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ABSTRACT 

USE OF COLLABORATIVE COMPUTER SIMULATION ACTIVITIES BY 

HIGH SCHOOL SCIENCE STUDENTS LEARNING RELATIVE MOTION 

FEBRUARY 1996 

JAMES M. MONAGHAN, B.A., SAINT ANSELM COLLEGE 

Ed.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Klaus Schultz 

Galileo's contemporaries as well as today's students have 

difficulty understanding relative motion. It is hypothesized that 

construction of visual models, resolution of these visual models with 

numeric models, and, in many cases, rejection of epistemological 

commitments such as the belief in one "true" velocity, are necessary 

for students to form integrated mental models of relative motion 

events. 

To investigate students' relative motion problem solving, high 

school science students were videotaped in classroom and 

laboratory settings as they performed collaborative predict- 

observe-explain activities with relative motion computer 

simulations. The activities were designed to facilitate conceptual 

change by challenging common alternative conceptions. Half of the 

students interacted with simulations that provided animated 

feedback; the other half received numeric feedback. Learning, as 

measured by a diagnostic test, occurred following both conditions. 

There was no statistically significant difference between groups on 

the measure. 
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It is hypothesized that students did not show statistically 

significant performance differences on the relative motion test 

because a) many students were able to solve numeric problems 

through algorithm use; b) many numeric condition students were 

aided in their ability to visualize problems by interaction with the 

treatment; and c) the animation condition fostered little learning 

because the activities were too easy for students to perform. 

Students' problem solving was examined through analyses of 

protocols and through statistical analyses of written responses. 

Evidence supported the following findings: 

• Numeric condition students had more difficulty with the 

computer activities than animation condition students. 

• Many students in both groups were able to construct accurate 

mental models of relative motion events. 

• A number of numeric condition students used faulty mechanical 

algorithms to solve problems. 

• A number of animation condition students used visualization to 

solve problems, mapping dynamic visual features of the 

animations onto posttest problems. 

Thus, there is evidence that presentation of numeric data can 

foster students' use of mechanical algorithms. Presentation of 

animations can foster visualization of target problems solved off¬ 

line. These results suggest that, in addition to the structure of the 

simulations, how computer simulations are used may have a great 

impact on students' cognition. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEWS 

Introduction 

Despite the application of resources and the efforts of 

educational professionals, students often cannot understand 

seemingly straightforward science concepts. (See Scott, Asoko & 

Driver, 1991; McDermott, 1982, 1984 for reviews.) There is some 

consensus that in order for students to develop scientific 

understanding of many science topics, their naive understanding 

needs to be modified or abandoned, i.e., conceptual change is 

necessary (see especially Posner, Strike, Hewson, & Gertzog, 1982; 

Strike & Posner, 1992). One difficult topic for students is Galilean 

relativity, or relative motion (Aguirre & Erickson, 1984; Bowden, et 

al., 1992; Camp, et al., 1994; diSessa, 1993; Hewson, 1984; Inhelder 

& Piaget, 1958; McCloskey, Washburn, & Felch, 1983; McDermott, 

1982; 1984; Metz & Hammer, 1993; Pasne, Ramadas, & Kumar 1994; 

Saltiel & Malgrange, 1980; Ueno, Arimoto, & Yoshioka, 1992; Ueno, 

1993; Walsh, et al., 1993; Zietsman & Hewson, 1986). 

As a tool to facilitate conceptual change, computers seem 

promising. Indeed, computer hardware and software 

manufacturers and academic researchers have heralded the 

computer as a tool for assisting students' understanding of 

mathematics and science (See, for instance, Adams & diSessa, 1991; 

BBN, 1992; Choi & Gennaro, 1987; de Jong, 1991; Driver & Twigger, 

1993; Gorsky & Finegold, 1992; Hawkins & Pea, 1987; Hewson, 

1984; Holliday & McGuire, 1992; Howe, Tolmie, Anderson, & 
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Mackenzie, 1992; Kozma, 1991; Lewis, Stern, & Linn, 1993; 

McDermott, 1990; Njoo & de Jong, 1993; Papert, 1980, 1993; Reiner, 

Pea, & Schulman, in press; Rieber, 1990; 1991; Roth, 1995; Sachter, 

1990; Sherin, diSessa, & Hammer, 1993; Simmons & Lunetta, 1993; 

Steed, 1992; Stewart, Hafner, Johnson, & Finkel, 1992; Thornton & 

Sokoloff, 1990; van Berkum & de Jong, 1991; Weller, 1995; White, 

1993; White & Frederiksen, 1987; Zietsman & Hewson, 1986). 

Concerning animated computer simulations, Rieber (1990) 

concluded that 

The results of this study indicated certain conditions under 
which animation can be used effectively to elaborate a lesson’s 
content. These conditions include: 
(a) using animation to teach lesson material that requires 
students to visualize motion and trajectory attributes; 
(b) using animation to teach lesson material that is adequately 
challenging but not unreasonably so; 
(c) effectively cueing students' attention to motion and 
trajectory details contained in animation; and 
(d) effectively using animation in tandem with other 
supportive instructional activities such as practice, (p. 139) 

To date, however, few studies have addressed how students learn 

(or don't learn) science during and after use of computer 

simulations. 

In this study, I investigated interactions between high school 

science students and relative motion computer simulation activities. 

Through a combination of qualitative and quantitative 

methodologies, performance gains on a measure of relative motion 

understanding as well as changes in understanding and factors 

associated with the changes in understanding were examined. Goals 

of the research included improved understanding of methods for 
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teaching relative motion and improved understanding of how 

computer simulation activities can assist conceptual change. In the 

broader sense, results of the study have the potential to inform 

science pedagogy and the design and implementation of computer 

simulation learning environments. Below, reviews of relevant 

research are presented to situate the studies conducted. 

Literature Review: Research on Conceptual Change 

Theories of Conceptual Change 

Theories concerning alternative conceptions appear to fall into 

two varieties (See Vosniadou & Brewer, 1992). On the one hand, 

theorists like diSessa (1988), McDermott (1984), and Ueno (1993) 

posit that students' conceptions are not organized. Other theorists, 

like Carey (1985, 1986), Clement (1982), Strike, Posner, Hewson, 

and Gertzog (Strike & Posner, 1992; Posner, Strike, Hewson, & 

Gertzog, 1982), Vosniadou and Brewer (1992) contend that 

alternative conceptions are indeed like theories. 

In Posner et al.'s (1982) oft cited seminal work, conditions 

believed to be necessary for conceptual change were defined. By 

conceptual change, the authors were referring to accommodation in 

which new structures are created to accommodate new knowledge, 

as opposed to assimilation in which existing structures are used to 

organize new knowledge. The authors indicated that in order for 

conceptual change to occur, the student must be dissatisfied with 

his or her conception. Additionally, the new conception must be 

intelligible, plausible, and fruitful. The authors likened a student s 

conceptual change to a paradigm shift in a scientific community (see 
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T. Kuhn, 1970). The existence of anomaly and the student's 

"fundamental assumptions about science and knowledge" are 

considered to be critical components of a student's "conceptual 

ecology," or set of existing concepts. (See Hulland & Munby, 1994 

for a case study contrasting two students' conceptual ecologies.) 

Posner, et al. (1982) considered analogies and metaphors, along 

with anomalies, epistemological commitments, metaphysical beliefs 

and concepts, and other knowledge (including competing concepts) 

to be elements of the student's conceptual ecology. 

In a 1992 paper, Strike and Posner revised the theory of 

conceptual change to include factors that affect the learner's 

conceptual ecology. The older theory of conceptual change was 

considered deficient because, according to the authors, the following 

factors require consideration: 

1. A wider range of factors needs to be taken into account in 
attempting to describe a learners' [sic] conceptual ecology. 
Motives and goals and the institutional and social sources of 
them need to be considered. 

2. Current scientific conceptions and misconceptions are parts 
of the learner's conceptual ecology. Thus they must be seen 
in interaction with other components. 

3. Conceptions and misconceptions can exist in different modes 
of representation and different degrees of articulateness. 

4. A developmental view of conceptual ecologies is required. 
5. An interactionist view of conceptual ecologies is required. 

(p. 1) 

Indeed, Pintrich, Marx, and Boyle (1993), indicated that affect 

factors such as the student's opinion of him or herself as able to 

learn the material, and the goals of the student, affect whether 

conceptual change will occur. Due to fundamental differences 

between students and scientists, the authors state that a model 
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which views students' conceptual change as analogous to a scientific 

paradigm shift (as in T. Kuhn, 1970) is flawed. 

Deana Kuhn (1989) stated that it is erroneous to consider 

children to be scientists because, among other things, children 

cannot distinguish between evidence and theory. She indicated the 

tenacity of students in holding onto theories in the face of 

contradictory evidence. Additionally, she asserted that students 

will often modify a theory to fit contrary evidence. However, it 

seems that this is exactly what Thomas Kuhn (1970) says occurs 

when scientists are confronted with anomalous data. Carey (1985, 

1986), who believes that children's alternative conceptions are 

organized, showed evidence that children display an intuitive 

theory of biology. Carey (1986) disagreed with McDermott (see 

1984), who stated that students "lack a consistent conceptual 

system at all." (Carey, 1986, p. 1128) 

Like McDermott (1984), diSessa (1988) believes that 

alternative conceptions are not similar to scientific theories but are, 

rather, constructed of isolated bits of knowledge that are activated 

in given problem instances. These isolated bits of knowledge, which 

he calls phenomenological primitives (p-prims) can be applied to 

diverse phenomena, but lack organization and are applied on a case 

by case basis. 

Dykstra, et al. (1992) indicated that phenomenological 

primitives were insufficient to account for conceptual change. He 

believes that it is necessary to determine the conditions necessary 

for activation of p-prims, including the range of instances in which 

the p-prims are activated as well as the conditions necessary for 
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application. Additionally, relationships between p-prims and 

concepts like force and velocity, as well as intra-concept 

relationships need to be specified in order to account for conceptual 

change, according to Dykstra, et al. They distinguished three types 

of conceptual change: differentiation, class extension, and 

reconceptualization. They believed that "conceptual change does 

not depend on contradiction, but on disequilibration." (p. 626) 

Dykstra, et al. distinguished between a situated belief, or applied 

conception, and a fundamental belief, which elucidates how the 

world works and is explanatory. This type of fundamental belief 

seems analogous to diSessa's (1988) p-prims and Brown's (1993) 

"core intuitions." 

Vosniadou and Brewer (1992) believe that children construct 

mental models with a stable conceptual structure. Vosniadou and 

Brewer showed evidence of students' construction of "synthetic" 

models which appear to integrate attributes of the adult "earth is a 

sphere" theory with children's conceptions such as "the earth is 

flat." Whether these mental models are stored in long term 

memory or are constructed spontaneously was an open question. 

Nevertheless, Vosniadou and Brewer stated that "the fact that 82% 

of our data can be explained by assuming that the children were 

consistent in their use of one of a small set of mental models about 

the earth strongly suggests that there are some stable underlying 

conceptual structures which constrain the range of possible mental 

models that children can form." (p. 576) In citing Brewer & 

Samarapungavan (1991) and Wiser (1988), the authors indicated 

that: 
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The arguments in favor of the position that children are self¬ 
contradictory and inconsistent often do not take into 
consideration that what may appear as contradictory and 
inconsistent from the adult or expert point of view may not be 
contradictory from the point of view of the child, (p. 580) 

Vosniadou and Brewer stated that for conceptual change to occur, 

children must reinterpret their presuppositions. This 

reinterpretation would occur within a different explanatory 

framework. 

Concerning mental models, Collins and Gentner (1987) believe 

that analogies are used in the construction of mental models. The 

authors stated: "Our thesis is that people construct generative 

models by using analogy to map the rules of transition and 

interaction from known domains into unfamiliar domains." (p. 26) 

According to Collins and Gentner (1987), the rules that govern 

transition from one state to another within the model allow 

inference to occur and allow "simulations" to be performed. Due to 

the occurrence of specific (erroneous) models, the authors 

concluded that mental models are culturally transmitted. 

Hewson and Hewson (1991), like Dykstra, et al. (1992), 

indicated that there are different types of conceptual change. They 

pointed out a distinction between conceptual capture, when 

students are "learning things they didn't know by making 

connections to what they already know," and conceptual exchange, 

in which a student must exchange an existing conception for a 

competing conception. Hewson and Hewson (1991) indicated that in 

order for a student to replace one conception with another 

conception, he or she must show dissatisfaction with the conception. 
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Driver and Twigger (1993) echoed the views of many of the 

authors cited above when they stated that "common sense 

reasoning appears to be governed by more pragmatic principles; it 

is characterized by ideas which seem to work in particular 

situations in response to particular tasks." (p.4) In a review of 

literature, Guzzetti, Snyder, Glass, and Gamas (1993) listed 

researchers' theories concerning the cause of alternative 

conceptions: 

Researchers have classified misconceptions as physically 
derived (resulting from interactions with the physical 
environment), socially derived (based on interactions with 
family members, peers, or the media), or instructionally 
derived (resulting from formal instruction), (p. 117) 

In a review of the pertinent educational research published in 

1990, Finley, Lawrenz, and Heller (1992) summarized the state of 

understanding of students' conceptual change: 

This reviewer believes that more in-depth studies of how 
students' 'common sense' knowledge changes in response to 
innovative arrangements of instructional content offers one 
promising avenue for research. If we can describe in some 
detail exactly what types of transformations of instructional 
content are made by students as their prior knowledge 
interacts with instructional content, then we can perhaps move 
forward and develop theories of conceptual change that will 
allow us to predict what students will know after instruction. 

(p. 244-245) 

Alternative Conception Classification and Conceptual Change 

Pedagogy 

Selection of the treatment used in teaching studies was 

dependent on the theory of conceptual change accepted by the 

researchers. There seems to be some consensus that strategies 
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which promote cognitive conflict will effectively promote theory 

change. However, as previously indicated, not all researchers 

believe that students' alternative conceptions are accurately termed 

theory-like. DiSessa, for example, who believes that students' p- 

prims are not well organized, appears to be against confrontation 

and indicated that students need to organize their intuitions, not 

replace a theory with another theory. Indeed, diSessa (1993) called 

confrontation "the fallback of all misconceptions research" (p. 201) 

and stated that "an expert's sense of mechanism is built on a 

fundamental continuity in form and content with intuitive physics." 

(p. 201) 

In a meta-analysis of statistically based research studies 

performed in classrooms by science education researchers as well 

as by reading instruction researchers, Guzzetti, Snyder, Glass and 

Gamas (1993) concluded that studies which achieved effects all 

promoted cognitive conflict. Notably, the authors concluded that 

"nonrefutational expository text (the type of text most commonly 

found in textbooks)" (p. 130) was ineffective as the sole treatment. 

Text which promoted cognitive dissonance (such as refutational 

text, which explicitly refuted misconceptions) were shown to be 

effective treatments. 

Scott, Asoko, and Driver (1991), in a review of conceptual 

change teaching strategies, organized treatments into strategies that 

relied upon "cognitive conflict and its resolution" and strategies 

which are "based upon the development of ideas consistent with the 

science point of view." In summarizing some of the research 

studies, Scott, et al. stated: 
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Students have variously been encouraged: to exchange their 
existing ideas for entirely new conceptions (Nussbaum and 
Novick, 1982); extend or develop existing views and apply 
them in new situations (Brown and Clement, 1989); develop a 
scientific understanding which may be held in parallel with 
existing notions (Nieddererer, 1987); recognize the 
appropriateness and/or applicability of models in different 
situations (Stavy and Berkovitz, 1980). (p. 327) 

As mentioned in Scott, et al.'s review, Stavy (see Stavy, 1991) 

indicated that conflict strategies may negatively impact some 

students' self esteem and may cause regression. Stavy (1991), 

rather than using a conflict strategy, used a strategy which 

promoted reasoning by analogy. In this study, students benefited 

from "perceptual reinforcement," in which students experimented 

with a colored chemical before doing a similar experiment with a 

colorless chemical. Brown (1993) also advocated use of analogy to 

refocus students' "core intuitions." He stated that analogy assists 

with "concretizing" concepts, and providing a physical "explanatory 

model," as distinct from pedagogical methods that would promote 

abstract relations. Camp, et al. (1994) employ a "bridging analogies" 

strategy for ameliorating students' alternative conceptions in 

mechanics. In this strategy, which was criticized by Fischer (1993) 

for being based on a transmission model, students are led through a 

series of analogies which ultimately lead to a target case that was 

initially conceptualized differently. 

Reports by Sequeira and Leite (1991), Dykstra, et al. (1992), 

and Hewson and Hewson (1991) described techniques that teachers 

could use to diagnose students' alternative conceptions. Agreeing 

with Clement (1982) and providing additional evidence that likens 
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students' alternative conceptions to theories (like impetus) 

previously held by scientists, Sequeira and Leite (1991) contended 

that teachers should be aware of the history of science in order to 

anticipate and diagnose students' alternative conceptions. 

Additionally, Sequeira and Leite promoted making students aware 

of their alternative conceptions as well as the limitations of the 

conceptions. They indicated that this should precede presentation 

of the scientifically held conception. 

Dykstra, et al. (1992) promoted the use of conceptual maps as 

a diagnostic tool which could be used to document 

interrelationships between concepts as well as indicate the 

structure of a conception (organizing framework for concepts). 

Hewson and Hewson (1991) listed four ways to diagnose the 

status of a student's conception: "technical interview," non¬ 

technical interview, "technical" class discourse, and non-technical 

class discourse. In a "technical" interview or class discourse, the 

teacher or investigator uses language consistent with the conceptual 

change model (CCM). Language is carefully used which assists with 

the extraction of students' ideas about the plausibility, intelligibility 

and fruitfulness of a conception. The authors stated that use of 

language which is not consistent with the CCM model, in an 

interview or classroom setting, makes the task of diagnosis more 

difficult, as the teacher or researcher must make more inferences 

concerning the status of a student's conception. A confounding 

influence discussed by the authors was students' lack of precision 

and lack of understanding of the terms "intelligible," "plausible,' 

and "fruitful." 



Linn and Songer (1991) indicated that students often hold 

multiple, contradictory or incongruous intuitions and are apparently 

unconcerned about the conflict. Students, in thermodynamics, for 

instance, view heating and cooling as fundamentally different 

processes. The authors showed gains in junior high school students' 

understanding of thermodynamic principles through use of a 

computer simulation (CLP: computer as lab partner) in a predict- 

observe-explain format. Additionally, the students were exposed to 

classroom experiences in which a heat flow model was presented 

rather than a kinetic theory model. The authors posited that such a 

macroscopic model (heat flow), based on "pragmatic experience" 

was more easily used by students than the expert kinetic theory. 

The authors believed that difficult models often cannot be 

constructed by students and are instead memorized. 

Mayer (1989) reviewed several published studies conducted 

by himself and his colleagues in which students were given a 

concrete model to examine and concluded that giving students 

"conceptual" (concrete) models during or before instruction with 

low aptitude students increased transfer performance as well as 

conceptual understanding. No gains occurred with higher aptitude 

students. Domains investigated included physics (radar, Ohm's law, 

density, cameras, brakes) biology (nitrogen cycle) and computer 

science (data base and BASIC programming). Norman's (1986) 

words concerning design of computer interfaces seems applicable to 

the design of models in general, such as the "concrete models" 

described in Mayer: 
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The problem is to design the system so that, first, it follows a 
consistent, coherent conceptualization - a design model - and, 
second, so that the user can develop a mental model of that 
system - a user model - consistent with the design model. 
(p.46) 

Linder (1993), disagreed with the direction of conceptual 

change pedagogical research, indicating that more emphasis should 

be placed on showing students the range of applicability of 

conceptions. For instance, Linder states that Newtonian mechanics 

was sufficient to send a man to the moon. In his conclusion, Linder 

stated: 

I want to argue that science educators' depiction of learning 
should be extended so that less emphasis is put on efforts to 
change segments of students' existing repertoires of 
conceptualizations and more effort on enhancing students' 
capabilities to distinguish between conceptualizations in a 
manner appropriate to some specific context—in other words, 
being able to appreciate the functional appropriateness of one, 
or more, of their conceptions in a particular context, making 
science education into a functional base from which to view the 

world, (p. 298) 

Hawkins and Pea (1987) stressed the need for students to 

become acculturated into the scientific community. They developed 

software which they claimed fostered students' scientific 

acculturation. Howe, Tolmie, Anderson, and Mackenzie (1992) 

showed evidence for conceptual change when a group of students 

interacted with a computer simulation. They believed that the 

dynamics of groups can foster conceptual change. Driver, et al. 

(1994) and Cobb (1994) presented a balance between social 

constructivism and individual conceptual change. Minstrell (1982) 
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stated the following about classroom interactions and conceptual 

change: 

The results of my investigation suggest the following 
instructional factors that apparently aid in the development of 
the students' concept of force: a) an engaging, free thinking, 
free speaking social context, in which students are encouraged 
to articulate their beliefs, b) a juxtaposition of a variety of 
first-hand experiences with static objects, and c) 
encouragement to search for the simplest, consistent, rational 
argument that will explain the similarity of effects in an 
apparent diversity of experiences, (p. 10) 

Though Watson and Konicek published in 1990, their 

statement concerning the state of conceptual change research is still 

salient: 

We need to study more deeply the views held by children [and 
older students], to learn the purposes they serve, to learn their 
innate structures, and to learn how they are formed and used. 
Perhaps then we will be better able to understand our role as 
teachers, (p. 685) 

As illustrated in the preceding review, there is disagreement 

concerning: 

• alternative conception diagnosis. 

• what is considered to be conceptual change. 

• whether students' alternative conceptions are 

theory-like. 

• how students' conceptual change can be facilitated. 

Alternative Conception Diagnosis 

Concerning diagnosis and classification of students' alternative 

conceptions, a 1992 Science Education issue that reviewed 1990 

science education research, claimed that additional basic research 

must be done to diagnose students' alternative conceptions. 
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Research that classifies students' alternative conceptions is, 

however, time consuming and inexact. Fischer (1993) promotes 

analysis of videotape to accurately diagnose students' thought 

processes; he believes that one cannot completely analyze students' 

responses through analysis of audio tapes or written transcripts. 

However, though students' protocols do provide useful qualitative 

data, analysis is dependent on interpretation of students' responses. 

Hewson and Hewson's (1991) "technical" interview and "technical" 

classroom discourse show promise; it seems that even by requesting 

students to use "technical" language in which they express their 

opinions of whether an idea is plausible, intelligible or fruitful, a 

teacher may not get an accurate indication of the students' opinion 

of their own or other conceptions. One reason, as indicated by 

Hewson and Hewson, is that students are often imprecise in their 

use of language. Camp, et al.'s (1994) "make sense" scales seem to 

extract similar information concerning students' opinions of science 

concepts. Also, new methodologies may assist with diagnosis; 

Dykstra, et al.'s (1992) research program in which artificial 

intelligence will be applied to protocol analysis seems promising . 

Dykstra et al.'s work looks promising due to their commitment to 

protocol analysis which describes a model of student's thinking 

which is predictive. 

What Is Considered To Be Conceptual Change 

Concerning "what counts" as an alternative conception, there 

appears to be consensus that alternative conceptions are important 

when they are fundamental beliefs that serve as a framework for a 

student's reasoning. There is also evidence that students' 
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alternative conceptions tend to be applied on a case by case basis. 

(This seems consistent with evidence which shows that students 

tend to classify problems according to surface features instead of 

according to underlying principles (see Schauble, 1992).) Thus, 

there is disagreement concerning whether such alternative 

conceptions are at all like theories. As previously mentioned, 

diSessa (1988) and McDermott (1984) disagree with the apparently 

dominant view (see, for example, Clement, 1982; Vosniadou & 

Brewer, 1992; Carey, 1986, 1985) that students' alternative 

conceptions are theory-like. 

Consistent with the view that students' alternative 

conceptions tend to be organizing frameworks, conceptual exchange 

was distinguished from conceptual capture by Hewson and Hewson 

(1991). However, as diSessa (1988) alludes, such distinctions 

presume that students must exchange one theory for another 

theory and not merely organize their conceptions. 

Whether Students' Alternative Conceptions Are Theorv-Like 

Concerning the process of conceptual change, the conceptual 

change model promoted by Strike, et al. (1992) and Posner, et al. 

(1982) seems attractive to many who would claim that students' 

alternative conceptions are theory-like. However, a major criticism 

of the model, which likened students' conceptual change to the type 

of changes that occur in a science community during a period of 

paradigm change (see T. Kuhn, 1970), is that students may not 

operate like scientists . Specifically, there is concern that students 

have different goals and opinions of themselves as learners than do 
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scientists (Pintrich, et al., 1993) and may also reason differently 

than scientists (D. Kuhn, 1991). 

How Students* Conceptual Change Can Be Facilitated 

DiSessa (1988) believes that novice students need to organize 

their fundamental conceptions (p-prims); he believes that properly 

structured experiences within a computer microworld will facilitate 

such organization of conceptions. Similarly, Papert (1980, 1993) 

believes in the benefits of students' design and construction 

enterprises within computer microworlds, what he would term 

"constructionism." 

Notwithstanding the positions of diSessa and Papert, there is 

some consensus that cognitive conflict must be facilitated for a 

student to engage in conceptual change. An important caveat is 

raised by Stavy (1991) however, to pedagogical strategies that 

promote conflict; namely, that such conflict may be counter¬ 

productive for some students. Minstrell's (1982) position, in which 

classroom discussion is promoted in an environment in which 

students are not afraid to be wrong, may foster students' conceptual 

conflict without loss of self-esteem. Additionally, theorists like 

Champagne & Klopfer and Osborne (as referenced by Hulland & 

Munby, 1994), indicated that in order for students to make 

successful use of new knowledge they must have in place the 

framework necessary to process the information (See also 

Karmiloff-Smith & Inhelder, 1975). Vygotsky's (1978) idea of the 

"zone of proximal development" is closely related and involves the 

difference between competence when solving problems alone and 

competence when aided by an adult or more accomplished partner. 
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Conclusion 

To summarize, it appears that the conceptual change model 

(which necessitates that for conceptual change to occur the student 

must be dissatisfied with the old conception, and must find the new 

conception intelligible, plausible, and fruitful (see Strike, et al. 

1982; Posner & Strike, 1993; Hewson & Hewson, 1991; Hewson, 

1984)) is a viable (see von Glasersfeld, 1994) representation of 

what must occur for students to exchange one conception for 

another conception. Many pedagogical strategies which promote 

cognitive conflict show efficacy in facilitating conceptual change, 

apparently providing the student with a source of dissatisfaction 

with his or her current conceptions. Additional basic research is 

needed to efficiently diagnose and classify students' alternative 

conceptions as well as to develop new pedagogical strategies and 

refine current strategies which facilitate conceptual change. 

Literature Review: Research On Relative Motion Learning 

Below, a review of studies which classified students' relative 

motion reasoning is followed by a review of programs that tested 

pedagogical strategies for teaching relative motion. 

Research Which Classified Subjects' Relative Motion Reasoning 

Aguirre and Erickson (1984) attempted to investigate 

preconceptions of twenty tenth-grade students, eleven male and 

nine female volunteers, in British Columbia. Males and females 

gave similar responses. In describing students' protocols, the 

authors indicated the following: 

The student's response may have: omitted an important 
variable, used a qualitative rather than a quantitative 
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description, or failed to recognize the importance of certain 
procedures such as adopting a common reference point to 
describe several locations in the same setting, (p. 451) 

They describe "inferred rules" that students apply to a range 

of relative motion problems, but they indicate that these rules are 

"highly context dependent" (p. 451). They documented both 

misconceptions and accurate conceptions. Two of the students' 

accurate conceptions, according to the authors included: 

• hypotenuse is smaller than sum of sides (for a two 

dimensional relative motion case) This is considered significant 

as it indicates a directional sensitivity on the part of the 

students. 

• forces that act simultaneously are considered to act 

simultaneously and not serially. (However, some students posit 

that two forces "fight" with one another) (see p. 452) 

Difficulties and misconceptions identified by Aguirre and Erickson 

(1984) included: 

• the use of many reference points in a description of position. 

• the use of qualitative descriptions of relative position, (see 

p. 452) 

• the dependence on the river current of the boat's velocity 

vector relative to the river. 

In their research, Walsh, et al. (1992) used a 

phenomenographic methodology to investigate students' 

explanatory ideas for relative motion scenarios. The authors 

established a hierarchy of conceptual frameworks which students 
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used to explain instances of relative motion. The attempt to 

categorize students' responses in this hierarchical fashion 

resembled Aguirre and Erikson's 1984 effort. 

McCloskey, Washburn, and Fetch, in "The straight-down belief 

and its origin," published in 1983, investigated subjects' relative 

motion misconceptions concerning the path of a dropped ball. This 

study involved paper and pencil tests, as well as several laboratory 

experiments. Throughout, McCloskey, et al. argued that there is 

reason to believe that students believe that a ball that is dropped 

by a person will land directly below the spot at which it was 

dropped. The authors suggested that the straight down belief is 

part of many people's knowledge system concerning movement. 

Through analysis of a controlled computer experiment and a 

controlled video experiment, the authors made a case for the idea 

that the straight-down misconception is caused by a perceptual 

illusion. The limitations of smooth pursuit eye movements were 

suggested to be a contributor to this illusory perception. Below are 

descriptions and summary results of the experiments conducted by 

McCloskey, et al. 

In the first investigation, 99 university undergraduates (62 

physics trained, 37 physics untrained) engaged in a paper and 

pencil test in which they were given a picture of a walking person 

who was about to drop a ball. The subjects were instructed to mark 

where the ball would hit the ground, draw the path the ball would 

follow, and mark the point where the person's hand was positioned 

when the ball hit the ground. Forty-nine percent indicated that the 
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dropped ball would land straight down from where it was dropped 

(62% of those who had never had physics). 

Problem two was presented to 47 undergraduates (32 physics 

trained). In this paper and pencil test, subjects were instructed to 

draw the path of ball dropped from an airplane, ignoring air 

resistance. In this study, 36% indicated that the object would fall 

straight down. Nine of the fifteen physics untrained subjects 

responded that the ball would fall straight down. 

In another study conducted by McCloskey, et al., two related 

problems were presented. In the first, subjects responded to a 

paper and pencil test in which a ball was dropped from a conveyor 

that spanned a canyon. Thirty-one undergraduates (16 physics 

trained) answered this paper and pencil problem; 23% said it would 

land directly under the point at which it was dropped (straight- 

down response). In the second problem associated with this phase 

of the investigation, 33 (14 physics trained) were asked to indicate 

where a ball which was dropped from a ramp into a canyon would 

land. The reported results were striking, especially when compared 

to responses, made by a similar sample of university students, to 

the conveyor problem. For the ramp problem, only 6% indicated 

that it would fall straight down. 

McCloskey, et al. attempted to investigate the effects of more 

concrete problems on the results obtained. In the first of these 

experiments, two related conditions were presented. In the first, 

the experimenter dropped a steel ball bearing . In the second, the 

same ball was rolled down a ramp and off of a filing cabinet. 

Subjects participating in each of the conditions were instructed to 
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mark on a diagram where the ball would hit. For the walker 

condition, relative to where the ball was dropped, 51% of the 37 

students said the ball would drop straight down. For the ramp 

condition, 9% of the 32 students said that it would land directly 

under the point from which it was dropped. 

In another experiment, 21 undergraduates (13 physics 

trained) were instructed to walk toward a target point on the floor 

and to drop a ball so that it would hit the target. Subjects' 

intentions were obtained after the attempt. As reported by the 

author, subjects’ intentions seemed consistent with their 

performance in the drop-to-hit target situation. In their reporting 

of intentions, 33% intended to drop the ball when their hand was 

directly over the target. This intention suggested that these 

subjects employed a straight down assumption. 

In actuality, as reported by McCloskey, et al., subjects did not 

drop the ball where they intended. In experiment 2b, there were 

two conditions. In the first condition, 20 undergraduates, including 

thirteen who had previously taken physics, repeated the procedure 

of the previous experiment (labeled experiment 2a). In the second 

condition, 10 undergraduates were instructed that they should try 

to drop the ball when it was directly over the target. However, in 

experiment 2a, subjects who reported attempting to drop the ball 

when it was directly over the target, had a mean release point of 10 

cm. before the target. Subjects in experiment 2a who reported 

dropping the ball before the target in order to hit the target 

dropped the ball an average of 22 cm. before the target. It is 

curious to see such a disparity in mean release point. It is also 
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interesting to note that between experiments, the percentage of 

students who intended to drop the ball over the target in the "drop 

to hit target" condition, varied considerably. Thus, no trend is 

indicated as to the frequency of occurrence of the "straight-down" 

belief, by experiments 2a and 2b. 

In experiment 3, the subjects were 18 undergraduates . This 

experiment utilized a CRT display on a DIGITAL pdp-11/20 

computer. In this study, the CRT displayed a moving box with a 

moving dot inside the box during some trials. The CRT displayed 

the moving dot without the box during other trials. McCloskey, et 

al. referred to the conditions as the box and no box conditions. The 

results of the trials indicated that subjects entertained an accurate 

perception for most cases of the no box condition, and inaccurate 

perception for all but one case of the box condition (in this case, the 

dot's velocity relative to the screen exceeded the box's velocity 

relative to the screen.) Evidence from these trials was used as 

evidence of a perceptual illusion. (McCloskey, et al., 1983). It does 

seem that these results may buttress the straight down hypothesis, 

but the motion shown by the subjects to be the "true" motion was 

not completely consistent with the straight down instantiation. 

In another experiment, 18 of 36 subjects, (undergraduates, 

graduate students and support staff at Johns Hopkins), viewed 

videotape of a walking person dropping an orange ball of paper. 

The other eighteen subjects viewed a videotape of the same ball 

rolled off a filing cabinet. All of those who viewed the ball roll off 

the filing cabinets stated that the ball fell forward of the release 

point. Results were different for those who viewed the ball 
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dropped by a walker. Ten of the eighteen subjects said the ball fell 

straight down from where it was dropped. Because 10 (56%) 

judged the ball to fall straight down (even though it did not), when 

this videotape was viewed, the authors posited that a perceptual 

illusion is the cause of the straight-down belief. Further data for 

this hypothesis stems from the fact that four subjects stated, in 

response to a question about the realism of the videotape, that the 

video had been faked because the ball needed to be dropped ahead 

of the target in order for it to hit the target. Three of these subjects 

reported that the ball went straight down on the video; one said 

that the ball fell backward. 

Halloun and Hestenes (1985) stated that many students' 

explanations about non-accelerated motion are similar to the 

impetus theory of motion. Saltiel and Malgrange (1980) and 

Hewson (1984) indicated that students focus on the cause of non¬ 

accelerated motion. Hewson (1984) quoted Clement (1982) as 

saying that students view a force to be associated with non¬ 

accelerated motion. 

A salient question is: could it be that some students are 

confusing the technical use of the word "force" with momentum and 

the effects of friction (wind resistance and other instantiations) 

(see McDermott, 1984; diSessa, 1988)? For instance, Halloun and 

Hestenes (1985) showed that many students feel that a force is 

necessary to maintain a constant speed. Is not that the case for 

everyday experiences of motion (e.g., to maintain steady speed in 

an automobile, a constant force must be applied to overcome 

friction)? 
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In studies of students' "common sense beliefs of motion," 

Halloun and Hestenes (1985), found that most of the college physics 

students involved in the study confused position, velocity and 

acceleration. Most of the students also used the medieval idea of 

impetus to describe the cause of motion. Phrases like the object 

was "'trained to do something'" (p. 1063) occurred in the protocol. 

Other students held more Aristotelian notions of the cause of 

motion. A minority held Newtonian beliefs. Some subjects in 

Halloun and Hestenes' study displayed the misconception, described 

by McDermott (1982) and addressed in Hewson's (1984) software 

treatment, that two objects that are at the same position must be 

going the same velocity. 

As indicated by Saltiel and Malgrange (1980), in everyday 

speech, the terms "’true motion'" and '"apparent motion'" are used. 

Rest and motion are seen as very different instances. The idea of a 

reference frame is foreign. Saltiel and Malgrange indicated that a 

preferred frame of reference is implicit in day to day life 

observation of motion. The ground is stated to be the "most 

common example." (p. 75) Saltiel and Malgrange thus indicated that 

a velocity is termed to be "proper". It is a property of a body as a 

result of the cause of the motion. Saltiel and Malgrange indicated 

that for students the cause of motion is not separated from the 

motion itself. When the cause is not apparently linked to the 

motion the motion is regarded to be "apparent" and not real. 

That some students have the idea that some motion is not 

true but is, rather, illusory, was mentioned in Saltiel and 

Malgrange's paper. Ueno, Arimoto and Yoshika (1992) expressed a 
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similar idea. Saltiel and Malgrange posited existence in the minds 

of some students of the notion of "proper velocity". Their 

hypothesis was that, in general, students display a spontaneous way 

of reasoning which is inconsistent with the reasoning of a physicist. 

The authors posited students' use of a "natural model" which is in 

contradiction to a "kinematic model of the physicist", (p. 75) 

Findings from an investigation that used fifty first year 

university students, engaged in paper and pencil tests of qualitative 

understanding, included the fact that answers given by students are 

context dependent and that transfer across contexts is often not 

demonstrated by students. Saltiel and Malgrange found similar 

reasoning patterns among 11 year olds and among first and fourth 

year university students. 

Saltiel and Malgrange contrasted kinematic explanations with 

"natural model" explanations. In the "natural model," notably, 

distance traveled and "proper velocity" were considered to be 

invariant. Direction of travel was also considered to be invariant. 

They also discovered that students rarely considered the possibility 

of using a different reference frame. 

Inhelder and Piaget (1958) addressed subjects' difficulty with 

coordinating two frames of reference. In referring to work 

published in Piaget's Les Notions de mouvement et de vitesse chez 

l'enfant. Inhelder and Piaget spoke of tests of subjects' ability to 

solve relative motion problems. In this research a snail was set on 

a board. The snail would move from left to right or right to left. 

The board could also be moved from left to right or right to left. 

They stated: 
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It is not before the level of formal operations that predictions 
can be made for both sorts of motion simultaneously, for in this 
case two systems of reference must be coordinated, one of 
which is mobile and the other immobile, (p.319) 

Research That Promoted Or Tested A Relative Motion Pedagogical 

Strategy 

Metz and Hammer explored students' problem assessment 

and response to computer feedback in a recent paper (Metz & 

Hammer, 1993). In this research, eleven students entering the 

ninth grade and one student entering the twelfth grade were 

involved. Seven were female, five were male. The subjects were 

participants in a summer enrichment program. Each subject (with 

the exception of one) solved eleven relative motion puzzles in an 

hour interview. During the interview, students engaged in a "think 

aloud" process where they were encouraged to explain their 

reasoning process and to make sense of the motion displayed, 

subsequent to each prediction, by the computer simulation. After a 

student gave a prediction about the expected result of the motion of 

a frame of reference and an object that moved within the frame, 

the situation was simulated on a Sun workstation computer running 

Elmira, a program coded in diSessa's Boxer computer language. The 

researchers presented two forms of the software in order to 

determine if the "cover story" affected students' responses and 

conceptions. One form presented a "dots and frame" cover story. 

The other cover story presented a moving object inside a box car. 

Elmira was purported to be a "microworld," in the spirit of other 

microworlds such as LOGO (see Papert, 1980). The researchers 

investigated what they considered the "world-ness" of the 
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microworld for the students. By "world-ness" the investigators 

meant how much of a "closed problem space" the world represented 

and how interconnected the examples were considered to be by the 

students. They claimed that the software did not function as a 

world due to inconsistencies in how the students approached 

problems within the purported world. 

In their investigation of how students solved the puzzles, the 

authors investigated students' interpretation of each problem and 

the strategy employed in solving each problem. They identified 

problem interpretations and problem solving strategies. Because 

there was not a one to one mapping of situation assessment to 

problem solving strategy, the authors concluded that the 

microworld did not have problem set closure and thus did not 

function as a "world." 

Concerning the cover story presented in the computer 

simulation, those who used the boxcar cover story used the 

"relative motion" interpretation more often than those who used the 

"dot and frame" cover story. However, those students who used the 

dot and frame cover story, seemed to use the computer as a more 

general tool, seeing connections between puzzles that were not seen 

by those who used the boxcar cover story ; thus implying that the 

more abstract cover story associated with the software provided 

more transfer possibilities. The fact that those students who used 

the boxcar cover story used the relative motion interpretation may 

be due to the more familiar nature of a concrete representation of 

the puzzle. It appears that there is a tradeoff between ease of 

comprehension and ease of transfer, with the more 

28 



representationally abstract story being more powerful by means of 

the number of transfer possibilities but correspondingly difficult to 

understand. 

The authors considered the boxcar cover story to be a 

concrete situation to which students could relate. However, with 

decreasing use of rail travel, it is questionable that this is true. 

Another consideration is the influence of using the word ’'frame" for 

the dot and frame cover story. Since the ability to mentally "view" 

situations from different frames of reference is important for 

comprehension of relative motion problems, use of the term "frame" 

may allow for transfer of a mindset to other relative motion 

problems. In the boxcar case, the term boxcar is not used to 

represent a frame of reference; thus use of the boxcar "cover story" 

may provide fewer transfer possibilities. This possibility would be 

interesting for future research; it was not addressed in the Metz 

and Hammer study. 

The authors concluded that in many ways, Elmira did not 

function as a world. Support for this position involved the assertion 

that students employed many different representations of motion— 

thus the microworld did not resemble a "world"; similarly, 

interpretation of a problem did not have a one-to-one 

correspondence with students' approach used. 

There is cause to view the efficacy of the software with 

skepticism on other grounds besides whether or not the software 

effectively works as a microworld. The software may buttress the 

misconception that motion should be viewed from one "correct 

reference frame" The implied "correct reference frame" is the 
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screen. In addition, the software may buttress the misconception 

that rest is fundamentally different than motion. 

Hewson (1984) and Zietsman & Hewson (1986) explored a 

confusion that students have between position and velocity in 

studies that used a microcomputer simulation to ameliorate the 

misconception. Hewson (1984) used a sample of eighty-five 

university students in an introductory physics class. In his test, 

diagnostic questions searched for a misconception regarding 

position and velocity which equated equal position with equal 

velocity. (See McDermott (1982) for a description of this 

misconception.) He found twenty three students who demonstrated 

the misconception. Fourteen of the students who displayed this 

misconception used computer simulation software which presented 

an extreme case in which a car, moving relative to the computer 

screen, passed a car which was stationary on the computer screen. 

Ten of the fourteen students who used the microcomputer program 

as an intervention, reversed their opinion and obtained the correct 

answers. 

In analysis of these and other findings, Hewson (1984) said 

that in order for conceptual change to occur, the new conception 

must fit in seamlessly to the existing conception or the new 

conception must replace the existing conception. For the latter 

condition to occur, the new conception must be a more powerful 

explanatory force than the previous conception. Hewson spoke 

about the following hierarchy of qualities that could be attributed 

to a conception: 
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• intelligible (I), 

• plausible (P), 

• fruitful (F). 

To use a new conception it must be at least in the IP level, he 

asserted. 

Ueno, Arimoto and Yoshika (1992) posited that the manner to 

remediate students' misconceptions in the relative motion arena is 

to recontextualize relative motion scenarios. 

The framework of the paper "Learning Physics by Expanding 

the Metacontext of Phenomenon [sic]" by Ueno, Arimoto and 

Yoshioka (1992) involved commentary on the effect of experience 

in supplying preconceptions, the connection between everyday 

(non-technical) language and misconceptions, and the influence of 

interactive systems on students' preconceptions. 

Concerning the effect of experience in supplying 

preconceptions Ueno, et al. (1992) stated: 

It seems to us that naive physics can more accurately be 
considered as an interactive system between cognitive agents, 
real objects and the physical environment rather than as 
systematic theories or knowledge in pieces in mind, (p.l) 

Ueno, et al. (1992) asserted a connection between everyday 

(non-technical) language and misconceptions. The fact that the 

speed of an automobile is regularly cited without indicating the 

assumed frame of reference is but one example used by Ueno, et al. 

to buttress their point. They gave evidence that high school 

students involved in this research tended to believe that the only 

true motion of an object was that motion seen from a stationary 

platform relative to the earth. Motion viewed from other frames 



was seen as "appearance". This seems analogous to Saltiel and 

Malgrange's (1980) description of "proper velocity". Ueno, et al. 

explored the social context of misconceptions simultaneously with 

the language aspects and concluded: "there has not been enough 

research on the critical difference between the metacontext of 

everyday discourse and that of Newtonian." (Ueno, et al., 1992, p.2) 

In my opinion, even a common textbook expression of 

Newton's First Law, (an object at rest remains at rest, an object in 

motion remains in motion), reinforces a misconception that an 

object may be considered to be at rest. Similarly, Swarz has 

indicated that Newton's first law basically defines reference frame 

(Swarz, 1989). 

Ueno, et al. (1992) stated, "Learning is not only an event in 

mind but can also be usefully characterized as the exchange of an 

interactive system comprised of cognizers and particular situations." 

(p.2) In this context, the "natural" frame of reference and natural 

events are discussed. Ueno, et al. indicated that "'the static ground"' 

as a frame of reference is tacitly considered as natural" (p.3) and 

"motion such as falling down and rolling down on the slope are 

perceived as 'natural' in the same way that an object at rest on a 

horizontal, flat, rigid surface is regarded only as 'natural' or given." 

(p. 3) 

Ueno, et al. (1992) indicated that physics learning is 

hampered by everyday discourse, cultural norms and the 

difficulties embedded in everyday context. In order to overcome 

such difficulties, Ueno, et al. indicate that "expansive 

recontextualization" (p.25) is necessary. While according to Ueno, et 
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al.'s experimental data analysis, recontextualization does appear to 

produce right answers on multiple choice paper and pencil tests, it 

would be interesting to see whether such recontextualization is 

transferable to students' everyday experience. An interesting 

follow-up to Ueno, et al.'s research listed in this paper would be a 

study of the transfer of knowledge and spontaneous selection of 

appropriate context in solving non-academic physics problems. 

Without some sort of link to the real world, many and possibly most 

physics exercises are viewed by students as academic and removed 

from the "real world" of the students' everyday experience. 

Conclusions 

A variety of alternative conceptions have been documented in 

the study of relative motion. Documented alternative conceptions 

include: 

• equal position implies equal velocity (see McDermott, 1982; 

Hewson, 1984; Zietsman & Hewson, 1986). 

• acceleration equals velocity (see Halloun & Hestenes, 

1983). 

• "fighting velocities" (Aguirre and Erikson, 1984). 

• true velocity versus "apparent" velocity (Saltiel and 

Malgrange, 1980, Ueno, et al., 1992). 

It seems that one organizing influence is students' concern over the 

source of non-accelerated motion (see Clement, 1982; Halloun & 

Hestenes, 1985; Saltiel & Malgrange, 1980). Another way to 

organize some of the findings is to look at students' everyday 

experiences and how non-technical language and lack of experience 

with frames of reference hinders acquisition of a scientific view of 
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relative motion (see, for instance, Ueno, et al., 1992). Students' 

view of motion as "true" or illusory is particularly problematic, as it 

betrays a prejudice toward viewing the "static earth" as the only 

true reference frame (see Camp, et al., 1994; Ueno, 1992; Saltiel & 

Malgrange, 1980). It does seem clear that students frequently do 

not spontaneously or consciously consider alternative frames of 

reference besides the default frame of reference (which is generally 

the earth). Confusion between the technical terms and meanings of 

the terms position, displacement, and velocity compound the 

difficulties students have in this area. (See, for instance, Ueno, et 

al., 1992) 

It seems clear that many (if not most) students do not initially 

view motion as defined relative to a reference frame. The idea that 

stillness and motion are not fundamentally different is particularly 

counter-intuitive (see, for instance, Camp, et al., 1994; Kuhn, 1970; 

Saltiel & Malgrange, 1980; Sequeira & Leite, 1991; Swarz, 1989 ). 

Besides the magnitude of the velocity, the concept that direction of 

travel is dependent on reference frame is problematic for students 

(see, for example, Inhelder & Piaget, 1958; Saltiel & Malgrange, 

1980). 

Concerning treatments, the results of Metz & Hammer's 

(1993) research raise the question of whether to use abstract 

representations or concrete representations; the tradeoff being 

generality versus intelligibility. Ueno, et al.'s (1992) 

recontextualization strategy, which would presumably allow 

students to mentally operate with frames of reference besides the 

earth frame, seems promising; I am concerned about whether 
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students could visualize relative motion scenarios in a foreign frame 

of reference (such as space), as it would be outside their realm of 

experience. (Space videos, such as those referenced in Camp, et al., 

1994, may bridge the experience gap.) The use of a computer 

simulation by Hewson (1984) was apparently a very effective, 

though a costly way to display an extreme case. It seems that in 

this case similar efficacy could be achieved with manipulatives. 

Vacillation of reference frame appears problematic. 

Preliminary results, from clinical interviews I conducted, suggested 

that during solution of a problem some students may unknowingly 

change their default frame of reference. It seems that this 

inconsistency of default reference frame is a possible alternative 

explanation of some difficulties displayed by subjects in McCloskey, 

et al.'s (1983) study. 

In addition, results of the aforementioned studies as well as 

results from clinical interviews I conducted, suggested that students 

need to: 1. Realize that different frames of reference exist; 2. 

Understand that the magnitude of the velocity vector is dependent 

on reference frame (and the magnitude may be 0 for an object that 

is "moving" relative to the ground). 3. Understand that the 

direction of the velocity vector is dependent on the reference 

frame. 4. Select the reference frame that is most expedient. (This 

position has frequently been voiced by Amherst, Massachusetts 

High School Physics teacher Charlie Camp.) 5. Be able to visualize 

scenarios viewed from different reference frames. 

Lastly, it appears clear that study of relative motion opens up 

numerous quagmires for students. Serious students must grapple 
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with the apparently paradoxical equivalence of motion and non¬ 

motion and realize that neither is a property of an object, or 

necessarily the result of a force applied on (or "contained within") 

an object, but rather, motion and non-motion are defined relative to 

the reference frame. Perceptual difficulties may hamper the 

student's progress. Non-technical use of technical terms and other 

complications of "non-scientific" interactions with relative motion 

further complicate the task of student understanding. 

Oversimplification (such as equating position and velocity) and 

anthropomorphism (displayed in the conception that velocities 

"fight" each other) may also hinder a student's progress. The 

existence of these and other difficulties, including visualization 

difficulties, indicate that the task of learning relative motion is 

indeed complex and that additional research is necessary to classify 

students' relative motion conceptions and to develop pedagogy to 

assist students in acquiring more expert understanding of Galilean 

relative motion. 

Literature Review: Research On Educational Uses of Computer 

Simulation 

Research conducted by Choi & Gennaro (1987) indicated that a 

computer simulation proved as effective as physical laboratory 

experience for teaching junior high students the concept of volume 

displacement. In a control-experimental treatment research design, 

it was shown that learning occurred via traditional laboratory 

experience or through a computer simulation. The time required 
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for the computer simulation was twenty-five minutes, versus 

ninety-five for the lab. 

Rieber (1991) showed gains by 4th graders in incidental as 

well as intentional learning following use of computer simulations 

which dealt with Newton's laws of motion. In an experiment in 

which one treatment group saw static graphics and another group 

saw animated graphics, Rieber concluded that the animation group 

performed better on measures of incidental as well as intentional 

learning, but also displayed more new misconceptions. 

Barbara White (1993) cited numerous advances in 6th grade 

student performance on measures of understanding of Newton's 

laws of motion following use of inquiry activities and ThinkerTools 

simulations. Indeed, the 6th graders did better than high school 

students who were taught through other means. In designing the 

curriculum. White intended to: 

1. Employ manipulable, linked representations for key 
abstractions.... 2. Make the phenomena easy to see and 
interpret.... 3. Create scaffolded inquiry activities.... 4. Reify 
the knowledge to be acquired.... 5. Foster collaborative 
learning.... 6. Facilitate model evolution by providing model 
progressions.... 7. Incorporate learning about scientific inquiry, 
(pp. 49-50) 

Hewson (1984) and Zietsman & Hewson (1986) showed gains 

in student understanding of relative motion following use of a 

computer simulation which followed an extreme case model for 

remediating an alternative conception. 

Andrea diSessa (see Adams & diSessa, 1991; diSessa, 1986; 

Sherin, diSessa, & Hammer, 1993), the author of BOXER, and 
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Seymour Papert (1980, 1993) advocate active programming within 

microworlds as a pedagogically effective use of computers. 

Wiser (1992), along with a discussion of treatment gains, 

discussed alternative conceptions that were reinforced by 

interaction with a thermodynamics simulation. In similar fashion, 

Rieber (1991), in citing work by Barbara White and work he 

conducted, asserted that novices often do not attend to salient 

features of a simulation: "Even if students attend to an animated 

display, they often fail to notice the information it contains. For 

example, differences in motion or trajectory that an expert may see 

as obvious may be totally overlooked by a novice." (pp. 318-319) 

De Jong (1991), in a theoretical paper, also indicated that novices 

have difficulty with unstructured simulations; for novices, it is 

necessary to provide a structure. This view is in opposition to a 

free exploration approach to using a computer simulation. 

Metz & Hammer (1993) showed treatment gains by high 

school students who followed a predict-observe-explain sequence 

with the BOXER computer microworld. They also examined the 

applicability of the term "world" to describe a computer microworld 

and concluded by questioning the suitability of the "world" 

metaphor for describing students' interaction with a computer 

microworld. 

Williamson & Abraham (1995) showed gains in conceptual 

understanding of the particulate nature of matter by university 

chemistry students who viewed computer animations both in a 

lecture environment and in a combined lecture/interactive lab 

environment. While there was not a significant difference in scores 
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of conceptual understanding of the particulate nature of matter 

between animation groups, there was a significant difference 

between scores of students who were exposed to animations and 

scores of the control group on the measure of conceptual 

understanding (called PNMET by the authors). There was no 

significant difference in course achievement according to the 

authors. They reasoned that ’’analysis of the questions on the 

course examination revealed that a majority of the questions on 

the instructor-constructed test were algorithmic in nature.” (p. 

530) They cited Gabel & Bunce, 1991; Nurrenbern & Pickering, 

1987; Pickering, 1990; and Sawrey, 1990, as supporting the position 

that conceptual understanding of the particulate nature of matter is 

not required to solve algorithmic or symbolic problems. 

Mayer & Sims (1994) indicated that presenting animation 

with an explanation assisted students with high spatial ability; it 

did not assist students of low spatial ability. 

Monaghan & Clement (1994a, 1994b) showed that 

visualization can be fostered by interaction with a computer 

simulation. This visualization occurred both during and after 

interaction with the computer simulation. They also provided 

evidence that the structure of the activity performed with the 

computer simulation (Monaghan & Clement, 1994b) affected the 

approach that students used to solve problems. 

The dissertation study conducted was designed to build upon 

results displayed in previous studies. Additionally, in this study I 

sought to extend understanding concerning effective physics 

(particularly Galilean relativity) pedagogy, to test performance 
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following educational computer simulation use, and to identify 

types of problem solving approaches used by students who 

interacted with computer simulations within different activity 

structures as well as to identify types of activities that may foster 

specific problem solving approaches. Specifically, this study sought 

to identify conditions that may foster students' use of qualitative 

problem solving methods (such as visualization) as well as 

conditions that may foster students' use of quantitative problem 

solving methods (such as algorithm use). 
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CHAPTER n 

RESEARCH DESIGN 

Introduction 

In stating research questions, the terms "decontextualized 

numeric simulation activity" and "contextualized visual simulation 

activity" were used. The first part of the term refers to the "cover 

story" (see Metz & Hammer, 1993), either contextualized (e.g., 

objects are given names such as dog, bike and house) or 

decontextualized (e.g., objects are given nondescript names such as 

black circle, gray circle, and white triangle). The second part of the 

term refers to the primary form of feedback provided to the 

student following the student's predictions, either numeric (in the 

form of numeric speeds of objects) or visual (in the form of an 

animation). More details are contained in the description of the 

treatment. 

Research Questions 

1. Using a measure of relative motion understanding, what is the 

difference between the performance of students who engage in 

decontextualized numeric simulation activities and the performance 

of students who engage in contextualized visual simulation 

activities? 

2. What differences can be identified between subjects' relative 

motion understanding before, during and after interacting with 

computer simulation activities? 



Experimental Procedure 

There were two major components of this study: an 

individual interview paired exercise component and a classroom 

small group component. In both components, the treatment will 

follow a pretest-treatment-posttest design. 

Pretest/posttest 

For both the classroom and individual studies, the pretest and 

the posttest were identical and taken individually by each student. 

For both the interviewed and classroom students, the test required 

less than 40 minutes, with the posttest generally requiring less time 

than the pretest. The multiple choice pretest/posttest questions 

were designed to test both qualitative and quantitative 

understanding of Galilean relativity concepts. The questions had 

been slightly modified following pilot testing in previous studies 

(see Monaghan & Clement, 1994a, 1994b). The pretest/posttest 

questions are listed in the appendix. (The use of confidence scales 

associated with each question closely resembled the use of 

confidence scales in Brown, 1987/1988.) For the classroom studies, 

the posttest was conducted on the last day of the hour long 

treatment. Because the treatment lasted approximately 1 hour, it 

was conducted over two consecutive class meeting periods. At the 

end of the second treatment period, the posttest and the 

questionnaire were administered. For the interview studies, 

following the treatment, the posttest was scheduled at the next 

available open period convenient for the students and the 

interviewer (never more than 4 days following the treatment). 
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Subjects 

There were two sets of subjects. In the individual treatment 

conditions, student volunteers selected from a regional high school 

worked in groups of two. Four groups of two were involved in each 

of the two individual treatment conditions, for a total of 16 

students. In the classroom treatment conditions, four intact 

classrooms were involved. The classes were composed of two 

honors classes and two standard level classes from a private high 

school. 

For the individual treatment conditions, pairs of high school 

student volunteers will partake in the study. Any student (under 

18 years old) who wished to participate in the study needed to 

have a parent or guardian formally grant permission. All students 

were informed of the nature of the study and all participants were 

notified that they could cease participation in the study at any time. 

For the classroom study, students were also informed of the 

nature of the study and were informed that they may cease 

participation in the study at any time. 

Interview Treatments 

In the interview studies, there were two treatment conditions: 

condition CV, the contextualized visual treatment, and condition DN, 

the decontextualized numeric treatment. In each case, the 

treatment consisted of interaction with 4 computer simulations. I 

had previously constructed the simulations with RelLab (Horwitz, 

Feurzeig, Shetline, Barowy, & Taylor, 1991, 1992) software which 

had been modified using ResEdit (Apple Computer, Inc., 1984- 

1990), on an Apple Macintosh Powerbook 160 computer. During 
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each treatment, each pair of subjects made predictions, observed 

computer output, and explained any discrepancies between their 

predictions and the observed computer output. For each condition, 

this interaction took approximately one hour. During the treatment, 

each student was encouraged to discuss answers and reasoning with 

his or her partner. Both the computer output (seen by the 

students) and the students' protocols were videotaped. The 

individual treatments were conducted at the participants' school in 

a laboratory setting; videotaped think-aloud protocol as well as 

written data were collected. Table 2.1 contrasts characteristics of 

the two treatment conditions. 

Table 2.1 

Characteristics of Treatment Conditions 

CONDITION 
context 

provided 
animation 

seen 
numeric 
velocity 
data seen 

direction 
prediction 

speed 
prediction 

CV Yes Yes No Yes No 

DN No No Yes No Yes 

Classroom Treatments 

As in the individual studies, there were two different 

treatments in the classroom studies. The structure of classroom 

treatments CV and DN were very similar to individual treatments 

CV and DN. As in the individual treatments, each classroom 

treatment consisted of activities with 4 computer simulations, 

during which students, working in pairs, made predictions, 

observed computer output, and discussed with their partners 
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discrepancies between their predictions and the observed computer 

output. Classroom treatments CV and DN took approximately one 

hour, split into two classroom sessions. The investigator presented 

the computer simulations to all members of the class 

simultaneously. Data collected during the classroom treatments 

consisted of written pretest answers, written worksheet responses, 

posttest answers, and questionnaire responses. 

Data Analysis Methods 

For the classroom study, statistical tests of significance were 

performed measuring differences between students' performance 

on the posttest and their performance on the pretest. 

For the individual study, statistical tests of significance 

supplemented qualitative analysis of student "think aloud" protocol. 

Protocol data in the form of videotape, audiotape, and written 

responses as well as transcriptions of interviews were selectively 

analyzed. Protocol analysis utilized a "constant comparison" 

methodology (see Glaser & Strauss, 1967). 

Sample Exercises: Galilean Relativity 1 Computer Simulation 

Below, the activities performed by students with one of the 

four computer simulations are described. These procedures are 

applicable to both the classroom study and the individual study. 

In treatment condition CV, the contextualized visual 

treatment condition, pairs of students were given a "real world" 

cover story in which the objects (e.g., the triangles and the circles in 

the following simulation) were given names such as dog, tree, bike 

and house. In condition DN, the decontextualized numeric 

treatment condition, the objects were given nondescript names 
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(black triangle, white triangle, gray circle, black circle). In both 

conditions, the objects displayed on the screen were iconic in nature 

(see White, 1993); this iconic nature of the objects was intended to 

facilitate transfer. As shown in a study by Metz & Hammer (1993), 

a decontextualized condition (such as condition DN) may more easily 

facilitate transfer. However, it was also expected (as indicated in 

Metz & Hammer, 1993) that some students may be unable to apply 

their experience with a decontextualized condition to real world 

(contextualized) instances, such as those depicted in the relative 

motion test (see appendix). 

Initially, in treatment CV, the simulation was run from the 

default frame of reference for at least 10 seconds. (In this case, the 

white triangle 1 defined the default frame of reference.) As an 

example, the following two screen "snapshots" show the first 

simulation at time 0 and time 4.8 seconds (see figures 2.1 and 2.2). 

This was followed by a timer reset. The simulation was then run 

again. Following reset of the timer, the simulation was then run a 

third time. 

In condition DN, the students were shown the speed of each 

object. The students did not see animations. See figure 2.3 for 

sample data provided to the DN students. 
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Initial state of first simulation (both conditions) 
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Figure 2.2 

First computer simulation animation after 4.8 seconds 

(CV condition only) 
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Figure 2.3 

First computer simulation sample velocity data 

(DN condition only) 

Next, for both conditions, the frame of reference was changed. 

(See figure 2.4.) Each pair of students made a prediction for the 

expected output of the computer simulation. In the contextualized 

visual (CV) treatment condition, predictions concerning the 

direction of travel of objects were made by each student pair. In 

the decontextualized numeric (DN) treatment condition, predictions 

concerning the speed of objects relative to the new frame of 

reference were made. In condition CV, only visual feedback was 

given. In condition DN, the students received numeric feedback on 

the speed of the objects for which they had made predictions. 
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Figure 2.4 

First simulation after frame change (both conditions) 

Table 2.2 lists a sample screen snapshot from each of the 

computer simulations used by students in both the individual and 

classroom treatments and lists the nature of the prediction and the 

nature of the feedback provided for each treatment condition. 

Figures 2.5 through 2.8 reveal the initial conditions of each of the 

simulations. Velocity vectors, representing the velocities of the 

objects relative to the initial frame of reference, are shown above 

each object. (Note: These vectors were not seen by students. CV 

treatment students viewed animations only (e.g., see figures 2.1 and 

2.2). DN treatment students saw numeric velocity information only 

(e.g., see figure 2.3).) 
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Table 2.2 

Simulation Activities Used by Students 
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Simulation 1 initial conditions 
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Simulation 3 initial conditions 
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Simulation 4 initial conditions 
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As stated above, in condition CV, for each of the four 

simulations, students made predictions concerning the direction of 

travel of objects on the computer screen. Interactions with the 

simulations in this manner were designed to create cognitive 

conflict due to anticipated incorrect predictions about the motion of 

objects whose direction on the computer screen changes when the 

frame of reference changes. (See, for example, Monaghan & 

Clement, 1994a, 1994b.) It was expected that students who made 

qualitative predictions would attend to the anomalous case and 

alter their models of relative motion as a result. This was expected 

to be facilitated by the reflective nature of the predict-observe- 

explain task (for examples of the use of predict-observe-explain 

tasks, see Linn & Songer, 1991; Metz & Hammer, 1993). 

In condition DN, for each of the four simulations, students 

predicted the speed of objects on the screen. It was anticipated 

that often these students would create algorithms that would 

enable them to solve relative motion problems. 
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CHAPTER III 

CLASSROOM AND INTERVIEW STATISTICAL RESULTS 

Introduction 

In this chapter, classroom students' performance on the 

pretest and their performance on the posttest is compared. Each 

class' posttest performance is compared to each class' pretest 

performance and the mean gain on the measure is compared 

between groups. Additionally, I list the frequency of incorrect 

predictions (for each of the predict-observe-explain tasks) for each 

class. 

Following statistical analysis of the classroom data, analysis is 

done on the interviewed groups. Analysis of the interview groups 

involves within group posttest versus pretest comparisons, a 

between groups gain comparison, and frequency of correct 

predictions data. 

This chapter addresses whether any statistically significant 

learning, as measured by performance on the relative motion 

diagnostic test, occurred following each of the two conditions. It 

also addresses whether there were statistically significant 

performance differences between groups--providing information on 

the relative impacts of the two treatments. 

In this chapter, I hypothesize conditions under which 

students may experience conceptual change as a result of 

interaction with the computer simulation activities. The hypotheses 

are based on theory concerning the role of conceptual conflict. I 

suggest that a likely source of conceptual conflict can be incorrect 
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predictions during the predict phase of predict-observe-explain 

tasks performed within the context of the computer simulation 

activities. Data concerning incorrect predictions made by students 

in both conditions is presented. 

Hypotheses 

Students in the contextualized visual condition were expected 

to perform better on the measure than students in the 

decontextualized numeric condition. This expectation was based on 

the belief that visualization of transfer problems would be assisted 

by interaction with the animations of the contextualized visual 

condition. Additionally, providing the students with a context was 

expected to assist students in their understanding of the base, i.e., 

the computer simulations. However, this thesis was unclear, for, as 

suggested by Metz & Hammer (1993), a decontextualized condition 

may allow for more transfer by students—provided that the 

students could understand the base (computer simulations). It was 

expected that some students in the decontextualized numeric 

condition may develop algorithms to assist their solution of 

problems, and that these algorithms may be poorly understood. 

If this were the case, decontextualized numeric students' 

confidences in their answers may be lower than contexutalized 

visual students confidences. 

Classroom groups' relative motion test results 

In the first study, students' performance on a measure of 

relative motion learning was studied. In this study, an entire 

standard level physics class taken from a large private school was 
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given the CV treatment (see description above) and is called the 

CVstd group. Another entire standard level physics class from the 

same school and the same teacher did not receive a treatment and 

is called the CONTROLstd group. 

A posttest-pretest comparison was performed on the 19 

member CVstd group. (Only students who took both the pretest and 

the posttest were included in the sample.) The pretest mean was 

36%. The posttest mean was 47%. A one-tailed t-test yielded a 

statistically significant result with p<.01. The 22 member control 

group's pretest mean was 45%. Its posttest mean was 49%. The 

control group's posttest-pretest difference was not statistically 

significant. When the posttest-pretest difference was compared 

between the CVstd group and the control group, a one-tailed t-test 

yielded a marginally significant result with pc. 10. 

In the second study, two entire honors physics classes in the 

same school were compared. One class received the contextualized 

visual treatment (CVhon group); the other received the 

decontextualized numeric treatment (DNhon group). A posttest- 

pretest comparison was performed on each group, using one tailed 

t-tests. Both the CVhon group and the DNhon group showed 

statistically significant gains on the measure, with pc.01 for the 

DNhon group and pc.05 for the CVhon group. The 16 member 

DNhon group's pretest mean was 58%; its posttest mean was 72%. 

The 19 member CVhon group's pretest mean was 58%; its posttest 

mean was 68%. A comparison of the CVhon group and the DNhon 

group showed no statistically significant difference between groups 

in posttest-pretest difference. 
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Table 3.1 

Classroom One Tailed T-test Results: 

Posttest/pretest and Gain Comparisons 

group n pretest 
mean 

posttest 
mean 

P mean 
gain 

P 

CVstd 19 36% 47% <.01 11% <.10 
control 

std 22 45% 49% N.S. 4% 

CVhon 19 58% 68% <.05 10% N.S. 

DNhon 16 58% 72% <.01 14% 

Gain Comparison Between Classroom Groups 

I expected the CVhon group to perform better on the measure 

than the DNhon group, hypothesizing that the animation combined 

with a recognizable context would make the simulation easier to 

apply to problems. I expected the CV condition to foster 

visualization and expected visualization to assist problem solution. 

However, five of nine test questions requested a numeric answer; 

some students may be able to calculate answers to these questions 

without visualization. Also, it is possible that some students were 

able to take numeric information provided by the DN condition and 

convert it to a visual representation. This skill could then be 

applied during problem solution. This may be particularly true for 

honors students who may be fluent in their use of numeric 

representations. Also, based on examination of students' 

predictions, the CV predictions were easier than the DN predictions. 
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The CV condition may have been sufficiently easy for students that 

little dissonance and little learning occurred. 

There was not a statistically significant difference between 

the CVhon and DNhon groups' gains on either the entire diagnostic 

test or on individual questions. 

Classroom Groups' Prediction Accuracy 

Theoretical Framework 

As shown in figure 3.1, I hypothesize that there may be an 

optimal confusion level that may enable students to get the most 

out of a learning experience. This "optimal confusion" level occurs 

when the student is capable of processing anomalies which effected 

cognitive dissonance, yet the dissonance is great enough to facilitate 

"deep" processing characteristic of conceptual change. This optimal 

confusion level is similar to Vygotsky's (1978) theory of the zone of 

proximal development; however, instead of an authority or helper 

that necessarily facilitates conceptual development, interaction with 

the activity itself can lead to conceptual development. 
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Figure 3.1 

Cognitive dissonance framework 

Classroom Prediction Accuracy 

As can be seen by the following data, the DN condition 

appears to present more difficulties for students than the CV 

condition. This appears particularly true for simulations 3 and 4. 

The fact that more difficulties appear to be present in the DN 

condition may explain gains that the DN students made on the 

measure; students may experience conceptual change due to 

dissonance effected by incorrect predictions. Tables 3.2, 3.3, 3.4, 

and 3.5 list the prediction accuracy for the CV and DN classes; all 
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students who recorded responses for an item are included in the 

percentage correct data. 

Table 3.2 

Classroom Simulation 1 Prediction Accuracy 

Class white triangle grey triangle black circle grey circle 

CVhon 83% 83% 67% 83% 

DNhon 88% 71% 65% 88% 

Table 3.3 

Classroom Simulation 2 Prediction Accuracy 

Class X white 
triangle 

black 
rectangle 

striped 
rectangle 

CVhon 89% 100% 67% 100% 

DNhon 89% 100% 83% 61% 

Table 3.4 

Classroom Simulation 3 Prediction Accuracy 

Class black black white grey 

triangle circle circle Quadrilateral 

CVhon 100% 100% 94% 100% 

DNhon 63% 56% 75% 100% 
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Table 3.5 

Classroom Simulation 4 Prediction Accuracy 

Class black 
circle 

black 
triangle 

white 
circle 

white 
triangle 

grey 
triangle 

grey 
quad. 

CVhon 90% 70% 90% 95% 95% 100% 

DNhon 69% 56% 75% 69% 81% 61% 

Based on the results of students in the interview studies, I 

expected the DN classroom students to have more difficulty with 

the predictions than the CV classroom students. Indeed, when the 

number of correct predictions was compared between groups, a 

one-tailed t-test yielded a significant result with p<.05. As shown 

in table 3.7, the 14 DN students averaged 14 out of 18 correct; the 

18 CV students averaged 16 out of 18 correct. (Only those students 

who responded to all prediction requests were included.) 

Table 3.6 

Classroom Prediction Accuracy 

Class N Mean SD P 

CVhon 18 16 1.5 < .05 

DNhon 14 14 4.0 

The fact that students in the DN condition had greater 

difficulty, based on the number of incorrect predictions, than 

students in the CV condition provides evidence that different 

processes may be required for accurate prediction of speed versus 
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direction. Based on interview protocol, it appears that, indeed, 

different processes are involved in the DN predictions than in the 

CV predictions. For instance, based on protocol data (see chapter 

IV) it was expected that the prediction concerning the striped 

rectangle would be more difficult for DN classroom students than 

for CV classroom students. One-hundred percent of the CV students 

made an accurate prediction on this item; sixty-four percent of the 

DN students made an accurate prediction on the item. A Fisher 

exact test was done on this item to determine if the frequency 

distribution was different for the two group's predictions. Figure 

3.7 details the results of statistical analysis of this prediction item. 

Table 3.7 

Simulation 2 Striped Rectangle Prediction Accuracy 

Class N Correct Incorrect p 

CVhon 18 18 0 < .05 

DNhon 14 9 5 

In analyzing this result, one key element is that the DN prediction 

in this case may tend to be based on algorithmic reasoning, in which 

students refer back to previous problems and make statements like 

"so you add" (see chapter IV). 

Interviewed groups' relative motion—test results 

CV interviewed students 

On the whole, there were not statistically significant gains 

posted by the 8 students who comprised the CV interview group. 
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Within this small sample, it appears that three of the students 

displayed a ceiling effect, limiting the statistical inference that could 

be derived from the sample. Table 3.8 summarizes the results of 

the CV interviewed students on each of the relative motion 

questions. 

Table 3.8 

CV Interviewed Students' Test Performance 

Question 1 3 5 7 9 11 13 15 17 Average 

Pretest 50% 63% 88% 63% 88% 75% 88% 63% 38% 68% 

Posttest 75% 75% 88% 75% 88% 88% 88% 88% 50% 79% 

DN interviewed students 

On the whole, statistically significant gains were posted by the 

8 students who comprised the DN interview group. On the measure 

as a whole, a one-tailed t-test showed significant gains with p<.01. 

A table listing the group's performance is listed below. The mean 

gain for the DN interview students was 16.7%, with the standard 

deviation 11.9%. Table 3.9 summarizes the results of the DN 

interviewed students on each of the relative motion questions. 
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Table 3.9 

DN Interviewed Students' Test Performance 

Question 1 3 5 7 9 11 13 15 17 Average 

Pretest 75% 50% 75% 0% 75% 62% 38% 38% 25% 49% 

Posttest 100% 62% 75% 25% 88% 62% 75% 75% 25% 65% 

Interviewed Groups' Prediction Accuracy 

Tables 3.10, 3.11, 3.12, and 3.13 detail the accuracy of the 

predictions made by interviewed students. (In the tables, X 

represents an incorrect prediction; * represents an accurate 

prediction that the students did not see as accurate due to 

"incorrect” direction prediction for 0 speed; - represents no 

prediction listed on the worksheet.) 
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Table 3.10 

Interviewed Students' Simulation 1 Prediction Accuracy 

student white 
triangle 

grey 
triangle 

black circle grey circle 

AC1 CV X 

AC2 CV X 

ADI CV 

AD2 CV X X X 

AE1 CV 

AE2 CV 

AH1 CV 

AH2 CV 

AA1 DN X ♦ 

AA2 DN ' X ♦ 

AB1 DN X X X .-iO’-i 

AB2 DN X x 

AC3 DN * * 

!AC4 DN * 

API DN ' 

AF2 DN 
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Table 3.11 

Interviewed Students' Simulation 2 Prediction Accuracy 

student X white 
triangle 

black 
rectangle 

striped 
rectangle 

AC1 CV 

AC2 CV 

ADI CV 

AD2 CV X 

AE1 CV 

AE2 CV 

AH1 CV 

AH2 CV 

AAl-DN 

• AA2 DN 

X : = xv ■ 

AC3 DN • ' x. 

AC4-BN- X 

X 

.'.:::.AF2. rtsr • X 
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Table 3.12 

Interviewed Students' Simulation 3 Prediction Accuracy 

student black 
triangle 

black circle white circle grey quad. 

AC1 CV X 

AC2 CV X 

ADI CV X 

AD2 CV X 

AE1 CV 

AE2 CV 

AH1 CV 

AH2 CV 

AAI DN 

•aM' dn 

ABi DN X X 

AB2 DN X v X 

AC3 DN 

AC4 DN 

• A A DN ■' 

AF2 DN 
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Table 3.13 

Interviewed Students' Simulation 4 Prediction Accuracy 

student black 
circle 

black 
triangle 

white 
circle 

whi te 
triangle 

grey 
triangle 

grey 
quad. 

AC1 CV X 

AC2 CV X 

ADI CV X 

AD2 CV 

AE1 CV m 

AE2 CV m 

AH1 CV 

AH2 CV 

AA1 DN llllfl 

AA2 DN * 

Sabi :dn";-: X ' X x ; X X 

AB2 DN X • : X x III .X1 X 

AC3 DN X ■yyyyyyyyyyysfix<yyyyyyyyy. 

AC4- DN.':: 111 HUB x • X X 'Y 
J >yyj%>y-:'<yyy'-- 

AEl DN * Wmmm 

: AE2 DN * III! X 

In general, students had little difficulty with the CV 

simulation activity predictions. Evidence for this is provided by the 

accuracy of the students' predictions as well as by students 
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comments on the questionnaire. Several students indicated that the 

activities were repetitive. 

There is evidence that for many, if not all students, the CV 

condition facilitated visualization during the treatment (see chapter 

VI for instances). This was expected, as the tasks involved 

prediction of the direction of travel of objects (for similar results, 

see Monaghan & Clement, 1994a, 1994b). 

Concerning the DN condition, it may be requisite for students 

to comprehend the meaning of the polar direction in order for 

visualization to occur. This condition can foster algorithm use; 

indeed it can foster low reflective algorithm use. However, there is 

evidence that the DN condition fostered visualization in many cases 

(see chapter VI). 

In examining the students' predictions, it appears that some 

predictions were clearly easier than others. Indeed, key predictions 

were intended to foster cognitive dissonance. Specifically, 

predictions involving objects where direction changed when the 

frame was changed, and where speed became zero, were intended 

to foster cognitive dissonance. 

In examining posttest results, an improved score on questions 

3, 9, and 11 (where direction changes and direction is requested in 

the problem; possibly also the case for question 1 which is reliant 

on question 3 for some students) may indicate that the student is 

able to deal with the dissonance caused by direction change 

predictions. An improved score on question 17 may indicate the 

same for the cancellation case. 
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Many predictions that were expected to cause dissonance 

were answered correctly by pairs of students. Notably, a prediction 

that had not been expected to cause dissonance was inaccurately 

answered by 3 of 4 pairs of DN condition students. In subsequent 

chapters, case study evidence will be provided that a number of 

students (if not all students) were using algorithms to come up with 

their prediction. Algorithm were often employed without 

visualization (e.g., subject AC4, see chapter VI). Even where one or 

both students were visualizing during the prediction phase, they 

often fell into a mode of thinking in which visualization was not 

employed, either to facilitate completion of the task, or because it 

was not possible to visualize that component. 

Summary 

Both the CV honors class and the DN honors class showed 

statistically significant gains on the posttest. There was not a 

statistically significant difference between groups’ gains scores. In 

both the classroom and interview studies, DN students made more 

incorrect predictions during the treatment than CV students. 

Statistically, DN honors group students made a greater number of 

incorrect predictions than CV honors group students. 
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CHAPTER IV 

CV INTERVIEW PRETEST/POSTTEST CASE STUDIES 

Introduction 

In this chapter, selected case studies of interviewed students' 

performance on the pretest and posttest are described. These case 

studies are presented to identify the occurrence of learning and to 

document the type of learning that occurred for individual students 

following interaction with the CV treatment. (See chapter II for a 

description of the CV treatment.) 

CV Interview Test Results 

No statistically significant gains were posted by the 8 students 

who comprised the CV interview group. Below, table 4.1 

summarizes the CV group's performance. The mean gain for the CV 

interview students was 11%, with the standard deviation 30%. 

Table 4.1 

CV Interviewed Students' Test Performance 

Question 1 3 5 7 9 11 13 15 17 Average 

Pretest 50% 63% 88% 63% 88% 75% 88% 63% 38% 68% 

Posttest 75% 75% 88% 75% 88% 88% 88% 88% 50% 79% 

In table 4.2, the individual scores for the CV interview group 

are displayed. The pretest combination and posttest combination 

scores were derived via the following rules. 
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If the answer is: 

• Correct and confidence is "I'm sure ... then combination 

equals +1.0. 

• Correct and confidence equals "fairly confident," then 

combination equals +.75. 

• Correct and confidence equals "not very confident," then 

combination equals +.50. 

• Correct and confidence equals "blind guess," then 

combination equals +.25. 

If the answer is: 

• Incorrect and confidence equals "I'm sure ... ," then 

combination equals -1.0. 

• Incorrect and confidence equals "fairly confident," then 

combination equals -.75. 

• Incorrect and confidence equals "not very confident," then 

combination equals -.50. 

• Incorrect and confidence equals "blind guess," then 

combination equals -.25. 
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Table 4.2 

CV Students' Test Scores and Test Gains 

Student Pretest Posttest Test 
Gain 

Pretest 
combina¬ 

tion 

Posttest 
combina¬ 

tion 

Combina¬ 
tion Gain 

AC1 11% 78% 66% -.56 .47 1.03 
AC2 33% 33% 0% -.25 -.25 0 
ADI 100% 100% 0% .81 .92 .11 
AD2 89% 67% -22% .69 .31 -.38 
AE1 89% 89% 0% .56 .75 .19 
AE2 44% 89% 45% -.083 .67 .75 
AH1 78% 89% 11% .50 .75 .25 
AH2 100% 89% -11% .89 .58 -.31 

Below, hypotheses concerning how students may construct 

mental models of relative motion problems are presented to 

provide background for understanding case study protocol. 

Students' Relative Motion Model Construction 

I hypothesize that students often construct a mental model of 

a relative motion problem through parallel construction of a visual 

model (see Wiser, 1992) of the problem and a numeric model of the 

problem. The fabrication of the visual model involves construction 

of individual components of the model and coordination of those 

components. (For a similar hypothesis, see Finke, 1989.) I 

hypothesize that this is done by constructing a visual model of the 

motion of objects relative to each medium which motion occurs in 

or on and coordinating the components. In parallel with visual 

model construction, the student constructs a numeric model of 

components of the problem and combines those numeric 

components. The visual model and the numeric model are subject 
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to criticism based on a student's epistemological commitments (e.g., 

the "true” velocity of an object is its velocity relative to the ground 

(see Saltiel & Malgrange, 1980). For a discussion of epistemological 

commitments as a part of the student's "conceptual ecology," see 

Posner, et al. (1982).) If both the visual model and the numeric 

model pass the epistemological commitment tests, then they are 

combined into a resultant mental model. A clash between the 

interpretation of the problem scenario fostered by consideration of 

the visual model and the interpretation fostered by the numeric 

model can cause reconstruction of each model, based on the belief 

of the student in the accuracy of each model. Additionally, each 

model can affect the other model, as inconsistencies may be noticed 

between the representation fostered by one model and the 

representation fostered by the other model. However, it is also 

possible that the student will be unconcerned with, unaware of, or 

unable to resolve inconsistencies between the scene represented via 

the visual model and the scene represented via the numeric model 

(see Linn & Songer, 1991; Posner, et al., 1982). In figure 4.1, the 

processes involved in this hypothesized model construction are 

shown. Arrows in the diagram reveal potential paths for the flow 

of mental processing. 
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CONSTRUCTION 
OF VISUAL 

MODEL 
COMPONENTS 

CONSTRUCTION 
OF NUMERIC 

MODEL 
COMPONENTS 

Figure 4.1 

Hypothesized relative motion model construction processes 

Following are selected protocol and analyses of high school 

science students involved in the interview studies. Supporting 

evidence for the hypotheses above as well as general evidence 

concerning students' problem solving approaches are provided. 
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AC1 Case Study 

In table 4.3, the accuracy of ACl's responses to the diagnostic 

problems is displayed (1 indicates correct; 0 indicates incorrect). 

Table 4.3 

AC1 Test Accuracy 

Question 1 3 5 7 9 1 1 13 15 17 Score 

Pretest 0 0 1 0 0 0 0 0 0 11% 

Posttest 1 1 1 1 1 1 0 1 0 78% 

AC1 Pretest 

Protocol evidence for difficulties with relative motion pretest 

problems are displayed below. Student AC1 apparently ignores the 

effect of the motion of the reference frame on the answers for 

problems 7 and 9. 

AC1: [question 7-see appendix] If the barge is going to 

the left at four miles per hour, and the barge worker's 

walking in the opposite direction, then um, in relation to 

the, to the cruise ship, the um, barge worker is just stay¬ 

ing at the same place. So it’s zero miles per hour [correct 

answer is 10 mph]. Because um, because the barge 

worker is sort of evening off how far the barge has gotten 

away from the cruise ship.... I'm fairly confident in my 

answer. 

[question 9-see appendix] The barge worker is walking 

towards the right, and Joe is facing the bar, barge worker.... To 
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keep him in his, in the telescope range, then he has to move the 

telescope to the right [correct answer is to the left], ... with the 

barge worker. 

AC1 Treatment 

During simulation activity 1, AC1 expresses surprise with 

apparently unexpected output of the computer simulation . AC2 

appears to assist AC1 in understanding the simulation output, as 

indicated in the following protocol: 

AC1: Why isn't the bike [frame of reference] moving? 

AC2: If we're, I would think that if we were in like the focus 

of, we're on the bike, um, and you're looking down [points 

down with pen in right hand], we're going [moves right hand to 

the right] along with the bike so it doesn't look like it's [the 

bike] going. 

AC1: Oh, OK. Right, so then we pass pyramids, and then the 

dog passes us [moves right hand back and forth]. 

AC2: The dog passes us. 

During the above interaction, both students appear to employ 

dynamic mental imagery (see Clement, 1994; Finke, 1989), 

evidenced by hand motions, reports of self-projection, and the 

report of multiple states of the scenario. I hypothesize that such 

mental imagery during the treatment may assist students in 

visualization of relative motion problems when the computer 

simulation is absent (see Monaghan & Clement, 1994a, 1994b for 

similar results). 
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AC1 Posttest 

AC1 apparently made substantial gains in her understanding of 

relative motion. Her posttest score on the 9 question test was 77%, 

compared with 11% on the pretest. For example, problems 7 and 9 

revealed accurate reasoning. 

AC1: [see question 7 in appendix A] Well the cruise ship is 

traveling to the right-ten miles per hour, and the barge 

worker's traveling to the right at four miles per hour, but the, 

um, barge is going to the left at four mile per hour. They'd 

[barge worker and the barge] both um, even each other off— 

the barge workers' speed relative to the cruise ship would be 

ten miles per hour. 

Similarly, her answers to several other posttest questions 

revealed an understanding of relative motion that had not been 

displayed during the pretest. 

Below, she refers to the influence of the computer simulation on 

her solution. 

AC1: I'm not sure if, if it was like the computer um, where if 

the um, cruise ship is—the fix thing that—stays still, or that is 

looks like [emphasis added] it stays still, but it's really going 

ten miles to the, per hour to the right, then I think the uh, if 

the ship looked like [emphasis added] it was staying still, then 

the barge worker would be going ten miles to the left, um, in 

respect to the ship ... on this [computer] screen or whatever, its 

[the cruise ship] stayin' still 

Following a very short treatment, AC1 showed substantial 

gains in her ability to solve relative motion problems; she clearly 
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and accurately transferred experiences with the collaborative 

simulation activities to transfer problems. It appears that the 

activities assisted her with visualization, providing a template for 

her visualization of transfer problems. (For a similar result, see 

Monaghan & Clement, 1994a, 1994b.) Subject AC1, who made 

substantial gains on the posttest, was aided in her understanding of 

simulation 1 by AC2. It is conceivable that the cognitive effort 

expended by AC1 in her attempt to understand the anomalous data 

triggered conceptual change (see Chinn & Brewer, 1993; Posner, et 

al., 1982; Strike & Posner, 1992). However, ACl's partner, AC2, did 

not display substantial gains, scoring 33% on both the pretest and 

posttest. It is plausible that this was due to insufficient experience 

with the collaborative simulation activities. Or, the presented 

activities were not at the appropriate level for her to advance her 

current conceptions. 

As an example of the model construction process shown in 

figure 4.1, I present the case of subject ACl's hypothesized model of 

the scenario described in test questions 7 and 9 (see appendix A for 

text of the problems). 

In her posttest protocol, the student incorporated the 

movement of the cruise ship (relative to the ground) into her model 

of the problem. I hypothesize that this was done in part because 

the student had changed an epistemological commitment which had 

occurred during the pretest, namely that the motion of the person 

on the barge is independent of the motion of the motion of the 

cruise ship. Additionally, it appears that experience with computer 

simulation activities affected the student's visual model of the 
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problem, as she refers to the cruise ship as equivalent to the still 

object on the computer screen. This analogous reasoning may 

indicate improved understanding of the reference frame concept, a 

necessary prerequisite for accurate mental imagery of the problem. 

I further hypothesize that critical to, and concurrently developed 

with, her visual model, is her numeric model of the problem. 

Without an understanding of the numeric information present in 

the problem, she would be unable to produce a unique visual model 

of the problem, thus the contention that the numeric model and the 

visual model of the problem evolve in parallel. 

In her pretest protocol, the student showed an inconsistency 

between her visual and numeric models of the problem, as 

evidenced by her responses to questions 7 and 9. Her response to 

question 7, that the barge worker was traveling 0 mph relative to 

the cruise ship is inconsistent with her response that the barge 

worker was moving to the right relative to the cruise ship. In this 

case, it may be that consideration of the aforementioned 

epistemological commitment affected her model construction. 

Based upon protocol from AC1 and protocol from AE2 (quoted 

below), I believe that the animation provides an external 

representation (or model) which often can assist construction of an 

internal visual model of an event. Furthermore, components of this 

internal visual model may be applied more generally to other 

relative motion events For instance, AC2 speaks about the 

helicopter as like the computer simulation object that did not move. 

Since the student was not given any numbers from which she could 

have developed a numerical algorithm, this suggests that her 
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calculation of the answer was informed by visualization of the 

problem. This analysis appears very plausible in her solution on 

the telescope problem. The student may not visualize the entire 

scene at once; indeed, she appears to take a component approach to 

forming a complete visual model of the target problem event. 

Apparently, she successfully coordinated components of her visual 

model into an integrated model which appears to have assisted her 

numeric solution of posttest problem 7 and her directional solution 

of the posttest problem 9. 

AE2 Case Study 

In table 4.4 below, the accuracy of AE2's responses to the 

diagnostic problems is displayed (1 indicates correct; 0 indicates 

incorrect). 

Table 4.4 

AE2 Test Accuracy 

Question 1 3 5 7 9 1 1 13 15 17 Score 

Pretest 0 1 0 0 1 1 1 0 0 44% 

Posttest 1 1 1 1 0 1 1 1 1 89% 

AE2 Pretest 

As evidenced by her answers for pretest problems, AE2 

seemed to have a reasonably good visual model of many scenarios. 

In particular, her answers to questions 3, 9, and 11 provided 

evidence that she understood that the relative motion of two 

objects has an effect on direction of travel of the objects when 

viewed from the other's frame. Numerically, however, like subject 



AC2, this student gave the same answer (160 mph) for pretest 

questions 13 and 15. She answered 8 for both questions 1 and 3 

She appeared to be in transition in her response to question 17 

In general, there was evidence that her visualization of the 

scenarios was often good, but she did not know how to calculate 

numeric answers for questions 1, 5,7, 13, 15, and 17. Pretest 

questions 3, 9, and 11, which required a directional answer were 

answered accurately. Below, protocol from her solution for pretest 

questions 1 and 3 is presented. 

8 AE2: In questions 1 through 6, Tony and Joe are 

playing air hockey in a cruise ship's game room. Relative to an 

observer standing on the ground, the ship is traveling left at 10 

miles per hour. Tony just hit the puck toward Joe at a speed of 

8 miles per hour relative to the air hockey table. What is the 

speed of the puck relative to the observer on the ground? Ah- 

9 I: Can you say what you're thinking. 

I 0 AE2: I guess how fast the puck is going, is it going 

toward the observer away from, it's like 8 miles per hour. 

II I: OK, and how'd you get it? 

1 2 AE2: Cause it was going toward the observer on the 

ground and he's standing still. 

1 3 I: OK. 

1 4 AE2: How confident are you in your answer? Urn, I'm 

not very confident in my answer. 

15 I: Why not? 
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1 6 AE2: Um, cause the ship is moving. What direction is 

the puck traveling relative to the observer on the ground?... 

2 0 AE2: The ship's moving to the left so—hmm. 

2 1 I: Can you say out loud what you're thinking about? 

2 2 AE2: The speed of the ship is 10, the speed of the puck 

is 8, the ship is going to the left, and the puck is going to the 

right, um, I'd say [my answer is] to the left. How confident are 

you in your answer? Um, I'd say I'm fairly confident. 

2 3 I: OK, could you say one more time how you got your 

answer, please. 

2 4 AE2: Um, the ship is going to the left at 10 miles per 

hour and the puck is going to the right at 8 miles per hour, 

since the ship is going faster to the left than the puck is 

traveling to the left the observer.... 

2 6 AE2: Joe just hit the puck toward Tony at a speed of 8 

miles per hour relative to the air hockey table. What is the 

speed of the puck relative to the observer on the ground? Um 

2 7 I: What are you thinking about? 

2 8 AE2: Um, the ship is going 10 miles per hour, and the 

puck is going 8. Um, I'd say [my answer is] 8 miles per hour. 

2 9 I: How'd you get that? 

3 0 AE2: Um, 'cause the puck is going at 8 miles per hour 

and the observer's standing still but I don't think it goes any 

faster because of the boat [emphasis added].. 

3 1 I: I'm sorry, what was the last part you were saying? 
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3 2 AE2: I don't think it goes any faster because of the 

boat. 

3 3 I: I see, OK. And how's your confidence in you answer? 

3 4 AE2: Um, I'm fairly confident. 

AE2 Posttest 

AE2’s responses to posttest questions 1, 3 and 5 follow. 

2 2 AE2: Okay. In questions one through six, Toni and Joe 

are playing air hockey in a cruise ship's game room. Relative to 

an observer standing on the ground, the ship is traveling to the 

left at 10 miles per hour. Toni just hit the puck toward Joe at a 

speed of 8 miles per hour relative to the air hockey table. 

What is the speed of the puck relative to the observer on the 

ground? Um-the puck is at eight miles per hour-the ship is 

going to the left at 10 miles per hour-I'd say-[my answer is] 

2 miles per hour—to the observer. 

2 3 I: And how'd you get it? 

2 4 AE2: Um, 'cause the ship was going to the left and the 

puck was going to the right at a lesser speed than the ship. 

Um, I subtracted. 

2 5 I: I see. 

2 6 AE2: And I guess I'd be fairly confident in that 

answer.... 

3 2 AE2: Um, What direction is the puck traveling relative 

to the observer on the ground? Um, I'd say—to the—left. 

'Cause the ship is moving faster than the puck. The puck will 

still be going to the left. And I think I m sure in that answer, 

(pause) Joe just hit the puck toward Toni at a speed of 8 miles 
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per hour. Relative to the air hockey table, what is the speed of 

the puck relative to the observer on the ground? Um—I'd say 

18 miles per hour because it's going to the left and the boat is 

going to the left. But they're both going at different speeds, so 

I added them. And--and I'm fairly confident in that answer. 

3 3 I: Okay. And could you say one more time, please, how 

you got your answer? 

3 4 AE2: Um, 'cause the boat is going at 10 miles per hour 

to the left and um, the puck is going at eight miles per hour 

toward the left and I added them. 

AE2 Questionnaire 

Following the posttest, AE2 provided evidence for the efficacy 

of the computer simulations in assisting her solutions to ship and 

car/truck problems. Her retrospective responses, given during the 

questionnaire phase following the posttest, indicated that memory 

of the computer simulation activities assisted her solution of 

numeric problems. Although the evidence is not as convincing as 

that for subject AC1, because the protocol was given after the 

problem had been solved, nevertheless, it is an additional case 

where memory of a computer simulation that had provided only 

visual feedback, can assist a student's solution of a numeric 

problem. Combined with the result from AC1, it provides evidence 

that visualization appears to assist some students with solution of 

relative motion problems. Protocol from her response to 

questionnaire items is listed below. 

102 AE2: The part of the activities that I enjoyed the most 

was—I think the computer stuff. 
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103 I: What part? 

104 AE2: Um. Hmm. I guess-hmm. Let's see. Um, working 

on the computer and working with a partner, like. 

105 I: Okay, (pause) 

106 AE2: And, the part of the activities that I enjoyed the 

least was--um, trying to find the answers to some of these 

questions, I guess (laughs). 

107 I: Can you give an example? 

108 AE2: Um--like, trying to figure out the speed of 

something, and it was like, relative to um-like, two other 

things, (pause) 

109 I: Uh, can you give an example of the other things that 

something was relative to? 

110 AE2: Um, the like, to something moving and not 

standing still, or where you had to take other speeds into 

consideration, (pause) 

111 I: Uh, which one was uh, like that? 

1 12 AE2: Um-like the car and the helicopter [in questions 

13 and 15]. (pause) 

113 I: I see. 

1 14 AE2: I think the um, the part of the activity that was 

helpful in solving the problems were--were the visuals, (pause) 

Did computer simulation activities help you to visualize any of 

the problems? If you answer yes, please state which problems 

the simulation helped you to visualize, and why the simulation 

was helpful. Um, I did think that it helped. Um, it helped me 

visualize the problems. Um, I think like, with the—the problem 
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with the barge, or the cruise ship. Whenever there was a ship 

or a boat, it helped me most with those ones, (pause) Did the 

computer simulation activities help you to calculate the answer 

for any of the problems? If you answer yes, please state which 

problems the simulation activities helped you to calculate 

answers for, and why the simulation was helpful. Um. I think 

it did help me to get the right answer for um, the—the 

problems where two things were moving in opposite directions, 

such as the helicopter and the truck [in questions 13 and 15]. 

(pause) 

115 I: I'm sorry. Which one did you say? 

116 AE2: The problem with the truck and the helicopter. 

117 I: Okay, (pause) And why was the simulation helpful on 

that one? 

118 AE2: Um, because it helped me to see how they would 

move past each other. I could see that in mv mind [emphasis 

added], (pause) 

119 I: Okay, and on the uh—on the previous question uh, 

why uh, was the simulation helpful? 

120 AE2: Um, ’cause I could—I could see [emphasis added] 

th—the boat moving and I could—I could think of somebody 

like, standing on it. H-how some things standing still would 

look [emphasis added] from a boat and how something moving 

in the opposite direction of the boat would look [emphasis 

added]. 

121 I: I see. (pause) Okay, (pause) 
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122 AE2: Um, your rating of the computer simulation 

activities. Um, I'd say-I'd say "A." I liked them and I think 

they helped me out with these questions, too. 

Summary 

It is somewhat surprising that AE2 dramatically improved her 

score on the diagnostic test following interaction with computer 

simulation activities, as she showed few, if any, signs of conceptual 

dissonance during the activities. Indeed, during the first simulation 

she appeared to take the lead for a time, though for many of the 

other simulation activities, her partner appeared to lead. She did 

appear to agree with him during the activities, however, and based 

on her interaction with him during the first simulation, both 

students appeared comfortable with disagreement (she had pointed 

out that she disagreed with her partner during the first simulation; 

he ended up changing his position as a result of her insight). 

It is plausible that interaction with a more accomplished 

partner may have facilitated AE2's gains in understanding on the 

posttest. (AE2's partner, AE1, correctly answered 8 of 9 pretest 

problems.) This analysis is compatible with Vygotsky's (1978) 

theory of the zone of proximal development. However, this position 

is difficult to maintain as she did not apparently show any concern 

with the predictions that her partner made. Additionally, as shown 

above, she was the leader when a disagreement occurred during 

simulation 1. 
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CHAPTER V 

DN INTERVIEW PRETEST/POSTTEST CASE STUDIES 

In this chapter, selected case studies of interviewed students’ 

performance on the pretest and their performance on the posttest 

are described. These case studies are presented to identify the 

occurrence of learning and to document the type of learning that 

occurred for individual students following interaction with the DN 

condition. 

DN Interview Test Results 

On the whole, statistically significant gains were posted by the 

8 students who comprised the DN interview group. On the measure 

as a whole, a one-tailed t-test showed significant gains with pc.01. 

Below, table 5.1 lists the group's performance. The mean gain for 

the DN interview students was 17%, with the standard deviation 

12%. 

Table 5.1 

DN Interviewed Students' Test Performance 

Ouestion 1 3 5 7 9 11 13 15 17 Average 

Pretest 75% 50% 75% 0% 75% 62% 38% 38% 25% 49% 

Posttest 100% 62% 75% 25% 88% 62% 75% 75% 25% 65% 

In table 5.2, the individual scores for the 8 member DN 

interview group are displayed. As for the CV interviewed students, 
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the pretest combination and posttest combination scores were 

derived via the following rules. 

If the answer is: 

• Correct and confidence is "I'm sure ... then combination 

equals +1.0. 

• Correct and confidence equals "fairly confident," then 

combination equals +.75. 

• Correct and confidence equals "not very confident," then 

combination equals +.50. 

• Correct and confidence equals "blind guess," then 

combination equals +.25. 

If the answer is: 

• Incorrect and confidence equals "I'm sure ... ," then 

combination equals -1.0. 

• Incorrect and confidence equals "fairly confident," then 

combination equals -.75. 

• Incorrect and confidence equals "not very confident, then 

combination equals -.50. 

• Incorrect and confidence equals "blind guess," then 

combination equals -.25. 
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Table 5.2 

DN Interviewed Students' Test Scores and Test Gains 

Student Pretest Posttest Test 
Gain 

Pretest 
combina¬ 

tion 

Posttest 
combina¬ 

tion 

Combina¬ 
tion Gain 

AA1 89% 100% 11% .56 .83 .27 
AA2 22% 33% 11% -.28 -.14 .14 
AB1 11% 33% 22% -.67 -.17 .50 
AB2 56% 56% 0% -.028 .083 .11 
AC3 44% 56% 11% -.028 .25 .28 
AC4 67% 78% 11% .31 .53 .22 
AF1 67% 100% 33% .50 .92 .42 
AF2 33% 67% 33% -.19 .44 .63 

Following are selected protocol and analysis of high school 

science students involved in the interview studies. 

AF1 Case Study 

In table 5.3 below, the accuracy of AFl's responses to the 

diagnostic problems is displayed (1 indicates correct; 0 indicates 

incorrect). 

Table 5.3 

AF1 Test Accuracy 

Question 1 3 5 7 9 1 1 13 15 1 7 Score 

Pretest 1 1 1 0 1 1 0 0 1 67% 

Posttest 1 1 1 1 1 1 1 1 1 100% 
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AF1 Pretest 

AF1 displayed no difficulty with questions 1 through 5 and 

he expressed great confidence in his answers. However, question 7 

gave him trouble. He thought that the speed of the worker relative 

to the ship would equal 4+10=14. However, he did not see this 

answer so he figured that the answer would be 6, i.e., 10-4. His 

answer on question 9 indicates that he has a visual model that may 

assist him. His numeric answer for number 7 is not consistent with 

his response for number 9. As for AC1 (see chapter IV), this may 

indicate that he has separate numeric and visual models of the 

problem. In answering pretest question 9, he did not talk about the 

motion of the barge worker, and only referred to the motion of the 

barge and the motion of the cruise ship. It is very plausible that 

AF1 had no way to produce a numeric model for the problem, as 

suggested by his statement in line 35. Protocol for pretest 

questions 7 and 9 is displayed below. 

2 9 AF1: [question 7] Joe is watching a barge from the deck 

of a cruise ship. The barge is being pulled by a tugboat at a 

speed of four miles an hour relative to the still water. A barge 

worker's walking towards the back of the barge at a speed of 

four miles an hour, relative to the barge. The cruise ship is 

traveling at ten miles an hour relative to the still water. Urn-- 

3 0 I: What are you thinking about? 

3 1 AF1: I'm just ah. I'm just trying to think exactly how 

that relates to the diagram. I think I'm all set now. What is 

the bar, barge worker's speed, relative to the cruise ship. So 

this is moving ten miles an hour, and this is moving four miles 
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an hour, so what is the barge workers' speed relative to the 

cruise ship? Um, um, hum. I'm not sure, I mean, the barge 

worker is, is moving, and the cruise ship is moving the opposite 

way, but I don't see fourteen, so it can't be that, um, I'm going 

to say six miles an hour. How confident are you in your 

answer? I'm not very confident in my answer. 

3 2 I: Could you say how you got your answer please? 

3 3 AF1: Basically, ah, um, four and ten is fourteen, and 

that's not an answer here, so the other option would be to go 

ten minus four which is six, [emphasis added] 

3 4 I: I see. 

3 5 AF1: So, that's probably not the way to go about getting 

the answer. I don't really know how to do it. so that's what I'm 

resorting to. [emphasis added] 

3 6 I: Okay. 

3 7 AF1: [question 9] Joe is viewing the large, barge worker 

through a telescope. To keep the barge worker in the center of 

his vision, which may, which way must he move the telescope? 

He must move it to the left. I'm sure my answer is right. 

3 8 I: How'd you get that one? 

3 9 AF1: Because the ship is moving to the right, and the 

barge is moving to the left, so he has to move to telescope left 

to compensate for its movement. 

For questions 13 and 15, AF1 determined that an algorithm 

was necessary. He referred to question 7, stating that 7 was easier 

because it involved smaller numbers. He correctly answered 

question 13, but then as he answered question 15, he changed his 
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response for question 13. He apparently used an algorithm which 

could be stated: "add when going same direction; subtract when 

going opposite directions," as shown in the following protocol: 

5 6 I'm going to say 160 miles an hour [response for pretest 

question 15], and I'm going to change number thirteen to 240 

miles an hour. 

5 7 I: Why's that? 

5 8 AF1: Because I wasn't sure what you do with the other 

one, I mean whether, in number thirteen whether or not you 

subtract or add it. Add I th, I think, if they're going opposite 

directions, then vou would subtract, and if you're going the 

same direction, you would add f emphasis added], but I don't, I 

don't really know, but. So I'm still not very confident in my 

answer. 

5 9 I: Okay, so you said opposite directions, sorry? 

6 0 AF1: Opposite directions you would subtract, and same 

directions you would add, but like I said I'm not sure about 

that. 

He indicated that he was a little bit more sure than blind 

guess level. He seemed sure that he was either right or that he had 

the algorithm backwards; indeed from his responses to questions 13 

and 15, he did have the algorithm backwards. 

Pretest question 17 did not appear to pose serious problems 

for AF1. He reasoned that the speed of the truck would counteract 

the speed of the ball. It appears that he did visualize the problem 

and that he also seems to have an accurate numeric model for the 

problem. However, he was not very confident in his answer. 
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Additionally, his correct reasoning on this problem could be seen as 

inconsistent with his reasoning on pretest questions 15 and 13. 

Protocol from his solution for pretest problem 17 follows. 

6 8 AF1: Well. I'm iust trying to picture this [emphasis 

added], ah, and I'm going to say it's going to fall and hit the 

ground at "P" [correct answer]. Um, just because, I mean, the, 

the two speeds are equal, and they’re both going different 

ways which would mean that it'd average out to be right where 

he throws it.... 

7 0 AF1: But I'm not sure about that, so I'm not very 

confident in my answer. 

AF1 Posttest 

AF1 showed improvement on questions 7, 13, and 15 and 

improved his confidence on number 17. It is very possible that 

interaction with the computer simulation activities affected 

algorithms used by AF1. (See chapter VI for protocol describing 

AF1 and AF2's use and modification of algorithms during the 

treatment.) Protocol from posttest questions 7 and 9 are below. 

2 6 AF1: [see question 7 in appendix] OK, the barge is 

moving 4 miles an hour, and he's moving 4 miles an hour back 

which means that he's moving, basically he's staying in the 

same place and so he's not really [emphasis added] moving, so 

the cruise ship is going to be moving 10 miles an hour, so what 

is the barge worker's speed relative to the cruise ship? 

Because the barge worker's not moving and the cruise ship is 

moving along at 10 miles an hour, it's [the answer is] going to 
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be 10 miles an hour. Um, yeah it's going to be 10 miles an 

hour. Um, yeah OK, and I'm sure my answer is right, OK. 

2 7 I: ... what were you thinking about? 

2 8 AF1: ah, I just, I got all confused because I'm pretty 

tired today, ah, what relative, what that was trying to imply, 

and so um, what is the barge worker's speed relative to the 

cruise ship? The cruise ship if it was going no miles, I mean if 

it was staving there, which is what it's going to be doing, he's 

going to be going 10 miles an hour [emphasis added—possible 

reference to computer simulation where the object that defined 

the frame of reference had 0 velocity]. 

2 9 I: I see. 

3 0 AF1: (question 9) OK, Joe's viewing the barge worker 

through a telescope. To keep the barge worker in the center of 

his vision which way must he move the telescope? To keep the 

barge worker—ah. Wow, ha OK, um, he's going to have to be 

moving to the left, and I'm sure my answer's right. 

3 1 I: Could you say how you got your answer? 

3 2 AF1: Ah, if he's looking up through the telescope and 

he's going and sorry the ship is going 10 miles to the right, and 

even though the barge worker won't be moving um, as far as 

it'll, it'll be the same speed as the water which is nothing. So, 

even though he's not moving he'll still, the ship is still moving 

10 miles an hour, so he’ll have to compensate by moving [the 

telescope] to the left. 

He used an accurate algorithm in solving 13 and 15. Protocol 

from his posttest answers for 13 and 15 follows. 
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3 6 AF1: [question 13] In the picture above you are in the 

gray car; your speedometer reads 40 miles an hour. What is 

your car's speed relative to a very low flying helicopter? 

Relative to the ground, the helicopter is going exactly the same 

direction as your car, at a speed of 200 miles an hour. So the 

helicopter's going this way at 200 miles an hour—OK, ah, what 

is your car's speed relative to a low flying helicopter? Um, 

you're going to be going 160 miles an hour, and I'm fairly 

confident in my answer. 

3 7 I: How'd you get it? 

3 8 AF1: Because, um, if the if the helicopter is moving 

along at 200 miles an hour, and you're going 40, then he's going 

to be going um 160 miles an hour faster than you but if you 

take that into, if he's, if you're, if the car is relative to the 

helicopter that means that you'll be going 160 miles an hour 

faster—I think. 

3 9 I: I see. 

4 0 AF1: [question 15] The white truck is traveling toward 

your position. If the truck's speedometer reads 40 miles an 

hour what is the truck's speed relative to the helicopter? Um, 

now it's going to be going 40 miles an hour the opposite way, so 

it'll end up being 240 miles an hour. And I'm fairly confident 

in my answer. 

4 1 I: Why not positive? 

4 2 AF1: Well for the same idea, well um, because I'm not 

100% sure I've got ah, you know the principles quite right, but 

if the same holds true for number 14 then 15 will be right, so. 
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4 3 I: OK what principle are you concerned about? 

4 4 AF1: Um, when they're going the opposite direction, 

towards, you know going towards each other, I think it's going 

to be added [emphasis added] to um, but I'm not positive. 

As on the pretest, during the posttest, he correctly answered 

question 17. His reported confidence in his posttest answer is 

greater than his reported confidence in his pretest answer, as 

shown below. 

4 5 AF1: [question 17] Ah, I'm going to say fall and hit the 

ground at P, [correct answer] and that's because if the truck is 

going to the left at 40, and he's going to throw a snowball at 40 

the opposite way, they're both going to compensate for each 

other and it’ll just go plop on the ground. So, I'm sure my 

answer is right. 

4 6 I: Positive? 

4 7 API: Yes. 

4 8 I: No doubt in your mind? 

4 9 AF1: Well, a little. 

5 0 I: What’s the doubt? 

5 1 AF1: Well, I, I mean it's the same thing, um as the last 

question. They're both going opposite directions. The truck is 

going to go the opposite direction as the snowball, and I m not 

sure, you know, the principles, so maybe I'll mark C [fairly 

confident]. 

Summary 

Evidenced by his performance on posttest questions 13 and 

15, AF1 appears to have advanced in his ability to solve numeric 
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relative motion questions. It appears that he used an accurate 

algorithm when solving posttest problems 13 and 15; in contrast to 

the faulty algorithm applied to pretest problems 13 and 15. It is 

plausible that this advance was caused by interaction with the 

computer simulation activities, as a similar algorithm to the one 

applied to posttest questions 13 and 15 was expressed during the 

treatment (see chapter VI). AF1 increased his confidence in his 

accurate answer to question 17. During the posttest, unlike the 

pretest, the numeric solution for question 7 was consistent with the 

directional solution for question 9, suggesting that during the 

posttest, numeric and visual models constructed by AF1 for 

questions 7 and 9 were compatible. 

AF2 Case Study 

In table 5.4 below, the accuracy of AF2's responses to the 

diagnostic problems is displayed. (1 indicates correct; 0 indicates 

incorrect) 

Table 5.4 

AF2 Test Accuracy 

Question 1 3 5 7 9 1 1 13 15 1 7 Score 

Pretest 0 1 1 0 0 1 0 0 0 33% 
Posttest 1 1 0 0 1 1 1 1 0 67% 

AF2 Pretest 

During the pretest, there is evidence that AF2 clearly 

reasoned and was rather close to accurate in his answer for 
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question 1. He apparently showed close but faulty reasoning on 

questions 13 and 15, and appears to have reasoned accurately on 

question 11. 

He also reasoned accurately on question 3—indicating that he 

was accurately able to visualize the scenario. During the pretest, 

there is some question whether the student understands the term 

relative to--indeed, there is evidence that he had difficulty 

understanding the term. His answer was fairly accurate on 

question 9 ( telescope question). 

AF2 Posttest 

Based on protocol given during the posttest, student AF2 

appears to have developed algorithms for calculating relative 

speeds, one algorithm being that when objects are approaching, you 

add the speeds, when objects are going the same direction, you 

subtract the speeds. He also appears to have developed a (faulty) 

algorithm for determining the direction of travel, namely, that 

when two objects are going the same direction, the faster one will 

look like it is traveling the opposite direction. In the following, he 

states an algorithm for determining relative speeds. Like other 

students, before the posttest, he was told that I was interested in 

seeing whether the using the computer simulations helped him 

solve any problems (see Holyoak, 1991 for a discussion of how this 

statement may affect the student's reasoning). Following this 

statement by the interviewer, there is evidence that he attempted 

to map features of his memory of the simulations onto posttest 

problems. Evidence for one such attempt at mapping is contained 

in his response to question 1. 
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8 AF2: Okay. In questions one through six, Tony and Joe 

are playing air hockey in a cruise ship's game room. Relative to 

the observer standing on the ground, the ship is traveling to 

the left at ten miles per hour. I'm gonna write ten, left. Tony 

just hit the puck toward Joe at a speed of eight miles per hour 

relative to the air hockey table. So Tony hit it right at eight 

miles per hour. What is the speed of the puck relative to the 

observer on the ground? The observer on the ground is still 

not moving. When I was doing the computer simulation, if 

there was like a black, a black circle going left at 180. and the 

white circle going right at 180 and vou were looking at sav. 

something sav. a square, if vou were looking at a square, that 

would be zero, zero, or zero to the right [emphasis added]. So 

the black circle in this case would be going eight miles per hour 

because that's the puck. The white circle, going left, would be 

the boat going ten. So, and the observer would be the square. 

9 AF2: What is the speed of the puck relative to the 

observer on the ground? Um, the speed, okay let me think, the 

speed of, when I was doing the opposite of the computer 

simulation it was, you change the fo--when the focus changes, 

the speeds change. But here the focus, the, the point that 

you're ah, focusing in on, or I forgot what it was called in the 

computer simulation, but, it was, you change the ah, the the, 

the, the, the main focus was the observer. And in this case it's, 

it's the observer, and it's not changing. So, I still, I still believe 

that it's two miles per hour. Uh. And I'm fairly confident in 

that. 
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10 I: How'd you get your answer? 

1 1 AF2: I could--when I was, the thing, I could, I had 

trouble relating the computer simulation to this simulation. 

Because here I see the, the puck is on the boat. And ah, in the 

computer simulation the square was never on, like, the black 

circle wasn't on the white circle. So, when I see the puck is on 

the boat, I, I assume that the boat's speed cancels out most of 

the puck’s speed. Would it be two? Or would it be, um— No, 

I'd s, no, it's not two. It would be, the boat's speed cancels out 

all of the puck's speed, so it'd be zero. I don't see how. I'm still 

fairly confident in the answer of zero, I've changed that. But I 

don't see how the computer simulation actually relates, to ah. 

to this, because in the computer simulation, the black circle was 

never on top of the white circle [emphasis added]. There were 

two different entities, and here the, the puck is on top of the 

boat. And if the boat is going faster in the opposite direction, 

it'll appear that the puck is not really moving. It'll only appear 

if the puck is moving left, but it won't be moving left at ten, it'll 

be moving left at two. So if this is two miles per hour left, if, if 

question one, the question one the first part is two miles per 

hour left, then I agree with that, because that's also negative 

two to the right. Cause if that's, then it, then in that case I'd 

say it's two, because it's two miles per hour left because the 

boat's actually going faster than the puck. 

1 2 AF2: But the puck wouldn't appear to be going ten 

miles per hour because it's, because eight, eight miles per hour 

of the ten is going right. That's what I'm, so if thats two miles 
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per hour left, then I'll circle that. I wrote, I wrote left in there, 

and with that proviso, I’m completely sure that it’s right. So 

what I was thinking before, I was thinking, two miles per hour, 

I was thinking how fast would the puck be going right, but the 

puck can't go right if the boat is going faster than it.... 

15 I: Okay so, I'm sorry, so you said zero before? 

1 6 AF2: I said zero before, but I changed it to two, as long 

as it's going left. And number three says what direction is 

pucks, is a puck traveling relative to the observer on the 

ground? Before I said neither to the left nor right, but now I 

say to the left. 

17 I: And how'd you get your answer? 

1 8 AF2: Um, I'm, because the boat is going ten to the left, 

and if you ss, and the puck is going eight to the right. Before I 

thought it was zero miles per hour, because um, I thought it 

was zero miles per hour, neither to the left nor the right 

because I thought ah, that it wasn't moving, it wasn't moving at 

all because the boat being ten canceled out the eight. But now 

that I see that, when I. after the computer simulation it 

actually did help me. I see that the, the puck is going negative 

two to the right, which bv looking at the relation on the 

computer simulation is actually positive two to the left 

[emphasis added]. So that's why I got a different answer for 

one and three. 

19 I: I see. 

2 0 AF2: Um, um, I'm sure that that's right. Either that or. 

I'm sure because on the computer simulation, I got the 
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answers. So, I, I, I learned the sort of formula in mv head 

[emphasis added], or the how to work the problem out.... 

2 2 AF2: I'm sure that it's right because I saw, I saw in 

other problems similar to this one on the computer that the 

computer's setting it right, and I put mv faith in the computer 

[emphasis added]. 

In his response to posttest question 5, AF2 articulates his 

(faulty) algorithm for determining the direction of travel of an 

object when viewed from a non-ground frame of reference. 

2 2 AF2: So the puck is, the, the boat is going faster than 

the puck. So actually, from the computer simulation, I actually 

think that um, the puck would appear to be going to the right. 

Two miles per hour to the right. Because ah, because it was 

because what I was explaining to, trying to explain to-- [his 

partner, AF1]. I don't, I don't even know if I really understood 

it at the time. That, when there's something going, there's two 

things going in the same direction, if one thing, if one entity is 

going faster than the other, then it will appear in ah, if you out 

it in space, if vou out in space, it would appear that the one 

that's going slower is actually going the other wav._It would 

appear to another entity looking on. It would appear that the 

oth. that slower one is going the other wav than the faster one 

[emphasis added]. But really all that’s happening, is ah, they're 

both going the same way except one is going b, ah, a speed 

that's increasing. So, I'm fairly, I'm confident, fairly confident 

in my answer. 

104 



30 AF2: I said two because that's two to the right. Because 

th, the puck would appear to be going right, because the boat is 

going fa, they're both going left, but the boat is going faster to 

the left. So, they're both going left, but the boat is going at a 

faster speed, so if you look it would appear that ah, the puck is 

going the other way, 'cause the boat is out-distancing it. 

Summary 

It appears that AF2 attempted to map features of the 

computer simulations onto posttest problems. There is evidence 

that AF2 successfully used an algorithm to calculate relative speeds 

during the posttest. Additional evidence indicates that AF2 used a 

faulty algorithm to determine relative direction. Protocol given by 

AF2 during the treatment provides evidence for use of, and 

possibly the development of the algorithms applied by AF2 during 

the posttest (see chapter VI). 

AC3 Case Study 

In table 5.5 which follows, the accuracy of AC3's responses to 

the diagnostic problems is displayed (1 indicates correct; 0 indicates 

incorrect). 

Table 5.5 

AC3 Test Accuracy 

Question 1 3 5 7 9 1 1 13 15 1 7 Score 

Pretest 1 1 1 0 0 1 0 0 0 44% 

Posttest 1 1 1 0 1 1 0 0 0 56% 
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AC3 Pretest 

Below, AC3's responses to selected pretest questions are 

contrasted with his responses to posttest questions. 

Below are his responses to pretest questions 1 through 5. 

1 4 AC3: OK. In questions one through six, Tony and Joe are 

playing air hockey in a cruise ship's game room. Relative to an 

observer standing on the ground, the ship is traveling to the 

left at ten miles per hour. Tony just hit the puck toward Joe at 

a speed of 8 miles per hour, relative to the air hockey table. 

What is the speed of the puck relative to the observer on the 

ground? Zero mi—miles per hour, five miles per hour, two 

miles per hour, 18 miles per hour, or eight miles per hour. Um, 

the ship is traveling at ten miles an hour relative to an 

observer standing on the ground. Umm, and it says that Tony 

just hit the puck towards Joe at a speed of 8 miles per hour, 

and so it's the air hockey table-it's relative to the air hockey 

table which is, um—inside the ship it won't be moving, but 

outside the ship, it's going about ten miles an hour, so the speed 

of the puck relative to the observer on the ground is ten miles 

an hour plus eight miles an hour because it is 8 miles an hour 

inside the ship, and the ship is moving at ten miles an hour, so 

it has to be eighteen miles an hour, which is [answer] "D." And, 

um, I am fairly confident in my answer. 

1 5 I: OK, why not positive? 

1 6 AC3: Ah, because, the-there could be, um conditions in 

the ship that I don't know of—I don't know.... 
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2 0 AC3: What direction is the puck traveling relative to the 

observer on the ground? Um, well the ship is going left, and 

the puck is inside the ship. Um, but, it doesn't say which, which 

direction the puck is going on the inside of the ship. So, I 

would answer neither to the left, nor to the right. Because you 

don’t know which direction the puck is actually going, if was hit 

to the right or left. So I'm going to say [answer] "C," but I think 

that--I think that my answer might be just a blind guess, 

because, it could be going to the left, also, but, I don't know 

that. I don't, I don't--I haven't really been given much 

information in this problem, so I'm going to answer "A." Um, 

Joe just hit the puck toward Tony at a speed of 8 miles an hour 

relative to the air hockey table. What is the speed of the puck 

relative to the observer on the ground? Well, it's just—it's—Joe 

hits the puck to Tony at 8 miles an hour, and the observer is 

watching the ship go by at ten miles an hour, I think that— 

hmrn-I think that it's "D" also because, because it, it it's the 

puck we—went 8 miles an hour and the ship went ten miles an 

hour, and ten plus eight is 18. Um, I think I’m just gonna 

answer "C" just like the other that I'm fairly confident in my 

answer because, um, I don't know exactly if it's right or not, 

but it's, it's, it's it's somewhat right. I don't know, don't know 

how to explain it. 

Following the pretest, the interviewer asked AC3 if he wanted 

to go back to any questions. Protocol follows. 

5 1 I: OK. Are there any of them that are bothering you 

that you'd like to go back to? 

107 



5 2 AC3: Um, there's-yeah, this--the first one. 

5 3 I: OK. 

5 4 AC3: I didn't read the question [number 1] right. Um, 

but it's-Toni just hit the puck toward Joe at a speed of 8 miles 

per hour. Um, so I was thinking it was going in the opposite 

direction, but it's not. So, it would be, um, it would be 2 miles 

per hour, not 18, because, um, because the-the ship is 

traveling 10 miles per hour, and he's hitting, hitting the puck 

towards Joe at a speed of 8 miles per hour, so the difference 

would be, um, 2 miles per hour. I think, I think that's right. 

5 5 I: OK, how had you read the question before? 

5 6 AC3: Well, I, I had read the question that, um, I was 

just thinking that the puck was traveling in the same direction 

as the ship. I didn’t mean that Toni had just hit the puck, um, 

and, that messed my answer up, because um, there was, the, 

the ship was going ten miles per hour, and the puck was going 

at 8, so I assumed that it would be 18, but, um, the puck is 

going in the opposite direction as the ship. So, it must be 2 

miles per hour. 

As question 3 depended on an understanding of question 1, 

the interviewer asked AC3 to consider his answer to question 3. 

6 3 I: OK. If I could, ah, could you just check number three, 

because I think three depended on number one. 

6 4 AC3: Toni hit the puck toward Joe. OK--oh, the puck is 

going 2 miles per hour relative to the ground, and in what 

direction is the truck-is the puck-traveling relative to the 

observer on the ground? Oh, OK-well, then, if the puck is 
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going 8 miles per hour, then the—it would be going to the left 

instead of neither to the left, nor right. Because, the um, ship is 

going faster than the puck is traveling in the opposite direction. 

Um, so, even though the puck is traveling—is traveling- 

traveling right 8 miles per hour, it would appear to be the 

observer on the ground as traveling to the left at 2 miles per 

hour, so, I'll say, "B." and I'm going to change my confidence on 

that one to "D." 

6 5 I: OK, are you sure? 

6 6 AC3: Because, because the—the um—the puck is being 

shot at Joe at 8 miles per hour, and the ship is traveling at 10 

miles per hour, so it would appear to an observer as going 2 

miles per hour to the left, because the ship has more initial, um, 

momentum than the puck does because it's going faster, and I 

think that it—it would be, um, I think that my answer is right. 

In the above protocol, it appears that AC3 is aware of the 

effect of the medium's speed, relative to the ground, on the speed of 

the supported object, relative to the ground. 

In the following protocol, AC3 appears to have difficulty with 

pretest questions 7 and 9. 

2 2 AC3: Numbers 7 through 10 refer to the scene 

described below. Joe is watching the barge from the deck of 

the cruise ship. The barge is pulled by a tugboat at a speed of 

4 miles per hour, relative to the still wa—water. So, umm—a 

barge worker is walking toward the back of the barge at a 

speed of 4 miles per hour relative to the barge. The cruise ship 

is traveling at 10 miles per hour relative to the still water. 
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Umm, What is the barge worker's speed relative to the cruise 

ship? Umm, let's see, the barge worker is traveling at 4 miles 

per hour relative to the barge, and the barge is being pulled at 

4 miles per hour, so I think the would be going at the same 

miles per hour, relative to the still water, each—the worker and 

the tugboat- The cruise ship is traveling at 10 miles per hour 

relative to the still water. So, obviously, the cruise ship is going 

faster than the barge worker. Urn, the barge worker is going 4 

miles per hour, and the cruise ship is going 10 miles an hour, so 

I think, I-I'm just going to guess 4 miles an hour for number 

seven. Urn, wait-um, actually, four-the barge worker is going 

4 miles an hour, and the ship is going 10 miles an hour, so that 

that means there's a 6 mile per hour difference between the 

two, so I think that-the barge worker's speed relative to the 

cruise ship, um—no I'll just go with four because 111 just go 

with four, um. I'm fairly confident in my answer because, um 

there there is, um I think that the barge worker's obviously 

going 4 miles per hour and the cruise ship is going 10 miles per 

hour, so you know the barge worker's speed is four miles per 

hour. [Correct answer is 10 miles per hour.] Ah, OK, uh, Joe is 

viewing the barge worker through a telescope. To keep the 

barge worker— 

2 3 I: Oh, I'm sorry, what was your confidence on that one? 

2 4 AC3: Ah, I said I was fairly confident. 

2 5 I: OK, and why not positive on that one? 

2 6 AC3: Because, I don't-the, the barge worker's speed is 

four, but the cruise ship is-is 10, and I don’t know how to 
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exactly say that they're relative because it'd be four to ten, 

that—that's not six, and I just said four. Because the barge 

worker's going four and you know that. That much, and I 

can't—I can't really make an assumption. Um, Joe's viewing the 

barge worker through a telescope. To keep the barge worker 

in the center of his vision, which way must he move the 

telescope? Um, let's see, the barge—keep the barge worker in 

the center—of his vision—what way must he move his 

telescope? Well, um, see, Joe is watching the barge from the 

deck of the cruise ship. OK, so, and according to this, the— 

according to the picture, the barge is, is being pulled to the left 

by the tugboat, and, Joe is the cruise ship is going to the right, 

so that means, according to the picture, they're almost lined up, 

but, I think that, um, to keep the barge worker in the center of 

his vision, um, I don't think he has to move his telescope at all. 

[Correct answer is to the left.] Because the tugboat is moving to 

the left, and the barge worker is moving to the right, and if 

they're going at the same speed, then they're they're just um, 

staying in the same place, because the two speeds cancel each 

other out, ah, because, if there's an equal pull on both sides, so 

it's just gonna stay in the same—the barge worker's gonna stay 

in the same place in his telescope, so I think he should— 

neither—move his telescope neither way. And I am sure that 

my answer is right. Because, that—the two are going in both 

opposite directions, and there's an equal pull. Equal miles per 

hour. 

2 7 I: I'm sorry, what's an equal miles per hour? 



2 8 AC3: Um, the barge worker and the tugboat are going 

the same miles per hour. 

In the above transcript, AC3 shows an apparent mismatch 

between his numeric and visual representations of the problem. In 

the following transcript, AC3 shows signs of algorithm use during 

his solution to pretest problems 13 and 15. 

3 6 AC3: Ah, Numbers thirteen to sixteen refer to the 

picture below. In the picture above, you are in a gray car. 

Your speedometer reads 40 miles per hour. What is your car 

speed relative to the very low flying helicopter—to a very low 

flying helicopter? Relative to the ground, the helicopter is 

going in exactly the same direction as your car at a speed of 

200 miles per hour. Um, what is your car speed relative to the 

very low flying helicopter? Well, the helicopter is going in the 

same direction as the car, so it's going 200 miles per hour, and 

the speedometer reads 40 miles per hour, so, I think that—the- 

-I think that it-the car is going-its speed relative to the low 

flying helicopter is 160, because, the um, the helicopter is going 

200 miles per hour and the speedometer reads 40 miles per 

hour, so the difference would be the—the car to the helicopter 

would be 160. Um-no, I'm fairly confident in my answer, 

because, um I don't-I think that relative-when it's relative to 

the um, when the car is relative to the helicopter, that it would 

be 160, but I'm not sure.if I'm exactly right, because, um, Im 

not sure how—if I did the um comparison right, ah— 

3 7 I: Could you say some more about that? 

112 



3 8 AC3: Ah, well, the, the hundred and um, sixty miles per 

hour-well, I think that, I think that they're going—they're 

both going in the same direction, and, the speedometer is 

reading 40 miles per hour and the helicopter is going 200 miles 

per hour, but I don't know if the, how, how to uh, find out what 

the car's speed relative to a moving object is. I think that it's 

160 because vou take the difference of the 200 and 40. um. 

that's that's, that's mv. um. I'm fairly confident because that's— 

I think that's what vou do when there's two moving objects and 

vou take the relative speed to each other [emphasis added]. 

Um, the white truck is traveling toward your position. If the 

truck's speedometer reads 40 miles per hour, what is the 

truck's speed relative to the helicopter? Um, the truck is, 

reading 40 miles per hour, and the helicopter is going 200 

miles per hour in the opposite direction, um, so, uh, I, I, I, the, 

so obviously, the helicopter will be going, will be going less 

than—because the truck is going in an opposite way and the 

truck—that would mean it would be subtracting forty again. 

Um, I, I think that it'd be a hundred sixty also, but, I think that 

I'm not very confident in my answer because, um, I don't know 

how, um, to do the problem with, ah, true—an object going the 

opposite direction as another object, what the relative speed 

would be to—for moving objects, um, I don't know. I'm just 

gonna go on to the next one. 

3 9 I: OK, you said it, ah, I’m sorry, you said it’s obviously 

going to be, ah, less, and I, I didn't catch the rest of that. 

4 0 AC3: Oh, um- 
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4 1 I: You said because it's going in the opposite direction 

as the-- 

4 2 AC3: Yeah. Because. 

43 I: Could you say some more about that? 

4 4 AC3: Cause, ah, ah, the helicopter is, is traveling 200 

miles per hour, and the truck is traveling at 40 miles per hour. 

The opposite direction, so the relative speed of the helicopter to 

the truck would be urn, the helicopter's speed minus the truck's 

speed because the truck is traveling in an opposite direction. 

[emphasis added] Um, so, I just said it was a hundred sixty 

again. But I'm not-sure. 

Later, when asked if he wished to go back to any problems, he 

reconsidered his pretest response for question 15. 

5 7 I: OK. Any others that you were concerned about? 

5 8 AC3: Um, yes, it says, " In the picture above, you are in 

a gray car. Your speedometer reads 40 miles per hour, ah, 

what is your car's speed relative to a very low flying 

helicopter?” Um, well, the helicopter is going, is going in the 

same directions your car. So, and, so they re not going in 

opposite directions, so you're not going to subtract. Which I 

did, so the car's going 40 miles per hour, the helicopter s going 

200 miles per hour, then, the you would, it would not be a 

hundred sixty. Because, they're going in the, um, same 

direction. So, it, it would just be about-I’-Fm just guessing 

forty miles per hour. Because, the car, because they re both 

going in the same direction, and they're-so the car is 40 miles 

per hour relative to the ground. And, jt can't be 160 miles p_er 
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hour because the car is not going 160 miles per hour [emphasis 

added]. So--um--so the car's speed relative a very low flying 

helicopter—the car would be going 40 miles per hour, according 

to the helicopter, which is going 200 miles per hour. So, I'm 

going to change that to [answer] "A," forty miles per hour. 

Instead of [answer] "B," because they're going in the same 

direction. And it would appear that the car would be going 

slower from the helicopter at 160 miles per hour [emphasis 

added]. 

In reconsidering his pretest response to question 15, it is 

possible that AC3 questioned the applicability of the algorithm 

previously used to solve the problem. In the above response, he 

draws a distinction between the speed that the car is going (relative 

to the ground) and the appearance of the car relative to the 

helicopter's speed. The above response is contradictory to his 

pretest response to question 13 where he reasoned that to get the 

relative speed of two objects you subtract the speeds of the objects 

(see line 38 above). The hypothesis that AC3 does not understand 

the term "relative to" is consistent with this data. Also consistent 

with this data is the hypothesis that AC3 believed that 40 miles per 

hour was the car's "true" speed and 160 would be its apparent 

speed (see Saltiel & Malgrange, 1980). 

AC3 Posttest 

In his response to posttest questions it is possible that he 

refers to an algorithm which he used during the treatment, as 

shown in the following transcript. 
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1 7 AC3: In questions one through six, Toni and Joe are 

playing air hockey in a cruise ship’s game room. Relative to an 

observer on the ground, the ship is traveling to the left at ten 

miles an hour. So that would be the ship pulling away from, 

from the observer. Toni just hit the puck toward Joe at a speed 

of eight miles per hour. OK, so Toni hit the puck towards Joe. 

OK. Um. Relative to the air hockey table. So that would mean 

that the puck is pulling--is going towards Joe, um, and pulling 

away from the air hockey table. What is the speed of the puck 

relative to the—the observer on the ground? Um, well the ship 

is pulling away from the observer on the ground at-to the left 

at ten miles per hour, and inside of the ship, the air hockey 

puck is pulling away from the table, towards Joe at eight miles 

per, what is the speed of the puck relative to the observer on 

the ground? The ship is moving to the left at ten miles per 

hour, and the—puck inside is moving to the right at eight miles 

per hour, so, the speed relative to the observer on the ground 

would be two miles per hour, because the ship is traveling ten 

miles per hour and the air puck is going in the opposite 

direction at eight miles per hour, so it would be eight minus 

two, which is two miles per hour, um, that would be the speed 

of the puck relative to the observer on the ground. How 

confident are you in your answer? I'm sure that my answer is 

right. 

18 I: No doubts at all? 

1 9 AC3: Nope. 

I: OK. 20 
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2 1 AC3: What direction is the puck traveling relative to 

the observer on the ground? Well, since the ship is traveling to 

the left at ten miles per hour, and the puck is traveling to the 

right at eight miles per hour, um, it--the puck would not be 

traveling to the right at, um, because, the, because, because the 

ship is going faster--its momentum is greater, is greater in one 

direction than the puck is in the opposite direction. So, to the 

observer on the ground, everything is traveling to the left, um, 

so, I would say to the left. Um, How confident are you in your 

answer? I'm sure that my answer is right—Joe just hit the 

puck toward Toni at a speed of eight miles per hour relative to 

the air hockey table. So Joe just hit the puck toward Toni, so 

it's going in the same direction as the ship, relative to the air 

hockey table. The puck is traveling at a speed of eight miles 

per hour, and the ship is traveling at a speed of ten miles per 

hour. So, speed of the puck relative to the observer on the 

ground. Well, the sp—the—the ship is going ten miles per hour, 

so the ship would, would be going fast, while Joe just hits the 

puck towards Toni, so they're going in the s—so the puck's 

going in the same direction as the ship. Um, so, I'm guessing 

eighteen, because the ship is traveling at ten miles per hour, 

and the puck is traveling at eight miles per hour, so it'd be ten 

plus eight because they're going in the same direction, so, I'm 

going to say eighteen miles per hour. Um, and I'm fairly 

confident in my answer. I'm not sure because, when they re 

going in the same direction. I think you add [emphasis added] 

[possible reference to algorithm used during the treatment], 
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but, they--it might be a little too high. The answer might be a 

little too high, it might be-lower, I'm not sure. 

2 2 I: OK, could you say some more about that? 

2 3 AC3: Um, well, the, the puck is traveling to the left at 

eight miles per hour, and the ship is traveling to the left at ten 

miles per hour, so I believe vou would add the two because the 

puck is traveling in the same direction as the ship [emphasis 

added]. I believe you would add ten plus eight. Accord- 

relative to the observer on the ground, but, umm, I'm not sure 

if you would add eight to ten, um, because, it—it might be-that 

might be going, that might be a little too fast, relative to the 

observer on the ground. Um, might be a little too high in miles 

per hour. 

2 4 I: OK, ah, and your reasoning on that one was? 

2 5 AC3: I'm fairly confident in my answer. 

2 6 I: and I'm, I'm sorry, how'd you get your answer. 

2 7 AC3: I added the speed of the ship, a, ten miles per 

hour plus the speed of the puck at eight miles per hour to 

equal eighteen miles per hour. 

2 8 I: OK, why did you add? 

2 9 AC3: Because they were traveling in the same direction^ 

so the speed would, not decrease, it would probably increase. 

[emphasis added] 

During the posttest, he apparently made gains in his 

understanding of problems 7 and 9. As on the pretest, his numeric 

and visual representations were not compatible, but the faulty 

numeric representation may be due to an epistemological 
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commitment that the earth (or sea) is the default frame of 

reference; or, possibly, he inadvertently changed default reference 

frames. 

3 3 AC3: OK, numbers seven to ten refer to the scene 

described below. Joe is watching the barge from the deck of 

the cruise ship. OK, so Joe is on the ship, and, he's watching the 

barge. OK. The barge is being pulled by a tugboat at a speed of 

four miles per hour relative to the still water. OK. A barge 

worker is walking toward the back of the barge at a speed of 

four miles per hour relative to the barge. The cruise ship is 

traveling at ten miles per hour relative to the still water. What 

is the barge worker's speed relative to the cruise ship? Well, 

the tugboat is pulling the barge at a speed of four miles per 

hour relative to the still water. So—and the barge worker is 

walking toward the back of the barge at the same speed—four 

miles per hour, um, that's relative to the barge. Um, but, um, is 

the barge worker walking in an opposite direction, um, so, and 

the barge is going four miles per hour to the left, um, so I 

think—and Joe is going ten miles an hour to the right. Um, so, 

the barge worker is going zero miles per hour relative to the 

still water because the speed of the barge is, um, four miles per 

hour, while the barge worker is walking at a speed of four 

miles per hour, so the two would cancel each other out, but the 

cruise ship is traveling at ten miles per hour, and if the barge 

worker, um, is going zero miles per hour, and the ship is going 

ten mi—the ship would—say the ship is going ten miles per 

hour, um, so, the barge—hmm. Well, the barge is, is going four 
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miles per hour, relative to the still water, and the worker is 

walking four miles per hour relative to the barge, so, the barge 

would be going—um, well, I'll guess, um, six miles—no, I'll 

guess four miles—no, um, I'll guess zero miles per hour. 

Because the ship is going ten miles, ten miles an hour, and the 

barge worker and the barge are going four miles per hour in 

the opposite directions, so, according to Joe, um, the barge, and 

the barge worker would be going zero—the barge worker's 

speed relative to the cruise ship would be zero miles per hour, 

um, because Joe is going much faster than the barge and the 

barge worker, so it would appear that they would going zero 

miles per hour.... Um, I am not very confident in my answer 

because, um, I think that zero miles per hour would be much 

too low, for the, um, barge, barge worker's, um, speed, in 

comparison to Joe, cause, I don't think—I'm not sure if—if the 

speed of four miles per hour in both directions—I'm not sure if 

those two cancel each other out, and they equal zero, cause, um, 

it might, it might, um, might not cancel that much out, there 

might be like, two miles per hour for the speed of the barge 

worker, um, so, and like, and if the cruise ship is going ten 

miles per hour it might be eight miles per hour, but it could be 

zero also because the barge worker wouldn't appear to be 

moving at such as a fast speed as Joe's watching, um—OK. Joe 

is viewing the barge worker through a telescope. To keep the 

barge worker in the center of his vision, which way must he 

move the telescope? Um, OK, so he's view—Joe is viewing the 

barge worker. Um, so the—the barge worker s speed relative 
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to the cruise ship would be zero miles per hour, so, he—the 

barge worker would be staying in the same place according to 

Joe, um, and, so, ugh, to keep the barge worker in the center of 

his vision, he would have to move the telescope to the left, 

because the—the barge worker is stationary, and the cruise 

ship is still moving app—appears to be moving faster than the 

barge worker is moving. So, the barge worker would still be in 

his left, um, would, would have to—the telescope would have to 

be moved to the left. Um, to keep the barge worker in the 

center of his vision, and I'm sure that my answer is right. 

Because the barge worker is moving zero miles per hour, and 

the—cruise ship is moving at—the, the barge worker appears to 

be moving at zero miles per hour, and the cruise ship appears 

to movie—to be moving much quicker, so the barge worker 

would be staying at the same place. But, Joe would be moving 

more and more to the right, because the cruise ship is going 

much faster, so the barge worker be—would be more and 

more—moving more and more to the left, so he would have to 

move his telescope more and more to the left to keep the barge 

worker in the center of his vision. 

I: And what was your confidence on that? 

AC3: I'm sure that my answer is right. 

Below, AC3 answers posttest problems 13 and 15. He 

explicitly states that he did not use a formula to get his 

answers. 

3 7 AC3: Numbers thirteen through sixteen refer to the 

picture below. In the picture above, you are in a gray car. 
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Your speedometer reads forty miles per hour. OK, so it's going 

forty miles per hour--OK. What is your car speed relative to a 

low flying helicopter? To a very low flying helicopter? Urn, 

Relative to the ground, the helicopter is going in exactly the 

same direction as your car, at a speed of two hundred miles per 

hour. So, if the helicopter is traveling at a speed of two 

hundred miles per hour, urn, the car’s speed is-relative to the- 

-the very low flying helicopter, um-so the helicopter's going 

much faster than the car is because the car is going forty miles 

per hour. Now, relative to the ground, the helicopter's gonna- 

OK, ugh, What is your car's speed relative to a very low flying 

helicopter? Um--well, the car is--going--less, is going slower 

than the helicopter, um, so, if the car appears to be going forty 

miles per hour, and the helicopter is going two hundred miles 

per hour, then the car's speed would be less than two hundred, 

so, it wouldn't decrease in miles per hour, and it wouldn't stay 

the same—um, the helicopter—would be traveling—well the car 

would—hmm—the car—let's see, the helicopter would be 

traveling at a hundred and sixty, but the car would be 

traveling at—the car would be traveling at forty miles per 

hour, because, the helicopter is traveling much quicker. So, um, 

the speed would be forty miles per hour, um, I don't know 

what to say, um, I would stay with 40 because, it won't be 

going, it won't be going—it can't go slower than it already is 

going. Um, hmm—how confident are you in your answer? I 

don't know. My answer is just a blind guess. 

3 8 I: And you could you say again how you got it please? 
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3 9 AC3: Um, well I didn't—I just assumed that—that the 

speed would stay the same, um, relative to a low flying 

helicopter. Um, I don’t have any formula or anything that I 

used on the other ones [emphasis added], but because it can't 

because the car would not, not go slower than 35 miles per 

hour, and it wouldn't go quicker than 40 miles per hour, 

because, because the helicop—hmm—I don't know how to 

explain it. I'll just go on to the next one. 

4 0 I: OK. 

4 1 AC3: The white truck is traveling toward your position. 

If the truck's speedometer read forty miles per hour, what is 

the truck's speed relative to the helicopter? OK, the helicopter 

is traveling in the same direction as the gray car, um, truck's 

speedometer reads forty miles per hour. So, um, the truck's 

speed relative to the helicopter would not be any, um, greater 

than forty, because it's going in the opposite direction. And, 

the helicopter is traveling at two hundred miles per hour, in 

the opposite direction, so—umm, the truck's speed would not 

be a hundred and sixty miles per hour. Um, because it's going- 

-it's traveling in the opposite direction, so it'd have to be going 

slower, so I'm gonna guess forty miles per hour again—Urn- 

42 I: And your confidence on that one? 

4 3 AC3: Um, I'm fairly confident.... 

4 5 I: OK, and ah-ah, why aren't you sure? 

4 6 AC3: 'Cause, well, the last one was forty miles per hour, 

so the last one could be right, yet it could be—so this one could 

be wrong. Um, that's why I'm not sure. But, um, I think—I m 
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more confident because I know that when a truck is going, uh, 

in the opposite direction than a helicopter, it either stays the 

same—the speedometer—would-read the same, or, um, it— 

well, it would appear to be going slower than the helicopter. 

So, I'm fairly confident. 

Summary 

As on the pretest, AC3 accurately answered posttest 

questions 1, 3, and 5 but inaccurately answered questions 13 and 

15. On posttest questions 13 and 15, his reasoning appeared to 

indicate that the speed of the helicopter relative to the ground does 

not affect the speeds of the vehicles relative to the helicopter. On 

posttest questions 1 and 3, he did see that the velocity of the boat 

relative to the ground affects the speed and direction of the puck 

relative to the observer. However, as shown above, he questioned 

his answer for posttest question 5, wondering whether 18 was too 

fast. Though he inaccurately answered posttest questions 7 and 17, 

there is evidence that his reasoning was close to accurate on both 

questions. On posttest question 17, he accurately indicated that the 

speed of the ball (relative to the truck) would be canceled by the 

speed of the truck (relative to the ground). He indicated however, 

that the ball would land to the right of point "P" due to the "extra 

energy" at release, stating, "when the snowball is released, there's 

um, an initial um, release of energy, there's a higher release of 

kinetic energy, um, and, that—that would um, that would be the 

cause of the snowball landing to the right of 'P.'" 

It appears from the above protocol that confusion concerning 

mechanics principles is a component of the sources of his 
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difficulties. On posttest question 9, which he said was easier than 

question 7 when asked by the interviewer following the posttest, he 

accurately reasoned that the person on the cruise ship (Joe) would 

have to move his telescope to the left to keep the barge worker 

centered. This correct answer contrasts with his pretest response 

for question 9. On question 7, AC3 answered that the worker's 

speed relative to the cruise ship was 0. He answered 0 after 

considering and dismissing 6 and 4 in turn. He may have started to 

solve a simpler problem due to overload—perhaps evidenced by his 

mention of the speed of the barge instead of the worker, toward the 

end of his solution for 7. He stated that the accompanying diagram 

was helpful in solving question 9, as the worker was to the left of 

Joe and he could visualize the scene. Question 11 apparently 

provided no difficulty for AC3 during either the pretest or the 

posttest. During the questionnaire section he stated that the 

diagnostic (which had directions) helped with the simulation 

activities but not vice versa. Additionally, he indicated that the 

diagrams connected with the diagnostic questions assisted his 

ability to picture problems. Below, AC3 responds to the question 

concerning why he thought that question 9 was easier than 

question 7. 

5 8 AC3: Because, um, um, there's—I think it's—I think it's 

just because of the picture, it's more, it's really quite visual. 

Um, the-it’s the visual appearance that the barge worker is to 

the left of Joe, do that, um, Joe would have to move his 

telescope to the left. Um, and—well that, that—this this is—this 

vis—this picture works because, um, the tugboat is—the picture 
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lines um, is the same as my answer because the tugboat is 

going in the opposite direction. But if the tugboat was going in 

the same direction as the ship, the picture would not coin- 

coincide with my answer. Um, so, number seven, I had trouble 

because the it s not--it s not obvious what the barge worker's 

speed is relative to the cruise ship. Um~ 

5 9 I. OK, what--sorry—what, what's not obvious? 

6 0 AC3: The, uh, speed of the barge worker relative to the 

cruise ship. From the visual diagram. 

6 1 I: OK, so, so what did you feel was the, uh, effect of the 

diagram? 

6 2 AC3: Um, well, where it—it shows-it shows the 

direction that the ships are moving assuming that they're not 

going backwards. But, um, it, it shows the direction of the ships 

that are moving, and, and it shows exactly where the barge 

worker is, and where Joe is, so that, so the barge worker, um, 

appears to be to the left of Joe. 

While the protocol data suggests that numeric calculations 

were used to solve problems 1 and 5 during both the pretest and 

the posttest, it is striking that during the posttest, the student not 

only uses an algorithm, but states why he used the algorithm, 

stating, "When they're going in the same direction, I think you add" 

(line 21). 
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AC4 Case Study 

In table 5.6 below, the accuracy of AC4's responses to the 

diagnostic problems is displayed. (1 indicates correct; 0 indicates 

incorrect) 

Table 5.6 

AC4 Test Accuracy 

Question 1 3 5 7 9 1 1 13 15 1 7 Score 

Pretest 1 0 1 0 1 1 1 1 0 67% 

Posttest 1 1 1 0 1 1 1 1 0 78% 

Below, AC4's responses to pretest questions one through six 

are contrasted with his responses to posttest questions one through 

six. It appears that AC4 uses an algorithm to assist his numeric 

solution of posttest problems 3 and 5. The algorithm does not 

appear to have been articulated during the pretest. There is 

evidence that an algorithm very similar to, if not identical to the 

one employed on these posttest questions, was constructed during 

the treatment (see evidence for construction of this algorithm in 

chapter VI). 

AC4 Pretest 

Below, responses to selected pretest questions for AC3's 

partner, AC4, are presented. 

6: AC4: All right.. Okay-dokay. In questions one through 

six, Toni and Joe are playing air hockey in a cruise ship s game 

room. Relative to an observer standing on the ground, the ship 
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is traveling to the left at ten miles per hour. One, Tony just hit 

the puck toward Joe at a speed of right miles per hour relative 

to the air hockey table. At what speed of the puck relative to 

the observer on the ground? Okay, the ship is going ten miles 

per hour, the puck is going 8. So, it's going left at ten, so ten 

minus eight equal two. All right, two. How confident are you 

in your answer? Fairly confident in my answer. 

7: I: Okay, and how'd you get it? 

8. AC4: I subtracted the ten miles an hour, the ship going 

to the left, minus the eight miles per hour, the puck is going 

towards Joe tot he right. To the right and got two miles per 

hour. All right, number three, what direction is the puck 

traveling relative to the observer on the ground. 

9- I* Oh, I'm sorry, I didn't catch your confidence on that 

one. 

10: AC4: Oh, my confidence was c, I'm fairly confident in 

my answer. 

11: I: Okay, why not positive? 

12: AC4: Well, I'm not sure if there are any other 

intangibles that might like, affect it.... 

14: AC4: Okay, number three. What direction is the puck 

traveling relative to the observer on the ground? And ah, I got 

"A" to the right, "B" to the left, or "C" neither. I got "A" to the 

right [as my answer]. 

15: I: And how'd you get that? 

16: AC4: Um, because despite the fact that the ship is 

moving to the left, the puck is moving slower so it would 
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appear to be, well, hum, actually, yeah I think it's moving tot 

he right because the ah, puck is moving at a different rate of 

speed. 

17: I: I see. 

18: AC4: Um, again I'm fairly confident in my answer. 

19: I: And the same reason why your not completely sure? 

20: AC4: Well, I'm not sure if it'll actually appear to be 

moving left because the speed is greater, moving left than it is 

going to the right, so. 

21: AC4: Okay, can you say some more about that? 

22: AC4: Well, if the ship is moving ten miles per hour 

toward the left, and the puck is only moving eight, I think it 

would look to the observer like it was moving to the right, but 

it might actually be moving to the left, because it's going a little 

slower than the left, the ship is moving. 

23: I: I see. 

24: AC4: Number five. Joe just hit the puck toward Toni at 

a speed of eight miles per hour, relative to the air hockey table. 

What is the speed of the puck relative to the observer on the 

ground? And ah, that would be ten miles per hour for the ship 

going left and eight miles per hour for the puck going left, so 

I'd say it looks to the observer that it's going eighteen miles 

per hour. And number six, how confident am I in my answer. 

I'd say fairly confident, not sure totally what it would be. 

25: I: Okay, and once again, um, how'd you get your 

answer? 
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26: AC4: Um, that if the ship is moving ten and the puck is 

moving eight, add it together it would be 18 miles per hour. 

27: I: Okay. 

28: AC4: Okay. 

29: And why did you add? 

30: AC4: What? What did I add? 

31: I: Why did you add? 

32: AC4: Um, it just seemed like that if the speeds, it just 

seemed like the natural thing to do, to combine the speeds, and 

ah, just to combine then so you’d see the full speed of the puck. 

AC4 Posttest 

AC4 appears to provide a different type of reason for his 

solutions to posttest problems one through six. In the protocol 

below, he appears to refer to a general algorithm. There is evidence 

that this algorithm was developed during the treatment (See 

chapter VI for a description of this student's interaction with the 

treatment.) 

1 7 AC4: In questions one through six, Toni and Joe are 

playing air hockey in a cruise ship's game room. Relative to an 

observer standing on the ground, the ship is traveling to the 

left at ten miles per hour. Number one, Toni just hit the puck 

towards Joe at a speed of eight miles per hour relative to the 

air hockey table. What is the speed of the puck relative to the 

observer on the ground? All right, well, Toni just hit it towards 

Joe, so it's moving eight miles an hour to the right. And the 

cruise ship is still moving ten miles an hour to the left. So. that 

is a change in direction, so. I would subtract eight from ten. 
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[emphasis added] [possible reference to algorithm constructed 

during treatment]. Ten minus eight equals two, so, to the 

observer on the ground, it would appear that the puck would 

be moving two miles an hour. And. 

1 8 I: OK. 

1 9 AC4: Yeah. And I'm sure that this answer is correct. 

2 0 I: Could you say one more time how you got it? 

2 1 AC4: How? Well, because the direction changes; Toni's 

hitting it towards Joe, which is going right, and then the boat is 

going to the left, so there's a direction change, so I got that ten 

minus eight would equal two. Miles per hour. 

2 2 I: And your confidence in that one? 

2 3 AC4: I'm pretty sure. 

2 4 I: OK. 

2 5 AC4: All right. Number three: What direction is the 

puck traveling relative to the observer on the ground? Well, 

the puck is moving at eight miles per hour to the right and the 

ship is moving at ten miles per hour to the left—so, the—the 

puck would still be appearing to move—to the—to the observer, 

it would still appear to move to the—left—because the, um, the 

speed of the ship going left is greater than the speed moving to 

the right, so—it would look like, to the observer on the ground, 

it would look like it was moving to the left. And, I'm fairly 

confident that's right. All right. 

2 6 I: Why not positive? 

2 7 AC4: Um, I'm not really sure because if it's going two 

miles an hour, is what I got on the first one, it seems like it 
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should look like it's going somewhere. But, I—just-like— 

knowing what happens, I don't think-I still-I’m not really 

sure exactly what would happen but I'm pretty sure that that's 

what they would look like. 

28 I: Can you say some more about that? 

2 9 AC4: Well, uh, since the ship is moving faster, it-I 

guess it would look to—to the guy looking up that the puck 

would still be moving closer to the-to the left side of the page 

than to the right side. So, it would appear to be moving, ah, 

left. All right, umm. OK, number five: Joe just hit, hit the puck 

towards Toni, at a speed of eight miles an hour relative to the 

air hockey table. What is the speed of the puck relative to the 

observer on the ground? And, since there's no change in 

direction on this. I would sav that you would add the eight and 

the ten together this time, and—that would be a total of 

eighteen miles per hour [emphasis added] [possible reference 

to general algorithm constructed during the treatment], which 

is "D." And that's because, um, both things are going in the 

same direction as they were—as they are—they're both going 

towards the right. No. Both going towards the left. So that's 

why it would look, ah, they would both be going—so you'd add 

them together. And I'm sure that this is right. 

In posttest question 3, AC4 indicates that, relative to the 

observer, the puck would travel to the left. When he answered this 

question during the pretest, he answered that the puck would 

travel to the right. Though the difference in reasoning is not 

tremendous, it is indicative of a change in viewpoint. He indicates 
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that using the computer simulation allowed him to construct a rule 

for determining the interrelationship of direction with relative 

speed. 

Another interesting portion of his posttest is contained in his 

answer to posttest question 3 in which it appears that though he 

answered correctly, he apparently was fighting an epistemological 

commitment (for a similar concept, see Brown, 1995) that, since the 

puck had a speed, you would have to see the effect of that speed. 

Summary 

The interviewed DN students performed better on the relative 

motion posttest than on the identical pretest (pc.Ol). As the 

students engaged in the numeric (DN) treatment condition, it is not 

surprising that the biggest difference between pretest average and 

posttest average were seen on numeric questions 13 and 15, with 

three of eight subjects improving their accuracy on both questions 

on the posttest. Many interviewed DN students displayed evidence 

of algorithm use while solving posttest problems. There is evidence 

that many students referred to algorithms which were developed 

during the DN treatment (e.g., subjects AF1, AF2 and AC4). 

Concerning individual students, AF1 appears to have used an 

accurate algorithm when solving posttest problems 13 and 15; in 

contrast to the faulty algorithm applied to pretest problems 13 and 

15. This advance may have been caused by interaction with the 

computer simulation activities, as a similar algorithm to the one 

applied to posttest questions 13 and 15 was expressed during the 

treatment (see chapter VI). AF1 may have experienced conceptual 
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change; during the posttest, unlike the pretest, the directional 

solution for question 9 was consistent with the numeric solution for 

question 7. This result supports the hypothesis that during the 

posttest, numeric and visual models constructed by AF1 for 

questions 7 and 9 were compatible. During the posttest, subject 

AC3, on the other hand, gave inconsistent responses for questions 7 

and 9. Like other students, there is evidence that student AF2 

successfully used algorithms to calculate relative speeds. He also 

appears to have developed a (faulty) algorithm for determining the 

direction of travel of objects in relative motion. 

It can be reasoned that the performance gains were the result 

of interaction with the DN treatment. Additionally, it appears that 

the gains are not limited to one type of student (i.e. high achieving 

or low achieving on the pretest), as all but one student scored 

higher on the posttest than on the pretest. However, it is not clear 

whether the improvement in test performance may be attributed to 

deep understanding or to a better ability to manipulate the 

numbers on numeric problems such as problems 13 and 15. It is 

also illuminating to see how interaction with the numeric treatment 

apparently led to the faulty visual algorithm used by AF2 during 

his solution to posttest problem five. 
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CHAPTER VI 

TREATMENT INTERVIEW DATA 

Introduction 

In this chapter, case studies of students interacting with the 

computer simulation activities are presented. These case studies, 

taken from interviewed students, are presented to document 

learning approaches used by students when interacting with the 

computer simulation activities. Particularly striking in the data are 

algorithm indicators and visualization indicators. Due to the 

apparent ease of predictions for students in the CV condition (see 

statistics in chapter III), more space is dedicated to students' 

interactions with the DN condition. These case studies will be used 

to develop a means for analysis of the occurrence of algorithm use 

and visualization use. They can also provide evidence which 

motivates hypotheses concerning how interaction with the two 

conditions (CV and DN) was different. 

Relative Motion Problem Solving Approaches 

In figure 6.1 below are hypothesized methods for approaching 

relative motion problems, including the predictions performed 

during the simulation activities. Different shades of meaning can be 

applied to the term algorithm, moving from mechanical to 

insightful, where a formula could indicate an elegant understanding 

of a non-visual system, for instance (see Feynmann, 1960 as 

referred to by Tweeney, 1995). Often, in the following discussion. 
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mechanistic algorithm use is contrasted with intentional 

visualization involving deeper cognitive effort. 

Figure 6.1 

Hypothesized methods for approaching relative motion problems 

I hypothesize the following indicators for algorithm use, 

where higher numbered indicators are more reliable and would be 

more able to stand alone in the absence of other evidence: 

1. statement of the algorithm used 

2. statement of applicability of algorithm (e.g., when the 

two things are approaching each other you add.) 

3. mention of mathematical procedure (e.g., addition or 

subtraction) 

4. reference to using same method as previous problem 

solved via algorithm 

5. pattern recognition applied incorrectly 

6. non-reflective reference to previous problem (in 

combination with other indicators, only) 

7. lack of visualization indicators 
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8. quick response (may be indicator of lack of 

reflection) 

9. low confidence in prediction 

Finke (1989) defined mental imagery as: 

the mental invention or recreation of an experience that in at 
least some respects resembles the experience of actually 
perceiving an object or an event, either in conjunction with, or 
in the absence of, direct sensory stimulation, (p. 2) 

Clement (1994) posited indicators for determining the occurrence of 

imagistic simulation. Indicators include: "personal action 

projections (describing a system action in terms of a human action), 

kinesthetic imagery reports, ... depictive hand motions," use of 

"imagery enhancement techniques" (such as "painting" dots on an 

imagined spring when determining how the spring would deflect), 

and "announcement of the intention to form an image of the 

situation." Concerning specific subjects he stated, 

The presence of dynamic imagery reports, hand motions, 
imagery enhancement techniques, and the effort put into 
imagistic simulations all support the view that simulations in 
this case are very different from descriptive, language-like 
representations. These observations and the subjects' reports 
of experiencing the effects of actions occurring over time 
provide a real motive for using the term "simulation." They 
suggest that the subjects are somehow mentally simulating 
some aspects of the rich flow of perceptions and/or motor 
actions over time that would exist if they were actually viewing 
and/or causing such events, (p. 154) 

In analyzing students' protocols, I looked for instances of the 

indicators described above to provide evidence for students 

visualizations. 
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Below, I present case study protocol from selected 

interactions with the DN and CV conditions. In general, CV students 

appear to have visualized often during the treatment. Among the 

DN students, evidence indicates that a variety of strategies were 

employed, including mechanical use of algorithms as well as 

visualization. 

Treatment Case Studies 

AF1 & AF2 DN Treatment 

As an example of a pair of DN students' apparent ability to 

construct numeric and visual models, consider the interaction 

between subjects AF1 and AF2 during simulation activity 2. During 

this activity, as shown by the transcript, AF2 is dominating. Below, 

I present AF2 s indicators of both visualization and algorithm use. 

Overall, subject AF2 appeared able to use visualization to 

assist solution of relative motion problems. Indicators of 

visualization occur in his pretest and posttest protocols and during 

his interaction with collaborative simulation activities. He appeared 

to use a number of strategies for solving relative motion problems. 

Evidence for problem solving strategies are evident in his 

interaction with his partner during simulation 2. Simulation 2 is 

particularly interesting as many students in the DN condition had 

difficulty with simulation 2 predictions. Specifically, many students 

inaccurately predicted the speed of the striped rectangle (called a 

striped car in the CV condition) relative to the white triangle (called 

an airplane in the CV condition). 
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8 2 AF1: X is, going to be going 60 to the right. 

8 3 AF2: Yep, no, ah, sixty ah— 

8 4 AF1: To the left? I don't know. 

8 5 AF2: Ah, it's going to be going sixty, but ah, it's going to 

go the opposite way I th—, wait. Now, they were both 

going in the same direction when ah, the x was a 

reference. Now that ah, now that that's the reference, 

sixty's zero becomes the going speed, so it would actually 

yeah, be sixty to the left, because the pennant is going 

faster, and that's what you're focusing on, so it would 

appear as if the x is going the other way, it's going slower 

[possible combination of algorithm use and visualization 

use—it is not clear which is dominant, if either]. 

8 6 AF1: Yeah, I got ya. 

8 7 AF2: So it'd be- 

8 8 AF1/AF2: Sixty to the left, [indication that the student is 

not operating simply in numeric mode] 

8 9 AF2: So, 60, 180. [indicates ability to use different 

representations—one more visual (to the left), the other 

more numeric (60, 180).] 

9 0 AF1/AF2: Pennant at zero, zero, [indication of 

understanding that reference frame's speed is 0] 

9 1 AF2: And the box would be- 

9 2 AF1: It's going to be- 

9 3 AF2: 35 to the left for the same reason as x [apparently, 

algorithm use simplifies process—no need to visualize 

scenario due to confidence in previous reasoning]. 
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9 4 AF1: Yep, yep, yep. 

9 5 AF2: And the stripped box is going 25.... 

9 6 AF1: To the left. 

9 7 AF2: ... to the left, that's the opposite direction to the x. 

So, the pennant is going this way— 

9 8 AF1: So isn't it going to go 35 to the right? Yeah. 

9 9 AF2: Why's that? 

100 AF1: Well, I mean 25, th, the black square is going 25 to 

the right. 

101 AF2: Oh, yeah, they're both opposites, so, 35 to the right. 

Okay, so, the x is going-in-when the, when x was a 

reference, the pennant went 60 faster. When x was a 

reference, the pennant went sixty faster. 

102 AF1: To the right. 

103 AF2: In the same direction. So, when pennant, when the 

pennant is the reference, the x will be going the same 

speed in the other direction. 

104 AF1: Or, the pennant will be outdistancing the x by sixty. 

105 AF2: And ah, the pennant is zero, we know the pennant 

is going right, because of the ah, x. 

106 AF1: So, it doesn't have any speed 'cause it's the 

reference. 

107 AF2: Yeah. And the black box we know is going 35 in 

the same direction, in, in the opposite direction 'cause 

when the x was a reference, it was going 35 slower than 

the pennant. 
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108 AF1: Yep. (scribbling) Okay, and then for the next one 

it's the same thing, only it's um, it's the opposite 

direction. 

109 AF2: Yep, yeah it would, it would appear to be going 

thirty. Okay. 

110 AF1: All righty. 

111 AF2: Okay, we're sure again. 

In the following protocol, AF1 and AF2 check the accuracy of 

their predictions and realize that their prediction for the striped 

rectangle was incorrect. (Six of eight interviewed DN students' 

predictions for the striped rectangle were incorrect; 39% of the 

honors physics students' (in the DNhon class) predictions for the 

striped rectangle were incorrect.) 

115 AF2: So the white triangle's zero, zero right about that.... 

35, 180 for the black triangle, which is correct. 

116 AF1: Oh yeah! 

117 AF2: ... 85, 180. We got that one wrong. 

118 AF1: How did we do that? 

119 AF2: 85, 180, well we got the direction, um, no we got 

the wrong direction. 

120 AF1: Wrong direction. 

121 AF2: Wrong direction, wrong everything. Okay, let's look 

at this again. When the x was a reference, it was going, 

when the x was a reference it was going 25, 180. So, it's 

going the opposite direction as both the x and the 

pennant. Right, and it's going, it was 25 faster than the x. 

122 AF1: That's moving this way. 
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123 AF2: So, it's going this way at 25, when this is zero. And 

this is going this way at 60. No, not that, this. 25, and 

this one was going this way, 25. And when this is the, 

when the white pennant is the reference, it's going right. 

124 AF1: That thing was going 60, so maybe that's, let's see 

it's, it’s actually-- 

125 AF2: It's going, why are we, how could he get 85? 

126 AF1: Well, 85 is, is 60 and 25. 

127 AF2: No that's, yeah, yeah 85 and 60. So, when the white 

pennant is going right at sixty, that is the reference, then 

everything is, everything is, you add sixty to, ev, 

everything. Sixty right, and if something is going left, 

and you add sixty right, I think it's the same as just 

saying 85, 180, and leaving it the same. That's the only 

way I can think of. And I guess if you add sixty right to 

25, it's like, it's like subtracting, so you get negative 35 

right, which is also 35 left. And if you add sixty right to 

this, you get negative sixty right, which is also sixty left. 

So if we just did that- 

128 AF1: Yeah, but what's 35 left? That's not right, is it? Oh, 

but it is. Yeah, that's right. 

129 AF2: So, you just add the like zeros and negative, so 

that's why it would be 85, 180. So, we'll say, yes, yes, 

yes, no, because urn— 

130 AF1: 'Cause we didn't add it through. 

131 AF2: 'Cause we didn't ah- 

132 AF1: I mean subtract, I mean add. 
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13 3 AF2: Did not take into account— (scribbling) 

134 AF1: Didn't take into account the— 

13 5 AF2: The sixt, the sixty right, instead of um, what we did 

was, we ah, we just assumed it was the opposite as the 

black one, which it's not. We were supposed to add the 

sixty right to the 25 left which would have gotten 85 

right, or 85 left. 

136 AF1: Uh, hum. Right. 

137 AF2: Okay. 

13 8 I: Okay. 

139 AF1: All righty. 

In the above, though the students use algorithms, many 

different forms of processing appear evident, from visualization 

aiding algorithm use to algorithms used without reflection, to 

algorithm modification based on anomalous data. Indeed, it 

appears that the effect of anomalous data is significant (see data 

starting with line 121). 

AF1 and AF2 displayed concern that the direction of travel 

associated with zero speed was not as they had predicted, like 

subjects AA1 and AA2, who also received the DN treatment. 

Neither pair of students realized that no direction needs to be 

associated with a speed of zero. This difficulty may be a symptom 

of an endemic problem for students' interaction with software— 

namely the computer is not critically examined for trustworthiness- 

-the computer is considered to always be accurate. Or, more 

accurately, a student may uncritically believe his or her 

interpretation of the meaning of computer output (See Monaghan & 
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Clement, 1994b.) However, the fact that classroom tests have shown 

gains by students in the DN condition may imply that students are 

able to accurately form numeric and visual models following 

interaction with the computer simulation activities. 

AC3 & AC4 DN Treatment 

There is evidence that the students applied algorithms in 

solving problems. This evidence is provided by the student's 

reference back to a previous similar problem and stating of numeric 

relations like "I think it's probably umm-60 minus 25: [speed] 35, 

[direction] 0 ." 

It appears that the development and implementation of an 

algorithm can be traced starting with initial development during 

the prediction phase of simulation 2 (see lines 172 to 235 of 

transcript), modification based on anomalous information (see Chinn 

& Brewer, 1993 for a discussion of students' responses to 

anomalies) as evidenced in the explanation phase of simulation 2 

(see lines 257 to 272), application of the modified algorithm to 

simulation 3 predictions, and subsequent application to simulation 4 

activities. There may be evidence that at times during the activities 

the word direction did not engender a visual representation, but 

was merely a variable name. Protocol from their interaction with 

simulation 2 follows. 

172 AC4: The white triangle will be [speed] 0, [direction] 0 

because it's the point of reference. 

173 AC3: Yeah that's right. Reason for prediction—point of 

reference. Okay—umm confidence—? 

174 AC4: Sure. 
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175 AC3: Sure. Okay--umm now what are—okay so the X is 

going [speed] 0, [direction] 0 in comparison to the triangle 

which is going 60, 0. 

17 6 AC4: All right Umm hold on. I'll bet that it [the X] will 

be going [speed] 60, [direction] 180 'cause on the last one that's 

what happened. 

177 AC3: Yeah, yeah you're right. 

17 8 I: Which one is that? 

179 AC4: The X, we think it would be going 60, 180 

180 AC3: Yeah because— 

181 AC4: Before it was like that on the other one. So umm— 

changed direction. 

182 AC3: X changed direction and appears to go faster than 

white triangle. 

18 3 AC4: All right and then— 

184 I: You said like before?... 

18 8 AC4: We changed the point of reference the one were 

the point of reference—changed 180 and—and there are—their 

speed was that of the new point of references. 

18 9 I: Which one are you talking about? 

4 90 AC4: Well on the old one the gray circle became the 

point of reference and originally it was 4, 0 and so that changed 

to be a 4, 180 so that's how we got the new one. [analogous 

reasoning to previous case] 

191 I: Okay thanks. 

192 AC4: All right. 

193 AC3: The confidence ahh? 
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194 AC4: I'm sure. 

195 AC3: All right. 

196 AC4: Umm—lets see—the black rectangle I would say— 

197 AC3: Lets see, it's going 25, 0—for in comparison to X so 

it's going faster than the X. Umm— 

198 (pause) 

199 AC4: Maybe 35—subtracting from 60 [emphasis added] 

60 minus 25 [emphasis added] 

200 AC3: Yeah because.... yeah it's like the X it would be 

going at a different direction, I guess. 

201 AC4: The 35 is right?—for the umm black rectangle. 

202 AC3: Well the reference point is—is 0, 0. 

203 AC4: But it was 60, 0 

204 AC3: Yeah it was going faster than—yeah it would have 

to be—’cause the X is going even slower than the black 

rectangle in comparison to the point of reference so—yeah they 

both are going slow in comparison to the white triangle 

[possible combination of methods; this student appears to 

employ visualization as well as numeric methods]. 

205 AC4: Yeah so 180 is the result of the change in 

direction? 

206 AC3: Yeah. 

207 AC4: And then it would be 60 of the white triangle 

minus 25 for the black triangle when you first had this test so 

that would be 35 total— 

210 AC4: I'm pretty confident; I'm not sure though. 

AC3: 60 minus 25 equals 35? 211 
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212 AC4: Mmm hmm, I'm pretty sure. 

213 I: Which one was that? 

214 AC4: This is the black rectangle. 

215 I: Okay. 

216 AC3: Fairly confident or sure? 

217 AC4: Umm, I don't know for sure. 

2 1 8 AC3: Yeah 

219 AC4: It's a little sketchy. 

220 AC3: Yeah it's a little difficult to discern. 

221 AC4: Okay, and then finally, the striped rectangle would 

probably be— 

222 AC3: You see, it's changing direction—so do you think 

it's going the same direction as the white triangle now? 

223 AC4: I think it's going zero. Yeah I think it's probably 

umm 60 minus 25 [thus, speed = 35] 

224 AC3: Yeah I think so. 

225 AC4: That's basically for the same reason as the black 

rectangle—because it changed direction. 

226 AC3: Right. 

227 AC4: From [direction] 180 to 0—and then you subtract 

the 60 [minus] 25 thing, (pause) All right. So, I guess we are 

about finished. Oh, we have to do the confidence level here— 

231 ... You think you're sure? 

232 AC4: I’m pretty sure. 

233 AC3: All right. 

234 AC4: I'm sure. 
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The inconsistency of predictions for the grey triangle (new 

frame of reference) and the small black triangle (whose speed 

equaled that of the grey triangle) provides evidence that different 

rules were applied to the reference frame as for other objects. The 

rule applied to their prediction for the objects including the small 

black triangle consisted of 2 parts: 

1. Check if direction (as measured from the original frame) is 

180; if this direction is 180, take the object's speed relative to 

the original frame (in this case 2), and add it to the new 

frame's speed relative to the original frame of reference (again 

it was 2) to get the speed; the direction will be 180 

2. If the direction (as measured from the original frame) is 0, 

then take the object's speed relative to the original frame and 

subtract the speed of the new frame of reference relative to 

the original frame of reference; the direction will be changed to 

180. 

This is contrasted with the more effortful and thoughtful 

application of heuristics by AA1 and AA2. There appears to have 

been a switch in approach used. Possible visualization indicators by 

subject AC3 became less frequent to non-existent following 

simulation 1. Below, there is evidence that the students modified 

their algorithm following unexpected computer output. 

25 7 AC4: Well, all of ours matched except for the striped 

triangle and ahh I would guess that's probably cause ahh you 

add the 25 when you switch the direction rather than subtract 

it [indication that algorithm was incorrect]. 

25 8 AC3: Right so yep. So yeah, add 25 to what? 
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25 9 AC4: To the 60. 

2 60 ACS: Yep. Add 25 rather than subtract. Is the direction 

the same? 

261 AC4: Yeah we went from 180 to zero rather than from 

zero to 180 so that’s probably why—we probably fouled up. 

262 AC3: Direction- 

263 ACS: So is the direction right? 

2 64 AC4: In the direction it was. Hold on. 

265 ACS: Yeah the direc—whoa, direction is wrong! 

266 AC4: Yeah we got the direction wrong. 

267 AC3: That accounted for—for adding it instead of 

subtracting- 

268 AC4: Subtracting 

269 ACS: Subtracting instead of adding, sorry. 

270 AC4: All right (pause). 

271 ACS: Okay. 

272 I: And what was the explanation then? 

27 3 AC4: Umm, that we decided to change it from [direction] 

180 to [direction] 0 and it should have stayed 180 and instead 

we subtracted 25 from 60 rather than adding, [apparent 

statement of algorithmic thinking. AC4 appeared to be solely in 

algorithm mode (’let's get it finished' mode).] 

There are several instances of algorithm use by the DN 

students. One particularly telling vignette is as follows, which 

occurs during Galilean Relativity 3 simulation activity. 

295 AC4: ... The black circle ... would be 3, 180. 'Cause ... it 

wouldn't switch directions; you'd add. 
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2 96 AC3: From 180—and the gray circle is going to—why 

isn't it switching direction? 

297 AC4: Umm, I'm just guessing cause last time when we 

had [polar direction] 180 it didn't switch direction it staved ahh 

(pause) staved 180 and you added on to get 85 rather than— 

oh--no_wait—veah—staved 180 rather than switching to zero 

and you added on to the 60 [reference to previous simulation 

anomalous case-striped rectangle] or whatever [emphasis 

added]. 

29 8 AC3: All right. That's 3, 180. 

299 I: That's for which one? 

3 00 AC4: For black circle 

In the above protocol, subject AC4 indicates that his 

prediction is just a guess (see line 297). He apparently indicates 

that he derived his answer through pattern recognition at the 

surface level, stating that any object whose direction was 180 in the 

original frame of reference, will have a direction of 180 from the 

new frame of reference (line 297). 

It is striking to note that, while AA1 & AA2 and AF1 & AF2 

used the words "left" and "right" in speaking about the direction of 

travel of objects, subjects AC3 & AC4 and AB1 & AB2, 

predominantly used 180 and 0 and did not appear to employ a 

mapping of the numbers to direction as a major part of their 

strategies. AC3 appears to show signs of this form of mapping 

during simulation 1; there is less compelling evidence that AC4 had 

made a mapping (he responded "yes" when AC3 asked if 180 meant 

an object was traveling to the right) during simulation 1. However, 
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the lack of reference to direction strongly suggests that the students 

did not employ a visual model when making predictions. This 

argument is supported by their statement of the algorithms used, 

the applicability of the algorithms, and the use of the algorithm 

with little effort (based on apparently rapid responses—particularly 

by AC4). 

AA1 & AA2 DN Treatment 

AA2 was dominant in the interactions. She showed signs of 

visualization during each simulation activity. However, as 

evidenced during her prediction for the black circle of simulation 1, 

she apparently used an algorithm to facilitate easier solution of this 

component of the exercise. It should be noted, however, that unlike 

subjects AC3 & AC4, this pair referred to a direction of 180 as ’’left" 

and a direction of 0 as "right," indicating that visualization may 

have been an integral part of their reasoning. Indeed, there are 

indicators of visualization throughout both of these students' 

treatment protocol. 

8 3 AA1: Yeah, (pause) Okay. The black circle was going 

to the right six before. 

8 4 AA2: Yep. I think it would still be going to the right. 

8 5 AA1: Are you sure? 

8 6 AA2: No. (laughs) 

8 7 AA1: 'Cause the frame of reference before, I think it 

would be opposite. I think it would be going six to the left 

because, I'm not sure how to explain it, but, before the frame of 

reference, in the new frame of reference, was going to the right 

four, well. I'm not sure how to explain it, I just think that s 
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what it is (laughs). 'Cause like, just switching, ["switching" 

appears to be the algorithm employed]. 

8 8 AA2: Um, no, okay. If yeah, if you think about the 

direction the frame of reference was going before. 

8 9 AA1: 'Cause the, the direction. Okay, here's, here's the 

idea. The, it was going the same direction as, oh, the same 

direction as every else, 'cause everything was going to the 

right. See, this is probably going to the left. 'Cause everything- 

9 0 AA2: Everything is going to the same direction as 

before. 

9 1 AA1: Yeah. But then again, maybe this is still going to 

the right. Um, it's going, but, and if it is going to the left, then 

this would be going to the left too. But, the same, probably? 

9 2 AA2: Probably. 

9 3 AA1: Because everything else is sort of the same, 

except switched, when. 

9 4 AA2: Yeah. 

9 5 AA1: A different reference point. So, it should still be 

going— Oh I get it. When something is going the speed of zero, 

it's actually moving, but not in relation to itself [suggests a 

primitive understanding of frame of reference concept; the 

implied preferred reference frame is ground], like, this was 

moving the same speed as this, in the same direction probably. 

9 6 AA2: Oh, okay. 

9 7 AA1: ... 'Cause it's half in the other direction if it's not 

moving. 

9 8 AA2: But if you're okay (laughs). 
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99 AA1: I think that must be what it is. 

100 

101 

102 

like-- 

I: Okay, and did you discuss your confidences? 

AA2: Uh, on the gray triangle, black circle. 

AA1: For gray triangle, um fairly confident in how it's 

103 AA2: It makes sense. 

104 AA1: But I'm not very confident of the black circle, 

cause that one didn't quite make sense [possible indicator of 

lack of understanding of algorithm used]. Does that make, does 

that sound right to you? 

105 AA2: Um, yeah, I agree. 

Below, she realizes that the algorithm was incorrect. 

121 AA1: The only one that didn't match was the, the black 

circle. 

122 AA2: The, the, well we said the gray circle was going to 

the, to the left when it was to the right. 

123 AA1: Oh, that's right, yeah, originally we said that it 

was, and then we said that it wasn't. 

124 AA2: Okay, it was going two. 

125 AA1: What? 

126 AA1: I think that, hum. I have no idea why it turned 

out that way (laughs). Just like I had no idea how to figure it 

out. 

127 AA1: I think maybe it didn't work because, what we 

did didn't work because just switching the direction and 

keeping the same speed doesn't work [emphasis added] 

[indication that algorithm was not effective]. 
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128 AA2: We didn't take into account the new 

circumstances. 

129 AA1: Right. Right. But, I wasn't sure exactly how to do 

that. But it made sense with these two triangles, because they 

were going zero, so that one was easy to switch around, or this 

one 'cause it was going zero before. So, because, okay- 

130 AA2: Sort of like because they use the same like, the 

same, what do you call it, like, um, it's like we used the same 

things that like if it happened, we used the same, like if it 

happened with this we thought automatically should happen 

with this [emphasis added] [analogical reasoning] [possible 

algorithm indicator]. 

131 AA1: Uh-hum. That, that could be a different speed 

relative, speed. 

132 AA2: Yeah, (scribbling) Okay. 

133 AA1: So, with the circle, I'm not, we have the speed but 

weren't sure of the direction of it. 

134 AA2: Yeah.... But we did that and then we changed it 

afterwards. Um— 

135 AA1: I'm not sure on that one either, I'm not sure how 

to tell what direction something is going, [emphasis added] 

[may indicate that students did not visualize the scenario.] 

136 AA2: Yeah. 

137 AA1: If it's not going at the speed— 

138 AA2: It's confusing. 

139 AA1: Um-hum. 
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In the second simulation, there is evidence for use of a 

strategy in which algorithms appear to be informed by 

visualization, as shown in the following. Below, AA1 and AA2 

explain the reasons for their simulation 2 predictions. 

192 AA1: Okay. The reason for the "X" was that, um 

193 AA2: That's what we did before, right? Switching the, 

switching to the old, to what the old frame of, the new, okay 

switching to what? 

194 AA1: Because, because the one was—(scribbling) and so 

the frame of reference is not moving, relative to itself. It's not- 

-(scribbling) Okay, and this one is a little more difficult to 

explain. That— 

195 AA2: Because its speed is— 

196 AA1: Using it's speed from before, using its old speed, 

using-- 

197 AA2: The triangles' old speed. Okay. Okay. 

198 AA1: So if that worked with that one, the same thing 

should work on the stripy one, which is going towards the 

triangle in the old, in the old, in the old- Toward the triangle 

at 25 also, so it should also be going 35 Oh wait, no it was 

going, you know what? The left triangle is moving away, 'cause 

it was going to the right, [visualization indicators] Black circle. 

199 AA2: Square, it was going to the right? 

200 AA1: Yeah, in the last experiment. So this should be 

true of the, can we just switch this shapes? 

201 AA2: Uh-huh. 
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202 AA1: Okay. So this one's going to be 25 in the other 

direction, so adding it together should make sense [emphasis 

added] [visualization may have informed algorithm]. 

203 AA2: Yeah. Maybe so. 

204 AA1: ’Cause going 25. Wait a second. 

205 AA2: It's still, no that triangle is still going to go- 

206 AA1: Triangle is going 60, in the same direction as 25 

207 AA2: So, actually it will still do what you were talking 

about before and look like it's going the other way. 

208 AA1: Oh right, 'cause this is goin' to the right, but it's 

gonna go faster, so it's gonna, so it actually looks like it's going 

in that direction, okay, so never mind, (laughs along w/ AA2) 

I forgot my reasons, okay, this one is moving the same 

direction, this one's moving the opposite direction, so it's going 

to pass, so mv adding does make sense [emphasis added] 

[apparent case of visualization informing algorithm]. 

Additional evidence for visualization as well as algorithm use 

occurs during the simulation 3 activities. Protocol follows. 

25 7 I: Okay, so if you could please ah, make a prediction, 

and indicate the reason for you prediction and the confidence 

in your prediction. Feel free to look back at your notes, and 

please discuss those with your partner. 

25 8 AA1: Okay, um. So, what did we do yesterday? 

Switching the— 

25 9 AA2: Right, since—so, the switching part would be, is 

relative to this, this would be, two away. 
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260 AA1: Because the um, black triangle is um, like 

switching with the grey quadrilateral (short pause while 

writing). 

261 AA2: Okay, the next one, and the gray quadrilateral is 

the zeros. 

262 AA1: Yeah. 

263 AA2: And I'm not sure what direction. 

2 64 AA1: I would sav zero because, didn't that happen 

^^imay^^vhere evervthingelse switched direction except for 

the frame of reference? [emphasis added] 

265 AA2: Um~ 

266 AA1: I could be remembering something different. 

267 AA2: Yeah, I was just about to say--if, let's go back to 

this one. This one's going right. Okay. Okay, now we're doing 

them relative to the gray quadrilateral? 

268 AA1: Yeah. 

269 AA2: So it's going this way at a speed of two, and the 

circle's going at a speed of one. 

270 AA1: Um-hum. 

271 AA2: This one's going faster, so it's moving away faster. 

272 AA1: The, this one, oh, yeah. 

27 3 AA2: They're getting further apart. So it's like this one 

relative to this one is going to the left. So, we know that one's 

going to the left. And a speed of— 

274 AA1: Yeah, two. 

275 AA2: Two. But wait a second, I don't know if we’re 

adding, because, would it be, because this one going away. 
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276 AA1: 'Cause this one's going away at two, and this one's 

going away at— 

277 AA2: No. 

278 AA1: No, I think you'd be subtracting. 

279 AA2: No, 'cause it going two in this direction as well, so 

it's only one minute's moving. 

280 AA1: Yeah, um. 

281 AA2: And that other one, that other circle. That one 

would be three because it's moving in the other direction. 

282 AA1: Yeah, it’s moving the other- 

283 AA2: And it would be¬ 

284 AA1: lt would be going to the left. 

285 AA2: Uh-huh. 

286 AA1: So the reason for the black circle is— 

287 AA1: It's going away from the, away from the grey 

quadrilateral (pause as she writes). 

288 AA2: It 's like they're combined. 

289 AA1: Um, the speeds are three. 

290 AA2: And the other one is— 

291 AA1: The grey quadrilateral's moving faster. 

After accurately predicting the speeds and directions of the 

objects for simulations 2 and 3, they also accurately predicted the 

speeds and directions for all of the simulation 4 objects. However, 

it appears that despite their correct predictions they have difficulty 

with understanding direction data provided when the speed of an 

object is 0 This difficulty may indicate difficulty with the concept 

of 0 speed, difficulty caused by the paradox of having a direction 
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associated with 0 speed, or a difficulty with understanding that 0 

speed means that the object is motionless and thus cannot have a 

direction. In this case, the interface, which provides a direction 

with a reading of 0 speed, appears to contribute to students' 

difficulties. Protocol from the explain phase of simulation 4 activity 

follows. 

401 I: Okay and the last page is did your predictions match 

your observations? 

402 AA1: Almost. 

403 I: Okay, if it didn't please put down a reason for why 

you think it happened the way it did. And please discuss it 

with your partner. 

404 AA1: White triangle-- 

405 AA2: There was one that didn't. 

406 AA1: Oh, the black triangle? 

407 AA2: Yeah the direction was messed ud. I don't 

understand that at all. f emphasis addedl 

408 AA1: I don't either. 

409 AA2: The direction, well, if it's not going, what I don't 

understand is if it's not going anywhere relative to the 

whatever the reference point is, then how can you tell which 

direction it is? [This confusion is possibly due to the computer 

interface; the students' understanding appears insufficient to 

overcome apparently non-intuitive computer output.] 

410 AA1: Well, it is going, it’s going 180, and we said the 

new frame of reference was go, see we said the triangle s going 
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zero, and before so, it would have probably gone the same. 

Does that make sense to you? Did I say that right? 

411 AA2: I think, I sort of understand, but I don't know 

why-- 

412 AA1: Like they were both going, but when we changed 

the frame of reference it was going zero, so it would change to 

zero too, but that's just like thrown out. 

413 AA2: Maybe, since, maybe since you know maybe since 

when the fr, the whatever it is reference, it's going zero, zero to 

itself anything that would be going the same as it would be 

going zero, zero. 

414 AA1: Yeah. 

415 AA2; So, it's the only reasoning I could possibly think 

up. 

416 AA1: It's all we came up with? Yeah, anything (brief 

pause). 

417 AA2: Okay. 

418 I: I'm sorry, could you just say aloud your reasons? 

4 1 9 AA2: For this? 

420 I: Yes, please. 

421 AA2: Well, the only thing I could think of was that, if 

something is not going, if something is going zero relative to the 

reference point or, frame of reference, I forget what it's called, 

then it's not going anywhere relative to it, but it's also going in 

the same direction as it, so since it's going zero, the direction's 

zero, then the black tria, triangle should be going- 

422 AA1: Zero too. 
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4 23 I: I didn't, I didn't hear the last sentence, what, and 

what? 

424 AA2: Since the, this is going this is going zero, zero then 

this should be going direction zero too. 

AH1 & AH2 CV Treatment 

Like all CV students, AH1 and AH2 consistently displayed 

evidence for visualization during the treatment. For example, 

below AH1 and AH2 discuss their predictions for simulation 1. 

3 0 I: OK, so now, we've, we've changed the frame of 

reference and it's the, ugh gray circle or what we're calling the 

bike frame. What I'd like you to do after you fill in the frame 

of reference is, make a prediction about what direction each 

object will travel on the computer screen, now that we're in the 

bike, or gray circle frame. And what I'd like to say is that it's 

still the same event as last time, OK? So if you could please, 

ugh, make a prediction, ugh, indicate a reason for your 

prediction, and, and state confidence in your prediction, and on 

all of those, could you please discuss it with your partner? 

3 1 AH1: OK, so gray circle (pause) OK. Should we talk 

about it before we fill it in? 

3 2 I: Yes, if, if you would please. 

3 3 AH1: Um, OK, so the gray circle's right here, and it's, it 

starts out to the right of the pyramid, so when it's moving— 

3 4 AH2: Um, hmm. 

3 5 AH1: Basically I figure if, since the frame of reference, 

it's going to um-it—everything else is going to be moving, by 

its frame of reference— 
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36 

37 

AH2: Um, hmm. 

AH1: So I would think that this pyramid's going to go 

left, and this one's going to come at it, so it would be going left. 

3 8 AH2: Umm Hmm 

3 9 AH1: Umm, and this one's, this one's [black circle] going 

to be closing this gap [between the black circle and the grey 

circle] [emphasis added]. 

4 0 AH2: Right, yeah. 

4 1 AH1: So, I'd say it's going to the right. 

4 2 AH2: Yep, that's, that's how I see it. 

4 3 AH1: OK. 

4 4 AH2: Exactly. 

4 5 AH1: So, both the pyramids are gonna, are going to 

travel left (pause) and the, the red [black] dot is going to go to 

the right, cause it's going to close the re—the gap [see figure 6.2 

for AHl's hand motions]. And then I would say the gray, the 

person on the bike, the gray dot, to itself would be going still. 

4 6 AH2: Of course. 

Figure 6.2 

AHl's hand motions as he states: "It's going to close ... the gap." 
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During AH1 and AH2's interaction with the CV simulation 

activities, numerous visualization indicators were present. While 

making predictions, AH1 pointed to objects on the computer screen 

and moved his hand (sometimes while holding a pen) to the right or 

to the left in combination with statements concerning the direction 

of travel of objects (see figure 6.2). Additionally, as seen in line 39 

and elsewhere, spatial inferences concerning the travel of the 

objects were drawn. 

AC1 & AC2 CV Treatment 

During simulation activity 1, AC1 expresses surprise with 

apparently unexpected output of the computer simulation . AC2 

appears to assist AC1 in understanding the simulation output, as 

indicated in the following protocol: 

AC1: Why isn't the bike [frame of reference] moving? 

AC2: If we're, I would think that if we were in like the focus 

of, we're on the bike, um, and you're looking down [points 

down with pen in right hand], we're going [moves right hand to 

the right] along with the bike so it doesn't look like it's [the 

bike] going. 

AC1: Oh, OK. Right so then we pass pyramids, and then the 

dog passes us [moves right hand back and forth]. 

AC2: The dog passes us. 

During the above interaction, both students appear to employ 

dynamic mental imagery (see Clement, 1994; Finke, 1989), 

evidenced by hand motions, reports of self-projection, and the 

report of multiple states of the scenario. I hypothesize that such 

mental imagery during the treatment may assist students in 
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visualization of relative motion problems when the computer 

simulation is absent (see Monaghan & Clement, 1994a; 1994b for 

similar results). 

Summary 

In general, data supports the position that the CV condition 

promoted visualization among students during the treatment. 

Additionally, there is evidence that following interaction with the 

CV treatment, selected students were able to better visualize 

posttest problems. If the trends shown by the selected students 

were to hold true for the general population of high school science 

students, this type of animation treatment condition could assist 

students in visualizing problems and may assist development of 

general ability to mentally simulate dynamic events. Additionally, 

the CV condition appears to be able to focus student attention on 

visual aspects of the problems; this may predispose students to a 

more visual approach than numeric approach to problem solving. 

This is contrasted with the numeric focus of many students 

involved in the DN condition. The hypotheses that the CV condition 

both assisted visualization and could predispose students to use 

visualization appears consistent with the data. 

Within the DN condition, there was more apparent variety in 

the strategies employed. Whereas students in the CV condition 

showed evidence for visualization during the treatment and no 

other apparent interactions, students in the DN condition showed 

evidence for visualization and for mechanical algorithm use, and 

combinations of both strategies. Even when students appeared 

capable of visualizing events, there is evidence that they often 
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employed mechanical algorithms. The analysis that algorithms 

were used by such students to simplify the problems is consistent 

with much protocol data. 

However, the contextualized/decontextualized variable may 

be another salient factor in explaining the apparent surface level 

processing of many DN students. Even when there is evidence for 

DN students visualizing scenarios (see, for instance, AF1 and AF2), it 

may have been difficult to attribute a real world scene to the 

simulation, as the icons were rather abstract. (For instance, AF1 

and AF2 called the white triangle of simulation 2 a pennant; for the 

CV students it was an airplane.) This may have contributed to a 

student perception that the goal of the exercise was to successfully 

manipulate the numbers (for a similar finding, see Hammer, 1994). 

However, students in both the DN condition and the CV condition 

were able to transfer lessons learned during the treatments to their 

solution of posttest problems. There is evidence that algorithms 

used and modified during the DN treatment appear to have been 

used by students during the posttest. 

Concerning the decontextualized/contextualized variable, it 

appears, based on posttest protocol evidence from AC1 and AE2, 

that the CV condition was weakly enough constrained that students 

could use memory of their experience with the treatment to assist 

visualization and solution of posttest problems. The icons had been 

designed to be "iconic" (see White, 1993), i.e., suggestive of a 

context, but only in the presence of the "cover story (see Metz & 

Hammer, 1993), in order to facilitate transfer. 
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There is evidence that DN students often focused on the 

numeric data itself, and did not appear to be concerned with the 

meaning of the numeric data (see, for instance AC4's interaction 

with the DN condition). This contrasts sharply with the apparent 

interactions of CV students who visualized scenes and appeared to 

recognize the movements of objects. 
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CHAPTER VII 

CONCLUSIONS AND DIRECTIONS FOR FUTURE STUDY 

Conclusions 

Experimental Results: Classroom and Interview Data 

All classes that received the CV treatment showed statistically 

significant gains on the relative motion test. All classes that 

received the DN treatment showed statistically significant gains on 

the relative motion test. There was no statistically significant 

difference between the honors class that received the DN treatment 

and the honors class that received the CV treatment. Based on the 

accuracy of their predictions, students in the DN condition had more 

difficulty with the treatment than their CV condition counterparts. 

Based upon the clear difficulties encountered by students 

when attempting to understand relative motion (see review at the 

beginning of this document), it is not surprising that these short 

interventions did not produce large gains. In Camp, et al. (1994) 

approximately one week is devoted to relative motion instruction 

versus the one day of instruction in these studies. Similarly, to 

explain the lack of a statistically significant difference between 

classroom treatments it may be noted that, from a design 

standpoint, the two interventions were extremely similar. The 

same computer simulation was used in both; both involved working 

with a partner; both involved predict-observe-explain activities. 

Three factors singly or in combination may have caused the 

CV and DN conditions to perform similarly on the posttest. First, 5 

of 9 pretest/posttest questions required a numeric answer; students 
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may be able to get an answer without visualization. Second, based 

on protocol evidence, students may be assisted in their ability to 

visualize relative motion problems by interaction with the DN 

treatment. Third, it is possible that the effort applied to process the 

anomalies of incorrect predictions assisted DN students’ conceptual 

development. This hypothesis is suggested by the observation that 

more students had difficulty with the DN predictions than with the 

CV predictions, as evidenced by a greater number of incorrect 

predictions among the DN students. If students seriously attempted 

the activities, as appears to have been the predominant case during 

the interviews, they had to exert effort to explain any discrepancies 

between their predictions and their observations. 

However, it is also possible that fewer incorrect predictions 

were made by CV students because, in general, their learning was 

more gradual than the DN students' learning. In fact, the CV 

treatment was designed to slowly increase in difficulty. The four 

activities progressed from motion in one direction (in the first 

simulation) to motion in two directions (in the second simulation) to 

motion relative to multiple supporting media (in the third 

simulation), to motion relative to multiple supporting media with 

the initial motion described relative to a non-earth frame (in the 

fourth simulation). 

As a framework to describe students' learning, I propose the 

terms "step-like" and "ramp-like." In learning that may be 

considered conceptually step-like, conceptual change occurs, or 

learning is marked with obstacles that the students must overcome 

(see figure 7.1). In learning that may be considered conceptually 
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ramp-like, learning is apparently more gradual, with grand 

advances unlikely, but progress occurring nevertheless (see figure 

7.2). 

Figure 7.1 

Step-like learning 

Figure 7.2 

Ramp-like learning 
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It is possible that the learning for students in the CV case is 

more ramp-like than step-like, based on the lower average number 

of incorrect predictions made by CV students, as compared with the 

average number of incorrect predictions made by DN students. One 

difficulty with the protocol from the interviewed CV students is 

that of an unexpected ceiling effect; among the eight students 

interviewed, four answered 8 or more of the 9 pretest questions 

correctly. 

Results: Individual Pretest/Posttest Case Studies 

Below are summarized results from analysis of case study 

pretest and posttest protocols. 

CV—Pretest/Posttest. Table 7.1 below summarizes results from 

protocol analysis of CV interviewed students' interactions with the 

treatments. 

Table 7.1 

Summary of CV Pretest/Posttest Protocol Findings 

Student Findings 
AC1 
Pretest/ 
Posttest 
protocol 

• gains on posttest 
• evidence for visualization aided by memory of 

simulation 
• evidence for cognitive conflict during treatment 

AE2 
Pretest/ 
Posttest 
protocol 

• gains on posttest with no evidence for cognitive conflict 
during treatment 

• evidence for visualization 

Posttest vs. 
Pretest n=8 
students 

t-test yielded no significant results 

As a group, the interviewed CV students did not show 

statistically significant gains on the relative motion test. However, 
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there is reason to believe that this was in part due to ceiling effects. 

(As stated before, half of the 8 interviewed students correctly 

answered 8 or more of the 9 pretest questions.) 

During the posttest, there is evidence that ACl's memory of 

the computer simulations assisted visualization of target problems 

solved off-line. Her performance on the relative motion measure 

improved following instruction; her posttest score was 77% (7 of 9), 

compared with a pretest score of 11% (1 of 9). There is evidence 

that following the treatment she was better able to accurately 

visualize problems. Other evidence indicates that she may have 

abandoned a faulty epistemological commitment, namely that the 

only speed of an object is its speed relative to the ground. It 

appears clear that following the treatment, she displayed better 

understanding of the reference frame concept. The aforementioned 

factors appear to have contributed to her improved performance on 

the posttest. 

However, AC1 did not show an expert's understanding of the 

arbitrariness of reference frame. Even during the posttest, she 

referred to objects that were "really moving," belying the possibility 

that while she understood that events would look differently from 

different frames of reference, she may still believed that objects 

have a "true" velocity (see Saltiel & Malgrange, 1980). 

Subject AE2, like AC1, showed substantial gains on the 

posttest, advancing from 4 of 9 correct on the pretest to 8 of 9 

correct on the posttest. She also provided evidence of improved 

visualization of relative motion problems following interaction with 
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the computer simulation activities. For AE2, however, there were 

not signs of confusion or rapid insight during the treatment. 

DN—Pretest/Posttest. Table 7.2 below summarizes results from 

protocol analysis of DN interviewed students' interactions with the 

treatments. 

Table 7.2 

Summary of DN Pretest/Posttest Protocol Findings 

Student Findings 
AF1 
Pretest/ 
Posttest 
protocol 

• gains on posttest 
• evidence for successful algorithm use 
• algorithm may have been developed during treatment 

AF2 
Pretest/ 
Posttest 
protocol 

• gains on posttest 
• evidence for faulty algorithm use 
• evidence for successful algorithm use 
• evidence for mapping simulations to test problems 
• algorithm may have been developed during treatment 

AC3 
Pretest/ 
Posttest 
protocol 

• gains on posttest 
• mismatch between numeric and visual representations 

of problems 7 & 9 

AC4 
Pretest/ 
Posttest 
protocol 

• gains on posttest 
• evidence for successful use of algorithm developed 

during treatment 

Posttest vs. 
Pretest n=8 
students 

significant posttest vs. pretest gain 
p<.01 

As a group, the interviewed DN students performed better on 

the relative motion posttest than on the identical pretest (pc.Ol). 

While solving posttest problems, a number of interviewed DN 

students displayed evidence of algorithm use. Furthermore, there 

is evidence that a number of students referred to algorithms which 

were developed during the DN treatment (e.g.. Subjects AF1, AF2 

and AC4). 
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Subject AF2 apparently was able to construct a visual 

algorithm from numeric data, evidenced by his response to posttest 

question 5. This type of induction of a rule apparently generally 

occurred when DN students considered a numeric posttest question. 

Subject AF2's interaction with the treatment may highlight one of 

the difficulties associated with numeric presentation of instruction, 

namely that a student may appear to understand the output and 

may appear quite serious, yet not have an understanding of how 

the numeric information maps onto a visual representation. 

Another difficulty with such a numeric treatment was displayed by 

subject AC4, namely that the exercises could be solved without 

reflection through mechanical algorithm use (see Frank, Baker, & 

Herron, 1987). 

All students but one among the DN interviewed students 

improved their performance on the relative motion test following 

interaction with the DN computer simulation activities. Although it 

appears that, based on the results of the standard control group 

(see chapter III), there is a practice effect, the practice effect 

appears to be small. Thus it can be reasoned that the performance 

gains were the result of interaction with the DN treatment. 

Additionally, it appears that the gains are not limited to one type of 

student (i.e., high achieving or low achieving on the pretest). 

However, there is evidence that during the posttest, numeric and 

visual representations were not coordinated by AC3. Additionally, 

AF2 appeared to implement a faulty algorithm when solving 

posttest problems. Thus, though on average students showed gains 

on the posttest, there are a number of difficulties which were 
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associated with students' performance following interaction with 

the DN activities. 

Results: Treatment Case Studies 

Table 7.3 below summarizes results from protocol analysis of 

students' interactions with the treatments. 

Table 7.3 

Summary of Treatment Protocol Findings 

Students Findings 
AF1 & AF2 
DN 
Treatment 
protocol 

• evidence that they developed and used algorithms 
• evidence of cognitive conflict 
• evidence of use of several strategies including 

visualization and algorithm use 
AC3 & AC4 
DN 
Treatment 
protocol 

• evidence that they developed and used mechanical 
algorithms 

• evidence of cognitive conflict 
• evidence of predominantly algorithmic interaction 

AA1 & AA2 
DN 
Treatment 
protocol 

• evidence that they developed and used algorithms 
• evidence of cognitive conflict 
• evidence of use of several strategies including 

visualization and algorithm use 
AH1 & AH2 
CV 
Treatment 
protocol 

• evidence for visualization 

AC1 & AC2 
CV 
Treatment 
protocol 

• evidence for visualization 
• evidence for cognitive conflict 

DN Treatment. A variety of solution strategies were 

employed by the DN students during simulation activities. These 

strategies ranged from mechanical algorithm use (e.g., AC4) to a 

combination of visualization and algorithm use (AF1 and AF2). 

As expected, there was evidence that the DN condition 

spurred the development and use of algorithms among several 

students. Even when students appeared to be capable of visualizing 
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problems, there is evidence that they used algorithms (see, for 

instance, student AA1). It is hypothesized that such students were 

able to develop algorithms to more easily solve problems that were 

deemed functionally similar to problems which students had taken 

the effort to visualize. Other students did not display a propensity 

to visualize. For these students, pattern recognition and subsequent 

algorithm creation, application, and modification cycles appear to 

have been the dominant form of interaction with the treatment 

(see, for instance, subject AC4). 

A number of DN students did not understand the meaning of 

0 speed, as evidenced by their consternation with the direction 

information provided by the computer for objects that had 0 speed. 

Even when a student questioned how an object with 0 speed could 

have a direction (see AA1), she apparently, with the aid of her 

partner, came up with an explanation that was consistent with her 

conception of the meaning of the computer output. 

Most successful interaction with the treatment appears to 

have involved a) understanding of the numeric output, including 

direction in polar degrees b) conversion of this information to a 

visualization. I had expected the interface to be difficult for 

students, believing that the polar representation would not be 

familiar. However, I did indicate that a direction of 0 degrees 

meant that an object was traveling to the right and that 180 

degrees meant that an object was traveling to the left. It appears 

that this statement generally enabled students to understand, at 

least to some degree, the meaning of the numeric velocity 

information provided. Notably, a number of students had difficulty 
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understanding that the direction associated with a speed of zero 

was erroneous. Unlike the other DN students, subjects AB1 and AB2 

did not appear to satisfactorily process the polar direction 

information. 

What to do with numeric representations that could be 

negative was problematic for some students. For instance, subjects 

AC3 and AC4 predicted that some objects' velocities would be -4 

m/s, at a direction of 0 degrees. The computer output read 4 m/s 

at a direction of 180 degrees. AC3 and AC4 believed their answer 

to be wrong. 

To summarize, during the DN treatment, a surprising number 

of strategies were employed by students. Numeric algorithm use 

was expected to be evidenced by students in this condition. This 

expectation was fulfilled in many cases. It was not expected that 

students would be able to construct accurate visual models of 

relative motion scenarios due to interaction with the DN treatment; 

this expectation was violated, as many students displayed evidence 

for visualization during the treatment. There is evidence that this 

treatment, which as mentioned by student AF1 during the post¬ 

posttest questionnaire (71 AF1: The computer... helped me to a 

certain point but you couldn't see any motion so ... it wasn't much 

more useful than a piece of paper basically.) did not make 

exceptionally good use of the potential of the computer, was able to 

foster accurate visualization by a number of students. Thus, a 

numeric treatment condition fostered visualization by some 

students. However, mechanical algorithms were constructed by 

other students. 
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CV Treatment. CV students had difficulty with specific 

predictions which were intended to foster cognitive conflict (see 

Dreyfus, et al., 1990) which could foster conceptual change (see 

Strike & Posner, 1992). For instance, the prediction for the bicycle 

in the first simulation proved to be problematic for subject ACL 

Her difficulty with this prediction appeared to foster conceptual 

change; she may have changed an epistemological commitment 

(that the only speed of an object is its speed relative to the ground) 

following this event. Unlike subject AC1, AE2 did not show clear 

signs of cognitive conflict during the treatment. 

Comparison of Incorrect Predictions 

Which predictions were incorrectly made by students may 

give insight into differences in the type of processing used by 

students in each condition. 

For example, in simulation 2, predictions for the black 

rectangle (called the black car) were most frequently incorrectly 

made by CV students. Predictions for the striped rectangle were 

most frequently incorrectly made by DN students. In this case, I 

hypothesize that the black car prediction was difficult for some CV 

students because of the direction change (the object was moving to 

the right in the first simulation); it is possible that anomalous 

feedback from the animation challenged the epistemological 

commitment that direction of travel is invariant. For the DN 

students, as seen in AC3 and AC4's interaction with simulation 2, 

the result of the frame change on the striped car's velocity was 

anomalous. Protocol evidence suggests that this was anomalous 

because the algorithm that students had used (i.e., to compute the 
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velocity of an object relative to a new frame of reference, subtract 

the speed of the object, relative to the original frame, from the 

speed of the new reference frame, relative to the original frame, 

and reverse the direction) did not work in this case. Protocol from 

students AC3 and AC4 at this stage provides evidence for the 

anomaly, as shown below. 

257. AC4: Well, all of ours matched except for the striped 

triangle and ahh I would guess that’s probably cause ahh you 

add the 25 when you switched direction rather than subtract it. 

[indication that algorithm was incorrect] 

258. AC3: Right so yep. So yeah add 25 to what? 

259. AC4: To the 60. 

260. AC3: Yep. Add 25 rather than subtract. Is that what 

the directions say? 

261. AC4: Yeah we went from 180 to zero rather that from 

zero to 180 so that’s probably why—we probably fouled up. 

262. AC3: Direction— 

263. AC3: So is the direction right? 

264. AC4: In the direction it was. Hold on. 

265. AC3: Yeah the direc—whoa direction is wrong! 

266. AC4: Yeah we got the direction wrong. 

267. AC3: That accounted for—for adding it instead of 

subtracting—subtracting instead of adding, sorry. 

268. AC4: All right. 

269. (pause) 

270. AC3: Okay. 

271. I: And what was the explanation then? 
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272. AC4: Umm, that we decided to change it from [direction] 

180 to [direction] 0 and it should have stayed 180 and instead 

we subtracted 25 from 60 rather than adding. 

Different predictions proved to be difficult for students in the 

two conditions. This may be explained by the difference between 

predictions that challenge the output of an algorithm versus 

predictions that challenge epistemological commitments. It may be 

reasoned, based on the greater number of difficulties encountered 

during the prediction phase of the treatment, that students in the 

DN condition had to exert more effort to make sense of the 

anomalous data. Based on protocol, there is evidence that students 

can modify algorithms following anomalous feedback (see AF1 & 

AF2 and AC3 & AC4’s interactions with the DN treatment in chapter 

VI). However, for some students, such feedback may just confuse 

them. This may depend greatly on the level of the students, i.e., 

some students may become frustrated and may be unable to 

perform. 

Comparison of Problem Solving Approaches 

Two of the more striking findings of analysis of protocol were 

that first, there was a lack of algorithm use during the CV treatment 

as compared with the DN treatment. Second, the ability to 

remember dynamic images from the treatment and the ability to 

apply these memories to solution of problems was unique to 

students in the CV condition. 

Although it is difficult to generalize the approaches used by 

students, there appears to be a tendency for more students in the 

DN condition to use algorithms to solve posttest problems. 
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However, the data is complex; several students appear to have used 

algorithms during the pretest. There is evidence that during the 

treatment, many DN students created algorithms to enable solution 

of prediction exercises. This result was expected. Similar 

evidence for algorithm creation and use did not appear to be 

present for students in the CV condition. This was also expected. 

Where there is evidence that CV students used algorithms following 

the treatment, there is little if any evidence that these algorithms 

were developed during the treatment. Indeed, there is evidence 

that for all or most CV students who used algorithms to solve 

posttest problems, they also used algorithms to solve pretest 

problems. On the contrary, there is evidence that for some DN 

students, algorithms were both used and revised during the 

treatment (see AF1 & AF2 and AC3 & AC4's interactions with the 

DN treatment in chapter VI). 

On the posttest, there was evidence of the use of algorithms 

and visualization by students who had interacted with both 

treatments. I believe, however, that the contrast between the 

posttest reasoning of CV student AC1 and the posttest reasoning of 

DN student AF2 highlights the potential impact of the treatments. 

For instance, during her solution for posttest questions 7, 13 and 15, 

AC1 (CV treatment) appeared to use memory of the computer 

simulation animations to assist her visualization of the problems. 

AF2 (DN treatment) also referred to the computer simulations when 

solving posttest problems but often used algorithms to solve 

problems. For example, AF2 referred to a faulty algorithm when 
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solving posttest question 5. While solving the problem, he stated 

his algorithm as shown in his protocol below. 

AF2: That, when there's something going, there's two things 

going in the same direction, if one thing, if one entity is going 

faster than the other, then it will appear in ah, if you put it in 

space, if you put in space, it would appear that the one that's 

going slower is actually going the other way. It would appear 

to another entity looking on. It would appear that the oth, that 

slower one is going the other way than the faster one. But 

really all that's happening, is ah, they're both going the same 

way except one is going b, ah, a speed that's increasing. 

Effect of the Learning Environment 

As stated above, there is much variability in students' 

interactions with identical treatments. Nevertheless, within these 

constrained activities, the types of activities performed, and the 

types of feedback which students received, appear to have dramatic 

effects on the approaches used by students when interacting with 

the treatments as well as when solving problems after the 

treatment was completed. This is of interest because the 

simulations used in each of the treatments were identical. Thus, it 

appears that how the simulations are used can have considerable 

impact on students' cognition and on students' performance on 

measures of understanding. 

Based primarily on protocol analysis, the following appear to 

be interactions encountered with the CV treatment. Although not 

all interviewed students interacted in the manners shown below, 

there is evidence that the following appear to be modes that may 
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be associated with interaction with the CV treatment. Some of the 

students' interactions appear to have been: 

• using memory of simulation as framework for visualization of 

problems solved off-line (see AC1, AE2). 

• using and developing visualization capability (see AC1, AE2, AH1 

& AH2). 

• reasoning on posttest problems by analogy (see AC1). 

• viewing the activities as boring due to repetition (see 

questionnaire responses). 

• encountering few anomalies (based on the average number of 

incorrect predictions). 

• conceptual change due to processing of anomalies which may 

have challenged epistemological commitments (see AC1). 

• ramp-like learning (hypothesized, based on the average number 

of incorrect predictions). 
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Based primarily on protocol evidence, the following appear to 

be interactions encountered with the DN treatment. Some of the 

students' interactions appear to have been: 

• using and developing mechanical algorithms (see AC4). 

• understanding numeric information provided (see AA1). 

• when performed, effortful visualization (integration of numeric 

and visual representations)—inferring rule from case (see AA1). 

• mechanical manipulation of numbers (see AC4). 

• step-like learning (hypothesized based on the number of 

incorrect predictions). 

• processing anomalous data (see AF1 & AF2; AC3 & AC4; AA1 & 

AA2). 

• revision of algorithms following occurrence of anomalies (see 

AC3 & AC4). 

• becoming overwhelmed (see AB1 & AB2). 

• viewing the simulations as meaningless, abstract exercises (see 

AC4). 

Below, table 7.4 details some of the interactions of students 

with the two treatment conditions. 

183 



Table 7.4 

Student Interactions With Treatments 

Interaction Category CV Treatment DN Treatment 

visualization potential used and developed 
visualization capability 

used visualization during 
treatment 

transfer use of memory of simulation 
as framework for 
visualization 

application of algorithms 
developed during treatment 

anomalies encountered fewer anomalies more anomalies 

anomalies may have 
challenged epistemological 
commitments and led to 
conceptual change 

anomalies spurred 
modification of algorithms 

possibly characterized by 
ramp-like learning 

possibly characterized by 
step-like learning 

algorithms mechanical algorithms not 
developed during treatment 

evidence for use and 
development of mechanical 
algorithms 

numeric processing some students encountered 
difficulty connecting 
animation to numeric 
problems 

some students appear to 
have engaged in mechanical 
manipulation of numbers 

some students used memory 
of animation to assist 
solution of numeric 
problems 

some students displayed 
evidence for understanding 
numeric information 

Methodological Advances 

In these studies, new methods for data analysis were 

employed. Indicators for visualization (see Clement, 1994) were 

used to determine the presence of visualization performed by 

students. Indicators for algorithm use were proposed and 
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employed to determine incidences of algorithm use. Analysis of 

conversation between partners was used to provide insight into the 

reasoning of students when interacting with the computer 

simulation activities. This is significant, as conversation between 

partners I believe to be a more ecologically valid manner to 

investigate cognition than clinical interviews with a single student, 

as the verbalization occurs as an integral part of the activities, not 

as an artificial addition to the activities. 

Directions for Future Study 

Separation of Experimental Variables 

Although interactions with the DN and CV treatments appear 

to have been characterized by the presence of animation (CV case) 

or lack of animation (DN case) and by the presence of numeric 

velocity information (DN case) or lack of numeric velocity 

information (CV case), it would be desirable to conduct future 

studies in which this could be determined more reliably by 

eliminating the context variable. (Note: CV students were given 

labels that provided a context for the objects on the computer 

simulation screens; the DN students were not given labels for the 

objects on the computer simulation screens.) 

Investigation of the Role of Pairs 

Many interviewed students, when asked what they liked most 

about the computer simulation activities, included in their 

responses that they liked working with partners. Many educational 

psychologists have advocated the use of collaborative activities to 

assist students' learning (see Levin & Druyan, 1993 for a review). 
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During the treatment, to serve both pedagogical and methodological 

goals, I encouraged students to discuss their predictions and 

explanations with their partners. Pedagogicially, encouraging 

interaction with a partner may maximize the cognitive benefits of 

the interaction. However, I was not completely satisfied with the 

interactions, as, in many cases, one student apparently dominated 

the interactions. Methodologically, I believed that conversations 

between students was a more ecologically valid way to gain insight 

into the students' reasoning than "thinking aloud." Once again, 

however, the occurrence of domination by one of the two students 

was problematic as it limited the amount of data that the less 

dominant student provided during the treatment. 

If students were required to take turns, as described in 

Lonning (1993), some of the difficulties associated with dominance 

of one partner may be eliminated. However, a potential drawback 

is that the less dominant student may be shy and may answer some 

questions rather briefly-providing little data to the interviewer. 

This difficulty could possibly be alleviated though prompting. 

However, the interviewer's prompting could disrupt the flow of the 

students' interactions. 

Another potential method for increasing the amount of, and 

possibly the quality of, data elucidated through paired interaction is 

to require students to thoroughly explain their positions (see White, 

1993). In the studies described in this dissertation, the students 

were encouraged to discuss their ideas with their partners. 

However, they were not required to give detailed explanations. 
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In order to investigate the role of pairs on the efficacy of the 

treatments, it would be necessary to attempt the identical 

treatments in paired and individual interactions with computer 

simulation activities. One of the difficulties of such a study, 

however, is methodological. It is extremely difficult to have both 

students in a pair to report their thoughts in a "think aloud" fashion 

simultaneously for logistical and social reasons. Obviously, on the 

other hand, in the absence of a partner, it would be impossible to 

obtain peer-to-peer discussion in the individual case. 

Social Interaction Between Students in Collaborative Groups 

There were several different types of social interaction 

between students when interacting with the computer simulations. 

Modes of interaction ranged from passive to actively engaged. 

Roles that individual students appear to have taken included leader, 

note taker, facilitator, keyboardist, dominator, and collaborator (see 

Sheingold, Hawkins, & Char, 1984 for a discussion of some social 

interactions encountered when students participated in 

collaborative LOGO programming). Currently, there is no clear 

correlation between the roles that students played during the 

treatment and performance on the posttest. 

Investigation of the Development and Use of Algorithms 

There is evidence for student creation and use of algorithms. 

Algorithms were variously used by students to assist solution of 

pretest and posttest problems and to assist solution of prediction 

activities. There is evidence that during the treatment, students 

who used algorithms were responsive to anomalies and modified 

their algorithms (see AF1 & AF2, AC3 & AC4, and AA1 & AA2). 
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Differences Between Paper and Pencil Presentation and Computer 

Presentation of the DN Treatment 

It could be argued that the DN condition could be presented 

without the aid of a computer. If that is the case, variables 

concerning the effect of the medium alone could be investigated by 

setting up a paper and pencil DN condition and a computer-based 

DN condition. 

Visual Versus Numeric Feedback 

As noted in the body of this dissertation, there is evidence 

that a number of students who received numeric feedback (DN 

condition students) were able to visualize events, possibly using 

numeric feedback in concert with a static graphic (the static 

computer screen for students in the DN condition) to form dynamic 

mental images, during the treatment. However, a number of DN 

condition students resorted to using mechanical algorithms to solve 

problems. In similar fashion, there is evidence that a number of 

students who received animated feedback (CV condition students) 

were able to visualize relative motion events during and after 

interaction with the CV treatment. 

It would be informative to investigate whether DN students' 

use of mechanical algorithms could be attributed to specific factors 

within the learning environment. Additionally, it would be 

informative to investigate whether DN students' visualization could 

be attributed to specific factors within the learning environment. 

Similarly, further investigation of students' interactions with the CV 

treatment may provide information concerning factors within the 

environment which may facilitate visualization. Such investigations 
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may lead to improved understanding of the effects of numeric 

feedback and the effects of visual feedback. Determining conditions 

where visual information may be more beneficial than numeric 

information and when numeric information may be superior to 

visual information can inform the investigation of, and the 

construction of, computer and non-computer learning 

environments. 

A related study would involve investigation of the role of 

students' preferences for numeric or visual processing of problems. 

Salient questions would include whether and how such dispositions 

may be documented and how strong these dispositions may be for 

particular students. If such dispositions could be documented, the 

effect of the disposition on students' ability and willingness to use 

visual or numeric means to solve problems may be investigated. 

Additionally, how students' dispositions may be altered following 

interaction with visual or numeric treatments could potentially be 

investigated. Similarly, the effect of student aptitude on visual and 

numeric processing of problems could be investigated. 

Indicators of Mental Imagery and Indicators of Mechanical 

Algorithm Use 

Further investigation of the role of hand motions, kinesthetic 

body motions, eye movements and other potential indicators of 

mental imagery (see Clement, 1994; Finke, 1989) could be 

performed to attempt to codify interactions that lend insight into 

occurrences of visualization. 

Similarly, indicators of mechanical algorithm use were 

promoted in this document. Further investigation is needed to 
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refine these indicators. With sufficient refinement, these indicators 

may be used to codify students' responses to identify occurrences of 

the use of mechanical algorithms. 

Free Exploration Versus Constrained Activity 

Theorists including diSessa (1986; 1993), Papert (1980; 1993), 

and Horwitz, Taylor, and Barowy (1994) advocated a more open 

ended inquiry approach to using computer simulations (or 

"microworlds"). On the other hand, theorists including de Jong 

(1991) and Njoo and de Jong, (1993), discussed the limitations of 

free exploration techniques within computer simulation 

environments. De Jong (1991) stated, 

Learning through exploration puts high cognitive demands on 
learners. This may result in inefficient and ineffective learning 
behaviour, where students flounder and do not use the 
opportunities the simulation environment offers, (p. 217) 

It would be beneficial to experimentally determine the 

conditions under which open-ended activities may be superior to 

more constrained activities (like those used in this study), and 

where more constrained activities (like predict-observe-explain) 

may be superior to more open-ended activities. 

Educational Implications 

Relative motion appears to be a domain in which many 

students use dynamic mental imagery to assist solution of 

problems, as evidenced by protocol. It appears to be possible for 

students to visualize scenarios during solution of diagnostic 

problems which contain numeric information and static, non¬ 

numeric illustrations. It appears possible for students to visualize 
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with numeric velocity information and a static graphic. It also 

appears possible for students to visualize scenarios from different 

frames of reference following an animation. These results are 

encouraging, for, as Finke (1989) pointed out. 

Mental simulations can ... provide insights that might have 
been overlooked if one only considered formal or analytical 
methods in solving problems, (p. 151) 

Surprisingly, numeric interventions appear to be capable of 

assisting students' ability to visualize problems. It is very possible 

that this result for some of the DN students was due to the visual 

nature of the domain (relative motion). Additionally, the graphics 

associated with the test problems may have fostered visualization 

for students; however, the presence of the test graphics cannot 

explain differences in visualization between the pretest the 

posttest. 

Based on protocol evidence for development and use of 

mechanical algorithms during the DN treatment, it appears that a 

teacher should expect some or most students to develop algorithms 

for solving problems when a similar treatment is used in a similar 

domain. Based on the experience of a number of students in the CV 

condition, animations can assist students' ability to visualize and 

can assist students in more accurate visualization of problems. 

Though various students were able to visualize during each of 

these events, their visualizations varied in accuracy. Additionally, 

the output of their visualizations may not have matched the output 

of their numeric processing for some students. This occurrence led 

to the development of theory concerning the development of 
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mental models through the integration of visual models and 

numeric models. It is important to note that many times students 

will not realize the inconsistency between their visual and numeric 

models (see Linn & Songer, 1991). 

Providing numeric information, as in the DN treatment, may 

predispose students to mechanical solution of problems (see AC4). 

Lack of understanding of the numeric information is problematic. 

(This difficulty was displayed by students AB1 & AB2.) Without 

graphic feedback, students may not only develop faulty numeric 

algorithms, but may develop faulty visual algorithms (see AF2). 

Summary 

As described in chapter I, difficulties and alternative 

conceptions associated with relative motion have been well 

documented. Consistent with past research findings, many students 

had difficulties with apparently simple one-dimensional relative 

motion problems, as demonstrated by performance on the pretest 

and the posttest and by pretest and posttest protocol evidence. 

As the general consensus among researchers is that 

techniques which generate cognitive conflict can assist students' 

conceptual change (see review in chapter I), the computer 

simulation activities were designed to afford conceptual change via 

cognitive conflict. In the studies conducted, high school science 

students interacted with one of two sets of collaborative computer 

simulation activities. In the contextualized visual (CV) condition, 

students made predictions concerning the direction of travel of 

objects following a reference frame change. In the decontextualized 
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numeric (DN) condition, students made predictions concerning the 

speeds of objects following a reference frame change. In the CV 

condition, students saw animations of events. In the DN condition, 

students viewed numeric velocity information. In the CV condition, 

students were given a context for screen icons (e.g., a black 

rectangle was called a car). In the DN condition students were not 

given a context for screen icons. 

There was evidence for conceptual conflict during students' 

interactions with both treatment conditions. Indirect evidence of 

conflict was supplied by students' incorrect predictions on predict- 

observe-explain activities. More direct evidence of conceptual 

conflict was supplied by interviewed students' protocol data. 

Notably, certain predictions that caused difficulties for CV students 

appear to have contradicted common alternative conceptions of 

students—that direction of travel is invariant and that objects are 

either still or moving. On the other hand, certain predictions that 

caused difficulties for DN students appear to have contradicted 

expected output of algorithms—for instance, when speeds needed 

to be subtracted rather than added (see, for instance, AF1 & AF2 

and AC3 & AC4 interacting with the DN treatment in chapter VI). 

Following interaction with collaborative computer simulation 

activities which involved predict-observe-explain tasks, students in 

both treatment conditions improved performance on the relative 

motion test. No significant differences in performance on the 

relative motion test were identified between treatment groups. 

However, protocol evidence provides insight into the approaches 

used by students in each of the treatment conditions. 
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Regarding students' protocols, consistent with Clement (1994), 

it was possible to gain some evidence for visualization. 

Additionally, it appears that it may be possible to identify 

indicators for algorithm use. If it is possible to identify cases of 

visualization and cases of algorithm use, it also appears possible to 

identify cases where a treatment fostered visualization or fostered 

mechanical algorithm use. 

Concerning students' interactions with the two treatments, the 

most salient variable appears to have been the dichotomy between 

numeric and visual feedback. However, it is possible that the lack 

of, or the presence of, a context also contributed to differences in 

approaches used during problem solving. As documented in 

chapter VI, there is evidence that DN students used algorithms to 

make many predictions concerning the speeds of objects following a 

frame of reference change. This contrasts with CV students who did 

not show such evidence of algorithm use during the prediction 

phases of the simulation activities. This may be accounted for by 

consideration of at least two factors, namely the effect of context 

and the effect of access to numeric information. For many students 

who used mechanical algorithms during the treatment (see for 

example, AC4), there is evidence that the activities became 

exercises without apparent meaning (see Frank et al., 1987; Niaz & 

Robinson, 1992). This position is supported by the apparent lack of 

reflection on the part of DN students, like AC4, who used algorithms 

during the treatment. 

One of the implications of these findings is that numeric 

interventions can cause some students to mechanically solve 

194 



exercises without reflection. However, for other students, the same 

numeric interventions can cause reflection concerning the 

appearance of the problem scenario, i.e. can foster visualization 

(see, for example, AAl's interaction with the treatment in chapter 

VI). 

Visual interventions such as the CV condition appear to be far 

less susceptible to mechanical solution. As was the case for selected 

DN students, there is evidence that interaction with the CV 

condition fostered visualization. Additionally, there is evidence that 

students were able to use memory of the computer simulation 

animations to assist their visualization of problems solved off line 

(see particularly, subjects AC1 and AE2 in chapter IV). For these 

students, there is evidence that during the posttest, students 

mapped features of the computer animation onto the posttest 

problems. Protocol data also suggests that following interaction 

with the CV condition, a number of students improved their ability 

to visualize some relative motion test problems. 

Due to the lack of animation, the DN predict-observe-explain 

treatment could be considered to be functionally almost identical to 

a paper and pencil treatment. If this holds true, and the 

performance of DN students and CV students are similar, then it 

could be argued that the effect of the presence of the computer was 

negligible. It would certainly be more inexpensive not to use a 

computer. However, though the difference between the CV honors 

class' performance and the DN honors class' performance on the 

posttest was not statistically significant, the approaches to problem 

solving appear to be different when individual interviewed 
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students' protocols are analyzed. While selected DN students used 

algorithms to solve problems during the treatment, there is not 

evidence that CV students used such algorithms. Some CV students 

provided evidence that they remembered dynamic images and 

applied these memories to solution of posttest problems. 

However, a number of DN students were able to visualize both 

before, during, and after interaction with the DN treatment. Indeed, 

based on evidence concerning the time spent by some interviewed 

students in their attempts to visualize events (see for example, 

AAl's interaction with the DN treatment in chapter VI), there may 

be evidence that students exerted more effort in visualizing events 

during interaction with the DN treatment than did their 

counterparts interacting with the CV treatment. 

Thus, it appears clear that the structure of the activities 

performed with identical computer simulations greatly affects the 

interactions and the cognition of students who are working with 

computer simulations. Animations may provide a framework for 

visualization of target problems solved off-line. Both animations 

and the supply of numeric velocity data appear capable of 

prompting students' visualization. There appears to be greater 

variability in the cognition of students who interact with numeric 

computer simulation data, however. Deep understanding of topics 

can, it appears, be thwarted by interaction with numeric simulation 

data, as students may develop and implement mechanical 

algorithms to enable solution of exercises. On the other hand, some 

students may have difficulty mapping visual representations, such 

as those encountered in computer animations to numeric 
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representations, such as those encountered in 

problems. Teachers and curriculum designers 

attention to pedagogical goals when designing 

computer simulation activities, as the structure 

significantly affect students' learning. 

quantitative 

should pay careful 

or implementing 

of the activities may 
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APPENDIX 

RELATIVE MOTION PRETEST/POSTTEST 

Directions 

Form 09 

This is a multiple choice test. Please put your name and year of graduation on the test. You may write 

on the test. Please circle your answers on the test itself. 

Some questions will deal with the speed of one object relative to another object. Referring to the picture 

below, a question may deal with: 

• the speed of the truck relative to the car 

• the speed of the truck relative to the jogger 

• the speed of the jogger relative to the tree 

In this case. 

• The speed of the truck relative to the car is the speed at which the truck is getting closer to 

the car. 

• The speed of the truck relative to the jogger is the speed at which the truck is pulling away 

from the jogger. 

• The speed of the jogger relative to the tree is the speed at which the jogger is getting closer 

to the tree. 

For each problem, you will be given all of the information required to solve the problem. 

After you have filled out your name on the test, wait for any further instructions, and start the test. 
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NAME: 

YEAR OF GRADUAT|)N: _ 

SAT MATH SCORE: _ 

EXPECTED GRADE IN PHYSICS THIS QUARTER: 

PREVIOUS SCIENCE COURSES TAKEN: _ 

PREVIOUS MATH COURSES TAKEN (including this year): 
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Problems 

In questions 1-6, Toni and Joe are playing air hockey in a cruise ship’s game room. Relative to an 
observer standing on the ground, the ship is traveling to the left at 10 mph. 

1. Toni just hit the puck toward Joe at a speed of 8 mph, relative to the air hockey table. 

What is the speed of the puck relative to the observer on the ground? 

a.) 0 mph b.) 5 mph c.) 2 mph d.) 18 mph e.) 8 mph 

2. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I'm not very confident in my answer d.) I’m sure that my answer is right 

3. What direction is the puck traveling relative to the observer on the ground? 

a. ) to the right 
b. ) to the left 
c. ) neither to the left nor to the right. 

4. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I’m not very confident in my answer d.) I’m sure that my answer is right 

5. Joe just hit the puck toward Toni at a speed of 8 mph, relative to the air hockey table. What is the 
speed of the puck relative to the observer on the ground? 

a.)0mph b.) 9 mph c.)2mph d.) 18 mph e.) 8 mph 

6. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I’m not very confident in my answer d.) I’m sure that my answer is right 
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Numbers 7-10 refer to the scene described below: 

Joe is watching a barge from the deck of the cruise ship. The barge is being pulled by a tugboat at a 
speed of 4 mph, relative to the still water. A barge worker is walking toward the back of the barge at a 
speed of 4 mph, relative to the barge. The cruise ship is traveling at 10 mph relative to the still water. 

7. What is the barge worker's speed relative to the cruise ship? 

a.) 6 mph b.) 10 mph c.) 4 mph d.) 0 mph e.) 8 mph 

8. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I'm not very confident in my answer d.) I'm sure that my answer is right 

9. Joe is viewing the barge worker through a telescope. To keep the barge worker in the center of his 
vision, which way must he move the telescope? 

a. ) to the left 
b. ) to the right 
c. ) neither 

10. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I’m not very confident in my answer d.) I'm sure that my answer is right 
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11. In the picture above, relative to the ground, the ship is going to the left at 5 mph. The sailor on the 
ship is walking toward the back of the ship at a speed of 4 mph, relative to the ship. To someone 
standing on the ground, which way is the sailor moving? 

a. ) toward post A 
b. ) toward post B 
c. ) toward neither post 

12. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I'm not very confident in my answer d.) I'm sure that my answer is right 
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Numbers 13-16 refer to the picture below: 

\L\/ 

13. In the picture above, you are in the gray car. Your speedometer reads 40 mph. 

What is your car's speed relative to a very low flying helicopter? Relative to the ground, the helicopter is 
going exactly the same direction as your car, at a speed of 200 mph. 

a.) 40 mph b.) 160 mph c.) 200 mph d.) 240 mph e.) 35 mph 

14. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I'm not very confident in my answer d.) I'm sure that my answer is right 

15. The white truck is traveling toward your position. If the truck's speedometer reads 40 mph, what is 
the truck's speed relative to the helicopter? 

a.) 40 mph b.) 160 mph c.) 200 mph d.) 240 mph e.) 75 mph 

16. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I'm not very confident in my answer d.) I'm sure that my answer is right 
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17. Fred likes to throw snowballs, and his aim is very good. When he stands on the ground and throws 
as hard as he can, he can throw a snowball at 40 miles per hour, relative to the ground. 

As he is riding on the back of a flat-bed truck traveling to the left at a speedometer reading of 40 mph, 
Fred throws a snowball as hard as he can at a road sign (A) that the truck has just passed. 

He throws it just as he is over point P on the road. 

P 

Assuming his aim is good, and ignoring any effects of wind resistance, the snowball will: 

a. ) hit A at a speed of about 40 mph 
b. ) hit A at a speed much less than 40 mph 
c. ) hit A at a speed of about 80 mph 
d. ) fall and hit the ground to the left of P 
e. ) fall and hit the ground at P 
f. ) fall and hit the ground to the right of P 

18. How confident are you in your answer? 

a. ) My answer was just a blind guess c.) I am fairly confident in my answer. 
b. ) I'm not very confident in my answer d.) I'm sure that my answer is right 
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