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Abstract: In the offshore oil and gas industry, when production facilities reach the end of their economic life, field 

owners need to decide whether to replace, extend the life of, or decommission assets. Although life extension is a 

popular choice among end-of-life (EOL) management strategies, decommissioning of assets is inevitable. The 

decommissioning of deep and ultra-deep water pipelines used for the transport of oil and gas products has become a 

serious issue in recent years because it is a complex process and presents challenges to stakeholders. The current 

paper presents the experiences of pipeline decommissioning in different regions of the world, and then highlights 

issues and challenges related to decommission of pipelines in deep and ultra-deep waters. These issues and 

challenges can be broadly categorised into technical, financial or economic, health and safety legislation, 

environmental, and human or organizational aspects. Technical challenges are associated with the selection of 

appropriate decommissioning procedures for handling hazardous pipelines. Asset managers are also under pressure 

to reduce the costs associated with pipeline decommissioning operation as it involves huge financial commitments 

to companies. The decommissioning of deep and ultra-deep water pipelines may involve dangerous activities, which 

could adversely affect the immediate environment; therefore, asset managers must ensure that the impact of 

decommissioning processes on the environment is minimized. Human resource issues, such as lack of requisite 

skills, knowledge and experience about deep and ultra-deep water pipelines decommissioning, as well as their 

safety, are another challenge. In order to address the challenges identified in the study, some directions for future 

research are suggested. 
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1. Introduction 

Offshore petroleum reserves, which are located subsea, have led to the deployment of heavy-

duty infrastructure as well as large-diameter pipelines to transport large quantities of oil over 

long distances from offshore platforms to refineries. When these assets (topside or subsea) reach 

the end of their service life with no future use, they must be decommissioned to ensure easy 

navigation of ships and safety for other users of sea (Tularak and Khan, 2007). 
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Decommissioning of offshore oil and gas assets has attracted the attention of practitioners, 

academics and the general public in recent years. According to Prasthofer (1998), there are over 

7000 platforms distributed worldwide that may require decommissioning over the next 25 years. 

Ruivo and Morooka (2001) defined decommissioning as an end-of-life (EOL) management 

strategy that involves “dismantling, decontamination and removal of process equipment and 

facility structures” whilst Wiseman (2001) described decommissioning as “the total demolition, 

decontamination, disassembling and removal of production facilities, when a field’s life comes to 

an end”. Generally, decommissioning in the offshore oil and gas industry can be described as the 

process of safeguarding oil and gas wells, processes and pipelines when reaching the end of their 

economic lives by taking into account health and safety and environmental protection issues. 

Experiences of decommissioning in the offshore oil and gas industry has been growing in 

recent years. For example, about 7% of the infrastructure in the United Kingdom Continental 

Shelf (UKCS) has been decommissioned by 2011 (Bureau Veritas, 2011). About 88 oil and gas 

facilities have also been decommissioned in the North Sea by 2014 (Decom North Sea and 

Scottish Enterprise, 2014), among which there were 55 fixed platforms, 22 floating steel 

structures, three concrete gravity base platforms and eight other facilities. Aguilar et al. (2016) 

suggested that over 800 wells could be abandoned in the next few decades in the North Sea. 

In the Gulf of Mexico (GoM), about 100 decommissioning operations take place every year 

(Islam and Khan, 2007). In a study, Boschee (2012) indicated that almost 1948 installations were 

removed from the GoM between 2000 and 2011, with the years 2009 and 2011 recording 

11.65% and 11.85% of the removals respectively. Also, since 2003, the trend of installation 

removals has been on rise in the GoM as compared to new installations which are on the decline. 

In the Norwegian Continental Shelf (NCS), decommission is considered to be a relatively new 

activity and only a few platforms have been decommissioned to date (Jørgensen, 2002). 

Decommissioned offshore oil and gas facilities include pipeline bundles, Floating Production 

Storage and Offloading (FPSO) vessels, steel platforms, concrete platforms, topside process 

facilities and subsea installations such as manifolds and wellheads.  

Pipelines are one of the key modes of transporting oil and gas products from the point of 

production to the point of use. The pipeline assets include flowlines (with the diameter up to 

14”), umbilicals and power cables (with the diameter up to 8”) and trunklines (with the diameter 

ranging from 16” to 32”). Data from Oil and Gas UK (2013) reveals that approximately 692km 

of flowlines (both rigid and flexible), 79km of umbilicals and power cables, and 62km of 

trunklines in the North Sea have been decommissioned by the end of 2013. The bar chart in 

Figure 1 illustrates the number of flowlines, umbilicals and power cables and trunklines 

decommissioned in the North Sea by 2013. 

 

Figure 1. Number of flowlines, umbilicals and power cables, and truncklines decommissioned in the 

North Sea by 2013. 
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All the above-mentioned decommissioning projects were carried out in shallow waters with 

water depths of up to 140m.  However, there are pipelines that have been installed in deep and 

ultra-deep waters with a depth of more than 1000m. Decommissioning of transportation 

pipelines in water depths exceeding 1000m is very complex and presents new challenges to 

current decommission strategies used in the offshore oil and gas industry. 

This paper presents the experiences as well as best practices gathered from oil and gas 

decommissioning projects in different regions of the world while also highlighting the current 

and future challenges that may confront deep and ultra-deep water pipelines decommissioning. 

In order to identify and discuss the challenges associated with deep and ultra-deep water 

pipelines decommissioning, a thorough content analysis of industrial reports, journal articles and 

conference publications was undertaken. Also, interaction among industrial experts with several 

years of experience in decommissioning was an essential component in identifying the 

challenges.  

The rest of the paper is organized as follows. In Section 2, the commonly used end-of-life 

management strategies for subsea assets are introduced. Section 3 provides an overview of 

subsea pipeline decommissioning experiences and best practices. Section 4 outlines the issues 

and challenges likely to confront the offshore oil and gas industry in relation to deep and ultra-

deep water pipelines decommission and then suggests some directions for future research. 

Finally concluding remarks are given in Section 5. 

2. Subsea asset end-of-life strategies 

This section of the paper reviews the available end-of-life (EOL) management strategies for 

subsea assets. These include: (i) replacement of old facilities with entirely new ones either due to 

safety or regulatory requirements, (ii) life extension which involves the decision to extend the 

service life of existing facilities and (iii) decommissioning which involves dismantling and 

removal of the whole facility or some parts of the facility. In what follows, a brief overview of 

these EOL strategies will be presented. 

2.1. Replacement 

Replacement actions in most cases return a system or component to “as good as new (AGAN)” 

condition. However, its implementation is expensive and may cause long downtimes, therefore a 

decision to select replacement as the most suitable EOL must consider factors such as 

consequences of equipment unavailability, economic implications of replacement alternative and 

implications of lack of good quality data. Due to variable factors, the decision to replace a 

facility becomes critical only when there exists some difficulty in acquiring obsolete parts, 

overly increasing maintenance cost, changes in regulations, insurance consideration, warranty 

consideration, the high attrition rate of staff and aging workforce. Some replacement work 

conducted in the offshore oil and gas industry, as opposed to life extension or decommissioning. 

Chu et al. (2010) explained the pipeline replacement process for Matterhorn field which is 

located at the water depth of 800ft to 1200ft in the GoM. Wright (2013) discussed the 

replacement of an obsolete crane with a new one on a Bridge Linked Platform (BLP), and 

changing the old accommodation module with an updated module on an existing FPSO. Zuffetti 

et al. (2013) discussed the replacement of a single hull Floating Storage and Offloading (FSO) in 

the ROSPO field (which is an offshore oil field located off the coast of Pescara, Italy) with a new 

double hall and double bottom as the single hull did not comply with the European 

environmental and marine regulations. 

2.2. Life extension 

Life extension, as an EOL strategy, has been a topical issue in the offshore oil and gas industry 

(Shafiee and Animah, 2017). This strategy is employed when an asset reaches the end of its 
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original design life but provided that the asset is economically and technically viable, its life is 

further extended. Life extension decision-making process comprises of economic, technical and 

organizational aspects. This process includes a detailed condition assessment of the critical 

subsystems and components in order to determine their level of sustainability during the 

extended period of operation while taking into account the requisite safety concerns. Studies 

conducted by various authors in the offshore oil and gas industry show that extending the service 

life of the offshore oil and gas facilities beyond their original design life is highly beneficial. 

Because of the increasing interest in life extension across the offshore oil and gas industries, 

some researches have focused on developing a framework to support life extension decision-

making process. Galbraith et al. (2005) in collaboration with Cranfield University and the UK 

health and safety executive (HSE) developed a capability maturing model (CMM) for assessing 

the technical status of offshore installations to support life extension decision making process. 

Rincón et al. (2007) presented successful case studies of pipelines life extension using integrity 

management practices. Hudson (2008) and Hudson (2009) provided a practical approach to 

ensure optimal use of assets, time and resources during life extension period of operation. 

Saunders and Sullivan (2010) discussed various requirements, methods and technologies 

developed for life extension of flexible pipes. The study also demonstrated through a case study 

that with proper integrity management systems the life of flexibles pipes can be extended beyond 

their original design lives. Hokstad et al. (2010) proposed a framework for life extension 

decision-making process integrating material degradation, obsolescence and organisational 

issues to ensure acceptable technical integrity of offshore assets throughout life extension period. 

Vaidya and Rausand (2011) proposed a framework for technical health assessment of critical 

assets for life extension and applied it to a subsea raw seawater injection system. Liu et al. 

(2014) proposed a framework for managing life extension in Chinese offshore Bohai bay. Brandt 

and Mohd Sarif (2013) in a study proposed equipment health assessment technique for life 

extension decision-making and applied it to topside systems.  

Ramírez and Utne (2013, 2015) developed a virtual age model for assessing the technical 

capabilities of repairable safety critical components for life extension. A case study involving 

fire water pump life extension was used to validate the model. Leira et al. (2015) outlined the 

processes involved in qualifying flexible risers for extended operation. A case study involving 

specific riser configuration was used for purpose of illustration. Shafiee et al. (2016) developed a 

techno-economic feasibility analysis framework to support life extension decision making of 

safety critical installations. The framework was subsequently applied to support life extension 

decision making process for water deluge system in the offshore oil and gas industry. Animah 

and Shafiee (2018) proposed a systematic framework which establishes an integration between 

three individual life assessment modules, namely: condition assessment, remaining useful life 

(RUL) prediction and life-extension decision-making. In order to achieve a successful life 

extension project, a suitable strategy must be selected. Examples of such strategies include 

repair, remanufacturing, reconditioning, retrofitting and refurbishment. Animah et al. (2017) 

proposed a multi-stage approach to analyze the impact of life-extension on the performance of 

industrial equipment in terms of total operating cost and carbon footprint. For the purpose of 

clarity, the proposed model was applied to an air compressor system and the results were 

discussed in details. 

2.3. Decommission 

Decommission characterizes the final stage of asset life cycle, when life extension and 

replacement strategies are no longer technically or economically viable. This is considered as the 

least preferred EOL strategy by asset managers in the majority of the industries. In the offshore 

oil and gas sector, the decision to decommission the assets that are underwater is considered to 

be complex and critical (Kaiser and Pulsipher, 2004), as it must take into account several factors 



5 

 

such as cost, health and safety, and environmental impacts. Currently, there is a very limited 

research on the decommissioning operations of subsea assets, as this strategy is relatively new in 

the offshore oil and gas industry. Prasthofer (1998) in a study presented some solutions to the 

technical and operational challenges associated with decommissioning, removal and disposal of 

large steel and concrete platforms. Decommissioning strategies for processing facilities and deck 

and jacket structures include relocating the asset for re-use, removal and scrapping, possible 

conversion to artificial reef sites and disposing-off in deep water if the asset does not pose any 

hazard. Ruivo and Morooka (2001) proposed full removal, partial removal and trenching and 

burial as suitable decommission strategies for pipelines. Kaiser and Pulsipher (2004) discussed 

the decision-making factors required for explosive or non-explosive decommissioning methods. 

The study further proposed a predictive model to quantify the decision to use explosive method. 

Ekins et al. (2006) performed a comparative study involving material and energy flow analysis 

with associated financial inflows of different decommission strategies for different components 

of offshore oil and gas structure. Philip et al. (2014) presented the overview of decommissioning 

process for subsea pipelines. Kaiser (2015) developed a decommission risk metric which was 

defined as the ratio of the expected value of field’s reserves to its expected cost of 

decommissioning. The metric helped in providing details of future decommissioning activities. 

Jais et al. (2016) in a study described how operators in South East Asia developed the 

decommission capabilities of in-house staff in collaboration with other international experts. 

3. Decommissioning of subsea pipelines: best practices 

Various types of offshore oil and gas infrastructures have been decommissioned over the past 

decades. In what follows, we briefly discuss the decommissioning experiences and best practices 

in the United Kingdom Continental Shelf (UKCS), the Norwegian Continental Shelf (NCS), 

Gulf of Mexico (GoM), Australia, South East Asia, Brazil and Sub-Saharan Africa. 

3.1 The United Kingdom Continental Shelf (UKCS) 

The past decade has witnessed considerable growth in the UKCS decommissioning industry. 

According to Ekins et al. (2006), the decommissioned structures in the UKCS include Brent 

Spur, Maureen and the Ekofisk platforms. Though, decommissioning is still a relatively 

immature activity in the UKCS and a lot can be learned from the best practices implemented in 

other areas. Table 1 summarizes the details of the approved decommissioning activities in the 

UKCS. 

Table 1. Approved decommissioning projects in the UKCS between 1998–2016 

Asset Quantity 

Pipeline Bundles 50 

FPSO’s 14 

Subsea Installations 19 

Topsides 1 

Platforms  37 

Manifold, Compressions & Wellheads 3 

Mooring Buoy 4 

Mobile Jack-up 1 

Total  129 
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Since the 1990s, the oil and gas pipelines decommissioning in the UKCS has continued to 

grow at a steady rate. However, by 2013, less than 2% of the UKCS’s pipelines have been 

decommissioned. Among these, almost 80% of the pipelines had a diameter of fewer than 16 

inches and the longest pipeline decommissioned was 35 km long (Borwell, 2014). The Oil and 

Gas UK’s report (2013) forecasted that from the year 2013 to 2022, more than 2,300 km of 

pipelines are planned to be decommissioned in the UKCS. According to West (2015), there 

should have been more decommissioning activities in the UKCS than the current numbers. 

Therefore, as the bulk of the UK oil and gas reserves are in the North Sea, decommissioning 

activities are projected to significantly increase in the next 20 years.  

3.2 The Norwegian Continental Shelf (NCS) 

In the NCS, 23 decommission projects are planned to take place from the year 2015 to 2024 (Oil 

and Gas UK (2016). The facilities to be decommissioned include subsea tie-backs to full 

platform removal. These projects consist of 14 total or partial platform removals, 26 pipelines 

with a total length of 360 km and 284 wells to be plugged. One of the biggest decommission 

projects in the NCS to date involves the Frigg platform, and by 2010, other platforms earmarked 

for decommissioning in the NCS including AF Miljøbase Vats, Aker Stord, Scanmet AS and 

Lyngdal Recycling. The Climate and Pollution Agency (2010) estimated that decommissioning 

of an entire platform in the NCS costs £16 billion. However, following evidence in past 

literature, there are less decommissioning activities in the NCS as compared to the UKCS. 

Hence, considering the huge number of platforms and subsea systems operating in this area, the 

NCS still presents an opportunity to the decommissioning market in the North Sea. 

3.3 Gulf of Mexico (GoM) 

The GoM represents the biggest decommissioning offshore oil and gas market in the world. It 

has experienced increased decommissioning activities, due to the rising number of aging 

installations coupled with low oil prices, making life extension unattractive. For instance, Figure 

2 shows the trend of newly installed and decommissioned platforms in the GoM during 1990–

2011. 

 
Figure 2. Number of newly installed and decommissioned platforms in the Golf of Mexico between 1990 

and 2011. 

In surveying literature on decommissioning in the GoM, Hakam and Thornton (2000) 

discussed the possibility of reefing and reuse of GoM platform complex. Thornton and Wiseman 

(2000) provided an overview of the decommissioning operations, outlined challenges facing 

regulators, and then identified the resources required for decommissioning in the GoM. Kaiser 
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and Pulsipher (2005) described the Louisiana and Texas artificial reef programme and further 

discussed regulatory requirements and decommissioning strategies available to operators. Kaiser 

(2006) described the decommissioning regulatory requirements in the GoM and subsequently 

developed cost functions for shallow-water decommission application in the GoM. Kaiser and 

Dodson (2008) assessed the trend of plugging and abandonment cost in the GoM using data from 

1156 wells obtained during 2002 and 2007. 

Kaiser et al. (2009) examined the cost of platform removal operations in shallow waters in 

the GoM. The study determined the cost of preparation, pipeline abandonment and removal cost 

using first-order regression models. Kaiser et al. (2003) discussed the cost components of 

various decommissioning strategies and also developed decommissioning cost functions for the 

GoM region based on actual field data. Kaiser and Liu (2014a) applied work decomposition 

algorithms developed by ProServ to determine the cost of decommission strategies such as well 

plugging and abandonment. The paper considered different assets including pipelines, 

umbilicals, flowlines and deck and hull removal of 42 floating structures in the GoM. Price et al. 

(2016) developed an efficient and effective decommission approach which incorporates multiple 

services and manages them as a single point project, with the aim of executing decommissioning 

project safely and at a fixed cost to operators. The approach was subsequently validated in the 

GoM on an eight-pile platform in 2015. Siems (2016) employed a new technology and 

methodology to optimize decommissioning process in the GoM. According to Dempsey et al. 

(2000), the majority of the pipelines decommissioned in the GoM were not removed after 

receiving waiver on complete removal from regulatory authorities.  However, considering the 

water depths these abandoned pipelines could pose risk to ship navigation and obstruct other user 

of the sea in the future. 

3.4 South-East Asia region 

Although about %36 of installations in the South-East Asian oil fields are between ages of 20 

and 30 years and %12 are over 30 years very few decommissioning projects have been carried 

out in this region (Lyons, 2012). Therefore, the region has experienced limited decommissioning 

experiences and thus, there will be an opportunity to learn lessons from best practices in the 

North Sea and GoM. At the time when it is uneconomical and challenging for the operators to 

extend the service life of installations, decommissioning will be the only option. These 

installations are aging rapidly and therefore, there is a need for operators in this region to 

develop the capacity of staff members. This can be accomplished through collaboration with 

international companies having the required experience, in order to handle the challenges ahead. 

According to Jais et al. (2016) decommissioning staff capacity should be enhanced in the areas 

of technical know-how, cost estimation, in-house organizational culture, standard management 

systems and other aspects involving senior management of the companies. Moreover, regulatory 

bodies, as a matter of urgency should develop decommission regulatory approval process for 

operators. This is because operators in countries like Thailand, Indonesia and Malaysia are 

required to decommission part of their assets in next few years due to the low oil prices. For 

instance, there are about 50 wells earmarked for decommissioning in Malaysia in 2016. 

However, currently, there is no legislation governing decommissioning of the offshore oil and 

gas assets in Malaysia (http://analysis.decomworld.com/). 

3.5 Australia 

Decommissioning experiences in Australia are limited as compared to the UK and the USA. 

Dempsey et al. (2000) indicated that by the year 2000, only two FPSO installations were fully 

decommissioned in Australia, making it a relatively new area of operation. These FPSOs are the 

Marathon’s Talisman off Western Australia and the BHP Petroleum Skua Venture in the Timor 

waters. Most of the FPSO facilities were re-used, while it was not clear what happened to the 
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pipelines. However, it is estimated that about 60 structures are planned to be decommissioned in 

Australia (http://www.decomworld.com) and this number is expected to increase to 100 in the 

next 25 years, with an estimated cost of AUD$1.2 billion (http://www.ampla.org). For instance, a 

group led by Cheveron Corp has presented decommission plan for the Thevernard Island oil and 

gas facilities in the water depth between 12 and 18m in Western Australia. However, these 

subsea pipelines will be disconnected and left in place (http://www.ogj.com/articles). 

3.6 Brazil 

Brazil with 156 oil platforms holds the second largest oil reserves in South America after 

Venezuela (Brazilian Navy, 2015). Out of these platforms, 18 fixed platforms are between the 

ages of 25-30 years, while 47 fixed platforms are over 30 years. However, six fixed platforms in 

the Mero field including PGA-6, PAP-1, PRB-2, PCAR-1, PCM-11, and BAS-37 have been 

decommissioned in Brazil till date (Mimmi et al., 2015). The PAP-1 jacket structure and topside 

facilities were reused, PRB-2 jacket structure was used as an artificial reef, while the topside 

processing facilities were removed and subsequently scrapped. PCM-11 topside facilities were 

re-used by another platform, while the jacket structure was left in place. However, it was not 

reported how the subsea pipelines were decommissioned. 

3.7 Sub-Saharan African region 

Similar to many other regions, decommission activities in Sub-Saharan African (SSA) region is 

relatively new. Currently, an estimated 867 offshore platforms, 877 subsea wells and over 

15,000km of offshore pipelines have been installed in the SSA region. Although the majority of 

the offshore oil and gas installations operating in SSA are in their early life stages, some are 

aging and will need to be decommissioned in the near future. Though no large structure 

decommissioning operations have occurred in Sub-Saharan Africa, about 50 small scale 

decommissioning projects have taken place in Nigeria and Angola. The SSA region presents a 

real opportunity for the decommissioning market and the regulators in this region must put in 

place a right legal framework in order to support the decommissioning projects in the future. 

4. Pipeline decommissioning challenges in deep and ultra-deep waters 

Despite some experiences with pipelines decommissioning in shallow-waters, decommission of 

pipelines in deep and ultra-deep-water still present its own distinct challenges since this is an 

unexplored area in the industry. This section of the paper presents the challenges associated with 

decommission of deep and ultra-deep water pipelines in the offshore oil and gas industry. 

4.1 Whole life cost prediction for decommission of deep and ultra-deep water pipelines  

The present state of the oil and gas market has placed many companies in a challenging 

economic situation. Currently, decommissioning cost estimates are based on the expected values, 

which are often calculated according to various assumptions depending on the operator. 

According to Decom North Sea and Scottish Enterprise (2014), a number of institutions have 

projected the decommissioning cost in the North Sea for the next decade. However, there are 

considerable differences in these estimates. The uncertainty of decommission expenditure 

predictions have the tendency to unduly delay deep and ultra-deep water pipelines decommission 

activities. Therefore, accurate prediction of these expenditures is an essential component of the 

decommissioning decision-making process. However, this is a serious challenge for the offshore 

oil and gas industry, as it is tough to identify an appropriate decommissioning cost estimation 

model. Whole life cost (WLC) analysis methodology has been developed over the years to 

support the decision-making process during design, installation, operations and maintenance of 

industrial assets. However, this tool has rarely been applied to the pipeline decommissioning 

project in the offshore oil and gas industry. One of the primary challenges that must be addressed 
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in this regard is applying the current cost into future. Thus, decommissioning cost estimation 

models for deep and ultra-deep water application must incorporate diverse decommission 

strategies in order to facilitate sensitivity analysis of these strategies on the basis of cost and to 

reduce the level of uncertainty. Finally, the decommissioning cost estimation models should be 

developed on the case-to-case basis, as each project is accompanied by its own unique and 

peculiar factors. However, the underlying principles can remain applicable to all the projects. 

4.2 Scheduling deep and ultra-deep water pipeline decommissioning task  

Kaiser and Liu (2014b) indicate that the estimates for the timing of deep and ultra-deep water 

decommissioning operations have not been reported. The main aim of scheduling the pipeline 

decommissioning task is to help optimize the decommissioning operations. Deep and ultra-deep 

water pipeline decommissioning scheduling is very complex and challenging for many offshore 

oil and gas companies. This is because some factors like weather favorability, regulatory permit 

acquisition and the current stance of the oil market must be considered. These factors have the 

capacity to cause serious disruptions in decommissioning activities by extending or shortening 

the lead times for decommissioning of pipelines. This is because decommissioning schedules can 

be altered at short notices which present significant challenges for the companies. According to 

Oil and Gas UK’s report (2015), shifting of decommissioning projects’ schedules has shortened 

the peak period for decommissioning activities in the central and northern regions of the North 

Sea by three years. This is now a challenge for companies to handle. The decommissioning 

schedules include a date for signing contracts, due dates for actual decommission operations, 

dates of applying for regulatory approval, dates for vessel release, as well as a detailed list of 

both technical and human resources required. In certain countries, the application process for 

regulatory approval is slow, manual and prescriptive, thereby causing delays in scheduling time.  

In many jurisdictions, the start time as well as the duration for deep and ultra-deep water 

pipelines decommission are left at the discretion of the operating companies. This presents a 

challenge when unproductive pipelines are left in-place, without beginning the pipeline 

preparation till the end of the field’s life. Operating companies should be encouraged to report 

idle deep and ultra-deep water pipelines to the regulators so that the pipeline preparations can 

commence prior to actual decommission operation and save time and cost during decommission.  

4.3 Standardization of deep and ultra-deep water decommissioning procedure 

Currently, a major challenge in deep and ultra-deep water pipelines decommissioning is that 

these procedures are fragmented and not standardized in many countries (Brown, 1997). This 

means that there are no guidelines to support the deep and ultra-deep water pipeline 

decommissioning operations, which are considered extremely complex. Therefore, efforts must 

be made to bring together companies, regulators and sub-contractors and amalgamate the best 

practices from other industries in order to develop appropriate guidelines for deep and ultra-deep 

water decommissioning analysis. These guidelines must involve a sequence of operations for 

effective decommissioning, as well as sections for certification of qualified personnel by 

reputable institutions, such as DNVGL. 

4.4 Selection of suitable pipeline decommissioning strategy 

Shallow water pipelines decommissioning strategies involve partial removal, full removal, 

abandonment or re-use of the pipelines for other purposes (Bijker and Chen, 2001). Each of these 

strategies is sensitive and complex. Selecting the most appropriate strategy among the above-

mentioned alternatives for deep and ultra-deep water application is challenging when complying 

with regulatory standards as well as reducing the overall decommissioning cost. This is because 

the selection criteria (such as safety, cost, and added value) for decommissioning of deep and 

ultra-deep water pipelines are often conflicting and cannot be easily converted into quantitative 

values. Currently, the use of accumulated experience of experts is primarily employed for 
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determining the most suitable decommissioning strategy for deep and ultra-deep water pipelines, 

which does not necessarily lead to an optimal solution. Therefore, appropriate alternative 

selection tools, such as Multi-Criteria Decision Making (MCDM) Approach and Cost Benefit 

Analysis (CBA) are recommended to decision makers in order to rank and choose the most 

appropriate deep and ultra-deep water pipeline decommissioning strategy. Applying these tools 

to the problem offers the advantage of making complex decommission decision-making process 

relatively simpler.  

4.5 Workforce-related challenges 

The offshore oil and gas industry has been experiencing personnel shortfalls, in terms of 

numbers, skills, and experience. This is partially due to the plummeting oil and gas prices, as 

well as the phenomenon of a great crew change. For instance, electric line operations on the 

rigless plugging and abandonment (P&A) are one of the sectors experiencing manpower 

shortages, which directly affects the decommissioning of subsea pipelines. The P&A workers are 

involved in the jet-cutting of tubing and casing, the setting of bridge plugs, and downhole 

delivery of cement (dump-bailing), among other tasks. The shortfall in personnel may also be 

because of the aging workforce, early retirement of essential workers and inability on the part of 

companies to attract young people into the offshore oil and gas industry. It is predicted that oil 

and gas companies will face shortages of nearly 15,000 engineers, including those with 

decommissioning experience (http://accelrys.com). In addition, the shift from shallow water 

decommissioning to deep and ultra-deep water decommission will require a different set of the 

workforce with superior experience in order to successfully remove pipelines in water depths 

greater than 100m. 

4.6 Technological challenges 

Limited decommissioning experiences in the offshore oil and gas industry has attracted the need 

for more advanced technologies. However, decommissioning of pipelines in deep and ultra-deep 

waters still involves some level of technical challenge. The technologies executing these 

operations are currently lagging behind, in terms of development and also face the dearth in the 

capacity to undertake deep and ultra-deep water operations effectively. Unlike shallow water 

decommissioning where divers are used to support pipeline decommission operations (Byrd et 

al., 2014), deep and ultra-deep-water pipelines decommissioning operation requires highly 

skilled remote operating vehicles (ROV). Some other technical issues are yet to be resolved 

during the decommissioning of deep water pipelines to make it a reliable cost-effective cutting 

method and large-capacity crane barges due to the weight of some of the pipelines. 

4.7 Regulatory, health and safety, and environmental issues 

A statistical probability of serious and fatal accidents occurring during the decommissioning 

process of the “Ekofisk” oil field was estimated in Ekins et al. (2006). Health and safety issues 

during the decommissioning activities may be because of the exposure to hazardous materials, 

diver exposure, use of explosives, and multiple heavy lifts (Prasthofer, 1998). However, factors 

like water depth, remote operations and unacceptability of the incidents from regulators’ 

perspective lead to significant risk levels that have not been handled by some companies in the 

offshore oil and gas industry before. This indicates that deep and ultra-deep water 

decommissioning operations pose a significant risk to the health and safety of the personnel 

because of their complex nature. On the other hand, decommissioning activities also result in 

potential environmental dangers for the sea environment. Therefore, subsea pipelines 

decommissioning project must be supported by a thorough assessment of environmental impact. 

Decommissioning projects in many jurisdictions are regulated either by national or 

international laws. For instance, in the UKCS, decommissioning of platforms is executed 

according to the Petroleum Act (1998) and OSPAR convention (2007). Similarly, some other 
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international regulations that may support deep and ultra-deep water pipelines decommissioning 

are the Geneva Convention (1958), United Nations Convention on the Law of the Sea (1982) and 

International Maritime Organization Guidelines and Standards (1988). However, the problem is 

that currently, in many countries like the UK, pipeline decommissioning is not governed by any 

specific regulations. In absence of proper legal framework for deep and ultra-deep water 

pipelines decommissioning, operators are confronted with the task of not being able to determine 

the scope of their operations. 

4.8 Logistics-related issues 

Logistics mobilization for offshore oil and gas decommissioning operations is a very crucial task 

and even more critical in deep and ultra-deep water pipelines decommissioning operations. 

Logistics support for decommissioning operations includes hiring of the helicopter, renting 

service vessel for crew transportation, preparation of vessel, hiring of extra accommodation, 

platform services, power generation and waste management (Oil and Gas UK, 2015). The cost 

associated with logistics support constitutes a significant portion of the decommissioning cost 

and therefore asset managers are confronted with the challenge of minimizing this cost. It is very 

unlikely that a single company can execute an entire decommissioning project and some portions 

of the operations are often outsourced to specialized companies called subcontractors. Philip et 

al. (2014) suggests that based on the complexities involved in decommissioning operations, 

some aspects of these projects must be assigned to specialists in order to execute the projects in a 

timely manner. In deep and ultra-deep water pipelines decommissioning operations, it is 

expensive and complex to retain the decommissioning operations in-house as it requires 

significant investment to train personnel, equip specialized units and determine the scope of the 

work to facilitate the tendering process. Hence, outsourcing the decommissioning operations is 

probably an efficient strategy that enables the companies to reduce the cost of deep and ultra-

deep water decommissioning. The decommissioning contracts are classified into operator-led-

reimbursable with the lump-sum and the engineering, procurement, removal and disposal 

(EPRD) arrangements (for more see, Oil and Gas UK (2015)). It is suggested that a high-quality 

industry decommissioning contracting model is developed to support the operations, especially 

in deep and ultra-deep waters. 

4.9 Knowledge management 

Knowledge management involves the process of gathering, organizing and sharing the 

information to suitable personnel for appropriate action (Alavi and  Leidner, 1999). At present, 

the offshore oil and gas industry faces “tremendous tasks and challenges” for implementing the 

knowledge management systems due to poor organizational culture (Saif, 2015). 

The lifecycle of offshore oil and gas pipelines is comprised of design, installation, operation, 

and decommissioning. However, due to poor organizational culture, some companies are unable 

to consolidate the pools of data generated from various stages of the pipeline lifecycle in order to 

support the decommissioning operations. This has resulted in a lack of good quality data, which 

is essential for deep and ultra-deep water pipelines decommissioning operations. One of the 

reasons ascribed to lack of good quality data is that a significant number of fields have changed 

operatorship with time, thereby resulting in the loss of data during the process. For instance, in 

the GoM, numerous fields have been operating separately and over the time, some data has been 

missed during the transfer from one owner to another. Boschee (2012) suggested that due to the 

reduction of manpower for the offshore oil and gas industry in the mid-1980’s, there was a drop 

in the quality of records keeping. In fact, even usually, the culture of records keeping in the 

offshore oil and gas industry is relatively poor. 

Furthermore, deep and ultra-deep water operations in offshore oil and gas sector represent a 

knowledge-intensive area that involves geologists, economists, petrochemists, corrosion 
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engineers, subsea engineers, etc. However, knowledge and experience from various stages of 

asset life cycle are held by the people called experts (Edwards, 2008). But, it is challenging to 

bring these experts together for the pipeline decommissioning operations. Hence, one of the 

major trials facing the companies during these operations is the inability to pass the institutional 

memory. Shammas (2007) reported that by 2007 the average age of Statoil employees was 44 

years and these employees served as a repository of very important information, knowledge, and 

experience that was essential for decommissioning operations. Moreover, the older workers did 

not have the sufficient analytical and computing skills that are in line with the fluctuating 

industry necessities. 

5. Conclusions and future work 

The trend of decommissioning activities is on the rise in the offshore oil and gas industry. 

However, there has been a growing concern to industry, government and environmental agencies 

over decommissioning of offshore pipeline assets especially in deep and ultra-deep waters. 

Activities such as installation, commissioning, fabrication, and maintenance come with possible 

health and safety hazards as well as environmental risks, but decommissioning presents 

potentially higher risks due to lack of data, knowledge and experience. Although the industry has 

gathered some experience and skills from shallow-water decommissioning, deep and ultra-deep 

water pipeline decommissioning present some unique challenges. 

This paper outlined the issues and challenges involved in decommissioning of deep and 

ultra-deep water pipelines in the offshore oil and gas industry. Some of the key challenges 

identified in the study include: an inability to accurately predict pipelines decommission cost, 

knowledge management and workforce challenges. In addition, technological challenges, lack of 

analytical models for selection of the most suitable decommissioning strategy, lack of regulatory 

regimes for deep and ultra-deep water pipeline decommissioning as well as cost of procuring 

additional support vessels and accommodation for personnel have increased the complexities 

involved in deep and ultra-deep water pipeline decommissioning activities.  

In order to achieve successful decommissioning of deep and ultra-deep water pipelines, the 

industry must develop improved, safe, environmentally friendly and cost-effective 

decommissioning strategy. Stricter and tighter regulations are required for deep and ultra-deep 

water pipelines decommissioning to prevent environmental impacts. Also, there is an opportunity 

for offshore oil and gas companies to reduce the risks and cost associated with decommissioning 

by considering other alternative end-of-life strategies such as life extension. 
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