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Abstract 

Blood vessels are lined by endothelial cells that form a semipermeable barrier to restrict fluid flow 

across the vessel wall. The endothelial barrier is known to respond to various molecular 

mechanisms, but the effects of mechanical signals that arise due to blood flow remain poorly 

understood. Here, we report a microfluidic model that mimics the flow conditions and 

endothelial/extracellular matrix (ECM) architecture of a vessel bifurcation to enable systematic 

investigation of how flow dynamics that arise within bifurcating vessels guides the endothelial 

response to biochemical signals. Applying the strengths of our system, we further investigate the 

endothelial response to sphingosine-1-phosphate, a bioactive lipid that has demonstrated flow-

dependent regulation of vascular permeability. We demonstrate that bifurcated fluid flow (BFF) 

that arises at the base of vessel bifurcations and laminar shear stress (LSS) that arises along 

downstream vessel walls induce a decrease in endothelial permeability. Furthermore, we identify 

that flow-dynamics and chaperone proteins regulate the endothelial response to S1P. Through 

pharmacological inhibition of S1P receptors 1 and 2, we report ligand-independent mechanical 

activation of S1P receptors 1 and 2, providing support for the role of G protein-coupled receptors 

as mechanosensors. These findings introduce BFF as an important regulator of vascular 

permeability, and establish flow dynamics as a determinant of the endothelial response to S1P. 
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1. BACKGROUND AND MOTIVATION 

Blood vessels comprise a hierarchical network that transports oxygen and nutrients throughout the 

body.1 The endothelial cells that line the inner wall of blood vessels form a semipermeable barrier 

to regulate fluid and solute transport between blood and surrounding tissue.2 Transendothelial 

flow, which occurs as fluid and solutes pass in the paracellular space between adjacent endothelial 

cells (ECs),3,4 is regulated by exogenous growth factors and cytokines like vascular endothelial 

growth factor (VEGF), and endothelium-derived factors like nitric oxide (NO).4 Endothelial 

barrier dysfunction is characteristic of inflammation5 and atherosclerosis,6 and increased 

endothelial permeability is often concomitant with pathological angiogenesis, the excessive 

formation of new and immature blood vessels with poor blood perfusion (Fig. 1).7 

 

1.1. Sphingosine-1-phosphate as a determinant of vascular development 

Sphingosine-1-phosphate (S1P) is an extracellular bioactive lipid synthesized primarily within 

endothelial cells and erythrocytes,8,9 and is enriched within the intraluminal space.10 S1P 

Figure 1: Physiochemical microenvironment of angiogenesis. (A) Intact blood vessel adhered to the 

extracellular matrix. Endothelial cells are anchored to the basement membrane, which resists intraluminal 

shear stress. Inset: Tight endothelial junctions limit transvascular flow, and decrease vascular permeability. 

(B) Biochemical gradient of stromal-secreted VEGF induces angiogenesis. Extension of tip cell-led vessel 

sprouts is supported by increased proliferation and elongation of stalk cells during lumen formation. Inset: 

Local VEGF gradient loosens nearby endothelial cell junctions, resulting in elevated transvascular flow 

and increased vascular permeability. Blood-borne solutes (e.g. S1P) leaks into the interstitial space. 

Adapted from Akbari, Spychalski, and Song.11 
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demonstrates a steep concentration gradient from the blood circulation to extravascular 

microenvironment,8 which is believed to guide vascular development and maintenance, in addition 

to immune cell trafficking.10 The S1P gradient is maintained by a combination of enzymatic 

degradation within tissues and S1P association with chaperone proteins in blood circulation. 

Within tissues, parenchymal cells produce S1P lyase that enzymatically depletes extravascular 

S1P.12 In the circulation, S1P binds to plasma protein chaperones, namely albumin and high-

density lipoprotein (HDL), which drives an increase in the concentration of circulatory S1P and 

influences how S1P interacts with cell receptors.13 

S1P is implicated in controlling various mechanisms of vascular development, including 

sprouting angiogenesis,14,15 perivascular recruitment,16 vascular tone,17 and endothelial barrier 

function.14,18,19 S1P elicits such responses by signaling through G protein-coupled receptors; five 

receptors for S1P have been identified, named S1P1-5 (Fig. 2).20 S1P1 and S1P3 are the primary S1P 

Figure 2.  Sphingosine-1-phosphate (S1P) signals through competing receptors. Spingosine-1-

phosphate is a bioactive lipid that acts through a group of five identified G protein-coupled receptors, S1P1-

5. While S1P1 couples exclusively with Gαi/o, S1P2 couples with Gαi/o, Gα12/13, and Gαq. Activation of 

Gαi/o acts through the Rac pathway to increase endothelial barrier function, while activation of Gα12/13 

activates the Rho pathway to inhibit Rac activity and decrease endothelial barrier function. Flow dynamics 

– namely shear stress – have been shown to influence S1P signaling by increasing expression of S1P1. 

Association with plasma chaperone proteins, including albumin, contributes to the intraluminal 

compartmentalization of S1P and can enhance S1P and S1P receptor binding. 
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receptors expressed on ECs,21 but S1P2 can be found on larger vessels, lung microvasculature, and 

tumor and inflamed vasculature.22 While S1P1 exclusively couples with Gαi/o proteins, S1P2 and 

S1P3 couple with Gαi/o, Gαq, and Gα12/1310 (Fig. 3). Gαi/o activation increases endothelial 

barrier function by signaling through the Rac pathway;10 Gαi/o also signals through Akt to activate 

endothelial nitric oxide synthase (eNOS) to stimulate NO production.23 In contrast, Gα12/13 

activation decreases endothelial barrier function by signaling through the Rho pathway, inhibiting 

Rac signaling.10 Therefore, it follows that S1P1 maintains barrier integrity, while S1P2 disrupts 

endothelial barrier function during vascular pathologies. However, the role of S1P2 is less 

definitive, as it has been found to demonstrate tissue-specific responses depending on the 

experimental context; for example, within tumor vasculature, S1P2 is found to be a negative 

regulator of sprouting angiogenesis and decreases endothelial permeability.22 

 

 

Figure 3.  Endothelial mechanosensors. Intraluminal shear stress due to blood flow and transvascular 

flow that occurs as plasma extravasates have been identified as determinants of angiogenesis, vascular 

permeability, and vessel tone. Shear stress is known to activate endothelial nitric oxide synthase (eNOS) 

production of nitric oxide, a determinant of vascular development. G protein-coupled receptors (GPCR) 

are also believed to be mechanosensitive, with previous reports of ligand-independent mechanical 

activation. In contrast to shear stress and transvascular flow, the effects of bifurcated fluid flow that arises 

due to impinging flow at the base of vessel bifurcations remains poorly understood. 
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1.2. Blood flow-dependent regulation of S1P and S1P receptors 

S1P receptor activity and expression is enhanced by fluid mechanical forces, such as shear stress 

due to blood flow. Shear stress has been shown to increase expression of S1P1,
14,24,25 and blood 

flow also downregulates S1P lyase transcription.12 Shear stress has been demonstrated to enhance 

S1P1 signaling, and is even hypothesized to mechanically activate S1P1 independent of ligand 

binding.10,14 Fluid forces like shear stress can regulate vascular permeability through endothelial 

mechanosensors, including the endothelial glycocalyx26, integrins27, and G protein coupled 

receptors28 like S1P1 (Fig. 2). Moreover, shear stress has been identified as a determinant of 

sprouting angiogenesis both in vivo14,29,30 and in vitro (Fig. 3).31–33 Taken together, these studies 

establish a role for flow dynamics in regulating vascular function and demonstrate the importance 

of vascular disease model systems that permit the co-application of precisely characterized 

mechanical and chemical signals. 

 

1.3. Quantitative Analysis of Endothelial Permeability 

Vascular permeability is typically quantified in vivo using intravital microscopy to monitor the 

extravasation rate of a fluorescently labeled molecular tracer after intravenous injection.34,35 Yet 

in vivo assays often cannot specify precisely controlled physiochemical conditions to isolate the 

mechanistic determinants of vascular barrier function. In vitro microvascular models present 

functional and potentially high-throughput tools that enable the facile measurements of endothelial 

permeability under controlled biophysical and biochemical stimuli.36–39 In this context, 

microfluidic techniques provide rapidly prototyped platforms to study endothelial barrier function 

while replicating the hemodynamic conditions, the three dimensional (3D) endothelial-

extracellular matrix (ECM) interface topology, and the length scales of an intact blood 
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vessel.39,11,40–42 However, previously described microfluidic models were often limited to straight 

microchannels embedded within or laterally adjacent to semi-porous ECM. The straight channel 

geometry fails to reconstitute the local flow dynamics of branching microvascular networks, which 

can omit significant governing parameters of vascular function (Fig. 3).5,11,43 Consequently, the 

endothelial permeability outcomes that arise due to the local flow dynamics produced by branching 

vessel geometry remain poorly understood. 

To address the limitations of existing in vitro systems, we developed a 3D microfluidic 

model of bifurcating vessel structures that enables measurement of the local endothelial 

permeability in response to the flow dynamics at the bifurcation point (BP) and the branched vessel 

(BV) regions (Fig. 2).42 The endothelial permeability data were reported as the endothelial 

hydraulic conductivity using the permeability coefficient LP. Moreover, we investigated the role 

of flow dynamics in regulating the endothelial response to S1P, and we applied pharmacological 

inhibitors of S1P receptors S1P1 and S1P2 to investigate how flow dynamics act through S1P’s G 

protein-coupled receptors to co-regulate endothelial permeability. 

 Here, we show that both bifurcated fluid flow (BFF) (~38 dyn/cm2 stagnation pressure and 

approximately zero shear stress) specified at the BP and laminar shear stress (LSS) (3 dyn/cm2) in 

the BV regions result in an initial increase in endothelial permeability over the first hour, followed 

by a significant decrease in permeability after 6 hours. In addition, we demonstrate that S1P 

induces increased LP under static conditions, which was negated when applied with flow dynamics 

or albumin chaperones. Finally, we report the ligand-independent mechanical activation of S1P1 

and S1P2. Taken together, these results reveal how fluid forces regulate the response in endothelial 

permeability to S1P and provide insights into how association with chaperone proteins influences 

S1P signaling. 
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Our conclusions regarding the stabilizing effect of BFF on endothelial permeability provide 

novel insights into how branching vascular geometries regulate vascular development through 

flow dynamics. Furthermore, we demonstrate the utility of our system to spatially apply gradients 

of physiologically compartmentalized signaling molecules. Such advances in state-of-the-art 

biomimetic modeling of the vasculature can enable significant progress in our understanding of 

how the physiochemical determinants of vascular barrier function regulate vascular development, 

which can inform potential therapeutic insights on addressing pathological vascular permeability. 

 

2. METHODOLOGY 

2.1. Design and characterization of microfluidic vessel bifurcation model 

A 3D in vitro microfluidic model of a branching vessel structure was designed, fabricated, and 

characterized to elucidate the effects of flow dynamics on endothelial permeability (Fig. 2).42 The 

polydimethylsiloxane (PDMS) microfluidic device enables: (i) formation of an EC monolayer on 

a 3D ECM scaffold, (ii) replication of the physiological hemodynamic conditions of vessel 

bifurcations, including impinging bifurcated fluid flow (BFF) that stagnates at the vessel 

bifurcation and intravascular laminar shear stress (LSS) in the downstream daughter vessel 

analogues, (iii) systematic application of transvascular flow (TVF) by controlling the difference 

between the intravascular pressure (IVP) and the interstitial fluid pressure (IFP) in the microfluidic 

device, and (iv) measurement of the endothelial hydraulic conductivity under the effects of local 

fluid forces imparted on the endothelium. 

The PDMS microfluidic device features microchannels that are 50 μm in height. The 

bifurcating vessel geometry is produced by a single parent microchannel (1300 μm in width) lined 

with ECs that branches into two daughter branched vessel analogues (both 500 μm in width) 
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separated by a central ECM channel (400 μm in width) containing polymerized type I collagen (3 

mg/mL concentration) (Fig. 4B-D). The central ECM channel was filled with a collagen hydrogel 

using capillary filling. Importantly, the semi-porous 3D scaffold abluminal to the endothelial layer 

can be remodeled, which is necessary to assess vascular permeability and angiogenic sprouting.44 

At the branching location, two PDMS microposts with 100 µm wide apertures or gaps (Fig. 4) 

were fabricated to confine the ECM gel within the designed compartment while allowing for direct 

contact between the human umbilical vascular endothelial cells (HUVECs) and the adjacent 3D 

ECM (Fig. 4E, F).  HUVECs were selected for these studies because vessel leakage induced by 

Figure 4.  Microfluidic bifurcating vessel model for endothelial hydraulic conductivity 

measurements. (A) The photograph of the device stained with green dye in the perfusion channels and 

orange dye in the extracellular matrix (ECM) compartment. (B) Schematic of the microfluidic platform 

depicting the microchannels seeded with human umbilical vascular endothelial cells (HUVECs, green) 

branching around the central ECM (orange) compartment. (C) Magnified view of the bifurcation region 

(black box in A) depicting the apertures at the bifurcation point (BP) and branched vessel (BV). (D) 

Elevating the reservoir hydrostatic pressure produces a controlled pressure difference between the 

intravascular pressure (IVP) and interstitial fluid pressure (IFP), inducing transvascular flow (TVF) from 

both the BP and BV (white arrows). (E) Representative phase contrast image of the bifurcation region fully 

seeded with HUVECs adjacent to the polymerized ECM matrix. Scale bar is 500 µm.  (F) Representative 

confocal reflectance image of the aperture at BP depicting the confluent HUVEC monolayer with well-

defined junctions adjacent to the supporting fibrous ECM. The white dotted lines depict the PDMS 

microposts. Scale bar is 100 µm. (G) Representative fluorescence images of acellular versus cellular (or 

HUVEC-lined) microchannels with FITC conjugated dextran (10 kDa). Under a similar inlet pressure, the 

HUVEC monolayer at each of the apertures uniformly suppresses the level of transendothelial fluid flow, 

thereby confirming effective HUVEC barrier function. Scale bars are 500 µm. 
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physiological stimuli is known to preferentially occur in postcapillary veins.7  In addition, 

HUVECs are known to elicit responses to shear stress, including steady production of NO.45  The 

microchannels were lined with HUVECs (Fig. 4E) that formed a confluent monolayer with defined 

adherent junctions (Fig. 4F); effective barrier function provided by the HUVEC monolayer was 

confirmed at each of the HUVEC-ECM apertures. (Fig. 4G).  

Our microfluidic bifurcating vessel model enables simultaneous application of LSS with 

TVF in the BV regions, which is an attribute it shares with previously described parallel vessel 

models.32 However, our bifurcating vessel model uniquely allows co-application of TVF with BFF 

at the BP. In addition, our microfluidic model has the capability for independent control of TVF 

levels from the perfusion rate. This capability was achieved through precise control of the 

transendothelial pressure difference or the difference in hydrostatic pressures in the luminal (IVP) 

and interstitial domains (IFP) (Fig. 4C, D) while perfusing the microchannels at a fixed flow rate, 

maintaining constant BFF and LSS with varying TVF.  Therefore, our bifurcation model enables 

decoupling of the effects of TVF on endothelial permeability from the effects of BFF and LSS. 

Shear stress levels in postcapillary veins are typically within 1-4 dyn/cm2.43 Based on our 

numerical modeling results, perfusing the microfluidic devices at 10 µL/min flow rate produces 3 

dyn/cm2 LSS oriented tangential to the endothelium in the BV regions that is within the range of 

physiological venous shear stress levels (Fig. 6A). Furthermore, this flow rate generated BFF with 

a stagnation pressure of 38 dyn/cm2 and approximately zero shear stress at the BP (henceforth 

referred to as 38 dyn/cm2 BFF) (Fig. 6A). Two different levels of TVF were tested by controlling 

the reservoir elevation: average zero TVF when IVP≈IFP and ~1 µm/s under 

IVP - IFP = 1.5 cm H2O (Figs. 6A). Furthermore, particle tracking velocimetry was used to 

validate the numerically predicted flow dynamics in the microchannels.  
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2.2. Endothelial hydraulic conductivity (LP) measurements  

To study endothelial permeability, we quantified endothelial hydraulic conductivity as the 

permeability coefficient, LP. The Starling hypothesis is often employed to characterize the 

transendothelial exchange of plasma46 [Eq. 1]:  

JV=LP(∆P-σ∆π)    (1) 

where ∆P is the hydrostatic pressure difference across the endothelial monolayer, ∆π is the solute 

oncotic pressure difference across the endothelium, σ is the reflection coefficient, JV is the 

volumetric flux across the vessel wall, and LP is the endothelial hydraulic conductivity. The oncotic 

effects are negligible in in vitro models of microvasculature due to the homogenous media 

composition.47 Therefore, the hydrostatic pressure difference across the endothelial monolayer is 

the main driving force inducing transvascular flow across the endothelial monolayer at each 

aperture. Thus, LP could be measured by estimating ∆P at each aperture, along with quantification 

of volumetric flux levels of fluorescent tracer dye. 

Accurate LP measurements require estimation of the level of the hydrostatic pressure 

directly below or abluminal to the endothelial monolayer. The abluminal hydrostatic pressure was 

estimated by calculating the equivalent hydraulic resistance of the ECM using a computational 

model of the microfluidic platform. To perform this computational modeling, the bulk hydraulic 

permeability of the 3 mg/mL collagen type I matrix was experimentally measured using a simple 

straight flow channel as previously described.48 The measured value for the collagen bulk 

hydraulic permeability (0.34 ± 0.2 µm2) was within the range of the previously reported 

measurements.49 The measured bulk hydraulic permeability was then used as an input for the 

computational model to estimate the equivalent hydraulic resistance of the ECM.  
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Next, the transendothelial flux was measured following each experimental test condition 

by monitoring the extravasation rate of FITC conjugated 10 kDa dextran (10 µM) as a 

fluorescently tagged solute under 1.5 cm H2O pressure difference between IVP and IFP (IVP = 1.5 

cm H2O and IFP=0). The net transport of the fluorescent solute was quantified by using the 

principle of conservation of mass within an Eulerian control volume (Fig. 5, red dotted box). The 

level of abluminal pressure was then calculated using the ECM hydraulic resistances and the 

quantified level of transendothelial volumetric flux across the endothelium at each aperture. 

Subsequently, the values for abluminal pressure were used to estimate the level of transendothelial 

pressure difference across each aperture. 

From the quantified values of ∆P and JV, LP could be calculated from the Starling 

hypothesis [Eq. 1]. The LP measurement method is completely detailed by Akbari et al42.  

 

 

Figure 5.  Quantification of transendothelial volumetric flux (JV). (A) The representative 

epifluorescence images of the cellular microfluidic platform perfused with 10μM FITC- Dextran. A user-

defined region of interest was used to analyze the rate of convective transport for the FITC-Dextran across 

the endothelial monolayer at each aperture (dashed red line). Scale bars, 500 µm. (B) The rate of increase 

in normalized average fluorescence intensity within the defined Eulerian control volume multiplied by the 

volume of the analysis region (Iave
' .V) equates the level of transendothelial flux (JV) multiplied by the 

monolayer area (S). The R2 value of the linear fit was 0.98.  
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2.3. Chemical Reagents 

Stock solution of chaperone-free sphingosine-1-phosphate (S1P) was prepared by dissolving S1P 

(Cayman Chemical) in 1x Dulbecco’s phosphate-buffered saline (DPBS) (Corning) with 0.3N 

NaOH (Sigma-Aldrich) to achieve stock concentration of 10 mM. To prepare S1P associated with 

chaperone proteins, S1P (Avanti Polar Lipids) was suspended in methanol:water (95:5) and heated 

to 65 °C and sonicated to produce a 0.5 mg mL-1 S1P solution. The solution was dried under dry 

nitrogen steam and dissolved in 1x DPBS with 4 mg mL-1 fatty-acid free bovine serum albumin 

(BSA) (Sigma) to produce stock solution of 125 µM. Stock solution of W123 (Cayman) was 

prepared by dissolving in DMSO to stock concentration of 50 mM. Stock solution of JTE-013 

(Cayman Chemical) was prepared by dissolving in DMSO to stock concentration of 10 mM. 

 

2.4. Fabrication of the microfluidic platform 

The microfluidic platform was fabricated using polydimethylsiloxane (PDMS) with soft 

lithography to pattern and generate designed PDMS structures. The platform outline was designed 

using AutoCad (AutoDesk) and printed on transparency masks (CadArt). The 50 µm tall 

monolithic microchannel features were patterned on an N-type 4 in silicon wafer (University 

Wafers) using SU-8 2050 (MicroChem) and exposed with ultraviolet (UV) radiation to yield the 

molds used to cast PDMS. Silicon elastomer base and curing agent (Ellsworth Adhesives) were 

mixed at a ratio of 10:1, degassed and cured in an oven overnight at 65 °C on the Si master to form 

the patterns in PDMS. The cured PDMS was peeled from the silicon master and cut into individual 

devices. To access the microchannels for perfusion and extracellular matrix (ECM) injection, ports 

were created with 1.5 mm biopsy punches (Militex) prior to sealing the channels with glass 

coverslips. Individual devices were irreversibly bonded against a glass coverslip using plasma 
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treatment. The microfluidic devices were baked overnight at 65 °C and UV sterilized for 30 min 

prior to experimental usage. 

 

2.5. Type I collagen hydrogel preparation 

A type I collagen-based hydrogel solution was used to construct a 3D extracellular matrix (ECM) 

mimic in the microchannel. Rat tail collagen type I (Corning) was mixed with 10x Dulbecco’s 

phosphate-buffered saline (DPBS) (Corning), 1 N NaOH (Sigma-Aldrich), double distilled sterile 

water, and human fibronectin (Fisher Scientific) to yield an ECM solution with final 

concentrations of 3 mg mL-1 collagen with a pH of 7.4, 10 µg mL-1 fibronectin, and 1x DPBS. This 

ECM solution was injected into the collagen compartment and incubated for 24 hours in an 

incubator at 37 °C to form a fully-polymerized 3D ECM. 

 

2.6. Preparation of HUVECs 

Human umbilical vein endothelial cells (HUVECs) were commercially purchased (Lonza) and 

maintained using endothelial growth media (EGM) (Lonza) at 37 °C with 5% CO2. HUVECs with 

passage numbers of 6-12 were washed with 1x DPBS without Mg or Ca (Corning), followed by 

cell removal using 0.05% Trypsin-EDTA (Thermo Fisher) for 45 seconds to detach the ECs from 

the cell culture flask. The detached cells were re-suspended in fresh EGM and prepared for the 

experiments. 

 

2.7. Microfluidic cell culture of HUVECs 

To prepare the inner walls of the microfluidic devices to facilitate endothelial cell adhesion, 

devices with polymerized collagen gel were flushed with 10 µg mL-1 human fibronectin solution 
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diluted in 1x DPBS and incubated for 2 hours at 37 °C. Fibronectin-coated microfluidic channels 

were then flushed with EGM and incubated overnight at 37 °C prior to seeding the endothelial 

cells into the perfusion channels. HUVECs were removed from the cell culture flask with trypsin 

and re-suspended in EGM at 40 000 cells per µL. The microfluidic channels were injected with 

the cell suspension and incubated overnight at 37 °C, with EGM droplets applied after 1 hour of 

incubation 37 °C. HUVECs were grown to confluence (24 hours after initial seeding) to cover the 

inner surfaces of the perfusion microchannels. 

 

2.8. Microfluidic perfusion assay 

Translucent tubing with 0.8 mm inner diameter (Cole-Palmer) connected with barbed elbow and 

T-connectors (Cole-Palmer) were used to perfuse the microfluidic platform. The assembled tubing 

circuits were autoclaved using hot steam sterilization and connected to the inlet and outlet ports 

on the microfluidic devices seeded with HUVECs. The inlet port was connected to an EGM 

reservoir and the outlet port was connected to a 10 mL BD-syringe (Fisher Scientific) mounted on 

a syringe pump (Harvard Apparatus) to continuously withdraw EGM from the inlet reservoir. The 

intravascular pressure in the perfusion microchannels was adjusted via the hydrostatic pressure 

head of the media reservoir to enable independent control of TVF from BFF and LSS. 

 

2.9. Pharmacological antagonization of S1P receptors 

S1P1 was pharmacologically degraded using competitive antagonist W123, which binds to S1P1 

to initiate ligand-induced internalization. HUVEC-seeded microdevices were flushed with EGM, 

followed by incubation with EGM supplemented with 10 µM W123 for 3 hours at 37 °C. Before 

application of experimental test conditions, the devices were flushed with EGM to remove W123. 
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S1P2 was pharmacologically degraded using selective antagonist JTE-013. HUVEC-seeded 

microdevices were flushed with EGM, followed by incubation with EGM supplemented with 200 

nM JTE-013 for 30 min at 37 °C. The devices were flushed with EGM to remove JTE-013 prior 

to application of experimental test conditions. 

 

2.10. Immunofluorescence 

Following each experimental test condition, microfluidic devices were flushed three times with 1x 

DPBS and incubated with 3% paraformaldehyde (Sigma-Aldrich) in 1x DPBS for 30 min. The 

microfluidic devices were flushed three times with 1x DPBS and incubated with blocking bluffer, 

which consists of 5% bovine serum albumin (BSA) (Sigma-Aldrich) and 0.1% Triton X-100 

(Sigma-Aldrich) for 1 hour. Next, the devices were rinsed three times with 1x DPBS and incubated 

for 90 min with mouse anti-human CD31 primary antibody (Agilent Technologies) diluted by 1:20 

in 1x DPBS with 1% BSA. The devices were flushed three times with 1x DPBS and incubated for 

Alexa 555-labeled goat anti-mouse secondary antibodies (Thermo Fisher) diluted by 1:500 in 1x 

DPBS with 1% BSA. Microchannels were flushed three times with 1x DPBS and allowed to 

incubate at 4 °C with gravity-driven flow to remove excess antibody.  The microfluidic devices 

were incubated with DAPI (Sigma-Aldrich) diluted by 1:1000 in double distilled water for 3 min 

to stain for HUVEC nuclei. The devices were finally flushed three times with 1x DPBS before 

imaging. 

 

2.11. Image acquisition 

The devices were imaged using phase contrast (TS-100, Nikon) with a 10x air objective prior to 

starting treatment to examine the quality of endothelial seeding. After treatment under each 
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condition, the HUVECs were imaged using phase contrast followed by fluorescence imaging using 

epifluorescence microscopy (473 nm excitation/488 nm emission, TS-100, Nikon) with a 10x air 

objective to monitor the transendothelial transport of 10µM FITC conjugated 10 kDa dextran 

suspended in EGM (Sigma). The fluorescence imaging was performed at 1 s intervals to capture 

the dynamic transendothelial transport of fluorescent tracer. Confocal microscopy was performed 

on the stained microdevices using a laser scanning confocal scope (A1R, Nikon) with a 40x oil 

immersion objective. A laser type light source was used to excite DAPI (blue) and Alexa 555-

conjugated goat secondary antibody stained CD31 (red). Furthermore, confocal reflectance 

microscopy was used to visualize the 3D structure of the collagen matrix. 

 

2.12. Measurement of ECM bulk hydraulic permeability 

The permeability characterization of bulk collagen gel was achieved using a simple straight flow 

channel (5 x 0.5 x 1 mm) as previously reported.48 The 3 mg mL-1 collagen gel solution was 

prepared as previously described and injected in the straight microchannel followed by 

polymerization overnight at 37 °C. A 10 µM solution of 10 kDa FITC-dextran (Sigma) was 

prepared in 1x DPBS (Corning) and perfused through the 3D type I collagen-based ECM by 

applying a controlled level of hydrostatic pressure (~240 Pa) along the channel. The hydrostatic 

pressure head was generated by inserting a pipette tip in the inlet port filled with 10 µM FITC-

dextran solution. The moving FITC-dextran dye interface was monitored over time using 

epifluorescence time lapse imaging as described. An in-house developed MATLAB code was used 

to quantify the total increase in fluorescent signal within a user-defined Eulerian control volume 

to estimate the level of influx. Average hydraulic permeability of the ECM matrix was reported 

based on Darcy flow assumption. 
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2.13. Quantification of transvascular flow 

A custom MATLAB code was used to analyze the epifluorescence timelapse images of the 

transendothelial transport of 10 kDa FITC-dextran. Transendothelial flux was quantified based on 

conservation of mass equation for a user-defined Eulerian control volume sharing an overlapping 

boundary with the endothelial monolayer (Fig. 5). For each measurement, the user-defined control 

volume was adjusted so that the endothelial monolayer overlapped with the control volume 

boundary. The total increase in fluorescent signal within the control volume was quantified over 

time to estimate the transendothelial flowrate. The monolayer area was estimated by fitting a 

polygon on the ECM interface at each aperture. 

 

2.14. 3D computational model 

Numerical analysis was performed by Ehsan Akbari and Kaushik K. Rangharajan using COMSOL 

Multiphysics (v.5.2). The device geometry was imported from AutoCAD (actual experimental 

design) and extruded to a height of 50 µm matching the height of the device. Governing equations 

were solved under steady-state, isothermal, incompressible, and laminar flow conditions. 

Continuity equations were solved for the entire geometry with the Navier-Stokes equations solved 

for the microchannels and the Brinkman equation solved inside the ECM to account for collagen 

permeability and porosity. No-slip boundary conditions were imposed on all PDMS walls. The 

device inlet was assigned a constant pressure according to the reservoir pressure head, as the media 

was perfused in to the device from the bottom of the reservoir (Fig. 4C and D). The outlet of the 

device was connected to the syringe pump in the experiments, and therefore in the numerical model, 

a constant velocity boundary condition matching the experimental flow rate was assigned to the 

outlet port. The collagen port was assigned a constant pressure according to the column of media 
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that was placed on top of the collagen port over the course of the experiments (Fig. 4C and D). 

Solutions from coarse meshes were re-iterated with finer meshes until mesh-insensitive solutions 

were achieved. 

 

2.15. Statistical methods 

Numerical values reported in results and discussion section represent the mean ± the standard error 

of the mean for at least three replicates for each experimental test condition. Two-sided student t-

tests were used to report the statistical significance between each pair of experimental test 

conditions for Lp. Levels of significance were reported using the following: * indicates p-value < 

0.05, ** indicates p-value < 0.01, and *** indicates p-value < 0.001. 

 

3. RESULTS AND DISCUSSION 

3.1. Bifurcated fluid flow (BFF) and laminar shear stress (LSS) decrease endothelial hydraulic 

conductivity  

After characterizing the microfluidic model flow dynamics, we next monitored changes in LP in 

response to BFF and LSS in the absence of TVF.  HUVECs treated with 38 dyn/cm2 BFF for 1 

hour showed an initial 3.0-fold increase in LP followed by a 71% decrease over 6 hours compared 

to the static control condition (Fig. 6B, C). Similarly, treatment with 3 dyn/cm2 LSS for 1 hour 

showed an initial 1.8-fold increase in LP followed by a 76% decrease over 6 hours compared to 

the static control condition (Fig. 6B, D). Our results suggest time-dependent regulation of HUVEC 

LP in response to LSS matching the trends previously reported for HUVECs.50,51 However, to our  
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Figure 6.  Bifurcating vessel flow dynamics transiently control endothelial permeability. (A) 

Schematic of the microfluidic platform, depicting the experimental outline of: (i) static control, (ii) perfused 

microfluidic device generating bifurcated fluid flow (BFF) (black dashed line) and laminar shear stress 

(LSS) (black solid lines) under equilibrated intravascular pressure (IVP) and interstitial fluid pressure (IFP), 

which results in minimal transvascular flow (TVF), and (iii) perfused microfluidic platform under elevated 

IVP, which results in luminal to abluminal TVF (white solid lines). (B) Representative images of LP 

measurement after treatment with each experimental test condition at (i) BP and (ii) BV. The white dotted 

lines represent the PDMS microposts. The red dotted lines represent the semipermeable HUVEC monolayer 

at each aperture. Scale bars are 100 μm.  (C) Quantitative effects of 38 dyn/cm2 BFF and ~1 µm/s TVF on 

endothelial hydraulic conductivity after 1 hour and 6 hours of treatment, compared to static control 

condition.  (D) Quantitative effects of 3 dyn/cm2 LSS and ~1 µm/s TVF on endothelial hydraulic 

conductivity after 1 hour and 6 hours of treatment, compared to static control condition.  *, p < 0.05. **, p 

< 0.01, ***, p < 0.001. 
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knowledge, this is the first report of the time-dependent regulation of HUVEC LP in response to 

BFF.  

Next, we monitored changes in LP in response to co-application of TVF with BFF and LSS.  

Co-application of ~1 µm/s average TVF with BFF and LSS at BP and BV respectively, elicited a 

competing effect by rescuing the hydraulic conductivity of the HUVEC monolayer to the static 

control condition level after 1 hour and 6 hours of perfusion (Fig. 6C, D). Therefore, these findings 

suggest that the effect of TVF on endothelial permeability counteracts against the stabilization 

outcomes of BFF and LSS. 

 

3.2. Flow dynamics and albumin chaperones suppress sphingosine-1-phosphate (S1P)-induced 

increases in endothelial hydraulic conductivity 

We next studied how co-application of S1P with flow dynamics alters the endothelial response in 

LP.  HUVECs treated with 500 nM S1P under static conditions for 6 hours showed a 7.9-fold 

increase in LP compared to the static control condition (Fig. 7B). Conversely, treatment with 500 

nM S1P and 3 dyn/cm2 LSS for 6 hours did not demonstrate a statistically significant increase 

compared to the 3 dyn/cm2 LSS control (Fig. 7B). Treatment with 500 nM S1P and 38 dyn/cm2 

BFF for 6 hours demonstrated a modest increase in LP compared to BFF and LSS control 

conditions at BP and BV respectively (Fig. 6B). These results indicate that the static increase in 

endothelial permeability after treatment with S1P is negated by fluid forces from BFF and LSS. 

After investigating how fluid forces influence the endothelial response to S1P, we 

investigated chaperone-dependent responses in LP by applying S1P associated with chaperone 

protein bovine serum albumin (S1P-BSA). Application of 500 nM S1P-BSA under static 

conditions over 6 hours did not show a significant increase in LP compared to static control 
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conditions (Fig. 7B). Furthermore, application of 500 nM S1P-BSA and exposure to BFF and LSS 

over 6 hours at BP and BV respectively, did not show a significant increase in LP compared to 

Figure 7.  Endothelial permeability response to sphingosine-1-phosphate depends on flow dynamics 

and albumin chaperones. (A) Schematics of the experimental conditions: (i) static control, (ii) perfused 

microdevice in the absence of transvascular flow and addition of sphingosine-1-phosphate (S1P) (500 nM) 

to perfusion media, and (iii) perfused microdevice in the absence of TVF and addition of S1P associated 

with bovine serum albumin (S1P-BSA) (500 nM) to the perfusion media. (B) Quantitative effects of 

application of S1P increases LP under static conditions, but co-application BFF and LSS with S1P 

supplemented media did not cause a significant change in LP. Application of S1P-BSA did not cause a 

significant change in LP from static to perfused conditions. *, p < 0.05, **, p < 0.01, ***, p < 0.001.  
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BFF and LSS control conditions at BP and BV respectively (Fig. 7B). Therefore, these findings 

suggest that the static increase in endothelial permeability in response to S1P is counteracted by 

associating S1P with albumin. 

 

3.3. Flow-regulated endothelial S1P receptor 1 signaling decreases endothelial permeability 

To identify the role of ligand-independent S1P1 activation in modulating endothelial hydraulic 

conductivity, we monitored changes in LP after 3-hour pre-treatment with W123, a competitive 

antagonist of S1P1, followed by exposure to BFF and LSS in the absence of TVF. HUVECs pre-

treated with 10 µM W123 and exposed to static conditions over 6 hours did not demonstrate a 

significant increase in LP compared to static control conditions (Fig. 8B). In contrast, HUVECs 

pre-treated with 10 µM W123 and then exposed to BFF and LSS over 6 hours at BP and BV 

respectively, demonstrated a significant increase in LP compared to BFF and LSS control 

conditions at BP and BV (Fig. 8B). The increase in LP when pre-treated with W123 and exposed 

to BFF and LSS shows that the decrease in endothelial permeability in response to BFF and LSS 

is mediated in part by S1P1. These results corroborate previous reports of ligand-independent 

mechanical activation of S1P1
25,52 and G protein-coupled receptors.28 

We next monitored changes in endothelial permeability in response to S1P after inhibition 

of S1P1. HUVECs pre-treated with 10 µM W123 and exposed to 500 nM S1P under static 

conditions over 6 hours demonstrated a significant decrease in LP compared to HUVECs exposed 

to 500 nM S1P under static conditions (Fig. 8B). In contrast, HUVECs pre-treated with 10 µM 

W123 and then exposed to 500 nM S1P with BFF and LSS over 6 hours at BP and BV respectively, 

demonstrated a significant increase in LP compared to HUVECs treated with 500 nM S1P with 

BFF and LSS conditions at BP and BV (Fig. 8B). Taken together, these results align with previous 
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reports S1P1 activation decreasing endothelial permeability, particularly under the application of 

shear stress.14,53,54 

Figure 8.  Inhibition of S1P receptor 1 (S1P1) reveals ligand-independent mechanical activation and 

flow-dependent stabilization in response to S1P. (A) Schematics of the experimental conditions: (i) static 

control, (ii) perfused microdevice in the absence of transvascular flow (TVF) and addition of S1P (500 nM) 

in perfusion media, and (iii) perfused microdevice in the absence of TVF and pre-incubation with W123 

(10 µM), a competitive antagonist of S1P1 that induces receptor internalization. (B) Quantitative effects of 

S1P1 inhibition under co-application of S1P with fluid mechanical forces BFF and LSS at the BP and BV 

respectively. Application of W123 induced ligand-independent increases in LP under perfused conditions, 

and increased LP with the application of S1P under perfusion.  **, p < 0.01, ***, p < 0.001. 
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3.4. S1P receptor 2 activation elicits flow-regulated response in endothelial permeability 

While we anticipated S1P1 activation to stabilize endothelial permeability based on a consensus 

from previous reports, we next sought to investigate conflicting reports of endothelial response to 

S1P2 activation, which has demonstrated a tissue-specific response depending on the experimental 

context. To isolate the endothelial response to S1P2, we monitored changes in LP after 30 min pre-

treatment with JTE-013, a selective antagonist of S1P2, followed by exposure to BFF and LSS in 

the absence of TVF. HUVECs pre-treated with 200 nM JTE-013 and exposed to static conditions 

over 6 hours showed no significant change in LP compared to static control conditions (Fig. 9B). 

In contrast, HUVECs pre-treated with 200 nM JTE-013 and then exposed to BFF and LSS over 6 

hours at BP and BV respectively, demonstrated a significant increase in LP compared to BFF and 

LSS control conditions at BP and BV (Fig. 9B). Paralleling the response observed in S1P1, the 

increase in LP when pre-treated with JTE-013 and exposed to BFF and LSS demonstrates that the 

decrease in LP when subjected to BFF and LSS is mediated in part by S1P2 activation. These results 

provide new insights into ligand-independent mechanical activation of S1P2 under application of 

BFF and LSS. 

To investigate the role of S1P2 in mediating the HUVEC response to S1P, we pre-treated 

HUVECs with JTE-013 for 30 min and applied S1P. HUVECs pre-treated with 200 nM JTE-013 

and exposed to 500 nM S1P under static conditions over 6 hours demonstrated a significant 

decrease in LP compared to HUVECs exposed to 500 nM S1P under static conditions (Fig. 9B). In 

contrast, HUVECs pre-treated with 200 nM JTE-013 and then exposed to 500 nM S1P with BFF 

and LSS over 6 hours at BP and BV respectively, demonstrated a significant increase in LP 

compared to HUVECs treated with 500 nM S1P with BFF and LSS conditions at BP and BV 

respectively (Fig. 9B). The differing responses in LP when pre-treated with JTE-013 and exposed 
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to 500 nM S1P demonstrates that the endothelial response to S1P2 activation depends on flow 

Figure 9.  Inhibition of S1P receptor 2 (S1P2) reveals ligand-independent mechanical activation and 

flow-dependent response to S1P. (A) Schematics of the experimental conditions: (i) static control, (ii) 

perfused microdevice in the absence of transvascular flow (TVF) and addition of S1P (500 nM) in perfusion 

media, and (iii) perfused microdevice in the absence of TVF and pre-incubation with JTE-013 (200 nM), a 

selective antagonist of S1P2. (B) Quantitative effects of S1P2 inhibition under co-application of S1P with 

fluid mechanical forces BFF and LSS at the BP and BV respectively. Application of JTE-013 induced 

ligand-independent increases in LP under perfused conditions, decreased LP with the application of S1P 

under static conditions, and increased LP with the application of S1P under perfused conditions.  **, p < 

0.01, ***, p < 0.001. 
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dynamics, showing an increase in endothelial permeability under static conditions and a decrease 

in endothelial permeability when exposed to BFF and LSS. Taken together, these results may 

provide further context to the discrepancies in endothelial response to S1P2 activation. 

 

4. SUMMARY AND CONCLUSIONS 

Study of endothelial permeability and transendothelial transport is essential to advancing our 

understanding of the mechanisms that determine vascular development. Current in vivo methods 

enable quantification of vascular permeability with a direct connection to physiology, but these 

methods often have limited control of the physiochemical microenvironment to isolate the effects 

of individual mechanisms, particularly mechanical stresses. Microfluidic in vitro models present a 

method to explore the mechanisms governing vascular permeability by enabling precise 

manipulation of the biomechanical environment experienced by endothelial cells. However, the 

current state-of-the-art microsystems fail to fully reproduce the complex biophysics that arise due 

to vessel bifurcations while permitting transendothelial flow and vascular permeability 

quantification. 

This paper reported a microfluidic model that facilitates investigation of flow dynamics 

generated by vessel bifurcations in vitro and enables quantification of endothelial hydraulic 

conductivity (LP), which was used to resolve the flow-regulated endothelial response to 

sphingosine-1-phosphate. We showed that application of bifurcated fluid flow (38 dyn/cm2 

stagnation pressure and approximately zero shear stress) and laminar shear stress (3 dyn/cm2) at 

the BP and in each BV, respectively, imparted a time-dependent effect on HUVEC barrier function 

based on the LP measurements. (Fig. 6). While LP increased in response to both BFF and LSS after 

1 hour of application, continued perfusion with these forces resulted in stabilization of the HUVEC 
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monolayer after 6 hours, as evidenced by a significant decrease in LP near the value observed under 

static treatment after 1 hour and 6 hours of perfusion. 

Our findings of the time-dependent effect of LSS on LP (Fig. 6) are in agreement with 

previous reports analyzing endothelial permeability using semi-porous transwell assays55 and 

templated microfluidic systems housing 3D scaffolds.56,57 Previously reported measurements in 

transwell assays51 suggest that application of LSS causes an initial increase in endothelial 

permeability that returns to the baseline level during continued application of shear flow. In vivo 

measurements on rabbit carotid arteries58 and pig coronary venules59 also demonstrate increased 

vascular permeability after acute increases in the level of intravascular shear stress, which 

corroborate the observed effects of LSS in vitro. 

Furthermore, we established that S1P (500 nM) without albumin chaperones regulated 

HUVEC barrier function in response to flow dynamics. Application of S1P increased HUVEC LP 

under static conditions, but showed no significant effect on LP under application of BFF and LSS. 

The flow-dependent response was negated when HUVECs were treated with S1P associated with 

bovine serum albumin; endothelial permeability was held near static control conditions for S1P-

BSA application regardless of static or perfused conditions.  

Our conclusions regarding the flow-dependent regulation of endothelial permeability 

response to S1P signaling are supported by in vivo reports of enhanced S1P signaling in the 

descending mouse aorta when subject to LSS.14 Previous research established that blood flow can 

induce S1P1 expression,10,14,60 which increases barrier function upon S1P activation.54,61 

Furthermore, our conclusions regarding chaperone-dependent signaling of S1P are supported by 

previous reports of biased-agonism of S1P1 by albumin-bound S1P, and receptor endocytosis in 

HUVECs.62 Our results demonstrating the hyperpermeabilization of HUVECs in response to 
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chaperone-free S1P under static conditions are supported by previous in vitro studies that reported 

pro-angiogenic responses to extravascular application of S1P.63,64 

A major finding from our study is that BFF and LSS activated both S1P1 and S1P2 signaling 

to decrease LP independent of S1P ligand binding (Fig. 8). These results support previous research 

that suggests ligand-independent shear activation of S1P1 in mouse aortas in vivo14 and HUVECs 

in vitro.10,14 However, our results also demonstrate ligand-independent activation of S1P2, which 

provides further support that S1P1 and S1P2 may sense mechanical forces, which has been 

proposed for other G protein-coupled receptors.28 

After inhibiting S1P1 with competitive antagonist W123, we demonstrated that application 

of S1P elicits an increase in endothelial permeability under BFF and LSS. Our observations of the 

stabilizing effect of S1P1 signaling under flow (Fig. 8) are supported by previous reports S1P1 

activation decreasing endothelial permeability when applied with shear stress.14,53,54 However, our 

observations of increased permeability after inhibiting S1P2 with selective antagonist JTE-013 and 

applying S1P with BFF and LSS demonstrate a stabilizing effect of S1P2 that diverges from 

previous reports. Previous literature supports a role for S1P2 in vascular barrier disruption during 

anaphylaxis in mice65 and pathological angiogenesis,66 but previous studies have also established 

an anti-angiogenic role for S1P2 within tumor vasculature.22 These results indicate tissue-

dependent responses, any may also be influenced by the fluid mechanical environment. The 

discrepancy between the consensus regarding the role of S1P1 and conflicting reports regarding 

the role of S1P2 may stem from differences in G protein-coupling; while S1P1 couples exclusively 

with Gαi/o, S1P2 can couple with Gαi/o, Gαq, and Gα12/13.10 Further exploration of S1P1- and 

S1P2-induced G protein activation in endothelial cells from different tissue origins and under 
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different flow dynamics may provide further insights into the mechanisms leading to conflicting 

roles of S1P2. 

In this report, we have demonstrated the first observation of the stabilizing effect of 

bifurcated fluid flow, to our knowledge.  Furthermore, we have applied the strengths of our 

microfluidic model of a vessel bifurcation to report the ligand-independent mechanical activation 

of sphingosine-1-phosphate receptors 1 and 2, providing further support for the role of G protein-

coupled receptors as mechanosensors. Taken together, our results provide further insights into how 

flow dynamics integrate with biochemical signals to direct vascular development. Further studies 

of the mechanotransduction pathways of LSS and BFF within ECs, which are uniquely enabled by 

our novel microfluidic model, will provide insights into the mechanisms responsible for converting 

these mechanical stresses into biological responses. 
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