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ABSTRACT 

ACCURACY OF PARAMETER ESTIMATION IN POLYTOMOUS IRT MODELS 

SEPTEMBER 1997 

CHUNG PARK, B. S., SUNG KYUN KWAN UNIVERSITY, KOREA 

M. ED., SEOUL NATIONAL UNIVERSITY, KOREA 

ED. D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by : Professor Hariharan Swaminathan 

Procedures based on item response theory (IRT) are widely accepted for solving 

various measurement problems which cannot be solved using classical test theory (CTT) 

procedures. The desirable features of dichotomous IRT models over CTT are well known 

and have been documented by Hambleton, Swaminathan, and Rogers (1991). However, 

dichotomous IRT models are inappropriate for situations where items need to be scored 

in more than two categories. For example, in performance assessments, most of the 

scoring rubrics for performance assessment require scoring of examinee’s responses in 

ordered categories. In addition, polytomous IRT models are useful for assessing an 

examinee’s partial knowledge or levels of mastery. However, the successful application 

of polytomous IRT models to practical situations depends on the availability of 

reasonable and well-behaved estimates of the parameters of the models. Therefore, in 

this study, the behavior of estimators of parameters in polytomous IRT models were 

examined. 

In the first study, factors that affected the accuracy, variance, and bias of the 

marginal maximum likelihood (MML) estimators in the generalized partial credit model 
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(GPCM) were investigated. Overall, the results of the study showed that the MML 

estimators of the parameters of the GPCM , as obtained through the computer program, 

PARSCALE, performed well under various conditions. However, there was considerable 

bias in the estimates of the category parameters under all conditions investigated. The 

average bias did not decrease when sample size and test length increased. The bias 

contributed to large RMSE in the estimation of category parameters. Further studies need 

to be conducted to study the effect of bias in the estimates of parameters on the estimation 

of ability, the development of item banks, and on adaptive testing based on polytomous 

IRT models. 

In the second study, the effectiveness of Bayesian procedures for estimating 

parameters in the GPCM was examined. The results showed that Bayes procedures 

provided more accurate estimates of parameters with small data sets. Priors on the slope 

parameters, while having only a modest effect on the accuracy of estimation of slope 

parameters, had a very positive effect on the accuracy of estimation of the step difficulty 

parameters. 
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CHAPTER 1 

INTRODUCTION 

Procedures based on item response theory (IRT) are widely accepted for solving 

various measurement problems which can not be solved when using classical test theory 

(CTT) procedures. The advantages of IRT over classical test theory include: (1) item 

parameters that are independent of the subpopulations of examinees to which an 

instrument (or a test) is administered and (2) ability parameters that are independent of 

the items used. An important distinction between IRT and CTT is that IRT is item 

oriented while CTT is test oriented. This feature permits assembling items so that a test 

with desired characteristics can be constructed. A further advantage of IRT is that a 

measure of precision for each level ability score is available more readily than with CTT 

(Hambleton, Swaminathan, and Rogers, 1991). 

Item response theory (IRT) models that can deal with dichotomous scored items 

are well-developed and are now in common use. However, dichotomous IRT models 

restrict scoring of examinee responses to “right” or “wrong”. To use dichotomous IRT 

models for data that have multiple response categories in items, some category responses 

have to be collapsed into two categories, e.g., in rating scales, responses for category 1, 2, 

and 3 could be recorded as "0" and 4 and 5 are recorded as "1"; for multiple-choice items 

all incorrect option responses are recorded as "0" while correct response is recorded as 

"1". Through those procedures, some information in multicategory responses will be lost 

(Carlson, 1996). While IRT models that permit polytomous scoring (nominal as well as 
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ordinal) were introduced in the sixties and early seventies (Samejima, 1969; Bock, 1972), 

they have not received wide attention until recently. 

Currently, polytomous IRT models are receiving an increasing attention with 

emphasis on perfermance assessment, and are emerging as the models of choice for the 

analysis of the type of the data obtained when the response of an examinee to an item is 

scored on a scale rather than as right/wrong. Such models make it possible to assess an 

examinee's partial knowledge (as in performance assessment, for example) and to analyze 

rating scales of the Likert type. Development of polytomous response models allows the 

information from those multicategory responses to be used. With the advent of computer 

programs for estimating parameters, applications of those models have begun to flourish. 

Their applications to a variety of situations have been documented by several researchers 

(see for example, Carlson, 1996; Dodd, DeAyala & Koch, 1995; and Potenza & Dorans, 

1995). 

There are two types of polytomous IRT models. One is appropriate for items that 

have the response categories arranged in the order of attainment or intensity. The ordered 

response models can be applied in variety of situations such as grading essay items, 

attitude measurement, assessment of partial knowledge, and assessment of proficiency 

attainment as in performance assessment. The other is appropriate for when the response 

categories are nominal in nature. These models are appropriate for comparison of 

examinees at various ability levels on their choices of the distractors for diagnostic 

purposes. 

Realizing the promise that polytomous IRT models hold for assessment is 

predicated on accurate estimation of parameters in these models. A few studies (Choi, 
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Cook, & Dodd, 1996; De Ayala, 1995; Reise & Yu, 1990; and Walker-Bartnick, 1990) 

have focused on the problem of estimation of parameter estimates in polytomous IRT 

models. These studies have provided useful information regarding the effects of certain 

$ 

factors on parameter estimation. Many issues, however, remain to be addressed with 

respect to the problem of estimation in polytomous IRT models. For example, the effects 

of interaction among such factors as test length, number of examinees, the number of 

response categories, ability distributions, and the particular polytomous model on the 

estimation of parameters are not known. Only through a systematic study of the factors 

can recommendations be made to practitioners about the data requirements for 

satisfactory estimation of the parameters of polytomous IRT models. 

The primary purpose of this study is therefore to study marginal maximum 

likelihood (MML) and Bayesian estimation procedures for estimation of parameters in 

polytomous IRT models as implemented by the available computer program. MML 

procedure is the commonly implemented procedure to obtain estimates of parameters in 

polytomous IRT models. Bayesian approach is an alternative to solve the problems 

which may be occurred when MML procedure is applied. This dissertation focused on 

examining properties of estimators in one of ordinal polytomous IRT models, the 

generalized partial credit model (GPCM). The effects of factors that affecting parameter 

estimation in the GPCM were examined systematically for the purpose of making 

recommendation regarding data requirements for parameter estimation in polytomous 

IRT models. 

In the first study, the behavior of estimators in the GPCM and the effects of 

various factors such as sample size, test length, the number of categories in each item. 
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and ability distribution on them were examined. More specifically, the properties of the 

MML estimators such as accuracy, bias, and consistency for the GPCM were examined 

under various conditions. In the second study, the effectiveness of a Bayesian approach 

to estimation in the GPCM was investigated and compared the Bayesian procedure with 

the marginal maximum likelihood procedure. In particular, the issues investigated were 

(a) the effects of specifying priors on the item parameters and (b) the accuracy, variance, 

and bias of estimators. 

This dissertation consists of six chapters. Chapter 2 explains IRT models 

including polytomous IRT models. Chapter 3 contains the review of the literature of 

estimation procedures for polytomous IRT models. Chapter 4 describes the design of the 

study and methodology. Chapter 5 presents the results of the study. The final chapter 

draws summary and conclusions from the study. 
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CHAPTER 2 

ITEM RESPONSE THEORY MODELS 

2.1 Item Response Theory 

Item response theory models specify the relationship between observable 

examinee item performance and the unobservable trait or ability assumed to underlie 

performance on the test (Hambleton & Swaminathan, 1985, p. 9). The relationship is 

expressed in the form of a mathematical function. The function (item response models) is 

based on the assumptions one is willing to make about the item set under investigation. 

While the item response models differ from one another in the specific mathematical 

function, they have a common assumption, that of unidimensionality of the trait. 

The fundamental assumption of (unidimensional) item response models is that a 

test measures a single latent trait or ability, i.e., the assumption of unidimensionality. 

While theoretically IRT models can be formulated for multidimensional traits (Embreton, 

1984; Mckinley & Reckase, 1982; Samejima, 1974), those models are not well developed 

and will not be addressed in this study. 

Equivalent to the assumption of dimensionality is the local independence. When 

the complete latent space (unidimensional in this case) is specified, the item responses are 

independent of one another when the ability level is fixed at a value. An important 

consequence of this assumption is that for an examinee, the probability of an observed 

response pattern is the product of the probabilities of the observed responses on the 

5 



individual items. This result is of fundamental importance in the estimation of item 

parameters in IRT. 

2.2 Properties (advantages) of IRT 

Once the assumptions of IRT model are met (i.e., a set of test items being 

analyzed fits an unidimensional item response model) and the probability of a correct 

response follows the specified mathematical function, the property of invariant item and 

ability parameters holds. That is, item parameters are independent of the subpopulation 

of examinees for whom the test was designed and the examinee ability is independent of 

the particular choice of test items used from the set of items. The invariance property has 

important applications in test development, and trait estimation and sets IRT apart from 

CTT. 

The most important property of unidimensional item response models is that an 

examinee's ability can be estimated and placed on a common scale with other examinees 

who are administered different sets of items chosen from a domain of items that have 

been fitted to the model. This property makes possible adaptive testing where items that 

are "optimal" for each examinee can be selected for administration. The advantage of 

such a testing scheme is that tests no longer need to encompass a wide range of difficulty 

to ensure adequate accuracy measurement throughout the ability continuum. 

IRT facilitates construction and maintenance of item banks. Sets of items can be 

calibrated independently using different samples of examinees and then be combined to 

form an item bank with all item 'statistics' on the same scale. When tests are constructed 

from precalibrated items, the relationship between item parameters and test scores are 
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known and therefore the tests can be considered "equated". This procedure is referred to 

as pre-equating, since the tests are placed on a common scale prior to the actual 

administration. Two tests given to subgroups of the same population can be equated after 

administration by adapting one of several equating designs of which the most popular 

design is where common items is embedded in the tests to be equated. Since the item 

parameters are invariant over subpopulation of examinees, the relationship between the 

item parameters of the common items in the two tests is established. In turn, this 

establishes the relationship between ability scores for the two tests, and the need to equate 

tests in the classical sense is obviated (Lord, 1980, p.205). 

The item response models also provide the concepts of item and test information 

functions. These concepts provide procedures for the assessment of precision and hence 

are invaluable aids for test construction and item selection. Bimbaum (1968) defined 

information as a quantity inversely proportional to the squared length of the confidence 

interval around an estimate of an examinee's ability. The general theory of maximum 

likelihood estimation indicates that the standard error of the estimate of ability is given as 

the reciprocal of the square root of information. Item information functions provide 

independent contributions to test information and therefore can be summed to produce in 

a test information functions. The test information permits a test constructor to select 

items that together can provide the level of accuracy desired in particular regions of the 

ability scale. This is of particular importance when tests are constructed with particular 

purposes in mind such as for selection or placement of candidates. 

Once a large item bank has been constructed, the design and construction of 

equivalent forms of a test or tests for different purposes can be accomplished readily. To 
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achieve this end one must first determine the desired test information function, which is 

called target information function. Items are then selected for inclusion in the test until 

the actual test information function yields a satisfactory approximation to the target test 

information function (Lord, 1977). The development of equivalent forms with classical 

testing approaches is not as easy because parallel tests are difficult to construct and the 

contribution of individual items to the test reliability is difficult to determine in advance. 

The invariance property of item response models also provides for the study of 

item bias (or differential item functioning). Because the item parameters of a set of items, 

measuring a single dimension must be the same for all subgroups of examinees (Lord, 

1980, p.217), when a difference in parameters for an item across subgroups occurs, it 

must be concluded that the item is differentially functioning across groups. 

2.3 Dichotomous IRT Models 

The function that expresses the relationship among the trait or ability, 0, the 

parameters that characterize an item, and the probability, Pj(0), of a correct response to an 

item j is called as the item characteristic curve (ICC) or item response function (IRF) for 

item j. The curves differ from one another by the number of parameters each model uses 

to define the shape of ICC. The most popular models employ either one, two, or three 

item parameters in their respective functions. Lord (1952) proposed an item response 

model in which the ICC took the form of the normal ogive; 

djiQ-bj) _t± 

P(xj=l\e,aj,bJ,cJ)= c*(\-c) f —e 2dt, ,=1,2,...n (1) 
-=o \/2^ 
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In this model: 

Xj is the response to the j-th item of an n-item test ( Xj =0, 1), 

Pj (0) is the probability of a response of 1 given 0, aj5 bj5 Cj, 

0 is the trait variable or ability 

aj is the discrimination parameter of the ith item, 

bj is the difficulty or location parameter of the j-th item, 

Cj is the lower asymptote of the response function for the j-th item (guessing 

parameter or pseudo-chance level parameter of j-th item) 

Although there can be many item response models based on the mathematical 

form taken by the item characteristics, the commonly used IRT models involves the 

logistic distribution function (Bimbaum, 1968) because of computational convenience. 

The logistic item response model in which the item characteristic curve takes the form of 

the logistic distribution is, 

P(Xj=l \Q0jJ>j,cJ)=c.+(l -c^ 
e\nap-b) 

! +g Ua/P-bp 
(2) 

The factor 1.7 ensures a close agreement between the logistic response function and one 

based on the normal ogive. 

From an IRT perspective, items may be characterized as differing from one 

another with respect to difficulty (bj), the capacity to discriminate (aj), and guessing or 

chance-level parameter (Cj). In the 3-parameter logistic model, items differ from one 
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another with respect to all three item parameters. The 2-parameter logistic model permits 

items to differ from one another in terms of item discrimination and difficulty parameters, 

but not guessing parameter, whereas in the one-parameter logistic model only the item 

difficulty parameter is free to vary (i.e., aj is assumed to be 1 and Cj is 0). The one 

parameter logistic model is called the Rasch model (Hambleton & Swaminathan, 1985). 

While IRT models offer numerous advantages over classical test theory, IRT 

models have been restricted for the analysis of dichotomously scored items. To use 

information from polytomously scored items on which partial credit can be earned, 

attitude scale items, and personality test items, models that handle multi-category 

responses are needed. 

2.4 Polvtomous IRT Models 

A series of models for use with multicategory items have been developed by in the 

field, notably by Andersen (1973), Andrich (1978), Bock (1972), Masters (1982), Muraki 

(1992), Samejima (1969, 1972), Thissen & Steinberg's (1984). These models may be 

classified into two categories, ordinal or nominal response models. 

Models for ordinal responses are used when the response to an item can be 

classified into a certain limited number of categories arranged in the order of attainment 

or intensity. This occurs, for example, when the response to an item can be evaluated 

according to its degree of attainment of problem solution in the measurement of ability 

(i.e., in a performance item that requires partial credit) or its degree of intensity of 

preference to the statement in the measurement of attitude as in a Likert-type statement. 
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In contrast to models for ordinal responses, models for nominal responses assume 

that the response to an item is measured at a nominal level of measurement (i.e., 

«t> 

unordered responses). Nominal response models are appropriate for studying distractor 

functioning since the case of multiple-choice items, incorrect alternatives do not represent 

partially correct answers. However all of these polytomous models are based on 

assumptions that the item responses depend on a single continuous latent variable and are 

assumed to be independent, conditional on the value of a latent continuous variable 0. 

2.4.1 Models for Ordinal Responses 

For ordinal responses, the graded response model (GRM) by Samejima (1969), 

the rating scale model (RSM) by Andrich (1978), the partial credit model (PCM) by 

Masters (1982), and the generalized partial credit model (GPCM) by Muraki (1992) are 

commonly used. The GRM is as an extension to the polytomous case of the two- 

parameter logistic model for dichotomously-scored items, while the PCM is as an 

extension to the polytomous case of the one-parameter logistic model or Rasch model. 

However, the notable distinction between the GRM and the PCM is not the number of 

parameters but the difference between operating characteristic functions used in those 

models. The operating characteristic function expresses how the probability of a specific 

categorical response is formulated according to the law of probability, as well as 

psychological assumptions about item response behavior. In this section, the GRM and 

the PCM will be described and compared. The RSM as a special case of the PCM will be 

described and the GPCM as an extension of the PCM. 
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2.4.1.1 The Graded Response Model 

Samejima (1969) extended the Thurstone's method of successive intervals for 

dichotomous scored items to more than two, ordered categorized items and introduced a 

graded response model (GRM). The GRM is appropriate when an examinee's response to 

an item needs to be scored on the basis of partial correctness (for example, incorrect, 

partially correct, correct) as in a performance item or on the basis of varying degrees of 

agreement with the attitude statement as in a Likert-type item. Samejima (1969) 

categorized the GRM into homogeneous and heterogeneous cases. The homogeneous 

GRM is for the items in which the thinking process used in solving a given item is 

assumed to be homogeneous through the whole process, while the heterogeneous GRM 

assumes that the process consists of different subprocessess. In this paper only the 

homogeneous case will be handled. That is, in the model the discriminating power 

should be almost constant throughout the whole thinking process required in solving the 

problem. 

Samejima (1969) showed that the GRM can be reduced to a two-parameter IRT 

models. The difference between a dichotomous IRT model and the GRM is the number 

of thresholds that are values of the item variable differentiating response categories. In 

dichotomous IRT models there is one threshold value, while there may be two or more 

threshold values in the GRM. The threshold value is called the response category 

boundary in the GRM, while it is called the item difficulty in a dichotomous IRT model. 
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Samejima (1969) assumed that any response to an item can be classified into 

(m+1) ordered categories, scored k=0, 1,m, so that lower-numbered category score 

represents less of the latent trait measured by the item than do higher-numbered category 

score. She developed a two-stage process to obtain the probability that an examinee 

would receive a given category score on an item. 

In the first stage the probability that an examinee with ability level 0 will receive a 

given category score k or a higher category score on item j is given by equation (3) 

p[***|6]=p;(6)= 
e°ap-bjk) 

l+eDap~hjk> 
(3) 

where D is the scaling constant 1.7 which maximizes the similarity of the cumulative 

logistic function to the normal ogive function, bjk is the boundary parameter associated 

with category score k in item j, aj is the discrimination parameter of item j, and 0 is the 

ability level; P*jk is called the boundary (category) characteristic curve. Since the 

responses to an item j are classified into m+1 categories, there are m category boundaries. 

If the category score k is zero, the probability of responding in category 0 or higher equals 

1.0; P*j0 =1.0. 

The graphic representations of the functions obtained from equation 3 for a given 

item can be described as a set of category characteristic curves. Figure 1 depicts a set of 

category characteristic curves for an item with four categories. While there are four 

response categories in the item, there are only three boundary curves. 
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Figure 1. Boundary characteristic curves for four caregory item 

( a=l, bl=-2, b2=0, b3=1.5) 

In Figure 1, specifies the probability of responding in category 1,2, or 3 

rather than category 0, P*j2 specifies the probability of responding in category 2 or 3 

rather than category 0 or 1, and P*j3 specifies the probability of responding in category 3 

rather than category 0,1, or 2. 

The second stage in obtaining the probability that an examinee will respond in a 

given category k is subtracting adjacent category characteristic curves. Samejima (1969) 

defined the probability that an examinee would respond in a given category as 

1 1 (4) 

1 +exp[-fl,.(0-6 .*)] 1 +exp[-ar.(6-6*+1)] 
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where, k=0,l,....,m and the probability of responding in category 0 or above, P*jO(0)=l.O 

and the probability of responding in the highest category m+1, P*j(m+1)(0)=O. 

For example, the probabilities of responding in each of the four categories 0, 1,2, 

and 3 are obtained by employing the operating characteristic curves (Pjk): 

Pjo(6) = P*jo(0) - P*ji(0) =10 " PV0)’ 

Pj^O) = P*J,(0) - P*J2(0)’ 

Pj2(0) = P*j2(0) - P*j3(0)’ and 

Pj3(0) = P*j3(0) - P*j4(0) = p*j3(0) - 0-0= P*j3(0). 

The operating characteristic curves given by equation 4 for this example of the 

GRM are presented in Figure 2. As can be seen, the probability of responding in either of 

extreme categories is a monotonic function, while the probability of responding in any of 

the other categories is a nonmonotonic symmetric function. 

In general, a boundary curve P*jk can be reduce the graded scored item to a 

dichotomously scored item. That is, the graded responses can be classified into two 

categories; scores lower than k and scores equal to or greater than k, for k=0,l,2,..., m-1. 

The equation 4 can be the dichotomous two-parameter logistic IRT model, if an item has 

two response categories. 

p/e^pt/eyp^e^i-p^ce) 
PjJ(0)=P*j,(0)-0.0=P*jJ(d) {> 
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Figure 2. ICCCs with four ordinal responses under the GRM and the PCM 
( a=l, bl=-2, b2=0, b3=1.5,_: the GRM and.: the PCM) 

Substituting the equality for P* from equation 3, P^ can be rewritten 

ve>=- 

a -(0 -b) 
e 1 1 

1 +e 
a/6-bp (6) 

The difference between boundary characteristic curves and operating 

characteristic curves for the GRM are apparent, when it is plotted on the same graph, as 

in figures 1 and 2. Figure 1 represents boundaries on the cumulative probabilities of 

response categories for a four-category item. While there are four response categories in 

the example, there are only three boundaries between categories as well as an upper 

boundary of one and a lower boundary of zero. 
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Figure 2 represents item response characteristic curves or operating characteristic 

curves. It depicts the probability of responding to category k at the ability level 0. The 

person with low ability has a high probability at the "lowest" category (score=0), the 

person with middle ability has moderate probability at any of four categories, and the 

person with a high ability has a high probability at the highest category. 

The boundary characteristic curves representing cumulative probabilities can be 

characterized by the parameters aj and b^. Since these curves represent the sum of the 

response category probabilities, negative differences between curves are not possible. 

Thus, these boundary curves cannot cross. The boundary characteristic curves are 

assumed to have the same discrimination parameter a.} in the GRM, but there is no 

requirement that the discrimination parameter is the same in all items. The 

discrimination parameter aj poses no interpretive difficulties since it is the same for all 

item response categories. The value of aj has the same meaning as in dichotomous IRT 

models. 

However there is a problem in interpreting the boundary parameters of the 

operating characteristic curves because there is one less boundary parameter than item 

response categories due to the restriction of Ek=0m Pk(0) =1. In the GRM, boundary 

parameter, bjk, is defined as the ability level which corresponds to the point of inflection 

of the category characteristic curve, the P*jk. Samejima(1969) showed that the modal 

point of an operating characteristic curve was given by b'jk+1= (bjk + bjk+1)/2 except for the 

first and the last response categories. So, the first and last boundary parameters of an 

item response category retains their interpretation as the point on the ability scale at 
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which the probability that the response will be allocated to their category is .5: PjO(0) = 

Pjm(0)=O.5. The parameter b'jk can be interpreted in a manner analogous to the difficulty 

parameter of dichotomously scored items. The boundary parameter in the category 

curves must be ordered bm > b^ > ... >b1? so the location parameters in the operating 

characteristic curves may also be ordered bm > b'm_! > b^ >... >b,. There is no 

requirement that location parameters be equally spaced, only that they be monotonically 

decreasing or increasing. 

2.4.1.2 The Partial Credit Model 

The partial credit model (PCM) presented by Masters(1982) also assumes that 

responses to an item are ordered like the GRM, however there are differences between the 

PCM and the GRM on formulation of the operating characteristic function and 

interpretation of the parameters, since the two models have different structures of 

parameter formation: the PCM is an extension of Rasch's (1960) dichotomous model and 

the GRM is an extension of two parameter item response model. 

Masters (1982) classified ordered level of responses into four types: (1) Repeated 

trials data results when respondents are given a fixed number of independent attempt at 

each item on a test. The observation x is the number of successes on the item and takes 

values from 0 to m. This format is useful for tests of psychomotor skills in which the 

observation is a count of the number of items in m attempts that a task is successfully 

performed; (2) Count data results when there is no upper limit on the number of 

independent successes (or failures) a person can make on an item. Under this format 
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observation x may be a count of the number of times a person completes a task in a 

specified period of time, or a count of the errors a person makes in reading a passage on 

an oral reading test; (3) Rating scale data is a fixed set of ordered response alternatives 

used with every item. The format of response alternatives can be used for Likert-type 

statements; (4) Partial credit data comes from an observation format which requires the 

prior identification of several ordered levels of performance on each item and thereby 

awards partial credit for partial success on items. The motive for partial credit scoring is 

the hope that it will lead to more precise estimate of a person's ability than a simple 

pass/fail score. 

Masters (1982) developed the partial credit model (PCM) for the analysis of 

partial credit data. Partial credit types of data needs several levels of performance to 

complete an item. For example, an item involves four levels of performance, where 0 

denotes no response and 3 a successful completion. Masters (1982) presented an 

example as follows: 

(7.5/0.3 - 16)2 =? 

Step 1: evaluate the quotient 7.5/0.3 

Step 2: Subtract 16 from the result of step 1. 

Step 3: Square the result of step 2. 

To complete this item, certain ordered steps must be performed correctly. Under the 

PCM the necessary order is not relative difficulties of steps but the steps that must be 

taken to completed. That is, it is impossible to succeed at the second step without 

completion of the first step. Masters (1982) interpreted the ordered category scores for an 
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item to represent the number of subtasks or steps in the item that has been successfully 

completed. 

Masters (1982) extended the logistic Rasch model to the PCM and is shown as 

W> = w+ w 
exp (Q-bp 

1 +exp(01.-i>j) 

(7) 

This specifies the probability of person i succeeding on item j given that only two 

outcomes are possible. The item difficulty bj is rewritten b^ to make it explicit that this is 

the difficulty level associated with completing the first step in item j. Therefore, in a four 

category item, 3 equations for each step are used; P*lni, P*2ni, P*3ni in the PCM, while in 

the GRM there are four boundary characteristic curves; P*0ni, P*ini, P*2ni> P*3ni- 

Under the PCM, completing the fc-th step means choosing the k-th response 

alternative over the k-1 th response alternative. That is, the probability of getting a score 

k on the item rather than k-1 is given by, 

V6,) _ exp(9,-y 
Vi<e«>+W" 1+«p<erV 

(8) 

Since an examinee must earn one of all possible scores, the following equation (9) holds: 

Ve»>+W+ -• +PJ&>1 
(9) 



By using (8) and (9), Masters (1982) arrived at the general expression (10) for the 

probability of examinee i getting a score k on item j, 

expE(6 rbjs) 

Pjlfii) ~ “ ’ ^=0,1 >••>&>••» mj (10) 

E exp E (6.-6.) 
V=0 5=0 

where bj0=0 and Ek=0° (6i-bjt)=0. The numerator contains only terms for the step 

completed, and the denominator is the sum of all possible numerator terms. 

2.4.1.3 Comparison of the GRM and the PCM 

Both GRM and PCMs are appropriate for items in which responses to an item can 

be classified into m ordered categories, but there are differences between the GRM and 

the PCM in terms of interpretation of parameters. The differences in interpretation is due 

to the assumptions underlying the derivation of the operating characteristic curves and 

the employment of different characteristic functions for an item to obtain the probability 

that an individual will respond in a given category k. The PCM models the probability of 

person scoring x on the category k in an item j as a function of the person's position of the 

trait on the variable and the difficulties of the steps in the item j. Therefore in the PCM a 

step difficulty (bjk) is associated with only the step. In contrast, in the GRM, a boundary 

difficulty (bjk) is related to the other categories because the GRM is structured according 

to cumulative probabilities (the probability of person scoring x in or above the category k 
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in an item j). Consequently, the probability in any category is the difference between 

successive cumulative probabilities. 

In the GRM, the category boundary parameter bjk associated with a given 

category score k is defined as the ability level which corresponds to the point of inflection 

of the boundary characteristic curve P*jk (not the item curve characteristic curve Pjk), i.e., 

the category boundary parameter bjk is the ability level where the probability of 

responding in categories greater than or equal to category score k ( P*jk(0i)=O.5 ). The 

definition of category boundary parameters requires that the category boundaries be 

ordered (bk> bk_!) 

In contrast, in the PCM, the step parameter bjk is defined as the ability level where 

the probability of responding in category k equals the probability of responding in 

category k-1, i.e., the step parameter bjk is the point of intersection of adjacent category 

characteristic curves (Pj.k.1(0i)=Pjk(0i)). For example, is the point of intersection of 

P,(0i)=P2(0i) in figure 2. Since the probability of responding in categories other than k 

and k-1 are not taken into consideration in the definition of the step difficulty, the 

difficulties of the previous step or later steps have no bearing on the difficulty of the step 

associated with the category score k. Thus, the PCM requires that the steps be ordered, 

but the step difficulties not to be ordered. 

In the PCM, a category score indicates the number of successfully completed 

steps. The more steps successfully completed the larger a category score; a higher 

category score indicates greater ability than does as a lower category score. In the GRM 

there are boundary scores (instead of a step) above which a person is expected to obtain a 
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certain category score. If there are four potential category scores (0,1,2,3), the 

probabilities correspond to the probability of obtaining scores of 1, 2, or 3 over a score of 

0, the probability of obtaining scores of 2 or 3 over scores 0 or 1, or the probability of 

obtaining a score of 3 over scores 2, 1, or 0. A higher category indicates greater ability in 

the GRM and PCM. It is important to note, however, that in the GRM, bjk are always 

ordered such that bk> bk.j, while in the PCM steps need to be ordered but not necessarily 

by their difficulties. 

The GRM and the PCM differ additionally in their treatment of the item 

discrimination index. The PCM assumes items in a test (or inventory) all have equal 

discrimination powers, while the GRM allows items in a test to differ in terms of their 

ability to discriminate among examinees of different levels. As a result of this, in the 

PCM a raw score is the sufficient statistics for the ability parameter. Hence, everyone 

who has the same total number of steps completed successfully on the test will receive the 

same ability estimate as in the dichotomous Rasch model, even though the specific steps 

completed on individual items may differ and the steps may be of widely varying 

difficulty. 

2.4.1.4 The Rating Scale Model 

The rating scale model (RSM) was designed by Andrich (1978) for instruments in 

which Likert-type statements were used to measure attitude. He presented the model 

using the Rasch model in the context of analysis of rating scales having an ordinal 

response category scale. In a rating scale, however, ordinal response levels are not 
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defined by a series of item subtasks, but by a fixed set of ordered points within items. As 

the same set of rating points is used with every item, the relative difficulties of the steps 

within each item does not have to vary greatly from item to item. Therefore the category 

coefficients and the scoring functions in Rasch's general model are interpreted in terms of 

thresholds on the latent continuum and discriminations at the thresholds. The RSM is a 

special case of PCM. 

Masters (1982) decomposed the item step difficulty of the PCM into two 

components: bjk= bj + Tk, where bj is location (or scale value) of item j and tkis the 

location of the k-th category in each item relative to that item's scale value. The uks are 

also known as thresholds because they separate the m+1 ordered categories. By 

substituting the above equation of the item step difficulty, bjk = bj + ik, into the PCM 

(equation 8), the RSM (Andrich, 1978) is obtained as equation (11): 

expEie^.+i^)] 

PJQ)--—t- 
JK 1 m k 

T,c\pT,[Q-(bj+zs)] 

(ID 

Equation (11) can be reexpressed as 
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k 

w=- 

exp[-ETs+&(0rfc] 
5=0 1 

m 

E exp[ - E +k(Oi-b)] 
k=0 5=0 J (12) 

exp[/Tit+/:(0r^.] 

m 

E expfK^.+k(0i -b)\ 
k=0 

where k indicates the number of thresholds passed, 0(i) is the person's latent trait (i.e., 

attitude), bj is the item scale value, and kk is defined as 

**=-£*, 
5=0 

fork=l,2,...m; kk=0 when k=0. 

As a result of simplication of the equation bjk = bj + Tk, the Tks are constant across items 

and need to be estimated once for the entire item set, however the item scale values bj are 

estimated individually for each item (Andrich, 1978; Masters, 1982). When this model is 

applied to the analysis of a rating scale, a position on the variable 0(i) is estimated for 

each person, a scale value bj is estimated for each item j, and m response thresholds t1? t2, 

Tm are estimated for the m+1 rating categories. As was the case with the PCM, the 

Andrich's RSM assumes items are equally effective at discriminating among examinees. 
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2.4.1.5 The Generalized Partial Credit Model 

The generalized partial credit model (GPCM) extended by Muraki (1992) is 

emerging as a popular model for ordinal response items because it has advantages of both 

the GRM and the PCM. The GPCM, like the PCM, is an extension of the Rasch 

formulation to polytomously scored items and, like the GRM, allows the discrimination 

index for each item and category difficulty indices for categories in each item. 

In the GPCM, the probability of a person with trait level 0 responding in category 

k (k=l,2,...,mj) on item j is defined as 

exp[£a(0-fcv)] 

Pjk(0) = —-—-, k=1, 2, mj (i4) 

£ exp[ £ a.(Q -bjv)] 
C=1 V=1 

Here, is the discrimination or slope parameter for item j and bjk, the item category 

threshold parameter, is the step difficulty for the k-th step of item j. In the GPCM a} is 

interpreted as the degree to which categorical response varies among items as ability level 

changes. If the slope parameter a] is changed from 1.0 to 0.5, the intersection points b]k 

(step difficulties) of all ICCCs are unchanged but the curves become flatter. Note that b^ 

is arbitrary and may be defined as 0. 

Following Andrich (1978) and Muraki (1992) decomposed the category 

parameter bjk into two components, bj and dk such that bjk = bj - dk This decomposition is 

appropriate for rating scales. The parameter bj is the item location parameter, and dk is the 
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category threshold parameter. In the following, bjk will be designated as the step difficulty 

parameter, bj, the item location parameter, and dk, the category threshold parameter. 

The GPCM is formulated using the same assumption as the PCM that the 

probability of choosing category k over a category (k - 1) in an ordinal response item is 

governed by the dichotomous response model. Completing step k means choosing 

response alternative k over response alternative (k - 1). In the GPCM, an examinee’s 

choice among successive categories (k) is represented as a series of steps, completed in 

order, but the step difficulty parameters (bjk) of the successive categories need not be 

ordered. Since the step parameter, bjk, is defined as the ability level where the probability 

of responding in category k equals the probability of responding in category k-1, the 

values of step parameters represent the relative magnitude of the adjacent probabilities of 

pjk 30(1 Pjk-i. 

2.4.2 Model for Nominal Responses 

2.4.2.1 The Nominal Response Model 

For a test item in which response options are not necessarily ordered, a nominal 

response model is appropriate. Bock (1972) employed the multivariate logistic function 

which was a generalization of the bivariate logistic function derived by Gumbel (1961) to 

get operating characteristics for each response category of a nominally scored item. 

The nominal response model (NRM) provides a direct expression for obtaining 

the probability of an examinee with ability 0 responding in the k-th category of item j. 
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The mathematical form of the multivariate logistic function is equation (15) or the NRM 

is 

z,*(0) 

mJ 

k=\ 

2,*(6) 

where Zjk(Q)=ajkQ+cjk, k=\,2,..,mr 

(14) 

Because of the indeterminacy in the model, it is necessary to impose a linear constraint on 

the item parameters, Ek Zjk(0)=O where k=l, 2,..., mj. 

Unlike ordinal response models, under the NRM an examinee's total score can not 

be summed and the response score received by the examinee for an item has no meaning 

other than to designate the response category. That is, item response category 

characteristic curves (IRCCCs) for the NRM, Pjk(0i), just depicts proportion of responses 

assigned to each of the nominally scored response categories as a function of ability. 

In the NRM, ajk is considered the slope (discrimination) parameter and cjk is the 

intercept parameter of the nonlinear response function associated with the k-th category 

of item j, while m^ is the number of categories of item j (i.e., k=l,2,...,nij). In the NR 

model each category's ability to discriminate among examinees is captured by the 

category's individual discrimination parameter, ajk. The ajk is analogous to and has an 

interpretation similar to a traditional discrimination index. That is, a category with a 

large ajk reflects a response pattern where as one progresses from the lower ability groups 

to the higher ability groups there is a corresponding increase in the number of persons 
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who answered the item in that category, and for categories with negative ajks this pattern 

is reversed. 

Generally, large values of cjk are associated with the categories with large 

frequencies. As the value of cjk becomes increasingly small, the frequencies for the 

corresponding categories decrease. 
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CHAPTER 3 

REVIEW OF THE LITERATURE 

3.1 Estimation Procedures for IRT Models 

Lord (1952) and Bimbaum (1968) developed joint maximum likelihood 

estimation in item response models. Item and ability parameters are unknown in a typical 

testing situation, and hence both item and ability parameters have to be estimated 

simultaneously. Since both item and ability parameters are unobservable, in order to 

obtain the estimates of item (or ability) parameters, the number of examinees (or items) 

must be increased. The joint MLE of item and ability parameters are not consistent when 

both sets of parameters have to be estimated simultaneously (Swaminathan, 1982). 

This problem can be solved by integrating with respect to the incidental 

parameters (ability parameters) if they are assumed to be continuous or by summing over 

their values if they are discrete. The resulting likelihood function is the marginal 

maximum likelihood function. The marginal maximum likelihood (MML) estimators of 

the parameters are those values that maximize the marginal likelihood function. MML 

estimators possess several useful and important properties. Under usual circumstances, 

the MML estimators are consistent, i.e., asymptotically unbiased; efficient, i.e., 

asymptotically the estimators have the smallest variance; and asymptotically normally 

distributed (Swaminathan, 1983). 

MMLE procedure was applied to estimate parameters in IRT models by Bock and 

Lieberman (1970). They provided MML estimators of the two-parameter item response 
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model and assumed that the ability distribution was normal with zero mean and unit 

variance and integrated over 0 numerically. They obtained stable parameter estimates for 

few items using the Gauss-Hermite quadrature procedure to perform the necessary 

integration. However their method had a computational problem in the case of the large 

number of items, because the likelihood function had to be evaluated for all possible 

response patterns. This restricts the practical application of the procedure to 

approximately 10 item tests (Bock & Lieberman, 1970). 

Bock and Aitkin (1981) solved the computational difficulties of the Bock and 

Lieberman procedure by characterizing the distribution of ability empirically and 

employing a modification of EM algorithm formulated by Dempster, Laird, and Rubin 

(1977). The MMLE with EM algorithm has been implemented in the computer program 

BILOG (Mislevy and Bock, 1986), MULTILOG (Thissen, 1991), and PARSCALE 

(Muraki,1993) to obtain parameter estimates of dichotomous and polytomous IRT 

models. 

3.2 MMLE Procedure for Polytomous IRT Models 

For the polytomous response models, let Ujld represent an element in the matrix of 

the observed response pattern i. Ujki=l if the response to item j is in the k-th category, 

otherwise Ujki=0. The probability of an examinee in the pattern i obtaining the response 

vector, Ujk, is 

n m ,, 
P(U\Q,)=miP/ (15) 

y=lJt=l 
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where, Pjk(0) is probability that an examinee i responds category k in item j. The 

marginal probability of the observed response pattern i is 

P,(Ujk)=fP(Ujt\Q,MQ)de (16) 

where g(0) is the population distribution of ability for examinees. There are m11 response 

patterns in for n items with m categories. If r4 denotes the number of examinees obtaining 

response pattern i and N is the total number of examinees sampled from population, the 

likelihood function is given by 

(17) 

Taking the natural logarithm of likelihood function yields 

InL = [ \nN\ - Elnr.! ] 
i=l 

+ E r, lnP,.(t/ ) 
i=l 

(18) 

The MML estimators are obtained by differentiating In L with respect to each parameter, 

setting the derivatives equal to zero, and solving the equations. 
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3.3 Previous Research on MMLE Procedure 

Several studies (Bock & Aitkin, 1981; Drasgow, 1989; Mislevy & Stocking, 

1989; Seong, 1990; Thissen, 1982; Stone, 1992; Yen, 1987) have investigated the 

accuracy of MMLE parameters for the dichotomous IRT models. Thissen (1982) has 

adapted MMLE with EM algorithm to the Rasch model and showed that the results was 

comparable to that of conditional estimation procedure. Yen (1987) and Mislevy & 

Stocking (1989) compared the computer program BILOG with LOGIST and provided 

some guidelines for using these programs. 

Drasgow (1989) evaluated MML estimates for the two parameter logistic model 

using parameter values of Job Descriptive Index (JDI; Smith, Kendall, & Holin,1969). 

The results showed that MMLEs were far more accurate than JMLEs. While for items 

with less extreme values of parameters, as few as 200 examinees and 5 items were 

required for providing unbiased parameter estimates with reasonably small SEs, 500 

examinees and 10 items were required for items with extreme values of parameters 

(a<0.8, a > 1.40; Ibl > 1.50). He pointed out the accuracy of estimation depended on the 

values of the item parameters and suggested using appropriate Bayesian prior distribution 

for extreme values of the parameter. 

Seong (1990) studied the effect of ability distributions on robustness of the MML 

estimates for the two-parameter logistic model. Appropriate specification of the ability 

distribution increased the accuracy of estimation for item and consequently the ability 

parameters when the sample size was large. With a small sample size (100 examinees), 

the result for item parameter estimation was inconsistent with that of a large sample size 
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(1000 examinees). That is, the item parameter estimates in cases of the matched 

distribution were less accurate than those of the non matched ability distributions. 

Stone (1992), in extending to Seong's (1990) study and Drasgow's (1989) study, 

examined the effect of test lengths and the ability distribution on the item parameter 

estimation. Even with the small sample size (250) and a short test (10 items) item 

difficulty estimates were stable and precise regardless of ability distribution, but item 

discriminate estimates were stable and precise only when the true distribution of ability 

was normal. 

Test length had a major effect on discriminate parameter estimates. As test length 

increased from 10 to 40 items, bias in estimates of discrimination parameters was reduced 

even under nonnormal distribution of ability. Root mean square error (RMSE) for 

estimates of discrimination parameters was rapidly reduced when test items increased 

from 10 to 20 regardless of ability distributions. 

Stone (1990) also found the value of item parameters affected the accuracy of 

parameter estimation. Stone (1990) selected three discrimination parameters; low 

(a=0.8), medium (a=1.9), and high (a=3.0), and three difficulty parameters; average 

(b=-0.02), easy (-2.68), and hard (b=1.8). For the low discriminating item, bias was 

negligible irrespective of the number of test items, the true ability distributions, and 

sample size. For the average and high discriminating items bias was greater when the 

distribution of ability deviated from N(0,1) for the test comprised of 10 or 20 items, 

irrespective of sample size. For the average difficulty item bias was negligible 

irrespective of the number of test items, the true ability distributions, and sample size. For 
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the easy and hard items bias was higher with non-normal distribution regardless of test 

lengths. 

In addition, different combination of a and b parameter values affected the 

parameter estimates. For example, the smallest RMSE was observed for the average 

difficulty parameter (b=-0.02) and low discriminate parameter (a=0.8). Greater RMSE 

were observed for the highly discriminating item and the extremely easy item. 

Compared to the research on dichotomous IRT models, there is very little research 

dealing with the parameter estimation under polytomous IRT models. Reise and Yu 

(1990) have studied the effects of sample sizes, ability distributions, and the range of 

discrimination parameters on the accuracy of parameter estimates for the GRM using 

computer program MULTILOG (Thissen, 1986). They studied sample sizes of 250, 500, 

1000, and 2000, normal, uniform, and negatively skewed distribution of examinees' 

ability, and high, middle, and low discrimination parameters with a fixed five category-25 

item test. They found that all three factors included in the study affected the accuracy of 

item parameter estimates. 

Reise and Yu (1990) reported that uniform ability distribution conditions were 

slightly superior on average accuracy of item parameter estimates compared to normal 

and skewed ability distributions. However the RMSE and correlation results for all 

separate 36 conditions displayed unreasonably large RMSE and low correlations under 

normal and skewed ability distributions with small sample size (250 examinees). 

Especially RMSE and correlations of item category parameter estimates (bl,b2,b3, and 

b4) are much larger than those of item discrimination parameter estimates. They also 
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found that RMSE for extreme value of category parameters (bl and b4) was larger than 

the middle categories' (b2 and b3); correlation between true values and estimates showed 

similar patterns. This result can be attributed to the sample size in each category. Since 

polytomous IRT models have more categories than dichotomous IRT models, and more 

categories may have extreme values of category parameters, each category is more 

affected by the number of examinees at each ability level and the locations of the item 

categories relative to the ability distribution than the dichotomous case. In addition, they 

showed that true a value affected the average RMSE for difficulty parameter estimates (b) 

and the average correlation for discrimination parameter estimates (i.e., with high a value 

RMSE for b was small and correlation for a was high). 

Walker-Bamick (1990) investigated the accuracy of the parameter estimates for 

the PCM of Masters (1982). Factors in the study were the ratio of sample size to the 

number of parameters to be estimated (1:1, 2:1, 3:1, and 4:1), the number of categories in 

items (4 and 5), and distribution of the examinees' ability. The computer program 

MSTEPS (Wright et al., 1988) with a joint maximum likelihood estimation procedure 

was used in the study. Walker-Bamick (1990) showed that the parameter estimates of the 

PCM were stable under all conditions. The results of the study cannot be generalized 

because the study used a long test (80 items) with moderate difficult items. 

De Ayala (1995) examined the effect of the ratio of the sample size to item 

parameters to be estimated, distribution of examinees' ability, the amount of information 

of item, and the number of categories in items on the NRM by Bock (1972) using 

computer program MULTILOG (Thiseen, 1991) with a fixed 28 test length. It was found 
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that ability distribution, sample size, and item information affected the accuracy of the 

parameter estimates. The results showed that as the latent trait distribution departed from 

a uniform distribution, the accuracy of estimating the discrimination parameter decreased. 

This result consistent with that of Reise & Yu (1990). 

De Ayala (1995) pointed out that the effects of the form of ability distribution on 

RMSE, in part, may be attributed to the distribution of responses across item categories. 

It was found that the uniform distribution produced the greatest dispersal of responses 

across item categories and that the positively skewed distribution produced least 

variability in the examinees' responses. Therefore, if there are insufficient number of 

examinees responding to a particular item category, then that category will not be as 

accurately estimated as other categories that have a large number of responses. 

Choi, Cook, and Dodd (1996) investigated the effect of the sample size, the 

number of categories in each item, and the test length on the recovery of parameters for 

the PCM using MULTILOG (Thissen, 1991) computer program. They found that sample 

size and the number of categories were the most important factors that affected the 

accuracy of item parameter estimates. They pointed out as the number of categories 

increased, the sparsity of the observation in the extreme category was magnified and 

affected estimation. They further showed that given a fixed sample size, adding more 

items slightly decreased the accuracy of estimation for 7 category items, while it 

increased the accuracy of estimates for the 4 category items. They concluded that test 

length did not significantly impact on the accuracy of MMLE item parameter estimation. 

However they did not use the same number of items for the 4 and 7 category tests because 

37 



they used the ratio of sample size to parameters to be estimated as a variable of study. 

Since the number of parameters is a function of the test length and the number of 

categories, they could not examine the effect of test lengths and the number of categories 

simultaneously. 

3.4 Bayesian Estimation of Parameters in Polvtomous IRT Models 

A problem that is often encountered with the MMLE is that the item parameter 

estimates drift out of bounds. One way to resolve this problem is to restrict particular 

values for the parameters. However rather than imposing arbitrary restrictions on the 

parameter estimates, a Bayesian can be employed by incorporating prior knowledge about 

the parameters. 

The prior probability and likelihood function can be combined using Bayes' 

theorem. The resulting posterior distribution contains all the information about the 

parameters of interest. Bayesian approaches in IRT can be distinguished by whether item 

parameter estimation takes place with or without marginalization over ability parameters. 

If marginalization is not used, the approach is called joint Bayesian estimation; if 

marginalization is used, the approach is called marginal Bayesain estimation. 

Swaminathan and Gifford (1982, 1985, and 1986) employed a joint Bayesian 

estimation procedure to estimate parameters of the dichotomous item response models. 

They implemented the hierarchical Bayes procedures for the specification of prior beliefs 

following the approach taken by Lindley (1971) and Lindley and Smith (1972). They 

found that different specifications of prior distributions had relatively modest effects on 
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the Bayesian estimates except using extreme prior, and using any prior improved the 

accuracy of estimates. The accuracy of estimation in b and ability parameters did not 

seem to be affected by the specification of prior information, whereas a and c parameters 

were affected by the specification of prior. For the a parameter, the Bayesian procedure 

produced smaller error than JMLE because the priors arrested the outward drift of the 

estimates (Gifford & Swaminathan, 1990). 

A marginalized Bayesian procedure was implemented in computer program 

BILOG by Mislevy and Bock (1986) for estimating item parameters. Mislevy and Bock 

imposed the lognormal prior distribution on the discrimination parameters as the default 

in BILOG. A normal prior distribution may be specified for the location parameters but 

using the prior is optional in BILOG. Evidence presented by Swaminathan and Gifford 

(1985) indicates that specification of non-informative priors for the location and ability 

parameters with an informative prior for the discrimination parameter appears to be 

reasonable approach because when an informative prior is specified for the discrimination 

parameter, the estimation of all the parameters proceeds smoothly. 

Several studies have investigated the performance of prior distributions with 

MMLE for the dichotomous item response models (Harwell & Janosky, 1991; Lim & 

Drasgow, 1990; Mislevy, 1986; Yen, 1987). Results of all of these studies showed that 

using prior distributions for parameters provided more accurate estimates than without 

using prior distribution. Harwell and Janosky (1991) examined the effect of small 

number of examinees and items, and different variances for the prior distributions of 

discrimination parameters on item parameter estimation in BILOG using two-parameter 
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model. They found that for test of 15 and 25 items, the effect of the variance of prior 

distribution was negligible when 250 or more examinees were available. For smaller 

samples (i.e., 75, 100, and 150) and a short test (i.e., 15 items), the variance of prior 

distribution played a prominent role in the quality of item parameter estimation. 

Similar procedures of imposing prior distributions are employed for the 

polytomous IRT models. For the polytomous IRT models, let Uijk represent an element in 

the matrix U of the observed response pattern for examinee i. UjkI = 1 if the response of 

examinee i to item j is in category k, otherwise Ujki = 0. Further assume that the latent 

space is unidimensional and that the conditional probability of a response pattern i, for m 

response categories and n items, given 0 and item parameters ajk and bjk, is the joint 

probability: 

(20) 
;=l *=1 

where Pijk is the probability that examinee i responds in category k on item j. The 

marginal probability of the observed response pattern i is 

(21) 

where g(0) is the population distribution of ability for examinees. The marginal 

probability of obtaining the response pattern matrix U is then given by 

N 

(22) 
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Once the observations are made, this becomes the likelihood function of the parameters, 

given by 

N n m 

L(u|ajk, bjk> = n n n pijk . (23) 
i=l j=l k=l 

According to Bayes’s theorem the posterior probability distribution for item parameters 

given the data is proportional to the product of the likelihood function and the prior 

distribution of the item parameters, i.e., 

P(ajk, bjk| U) « L(U | ajt, bjk) P(ajk, bjk) . (24) 

The joint probability P(ajk, bjk) is the joint prior distribution of the vectors of item 

parameters and is an expression of the prior belief or information the investigator has 

been regarding these parameters. In the first stage of the model, we assume a priori that 

the parameters ajk and bjk are independently distributed, i.e., P(ajk, bjk) = P(ajk) P(bjk). 

The next step in Bayesian inference is to specify a prior distribution for each item 

parameter. 

The computer program PARSCALE that is designed to obtain estimates of 

parameters in the GPCM, transforms the slope parameters into new parameters, aj=log ^ 

It assumes that each aj has a lognormal prior distribution over 0< a i <°°. This implies 

that otj = log a j has a normal prior distribution with a density that is proportional to 

exp{-V4[(<Xj - pa) / oa ]2}. The normal prior distribution of each tXj is defined by its 

parameters, ccj and pa , which are assigned default values of 0 and 0.5, respectively, by 
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the PARSCALE program. The default values of pa=0and oa =0.5 in PARSCALE 

results in pa=1.13 and oa =0.6. 

It is not possible to specify a prior distribution for the step difficulty parameter bjk 

in PARSCALE. Instead, a normal prior with mean pb and standard deviation ob is 

specified for the threshold parameters (bj) with default specifications of (4 = 0 and ob= 2. 

Thus, default as well as user-provided priors can be specified for the slope and the 

threshold parameters. 

3.5 Summary 

In this chapter, MML and Bayesian procedures for IRT models and the previous 

research which examined factors influencing parameter estimation of dichotomous and 

polytomous IRT models were described. The research on MML estimation with 

dichotomous IRT models has indicated that sample size, ability distributions, test lengths, 

the value of item parameters, and the combination of discrimination and difficulty 

parameter values affected parameter estimation. These factors also affect estimation in 

polytomous IRT models while with dichotomous IRT models, ability distribution had an 

effect in the estimation of c parameter (Swaminathan & Gifford, 1986), the ability 

distribution plays an important role for the estimation of item parameters in polytomous 

IRT models. Baker (1987) indicated that with a non uniform ability distribution an 

interaction occurred between the number of examinees at each ability level and the 

estimated parameters of the ICC. For reason of this is polytomous IRT models have more 

categories than dichotomous IRT models and hence require more observations in each 
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category for the accurate estimation of parameter. Despite the availability of some 

research on parameter estimation in polytomous IRT models, considerable research needs 

to be completed especially with respect to the interaction among the factors mentioned 

above and their effect on estimation. 

In addition, the research on Bayesian procedure with dichotomous IRT models 

showed that Bayesian procedure was superior to the maximum likelihood procedures in 

that estimates remained in the parameter space, were more accurate, at least in small 

samples and less biased (Gifford & Swaminathan, 1990). However, little is known about 

Bayesian procedures in polytomous IRT models. 
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CHAPTER 4 

DESIGN OF THE STUDY AND METHODOLOGY 

4.1 Overview of Study 

In order to adequately investigate the properties of parameter estimates, a 

simulation study was conducted. A simulation study is necessary because only by using 

simulated data is it possible to investigate the accuracy of estimation. 

Artificial data were generated for this study according to the generalized partial 

credit model (GPCM). The generated data was calibrated to obtain MML and Bayesian 

estimators using the computer programs PARSCALE (Muraki & Bock, 1993). After 

calibration of the parameter estimates, the properties of the estimates, the accuracy 

(RMSE), mean squared error (MSE), and bias were examined. In this research, two 

simulation studies were conducted to study the problem of estimation. In the study I, the 

properties of MML estimators in the GPCM were examined. In addition, the factors 

affeted parameter estimation in the GPCM were investigated. In the study II, the 

effectiveness of Bayesian procedures for estimating parameters in the GPCM was 

investigated and compared the Bayesian procedure with the MML procedure. 

4.2 Design of Study 

Previous research has indicated that the factors that affect the behavior of 

parameter estimates of an IRT model are: 1) the characteristics of a test, 2) characteristics 

of the calibration sample and, 3) characteristics of the estimation procedure. 
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4.2.1 Test Characteristics 

4.2.1.1 Test Length 

Test length is an essential factor that influences parameter estimates, because the 

item response patterns across the items are used in the estimation procedure. For small 

number of items, it is possible to study all possible response patterns, but for a large 

number of items to only a sample of the response patterns can be studied. Previous 

studies with dichotomous IRT models showed test lengths affected the accuracy of the 

parameter estimates (Stone, 1992; Yen, 1987). 

The effect of test lengths was included in this study because previous studies with 

polytomous model (De Ayala, 1995; Reise and Yu, 1990; Walker-Bamick, 1990) used a 

fixed test length. In addition, a preliminary study found that test length had an effect on 

item parameter estimation. That is, item parameter estimates with small number of items 

(below 10 items) and large number of items (above 30 items) were more accurate than 

those obtained with a moderate number of items (15 to 25 items). This result may be 

attributed to the fact that all response patterns can be used with small number items while 

with more than 15 items an approximation is needed. The approximation works well 

when the number of items is large but not well when the number of items is small. 

A short test (9 items) was included in this study because most of performance 

assessment tests have a small number of items. Also a moderate (18 items) and a large 

test (36 items) were also be studied. In each simulation study, the 9 and 18 items were 

taken from the test with 36 items. 
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4.2.1.2 The Number of Response Categories 

In contrast to binary models, polytomous IRT models contain more item 

parameters to be estimated because of the additional response categories. The additional 

number of categories in polytomous IRT models not only result in more parameters to be 
4 

estimated but also can result in the parameters having extreme values. The additional 

parameters to be estimated and the extreme value of the parameters seem to have an 

effect on the accuracy of estimation. 

Five response categories for each item were generated in this study because it is 

the most commonly used number of categories for attitude, achievement, and 

performance tests. Also three response categories were included in this study to 

investigate the effect of the number of categories on the accuracy of parameter estimates. 

4.2.1.3 Item Parameter Values 

An item in a test can be characterized by two item parameters (item difficulty and 

discrimination parameters). Previous research (Drasgow, 1987; Stone, 1992) with 

dichotomous IRT models pointed out that the accuracy of estimation depended on the 

values of the particular item parameters. Polytomous IRT models may have a large item 

category or step parameter values. It appears that when there are many categories, the 

parameter estimates for the extreme categories may not be as accurate as that for the 

middle categories (Reise & Yu, 1990; Choi, Cook, Dodd, 1996). 

To make all possible combination of parameter values, item discrimanation 

parameters were classified into three levels; high, middle and low items and item category 
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(or step) parameter values were classified three levels; easy, moderately, and difficul 

items. The difficulty levels and discrimination levels were combined to yield items with 

desired characteristics. 

4.2.2 Characteristics of the Calibration Sample 

4.2.2.1 Sample Size 

In statistical procedures, sample size is a key factor in determining the “quality” of 

parameter estimates. This is particularly true in complex model such as polytomous IRT 

models. Prior research on parameter estimation with dichotomous IRT models have 

shown that sample size is a major factor that affects estimation of item parameters. In 

polytomous IRT models the interaction of sample size and the number of categories can 

be expected to affect parameter estimation. When the sample size is small, category may 

not have a sufficient number of examinees to obtain the accurate parameter estimates. 

Reise and Yu (1990) found that at least 500 examinees were needed to achieve an 

adequate calibration for the 25 test length with five response categories under the GRM. 

De Ayala (1995) suggested a sample size of ratio 5:1 for the NRM. The actual sample 

size of the 5:1 ratio in his study was 1000 examinees. Choi, Cook, & Dodd proposed 

more than 8:1 ration of sample size for the PCM. The actual sample size of ratio 8:1 in 

their research resulted in more than 500 examinees. To investigate how large a sample 

size is needed to obtain satisfactory parameter estimates, four different sample sizes; a 

small (250 examinees), a moderate (500 examinees), and a large (1000 examinees) were 

examined. 
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4.2.2.2 Ability Distribution and the Minimum Number of Examinees in Each Category 

Ability distribution of examinees is another factor which may affect the quality of 

parameter estimation. The ability distribution affects the number of responses in each 

category and in turn affects estimation of parameters. De Ayala (1995) found that as the 

ability distribution departed from a uniform distribution the accuracy of estimation 

decreased. He mentioned that the effects of the form of latent distribution on the 

accuracy (RMSE) might be related to the distribution of responses across item categories. 

It was found that the uniform distribution produced the greatest dispersion of responses 

across item categories and that the positively skewed distribution produced least 

variability in the examinees responses. Inaccuracy of parameter estimates may be related 

to the insufficient number of examinees across item categories not directly be related to 

the ability distribution. 

In practice, when polytomous scoring is used, the incidence of low frequency 

categories occurs when this happens. A practitioner has the option of using the data as 

they exist or of collapsing the low frequency categories into adjacent categories (Brown, 

1991). Little is known regarding the effect of insufficient number of examinees in each 

category on the accuracy of parameter estimates, so it is necessary to study the effect of 

the minimum number of examinees in each category which occur as a result of the ability 

distribution on the accuracy of parameter estimates. Unfortunately it is impossible to 

control the number of examinees in each category for a simulation study. Therefore in 

this study I ability distributions were included as a factor to examine the tendency of the 

minimum number of examinees in each category. In the study I four ability distributions 
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were examined (normal, uniform, positively and negatively skewed distributions). The 

positively skewed distribution for this study was defined by a x2 distribution with twelve 

degrees of freedom. The negatively skewed distribution was obtained as the mirror image 

of the positively skewed distribution. 

/ 

4.2.2.3 Estimation Procedure 

Estimation procedure is obviously an essential factor that affects the quality of 

parameter estimation. Many researchers have studied the effect of estimation procedure 

on the accurate parameter estimates (Lord, 1986; Mislevy & Stocking, 1989; 

Swaminathan, 1983; Vale & Gialluca, 1988; Yen, 1987). MMLE with EM is the most 

popular statistical procedure for obtaining parameter estimates of polytomous IRT 

models. 

MML estimators possess several useful and important properties such as 

efficiency, consistency and asymptotic normality. The computer program MULTILOG 

(Thissen, 1991) and PARSCALE (Muraki & Bock, 1993) implemented the MMLE 

procedure with EM algorithm to obtain the parameter estimates for the polytomous IRT 

models. However there is little known about the properties of the estimators of the 

polytomous IRT models with the MMLE with EM algorithm. 

With MMLE procedure certain data sets can yield unacceptable value of 

discrimination and difficulty parameter values (Baker, 1992). Bayesian approach may 

solve this problem by specifying prior information on item parameters. Imposing prior 

information on item parameters on dichotomous IRT models using Bayes' rule facilitates 
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estimation with relatively small samples (Harwell & Janosky, 1991; Gifford & 

Swaminathan, 1990). Computer program MULTILOG (Thissen, 1991) assumes normal 

prior distributions for item parameters and PARSCALE (Muraki, 1993) assumes log¬ 

normal distribution for slope parameter and normal distribution for threshold parameter. 

Both programs allow users to specify the mean and variance of the prior distributions. 

Research on the effect of prior distribution on estimation procedure for the polytomous 

IRT models is another important issue to be explored. 

In sum, study I included four factors among those factors described above, sample 

size (4 levels), test length (3 levels), the number of categories (2 levels), and ability 

distributions (4 levels). It yielded a four factor design with 96 conditions (Table 1). In 

the study H, eight different priors for slope and threshold parameters were included as a 

factor, but ability distributions were not. Prior distributions included in the second study 

are shown in Table 2. In summary, the factors manipulated in the second study were: 

Prior distributions (8 levels), Number of categories (2 levels), Test lengths (3 levels), and 

Sample sizes (3 levels). These four factors in the second study were completely crossed 

to yield a 8x2x3x4 factorial design with 192 conditions. 
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Table 1 

Factorial design with 4 factors: 2 x 3 x 4 x 4 

# of 
categori 

! es 

# of 
items 

ability distributions sample sizes 

3 9 normal 100 

uniform 250 

positively skewed 500 

negatively skewed 1000 

18 normal 100 

uniform 250 

positively skewed 500 

negatively skewed 1000 

36 normal 100 

uniform 250 

positively skewed 500 

negatively skewed 1000 

5 9 normal 100 

uniform 250 

positively skewed 500 

negatively skewed 1000 

18 normal 100 

uniform 250 

positively skewed 500 

negatively skewed 1000 

36 normal 100 

uniform 250 

positively skewed 500 

negatively skewed 1000 
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Table 2 

Prior distributions for the slope and the threshold parameters 

Prior specification 

Slope parameters Threshold 

parameters 

Type of prior mean SD mean SD 

Default 1 1.13 0.6 0.0 2.0 

Default 2 1.13 0.6 No prior 

Default 3 No prior 0.0 2.0 

True distribution 

based 1 

Mean of the 

distribution of true 

slope parameter values 

SD of the 

distribution of true 

slope parameters 

No prior 

True distribution 

based 2 

mean of the 

distribution of true 

slope parameter values 

default value (0.6) No prior 

Empirical 1 Polyserial correlation SD of the 

distribution of 
t 

polyserial 

correlations 

No prior 

Empirical 2 Polyserial correlation default value (0.6) No prior 

No prior 

(MMLE) 

No prior No prior 
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4.3 Data Generation 

Item parameter values for 3 category items used in the study were obtained by 

analyzing the 1994 NAEP Mathematics test. From the NAEP item parameter estimates, 

three sets of values were chosen for the slope/discrimination parameters: low 

discrimination values, less than 0.5; medium discrimination values, between 0.5 and 0.9; 

high discrimination values, higher than 0.9. Three sets of step difficulty parameters were 

selected: “easy items” with the step difficulty value for the highest response category 

less than 0.8; “medium difficulty items” with step difficulty values for the lowest and 

highest response categories ranging from -3.0 to +3.0 ; “difficult items” with the step 

difficulty value for the lowest category value higher than 0.8. These discrimination and 

step difficulty values were crossed to yield nine combinations of “item types”. The nine- 

item test was constructed with these nine combinations of item parameter values. The 

eighteen- item test was constructed with two items at each discrimination/difficulty 

parameter combination; the 36-item test was constructed with four items at each 

discrimination/difficulty parameter combination. These item parameter values are given 

Table 3. 

Step difficulty parameter values for 5 category items were obtained by adding 

0.40 to the last step difficulty parameter value of the 3 category items and by subtracting 

0.40 from the first step difficulty parameter value of the 3 category items. The value of 

0.40 is the mean difference across items between step difficulty values in 3 category 

items. The reason for using the same step difficulty parameter values for 5 category items 
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as 3 category items is to reduce the effect of item parameter values on estimation. Five 

category item step difficulty parameter values are given Table 4. 

Using the item parameter values, item response vectors were generated by 

randomly sampling 0 from the specified distribution and determining the probability of 

an examinee responding in each category of an item according to the GPCM. For each 

examinee, cumulative probabilities were obtained for each category. The cumulative 

probabilities were compared with a random number drawn from a uniform [0,1] 

distribution. The ordinal position of the first cumulative probability which was greater 

than the random number was taken as the examinee’s response to the item. 

For the study II, a negatively skewed distribution was used to generate ability 

parameter values. This was because study I found that there was no variation in the 

accuracy of item parameter estimation among normal, positively skewed, negatively 

skewed, and uniform distributions. The negatively skewed distribution was chosen 

because it does not reproduce the form of the prior distribution used in PARSCALE. 

Using the generated ability values, item responses for the GPCM were constructed using 

the FORTRAN program POLYGEN (Park & Swaminathan, 1996). 

It should be noted that although the ability values were drawn from a population 

with mean zero and standard deviation one, there is no guarantee that the obtained ability 

values will have a mean of zero and unit standard deviation. Since the ability distribution 

in PARSCALE is standardized and the item parameter estimates scaled relative to the 

scale of the ability distribution, to ensure that the item parameter estimates from 

PARSCALE would be on the same scale as the true item parameters, the generated true 
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ability values were rescaled to have a mean of 0 and a standard deviation of 1. This 

obviates the need for equating before making comparisons between the true values and 

estimates. 

In studying the effect of test length on estimation, the tests were lengthened 

systematically, i.e., tests were lengthened by adding items to the original set. The nine 

item test is a subtest of the 18 item test which in turn is a subtest of the thirty-six item test 

The same principle was used in generating examinee trait values. That is, as sample size 

was increased, the same examinees as in the smaller data set, along with additional 

examinees, were administered the test. The purpose of generating the data in this way 

was to minimize the variability due to sampling from the population of true values, and 

thereby to facilitate interpretation of trends in the results. 

4.4 Criteria for Evaluating Adequacy of the Estimates 

The criteria used to evaluate the Bayes and the marginal maximum likelihood 

estimators of the polytomous IRT models were accuracy of estimates, sampling variance 

of estimates, and bias of estimates over replications. Accuracy of parameter estimates is 

measured by the mean squared difference (MSD) between the true and estimated 

parameter. The smaller the MSD, the more accurate the estimates. The MSD can be 

separated into the variance of the estimates over replications (VAR) and Squared Bias, 

defined as the squared difference between the true parameter value and the mean of the 

estimates over replications (Gifford & Swaminathan, 1990). When r replications are 

carried out, 
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r r 

(25) k=l k=l 
+ 

r r 

A 

where T} is the estimate of the parameter T4 in the r-th replication. The term on the 

left of the equation is the MSD, while the terms on the right are variance and squared 

bias, respectively. This decomposition of MSD into sampling variance and squared bias 

permits the identification of the causes of errors in estimation. Ideally, bias should be 

zero, in which case the accuracy of the parameter estimates is determined solely by the 

variance of the estimates. On the other hand, if the variance is small, then bias is the 

main cause of the error in estimation. Without replications and this decomposition, the 

above determination cannot be made. The above decomposition permits the study of 

MSD, variance, and bias at the item level, or at the test level by averaging the quantities 

computed in the above manner over the items. More important, this decomposition 

permits grouping items according to item types and examining the reasons for poor 

estimation of parameters. 

In order to summarize the information, MSD, variance, and bias are averaged 

across the items. In this study, the square root of each of these quantities is reported. 

RMSE (root mean squared error) is the square root of MSD and is used as an index of 

the accuracy of the parameter estimates. To obtain the average RMSE across items, the 
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MSDs for the items are averaged and the square root of the average is taken. The 

standard deviation of the estimates (square root of VAR) is used as an index of the 

variability of estimates. The average standard deviation across items is obtained by 

averaging the variance, and then taking the square root. Bias is the square root of the 

squared bias quantity described above. This definition of bias corresponds to the 

conventional definition of the term bias in that the mean of the estimates and the true 

value of the parameter are compared; while taking the square root of the squared term 

removes the sign from the bias indicator, the magnitude of the mean compared to the true 

value provides information as to whether the parameter is being over- or under-estimated 

. The bias was averaged over categories and items in the same manner as MSD and 

variance. These indices were then subject to descriptive statistical analysis. 

In evaluating the effect of increasing the number of categories on parameter 

estimation, the MSD, variances, and bias indices were averaged across the step difficulty 

parameters to yield a single MSD value for the category parameters for each item. As 

mentioned earlier, the step difficulty parameters, bY and b2 in the three-category items 

were kept the same as the step difficulty parameters b2 and b3 in the five-category items. 

The accuracy of estimation of these parameters when the number of categories changed 

can be compared directly. However, the category parameters b{ and b4 in the five- 

category items do not have any counterparts in the three- category items. To avoid any 

inconsistency, the MSD, Variance, and bias indices were averaged over the category 

parameters. In increasing the number of categories from three to five, the slope 
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parameter was kept at the same value, and hence the effect of increasing the number of 

categories on the slope parameter can be assessed directly. 

In addition to the descriptive analysis, the effect of each factor on the accuracy, 

the variance, and the bias of the item parameter estimates in the GPCM were determined 

using analysis of variance procedures. The dependent variables were the RMSE, 

variance, and bias of the estimates of the slope and the step parameter estimates. The 4 

factors (the number of categories, ability distributions, test lengths, and sample sizes) 

were used as the independent variables in the analysis for study I. Prior distributions 

were included in the independent variables instead of ability distributions in the analysis 

for study n. The purpose of the analysis of variance is to determine, in a descriptive 

sense, which factors influenced the outcome variables, RMSE, standard deviation, and 

bias. Given this, interpretation of the levels of significance of the statistical tests was not 

of primary interest. In analyzing the data, separate univariate analyses rather than a 

multivariate analyses were performed, partly because of the inherent “almost” linear 

dependencies among these dependent variables and also because of the descriptive 

emphasis on the analyses. In addition, to keep the analyses tractable, the interaction terms 

were suppressed. 

4.5 Calibration 

The generated response data set were calibrated according to the GPCM using the 

computer program PARSCALE (Muraki, 1993). PARSCALE can be used for parameters 
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of dichotomous IRT models, ordered polytomous models : the GRM, the PCM, the 

GPCM and the RSM, but not the nominal models. 

Although item and ability parameters are theoretically invariant in item response 

models, there is a basic indeterminacy in the model when both ability and item 

parameters are unknown. In order to anchor the scale and to provide a unique solution, it 

is necessary in most estimation procedures to fix location by setting the mean of the 

ability distribution to 0 and to fix scale by setting the standard deviation of the 

distribution to 1. To put the estimates from computer program to the same metric of the 

true item parameters, the generated ability values were standardized to have a mean of 0 

and a standard deviation of 1. With this standardization the item parameter estimates 

were on the same scale as parameters and the estimates and parameters could be 

compared. 
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Table 3 

True item parameter values for 3 category items 

ID a bl b2 

1 0.392 -1.201 -0.199 
2 0.379 -1.205 1.429 
3 0.438 0.854 1.269 
4 0.788 -0.907 0.437 
5 0.718 0.405 1.101 
6 0.68 0.902 1.802 
7 1.063 -0.06 0.628 
8 1.139 -0.113 1.303 
9 0.995 0.824 1.248 

10 0.394 0.29 0.738 
11 0.493 -1.109 0.897 

12 0.385 0.973 1.349 
13 0.635 -1.066 -0.288 
14 0.855 0.088 1.006 

15 0.61 0.901 1.775 
16 0.958 0.069 0.303 

17 0.922 -0.625 1.341 

18 1.058 0.801 1.508 

19 0.472 -1.143 0.629 

20 0.328 -1.143 1.573 

21 0.455 0.842 1.456 

22 0.716 -0.306 0.466 

23 0.68 0.251 1.079 

24 0.571 0.802 1.701 

25 0.989 -0.145 0.307 

26 1.054 0.656 1.058 

27 1.174 0.809 1.263 

28 0.489 -0.574 -0.286 

29 0.436 -0.229 1.137 

30 0.411 0.984 1.39 

31 0.537 -0.574 -0.286 

32 0.801 0.328 0.942 

33 0.684 0.801 1.401 

34 1.001 0.438 0.772 

35 1.201 0.124 1.342 

36 0.916 0.801 1.239 
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Table 4 

True item parameter values for 5 category items 

ID a bl b2 b3 b4 

1 0.392 -1.601 -1.201 -0.199 0.201 
2 0.379 -1.605 -1.205 1.429 1.829 
3 0.438 0.454 0.854 1.269 1.669 
4 0.788 -1.307 -0.907 0.437 0.837 
5 0.718 0.005 0.405 1.101 1.501 
6 0.68 0.502 0.902 1.802 2.202 
7 1.063 -0.46 -0.06 0.628 1.028 
8 1.139 -0.513 -0.113 1.303 1.703 
9 0.995 0.424 0.824 1.248 1.648 

10 0.394 -0.11 0.29 0.738 1.138 
11 0.493 -1.509 -1.109 0.897 1.297 
12 0.385 0.573 0.973 1.349 1.749 

13 0.635 -1.466 -1.066 -0.288 0.112 
14 0.855 -0.312 0.088 1.006 1.406 
15 0.61 0.501 0.901 1.775 2.175 

16 0.958 -0.331 0.069 0.303 0.703 

17 0.922 -1.025 -0.625 1.341 1.741 

18 1.058 0.401 0.801 1.508 1.908 

19 0.472 -1.543 -1.143 0.629 1.029 

20 0.328 -1.543 -1.143 1.573 1.973 

21 0.455 0.442 0.842 1.456 1.856 

22 0.716 -0.706 -0.306 0.466 0.866 

23 0.68 -0.149 0.251 1.079 1.479 

24 0.571 0.402 0.802 1.701 2.101 

25 0.989 -0.545 -0.145 0.307 0.707 

26 1.054 0.256 0.656 1.058 1.458 

27 1.174 0.409 0.809 1.263 1.663 

28 0.489 -0.974 -0.574 -0.286 0.114 

29 0.436 -0.629 -0.229 1.137 1.537 

30 0.411 0.584 0.984 1.39 1.79 

31 0.537 -0.974 -0.574 -0.286 0.114 

32 0.801 -0.072 0.328 0.942 1.342 

33 0.684 0.401 0.801 1.401 1.801 

34 1.001 0.038 0.438 0.772 1.172 

35 1.201 -0.276 0.124 1.342 1.742 

36 0.916 0.401 0.801 1.239 1.639 
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CHAPTER 5 

RESULTS 

5.1 Introduction 

Two simulation studies were carried out for the investigation of the properties of 

marginal maximum likelihood and Bayesian estimators in the Generalized Partial Credit 

model (GPCM). Marginal maximum likelihood (MML) and Bayesian estimates in the 

GPCM, as obtained through the computer program PARSCALE, were compared with 

respect to accuracy, variance and bias. In addition, the effectiveness of Bayesian 

estimates with respect to the specification of priors was investigated. In this chapter, the 

results of study I that focused on the properties of marginal maximum likelihood 

estimators in the GPCM are presented first. The results of study II that examined the 

effectiveness of Bayesian procedures for estimating parameters in the GPCM are 

presented next. 

5.2 Results of Study I 

5.2.1 Accuracy of Estimation 

The average RMSE over 100 replications across all conditions for 3- and 5- 

category items is reported in Table 5. 
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Table 5 

The average RMSE across all conditions for 3 and 5 category items 

Distribution Category 

RMSE for the slope parameters mean RMSE for category parameters 

Sample size Test length Test length 

9 18 36 9 18 36 

normal 3 100 0.276 0.170 0.114 0.373 0.322 0.181 
250 0.145 0.095 0.071 0.219 0.158 0.126 
500 0.100 0.063 0.045 0.150 0.116 0.105 

1000 0.071 0.045 0.032 0.110 0.089 0.092 

5 100 0.212 0.152 0.114 0.408 0.293 0.215 
250 0.122 0.077 0.063 0.264 0.188 0.150 
500 0.084 0.055 0.055 0.190 0.138 0.125 

1000 0.063 0.045 0.045 0.141 0.114 0.112 

Uniform 3 100 0.300 0.155 0.114 0.440 0.281 0.184 
250 0.164 0.095 0.071 0.224 0.163 0.122 
500 0.126 0.071 0.055 0.165 0.124 0.102 

1000 0.095 0.055 0.045 
f 

0.134 0.102 0.100 

5 100 0.226 0.134 0.118 0.422 0.286 0.206 
250 0.130 0.089 0.071 0.269 0.182 0.145 
500 0.100 0.063 0.055 0.198 0.142 0.129 

1000 0.063 0.055 0.045 0.141 0.120 0.118 

positive 3 100 0.253 0.148 0.105 0.352 0.247 0.186 
250 0.155 0.095 0.063 0.216 0.152 0.124 
500 0.104 0.071 0.045 0.152 0.116 0.100 

1000 0.084 0.045 0.032 0.109 0.089 0.089 

5 100 0.249 0.138 0.114 0.421 0.300 0.220 
250 0.158 0.100 0.063 0.266 0.194 0.148 
500 0.089 0.055 0.045 0.191 0.147 0.125 

1000 0.063 0.045 0.045 0.141 0.117 0.112 

negative 3 100 0.266 0.141 0.100 0.453 0.274 0.202 
250 0.138 0.084 0.055 0.253 0.163 0.120 
500 0.105 0.063 0.045 0.177 0.114 0.097 

1000 0.077 0.045 0.032 0.124 0.087 0.084 

5 100 0.200 0.161 0.100 0.450 0.341 0.212 
250 0.118 0.071 0.055 0.282 0.184 0.136 
500 0.084 0.055 0.045 0.201 0.135 0.109 

1000 0.063 0.032 0.032 0.147 0.102 0.092 
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The ANOVA result of the average RMSE (averaged over estimates of the slope 

and category difficulty parameters across all conditions ) is reported in Table 6. 

Table 6 

Results of ANOVA for Root Mean Squared Error (RMSE) 

Source df Parameter F value P value 

Number of Categories 1 slope 2.84 .096 

1 category parameter 11.95 .001 

Distribution 3 slope .78 .506 

3 category parameter .52 .668 

Test length 2 slope 83.37 .000 

2 category parameter 83.37 .000 

Sample size 3 slope 121.31 .000 

3 category parameter 147.43 .000 

The result of the ANOVA of RMSE in Table 6 show that test lengths and sample sizes 

influence the accuracy of estimates of the slope and the category parameters. The ability 

distribution does not seem to have an effect on the accuracy of estimation of the 

parameters. The number of categories in each item influences the accuracy of estimation 

of the category parameters but not the accuracy of estimation of the slope parameters. 

Figures 3 and 4 (a) provide graphical description of the effect of various factors on 

the average RMSE of the estimates of item parameters for 3- and 5-category items across 

sample sizes (100, 250, 500 and 1000) and test lengths (9, 18, and 36 items) based on the 

normal ability distribution. 
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Figures based on other than normal distributions are displayed in the Appendix A, since 

the results of the ANOVA of RMSE showed that the ability distributions did not affect 

the accuracy of estimation. 

Figure 3 (a) is for the RMSE of the estimates of slope parameters. The upper 

figure is for the 3-category items and the lower one is for the 5-category items. Figure 4 

(a) is for the mean RMSE of the estimates of category difficulty parameters; again, the 

upper figure is for the 3- category items and the lower one is for the 5-category items. 

Figures 3 and 4 (a) confirm the ANOVA finding that sample size and test length have an 

effect on the accuracy of estimates of both the slope and category parameters. The 

average RMSE decreased as test length increased from 9 to 36 items. The most 

noticeable decrease in the RMSE of estimates of both slope and category parameters 

occurred when test length increased from 9 to 18 items. 

As expected, the accuracy of estimates increased (as shown by decreasing RMSE) 

as sample size increased. The greatest improvement in accuracy of the estimates of the 

slope and category parameters occurred when sample size increased from 100 to 250. 

The improvement beyond a sample size of 250 was modest. 

Increasing the number of categories from three to five had a negative effect on the 

estimation of category parameters. The results of the ANOVA showed that this effect 

was significant. It appears that, for a fixed sample size, as the number of categories 

increased, the number of examinees falling in a category decreased. On the other hand, 

the effect of increasing the number of categories had a modest positive effect, albeit not 

statistically significant, on the estimation of the slope parameter. It can be conjectured 

that since the slope parameter is constant across the categories for a give item, increasing 
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the number of categories provided more stable information regarding the slope parameter 

and hence resulted in better estimation of the parameter. The modest improvement 

obtained by going from a three-category item to a five-category item vanished as the 

sample size and test length increased , as shown in Figures 3 and 4(a). 

5.2.2 Variance and Bias 

In addition to the accuracy of estimates, the variance and bias of the estimates are 

important quantities in evaluating the quality of parameter estimation. The source of the 

difference between the estimates and the true parameter values, that is the accuracy of 

estimates, can be partitioned into sampling error, variance, and systematic bias. The 

sampling error is, in reality, is the square of the standard error of the estimate obtained 

empirically. If an estimator shows great variation over repeated samples, i.e., has a large 

standard error, then the parameter will be estimated with less accuracy. 

The average variance over replications across all conditions is reported in Table 7. 

The results of the ANOVA of the average variance of the estimates of the slope and the 

mean of the category parameters are reported in Table 8. Table 8 shows that the number 

of categories in each item, test lengths, and sample sizes have an impact on the variance 

of estimates of the slope and the category difficulty parameters, but the distribution from 

which the samples are drawn does not affect the estimates with respect to variance. 
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Table 7 

The average variance across all conditions for 3 and 5 category items 

Variance for slope parameters Mean variance for category parameters 

Distribution Category Sample size Test length Test length 

9 18 36 9 18 36 

normal 3 100 0.266 0.164 0.105 0.371 0.318 0.169 
250 0.145 0.089 0.063 0.216 0.150 0.105 
500 0.095 0.063 0.045 0.145 0.105 0.074 

1000 0.071 0.045 0.032 0.102 0.071 0.050 

5 100 0.200 0.141 0.100 0.408 0.284 0.205 
250 0.118 0.071 0.055 0.257 0.176 0.123 
500 0.084 0.055 0.032 0.179 0.119 0.088 

1000 0.055 0.032 0.032 0.122 0.086 0.060 

Uniform 3 100 0.270 0.141 0.105 0.413 0.271 0.171 
250 0.141 0.084 0.055 0.211 0.145 0.095 
500 0.100 0.055 0.045 0.143 0.095 0.067 

1000 0.071 0.045 0.032 0.102 0.067 0.045 

5 100 0.205 0.118 0.100 0.418 0.280 0.190 
250 0.114 0.077 0.055 0.254 0.140 0.114 
500 0.084 0.055 0.032 0.174 0.113 0.083 

1000 0.055 0.032 0.032 0.129 0.081 0.056 

positive 3 100 0.239 0.141 0.095 0.349 0.244 0.173 
250 0.145 0.089 0.055 0.212 0.143 0.100 
500 0.095 0.063 0.045 0.145 0.105 0.071 

1000 0.071 0.045 0.032 0.100 0.071 0.045 

5 100 0.235 0.126 0.095 0.416 0.294 0.202 
250 0.152 0.089 0.055 0.257 0.180 0.120 
500 0.084 0.055 0.032 0.173 0.124 0.083 

1000 0.063 0.032 0.032 0.118 0.084 0.056 

negative 3 100 0.266 0.145 0.105 0.438 0.270 0.196 
250 0.130 0.084 0.055 0.244 0.157 0.107 
500 0.095 0.063 0.045 0.164 0.105 0.077 

1000 0.063 0.045 0.032 0.112 0.074 0.055 

5 100 0.197 0.071 0.089 0.449 0.223 0.205 
250 0.114 0.071 0.045 0.281 0.179 0.122 
500 0.077 0.055 0.032 0.187 0.125 0.088 

1000 0.055 0.032 0.032 0.131 0.089 0.058 
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Table 8 

Results of ANOVA for variance 

Source df Parameter F value P value 

Number of Categories 1 slope 7.55 .007 

1 category parameter 10.19 .002 

Distribution 3 slope .16 .921 

3 category parameter .81 .491 

Test length 2 slope 32.38 .000 

2 category parameter 141.96 .000 

Sample size 3 slope 52.10 .000 

3 category parameter 224.74 .000 

Figures 3 and 4 (b) provide summaries of the average variance for the item parameters for 

for 3 and 5 category items across sample sizes and test lengths. These figures are for the 

normal distribution of ability since, as indicated above, the ability distribution had no effect 

on the variance of the estimates. Figure 3 and 4 (b) reveal that the pattern of results for the 

variance is almost identical to that of RMSE. Sample size and test length have a clear effect 

on the variance of the estimates slope and category parameters. As test length and sample 

size increased, the variance decreased along with RMSE. The decrease in variance is most 

noticeable when the number of items increased from 9 to 18 items and sample size increase 

from 100 to 250. In addition, the average variance of the slope parameters decreased, but 

that of category difficulty parameters increased as the number of categories in each item. 

If an estimator is unbiased, the mean of the estimates will converge to the true value 

as the number of replications approaches infinity. Consequently, the difference between the 
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estimate and the true parameter value, MSD, is attributable to sampling error, or variance of 

the estimates. The average bias, over replications across all conditions is reported in 

Table 10. 

The result of the ANOVA for the average bias over all conditions for the estimates 

of the slope and the mean of category difficulty parameters is reported in Table 9. 

Table 9 

Result of ANOVA for bias 

Source df Estimates F value P value 

Category 1 slope .81 .369 

1 category parameter 15.90 .000 

Distribution 3 slope 4.36 .007 

3 category parameter 2.95 .037 

Test length 2 slope 4.86 .010 

2 category parameter 1.98 .144 

Sample size 3 slope 10.93 .000 

3 category parameter .31 .821 

Table 10 shows that test length and sample size influenced the bias in the 

estimates of the slope parameter, but not that of the category parameters, i.e., as the 

sample size increased, the bias in the estimates of the slope parameters changed while 

that in the category parameters did not. This implies that the estimators of the category 

parameters may not only be biased but also may not be consistent. The number of 

categories in each item affected the bias in the estimates of the category parameters, but 

71 



not that in the slope parameter. True ability distributions had an impact on the average 

bias in the estimates of both item parameters. 

Figures 5 and 6 along with Figures 3 and 4 display the trends with respect to bias. 

Uniform ability distribution produced the largest bias for the slope parameter (.053) and 

the category parameters (0.081). Negatively skewed distribution produced the smallest 

bias for the slope parameter (.027). Most importantly, the average bias in the slope 

parameters decreased as the sample size and test length increased. However, the bias in 

the category parameters remained constant as sample size and test length increased with 

the amount of bias increasing as the number of categories increased. 

5.3 Results of Study II 

5.3.1 Accuracy of Estimation 

The average RMSE over 100 replications across all conditions for 3 and 5 

category items is reported in Table 11 and Table 12. Default priors for threshold 

parameters did not result in convergence with small sample sizes (100 and 250 

examinees) across all test lengths while specification of default priors for both slope and 

threshold parameters did not result in convergence with 100 examinees in the nine-item 

test with 3 categories. 
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Table 10 

The average bias across all conditions for 3 and 5 category items 

Bias for slope parameters Mean Bias for category parameters 

Distribution Category Sample size Test length Test length 

9 18 36 9 18 36 

normal 3 100 0.071 0.045 0.045 0.038 0.054 0.059 
250 0.032 0.032 0.032 0.032 0.045 0.071 
500 0.000 0.032 0.000 0.045 0.050 0.074 

1000 0.000 0.000 0.000 0.045 0.055 0.077 

5 100 0.071 0.055 0.055 0.060 0.071 0.073 
250 0.032 0.032 0.032 0.065 0.068 0.080 
500 0.032 0.032 0.032 0.065 0.071 0.089 

1000 0.032 0.000 0.032 0.070 0.076 0.095 

Uniform 3 100 0.130 0.063 0.045 0.069 0.063 0.063 
250 0.084 0.045 0.032 0.079 0.074 0.077 
500 0.077 0.045 0.032 0.086 0.077 0.083 

1000 0.071 0.032 0.032 0.086 0.077 0.089 

5 100 0.100 0.063 0.063 0.089 0.068 0.082 
250 0.063 0.045 0.045 0.091 0.083 0.091 
500 0.055 0.032 0.045 0.096 0.085 0.098 

1000 0.000 0.032 0.045 0.058 0.088 0.103 

positive 3 100 0.084 0.045 0.045 0.038 0.038 0.067 
250 0.055 0.032 0.032 0.027 0.055 0.074 
500 0.045 0.032 0.000 0.027 0.050 0.074 

1000 0.045 0.000 0.000 0.043 0.054 0.074 

5 100 0.084 0.055 0.055 0.067 0.060 0.087 
250 0.045 0.032 0.032 0.076 0.075 0.088 
500 0.032 0.032 0.032 0.075 0.079 0.095 

1000 0.032 0.032 0.032 0.071 0.077 0.097 

negative 3 100 0.032 0.000 0.032 0.115 0.050 0.050 
250 0.045 0.000 0.000 0.069 0.045 0.055 
500 0.045 0.032 0.000 0.067 0.045 0.059 

1000 0.055 0.032 0.000 0.054 0.045 0.063 

5 100 0.000 0.045 0.045 0.081 0.049 0.059 
250 0.032 0.000 0.000 0.070 0.052 0 059 
500 0.032 0.000 0.000 0.069 0.047 0.067 

1000 0.032 0.000 0.000 0.068 0.053 0.070 
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Table 11 

Average RMSE of estimates of slope parameters across different priors 

for 3 and 5 category items 

MMLE a default true 1 true 2 emprical 1 emprical 2 default(ab) b default 

3 category 9 items 100 0.268 0.206 0.168 0.178 0.317 0.297 ******* 

250 0.138 0.127 0.128 0.129 0.136 0.122 0.127 ******* 

500 0.105 0.096 0.102 0.102 0.093 0.094 0.096 0.105 
1000 0.077 0.075 0.081 0.08 0.065 0.072 0.075 0.08 

18 items 100 0.145 0.15 0.108 0.112 0.207 0.176 0.15 ******* 

250 0.084 0.086 0.077 0.077 0.077 0.078 0.085 ******* 

500 0.063 0.061 0.064 0.063 0.065 0.058 0.061 0.067 
1000 0.045 0.045 0.049 0.049 0.042 0.044 0.045 0.049 

36 items 100 0.11 0.132 0.072 0.078 0.101 0.108 0.132 ******* 

250 0.063 0.078 0.05 0.052 0.074 0.067 0.077 
500 0.045 0.048 0.037 0.037 0.047 0.04 0.048 0.039 

1000 0.032 0.031 0.027 0.027 0.032 0.028 0.031 0.027 

5 category 9 items 100 0.2 0.182 0.15 0.155 0.324 0.31 0.180 ******* 

250 0.118 0.111 0.108 0.109 0.198 0.153 0.111 0.116 
500 0.084 0.08 0.083 0.083 0.112 0.085 0.080 0.085 
1000 0.063 0.059 0.063 0.063 0.064 0.055 0.059 0.063 

18 items 100 0.127 0.148 0.099 0.101 0.289 0.27 0.142 
250 0.071 0.083 0.065 0.066 0.135 0.101 0.082 0.071 

500 0.055 0.056 0.050 0.051 0.096 0.071 0.056 0.052 
1000 0.032 0.037 0.036 0.036 0.062 0.043 0.037 0.037 

36 items 100 0.1 0.133 0.072 0.075 0.215 0.194 0.137 ******* 

250 0.055 0.083 0.043 0.047 0.126 0.123 0.083 0.054 

500 0.045 0.057 0.033 0.036 0.094 0.073 0.057 0.04 

1000 0.032 0.041 0.027 0.029 0.078 0.058 0.041 0.031 
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Table 12 

Average RMSE of estimates of step difficulty parameters across different priors 

for 3 and 5 category items 

MMLE a default true 1 true 2 emprical 1 emprical 2 default(ab) b default 

3 category 9 items 100 0.445 0.302 0.312 0.324 0.337 0.336 ******* 

250 0.253 0.216 0.219 0.226 0.225 0.224 0.218 ******* 

500 0.179 0.158 0.159 0.164 0.158 0.164 0.159 0.184 
1000 0.126 0.118 0.119 0.121 0.117 0.12 0.118 0.126 

18 items 100 0.267 0.225 0.214 0.221 0.241 0.236 0.239 ******* 

250 0.17 0.157 0.147 0.15 0.157 0.157 0.155 
500 0.128 0.117 0.111 0.112 0.128 0.115 0.115 0.122 
1000 0.105 0.088 0.085 0.084 0.096 0.087 0.088 0.084 

36 items 100 0.204 0.195 0.163 0.166 0.192 0.184 0.194 
250 0.141 0.147 0.119 0.119 0.146 0.134 0.142 
500 0.124 0.118 0.099 0.098 0.118 0.104 0.115 0.09 

1000 0.116 0.097 0.086 0.084 0.1 0.089 0.097 0.08 

5 category 9 items 100 0.45 0.384 0.389 0.39 0.396 0.399 0.380 ******* 

250 0.282 0.259 0.268 0.272 0.268 0.258 0.259 0.283 
500 0.201 0.191 0.194 0.196 0.193 0.189 0.191 0.2 
1000 0.147 0.144 0.146 0.146 0.144 0.142 0.144 0.147 

18 items 100 0.341 0.27 0.282 0.286 0.291 0.289 0.263 ******* 

250 0.184 0.182 0.181 0.181 0.201 0.187 0.181 0.185 
500 0.135 0.137 0.135 0.135 0.159 0.145 0.137 0.135 

1000 0.102 0.106 0.103 0.104 0.124 0.111 0.106 0.103 

36 items 100 0.212 0.207 0.19 0.197 0.233 0.227 0.198 ******* 

250 0.136 0.148 0.133 0.133 0.166 0.164 0.148 0.135 
500 0.109 0.121 0.107 0.108 0.143 0.13 0.121 0.109 

1000 0.092 0.101 0.091 0.091 0.127 0.112 0.101 0.091 
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The ANOVA results for the average RMSE (averaged over estimates of the slope 

and category difficulty parameters across all conditions) is reported in Table 13. The 

results show that test length, sample size, and prior distribution influence the accuracy of 

estimates of the slope and the step difficulty parameters. The number of categories in 

each item influences the accuracy of estimation of the step difficulty parameters but not 

the accuracy of estimation of the slope parameters. 

Table 13 

Results of ANOVA for RMSE 

Source df Estimates F value P value 

Number of 1 Slope .68 .411 

categories 1 Step difficulty parameters 36.55 .000 

Test length 2 Slope 63.93 .000 

2 Step difficulty parameters 170.51 .000 

Sample size 3 Slope 139.28 .000 

3 Step difficulty parameters 286.43 .000 

Prior 6 Slope 10.78 .000 

distributions 6 Step difficulty parameters 2.27 .039 

Graphical descriptions of the effect of various factors on the average RMSE of the 

estimates of item parameters for 3- and 5-category items across sample sizes (100, 250, 

500 and 1000) and different prior distributions (no prior, default priors, empirical priors, 

true distribution-based priors) for each test length are provided in Figure 7 for the slope 

parameter and in Figure 8 for the step difficulty parameters. Only the results from six 

priors (No Prior, Default 2, Empirical 1 and 2, and True Distribution-based 1 and 2) are 
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given in Figures 7 and 8 because Default 3 prior did not result in convergence for small 

sample sizes and short tests. Default 1 prior was also omitted because it produced almost 

identical results to those of Default prior 2. 

Figures 7 and 8 confirm the ANOVA finding that sample sizes and test length 

have an effect on the accuracy of estimates of both slope and step difficulty parameters. 

The average RMSE decreases as test lengths increase from 9 to 36 items. The most 

noticeable decrease in RMSE of estimates of both types of item parameters appeared 

when test length increased from 9 to 18 items. As expected, accuracy of estimates 

increased (as shown by decreasing RMSE) as sample size increased. The greatest 

improvement in accuracy of the estimates of slope and category parameters occurred 

when sample size increased from 100 to 250. The improvement beyond a sample size of 

250 was modest. 

Prior distributions differed with respect to their effects on the accuracy of 

estimation in small samples while in large samples, their effects were reduced. In using 

the true distribution of parameters to specify priors, the mean of the true distribution was 

used for as the mean of the prior distribution for all the slope parameters. This 

specification will result in exact priors only for those parameters whose values agree with 

the mean of the distribution; for other parameters, this prior specification will result in 

incorrect priors. Using the mean of the true distribution as the mean of the prior 

distribution for all the parameters thus permits the examination of results when the prior 

specification is correct and also when it is incorrect. 

79 



CO 
« 
« 
0> 
a. m 

§ E 
S ® CO 4-« 

S«> o « 
k >> 
o w 
CO O ^ O) 
CD 0) 

;« 
— «- 
DC O 

a> "" O) 
CO 
k 
0) 
> 
< 

<D 0) N 
« 
0) 
Q- 0) 

II 
« ~ 
2 > 
a o o> 
a a> 

hi 
CO 

a o 
CO 

DC O 

a> - o> (0 
k o> 
> 
< 

CO a> 
N 

a 
E | 
a c 
• 5 10 — 
co a> 
2 £ 
m ° * o> 
mS w co 
UJ O 
<0 CO 

DC O 

0) 
D) 
CO 
k a> 
> 
< 

3SHH 3SNH 

3SWU 

3SVKU 

3SWU 

80 

F
ig

u
re

 7
. 

A
v
er

ag
e 

R
M

S
E

 o
f 

es
ti

m
at

es
 o

f 
sl

op
e 

p
ar

am
et

er
s 

ac
ro

ss
 s

am
p
le

 s
iz

es
 a

n
d
 d

if
fe

re
n

t 
p

ri
o

rs
 f

o
r 

3 
an

d 
5 

ca
te

g
o

ry
 i

te
m

s 



© 

o. M 

i e 
S ® fin 

“ to 
CO <0 

It a o 
^ O) 
£. £ ' ’ a 
iu o 

St 
(C o 
® 
S’« 2 N 
§ • 
< 

asnu 

« 
« 
N 
M 
0) 
a M 

Si 
si 
2 * 
O t- 
(o o 
^ o> 
£, ® 

a 
UJ o 

St 
a o 
a> *- 
on 
a 
k. 
€) 
> 
< 

t- n 

?; ■ • 
u u 

5 *- « "c "Z 
| ^ 5 J E E 
3 ■ £ £ e o 

HHH 

3SHU 

« 
V 

_N 
*5 
© 

Q. « 

§ | 
s * si 
2” u C 
a o 

o> 
A ® —- ** 

n ui u 
St 
oc o 
0) *" 
O) 
a w 
u 
> 
< 

3SHU 

« 
« 
N 
‘5 
® 

|E 
2 ® 

S» 
2Z 
O k- 
a o 
^ o> 
£S 

*- ex 
■ ■ 

— o o 
© ■ *- cm ■= •= 

e „ o. Q. 
P = E E 

£ c ® 

+ IHH 
3 5 

LU 
(0 

a 
o 
in 

o 
® 
o> 
a 
k. 
® 
> 
< lO^’ineowcMiO'-m 

^o”o!'!d''. o9 
o o o o o 

3SWU 

« 
« 
N 
<0 

« 
a 
E * 
a c 
« « 
CO •— 
« CD 
O 

*& 
S2 
w a ui u 
C0 CO 

11 
O 
on 
a 
k. 
» 
> 
< 

« 
_N 
co 
® 
a 
E « 
a E 
« « 
<o 

It 
O w 
a o 

o> 
.o « 

UJ 
(/> 

a 
o 
in 

« 
CD 
a 
w 
« 
> 
< 

CO 

6 

3 SHU 

CM 

o 

3SNU 

in 
o 

81 

F
ig

u
re

 8
. 

A
v

er
ag

e 
R

M
S

E
 o

f 
es

ti
m

at
es

 o
f 

st
ep

 d
if

fi
cu

lt
y
 p

ar
am

et
er

s 
ac

ro
ss

 s
am

p
le

 s
iz

es
 a

nd
 d

if
fe

re
n

t 
p

ri
o

rs
 f

o
r 

3 
an

d 
5 

ca
te

g
o

ry
 i

te
m

s 



Figure 7 shows that, overall, priors based on the true distribution produced the smallest 

RMSE for estimates of the slope parameters. The default prior for the slope parameters, 

on the other hand, resulted in smaller RMSE than does MMLE in small data sets (9 and 

18 items with 3 categories and 9 items with 5 categories), but yielded larger RMSE of 

estimates than MMLE in large data sets (36 items with 3 categories and 18 and 36 items 

with 5 categories). An explanation for this result is that despite the fact that the default 

priors did not match the distribution of the parameters, they were able to improve on 

MML in small data sets. With large data sets, the data overwhelmed the default priors 

while the MML procedure produced reasonably good estimates. Poor results were 

obtained with empirical priors. Empirical priors resulted in the largest RMSE for 

estimates of the slope parameters. In particular, empirical priors yielded larger RMSE for 

estimates of the slope parameters in 5-category items. This is in contrast to the results 

obtained with other prior distributions where smaller RMSE was obtained for the slope 

parameters of the five category items than with the three category items. It appears that 

the polyserial correlations, especially in the five category items showed a great deal of 

fluctuation from sample to sample, and did not reflect the true item parameter values. 

Consequently, empirical priors for the slope parameters based on the polyserial 

correlations produced poor results. 

The effect of prior distributions on the estimation of the step difficulty parameters 

is clearer than that on the slope parameter. Figure 8 shows that using priors resulted in 

small RMSE for estimates of the step difficulty parameters, especially with small sample 

size. The MMLE procedure yielded larger RMSE for estimates of the category 

parameters than all Bayesian procedures. Even the generally poor performing empirical 
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priors reduced the RMSE of the step difficulty parameter estimates. These results show 

that MML procedure had more problems in the estimation of step difficulty parameters 

than in the estimation of slope parameters. Even poor specification priors on the slope 

parameters improved the estimation of step difficulty parameters. 

5.3.2 Variance and Bias 

In addition to the accuracy of estimates, the variance and bias of the estimates are 

important quantities in evaluating the quality of parameter estimation. The source of the 

difference between the estimates and the true parameter values, that is the accuracy of 

estimates, can be partitioned into sampling error, variance, and systematic bias. The 

sampling error is, in reality, the square of the standard error of the estimate obtained 

empirically. If an estimator shows great variation over repeated samples, i.e., has a large 

standard error, then the parameter will be estimated with less accuracy. 

The average variance over 100 replications across all conditions for 3 and 5 

category items is reported in Table 14 and 15. The results of the ANOVA of the average 

variance of the estimates of the slope and the mean of category parameters are reported in 

Table 16. 

Table 16 shows that the number of categories in each item, test length, and sample 

size had an impact on the variance of estimates of the slope and the step difficulty 

parameters, but the prior distributions affected only the variance of the estimates of the 

slope parameters. \ 
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Table 14 

Average variance of estimates of slope parameters across different priors 

for 3 and 5 category items 

MMLE a default true 1 true 2 emprical 1 emprical 2 default(ab) b default 

3 category 9 items 100 0.266 0.187 0.135 0.165 0.172 0.182 »*♦»»*» ******* 

250 0.13 0.119 0.103 0.113 0.098 0.118 0.119 ******* 

500 0.095 0.089 0.082 0.087 0.079 0.088 0.089 0.094 

1000 0.063 0.06 0.058 0.06 0.057 0.06 0.06 0.062 

18 items 100 0.145 0.121 0.084 0.104 0.111 0.116 0.121 Hit It it Him 

250 0.084 0.077 0.065 0.072 0.067 0.075 0.077 ******* 

500 0.063 0.057 0.053 0.055 0.054 0.057 0.057 0.062 

1000 0.045 0.041 0.039 0.04 0.039 0.041 0.041 0.041 

36 items 100 0.105 0.092 0.061 0.074 0.075 0.088 0.092 ******* 

250 0.055 0.057 0.046 0.051 0.054 0.055 0.057 ******* 

500 0.045 0.039 0.034 0.036 0.038 0.038 0.039 0.038 

1000 0.032 0.027 0.025 0.026 0.027 0.027 0.027 0.027 

5 category 9 items 100 0.197 0.164 0.118 0.145 0.166 0.169 0.162 ******* 

250 0.114 0.105 0.095 0.1 0.104 0.108 0.107 0.114 

500 0.077 0.077 0.071 0.077 0.075 0.077 0.077 0.077 

1000 0.055 0.055 0.055 0.055 0.051 0.052 0.052 0.055 

18 items 100 0.122 0.114 0.078 0.095 0.109 0.113 0.111 »»**★♦» 

250 0.071 0.071 0.055 0.063 0.067 0.069 0.069 0.071 

500 0.055 0.055 0.045 0.045 0.052 0.052 0.051 0.055 

1000 0.032 0.032 0.032 0.032 0.036- 0.036 0.036 0.032 

36 items 100 0.089 0.089 0.060 0.073 0.084 0.09 0.093 ******* 

250 0.045 0.051 0.045 0.045 0.053 0.053 0.051 0.051 

500 0.032 0.035 0.032 0.033 0.036 0.036 0.035 0.035 

1000 0.032 0.025 0.032 0.024 0.026 0.025 0.025 0.024 
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Table 15 

Average variance of estimates of step difficulty parameters across different priors 

for 3 and 5 category items 

MMLE a default true 1 true 2 emprical 1 emprical 2 default(ab) b default 

3 category 9 items 100 0.431 0.278 0.298 0.315 0.261 0.272 ******* ******* 

250 0.244 0.204 0.208 0.218 0.186 0.214 0.207 ******* 

500 0.164 0.148 0.149 0.155 0.138 0.155 0.149 0.171 
1000 0.11 0.105 0.106 0.108 0.101 0.107 0.105 0.111 

18 items 100 0.257 0.181 0.202 0.214 0.193 0.207 0.202 ******* 

250 0.155 0.128 0.134 0.141 0.134 0.146 0.129 ******* 

500 0.102 0.095 0.097 0.1 0.092 0.099 0.095 0.116 
1000 0.074 0.069 0.07 0.071 0.068 0.075 0.069 0.073 

36 items 100 0.183 0.122 0.145 0.152 0.135 0.149 0.122 »»»★★»» 

250 0.102 0.088 0.096 0.1 0.09 0.099 0.092 ******* 

500 0.071 0.066 0.07 0.072 0.064 0.073 0.069 0.084 
1000 0.05 0.049 0.05 0.051 0.046 0.051 0.049 0.052 

5 category 9 items 100 0.449 0.375 0.386 0.405 0.324 0.351 0.428 »*»»»»★ 

250 0.281 0.258 0.267 0.272 0.226 0.242 0.258 ******* 

500 0.187 0.180 0.182 0.184 0.165 0.176 0.180 0.188 
1000 0.131 0.130 0.130 0.130 0.122 0.128 0.129 0.131 

18 items 100 0.223 0.240 0.248 0.252 0.224 0.23 0.241 ******* 

250 0.179 0.162 0.174 0.175 0.15 0.161 0.163 0.182 
500 0.125 0.118 0.123 0.123 0.109 0.115 0.118 0.126 
1000 0.089 0.085 0.088 0.088 0.081 0.084 0.086 0.09 

36 items 100 0.205 0.201 0.212 0.219 0.142 0.205 0.199 ******* 

250 0.122 0.106 0.119 0.121 0.1 0.101 0.107 0.127 
500 0.088 0.081 0.087 0.087 0.075 0.079 0.081 0.088 
1000 0.058 0.057 0.059 0.059 0.052 0.055 0.057 0.059 
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Table 16 

Results of ANOVA for variance 

Source df Estimates F value P value 

Number of 1 Slope 12.24 .001 

categories 1 Step difficulty parameters 6.84 .010 

Test length 2 Slope 235.78 .000 

2 Step difficulty parameters 56.51 .000 

Sample size 3 Slope 274.80 .000 

3 Step difficulty parameters 55.26 .000 

Prior 6 Slope 6.29 .000 

distributions 6 Step difficulty parameters 1.30 .261 

Figures 9 and 10 provide summaries of the average variance of item parameter 

estimates for 3 and 5 category items across sample sizes (100, 250, 500 and 1000) and the 

effects of different priors (no prior, default 2, empirical prior 1 and 2, and true 

distribution based prior 1 and 2) at each test length. Both figures show that using any 

prior (including empirical priors) resulted in smaller variance of parameter estimates than 

using no prior. The variance of item parameter estimates decreased as the number of 

items, examinees, and categories in each item are increased. 

If an estimator is unbiased, the mean of the estimates will converge to the true 

value as the number of replications approaches infinity. Consequently, the difference 

between the estimate and the true parameter value, MSD, is attributable to sampling error, 

or variance of the estimates. The average bias over 100 replications across all conditions 

for 3 and 5 category items is reported in Table 17 and 18. 
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Table 17 

Average bias of estimates of slope parameters across different priors 

for 3 and 5 category items 

MMLE a default true 1 true 2 emprical 1 emprical 2 default(ab) b default 

3 category 9 items 100 0.032 0.087 0.099 0.067 0.266 0.235 
250 0.045 0.043 0.075 0.061 0.094 0.033 0.043 ******* 

500 0.045 0.037 0.06 0.054 0.049 0.032 0.037 0.047 
1000 0.045 0.044 0.057 0.054 0.031 0.04 0.044 0.051 

18 items 100 0.032 0.089 0.067 0.041 0.175 0.133 0.088 ******* 

250 0 0.038 0.042 0.029 0.039 0.019 0.037 ******* 

500 0 0.02 0.036 0.031 0.037 0.012 0.02 0.026 
1000 0 0.019 0.03 0.028 0.014 0.016 0.019 0.026 

36 items 100 0.045 0.095 0.038 0.022 0.067 0.063 0.094 ******* 

250 0.032 0.053 0.019 0.011 0.05 0.038 0.051 ******* 

500 0 0.028 0.013 0.008 0.027 0.013 0.027 0.007 
1000 0 0.015 0.009 0.007 0.018 0.008 0.015 0.005 

5 category 9 items 100 0 0.077 0.095 0.055 0.278 0.26 0.078 ******* 

250 0.032 0.032 0.055 0.045 0.169 0.109 0.030 0.032 
500 0.032 0 0.045 0.032 0.083 0.036 0.022 0.032 
1000 0.032 0.032 0.032 0.032 0.038 0.017 0.027 0.032 

18 items 100 0.031 0.095 0.055 0.032 0.268 0.245 0.089 ******* 

250 0 0.045 0.032 0 0.118 0.073 0.045 0 
500 0 0 0.000 0 0.081 0.048 0.022 0 
1000 0 0 0.000 0 0.051 0.024 0.010 0 

36 items 100 0.045 0.099 0.021 0.019 0.197 0.171 0.101 
250 0 0.065 0.000 0.013 0.115 0.111 0.065 0.018 
500 0 0.045 0.000 0.014 0.087 0.064 0.045 0.019 
1000 0 0.033 0.000 0.016 0.073 0.052 0.033 0.019 
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Table 18 

Average bias of estimates of step difficulty parameters across different priors 

for 3 and 5 category items 

MMLE a default true 1 true 2 emprical 1 emprical 2 default(ab) b default 

3 category 9 items 100 0.109 0.117 0.092 0.076 0.211 0.188 ******* ******* 

250 0.07 0.072 0.067 0.06 0.124 0.065 0.07 ******* 

500 0.067 0.055 0.056 0.056 0.075 0.055 0.054 0.067 
1000 0.063 0.053 0.055 0.056 0.058 0.054 0.053 0.058 

18 items 100 0.074 0.133 0.071 0.057 0.144 0.113 0.128 ******* 

250 0.074 0.091 0.061 0.053 0.083 0.057 0.087 ******* 

500 0.074 0.068 0.054 0.05 0.089 0.059 0.065 0.039 
1000 0.077 0.054 0.048 0.046 0.068 0.05 0.054 0.043 

36 items 100 0.092 0.152 0.074 0.066 0.136 0.109 0.151 ******* 

250 0.097 0.118 0.07 0.065 0.115 0.091 0.108 ******* 

500 0.102 0.097 0.069 0.066 0.098 0.075 0.092 0.031 
1000 0.107 0.084 0.069 0.067 0.089 0.073 0.083 0.061 

5 category 9 items 100 0.081 0.104 0.102 0.096 0.227 0.215 0.101 ******* 

250 0.07 0.071 0.073 0.071 0.155 0.108 0.070 0.07 
500 0.069 0.067 0.068 0.068 0.098 0.07 0.066 0.069 
1000 0.068 0.065 0.068 0.068 0.076 0.065 0.066 0.07 

18 items 100 0.249 0.131 0.338 0.335 0.184 0.168 0.31 
250 0.052 0.087 0.061 0.106 0.137 0.098 0.086 0.041 
500 0.047 0.072 0.058 0.054 0.117 0.089 0.071 0.048 
1000 0.053 0.063 0.053 0.053 0.096 0.073 0.062 0.053 

36 items 100 0.059 0.35 0.392 0.383 0.183 0.161 0.352 ******* 

250 0.059 0.103 0.059 0.058 0.132 0.13 0.103 0.049 
500 0.067 0.092 0.065 0.066 0.122 0.103 0.092 0.065 
1000 0.07 0.085 0.069 0.07 0.116 0.098 0.085 0.07 
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The results of the ANOVA for the average bias over all conditions for the 

estimates of the slope and the mean of category parameters are reported in Table 19. 

Table 19 shows that test length and sample size influenced the bias in the estimates of the 

slope and step difficulty parameters. The number of categories in each item affected the 

bias in the estimates of the step difficulty parameters, but did not affect that in the 

estimates of the slope parameters. Prior distributions influenced the bias in the estimates 

of slope parameters, but did not influence that of step difficulty parameters. 

Table 19 

Results of ANOVA for Bias 

Source df Estimates F value P value 

Number of 1 Slope 2.65 .106 

categories 1 Step difficulty 18.16 .000 

parameters 

Test length 2 Slope 7.65 .001 

2 Step difficulty 5.01 .008 

parameters 

Sample size 3 Slope 41.19 .000 

3 Step difficulty 37.58 .000 

parameters 

Prior 6 Slope 16.05 .000 

distributions 6 Step difficulty 1.83 .097 

parameters 

Figures 11 and 12 provide summaries of the average bias of estimates of item 

parameters for 3 and 5 category items across sample sizes (100, 250, 500 and 1000) and 

different priors (no prior, default prior 2, empirical prior 1 and 2, and true distribution 
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based prior 1 and 2) for each test length. As can be expected, using priors provided larger 

bias than not using priors. The bias in the estimates of slope parameters from empirical 

priors was much larger than that of other priors; in particular, the bias in the estimates for 

5-category items is much larger than that for the 3-category items. 

The number of items and the type of prior seem to affect the bias in the estimates 

of the slope parameters. That is, true distribution-based priors resulted in large bias in the 

estimates of slope parameters in short tests (9 items) and default priors resulted in large 

bias in the estimates of slope parameters in longer tests (18 and 36 items). Differences in 

bias among priors decreased as sample sizes increased. However, the bias in the 

estimates of step difficulty parameters did not become zero even when the sample size 

became very large. Also, the bias in estimates of category parameters in small sample 

size for longer tests (5-category 18 and 36 item tests) became large with true distribution- 

based priors. 

The pattern for bias in the estimates of the parameters is parallel to that observed 

for the RMSE. This can be explained in terms of the decomposition of MSD into 

variance and bias. Since the variance term was small, large MSD and hence RMSE was 

the result of bias in the estimates. 
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5.3.3 Item Level Analysis on the Accuracy of Estimation 

To examine the effects of item parameter values and prior distributions on 

accuracy of estimates of item parameters, item level analysis was performed. Item level 

analysis involves examining the nine types of items, explained earlier in the context of 

data generation. The true distribution-based priors can be matched to middle levels of 

slope parameter items and default priors can be matched to high levels of slope parameter 

items. 

The RMSE of estimates for each item type is reported only for 9- and 18- item 

tests, since the priors did not seem to have any effect on the RMSE of estimates for the 

36-item test. In the Figures that follow, item types are represented on the x-axis. Each 

item type is characterized by two letters; the first letter (L=Low, M = Medium, or 

H=High) represents the level of slope parameter value; the second letter (L=Low, 

M=Medium, or H=High) represents level of the step difficulty parameter value. 

The RMSE of estimates of item parameters (slope parameter followed by step 

difficulty parameter) over replications is shown in Figures 13, 14, and 15 for a 9-item 

test with three categories. Figures 16, 17, and 18 show the RMSE of estimates of item 

parameters over replications for a three-category 18-item test. Figures 19, 20, 21, 22 and 

23 show RMSE of estimates of item parameters over replications for a 5- category 9- 

item test while Figures 24, 25, 26, 27, and 28 show the RMSE of estimates of item 

parameters for 5- category 18 item-test. 

In general, the accuracy of estimation was affected by the prior distribution and 

the item type. True distribution-based priors produced smaller RMSE than default priors 

and MMLE for low, medium, and high level slope parameters; MMLE produced smaller 
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RMSE than default priors at low level slope parameters. However, default priors 

produced smaller RMSE than MMLE at medium and high level slope parameters values. 

Empirical priors produced the largest RMSE and hence the least accurate estimation of 

the slope parameters. Clearly, polyserial correlations are not good choice for specifying 

the mean of the prior distributions of the slope parameters. The effect of priors 

diminished as the sample size and test length increased, a result that is consistent with the 

fact that when large amounts of data swamp the priors. The item type also had an effect 

on the accuracy of estimation; slope parameters with low values were estimated more 

accurately than slope parameters with medium and high values. Slope parameters with 

high values were most poorly estimated. 

While the effect of priors on the slope parameters was modest, specifying priors 

for the slope parameters had a positive effect on the estimation of step difficulty 

parameters. Figures 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 27, and 28 reveals that using 

priors for slope parameters reduced RMSE of estimates of step difficulty parameters. 

Even Empirical priors resulted in smaller RMSE of estimates of step difficulty parameters 

than MMLE. It is interesting to note that empirical priors for the slope parameters 

resulted in the largest RMSE of estimates of the slope parameters, but yielded smaller 

RMSE of estimates of step difficulty parameters than MMLE. It appears that any prior on 

the slope parameters increased the estimation accuracy of step difficulty parameters, even 

if it did not improve the estimation of the slope parameter! 

The type of item had an effect on the accuracy of estimation of the step difficulty 

parameters. Extremely low or high values of step difficulty parameters were estimated 

poorly by MMLE; using priors improved the estimation accuracy of this type of items. 
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The level of the slope parameter values also had an effect on the estimation of step 

difficulty parameters; low level of slope parameters resulted in poor estimation of step 

difficulty parameters. This effect was particularly noticeable for sample sizes less than 

250 with MMLE producing the largest RMSE for the estimates of step difficulty 

parameters. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

In the previous chapter, the results of study I and II were presented in detail. This 

chapter contains: (a) a summary of important findings and conclusions from study I and 

II; (b) significance of the results; and (c) delimitations of the study and directions for 

further research. 

6.1 Summary and Conclusions for Study I 

In study I, the effects of sample size, test length, the number of categories in each 

item, and ability distribution on the MML estimates in the GPCM were investigated. The 

results showed that the ability distribution did not have an effect on the accuracy and the 

sampling fluctuations of the estimation of the parameters but had an impact on the bias of 

estimates of item parameters. Uniform ability distribution yielded the largest bias for 

both item parameters. Negatively skewed distribution produced the smallest bias for the 

slope parameter. 

Increasing number of categories from three to five had a positive effect on the 

estimation of the slope parameters. As the number of categories increased, the RMSE 

and the variance of estimates in the slope parameters decreased. However, the number of 

categories in each item did not seem to affect the bias of estimates in the slope 

parameters. On the other hand, increasing number of categories had a negative effect on 

the estimation of the step difficulty parameters. As the number of categories increased, 
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the RMSE, the variance and the bias of estimates in the step difficulty parameters 

increased. 

An explanation of the above result is that for a fixed number of examinees, 

increasing the number of categories results in fewer examinees in each category and this 

in turn affects the accuracy of estimation of the category parameters. The slope 

parameter, being common across the categories, is not affected by the decrease in the 

number of examinees in each category. In fact, increasing the number of categories had a 

modest positive effect on the estimation of the slope parameters - the additional number 

of categories seems to provide more information for the estimation of the slope 

parameter. To examine this phenomenon further, data were generated for a dichotomous 

item response model with the same slope parameter and with the mean of the category 

parameters being the difficulty parameter. Results not reported here revealed that RMSE, 

variance, and bias in the slope parameter showed an increase when compared with the 

results for the three and five category items. 

Results from study I showed that sample size and test length had a clear effect on 

the accuracy of estimation and sampling fluctuations of the estimates of parameters in the 

GPCM. As sample size and test length increased, the accuracy of estimates increased and 

the variance of estimates and the bias of estimates in the slope parameters decreased, but 

the bias of estimates in the step difficulty parameters remained constant. Even as sample 

size and test length increased, the bias of estimates in the step difficulty parameters 

increased. 

The most noticeable decrease of RMSE and the variance of estimates of 

parameters occurred when sample size increased from 100 to 250. The improvement 
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beyond 250 was modest. The results of study I suggest that a minimum number of 250 

examinees is required to obtain reasonably accurate parameter estimates of the GPCM 

with 3- and 5-category items with the computer program PARSCALE. 

The results of the study I showed that, in general, the ability distribution did not 

affect the accuracy and variance of parameter estimates for the GPCM. This result, 

however, does not agree with the results of previous studies (Reise & Yu, 1991; De 

Ayala, 1995). Both these studies found that estimation was more accurate with samples 

drawn from uniform distributions than with samples from other distributions. These 

contradictory findings may be partly due to the fact that the item parameter values that 

were used in this dissertation were taken from a NAEP administration, and these items 

favored a negatively skewed distribution. The previous studies also used a different 

polytomous IRT model and a different computer program. This fact may have also 

contributed to the contradictory findings. 

While the ability distribution did not influence the accuracy and variance of 

estimates, it did influence the bias of item parameter estimates. The bias of estimates was 

large with samples from a uniform distribution and small with samples from a negatively 

skewed distribution. This results may have been due to the fact that the true item 

parameter values used in the study had a negatively skewed distribution which matched 

the distribution of the true parameter values. 

Overall, the results of the study I showed that MML estimators of the parameters 

of the GPCM, as obtained through the computer program, PARSCALE, performed well 

under various conditions. Even with a sample size as small as 250, reasonable parameter 

estimates of the GPCM can be obtained if there are some examinees in each category. 
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However, there was some bias in the estimates of the category parameters under all 

conditions. The average bias did not decrease when sample size and test length 

increased. Since the Mean squared error is the sum of sample variance and squared bias 

and the sampling variance decreased as sample size and test length increased, the bias 

was contributed to the RMSE in the estimation of category parameters. The constant bias 

in the estimates implies that the estimators may not be consistent, a disturbing finding. 

Further studies are needed to investigate the effect of bias in the estimates of parameters 

in polytomous IRT models on the estimation of ability, in the development of item banks, 

and on adaptive testing. 

6.2 Summary and Conclusions for Study II 

In Study II, Bayesian estimation was investigated. In particular, the effect of 

prior distributions on the accuracy of estimation was examined. Prior distributions had an 

effect on the accuracy of estimates of item parameters in small samples. As can be 

expected the effect of prior distribution was minimal in large samples. The default priors 

for slope parameters used in the PARSCALE program resulted in smaller RMSE than 

that obtained with MMLE in small samples, but yielded larger RMSE of estimates than 

MMLE in large samples. However, the default priors resulted in smaller RMSE for 

estimates of the step difficulty parameter than did MMLE. Empirical priors resulted in 

the largest RMSE for estimates of slope parameters, but produced smaller RMSE than 

MMLE for estimates of step difficulty parameters. 

Bayesian procedures, including empirical priors, yielded smaller variances than 

MMLE under all conditions. As can be expected, Bayes procedures produced more bias 
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than MMLE in the estimates of item parameters. Despite the fact that there was more 

bias with Bayes procedure, it produced smaller RMSE than MMLE. This apparently 

contradictory finding is the result of the fact that MSE is made up of two parts- sampling 

variance and bias. Bayes procedure resulted in smaller sampling variance than MML 

procedure; however, the bias in the Bayes estimates were larger than that found with 

MMLE. The variance and bias terms combined in such a way as to result in smaller 

RMSE for Bayes estimates. 

In general, the results of study II showed that Bayes procedures provided more 

accurate estimates of slope parameters with small data sets. However, in order to apply a 

Bayes procedure prior distributions need to be specified. To investigate if prior 

distributions based on the data could be useful, the effectiveness of data-based priors was 

investigated. The transformed proportion of examinees falling in each category was 

taken as the mean of the distribution for the difficulty parameters, and transformed item- 

total polyserial correlation was used as the mean of the distribution for the slope 

parameter. 

Empirical, or data-based priors behaved poorly for estimates of the slope 

parameters. This result may be due to the fact that poly serial correlations are poorly 

determined in small samples and are poor indicators of slope parameters. Priors on the 

slope parameters, while having only a modest effect on the accuracy of estimation of 

slope parameters, had a very positive effect on the accuracy of estimation of the step 

difficulty parameters. Even the generally poor empirical priors on the slope parameters, 

produced more accurate estimates of the step difficulty parameters than MMLE. 
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From the results of item level analysis, it was clear that when the priors matched 

the true parameter values, very accurate estimates were obtained. In specifying default 

priors, priors for some items would match the true values. For example, default priors 

that matched the true values of high-valued slope parameters produced smaller RMSE for 

the high and medium value slope parameters than MMLE, but produced larger RMSE 

than MMLE for items with low-valued slope parameters. An interesting and important 

finding is that any prior for slope parameters reduced RMSE of estimates of step 

difficulty parameters. 

The type of item had an effect on the accuracy of estimation. As expected, step 

difficulty parameters with high or low values were estimated less accurately than those 

with medium values. This result is probably due to the smaller number of examinees in 

the extreme categories. Further studies are needed to determine the minimum number of 

responses in each category to obtain reasonably accurate estimates of the category 

parameters in polytomous IRT models. Slope parameters with low values were estimated 

more accurately than those of with high values. However, items with low slope values 

had a negative effect on the estimation step difficulty parameters especially in small 

samples. 

6.3 Significance of Study 

Polytomous IRT models are increasingly used in many situations and accurate 

estimates of item parameters in polytomous IRT models are critical in practical 

applications. There are, however, only a few studies have been carried out about the 

estimation of parameters in polytomous IRT models. The results of this study have 
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provided valuable information about the properties of various estimators of parameters 

in the GPCM and the computer program PARSCALE. In particular, results pertaining to 

the effect of such factors as sample size, test length, the number of categories in each 

categories on the estimates of item parameters will be useful to practitioners who are 

interested in using the GPCM in assessments about the methods of estimations and 

conditions under which the GPCM can be successfully applied. The effectiveness of 

Bayesian procedures in small samples and short tests will be of special importance for 

performance-based assessment. 

6.4 Delimitations and Directions for Further Research 

While the present investigation yielded potentially useful findings for 

practitioners, it also had certain limitations. First of all, this study used the computer 

program PARSCALE to obtain estimators of parameters in the GPCM. Even though the 

result of study showed that PARSCALE performed well under various conditions, there 

was considerable bias in the estimates of the step difficulty parameters under all 

conditions. To determine the source of bias in the estimates of step difficulty parameters, 

other computer programs with must be investigated. 

Secondly, study II focused on the effect of priors on the slope parameters. Bayes 

procedures with priors on the slope parameters worked well, except for data-based 

priors; however, even these priors on the slopes were beneficial for the estimation of 

step difficulty parameters. While the results obtained in this study II showed that Bayes 

procedures have the potential for improving the estimation of item parameters in the 

generalized partial credit model, further research is needed, particularly with respect to 
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specifying priors for the step difficulty parameters. A hierarchical Bayes procedure as 

indicated by Swaminathan and Gifford (1982, 1985, and 1986) for estimating parameters 

may prove to be more useful in the context of the partial credit models. This approach 

needs to be investigated. 

Further study is needed to determine how small a sample size is needed in a 

response category to obtain reasonable estimates of the category parameters in 

polytomous IRT models. De Ayala (1995) found that item parameters from the data set 

with the greatest dispersion of responses across item categories were estimated more 

accurately than from the data set with the least variability across item categories. The 

estimation of parameters for categories with few observations tends not to be as accurate 

as that for categories with relatively more observations. Inaccuracy of parameter 

estimates may be related to the insufficient number of examinees in response categories 

and not directly be related to total sample size or ability distribution. 

A simulation study with possible combinations of item parameter values is needed 

to provide more general information for varied conditions. Since this study used the 

estimates of item parameters from real data set as true item parameter values, those values 

did not cover all possible combinations of item types. 

While this study focused on estimates of item parameters because accurate item 

parameter estimates are critical for such applications as item banking, equating, and 

studies of differential item functioning, the ultimate purpose of testing is to estimate an 

examinee’s “ability” or proficiency level. It is necessary, therefore, to investigate the 

conditions under which accurate estimates of ability parameters is obtained in 

polytomous IRT models. In order to estimate ability parameters, it has to be assumed that 
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accurate values of item parameters are available. The current study has shown that item 

parameters are estimated with error. The effect of item parameter estimate error on 

ability parameter estimates is not known and a detailed investigation of the effects of 

errors in item parameter estimation on ability estimation needs to be undertaken. 
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