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Abstract 

The accurate prediction of flow regimes is vital for the analysis of behaviour and operation of 

gas/liquid two-phase systems in industrial processes. This paper investigates the feasibility of a 

non-radioactive and non-intrusive method for the objective identification of two-phase gas/liquid 

flow regimes using a Doppler ultrasonic sensor and machine learning approaches. The 

experimental data is acquired from a 16.2-m long S-shaped riser, connected to a 40-m horizontal 

pipe with an internal diameter of 50.4 mm. The tests cover the bubbly, slug, churn and annular 

flow regimes. The power spectral density (PSD) method is applied to the flow modulated 

ultrasound signals in order to extract frequency-domain features of the two-phase flow. Principal 

Component Analysis (PCA) is then used to reduce the dimensionality of the data so as to enable 

visualisation in the form of a virtual flow regime map. Finally, a support vector machine (SVM) 

is deployed to develop an objective classifier in the reduced space. The classifier attained 85.7% 

accuracy on training samples and 84.6% accuracy on test samples. Our approach has shown the 

success of the ultrasound sensor, PCA-SVM, and virtual flow regime maps for objective two-

phase flow regime classification on pipeline-riser systems, which is beneficial to operators in 

industrial practice. The use of a non-radioactive and non-intrusive sensor also makes it more 

favorable than other existing techniques. 

Keywords: Doppler ultrasound, Support vector machine (SVM), Probability density function 

(PDF), Principal component analysis (PCA), S-shaped riser 

 

1 Introduction 

Two-phase gas-liquid flow is encountered frequently in the industrial operations such as nuclear 

power plant steam generators, boilers, chemical reactors and petroleum transportation (Julia and 

Hibiki, 2011). The different types of interfacial structures between different phases of fluids, 

known as multiphase flow regimes, can be geometrically complex and varying. The flow can be 

steady or unsteady, turbulent or laminar, gas/liquid segregated or mixed. Gas can flow within the 

liquid as bubbles or liquid can flow within the gas as droplets (Falcone et al., 2002).  

The governing flow regime is influenced by many parameters such as gas/liquid superficial 

velocities, gas/liquid densities, gas/liquid surface tension, gas/liquid viscosities, pipe diameter 



and pipe inclination (Thorn et al., 2012). Traditionally, flow regime maps are used to illustrate the 

dependency of the flow regime on two quantities, which are usually the superficial gas and liquid 

flow rates (Falcone et al., 2009). Yet, characterising and measuring two-phase flow is still 

challenging due to its inherent complex nature. Thus, the problem of flow regime identification 

remains to be relevant up to the present. 

Flow regime identification methods can either be subjective techniques (direct observation) or 

objective techniques (scientific or indirect determination) (Rouhani and Sohal, 1983). The 

subjective or direct techniques involve the operator in visually interpreting an image of the flow 

to classify it into a flow regime. Objective or indirect determination is a two-part process. The 

operator must firstly utilise a suitable experimental methodology to measure flow parameters 

features correctly and then analyse the flow features objectively to categorise the flow regime 

(Juliá et al., 2008).  

Currently, gas/liquid two-phase flow regime identification is mainly carried out by subjective 

means such as direct visual observation and via cameras (Peddu et al., 2017). Hence, the accurate 

classification of flow regimes is yet to be standardised, and it mostly depends upon the 

interpretation of individual visual views, which would lead to inconsistency in the flow regime 

identification due to human subjectivity. The main drawback of visual observations is that the 

pictures are often challenging to interpret and confusing, in particular when handling high flow 

velocities even with the use of high-speed cameras. Moreover, flow channels are often opaque so 

that flow identification by visual means is impossible (Barnea et al., 1980). Although there are 

numerous flow regime identification approaches already studied for two-phase gas/liquid flow, 

industrial acceptance remains challenging. Subjective techniques cannot facilitate industrial 

automation where many important decisions depend on the governing flow regime. 

Significant efforts have already been made to develop flow regime identification using objective 

methodologies. Several research studies have used a phase distribution measurement approach. 



One of the methods in this regard is the use of invasive-point sensors such as pitot tubes, fibre-

optic or electrical probes and hot-wire anemometer (Barnea, 1987). The major setback to these 

methods is that the sensors disturb the flow fields during the measurement of void or pressure 

fluctuations (Dyakowski, 1996). Hence, non-invasive means must be deployed to differentiate the 

boundaries between divers flow regimes. 

Objective flow regime identification using a clamped-on, non-invasive sensor is of great interest 

in many industries. Non-invasive methods are highly attractive as they eliminate the need for 

immersion of instrumentation in the flow. Jones and Delhaye (1976) investigated and summarised 

different measuring methods applied to a two-phase flow of which very few are employed directly 

for the characterisation of the flow regime. For instance, Barnea et al. (1980) used an enhanced 

electrical conductance probe in a two-phase near horizontal, horizontal and vertical flows for flow 

regime identification.  

Among the non-invasive sensors, radiation attenuation methods are more widely used in many 

industrial applications due to their reliability. To mention a few, Jones and Zuber (1975) studied 

an X-ray void measurement system for vertical two-phase flow in a rectangular channel; Salgado 

et al. (2010) achieved flow regime identification using gamma-ray pulse height distributions 

(PHDS) and artificial neural networks (ANNs); Blaney and Yeung (2008) analysed  probability 

distributions using the self-organising feature map and gamma densitometer data for multiphase 

flow regime identification; Sunde et al. (2005) proposed an enhanced method, which compares at 

every flow condition the visualisation of the intensity of gamma rays measurements. Generally, 

radiation attenuation methods based on gamma rays, X-rays and neutrons are already established 

online measurement systems. When compared with each other, gamma densitometer has 

enormous merits, such as high penetration and cost-effectiveness (Chaouki et al., 1997). 

However, the major drawback to these methods is their radioactive nature, which is hazardous. 

The need to increase the gamma source strength with an increase in density or the pipe wall 

thickness requires radiation protection increase, hence minimises its portability. 



Chakraborty et al. (2009) presented a novel ultrasonic method for two-phase flow void fraction 

measurement using an ultrasonic sensor and two signal processing techniques established on the 

time series analysis approach: the logical signal space partitioning and the symbolic filtering. 

Although the theory on symbolic dynamic filtering was established, identification using pulse-

echo mode is not a full classification method of flow regimes, but flow patterns instead (Jha et 

al., 2012). It was noted that more research needs to be carried out on experimental and 

computational work before applying the method in the industry. Another drawback to this method 

is that the set-up is invasive even though the ultrasonic method itself is non-intrusive. As an 

extension of the work by Chakraborty et al., (2009), Jha et al. (2012) presented the concept of 

implementing ultrasonic pulse echoes in a clamped-on set-up in connection with the symbolic 

dynamic filtering for deployment in the industries. 

Regardless of the prospect of using ultrasonic pulse-echo for flow regime identification, the 

method is based on computational models. The computational models apply a set of non-linear 

equations for flow regime identification, which are frequently simplified. In practice, the 

simplified equations are difficult to implement since the knowledge of various flow parameters 

are required, such as pipe thickness and pipe diameter. The accuracy of these equations are also 

compromised when flow parameters deteriorate with time (Meribout et al., 2010). In addition, the 

ultrasound pulse-echo method is limited by the maximum velocity that it can measure due to the 

Nyquist criterion (Evans and McDicken, 2000). 

Doppler ultrasonic sensors can also achieve non-invasive flow velocity measurement. This 

technique is ubiquitous in the medical field. The method employs a shift in frequency due to the 

flow velocities as a means for flow regime prediction (Übeyli and Güler, 2005). The applicability 

of continuous wave ultrasonic Doppler (CWUD) in two-phase flow velocity measurement was 

investigated by Kouam et al. (2003). They suggested the use of frequency resolution methods to 

resolve the issue of the presence of coloured noise in velocity measurement, which otherwise 

poses a severe problem to the classical frequency estimators.  



In this paper, a non-intrusive and non-radioactive method for the objective identification of two-

phase gas/liquid flow regime is proposed using CWUD signals and machine learning (ML) 

approaches. Many ML solutions to objective flow regime identification have already been 

proposed, such as (Xie et al., 2004; Hanus et al., 2017; Wang and Zhang, 2009; Trafalis et al., 

2005). In this work, to better facilitate the applicability to industrial practice, principal 

components analysis (PCA) is used particularly for visualising the information from intrinsic flow 

regime features in 2-dimensional space. To this aim, a mapping is created so that in 2-dimensions, 

the mapped samples can be found clustered according to their respective flow regimes. SVM is 

then applied to the samples in the 2-dimensional space to create boundaries between the clusters. 

This leads to a virtual flow regime map that serves as visual aid to human operators for objective 

flow regime identification. In summary, the main contributions of this paper are as follows: (i) 

we explore the feasibility of visualizing frequency-domain features from ultrasonic Doppler 

signals in a 2D virtual flow regime map; and (ii) we make the first known effort towards the 

applicability of continuous wave Doppler ultrasound and the SVM to objectively identify flow 

regime in an S-shaped riser. By using safer and more advanced techniques for two-phase flow 

measurement and instrumentation, industries can achieve enhanced production, better process 

performance, and hence, larger economic advantages. 

This paper is organised as follows: Section 2 presents the sensor principle and the algorithm for 

CWUD. In Section 3, the experimental method used in this study is described. Signal analysis 

using ML approaches are discussed in Section 4. In Section 5, the results and discussion of the 

analysed data are presented, and finally, conclusions and future work are given in Section 6. 

 

 

 

 



2 Measurement Sensor and Algorithm 

The Doppler shift (or Doppler Effect) is the frequency variation of an acoustic wave when 

movement exists between the acoustic receiver and the source, where the change in frequency is 

proportional to the acoustic source velocity (Weinstein, 1982). Thus, the velocity of the acoustic 

source is obtained by calculating the frequency shift between the acoustic receiver and the source 

(see Fig. 1(b)). In the ultrasonic Doppler flowmeter, shown in Fig. 1(a), a fixed-frequency acoustic 

beam is released continuously from the transducer into the flow. The beam is then reflected by 

the moving scatterers in the fluid, which could be bubbles in the flow (Chivers and Hill, 1975). 

Another ultrasonic transducer receives the scattered acoustic beam so that the velocity of the fluid 

estimated with the frequency shift based on Doppler Effect. Mathematically, the principle behind 

this sensor is discussed as follows. 

 

Figure 1: Ultrasound Doppler principle (Meire and Farrant, 1995) 

First, assume that the signal transmitted is  

 𝑥𝑡(𝑡) = 𝜀𝑡cos(𝜔𝑡𝑡) (1) 

and that the corresponding received signal from one of the scatterers is 

 𝑥𝑟(𝑡) = 𝜀𝑟cos({𝜔𝑡 +𝜔𝑑}𝑡 + 𝜃1) (2) 



where𝜔𝑡 = 2𝜋𝑓𝑡 is the angular frequency of the transmitted signal,  𝜔𝑑 = 2𝜋𝑓𝑑 is the amount of 

shift in the angular frequency, and 𝜃1 is the phase shift based on the scatterer distance between 

the receiver and the transducer (Evans et al., 1989). 

Multiplying the two signals electronically will give: 

 𝑥𝑡(𝑡)𝑥𝑟(𝑡) = 𝜀𝑡𝜀𝑟 cos(𝜔𝑡𝑡) cos({𝜔𝑡 +𝜔𝑑}𝑡 + 𝜃1) (3) 

 𝑥𝑡(𝑡)𝑥𝑟(𝑡) =
𝜀𝑡𝜀𝑟
2

[cos(𝜔𝑑𝑡 + 𝜃1) + cos({2𝜔𝑡 +𝜔𝑑}𝑡 + 𝜃1)]. (4) 

The resulting signal is then low-pass filtered to remove the 2𝑓𝑡 source frequency, leaving only the 

desired Doppler signal (Evans et al., 1989): 

 𝑥𝑑(𝑡) =
𝜀𝑡𝜀𝑟
2

cos(𝜔𝑑𝑡 + 𝜃1). (5) 

Additional signal processing may be needed since the received signal has reflected an ultrasound 

of amplitude greater than the signal backscattered from the moving scatterers. Finally, the 

relationship between the Doppler shift 𝑓𝑑 and the velocity of the scatterer can be described as 

follows (Sanderson and Yeung, 2002): 

 𝑓𝑑 = 2𝑓𝑡
𝑣

𝑐
cos𝜃 (6) 

where 𝑓𝑑  is the Doppler frequency shift, 𝑓𝑡 is the transmitted ultrasound frequency, 𝑣 is the flow 

velocity average, and 𝜃 is the angle between the flow velocity and the ultrasound beam. 

The Continuous-wave ultrasonic Doppler (CWUD) used in this work is a non-invasive flowmeter. 

The CWUD is suitable for the measurement of ultrasonic reflective fluid of flows. It calculates 

the shifts in frequency, processes the ultrasonic signals, and evaluates the velocity of the flow. 

The CWUD calculates the change in frequency of the signals reflected from the discontinuities 

or scatters like bubbles in the flowing fluid. To achieve a suitable bonding between the external 

conduit surface and the sensor, a glycerine gel was applied to avoid air cavities trapping between 



the sensor and the conduit surface. The CWUD has two separate crystals transducers embedded 

in one probe which transmit and receive ultrasonic signals continuously at 500 KHz. 

The CWUD has two piezoelectric crystal elements embedded in one transducer.  The electronic 

circuit of the metre electrifies the transducer in a continuous mode; one of the transducers emits 

an ultrasonic signal and the other receiving transducer, provides the output signals (Kremkau, 

1975). The received output signals are then filtered and amplified by the flowmeter electronics. 

The Doppler frequency shift signals are the processed output signal, and it was obtained using a 

data acquisition card (NI-PCI-6040E) and a LabVIEW program. Other specifications of the 

CWUD flow meter used in the experiment are given in Table 1. 

Table 1: Continuous Wave ultrasonic Doppler flow meter specifications 

Model DFM-2 

Maker United Automation Ltd., Southport, U.K. 

Velocity range 0 to 19.99 feet per second velocity by LCD (Liquid Crystal Display). 

Repeatability 1 % of reading. 

Indicator Sufficient signal strength only when green LED (Light Emitting Diode) 

is on 

Temperature  Instrument 0 to 500C. Standard sensor -30 to 700C. HT Sensors are 

available up to 1200C 

 

The detailed experimental specifications are given in the following section. 

 

3 Test Rig and Experimental Procedure 

 Two-phase flow test rig set-up 

The experiment was carried out on a 2-inch S-shaped riser of the three-phase flow loop at 

Cranfield University oil and gas centre. The 2-inch flow loop is made up of a 40-m horizontal 

pipeline, 5.5-m vertical lower section, 1.5-m down-comer, 5.7-m vertical upper section and 3.5-

m topside section. This test rig is operated using the DeltaV (Fieldbus based supervisory, control 

and data acquisition) software provided by Emerson Process Management. The schematic 

diagram of the test rig is shown in Figure 2. The air used was supplied from the bank of two 



compressors connected in parallel. When both compressors are run in parallel, a maximum air 

flow rate of 1410 m3/hr FAD at 7 bar can be supplied. The air from the two compressors is 

accumulated in a 8-m3 capacity receiver to reduce the pressure fluctuation from the compressor. 

Air from the receiver passes through a bank of three filters (coarse, medium, fine) and then 

through a cooler where debris and condensates present in the air are stripped from the air before 

it goes into the flow meters. The water flow rate was supplied from a 12.5-m3 capacity water tank. 

The water was supplied into the flow loop by two multistage Grundfos CR90-5 pumps. The water 

pump has a duty of 100 m3/hr at 10 bar. The speed control is achieved using frequency variables 

inverters. The water pumps are operated remotely using DeltaV, a fieldbus based supervisory, 

control and data acquisition software (SCADA). The water flow rate was metered by a 1-inch 

Rosemount 8742 magnetic flow meter (up to 7.36 l/s) and 3-inch Foxboro CFT50 Coriolis meter 

(up to 30 kg/s). 

After the experiment, air and water were separated in an 11.12-m3 horizontal three-phase gravity 

separator. After the separation in the three-phase separator and cleaning, air is exhausted into the 

atmosphere while water from the three-phase separator enters its 1.6-m3 coalescer, where the 

water is further cleaned before returning to the storage tank.  

The 2-inch S-shaped flow loop test facility used in this experiment have a 54.8-mm internal 

diameter, 40-m length and 1.5-m downcomer. The 2-inch S-shaped flow loop test section has a 

transparent pipe for flow regime observation. The air flow-rate was adjusted by controlling the 

valves through the DeltaV to achieve the desired flow regime. 

         



 

Figure 2: Schematic diagram of S-shape rig 

A clamp-on non-intrusive CWUD transducer with an excitation voltage of  ±10V, operating at a 

carrier frequency of 500 kHz was attached at the top-side of the S-shaped riser in Fig. 2. The 

ultrasound beam incident angle was 58° with respect to flow direction on the S-shaped riser. It is 

essential to place the ultrasonic sensor on the pipe at least 10 diameters away from the tees, valves 

and bends to prohibit measurement errors from cavitation, swirls and turbulent eddies. A gel 

coupling agent was applied between the pipe wall and the Doppler transducer to make the 

ultrasound energy transmission easier. The electronics of CWUD flow meter was adapted to 

record the voltage signals of the Doppler frequency shift for further analysis (see Fig. 3).  

Ultimately, the process variable being measured by the ultrasound Doppler is average flow 

velocity. Based on the pipe scale and flow velocity range, it was estimated that the value of the 

flow velocity fluctuates at a frequency no more than 2 kHz. Hence, in the LabVIEW data 

acquisition system, a sampling frequency of 10 kHz is appropriate with respect to the Nyquist 

criterion, since this is 5 times the estimated upper limit frequency of the flow velocity fluctuations. 



 

Figure 3: Doppler ultrasonic sensor and its auxiliary instruments 

 Flow regime classification methodology 

3.2.1 Feature Extraction from ultrasonic Doppler signals 

Feature extraction is the most crucial step in any flow regime identification method. This step 

aims to find any information from the measurement data that can be used to best distinguish 

among flow regimes. For high-frequency data, such as the ultrasonic Doppler signals, features 

can be extracted either from the time domain or frequency domain. In this work, the widely used 

frequency-domain power spectral density (PSD) features are adopted (de Kerret et al., 2017). 

Given a stationary discrete-time signal 𝑥(𝑛), the power spectral density function 𝑃𝑥(𝑓) of this 

signal is defined as the Fourier transform of the autocorrelation sequence 𝑅𝑥(𝑘) (Xie et al., 2004): 

 
𝑃𝑥(𝑓) = ∑ 𝑅𝑥(𝑘) exp (−2𝜋𝑖𝑘

𝑓

𝑓𝑠
)

∞

𝑘=−∞

 (7) 

where 𝑓𝑠 is the sampling frequency. Since the signal is only measured on a finite interval [0, … ,

𝑁 − 1], Welch’s method is adopted for obtaining the PSD, which is given as 

 

�̂�𝑥(𝑓) = ∑ �̂�𝑥(𝑘) exp (−2𝜋𝑖𝑘
𝑓

𝑓𝑠
)

𝑁−1

𝑘=−𝑁+1

 (8) 



where the autocorrelation is (Xie et al., 2004): 

 

�̂�𝑥(𝑘) =
1

𝑁
∑ 𝑥(𝑛 + 𝑘)𝑥(𝑛)

𝑁−1−𝑘

𝑛=0

. (9) 

Using Welch’s method in the same way as did Abbagoni and Yeung (2016), the PSD features 

were analysed from each sample of ultrasonic Doppler signals at various gas-liquid flow rates as 

shown in Fig. 4. A total of 130 data samples of different superficial gas and liquid velocities were 

recorded. Different flow regime labels were assigned to each data sample by visual observation 

at the same ambient temperature conditions. Each data sample acquired consists of Doppler 

frequency shift signals recorded for a period of 900s. The data set was sub-divided into 70% for 

training (91 samples) and 30% for testing (39 samples).  With a sampling frequency of 10 kHz, a 

Hanning window of length 1024 and a 75% overlap were used in the Welch method. 

 

Figure 4: Gas and liquid flow rates of all samples from the experiment 

Typical power spectral estimates from each flow regime are presented in Fig. 5. Notice that the 

relevant frequency spectrum ranges from 0-1200 Hz. In this range, the PSD spectrum is distinct 

in each flow regime. To obtain the actual features that can distinguish between the flow regimes, 

bands of length 120 Hz were taken from the power spectrum and the mean PSD was computed 

on each band, as did Abbagoni and Yeung, (2016). Also, the maximum peak of the PSD, the mean 



weighted frequency 𝑓̅of the spectral power and the variance of the spectral power equation 𝜎𝑓
2 

were computed for each sample. The last two are computed as 

 
𝑓̅ =

∑ 𝑓𝑖𝑃𝑥(𝑓𝑖)𝑖

∑ 𝑃𝑥(𝑓𝑖)𝑖
 (10) 

 
𝜎𝑓
2 =

∑ (𝑓𝑖 − 𝑓̅)
2
𝑃𝑥(𝑓𝑖)𝑖

∑ 𝑃𝑥(𝑓𝑖)𝑖
. (11) 

In total, 13 features are obtained from the power spectrum of ultrasound signals, namely: the mean 

PSD for each of the 10 frequency bands, the maximum peak of the PSD, 𝑓,̅ and 𝜎𝑓
2. This approach 

is commonly used for distinguishing each flow regime using features in the frequency-domain 

(Abbagoni and Yeung, 2016; Drahos̆ and C̆ermák, 1989). Our work takes the further step of taking 

these features and visualising them in 2-dimensional space, before flow regime classification by 

an efficient pattern recognition technique. 

 

Figure 5: Typical power spectra of each flow regime 



3.2.2 Dimensionality Reduction for Visualization 

In unsupervised machine learning, dimensionality reduction is a family of methods used to 

express the same information from a high-dimensional data set using only a few dimensions. In 

the previous subsection, the information as expressed in 13 features (dimensions) was taken from 

ultrasound Doppler signals for flow regime identification. Here, the same information is to be 

retained using only 2 dimensions by performing a dimensionality reduction method. Since this 

step is unsupervised, the information about the flow regime labels of the samples is not used yet. 

Nonetheless, the benefit of reducing to 2 dimensions is the ability to visualise the information in 

a 2-dimensional space. This leads to the realisation of a virtual flow regime map completely from 

ultrasound Doppler data.  

In our work, principal components analysis (PCA) is used for linear dimensionality reduction, 

which is by far the most popular (Van Der Maaten et al., 2009). In PCA, the information is 

retained in a set of latent variables that are linear combinations of the original set of features. The 

PCA algorithm is outlined as follows. 

Given an 𝑀-dimensional data set of 𝑁 samples, 𝒙𝑖 ∈ ℜ𝑀, 𝑖 = 1,2,…𝑁, PCA proceeds by first 

normalising the data to zero mean and unit variance, giving us �̅� ∈ ℜ𝑀×𝑁. The sample covariance 

matrix of this data set is computed as  

 
𝚺𝒙𝒙 =

1

𝑁 − 1
�̅�𝑇�̅� ∈ ℜ𝑁×𝑁 . (12) 

The eigenvalue decomposition of the covariance matrix can be written as 

 𝚺𝒙𝒙 = 𝑽𝚲𝑽𝑻 (13) 

where 𝑽 ∈ ℜ𝑁×𝑁 is the matrix of eigenvectors on each column and 𝚲 ∈ ℜN×N is the diagonal 

matrix of decreasing eigenvalues. The columns of matrix 𝑽 represent the principal directions that 

successively explain the maximum variance in the data, while the eigenvalues in 𝚲 are scaling 

factors equivalent to the data variance values themselves. The projection matrix is given by: 



 𝑷 = 𝑽𝚲−𝟏/𝟐 ∈ 𝕽𝑵×𝑵. (14) 

By using only the first 2 columns of 𝑷, denoted as matrix 𝑷2, the dimensionality of the data is 

reduced to 2 while preserving as much information possible. The projections are then applied to 

the covariance matrix so as to obtain latent variables 𝑳 as 

 𝑳 = 𝑷𝟐
𝑻𝚺𝒙𝒙 ∈ ℜ2×𝑁. (15) 

After Eq. (15), each training sample is now represented by every column of 𝑳, which has 2 

features that can be plotted in a 2-dimensional space. A machine learning technique for 

classification can then be used to create decision boundaries objectively between the samples in 

2-dimensional space. 

3.2.3 Support Vector Machine for Classification 

This paper proposes the use of a support vector machine (SVM) for objectively classifying flow 

regimes in an S-shape riser using 2-dimensional features from the ultrasonic Doppler data.  

Cortes and Vapnik, (1995) originally proposed the SVM for binary classification. Given 𝑁 data 

samples of features 𝒙𝑖 ∈ ℜ𝑀 each belonging to either of 2 classes, labelled 𝑦𝑖 ∈ {+1,−1}, the 

aim of binary classification is to learn a mapping function that can be used to predict the unknown 

class of a new sample. SVM solves this by searching for a linear separating hyperplane in the 𝑀-

dimensional feature space that maximizes the margin of separation between samples from each 

opposing class. This separating hyperplane can then serve as a decision boundary between classes. 

To achieve nonlinear separations, kernels can be used to first transform the original feature space 

using nonlinear projections, prior to seeking the separating hyperplane (Cristianini and Shawe-

Taylor, 2014). The idea of “maximum margin of separation” is the logic offered by the SVM 

approach that replaces the human subjective approach in flow regime classification. Hence, using 

SVM, an objective flow regime classifier can be developed. 



More specifically, the dual formulation of kernel binary SVM classification is posed as the 

following convex quadratic programming problem (Cristianini and Shawe-Taylor, 2014): 

 
max∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(𝒙𝑖, 𝒙𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 (16) 

 

subjectto
∑𝑦𝑖𝛼𝑖

𝑁

𝑖=1

= 0,

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… ,𝑁

 

 

where 𝒙𝑖 ∈ ℜ𝑀 , 𝑖 = 1,2, … ,𝑁  is the 𝑁  training samples with 𝑀  features, 𝛼𝑖  are Lagrange 

multipliers, 𝐾(⋅,⋅) is a kernel function, 𝑦𝑖 ∈ {+1,−1} are the known labels for each sample, i.e. 

positive or negative, and 𝐶 is a regularization parameter. To project the data into the kernel feature 

space, the widely used radial basis kernel function is adopted, given by: 

 𝐾(𝒙, 𝒙′) = exp(
−‖𝒙 − 𝒙′‖2

𝑘𝑤
) (17) 

where 𝑘𝑤 is the kernel width. The advantage of SVM over other pattern recognition models is 

that the solution to Eq. (16) is unique and can be calculated efficiently. On the other hand, ANNs 

require an iterative gradient descent solution, which may converge to local minima. Our 

application area has no issue with large data sets as well since the number of training samples is 

only in the order of 102 and the number of features is in the order of 10. This setting is ideal for 

an SVM solution. Once the problem in Eq. (16) is solved, the optimal values 𝛼𝑖
∗ are obtained, 

wherein the 𝑖th training samples 𝒙𝑖  that correspond to 𝛼𝑖
∗ > 0 are deemed as support vectors. 

Support vectors participate in creating the boundaries between two classes, defined by the 

decision function: 

 𝑓(𝒙) = ∑ 𝑦𝑖𝛼𝑖
∗𝐾(𝒙𝑖, 𝒙)

𝑖∈𝑆𝑉

+ 𝑏∗ (18) 

where 𝑆𝑉 is the set of support vectors and 𝑏∗ is a bias term calculated so that 𝑦𝑖𝑓(𝒙𝑖) = 1 for any 

𝑖 with 0 < 𝛼𝑖
∗ < 𝐶 (Cristianini and Shawe-Taylor, 2014). For any test sample 𝒙, the function 



𝑦 = sign(𝑓(𝒙)) outputs either +1 or -1 to signify if the sample belongs to the positive or the 

negative class. Accordingly, the exact boundary between the two classes consists of the points 𝒙 

where the SVM decision becomes indifferent, i.e. sign(𝑓(𝒙)) = 0. 

In the case of the experiment, samples belong to either of the 4 classes: (1) Bubbly Flow, (2) Slug 

Flow, (3) Churn Flow, and (4) Annular Flow. Thus, multi-class SVM needs to be implemented. 

Various strategies for multi-class classification have been proposed, such as one-against-one and 

one-against-rest to name a few. Here, an efficient one-against-one strategy proposed by Platt et 

al., (2000) called DAGSVM, is adopted. It has been reported that DAGSVM retains the accuracy 

offered by other approaches, but is faster to train and evaluate (Platt et al., 2000). Previously, 

DAGSVM has been adopted in the objective identification of two-phase flow regimes using 

electrical capacitance data (Wang and Zhang, 2009). 

In this work, DAGSVM is employed by training 6 binary classifiers, one for each possible pair 

of distinct flow regime classes, e.g. 1-vs-2, 1-vs-3, 1-vs-4, 2-vs-3, and so on. Training a binary 

classifier involves solving for a decision boundary between two classes in the form of Eq. (18). 

The classifiers are then arranged in a decision directed acyclic graph (DDAG) as shown in Fig. 6. 

The DDAG structure is key to the efficiency of DAGSVM, which makes it advantageous over 

other multi-class classification strategies. 

 

Figure 6: DDAG for Multi-class SVM classification 



In the DDAG, any new incoming sample goes through the decision in each node, always starting 

from the 1-vs-4 node. Each node represents a binary decision as to which class the sample is 

definitely excluded from, e.g. the 1-vs-4 node classifies the sample as either “Not 1” or “Not 4”. 

The branch corresponding to the decision of the current SVM classifier is then traversed. As the 

downward traversal progresses, the sample is continuously being classified at every visited node 

by eliminating the excluded class, until only a single class is retained. At this point, the bottom of 

the DDAG is reached and the sample has been definitely associated to a single flow regime. The 

implementation of DAGSVM used in this work is available online in (Pilario, 2018).  

By taking the 2-dimensional data from ultrasound Doppler signals after dimensionality reduction, 

together with the flow regime labels of each sample, the DAGSVM is used to create exact 

boundaries between the flow regimes. This completes the virtual flow regime map for use in 

objective flow regime classification. The summary of the methodology is given in Fig. 7. 

 

 

Figure 7: Proposed methodology for objective flow regime identification 

4 Results and Discussions 

Flow regime data samples were acquired experimentally from the S-shape riser system described 

in Section 3.1, and preliminary results are already shown in Fig. 5. In this section, we proceed 

with the proposed approach for data analysis and discussion of the results. 



 PCA Visualization 

Figure 8 shows the resulting 2D visualisation of the ultrasound Doppler data for each training 

sample after applying PCA. The benefit of PCA visualization can be demonstrated by establishing 

the relationship between Fig. 8 and Fig. 4. These figures are similar in that they both represent a 

map where every point location is associated to a distinct gas-liquid flow rate value pair.  

In Fig. 8, Annular Flow samples (high gas flow rate and low liquid flow rate) are found at the 

lower left corner of the map, while Bubbly Flow samples (low gas flow rate and high liquid flow 

rate) are found at the right and upper right corners of the PCA map. On the other hand, the Slug 

Flow and Churn Flow samples are found in a specific order in the middle region. The direction 

of increasing gas flow rate can be elucidated from right to left in the PCA map, while the direction 

of increasing liquid flow rate results from bottom to top. These directions correspond to the axes 

of the flow regime map in Fig. 4. Because of this relationship, it can be said that PCA was able 

to discover the gas-liquid flow rate information of every sample using only the PSD features 

obtained from the ultrasound Doppler experiment. Thus, PCA can arrange the Doppler data 

meaningfully in 2D space, further enabling the construction of a virtual flow regime map. 

However, it can be noticed that there is no clear gap or boundary between the samples from 

different flow regimes in the PCA map. By conferring with Fig. 4, it was found that these samples 

lie mostly on the transition regions. Hence, a soft margin SVM can be used to establish the 

boundary between the various flow regimes, by setting the value of 𝐶 to be less than ∞. By further 

varying the SVM parameters, 𝑘𝑤  and 𝐶 , one can control the complexity of the boundaries 

between flow regimes. This investigation is carried out in Section 4.2. 



 

Figure 8: PCA visualisation of training samples of ultrasound Doppler signals 

Another benefit of PCA visualization of data is the detection of outliers. The consistency of the 

human expert in labelling flow regimes may be impeded by certain factors, leading to the presence 

of outlier data samples. One obvious case is the sample at 10 Sm3/hr air flow rate and 3.5 kg/s 

water flow rate, which was observed to exhibit churn flow (see Fig. 4), yet is found between 

bubbly and slug flow regime samples. In the PCA visualization of ultrasound Doppler data (see 

Fig. 8), this specific data point lies at the position near (4.0, -1.0) in the 2D map, also between 

bubbly and slug flow samples. Hence, this data point is considered to be an outlier. Other outliers 

confirmed in the same way in our training dataset include those at air-water flow rates of (200 

Sm3/h, 4.5 kg/s) and (10 Sm3/h, 2.5 kg/s). Ultimately, the degree to which these outliers are 

tolerated by the subsequent SVM classification is dictated by setting appropriate parameters of 

𝑘𝑤 and 𝐶. 

 SVM classification 

In Figure 9, a sample of flow regime map for kw = 7 and C = 100 where the samples of both the 

training and test data are superimposed. In this map, the background colours denote the results 

from the SVM classification, e.g. SVM identified the Slug Flow regime for every point location 

in the L-shaped region between Bubbly and Churn Flow regime. Superimposed in this map are 



the training data samples (circles) and test data samples (triangles). By noting the mismatch 

between the sample colours and background colours, the training and test data classification 

accuracies are found to be 85.7% and 84.6% respectively. Without counting the confirmed 

outliers in the training samples, the accuracy in the training data is 88.6%. These results depict 

the capability of the SVM approach for objective classification of two-phase flow regime based 

on Doppler ultrasound data. 

 

Figure 9: Virtual flow regime map using SVM at 𝒌𝒘 = 𝟕 and 𝑪 = 𝟏𝟎𝟎. The background 

colours denote the SVM identification results. A mismatched sample colour and background 

colour indicates misclassification. Legend: Circles – training samples; triangles – test samples 

For completeness, a case of empty pipe was included in the test samples. Interestingly, this sample 

was identified as churn flow by the SVM. Although this result does not make sense, the fact that 

the PCA mapping placed the empty-pipe ultrasound Doppler signal data at the bottom of the map 

validates that the direction of increasing liquid flow rate occurs upward in the PCA visualization.  

 SVM Performance at Different Parameters 

The list of misclassified samples in Fig. 9 is presented in Table 1. Some disparities in using the 

proposed identification method were observed. In particular, the objective classifier identifies 

some Slug Flow samples as Churn Flows samples. This misclassification is related to the 

parameter choice issues in the SVM objective classifier. Various settings for 𝑘𝑤  and 𝐶  gives 



varying classification performance. The SVM accuracy over a grid of parameter values, such as 

𝑘𝑤 ∈ {1,3, … ,9} and 𝐶 ∈ {1,10,… , 104}, is presented in Fig. 10.  

 

Table 2: List of Misclassified Samples in Fig. 9 

Misclassified Training Samples (13 out of 91)  

Vsg (Sm3/h) Vsl (kg/s) SVM Classification Actual Classification Outlier? 

10 2.5 Slug Flow Bubbly Flow Y 

10 3.5 Bubbly Flow Churn Flow Y 

20 2 Churn Flow Slug Flow N 

20 4 Slug Flow Bubbly Flow N 

30 4 Bubbly Flow Slug Flow N 

50 2 Churn Flow Slug Flow N 

50 3 Churn Flow Slug Flow N 

50 4.5 Bubbly Flow Slug Flow N 

120 1 Annular Flow Churn Flow N 

120 4 Slug Flow Churn Flow N 

200 4.5 Slug Flow Bubbly Flow Y 

300 0.1 Churn Flow Annular Flow N 

300 1.5 Churn Flow Annular Flow N 

Misclassified Test Samples (6 out of 39)  

Vsg (Sm3/h) Vsl (kg/s) SVM Classification Actual Classification  

5 0.5 Churn Flow Slug Flow  

20 0.5 Churn Flow Slug Flow  

30 2 Churn Flow Slug Flow  

50 0.1 Churn Flow Slug Flow  

300 0.5 Churn Flow Annular Flow  

0 0 Churn Flow Empty Pipe  

Indeed, accurate classification of training data can be acquired by adjusting 𝑘𝑤 and 𝐶 towards the 

direction of overfitting (lower 𝑘𝑤 and higher 𝐶). However, overfitting shows poor generalisation 

to unseen test data. Concisely, overfitting makes the classification biased towards the training 

samples. On the other hand, at high 𝑘𝑤 and low𝐶, under-fitting occurs. In the case of under-

fitting, the boundaries tend towards linearity at the expense of higher misclassification rates. In 

general, the only way to increase the level of confidence with the resulting flow regime map is to 

validate it against numerous unseen test data samples as possible. With only the available data, 

the choice of  𝑘𝑤 = 7  and 𝐶 = 100  already gives useful results for objective flow regime 

classification, while striking a balance between overfitting and underfitting. 



 

Figure 10: Accuracy of SVM classification at various parameter settings of kw and C   

With the virtual flow regime map at hand, further analysis on the flow regime transitions and 

uncertainties can be performed. More importantly, online objective flow regime identification can 

be developed from the proposed approach in this work. Using a continuous feed of ultrasound 

Doppler-based flow velocity information, PCA-SVM can automatically visualize the frequency-

domain features and classify the flow regime at every sampling instant. Hence, the proposed 

approach has a broad potential for industrial applications. 

 

5 Conclusion and future works 

In this paper, the necessity of objective, non-invasive and non-intrusive measurement methods 

for flow regime identification in industrial practice is highlighted. Specifically, this work 

proposed the use of non-invasive clamp-on continuous wave ultrasound Doppler (CWUD) and 

machine learning approaches for objective two-phase gas/liquid flow regime identification. From 

the ultrasonic signals, Power Spectral Density (PSD) features were extracted and subjected to 

principal components analysis (PCA) for projecting the data in 2-dimensional space. A multi-

class support vector machine (SVM) classifier is trained to establish exact boundaries between 

the flow regimes in the reduced data space. In the end, the objective classifier accuracy for both 

the training and testing data samples were 85.7% and 84.6% respectively. More importantly, the 

generation of virtual flow regime maps enabled useful data visualizations of the Doppler signals, 

which can aid in detecting outliers and explain the decisions made by the SVM classifier. These 

results justify the suitability of our approach for flow regime identification in industrial practice. 



To improve this work, the proposed approach must be tested against many other test rigs and 

configurations to see if the generated virtual flow regime maps are indeed capable of visualizing 

flow regime patterns from the CWUD data. In addition, the feature extraction and dimensionality 

reduction steps are deemed most important in the entire procedure. Many other techniques for 

these steps must be tested to see if a clear separation can be produced between various samples 

from different flow regimes. 

Further research can also be made in applying the proposed approach for examining two-phase 

water-oil flow, mostly to address the necessity of clamp-on non-invasive ultrasonic flow 

monitoring for oil well testing.  
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