in the Bergstrom study, that is, ability and response-time seem 

to be uncorrelated on a CAT. 

The same finding was observed when Swanson et al. (1997) conducted studies on 

response times for the National Board of Examiners’ Step 1 and 2 Licensure exams. It 

was found that the ability and response-times were uncorrelated generally, however a 

moderate positive correlation was observed if the time limit was too restricted. These 

studies while looking at ways to handle response-time issues to adjust for speededness 
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also suggest that in a CAT, unlike conventional tests, it’s not only the low ability 

candidates who get affected by restricted time limits. Researchers are looking at the issue 

of response-times on CAT very carefully, however very few recommendations have been 

made to date. 

Steffen and Way (1999) evaluated the different strategies that examinees might 

want to take while taking a CAT in terms of the time spent on items. The researchers 

found that the scores for high ability examinees would be negatively affected if those 

examinees went slowly on the early items their scores, as they would end up guessing on 

the items that they actually knew. Low ability examinees, on the other hand could do the 

best if they spent more time on the early part of the test and guess towards the end. The 

middle ability examinees will suffer in term of their scores if they provided incorrect 

answers towards the early sections. 
I 

This leads to our issue of interest, that is, the issue of response aberrance for some 

examinees in a CAT. Although, there might be ways to go around the issue of taking the 

test efficiently in time, it does create unexpected patterns of responses. Spending more 

time on an early part of the test and rushing through the last part by guessing creates 

response patterns that do not fit to the response models working behind the CAT 

algorithm. Such response patterns are called “aberrant” and force the CAT algorithm to 

produce incorrect estimates of ability. The details of such scenarios are presented in the 

next section. 
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3.3 Aberrant Response Patterns 

3.3.1 Definitions of an Aberrant Response in IRT Framework 

3.3.1.1 Statistical Definition of an Aberrant Response in IRT Framework 

The lower the probability of the response determined by the IRT model 

parameters, the more aberrant the response (Reise & Due, 1991). In general, the 

aberrance is statistically defined in terms of the maximum likelihood function as the 

value of the function decreases due to the occurrence of an unlikely response, given the 

model. For example, a pattern of correct guessing on a set of difficult items by a low 

ability examinee will adversely affect the likelihood function, which in turn results in an 

inaccurate estimate of the final ability of the examinee. 

3.3.1.2 Definition of Aberrance in Terms of Information 

An aberrant response is the one that provides less psychometric information 

(Lord, 1980) for estimating ability than would be expected by the parameters of a 

specified IRT model. Here the aberrance is defined in terms of the test information 

function, as it’s value decreases if aberrant responses occur. 

3.3.2 Appropriate Measurement or Person-fit Research 

Since the occurrence of aberrant or non-model fitting responses for examinees 

frequently results in incorrect score reporting, the whole purpose of a test is hence defied. 

Over the past 25 years, this area received a lot of attention where researchers have tried to 

detect examinees with such non-model fitting response patterns or in other words 

“misfitting persons” or “inappropriate” score or response patterns. As mentioned before, 
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this area of research has been known as appropriateness measurement in the past (Yi & 

Neiring, 1999; Drasgow & Levine, 1986) and as person-fit more recently (Meijer & 

Neiring, 1995; Reise & Due, 1991). While almost all of the studies in this area have been 

conducted to address the issues of detection, they do provide us with an idea of the kind 

of response aberrancies that could be expected and specifically the kinds of simulation 

studies that would be suitable to various situations. Readers that are interested in a 

detailed overview of and recent developments in the person-fit detection methods, refer to 

Meijer and Sijtsma (1994). 

3.3.2.1 Misfitting or Aberrant Reponse Patterns 

An item response model can be inappropriate for an examinee even though the 

model may be appropriate for the whole group of examinees. The model may be 
I 

inappropriate or the responses may be aberrant for a number of reasons. Researchers 

have observed that in a paper and pencil testing situation, for example, examinees may 

skip an answer on the test without skipping the item on the answer sheet. In some cases, 

they might turn easy items into “tricky” hard questions thus creating difficulty in the 

items that was not in the test design. (Mcleod & Lewis, 1996). For the remainder of the 

test, the ERT model falsely assumes that the examinees are answering the items based on 

their true abilities thus resulting in low scores for such examinees. 

Another situation arises, when examinees cheat or copy some answers from the 

other test takers. The ability estimate in this case will depend on the other test takers’ 

abilities and may result in unexpectedly high scores if the other test taker is a high ability 

examinee. 
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The inappropriateness of a response according to a model, might also be due to 

the violations of the underlying assumptions such as invariant ability over items/subtests, 

unidimensionality or local independence assumption in case of most commonly used IRT 

models (Glas & Meijer, 1998). Guessing, cheating, memorization, creativity, fumbling, 

and fatigue, for example, result in the violation of the assumption of invariant ability 

across items. Cheating and memorization also results in the violation of the assumption 

of unidimensionality. 

The issues are more serious in case of computer adaptive tests that bring along 

with them numerous allowances but also constraints such as the prohibition of item 

review or item omits. The examinees therefore, intentionally or unintentionally come up 

with innovative techniques to beat the test. In a CAT, for example, in addition to the 

above-mentioned behaviors, the issue of memorization can be more serious compared to 

paper and pencil tests. Research shows that if the item pool is smaller, the examinees 

might inflate their scores by memorizing difficult items and thus routing themselves to 

more memorized items (Mcleod & Lewis, 1996). 

While a number of aberrant behaviors may occur in a CAT, typical forms of 

aberrant response behavior are guessing and cheating which may result in spuriously high 

or low scores (Glas & Meijer, 1998). There has been little research on the ways to detect 

aberrance in a CAT, assuming that the same indices could be used as in conventional test. 

However, researchers like Bradlow et al. (1998) and Glas & Meijer (1998) have shown 

that since, in a CAT, examinees receive different items in varying orders and there are no 

missing data (because of no-skipping constraint), traditional indices may have lower 
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power. An explanation of the recommended indices and a comparison of such indices 

with conventional indices is outside the scope of this study. 

3.3.2.2 Simulation Studies 

An important aspect of person-fit research is to simulate particular response 

patterns for different groups of examinees. A wide array of literature exists where 

researchers simulated a variety of response patterns for exploring detection indices. 

However, very few studies were conducted to represent response aberrance in a computer 

adaptive testing situation. The following section briefly illustrates two such studies 

providing us with an idea of the nature of such simulations. 

Mcleod and Lewis (1996) conducted a comprehensive simulation study to 

compare two person-fit indices to detect memorizers in a CAT administration. Five 
I 

levels of ability were chosen (-1.0,-0.5,0,0.5,1.0). Three sets of ten item difficulties were 

selected at each ability level; the difficulties were chosen to reflect the levels that might 

arise in adaptive tests for examinees at the five ability levels, and ranged from -2.0 to 1.0. 

Five different response patterns were then simulated for each item set, based on the 

ability level associated with that test. 

For the first response pattern, a Guttman pattern was used, that is, the simulees 

gave correct responses to all easy items and incorrect responses to all the items with 

difficulties above their abilities. This represented a perfectly appropriate response 

pattern. The second pattern simulated the Reverse-Guttman pattern where simulees 

provided correct responses to all difficult and incorrect responses to all easy items. This 

represented the case where low ability examinees had memorized the difficult items. This 
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pattern was then manipulated to depict another pattern, where the examinee correctly 

answers few easy and incorrectly answers few difficult items. The Manipulated Reverse- 

Guttman was meant to fit the IRT model better than the Reverse-Guttman but not as well 

as Guttman. The fourth pattern was generated according to the normal IRT model while 

the fifth pattern simulated random responses. The person-fit index was therefore 

expected to detect few of the normal and Guttman patterns as non-fitting, consistently 

detect Reverse-Guttman and have varying levels of detection for random and manipulated 

Reverse-Guttman response patterns. 

The second part of the study involved data from actual CAT administration of 

GRE where 1650 response patterns were generated. The fifty most-frequently exposed 

items for the top 5% of the examinees were considered to be memorized. Results of the 

study are behind the scope of this study. 
I 

Another interesting simulation study was performed by Glas and Meijer (1998). 

The study is a replication of the earlier study by Klaur (1995) extending the use of the 

proposed indices to the CAT environment. The researchers simulated data to depict 

response patterns that violate two IRT assumptions for a 2-PL model; invariant ability 

across subtests, local independence between items. The data were simulated to depict 

aberrant responses by defining alternative models. The non-invariant abilities across 

subtests were modeled by assuming that the 2-PL is valid during the whole testing session 

but that the respondent’s ability parameter changes during test-taking. It also assumed 

that a person has two ability parameters; the first parameter governs the responses on first 

half of the test while the second governs the second part. The lack of local independence 

was simulated by assuming that the probability of a correct response on an item is 
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augmented by a previous correct response. This was obtained by introducing a transfer 

parameter. Again, the results of the study are behind the scope of this paper and are not 

included here. 

The above mentioned simulation studies are excellent examples of simulation 

studies that could be conducted in a CAT environment to depict aberrant response 

behaviors 

3.3.3 Occurrence of Aberrant Response Patterns in a CAT 

3.3.3.1 Scenario 1 

The first factor is related to examinees pacing on a test. As mentioned in the last 

chapter, the concept of Pacing is also referred to as an examinee’s “time management” for 

completing the test. For example examinees might spend an inordinate amount of time in 
I 

correctly answering a certain percentage of items on the test in the beginning and spend a 

very short time towards the end. This might result in examinees guessing extensively 

towards the end thus resulting in inaccurate provisional estimates of ability. The 

inaccurate pattern towards the end lowers the final ability estimate compared to the item 

difficulty while the test was well targeted in the beginning. This sort of behavior has 

frequently been observed in computer adaptive testing situations. For example, 

Bontempo & Julian (1997) found that in NCLEX (1996 administration), 77% of the 

examinees (out of those examinees whose tests consisted of 215 of a maximum of 265 

items and took more than 4 hour; 10 minutes out of 4 hour; 45 minutes) rushed and 

guessed rapidly towards the end. 

44 



3.3.3.2 Scenario 2 

The examinees might answer hard items correctly and easy items incorrectly. 

This situation arises when a student studies intensively to answer difficult questions and 

in that effort ignores simple and easy questions. Here, the assumption is that difficult 

items correspond to difficult subject matter. The examinee's response pattern will deviate 

from the rest of the group with similar abilities, given the most common probabilistic 

models (Meijer & Sijtsma, 1994). A variation on this situation might be that a candidate 

cheats to get difficult questions correct on a certain portion of a test (see section 3.3.2). 

3.3.3.3 Scenario 3 

Aberrant response patterns are likely to occur in a situation where the distractors 

for an item could be partially correct. However, the examinee can detect such distractors 
j 

only if they are exceptionally creative. High ability examinees can therefore get such 

items wrong against the model expectation. Also in this case, the construct of creativity 

interferes in the item selection algorithm as the underlying assumption of 

unidimensionality no longer holds. 

3.3.3.4 Scenario 4 

Item selection algorithm is less responsive to the candidate’s responses. This 

might occur due to the shortage of difficult items in the item pool. Hence, the provisional 

ability estimates are constantly higher than the item difficulty and the test ends before 

examinees could get harder questions. On the other hand, the estimates could be 

consistently lower than the difficulty of the items delivered if there are fewer easy items 
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on the test. It also increases the test anxiety for those examinees. A number of item 

selection constraints such as content constraints and item exposure controls could also 

limit the selection of items targeted to the ability estimates. 

The first three situations relate directly to aberrance as they are known to actually 

cause aberrance. The last scenario, however, interacts with aberrance in that it can be 

caused by aberrance due to unexpected and abnormal pool utilization. 

/ 
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CHAPTER 4 

METHODOLOGY 

4.1 Introduction 

The focus of this study was to identify the conditions under which aberrant 

response patterns become particularly problematic in a computer adaptive testing 

environment. The study examined the effect of test length and time limits on the 

occurrence of aberrant response patterns when examinees rush into random guessing 

towards the end of a CAT. 

In this study, four different testing scenarios were examined; fixed length 

performance tests with and without content constraints, fixed length mastery tests and 

variable length mastery tests without content constraints. For each of these testing 

scenarios, the effect of two test lengths, five different timing conditions and the 

interaction between these factors with three ability levels on ability estimation were 

examined. For performance tests, the lack of items in a certain content area was 

simulated to look at the effect of their interaction with aberrance. For fixed and variable 

length mastery tests, decision accuracy was also looked at in addition to the estimation 

accuracy. 

The interaction of aberrance with the total pool information was also studied 

briefly during the course of the research; however, the results of that particular analysis 

are not central to the study. 

The time limits were imposed by the introduction of random guessing after the 

examinee had answered a certain percentage of items out of the total test length. The 
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response patterns were simulated first by simulating the item and ability parameters and 

then using the item parameters obtained from a high stakes test results. 

Various indicators including Root Mean Square Error (RMSE) index, Bias index, 

and test information functions judged the effect of aberrance on the ability estimation. 

The distributions of false hits (incorrect pass/fail decision) were used to look at the 

decision accuracy in classification testing. 

4.2 Data Generation Model 

Data can be generated in a number of ways to mimic aberrant response patterns. 

For example, data can be generated conforming to an IRT model and then statistically 

manipulated to simulate different aberrancies in the response patterns. For example, 

changing certain percentage of correct responses to incorrect responses and vice-versa. 
I 

Another method is based on the test information approach, where a model is 

conceptualized to generate data that simulate examinee response aberrance. Such models 

are commonly referred to as the Generalized Response Aberrance Models. Strandmark & 

Linn (1987) introduced one such model where aberrance was simulated by manipulating 

the item discrimination parameter for some individuals. This in turn manipulated the 

information provided by the underlying IRT model as the test information depends largely 

on the a-parameter. Such data generation models have been used in a variety of research 

studies, however, these techniques produce artificial response patterns instead of response 

patterns that may occur in real situations (Yi & Neiring, 1999). In our study, a data 

generation technique was used that reflected the examinees’ behaviors more accurately. 
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4.3 Design 

In the first step of the study, an item pool of 600 items was established using 

simulated item parameters. A fully adaptive test was administered to 1200 simulees (100 

examinees at 12 ability levels) on 30 and 75 item fixed length tests using CBTS (Robin, 

2000). For each test, every item was taken as a multiple-choice item with 4 alternatives. 

The CAT program used Weighted Deviations Model for item selection and Stochastic 

Item Exposure control methodology to control for item exposure (for details, see section 

2 of the literature review). This administration of the CAT was called the CAT delivered 

under “Null” conditions. The “experimental” conditions included simulations conducted 

to generate data depicting response aberrance. To simulate random guessing at certain 

points in the test, the probability of a correct response was changed to the chance 

probability. Such conceptual framework for simulating random guessing behavior has 

been frequently used for detecting such aberrance using IRT based person-fit indices 

(Kogut, 1986; Meijer, 1994). The chance probability in this case was 0.25 because of the 

four alternatives to each item. In the experimental conditions, guessing was introduced 

after a certain percentage of items had been delivered. The following formula was used: 

Number of items (n) = factor x total number of items/100 (1) 

where factor is the percentage of items. Hence the regular administration of the CAT 

continued till the algorithm hit equation 1. At this time, the probability of the correct 

response was changed to: 

P( 0) = 1/number of alternatives (2) 

The following logic applies: For a fully computer adaptive test, an item is selected 

based on the information that items in the pool carry at the provisional ability estimate 
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and administered after other constraints have been applied. The ability estimate is 

computed using Bayesian estimation (see chapter 2 for details) based upon the responses 

to the previously delivered items. If responses to the first n items are generated according 

to the item response model (3PL in our case), the random guess at the (n+l)th item 

disrupts the selection algorithm. The ability estimate that was expected for that particular 

examinee on an item with a particular item difficulty will not be produced. In fact, a 

wrong provisional ability estimate will be computed unless the guessed answer is the 

same as the expected answer. The information function will then be calculated for the 

remaining items in the pool. Hence the (n+2)th item will be the one that provides 

maximum information at an incorrect ability estimate, thus resulting in an item which is 

not well targeted to the person’s true ability. Since, we assume that the random guessing 

will continue till the end, the same process will be repeated again and again thus resulting 
I 

in a final ability estimate much different from the true estimate. 

The experimental conditions were thus replicated by changing the factor to 90%, 

75%, 50%, and 25% of the items for two different test lengths of 30 and 75 items. 

Next, varying the proportion of examinees that guessed after a certain percentage 

of items had been administered resulted in another set of simulations. For example, out 

of 60% of examinees that were flagged to start random guessing in a CAT administration, 

80% started guessing after 90% of the items had been administered while 20% of the 

group started guessing after 75% of the items had been administered. Those percentages 

were then manipulated to represent other patterns of guessing behavior at each ability 

level. 
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The results from the previous steps of the study were then used to examine and 

describe the response patterns and their effects on the CAT administration in the 

following steps of the study. 

In the next step of the study, a similar design was replicated. However, this time 

the item pool was calibrated using parameters from the November 1996 to 1998 

administrations of the American Institute of Certified Public Accountants licensure 

examination. CATs were simulated for fixed length performance testing with and 

without content constraints. 

Next, an adaptive mastery test was simulated where the points after which 

examinees' guessed were the same as performance testing. Since random guessing is 

expected to have a significant impact on mastery decisions for people with abilities close 

to the cut scores, this analysis was particularly useful. The cut-scores approximately 
I 

similar to AICPA cut-scores were used for the study and the classification or mastery 

decision was defined as master/pass or non-master/fail. 

The final step of the study involved simulating responses for variable length 

adaptive classification tests where the test for a given examinee depended on a certain 

stopping criterion. In this case, testing stopped when a required confidence level had 

been attained in a pass/fail decision. 

4.4 Item Pool Characteristics using Simulated Parameters 

The ability parameters of the examinees that were meant to take the adaptive tests were 

drawn from a normal distribution with mean of 0.0 and standard deviation of 1.0. The 

following table depicts the specifications that were used to generate item parameters: 
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Table 4.1: Item Parameter Distribution 

Distribution Minimum Maximum Mean Std. Dev. 

A Log-Normal 0.50 1.60 0.80 0.20 
B Normal -2.50 2.50 0.00 1.20 
C Log-Normal 0.00 0.50 0.15 0.10 

4.5 Item Pool Characteristics using AICPA Parameters (without constraints) 

In order to look at the issue of aberrance in CAT using AICPA item parameters, a 

careful selection of items is necessary to create a representative item pool. For similar 

reasons, the data from November 1996 to 1998 AICPA administrations were used. 

November results were used because of the similarity in the ability distributions that took 

the test at a particular time of the year. The November administrations were selected 

instead of May administrations of the tests as for November administrations results from 

three administrations were available to us. In other words May data were available only 

for 1997 and 1998 administrations of the test. Two tests with similar number of items 

and rather unique content were chosen for the purpose of our analyses. The two tests 

were Audit and Accounting and Reporting (ARE). Although analyses were performed on 

both tests, results from Audit will be explained thoroughly in this study while the results 

from ARE will be included in the appendix for readers’ interest. To look at the 

distributions, following steps were carried out: 

a. Multiple Choice data for each administration of the two tests were cleaned 

for missing cases (table). The multiple-choice section for each test was 

composed of 75 items. 

b. Computer program BILOG was then used to calibrate the tests. Normal 

priors were set on the threshold parameter for better estimation. 
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c. The ability estimates from phase 3 of each of the six response matrices (3 

administrations x 2 tests) were read into SPSS to look at the ability 

distributions. 

d. Histograms of the six ability distributions were plotted. For each 

administration, the ability distribution was approximately normal with a 

mean of 0 and standard deviation 1. These distributions are depicted in 

figure A. 1. 

Table 4.2: Ability Parameter Statistics 

Descriptive 

Statistics 

Audit ARE 

1996 1997 1998 1996 1997 1998 

N 50317 52292 48699 50448 52799 50554 

Mean 0.0 0.0 0.0 0.0 0.0 0.0 

Stdev 1.0 1.0 1.0 1.0 1.0 1.0 

I 

As shown in figure A.l in appendix A, a very small percentage of examinees had 

ability levels in the tails of the distribution; majority of examinees were concentrated in 

the range of-3 and +3. Hence the hypothesis of the similarity of the examinee ability 

distribution for the November administrations was supported by the analyses. Next, a 

few steps were performed to create a representative item pool using AICPA item 

parameters. Items with difficulty parameters greater than 3.0 and less than -3.0 as well as 

items with item discrimination greater than 2.0 were deleted. Such items do not 

contribute in providing information about the examinees and hence were not included in 

the pool. 

The ability distributions for all November administrations had a mean of 0 and 

standard deviation of 1; equating of item parameters was not deemed necessary for our 
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particular analyses. Item parameters from the several administrations were, therefore, 

combined to create a representative item pool. For audit, after combining the three 

administrations 223 items were available to us in the pool, while 206 items were available 

for the ARE. In order to create an item pool that could be sufficient for a CAT with 75 

items, 600 items was considered as a “sufficient” pool size. Hence, item parameters for 

the available items were examined to clone the remaining items in the pool. Histograms 

as well as P-P probability plots of the existing item parameter distributions were carefully 

analyzed to simulate the remaining items. The P-P chart plots a variable’s cumulative 

proportions against the cumulative proportions of a number of test distributions. Such 

probability plots are used to determine whether the distribution of a variable matches a 

given distribution. If the distribution of a selected variable matches the test distribution, 

the points cluster around a straight line. The probability plots were analyzed for various 

matching distributions to decide on the most closely matched distribution. The 

descriptive statistics of the selected distributions are shown in table 4.2 and the actual P-P 

plots for those distributions are presented in figure A.2 in appendix A. Computer program 

CBTS was then used to generate the remaining items. A representative item pool of 600 

AJCPA items parameters was now available to us. 

Table 4.3: Item Parameter Statistics for Audit and ARE 

AUDIT ARE 

Minimum Maximum Mean Std. Dev. Minimum Maximum Mean Std. Dev. 

A 0.24 1.65 0.78 0.29 0.19 1.72 0.78 0.33 

B -2.87 2.79 0.01 0.94 -2.89 2.96 0.34 1.12 

C 0.07 0.46 0.24 0.07 0.08 0.50 0.25 0.09 
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4.6 Item Pool Characteristics using AICPA Parameters with Content Constraints 

The AICPA examinee booklet provides a detailed outline of the major content 

areas divided into several sub-areas. Audit, for example, consists of four major content 

areas that are in turn divided into sub-areas that range from 3 to 13 in numbers; some of 

these sub-areas are then refined into finer content strands. The ARE test is composed of 

six major content areas and each content area is then subdivided into finer strands. The 

examinee booklet also lists the percentage of items that are drawn from each content area 

while constructing the test. 

For our analyses, we used the major content categories and the resulting CAT 

contained similar proportions of items as represented in P&P version of AICPA. These 

content areas and the respective percentages of items represented in the test are shown in 

the following table: 

Table 4.4: Content Specifications for Audit 

Content Topic % 

1 Plan the engagement, evaluate the prospective client and 
engagement, decide whether to accept or continue the 
client/engagement and enter an agreement 

40 

2 Obtain and document information to form a basis for conclusions 35 

3 Review the engagement to provide reasonable assurance that 
objectives are achieved and evaluate information obtained to reach 
and to document engagement conclusions 

5 

4 Prepare communications to satisfy engagement objectives 20 
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Table 4.5: Content Specifications for Accounting and Reporting 

Content Topic % 

1 Federal taxation — individuals 20 

2 Federal taxation — corporations 20 

3 Federal taxation — partnerships 10 

4 Federal taxation — estates and trusts, exempt organizations, and 
preparers’ responsibilities 

10 

5 Accounting for governmental and not-for-profit organizations 30 

6 Managerial accounting 10 

Both item pool and the test were therefore constructed to represent the respective 

proportions of various content categories. The number of items used for the formation of 

pool and the test are given below (for both tests, pool size=600; test length=75, 30): 

Table 4.6: Pool and Test Content Composition 

Content Number of items (Audit) Number of items (ARE) 

Pool Test 
(75) 

Test 
(30) 

Pool Test 
(75) 

Test 
(30) 

1 240 30 12 120 15 6 

2 210 26-27 10-11 120 15 6 

3 30 3-4 1-2 60 7-8 3 

4 120 15 6 60 7-8 3 

5 180 22-23 9 

6 60 7-8 3 

The simulations were then performed for CAT with content constraints and 

compared to the scenarios where such constraints were not included. 

4.7 Mastery Testing using AICPA parameters 

As mentioned earlier, the mastery tests are used to make a decision whether an 
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examinee passes or masters a test or fails the test. Such decisions will be called 

classification decisions and the passing point will be referred to as the cut-score or cut- 

point in the following sections. Although there are several methods available for making 

classification decisions, for the present study, the only method uses was sequential Baye’s 

procedure (Owen, 1975). Since the method requires the estimated ability to be compared 

with the latent passing score to make a classification decision, the results are influenced 

by the item selection only and not by the method of scoring the test (Kalohn & Spray, 

1998). 

According to this method, probability of mastering a test (PM) was calculated and 

compared with the pass decision level. If this probability was greater than the decision 

level, 0.5 in this case, the examinee was classified as a master. In case of variable length 

test, the test terminated when either of the following criteria was satisfied: 
I 

(a) PM < lower limit of confidence region 

(b) PM > upper limit of the confidence region 

In this case the lower limit was employed as 0.1 so the test stopped when PM was 

greater than 0.9 or less than 0.1. If the examinee reached the maximum limit for the 

number of items but none of those criteria was satisfied, the classification method was 

similar to the fixed length test. In other words, the decision was based on the most recent 

update of the mastery probability (Kalohn & Spray, 1998). 

The cut-score information for AICPA tests is provided for the overall tests. The 

raw scores are converted to a score scale of 1-100 and the passing score for each test is 

75. The classification information is also available for each of the tests. In order to 

obtain an estimate of the cut-score for the multiple-choice items, the classification 
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information was used for each administration of the test. The derived cut-score 

information from each ability distribution is presented below: 

Table 4.7: Derived Cut-Scores 

Audit ARE 
1996 1997 1998 1996 1997 1998 

Derived 
cut-score 

0.52 0.54 0.49 0.52 0.64 0.57 

The average derived cut-scores were, therefore, taken as 0.52 and 0.58 for Audit 

and ARE respectively on the IRT ability scale. 

The mastery tests, like performance (achievement) tests were also being simulated 

at two different test lengths. First, fixed length and then variable length tests were 

administered to the 1200 examinees. In case of variable length CAT, the examinees 

could take a minimum of 25 items and a maximum of 45 items. Those limits were 
I 

chosen to depict half of the test length for paper and pencil version of the tests. 

A significant aspect of these analyses was to look at the effect of rushed guessing 

on the classification decisions in a licensure examination. The effect of guessing on the 

ability estimation as well as the accuracy of classification decisions was analyzed for both 

fixed and variable lengths tests. 

4.8 Analyses 

In order to look at the differences between true and estimated ability estimates. 

Root Mean Square Error (RMSE) and Bias indices were computed. Here, root mean 
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square index is defined as the standard deviation of estimated ability around true ability. 

Bias, on the other hand provides us with a sense of direction of the estimated abilities 

relative to the truth. Following is the mathematical representation of the two indices: 

RMSE = 

N 

Z(4-0)2 

BIAS = 
£($-«) 

Here, N is the total number of examinees. The values for those indices are 

presented in both tabular and graphical formats for various levels of aberrance. For each 

administration of the test, average test information was computed at various ability levels 
I 

for different response patterns. This provided us with an idea of how well the test was 

targeted to the examinee ability levels. For each aberrant condition, various plots were 

produced for the estimated ability against the items currently administered. This was 

repeated for several examinees at a variety of ability levels. Examinees with the same 

true abilities (which is frequent) were considered as the replications of the estimation at a 

particular ability level thus giving us a clear picture of the estimation process. 

It would also be helpful to look at an index of pool utilization. Although a lenient 

exposure control method was used, it’d be helpful to look at the effect of aberrance on 

exposure rates and thus the pool utilization. We could hypothesize that greater aberrance 

could lead to increased Skewness in the exposure rates. One such index was proposed by 
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Chang & Ying (1999) is a chi-square index of pool utilization that provides a measure of 

Skewness of exposure rates (Robin, 2000). The index is defined as, (to be included) 

fJ(er-L/N) 
2 7=1 

where er is the exposure rate, L is the number of items administered, N is the number of 

items in the pool. Although, the index cannot be relied upon in isolation, that is, without 

looking at exposure rates, it’s used in this study to look at the general patterns of pool 

utilization for different guessing behaviors. 

The information provided by the pool that was available for an examinee before 

the item selection began, was also examined. 

I 
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CHAPTER 5 

RESULTS 

5.1 Results Based on Simulations 

The first round of simulations was carried out to generate responses on computer 

adaptive tests for 1200 examinees at two test lengths of 30 and 75 items. An item pool of 

600 items was simulated for these analyses. The examinees were made to guess after a 

certain percentage of items had been administered to look at the effect of guessing on the 

response patterns and the final ability estimates. The examinees were made to guess 

after 90% of items had been administered to simulate examinees that guess later in the 

exam. On the other hand, guessing after 25% of test administration depicts the response 

patterns for examinees that are extremely slow test takers or have very low ability and 

( 
start guessing very early in the test. 

Figure B.l.a demonstrates a computer adaptive test administration for a low 

ability examinee when he/she started guessing at several points in time, ranging from very 

early to later in the test. Figures B. 1 .b and B. 1 .c show the same results for examinees 

with middle and higher levels of proficiency. For the purpose of these analyses, theta 

levels of-1.83 and 1.83 were arbitrarily chosen to depict lower and higher levels of 

ability, respectively. Theta level of 0.1 was chosen to simulate responses for examinee 

with middle ability level. The following table displays the ability levels and the mid¬ 

point of the corresponding ability interval (the interval size was smaller around the mid¬ 

ability compared to the tails of the population to simulate a normal distribution of 

examinees). 
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Table 5.1: Ability Levels 

Ability Levels Mid-Point Ability Mid-Point 

1 -1.83 7 0.10 

2 -1.15 8 0.31 

3 -0.80 9 0.54 

4 -0.54 10 0.80 

5 -0.31 11 1.15 

6 -0.10 12 1.83 

Figures B.2.a, B.2.b, and B.2.c demonstrate the same analyses, however, the first 

set of analyses was performed for a test length of 30 while the second set for a test length 

of 75 items. The test length of 75 items reflects the test lengths for the various sub-tests 

for AICPA exam (the four sub-tests consist of 60 to 75 items). The plots indicate the 

estimated ability and item difficulty (vertical axes) after each item has been administered 

(horizontal axis). The vertical dashed line indicates the point after which an examinee 

starts guessing while the horizontal line is drawn across the true ability estimate of the 

examinee. 

The results showed that the ability estimation considerably improved when the 

test length was increased from 30 to 75 items. An important finding in both cases was 

that the adverse effects of guessing were significant for middle and high ability 

examinees. Those effects were highly noticeable when the examinees started guessing at 

the earlier stages of the test. If we looked at the examinees that started guessing halfway 

through the test, the difference between the true and final estimated ability was a fraction 

of a point for a low ability examinee while one and two point difference was observed for 

middle and high ability examinees respectively. Increasing the test length improved the 
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estimation for the high ability examinee when he/she started guessing at a later point in 

the test. The test length didn t prove to have much of an effect on the estimation in 

general once the examinees started to guess. This result is demonstrated in figure B.3 

where root mean squared error in the ability estimation over 1200 examinees are plotted 

against the guessing points for the two test lengths. Increasing the test length actually 

resulted in higher RMSE and Bias indices. 

The effect of guessing on the actual examinee responses is shown in figure B.4. 

The figure shows an example of the way a pattern of responses could change when the 

examinee guesses. Here the true ability of the examinee was moderately high, hence a 

number of correct responses were obtained when the examinee did not guess under the 

“null” condition. The responses were adversely affected (more Os than Is) when the 

examinee rushed after a certain number of items had been administered. 
I 

One of the hypotheses that we could also formulate from our knowledge of the 

CAT is that if a large number of examinees are simultaneously taking a CAT from the 

same item pool, ability estimation for the group could be affected. Since the utilization 

of the pool is disturbed and distracted from the way it was supposed to be utilized, the 

quality of estimation could be affected in general. Various proportions of examinees 

that took the test about the same time were thus made to guess at various points in the 

test. Figure B.5 illustrates the fact when 60% of the examinees were flagged or were 

made to guess. For those flagged examinees, several scenarios were simulated as 

described below: 

Scenario A: 20% of flagged examinees guess after 25% of items have been 

administered; 80% guess towards the end (after 90% of items have been administered) 
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Scenario B: 20% of flagged examinees guess after 50% of items have been 

administered; 80% guess towards the end 

Scenario C: 20% of flagged examinees guess after 75% of items have been 

administered; 80% guess towards the end 

Scenario D: All examinees guess towards the end of the test 

For all the above scenarios, the root mean square errors in the final ability 

estimates were plotted for each situation as shown in figure B.5. The results reiterate the 

fact of how rushed guessing starting at early stages in a CAT could influence the final 

ability estimates. A very large population of examinees who guess towards the end of 

the test could also influence the pool utilization such that the very few examinees that 

started guessing early might end up with very poor ability estimates. This hypothesis 

could be true if there was a lack of high quality easy items available for guessing 
I 

examinees. The hypothesis will be examined more carefully in the next phase of study. 

Figure B.6.a and B.6.b depict the values for average test information that the test 

would provide assuming that the examinees had rushed into guessing. Out of 1200 

examinees that took the CAT about the same time, all of them guessed at one point or the 

other in figure B.6.a. On the other hand, figure B.6.b shows that only 30% of the 1200 

examinees guessed at those points. As expected the test information is significantly 

affected when a higher number of people guess, however the differences between the two 

situations are drastic when guessing took place early in the test. The small percentage of 

population who guessed earlier had a serious impact on the average test information. The 

amount and pattern of guessing across the 12 ability levels stayed almost similar in both 

situations when the guessing took place later in the test. 

64 



5.2 Results for Proficiency Testing using AICPA parameters 

The results for CAT simulated with AICPA parameters were based on the 

analyses performed for the simulated parameters. The root mean squared errors (RMSE) 

were used to examine the estimation accuracy. Figure C.l depicts the distribution of 

examinees falling in a certain ability interval based upon true and estimated ability. A 

significant drop was observed in the number of examinees in the higher ability intervals 

as they started to guess. Same analyses were repeated for other types of tests (mastery 

etc). The figures for those tests are shown together so that readers can compare the 

figures when a reference is being made to those tests later in this chapter. 

Figure C.2.a through C.2.c show the Root Mean Squared Errors plotted against 

the various guessing behaviors for various ability levels at test lengths of 30 and 75 items. 

Figure C.2.d indicates the overall RMSE while the rest depict the plots for low, medium 
/ 

and high ability examinees. For a 75-item CAT, the error in estimation increased from 

0.2 when there was no guessing to 0.3 when guessing was introduced towards the end, 0.7 

when guessing began after 75% of the test was administered, 2.5 after 50% and 3.6 when 

guessing began very early. For a 30-item CAT, these values were 0.3 for no guessing 

situation, 0.4 when examinees guessed towards the end, 0.8, 2.0 and 3.3 for the respective 

guessing behaviors. Also shown in figure C.2.d, the RMSE values were slightly higher 

for a 30-item test than 75-item test when guessing was introduced in the later part of the 

test while lower when guessing began earlier. When the RMSE errors were examined for 

examinees at various ability levels, it was found that the errors followed similar patterns 

for the two test lengths. An exception to this was the case of low ability examinees for 
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whom; the RMSE values constantly remained higher for the 30-item test. The following 

table presents the values of RMSE for the three ability levels: 

Table 5.2: Error in Estimation (RMSE) for Audit Sub-test 

RMSE for a 75-item CAT RMSE for a 30-item test 

Guessing Overall Low Medium High Overall Low Medium High 

25% 3.61 1.45 3.67 5.40 3.28 1.69 3.14 4.70 
50% 2.48 1.22 2.51 3.64 2.03 1.27 2.05 2.89 
75% 0.66 0.49 0.68 0.94 0.75 0.74 0.77 0.88 
90% 0.29 0.35 0.26 0.41 0.39 0.50 0.36 0.44 
NG 0.19 0.30 0.18 0.20 0.27 0.36 0.26 0.24 

The RMSE values were very similar at each ability level when the examinees did 

not rush into guessing. The errors were constantly higher for the high ability examinees 

and their differences from the middle and low ability examinees increased as examinees 

guessed early on. The RMSEs for examinees with middle ability levels were lower than 

the high ability examinees but higher than the low ability examinees in terms or error in 

estimation. 

Bias in estimates is represented in table 5.3 (see figure C.3). The table shows that 

Table 5.3: Bias in Estimates for Audit subtest 

Bias for a 75-item CAT Bias for a 30-item test 

Guessing Overall Low Medium High Overall Low Medium High 

25% 1.83 1.13 1.89 2.31 1.74 1.23 1.72 2.13 
50% 1.45 1.04 1.50 1.83 1.30 1.02 1.31 1.59 
75% 0.75 0.59 0.75 0.95 0.75 0.70 0.74 0.88 

90% 0.44 0.37 0.39 0.60 0.48 0.52 0.44 0.59 

NG 0.09 0.22 0.04 0.09 0.13 0.26 0.09 0.17 

the bias increased significantly as soon as the guessing was introduced. Although, the 

RMSE values were negligibly small when examinees guessed towards the end, the bias in 
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APPENDIX A 

ABILITY AND ITEM PARAMETER DISTRIBUTIONS 
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Ability Distributions for November Administrations of Audit and ARE 

(1) 1996 Audit 

*'♦ \ 'r ^ '■+ ^ 

(3) 1997 Audit 

\ % ^ ^ '% % '<%> A % % 

(2) 1996 ARE 

2000 

<%* ^ ^ ^ V > <%* ^ -<b 

(4) 1997 ARE 

2000 

\ '% \ ^ '* '* % % % % * 

(6) 1998 ARE 

\ % V'5- VV '$>■ '<b ^ 'V >r ^ J°° ^ 
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P-P Plots for AICPA Item Parameters 

(7) Normal P-P for Audit a 

Observed Cumulative Probability 

(9) Normal P-P for Audit b 

Observed Cumulative Probability 

(11) Normal P-P for Audit c 

(8) Log-Normal P-P for ARE a 

Observed Cumulative Probability 

(10) Normal P-P for ARE b 

Observed Cumulative Probability 

(12) Log-Normal P-P for ARE C 

Observed Cumulative Probability Observed Cumulative Probability 
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APPENDIX B 

RESULTS USING SIMULATED ITEM PARAMETERS 

I 
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Error in Ability Estimation for Various Guessing Behaviors at Two Test Lengths 

(43) 
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Responses for a High Ability Examinee for Various Guessing Behaviors 

(44)_ 

No Guessing 

Items 

(45)_ 

Guessing after 90% of Items Administered 

146)_ 

Guessing after 75% of Items Administered 

(47)_ 

Guessing after 50% of Items Administered 

Guessing after 25% of Items Administered 
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Error in Estimation due to Variable Proportions of Guessing Examinees 

(49) 

Note: Guessing introduced for 60% of examinees (flagged) at each ability level 

Scenario A: 20% of flagged examinees begin guessing after 25% of items had been administered 

80% guess towards the end (after 90% of items have been administered) 

Scenario B: 20% of flagged examinees begin guessing after 50% of items had been administered 

80% guess towards the end 

Scenario C: 20% of flagged examinees begin guessing after 75% of items had been administered 

80% guess towards the end 

Scenario D: All flagged examinees begin guessing towards the end (after 90% of items) 
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Average Test Information at Ability Levels at Various Guessing Points 

(Guessing Introduced for All vs. 30% of Examinees) 

(50) 

Average Test Information at Ability Levels at Various Guessing Points 

(30 Items) 

i 

(51) 

Average Test Information at Ability Levels at Various Guessing Points 

(30% of Examinees Guess, 30 Items) 



APPENDIX C 

RESULTS USING AICPA ITEM PARAMETERS FOR AUDIT 
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Distribution of Examinees in True and Estimated Ability Intervals 

(52) 

Ability Est. Tr. 

-4.99 thru -4 0 0 

-3.99 thru-3 0 0 

-2.99 thru -2 36 0 

-1.99 thru -1 172 200 

-0.99 thru 0 398 400 

.01 thru 1 396 400 

1.01 thru 2 175 200 

2.01 thru 3 23 0 

Total 1200 0 

600 -I 

500 - 

Frequency of True and Estimated Abilities 

Proficiency - No Guessing -75 Items 

Ability 

(53) 

Ability Est. Tr. 

-4.99 thru -4 0 0 

-3.99 thru-3 0 0 

-2.99 thru -2 43 0 

-1.99 thru -1 203 

430 

200 

-0.99 thru 0 400 

.01 thru 1 393 400 

1.01 thru 2 131 200 

2.01 thru 3 0 0 

Total 1200 0 

(54) 

Ability Est. Tr. 

-4.99 thru -4 0 0 

-3.99 thru -3 2 0 

-2.99 thru -2 76 0 

-1.99 thru-1 326 200 

-0.99 thru 0 435 400 

.01 thru 1 318 400 

1.01 thru 2 43 200 

2.01 thru 3 0 0 

Total 1200 0 
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Distribution of Examinees in True and Estimated Ability Intervals 

(55) 

Ability Est. Tr. 

-4.99 thru -4 71 0 

-3.99 thru -3 225 0 

-2.99 thru -2 315 0 

-1.99 thru-1 381 200 

-0.99 thru 0 175 400 

.01 thru 1 33 400 

1.01 thru 2 0 200 

2.01 thru 3 0 0 

Total 1200 0 

Ability 

(56) 

Ability Est. Tr. 

-4.99 thru -4 300 0 

-3.99 thru -3 501 0 

-2.99 thru -2 320 0 

-1.99 thru -1 76 200 

-0.99 thru 0 3 400 

.01 thru 1 0 400 

1.01 thru 2 0 200 

2.01 thru 3 0 0 

Total 1200 0 

Ability 

(57) 

Ability Est. Tr. 

-4.99 thru -4 0 0 

-3.99 thru-3 0 0 

-2.99 thru -2 37 0 

-1.99 thru-1 158 200 

-0.99 thru 0 417 400 

.01 thru 1 401 400 

1.01 thru 2 168 200 

2.01 thru 3 19 0 

Total 1200 0 
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Distribution of Examinees in True and Estimated Ability Intervals 

(58) 

Ability Est. Tr. 

-4.99 thru -4 0 0 

-3.99 thru -3 4 0 
-2.99 thru -2 57 0 
-1.99 thru -1 215 200 

-0.99 thru 0 416 400 

.01 thru 1 367 400 
1.01 thru 2 137 200 

2.01 thru 3 4 0 

Total 1200 0 

(59) 

Ability Est. Tr. 

-4.99 thru -4 0 0 

-3.99 thru -3 19 0 
-2.99 thru -2 83 0 
-1.99 thru -1 324 200 

-0.99 thru 0 397 400 

.01 thru 1 310 400 

1.01 thru 2 67 200 

2.01 thru 3 0 0 

Total 1200 0 

(60) 

Ability Est. Tr. 

-4.99 thru -4 23 0 

-3.99 thru -3 160 0 

-2.99 thru -2 301 0 

-1.99 thru-1 361 200 

-0.99 thru 0 262 400 

.01 thru 1 91 400 

1.01 thru 2 2 200 

2.01 thru 3 0 0 

Total 1200 0 

100 



Distribution of Examinees in True and Estimated Ability Intervals 

(61) 

Ability Est. Tr. 
-4.99 thru -4 186 0 

-3.99 thru -3 511 0 
-2.99 thru -2 324 0 
-1.99 thru -1 131 200 
-0.99 thru 0 42 400 

.01 thru 1 6 400 
1.01 thru 2 0 200 
2.01 thru 3 0 0 

Total 1200 0 

Ability 

(62) 

Ability Est. Tr. 
-4.99 thru -4 0 0 
-3.99 thru -3 2 0 
-2.99 thru -2 45 0 
-1.99 thru -1 150 200 
-0.99 thru 0 422 400 

.01 thru 1 391 400 

1.01 thru 2 168 200 

2.01 thru 3 22 0 
Total 1200 0 

Ability 

(63) 

Ability Est. Tr. 

-4.99 thru -4 0 0 

-3.99 thru -3 3 0 

-2.99 thru -2 52 0 

-1.99 thru -1 214 200 

-0.99 thru 0 418 400 

.01 thru 1 369 400 

1.01 thru 2 138 200 

2.01 thru 3 6 0 

Total 1200 0 
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Distribution of Examinees in True and Estimated Ability Intervals 

(64) 

Ability Est. Tr. 

-4.99 thru -4 0 0 

-3.99 thru -3 16 0 

-2.99 thru -2 98 0 

-1.99 thru-1 316 200 

-0.99 thru 0 472 400 

.01 thru 1 236 400 

1.01 thru 2 61 200 

2.01 thru 3 1 0 
Total 1200 0 

Ability 

(65) 

Ability Est. Tr. 
-4.99 thru -4 24 0 

-3.99 thru -3 149 0 

-2.99 thru -2 328 0 

-1.99 thru -1 337 200 

-0.99 thru 0 283 400 

.01 thru 1 77 400 

1.01 thru 2 2 200 

2.01 thru 3 0 0 

Total 1200 0 

(66) 

Ability Est. Tr. 

-4.99 thru -4 149 0 

-3.99 thru-3 471 0 

-2.99 thru -2 363 0 

-1.99 thru -1 149 200 

-0.99 thru 0 56 400 

.01 thru 1 12 400 

1.01 thru 2 0 200 

2.01 thru 3 0 0 

Total 1200 0 
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Pool Utilization Index at each Ability Level for 5 Guessing Scenarios 

(Performance Testing with AICPA Parameters for 30 and 75 items on AUDIT 
without/with Content Constraints) 

(109) 

Chi-Square Index for Pool Utilization-AUDIT 

■ 30 Items 

75 items 

30 items 75 items 
25 126.48 90.74 
50 118.98 83.67 
75 112.29 79.55 
90 110.51 77.59 
NG 108.90 76.67 

i 

(110) 

Chi-Square Index for Pool Utilization--AUDIT 

with Content Constraints 

30 items 75 items 
25 123.71 89.99 
50 114.81 82.55 
75 108.70 78.26 
90 106.77 75.92 
NG 105.92 75.79 
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Pool Utilization Index at each Ability Level for 5 Guessing Scenarios 

(Mastery Testing with AICPA Parameters for Fixed/Variable Length AUDIT) 

(111) 

Chi-Square Index for Pool Utilization-Fixed 

Length Mastery AUDIT 

X 
<D 

TD 
C 

CD 

03 3 
CT 

cn 

.E 
<J 

25 50 75 90 NG 

Percent of Items 

■ 30 Items 

!i 75 items 

30 items 75 items 
25 126.48 90.74 
50 118.98 83.67 
75 112.29 79.55 
90 110.51 77.59 
NG 108.90 76.67 

I 

(112) 

Chi-Square Index for Pool Utilization-Variable 

Length Mastery AUDIT 

Percent of items 

Variable Length 
25 129.98 
50 125.85 
75 122.66 
90 116.10 
NG 111.52 

113 



A
ve

ra
ge

 R
es

ca
le

d
 T

es
t 

In
fo

rm
at

io
n
 i

n 
ea

ch
 C

o
n

te
n

t 
A

re
a 

at
 e

ac
h 

A
b

il
it

y
 L

ev
el

 

(P
er

fo
rm

an
ce

 T
es

ti
n
g
 w

it
h
 A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
75

 I
te

m
s 

on
 A

U
D

IT
) 

O z o »n o 
a f' M 

II * t 

VO 

<u 
> 

.0 
< 

uoiiBUuqju| 

JS3X paiEosa'y sScjsav 

co 

C 
O 

a 

a 
a 

00 
(D 

H 
<D 

u 
c/} o 

<D 
00 al 
l-i <u 
> 
< 

* t ? 

<u 
> 

< 

m 
UOIJBUUOJUI 

1S3X P3|BDS3>1 3oBJ3AV 

114 



A
ve

ra
ge

 R
es

ca
le

d
 T

es
t 

In
fo

rm
at

io
n
 i

n 
ea

ch
 C

o
n
te

n
t 

A
re

a 
at

 e
ac

h 
A

b
il

it
y
 L

ev
el

 

(P
er

fo
rm

an
ce

 T
es

ti
n
g
 w

it
h
 A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
30

 I
te

m
s 

on
 A

U
D

IT
) 

o 

* t T 

oo 

s= 
o 

03 

<8 
c 
C/D <D 

T3 
15 O 

C/D 
(D 

0^ 
a> 
bD 03 
V- <U 
> 
< 

<u 
> 

X> 
< 

O 
<N 

<L> 
> 

x> 
< 

UOIJCUUOJUJ 

JS3X p3|BDS3^ 3§BJ3AV 

O O 
o v» 

o II 1 

0\ 

^ o o 
Z o f" wi 

<D 
> 

-0 
< 

UOlJBLUiOJU] 

JS3X p3[B3S3*y 3§BJ3AV 

115 



A
v

er
ag

e 
T

es
t 

an
d 

P
oo

l 
In

fo
rm

at
io

n
 a

t 
ea

ch
 A

b
il

it
y

 L
ev

el
 f

or
 5
 G

u
es

si
n
g
 S

ce
n

ar
io

s 

(P
er

fo
rm

an
ce

 T
es

ti
n
g
 w

it
h
 A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
30

 a
nd

 7
5 

It
em

s 
on

 A
U

D
IT

 w
it

h
 C

o
n

te
n

t 
C

o
n

st
ra

in
ts

) 

<N 
<N 

<D 
> 
<U 
_) 

-O 

< 
ts 
c 

_o 

03 

to <u 
H 

<D 
bO a 
n 
<D 
> 
< 

1) 
> 

x> 
< 

UOIJBUUOJUI 

]S3X 3§EJ3AV 

<N 

■a 

<N 

> 
< 

UOIJBUUOJUI 

JS3JL 3§BJ3AV 

<u 
> 

X> 
< 

m 
<N 

<u ,,-s 
> co 
<L> -*—> 

>-> 
5 
i— ■4-* 

* CO 
• c 

O 
< U 
•*-* -*-* 
cd c 
c <D 

o C 
o 

cd 
U 

i 

£ 

i 
CO 

£ 
e <D 

1—1 ■4—1> 

"o o 
o m 

CL, i 
• 

<L> 
•*—* 

to 
o3 
i— 
<U < 
> 
< 

uouclujojuj [ooj sSbjoav 

116 



R
M

S
E
 o

f 
E

st
im

at
es

 a
ro

u
n

d
 T

ru
e 

A
bi

li
ty

 f
o
r 

5 
G

ue
ss

in
g 

S
ce

na
ri

os
 

(P
er

fo
rm

an
ce

 T
es

ti
ng

 w
it

h 
A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
30

 a
nd

 7
5 

It
em

s 
on

 A
U

D
IT

 w
it

h 
C

o
n
te

n
t 

C
o

n
st

ra
in

ts
 

b
-P

ar
am

et
er

 I
nc

re
as

ed
 b

y 
a 

C
o
n
st

an
t 

fo
r 

C
o
n
te

n
t 

S
tr

an
d 

1)
 

asiva 

■8 
§ 
"Ec 

-o 
< 

C/5 

b 
CL, 

00 

i-1-1-1-1-1-1—i-1-1-1-1-r 

o*rto«oo*rip*rip*^)0*^o 
'b'OV'iTTTtffiroriri-* —* O o 

asm 

117 



A
ve

ra
ge

 T
es

t 
an

d 
P

o
o
l 

In
fo

rm
at

io
n 

at
 e

ac
h 

A
bi

li
ty

 L
ev

el
 f

o
r 

5 
G

ue
ss

in
g 

S
ce

na
ri

os
 

(P
er

fo
rm

an
ce

 T
es

ti
ng

 w
it

h 
A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
75

 I
te

m
s 

on
 A

U
D

IT
 w

it
h 

C
o
n
te

n
t 

C
on

st
ra

in
ts

) 

b
-P

ar
am

et
er

 I
nc

re
as

ed
 b

y 
a 

C
o

n
st

an
t 

fo
r 

C
o
n
te

n
t 

S
tr

an
d 

1)
 

O 
m 

a 
o 
cd 

i 
oo 

H 
T) 
rH *3 
o cn <L> 
& 

<D 00 
p 
< 

2 o o *o ; 
4 Ol h Ifl (N i 

♦ if* 1 ■ I 

<u > 

£ 

<! 

<N 
m 

H 
c 
o 

a < 

I 

C 
o 

6 53 
</3 . <U t-H W 

•o ^ U I 
13 ' O 
u *2 
& § H 00 CZ) 
2 *3 o £ > <L> 
< § 

u 

<D 

>> 

Os fN 

§ o •/-> O «r> 
Z. 0\ *n cm 

O I ;u 

)S3X p3|EOS3>J oSeJSAV 

■Xi 

<! 

m 

^3 o *o o V~J 
/Z. Os t-~ v> r-4 

f i 1 

JS3X 38B19AV 

<L> 
5 

<* 

118 



A
ve

ra
ge

 R
es

ca
le

d 
T

es
t 

In
fo

rm
at

io
n 

at
 e

ac
h 

A
bi

li
ty

 L
ev

el
 f

o
r 

5 
G

ue
ss

in
g 

S
ce

na
ri

os
 

(P
er

fo
rm

an
ce

 T
es

ti
ng

 w
it

h 
A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
30

 I
te

m
s 

on
 A

U
D

IT
 w

it
h
 C

o
n
te

n
t 

C
on

st
ra

in
ts

) 

b
-P

ar
am

et
er

 I
n
cr

ea
se

d
 b

y 
a 

C
o

n
st

an
t 

fo
r 

C
o
n
te

n
t 

S
tr

an
d 

1)
 

"t 
m 

— OO VO 

UOUClUiOJU] 

sSbjsav 

<D 

J 

<! 

NO 
is? x 3§CJ?AV 

O 

Os 

00 

'O 

*/*> 

Tf 

CM 

C/5 "3 
5 

I 

m 

o 

O || f 4 

a> 

1 

O */-» O 
On «"• *r> cm 

ill 

JS?X pO|CDS3>I sSejsav 

On 

00 

N© 

«r> 

^r 

cn 

CM 

c/5 

a> 

119 



R
M

S
E

 o
f 

E
st

im
at

es
 a

ro
u

n
d
 T

ru
e 

A
b

il
it

y
 f

or
 5
 G

u
es

si
n
g
 S

ce
n

ar
io

s 

(F
ix

ed
 L

en
gt

h 
M

as
te

ry
 T

es
ti

n
g
 w

it
h
 A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
30

 a
nd

 7
5 

It
em

s 
on

 A
U

D
IT

 w
it

h
 C

o
n

te
n

t 
C

o
n
st

ra
in

ts
) 

120 



A
v

er
ag

e 
T

es
t 

an
d 

P
o
o
l 

In
fo

rm
at

io
n
 a

t 
ea

ch
 A

b
il

it
y

 L
ev

el
 f

or
 5
 G

u
es

si
n
g
 S

ce
n

ar
io

s 

(F
ix

ed
 L

en
gt

h 
M

as
te

ry
 T

es
ti

n
g
 w

it
h
 A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
30

 a
nd

 7
5 

It
em

s 
on

 A
U

D
IT

) 

uoiiEuuqjui 

1S3J_ 3§BJ3AV 

<D 
> 

x 
< 

CD 

3 O 
d 
> 
d 
in 

<D 
> <L> 

X 
< 

tn 
B <D 

O 
m 

TD 
3 

< 

<D 
d in 

d 

d in 

<2 C 
in 
<L> H 
<D bo 
d 
W- 
<D 
> 
< 

O 
Oh 

bO 
C 
c/5 in 
<D 3 
o 

UOUmiUOJUI [OOJ 3oCi3AV 

<D 
> 

3 

X 
< 

121 



R
M

S
E

 o
f 

E
st

im
at

es
 a

ro
un

d 
T

ru
e 

A
b

il
it

y
 f

o
r 

5 
G

u
es

si
n

g
 S

ce
n

ar
io

s 

(V
ar

ia
bl

e 
L

en
gt

h 
M

as
te

ry
 T

es
ti

n
g
 w

it
h
 A

IC
P

A
 P

ar
am

et
er

s 
fo

r 
A

U
D

IT
) 

122 



Average Test and Pool Information at each Ability Level for 5 Guessing Scenarios 

(Variable Length Mastery Testing with AICPA Parameters - AUDIT) 

(149) 

Average Test Information at Ability Levels at Various Guessing 

Points (Variable Length Mastery Audit) 

Ability Levels 

(150) I 

Average Pool Information at Ability Levels at Various Guessing 
Points (Variable Length Mastery Audit) 
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APPENDIX D 

RESULTS USING AICPA ITEM PARAMETERS FOR ARE 

i 
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Average Test and Pool Information at each Ability Level for 5 Guessing Scenarios 

(Variable Length Mastery Testing with AICPA Parameters - ARE) 

(205) 

Average Test Information at Ability Levels at Various Guessing Points 

(Variable Length Mastery ARE) 

(206) 

Average Test Information at Ability Levels at Various Guessing Points 

(Variable Length Mastery ARE) 

136 



R
M

S
E

 o
f 

E
st

im
at

es
 a

ro
un

d 
T

ru
e 

A
bi

li
ty

 f
o
r 

5 
G

ue
ss

in
g 

S
ce

na
ri

os
 

(V
ar

ia
bl

e 
L

en
g
th

 M
as

te
ry

 T
es

ti
ng

 w
it

h 
A

IC
P

A
 P

ar
am

et
er

s 
on

 A
R

E
 w

it
h 

C
o

n
te

n
t 

C
on

st
ra

in
ts

) 

137 



Pool Utilization Index at each Ability Level for 5 Guessing Scenarios 

(Performance Testing with AICPA Parameters for 30 and 75 items on ARE 

without/with Content Constraints) 

_30 items 75 items 
25 125.07 91.43 
50 118.54 85.60 
75 112.89 81.10 
90 111.13 79.07 
NG 110.27 78.10 

mi)  

Chi-Square Index for Pool Utilization-ARE 

25 50 75 90 NG 

Percent of items 

(212) 

Chi-Square Index for Pool Utilization—ARE with 

Content Constraints 

Percent of items 

B 30 Items i 

75 items ! 

30 items 75 items 
25 120.81 90.33 
50 111.39 84.03 
75 106.36 78.74 
90 104.60 77.37 
NG 104.17 76.66 
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Pool Utilization Index at each Ability Level for 5 Guessing Scenarios 

(Mastery Testing with AICPA Parameters for Fixed/Variable Length ARE) 

(213) 

Chi-Square Index for Pool Utilization—Fixed Length 

Mastery ARE 

■ 30 Items 

75 items 30 items 75 items 
25 125.07 91.43 
50 118.54 85.60 
75 112.89 81.10 
90 111.13 79.07 
NG 110.27 78.10 

(214) 

120 

x 
<D 

<U g 
c3 3 
CT1 

CO i 
£ 
U 

100 

60 

40 

20 

Chi-Square Index for Pool Utilization—Variable 

Length Mastery ARE 

50 75 90 

Percent of items 

NG 

Variable Length 
25 128.49 
50 123.67 

75 119.74 
90 119.20 

NG 114.79 
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