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Abstract

We study Wronskians of Hermite polynomials labelled by partitions and use the combi-
natorial concepts of cores and quotients to derive explicit expressions for their coefficients.
These coefficients can be expressed in terms of the characters of irreducible representations
of the symmetric group, and also in terms of hook lengths. Further, we derive the asymp-
totic behaviour of the Wronskian Hermite polynomials when the length of the core tends
to infinity, while fixing the quotient. Via this combinatorial setting, we obtain in a natural
way the generalization of the correspondence between Hermite and Laguerre polynomials to
Wronskian Hermite polynomials and Wronskians involving Laguerre polynomials. Lastly,
we generalize most of our results to polynomials that have zeros on the p-star.

Keywords: Asymptotic behaviour, coefficients, cores and quotients, characters, Hermite
polynomials, hook ratios, Laguerre polynomials, Maya diagrams, partitions, Wronskians.

1 Introduction

In this paper we focus on Wronskians of Hermite polynomials from a combinatorial view-
point. For every partition λ = (λ1, λ2, . . . , λ`(λ)), i.e., a vector of positive integers such that
λ1 ≥ λ2 ≥ · · · ≥ λ`(λ) > 0, we consider the Wronskian Hermite polynomial

Heλ :=
Wr[Hen1 ,Hen2 , . . . ,Hen`(λ)

]

∆(nλ)
(1.1)

where nλ = (n1, n2, . . . , n`(λ)), defined by ni = λi + `(λ) − i, is the degree vector and
∆(nλ) =

∏
i<j(nj − ni) is the Vandermonde determinant of this vector. We use the notation Hen

for the nth Hermite polynomial, which in our convention is a monic polynomial of degree n
defined by

Hen(x) = xHen−1(x)− (n− 1) Hen−2(x) (1.2)

for n ≥ 2, along with the initial conditions He0(x) = 1 and He1(x) = x.
These Wronskian Hermite polynomials appear in the theory of exceptional orthogonal poly-

nomials [21, 28, 30, 32, 33, 48, 50] and the related topic of rational extensions of the quantum
harmonic oscillator [20, 27, 39, 47]. These polynomials are well-studied. For example, they fulfil
recurrence relations [9, 31], the asymptotic behaviour of their zeros is derived in [37], and more-
over, via iterating rational Darboux transformations applied to the harmonic oscillator, one ob-
tains appealing identities between (pseudo-)Wronskians involving Hermite polynomials [18, 26].
Another place where they appear is in the study of rational solutions of the fourth Painlevé
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Figure 1: All possible choices of sequentially removing domino tiles from the Young diagram
of (4, 22, 1). The process terminates at the core (2, 1) and the associated Wronskian Hermite
polynomial is He(4,22,1)(x) = x3(x6 + x4 − 7x2 − 35).

equation, and in that setting they are called the generalized Hermite and generalized Okamoto
polynomials [2, 13, 14, 34, 42, 45, 46, 49, 56, 57], which also appear in the rational solutions
of the Boussinesq equation via a symmetry reduction to Painlevé IV, see [15, 16]. An overview
of the properties of the generalized Hermite and generalized Okamoto polynomials as well as
the precise associated partitions is given in [57]. Moreover, it was recently shown that any
Wronskian Hermite polynomial is a rational solution of either the Painlevé IV equation itself or
one of its higher order analogues [17]. In that paper, the authors use the notion of cyclic Maya
diagrams to derive rational solutions of the A2k-Painlevé system and conjecture that all rational
solutions are captured in such a way. In [9], the first and third author established fundamental
relations for Wronskian Hermite polynomials in terms of the structure of the Young lattice.
The most notable contribution therein was a recurrence relation that generates all Wronskian
Hermite polynomials along with two initial conditions [9, Theorem 3.1]. Subsequently, these
relations were extended by replacing the Hermite polynomials by an arbitrary Appell sequence
and an explicit connection with the theory of symmetric functions was made in [7]. A subclass
of Wronskian Hermite polynomials also appear in connection with a certain integrable massless
quantum field theory [11].

In this article, we use a combinatorial framework to investigate the coefficients and zeros
of the Wronskian Hermite polynomials. The multiplicity of their zeros is well-known to be a
triangular number [20]. Moreover, Veselov’s conjecture, quoted in [24], states that the zeros are
all simple, except possibly at the origin. The multiplicity k(k+ 1)/2 at the origin can be stated
exactly according to the number of odd (denoted p), respectively even (denoted q), elements
in the degree vector nλ as (p − q)(p − q + 1)/2. This was observed in [24], although without
proof. Later, this statement was shown to hold true for Wronskians of a given sequence of
eigenfunctions of the Schrödinger equation provided the sequence is semi-degenerate [25]. How-
ever, it remains an open question as to whether the Hermite setting fulfils this semi-degenerate
property. We prove via a combinatorial framework that the Wronskian Hermite polynomial can
be factorized as

Heλ(x) = x
k(k+1)

2 Rλ(x2) (1.3)

where Rλ(0) 6= 0. Moreover, we give a simple combinatorial interpretation for the integer k.
Henceforth we call Rλ the remainder polynomial.

It was proven in [7] that the coefficients of Wronskian Hermite polynomials, using the con-
vention (1.1), are integers, but explicit values or expressions for the coefficients were not given.
We now show that the coefficients and zeros can be understood by considering domino tilings
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((2), ∅) ((1), ∅)

((2), (1)) (∅, ∅)

((1), (1)) (∅, (1))

Figure 2: The process of removing domino tiles from the Young diagram of (4, 22, 1) in terms
of quotients (µ, ν).

of the Young diagram associated to the partition. The key ingredient is the process of re-
moving rectangles of size 2 (that we naturally refer to as domino tiles), in such a way that
the remaining diagram is still a Young diagram of a partition. An example of such a process
is given in Figure 1. Each process terminates when one arrives at a partition of the form
(k, k − 1, . . . , 2, 1) for some k ≥ 1, or the empty partition which we refer to as k = 0. We prove
that the value k is precisely the same k as that specifying the multiplicity of the zero at the
origin (1.3). The terminating partition, which always has a staircase Young diagram, is called
the core of the original partition [38, I.1, Ex. 8] and has size k(k + 1)/2. Hence the result
concerning the multiplicity of the zero at the origin has the combinatorial interpretation as the
size of the core associated to the partition, see Theorem 3.1. The coefficients of the remainder
polynomial Rλ can also be expressed within this combinatorial setting and a precise statement
is given in Theorem 4.4.

If we let d be the number of domino tiles that one has to remove from the Young diagram
of λ to obtain its core, we have that deg(Rλ) = d. In fact, we show that if 0 ≤ l ≤ d, then the
coefficient of xd−l corresponds to data contained in the partitions one obtains after removing l
domino tiles. This process of removing domino tiles from a partition is related to the quotient
of the original partition [38, I.1, Ex. 8]. The quotient is an ordered pair of partitions and they
form a lattice isomorphic to the graded lattice Y×Y. If (µ, ν) is the quotient of the partition λ,
then the domino process corresponds to all directed paths from (µ, ν) to (∅, ∅) in Y × Y. The
example in Figure 1 translates to Figure 2.

The combinatorial preliminaries for this article are given in Section 2. In the subsequent
sections, we state and prove our main results as described in the following list.

Section 3. The precise statement of the factorization in (1.3) is given in Theorem 3.1.

Section 4. We give several expressions for the coefficients of Wronskian Hermite polynomials.

Section 4.1. Coefficients in terms of characters of irreducible representations of the sym-
metric group in Theorem 4.2.

Section 4.2. Coefficients in terms of hook lengths in Theorem 4.4.

Section 4.3. Coefficients as polynomials in the parameter k in Theorem 4.9.

Section 4.4. The subleading coefficient of the remainder polynomial in terms of the
content in Proposition 4.16.

Section 5. We fix the quotient and derive the asymptotic behaviour of the remainder polyno-
mial Rλ when the size of the core k(k + 1)/2 tends to infinity; see Theorem 5.1.

Section 6. We identify Wronskian Hermite polynomials with Wronskians involving Laguerre
polynomials [8, 22, 23, 29]. The obtained identity is naturally labelled by the partition
and its core and quotient; see Proposition 6.1. This generalizes well-known identities that
interpret Hermite polynomials in terms of Laguerre polynomials; see (6.2) below.
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Section 7. Dominoes – 2 × 1 or 1 × 2 rectangles – can be viewed as border strips of size 2.
Removing dominoes from a Young diagram can be generalized to removing border strips
of size p. In this way we obtain the p-core and the associated p-quotient of a partition [38,
I.1, Ex. 8], with p = 2 representing the removal of dominoes described in the Hermite
setting. Therefore we can generalize most of our results to general integers p, as explained
in Section 7.

As a by-product of our work, we obtain results concerning ratios of hook lengths, see Corol-
lary 3.4 and Corollary 7.3. Both corollaries also follow from a more general statement about
hooks in partitions, see Theorem 4.4 and Remark 4.5 in [5], although our argument to arrive at
these statements is completely different. Other related results about hook ratios can be found
in [19].

Finally, we end with a conclusion including a description of further research possibilities. The
appendix contains a combinatorial identity and an extension of Proposition 4.16 to Wronskian
Appell polynomials [7].

2 Preliminaries

We introduce the combinatorial concepts of partitions, cores and quotients and related aspects
including Sato’s Maya diagrams. A standard reference for partitions is [38] or [54] where these
concepts (except for Maya diagrams) are clearly explained, and [52, 53] for an introduction
to Maya diagrams. For some recent advances about cores, we refer to [43] and the references
therein.

2.1 Partitions and Maya diagrams

A partition is a vector λ = (λ1, λ2, . . . , λ`(λ)) of integers such that λ1 ≥ λ2 ≥ · · · ≥ λ`(λ) > 0.
Its size is denoted by |λ| = λ1 + λ2 + · · · + λ`(λ) and its length by `(λ). The degree vector
associated to λ is given by nλ = (n1, n2, . . . , n`(λ)), where ni = λi + `(λ) − i. We especially
note that this implies that n1 > n2 > · · · > n`(λ) > 0. Each partition λ can be visualized by its
Young diagram

Dλ = {(i, j) ∈ Z2 : 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}

which consists of `(λ) rows, and the ith row has λi boxes. The points (i, j) ∈ Dλ are often
depicted as unit squares with matrix-style coordinates. Clearly, the size of the partition is equal
to the number of boxes in its Young diagram. The Young lattice Y is the set of all partitions
partially ordered by inclusion of the corresponding Young diagrams, that is µ ≤ λ if µi ≤ λi for
all i = 1, 2, . . . , `(µ). We write µ l λ or λ m µ to indicate that λ covers µ in Y; that is µ < λ
and |λ| − |µ| = 1. For convenience, within a partition we let λti denote λi repeated t times, and
∅ denotes the unique partition of zero.

The Maya diagram Mλ associated to a partition λ is the set

Mλ = {n ∈ Z | n < 0} ∪ {ni | 1 ≤ i ≤ `(λ)} ⊂ Z

where the elements ni form the degree vector of λ. This diagram can be visualized by a doubly-
infinite sequence of consecutive boxes that are either filled with a dot or are empty. The boxes
are labelled by the integers and the nth box is filled precisely when n ∈ Mλ. Furthermore,
a vertical line is placed between the boxes labelled −1 and 0; subsequently we can omit the
labels. We can shift the origin t steps (for any positive integer t) to the left such that the
sequence of filled and empty boxes remains unchanged, but the labelling differs. We call such
Maya diagrams, denoted by Mλ + t, equivalent to Mλ and we refer to Mλ as the canonical
Maya diagram associated to λ. From the assumption λ`(λ) > 0 it follows that Mλ is the unique
diagram in which the first box to the right of the origin is empty, whereas equivalent Maya
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. . . . . .M(42,22,1) • • • • • • •

. . . . . .M(42,22,1) + 2 • • • • • • • • •

8 6 3 2

7 5 2 1

4 2

3 1

1

Figure 3: Left: the canonical and an equivalent Maya diagram associated to the partition
λ = (42, 22, 1). Right: the corresponding Young diagram and its hook lengths.

diagrams start with filled boxes. This can be interpreted as adding t zeros to the partition. See
Figure 3 (left) for an example and observe that the number of filled boxes to the right of the
origin is equal to `(λ) + t for any equivalent Maya diagram. The parts of the partition are read
off any Maya diagram by counting the number of empty boxes to the left of each filled box.

If one reflects a Young diagram in the diagonal, that is rows switch to columns and vice versa,
one obtains the Young diagram of the conjugate partition λ′. In terms of Maya diagrams,
conjugation amounts to reflecting the diagram under the mapping z 7→ −z − 1, interchanging
the filled boxes with the empty boxes and shifting the vertical line so that it lies before the first
empty box.

For every box in a Young diagram, the hook length is the number of boxes in the column
below the box, plus the number of boxes to the right plus one to account for the box itself.
See Figure 3 (right) for an example, where the hook lengths are written inside the boxes. One
observes that the hook lengths in the first column of the Young diagram are precisely the
elements of the degree vector of the partition.

The number of directed paths (equivalently saturated chains) in the Young lattice between
the empty partition ∅ and a partition λ is denoted by Fλ. It is also the number of standard
Young tableaux of shape λ and it equals the dimension of the irreducible representation of
the symmetric group associated to λ. This number has several useful expressions in terms of
partition data. For this, we write hi,j for the hook length of the jth box in the ith row and
define H(λ) :=

∏
(i,j)∈λ hi,j . Furthermore, we let ∆(nλ) be the Vandermonde determinant of

the degree vector nλ, that is ∆(nλ) =
∏
i<j(nj − ni). Then

Fλ =
|λ|!
H(λ)

H(λ) =

∏
i ni!

|∆(nλ)|
(2.1)

for every partition λ. Further, for any pair of partitions λ̃ ≤ λ we write Fλ/λ̃ for the number of

paths from λ̃ to λ. In particular, Fλ/∅ = Fλ.
The set Y × Y is a graded lattice, when using the ordering (µ̃, ν̃) ≤ (µ, ν), if and only if

µ̃ ≤ µ and ν̃ ≤ ν. We set |(µ, ν)| := |µ| + |ν| and for each non-negative integer j we write
(µ̃, ν̃) <j (µ, ν) if (µ̃, ν̃) ≤ (µ, ν) and |(µ̃, ν̃)|+ j = |(µ, ν)|. When j = 1, we sometimes write l
instead of <1. In this case either µ̃ = µ or ν̃ = ν. Lastly, we set F

(2)
(µ,ν) to be the number of

directed paths in the lattice Y × Y from (∅, ∅) to (µ, ν) and similarly we denote by F
(2)
(µ,ν)/(µ̃,ν̃)

the number of paths in Y× Y from (µ̃, ν̃) to (µ, ν). One then immediately has that

F
(2)
(µ,ν) =

(
|µ|+ |ν|
|µ|

)
FµFν , F

(2)
(µ,ν)/(µ̃,ν̃) =

(
|µ/µ̃|+ |ν/ν̃|
|µ/µ̃|

)
Fµ/µ̃Fν/ν̃ . (2.2)

2.2 2-quotients and 2-cores

The following construction of the 2-core, labelled by k, and the 2-quotient is based on [38,
I.1, Ex. 8] and is comparable with [17, Definition 4.5]. An equivalent construction using the
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. . . . . .• • • • •M (0) = Mµ + 1 M (0) = {5, 3, 0,−1,−2, . . . }

. . . . . .• • • • • •M (1) = Mν + 3 M (1) = {4, 2, 1, 0,−1,−2, . . . }

. . . . . .• • • • • • • • • M = {10, 9, 6, 5, 3, 1, 0,−1,−2, . . . }

Figure 4: The Maya diagrams corresponding to Example 2.1.

language of an abacus is well-known and is clearly explained, for example, in [58].
Define the map

Φ : Y× Y× Z→ Y : (µ, ν, k) 7→ λ (2.3)

in the following way. For a given pair of partitions (µ, ν) and integer k, pick two non-negative
integers s and s′ such that

`(ν) + s′ − `(µ)− s = k (2.4)

and consider the following equivalent Maya diagrams

M (0) = Mµ + s, M (1) = Mν + s′.

Next, define a third Maya diagram M so that the 2-modular decomposition of M, see [17], is
given by (M (0),M (1)). That is, the elements in M are such that

M (i) = {m ∈ Z | 2m+ i ∈M} (2.5)

for i = 0, 1. Finally, the image Φ(µ, ν, k) is the unique partition λ such that M is equivalent
to Mλ. We give an example.

Example 2.1. Let µ = (3, 2), ν = (1) and k = 1. We choose s = 1 and s′ = 3 so that (2.4)
holds. The upper part in Figure 4 represents the Maya diagrams M (0) and M (1). Subsequently,
the Maya diagram M is obtained by taking each box of M (0) and M (1) alternatively as in-
dicated in the figure. Finally, observe that M = Mλ + 2 for λ = (42, 22, 1) and therefore
Φ((3, 2), (1), 1) = (42, 22, 1).

The map (2.3) is well-defined because, although we have one degree of freedom in choosing s

and s′, see (2.4), any other choice leads to two Maya diagrams M̃ (0) and M̃ (1) that are equivalent

to M (0) and M (1). Then M̃ is equivalent to M and so we end up with the same partition. We
trivially have that by construction Φ is surjective, but not injective. In fact, one can show that

Φ(µ, ν, k) = Φ(µ̃, ν̃, k̃) ⇔ (µ, ν, k) = (ν̃, µ̃,−k̃ − 1). (2.6)

Hence the restriction of Φ to Y× Y× Z≥0 is a bijection.

Definition 2.2. For any partition λ, take the ordered pair (µ, ν) and integer k ≥ 0 such that
λ = Φ(µ, ν, k). Then we call (µ, ν) the 2-quotient (shortly the quotient) of λ. The partition
λ̄ := (k, k − 1, . . . , 2, 1) is called the 2-core (shortly the core) of λ.

The precise ordering of the partitions µ and ν in the 2-quotient specified by (2.5) is necessary
for our purposes since it uniquely distinguishes between (µ, ν) and (ν, µ) whenever µ 6= ν. Our
ordering matches that given for 2-quotients in [58]. With our ordering convention, the quotient
of the conjugate partition λ′ is (ν ′, µ′) and its core is (k, k − 1, . . . , 2, 1) obviously.

Let λ̃ be a partition obtained by removing a domino tile (2 × 1 or 1 × 2 rectangle) from
the Young diagram of λ. Removing any domino corresponds in the Maya diagram picture to
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Figure 5: Left: the Young diagram of (42, 22, 1) and its hook lengths. Right: the Young diagrams
of µ = (3, 2) and ν = (1), which form the quotient (µ, ν), and their hook lengths.

swapping a filled box with an empty box two places to its left. Removing a horizontal domino in
a partition is equivalent to exchanging an ordered triplet of empty, empty and filled boxes with
filled, empty, empty boxes. Similarly, deleting a vertical domino is represented by exchanging a
triplet of empty, filled, filled boxes with filled, filled, empty boxes. Therefore we have that the
quotient of λ̃, denoted by (µ̃, ν̃), must satisfy (µ̃, ν̃) l (µ, ν) where (µ, ν) is the quotient of λ.
This then implies that at most |µ| + |ν| dominoes can be removed from λ. After deleting this
maximal number of dominoes, one ends up with the core λ̄ = (k, k − 1, . . . , 2, 1). Defining the
skew Young diagram λ/λ̄ to be the set-difference between the Young diagram of λ and λ̄, it is
therefore trivial that one can always tile the skew Young diagram λ/λ̄ with dominoes. Moreover

|λ| = |λ̄|+ 2(|µ|+ |ν|) (2.7)

and, obviously, |λ̄| = k(k + 1)/2.
In accordance with the standard conventions, if λ̃ is obtained by removing a domino tile

from λ, then the height is defined to be ht(λ/λ̃) = 1 if the domino tile is vertical, and ht(λ/λ̃) = 0
if it is horizontal. Both numbers equal the number of rows that the domino occupies minus
one. More generally, if λ̃ is obtained by removing a certain number of domino tiles from λ, of
which m tiles are vertical, then we set ht2(λ/λ̃) = m, which is the sum of all individual heights.
The subscript 2 indicates that we remove domino tiles, that is border strips of size 2. It is
well-known that the parity of ht2(λ/λ̃) is independent of the choice of tiling. In other words,
the parity of the number of vertical tiles is invariant [38].

If one considers the hook lengths in the Young diagram of a partition λ, one can determine
the (unordered) elements µ and ν of the quotient and its core. We illustrate this explicitly in
Figure 5 for our running example partition λ = (42, 22, 1). Namely, note that in this example,
there are 6 cells with an even hook length and 7 with an odd hook length. In general, there will
always be at least as many odd hook lengths as even hook lengths. In fact, the difference (in
the example 7− 6 = 1) is a triangular number for every partition, since it is the size of the core
of the partition. Next, we shade all the cells with an even hook length, using two colours. If
two such cells are in the same row or column, they are required to have the same colour. It can
be proven that this divides the cells with even hook lengths into two (possibly-empty) groups;
see [38, I.1, Ex. 8]. These two groups form the Young diagrams of partitions µ and ν, as shown
on the right in Figure 5. Moreover, the hook lengths in the shaded cells are precisely twice the
hook lengths in the diagrams of µ and ν. The order of the partitions is not easily read off from
the hook lengths, but for the following formulas, this does not matter. We write Hodd(λ) for
the product of all odd hook lengths of λ, and Heven(λ) for the product of all even hook lengths
of λ. Using (2.1), it is clear that

Fλ =
|λ|!

Hodd(λ)Heven(λ)
=

|λ|!
Hodd(λ)2|µ|+|ν|H(µ)H(ν)

. (2.8)

One also observes that the hook lengths of all cores are odd, where a core is said to be a partition
that has empty quotient or, equivalently, a partition that is its own core.

7



Remark 2.3. The above definitions can easily be generalized to the notion of p-quotients and
p-cores using the p-modular decomposition of a Maya diagram; see Section 7. This is connected
with removing a border strip of size p from a Young diagram, where a border strip is a skew
Young diagram that is connected and does not contain any 2 × 2 squares [38, 54]. Note that
border strips of size 2 are actually dominoes.

We explicitly state the quotient (µ, ν) and core λ̄ of some specific partitions, for easy refer-
encing. To this end, let d·e denote the ceiling function and b·c represent the floor function. We
start with the trivial partitions.

Lemma 2.4. Any trivial partition λ = (n) has core and quotient given by

λ̄ =

{
∅ if n even,

(1) if n odd,
(µ, ν) =

(
∅, (bn/2c)

)
.

In the context of orthogonality for exceptional Hermite polynomials [21, 28, 33], one is
interested in even partitions.

Lemma 2.5. An even partition λ = (λ2
1, λ

2
2, . . . , λ

2
l ) has empty core and quotient given by

(µ, ν) =
(
(dλ1/2e, dλ2/2e, . . . , dλl/2e), (bλ1/2c, bλ2/2c, . . . , bλl/2c)

)
.

The generalized Hermite polynomials, which appear in rational solutions of the fourth
Painlevé equation [10, 12, 14, 40, 41, 57], are the Wronskian Hermite polynomials associated
to partitions whose Young diagram has a rectangular shape. The core and quotient of such
partitions can easily be deduced.

Lemma 2.6. Any partition λ = (mn) has core and quotient given by

λ̄ =

{
∅ if |λ| even,

(1) if |λ| odd,
(µ, ν) =

(
(dm/2ebn/2c), (bm/2cdn/2e)

)
.

3 Factorization of Wronskian Hermite polynomials

In this section, we prove that a Wronskian Hermite polynomial can be factorized as in (1.3).
The main idea of the proof is to use the generating recurrence relation for Wronskian Hermite
polynomials obtained in [9, Theorem 3.1], which expresses Heλ in terms of polynomials of lower
degree. Here it is convenient to rephrase the recurrence relation in terms of quotient partitions.
Using [9, Theorem 3.1 and Proposition 3.5], we have

Fλ Heλ(x) =
x

|λ|
Fλ He′λ(x)− (|λ| − 1)

∑
(µ̃,ν̃)l(µ,ν)

(−1)ht2(λ/λ̃)Fλ̃ Heλ̃(x) (3.1)

for any non-empty partition λ with quotient (µ, ν) and where λ̃ has quotient (µ̃, ν̃) and the same
core as λ. In this way, the sum in (3.1) runs precisely over all partitions λ̃ that are obtained by
removing one domino tile from λ. Writing the sum as a sum of predecessors in the lattice Y×Y
is, however, more convenient for further analysis than writing it as a sum over predecessors of λ
in the Young lattice.

Theorem 3.1. For any partition λ with core λ̄ and quotient (µ, ν) we have

Heλ(x) = x|λ̄|Rλ(x2) (3.2)

where Rλ is a monic polynomial of degree |µ|+ |ν| with non-vanishing constant coefficient

Rλ(0) = (−1)hλ
Hodd(λ)

H(λ̄)
(3.3)

and hλ = ht2(λ/λ̄) + (|λ| − |λ̄|)/2.

8



Remark 3.2. Since |λ̄| = k(k + 1)/2, we note that this factorization proves the observation
in [24]. There it is claimed that the multiplicity of the zero at the origin equals (p−q)(p−q+1)/2
where p, respectively q, denotes the number of odd, respectively even, elements in the degree
vector. One easily shows that |λ̄| = (p − q)(p − q + 1)/2, for example, by using induction on
the number of domino tiles that are added to the core. Namely, it is straightforward to observe
that adding a domino tile to a partition leaves the number p− q invariant, except the case were
a horizontal domino is added as a new row. In that case p − q changes to q − p − 1. Thus if
p ≥ q then k = p− q, otherwise k = q − p− 1. This is directly related to (2.6).

Remark 3.3. For any partition λ with core λ̄, the skew diagram λ/λ̃ can be tiled with dominoes.
The number of dominoes equals (|λ| − |λ̄|)/2 and the parity of the number of vertical dominoes
is given by ht2(λ/λ̄). Therefore, the parity of the quantity hλ, defined in Theorem 3.1, equals
the parity of the number of horizontal dominoes in a tiling of λ/λ̃.

Proof of Theorem 3.1. We prove the theorem by induction on |µ|+ |ν|.
For |µ| + |ν| = 0 we have λ = λ̄ = (k, k − 1, . . . , 2, 1) for some integer k ≥ 0, and so

Heλ(x) = x|λ|; see Lemma 4.2 in [9]. Hence, if we define Rλ(x) = 1, then (3.2) holds. Since all
hook lengths for the partition (k, k − 1, . . . , 2, 1) are odd, (3.3) is also satisfied.

Now take |µ|+ |ν| > 0 and consider the mth-derivative of both sides of (3.1) for some integer
m ≥ 0. Then, evaluating both sides at zero gives

Fλ He
(m)
λ (0) =

m

|λ|
Fλ He

(m)
λ (0)− (|λ| − 1)

∑
(µ̃,ν̃)l(µ,ν)

(−1)ht(λ/λ̃)Fλ̃ He
(m)

λ̃
(0).

Combining terms and subsequently dividing both sides by m! leads to the equality

Fλ
He

(m)
λ (0)

m!
= −|λ|(|λ| − 1)

|λ| −m
∑

(µ̃,ν̃)l(µ,ν)

(−1)ht2(λ/λ̃)Fλ̃
He

(m)

λ̃
(0)

m!
. (3.4)

By applying the induction hypothesis, we conclude that for 0 ≤ m < |λ̄|, all terms in the sum

of (3.4) are zero, since the core of λ̃ is also λ̄. Hence, for all such m, we have He
(m)
λ (0) = 0, and

so the multiplicity of the zero of Heλ at the origin is at least |λ̄|. Moreover, it is well-known
that the Wronskian Hermite polynomial is an even or odd polynomial depending on its degree;
see, for example, [28]. Therefore Heλ can be decomposed as in (3.2). By evaluating the total
degree, we need to have |λ| = |λ̄| + 2 deg(Rλ), and so by (2.7), we have deg(Rλ) = |µ| + |ν|.
Since Heλ is monic, Rλ is also monic.

The only thing that is now left to prove is that Rλ(0) satisfies (3.3). For this, we set m = |λ̄|
in (3.4) and use the induction hypothesis for Rλ̃(0). This then yields

FλRλ(0) = (−1)hλ
|λ|(|λ| − 1)

|λ| − |λ̄|
∑

(µ̃,ν̃)l(µ,ν)

Fλ̃
Hodd(λ̃)

H(λ̄)
(3.5)

because
1 + ht2(λ/λ̃) + hλ̃ ≡ hλ mod 2.

Rewriting (3.5) using (2.7) and (2.8) leads to

Rλ(0) = (−1)hλ
Hodd(λ)

H(λ̄)

H(µ)H(ν)

|µ|+ |ν|
∑

(µ̃,ν̃)l(µ,ν)

1

H(µ̃)H(ν̃)
.

Finally, we see that the right-hand side is non-zero and equal to the expression in (3.2) because∑
(µ̃,ν̃)l(µ,ν)

1

H(µ̃)H(ν̃)
=

1

H(ν)|µ̃|!
∑
µ̃lµ

Fµ̃ +
1

H(µ)|ν̃|!
∑
ν̃lν

Fν̃ =
|µ|+ |ν|
H(µ)H(ν)

where we have used (2.1) several times. This concludes the proof.
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Corollary 3.4. For any partition λ with core λ̄ we have that Hodd(λ)/H(λ̄) ∈ Z.

Proof. This follows directly from Theorem 3.1 and the property that Heλ(x) ∈ Z[x] for any
partition λ, which is proven in [7].

The result of Corollary 3.4 trivially extends to H(λ)/H(λ̄) ∈ Z. Moreover, in Corollary 7.3
we give the natural extension to the p-core cases for p > 2.

Remark 3.5. As mentioned at the end of Section 1, both corollaries also follow from Theo-
rem 4.4 in [5] as mentioned in Remark 4.5. In [5], the inclusion of multisets of hooklengths
is used, whereas we use the integrality of the coefficients of certain polynomials. Additionally,
Theorem 4.4 in [5] gives an explicit way to calculate the integer valued ratio.

If λ is a core, that is λ = λ̄, we have Heλ(x) = x|λ|, and so recover the result of Lemma 4.2
in [9]. For an arbitrary partition λ, the factorization can be written as

Heλ(x) = Heλ̄(x)Rλ(x2) (3.6)

where λ̄ denotes the core of λ. In Section 4 we establish an explicit formula for the coefficients
of Rλ. As an intermediate result, we present the following corollary.

Corollary 3.6. For any partition λ with quotient (µ, ν) we have

Rλ(x) = (−1)|µ|+|ν|Rλ′(−x).

where λ′ denotes the conjugated partition of λ. In particular, if the quotient is of the form
(µ, µ′) for some µ, then Rλ is an even polynomial.

Proof. It is well-known that Heλ(x) = i|λ|Heλ′(−ix), see for example [18], and therefore the
result can be obtained directly from Theorem 3.1.

We believe that the converse is also true and we therefore offer the following conjecture. For
this, we used the computer software MapleTM to check that the statement indeed holds for all
partitions of size at most 35.

Conjecture 3.7. The remainder polynomial Rλ, as defined in (3.6), is an even polynomial if
and only if λ is self-conjugate.

If the conjecture is true, then it states that only for self-conjugate partitions we have

Heλ(x) = x|λ̄|R̃(x4)

for some polynomial R̃ with non-zero constant term and where λ̄ is the core of λ. A subclass of
these polynomials is of main interest in [11]. In that paper, the Wronskian Hermite polynomials
associated with all self-conjugate partitions that have empty core are studied. It turns out that
this class of polynomials labels the Schrödinger equations describing the excited states of the
ordinary differential equation / integrable model correspondence for the untwisted, massless
sine-Gordon model at its free fermion point. Partition data also plays a key rôle in establishing
some of the results in [11].

Remark 3.8. For Hermite polynomials we have

Hen(0) = (−1)n/2 (n− 1)!! if n even (3.7)

He′n(0) = (−1)(n−1)/2 n!! if n odd (3.8)

where for any positive odd integer n!! = 1 · 3 · 5 · · ·n. As He(n)(x) = Hen(x) for all n ≥ 0, we
now can interpret (3.7) and (3.8) in terms of the odd hook lengths of the trivial partition (n).
This then generalizes to arbitrary partitions as stated in (3.3).
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4 Coefficients of Wronskian Hermite polynomials

In this section we obtain expressions for all coefficients of the Wronskian Hermite polynomials
in terms of partition data. We consider the factorization of Heλ given in (3.2) and write the
remainder polynomial as

Rλ(x) =

|µ|+|ν|∑
j=0

rλ,j x
|µ|+|ν|−j (4.1)

where rλ,0 = 1 and rλ,|µ|+|ν| equals the right-hand side of (3.3). The recurrence relation (3.1)
for Wronskian Hermite polynomials directly translates to the following recurrence relation for
the coefficients rλ,j of the remainder polynomial. We use it to prove several interpretations for
the coefficients in the subsequent sections.

Proposition 4.1. For any partition λ with quotient (µ, ν) we have

Fλrλ,j = −|λ|(|λ| − 1)

2j

∑
(µ̃,ν̃)l(µ,ν)

(−1)ht2(λ/λ̃)Fλ̃rλ̃,j−1 (4.2)

for j = 1, 2, . . . , |µ| + |ν| and where λ̃ denotes the partition with quotient (µ̃, ν̃) and the same
core as λ.

We omit the proof since it is an elementary rewriting of (3.1), using (3.2) and (4.1), but
note that (4.2) generates all coefficients if one uses the knowledge that rλ,0 = 1 for all λ.

4.1 Coefficients in terms of irreducible characters of representations

It is well-known that the Hermite polynomials have the explicit expansion

Hen(x) =

bn/2c∑
j=0

(−1)j
n!

j!(n− 2j)!2j
xn−2j

for all n ≥ 0; see, for example, [55, Formula (5.5.4)]. We offer a generalization of this expansion
for Wronskian Hermite polynomials.

Theorem 4.2. For any partition λ we have

Fλ Heλ(x) =

b|λ|/2c∑
j=0

(−1)j
|λ|!

j!(|λ| − 2j)!2j
a(λ, j)x|λ|−2j (4.3)

where a(λ, j) is the character of the conjugacy class of the cycle type (2j , 1|λ|−2j) of the irreducible
representation associated to the partition λ of the symmetric group S|λ|.

Before explaining the proof of this theorem, we give a very brief introduction to the character
theory of the symmetric group, since character values appear in (4.3). The symmetric group Sn
is the group of permutations on n elements. Its representation theory is classical and it is well-
known that the irreducible representations of Sn are labelled by the partitions λ of size |λ| = n.
Much (if not all essential) information of such an irreducible representation is contained in its
character, which is a function χλ : Sn → Z that has the property of only depending on conjugacy
classes: if σ′ = ρσρ−1 for σ, σ′, ρ ∈ Sn, then χλ(σ) = χλ(σ′). It is an easy exercise to show that
σ and σ′ are conjugate if and only if they have the same cycle type. For example, in S5, we have
that (1 2)(3 4 5) and (1 5)(2 3 4) are conjugate, since both have one cycle of length 3 and one
cycle of length 2. Ordering the cycle lengths in descending order, one sees that the conjugacy
classes are also labelled by the partitions of size n. We remark that it is non-trivial that χλ
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takes values in Z, but since it is well-known that this is the case, we omit further details. For a
more extensive survey of the representation theory of the symmetric group, we refer to [38, I.7].

For Theorem 4.2 we only need the conjugacy classes of cycle type (2j , 1n−2j). This is due
to the specific properties of Hermite polynomials. In Section 7, we show how to generalize the
results to obtain the character values for some other cycle types.

Proof of Theorem 4.2. If one applies (4.2) recursively, then using rλ,0 = 1 one obtains after j
iterations that

Fλrλ,j = (−1)j
|λ|!

(|λ| − 2j)!j!2j

∑
(µ̃,ν̃)<j(µ,ν)

(−1)ht2(λ/λ̃)Fλ̃.

The last sum is actually equal to the character value a(λ, j) = χλ(2j , 1|λ|−2j); see [38, I.7, Ex. 5]
or [54, Eq. (7.75)]. This immediately concludes the proof.

Remark 4.3. In [9], it was shown that the set of polynomials Heλ of a fixed degree n satisfy
the weighted average property ∑

λ`n

F 2
λ

n!
Heλ(x) = xn (4.4)

where the sum runs over all partitions of size n and the Plancherel weight is used. Since each
polynomial is monic, it follows that the leading term of the average polynomial should be xn.
The fact that all other terms vanish can now be interpreted using Theorem 4.2 in terms of the
orthogonality of characters. Namely, if we fix n ≥ 0 and invoke (4.3) in (4.4), we obtain

xn =
∑
λ`n

Fλ
n!

bn/2c∑
j=0

(−1)j
n!

j!(n− 2j)!2j
a(λ, j)xn−2j .

Matching coefficients and realizing that Fλ = a(λ, 0) is the character value of the identity, for
each 0 ≤ j ≤ bn/2c we have that

δj,0 =
1

n!

∑
λ`n

Fλa(λ, j) =
1

n!

∑
λ`n

a(λ, 0)a(λ, j)

where δj,0 = 1 if j = 0 and 0 otherwise. So the average property (4.4) is equivalent to the
well-known orthogonality relation of the given characters.

4.2 Coefficients in terms of hook lengths

We now present explicit formulae for all coefficients rλ,j using the number of directed paths F
(2)
(µ,ν)

in the lattice Y× Y as defined in (2.2).

Theorem 4.4. Let λ be a partition with quotient (µ, ν). Then the coefficients of the remainder
polynomial Rλ, defined in (3.2) and (4.1), are given by

rλ,j = (−1)j
(
|µ|+ |ν|

j

) ∑
(µ̃,ν̃)<j(µ,ν)

(−1)ht2(λ/λ̃)
F

(2)
µ̃,ν̃ F

(2)
(µ,ν)/(µ̃,ν̃)

F
(2)
µ,ν

Hodd(λ)

Hodd(λ̃)
(4.5)

for j = 0, 1, . . . , |µ|+ |ν|, where the partition λ̃ has quotient (µ̃, ν̃) and the same core as λ.

Proof. We prove this result by induction on j. When j = 0, both sides of (4.5) are trivially
one for all partitions λ. Therefore, we take j > 0 and consider (4.2). We apply the induction
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hypothesis to the right-hand side of (4.2) to obtain

rλ,j = (−1)j
|λ|(|λ| − 1)

2j

(
|µ|+ |ν| − 1

j − 1

)

×
∑

(µ̃,ν̃)l(µ,ν)

(−1)ht2(λ/λ̃)Fλ̃
Fλ

∑
(µ̂,ν̂)<j−1(µ̃,ν̃)

(−1)ht2(λ̃/λ̂)
F

(2)
µ̂,ν̂F

(2)
µ̃/µ̂,ν̃/ν̂

F
(2)
µ̃,ν̃

Hodd(λ̃)

Hodd(λ̂)
(4.6)

where λ̃ has quotient (µ̃, ν̃), λ̂ has quotient (µ̂, ν̂) and the core of both λ̃ and λ̂ are trivially λ̄.

Next, we expand Fλ, Fλ̄ and F
(2)
µ̃,ν̃ , F

(2)
µ,ν using (2.1), (2.2) and (2.8) to find

Fλ =
|λ|!

2|µ|+|ν|H(µ)H(ν)Hodd(λ)
, Fλ̃ =

(|λ| − 2)!

2|µ|+|ν|−1H(µ̃)H(ν̃)Hodd(λ̃)
,

F
(2)
µ̃,ν̃ =

(
|µ̃|+ |ν̃|
|µ̃|

)
|µ̃|!
H(µ̃)

|ν̃|!
H(ν̃)

, F (2)
µ,ν =

(
|µ|+ |ν|
|µ|

)
|µ|!
H(µ)

|ν|!
H(ν)

.

Using these expressions and interchanging the sums in (4.6), we find the expression for rλ,j
simplifies to

rλ,j = (−1)j
(
|µ|+ |ν|

j

) ∑
(µ̂,ν̂)<j−1(µ̃,ν̃)

(−1)ht2(λ/λ̂)
F

(2)
µ̂,ν̂

F
(2)
µ,ν

Hodd(λ)

Hodd(λ̂)

∑
(µ̃,ν̃)l(µ,ν)

F
(2)
µ̃/µ̂,ν̃/ν̂ . (4.7)

Finally, we have ∑
(µ̃,ν̃)l(µ,ν)

F
(2)
µ̃/µ̂,ν̃/ν̂ = F

(2)
µ/µ̂,ν/ν̂

and so we conclude that (4.7) leads to (4.5).

Remark 4.5. The first fraction in the sum of (4.5) can be seen as a weight: the denominator
is the number of paths from (∅, ∅) to (µ, ν) in the lattice Y× Y, whereas the numerator is the
number of such paths that pass through (µ̃, ν̃). So the sum of all weights for a fixed j is 1.

Example 4.6. In Figure 1 we considered the domino process for the partition λ = (4, 22, 1)
with core (2, 1) and quotient ((2), (1)). Counting the paths shown in Figure 1 from (4, 22, 1)

to (2, 1), we see that F
(2)
µ,ν = 3. In this process there are six partitions, whose relevant data is

given in Table 1. Using (4.5) for the coefficients rλ,j yields

rλ,0 =

(
3

0

)
3 · 1

3

105

105
= 1

rλ,1 = −
(

3

1

)(
1 · 1

3

105

45
− 2 · 1

3

105

63

)
= −3

(
7

9
− 10

9

)
= 1

rλ,2 =

(
3

2

)(
−1 · 2

3

105

15
+

1 · 1
3

105

15

)
= 3

(
−14

3
+

7

3

)
= −7

rλ,3 = −
(

3

3

)
1 · 3

3

105

3
= −35

and consequently He(4,22,1)(x) = x3(x6 + x4 − 7x2 − 35), which was already stated in Figure 1.

For the results in Section 4.3, it is convenient to rewrite (4.5) using (3.3). One immediately
obtains that the constant terms of the polynomials (Rλ)λ∈Y carry all information about all
other terms in the polynomials.
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j λ̃ (µ̃, ν̃) F
(2)
µ̃,ν̃ F

(2)
(µ,ν)/(µ̃,ν̃) Hodd(λ̃) (−1)ht2(λ/λ̃)

0 (4, 22, 1) ((2),(1)) 3 1 105 +1

1 (23, 1) ((2), ∅) 1 1 45 +1
1 (4, 13) ((1),(1)) 2 1 63 −1

2 (2, 13) ((1), ∅) 1 2 15 −1
2 (4,1) (∅, (1)) 1 1 15 +1

3 (2,1) (∅, ∅) 1 3 3 +1

Table 1: Partition data related to Example 4.6.

Corollary 4.7. Let λ be a partition with quotient (µ, ν). Then the coefficients of the polyno-
mial Rλ, defined in (3.2) and (4.1), are given by

rλ,j =

(
|µ|+ |ν|

j

) ∑
(µ̃,ν̃)<j(µ,ν)

F
(2)
µ̃,ν̃ F

(2)
(µ,ν)/(µ̃,ν̃)

F
(2)
µ,ν

Rλ(0)

Rλ̃(0)
(4.8)

for j = 0, 1, . . . , |µ|+ |ν| where λ̃ has quotient (µ̃, ν̃) and the same core as λ.

Remark 4.8. It is also possible to rewrite (4.5) using (2.2) and (2.8). This yields

rλ,j = (−2)−j
∑

(µ̃,ν̃)<j(µ,ν)

(−1)ht2(λ/λ̃) Fµ/µ̃ Fν/ν̃

|µ/µ̃|! |ν/ν̃|!
H(λ)

H(λ̃)

for each j. Though this formula is less susceptible to interpretation because the first fraction
in the sum cannot be seen as a weight (cf. Remark 4.5), it uses information about all the hook
lengths and not just the odd ones.

4.3 Coefficients as polynomials in the length of the core

For a partition λ with quotient (µ, ν) we have that the polynomial Rλ has degree |µ|+ |ν|.
Therefore, one naturally asks how the polynomial Rλ changes if one fixes the quotient (µ, ν)
and varies the size k of the core.

Theorem 4.9. Fix a pair of partitions (µ, ν) and for all k ≥ 0 let Φ(µ, ν, k) denote the partition
with quotient (µ, ν) and core (k, k − 1, . . . , 2, 1) as described in Section 2.2. Then we have that
for all 0 ≤ j ≤ |µ| + |ν|, the coefficient rΦ(µ,ν,k),j of RΦ(µ,ν,k), defined in (3.2) and (4.1), is a
polynomial in k of at most degree j.

Example 4.10. Let (µ, ν) = ((4, 1), (3)). Then

RΦ(µ,ν,k)(x) =x8 + 2(2k − 15)x7 − 2(2k − 5)(2k + 33)x6 + (−48k3 + 24k2 + 1404k − 1230)x5

+ 120k(2k − 7)(2k + 9)x4 + 6(2k − 7)(2k − 5)(2k + 1)(2k + 7)(2k + 9)x3

+ 2(2k − 7)(2k − 5)(2k − 3)(2k + 1)(2k + 5)(2k + 9)x2

− 2(2k − 7)(2k − 5)(2k − 3)(2k + 1)(2k + 3)(2k + 5)(2k + 9)x

− (2k − 7)(2k − 5)(2k − 3)(2k + 1)2(2k + 3)(2k + 5)(2k + 9).

See Table 2 for the corresponding Wronskian Hermite polynomials for k = 0, 1, 2, 3, 4.

Remark 4.11. We do not offer explicit expressions for all the coefficients in terms of k; the
proof of Theorem 4.9 is existential instead of constructive. However, we can deduce enough
properties of the polynomials to obtain the asymptotic result presented in Section 5.
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k Φ((4, 1), (3), k) HeΦ((4,1),(3),k)(x)

0 (72, 12) x0(x16 − 30x14 + 330x12 − 1230x10 + 13230x6 − 9450x4 + 28350x2 + 14175)

1 (72, 13) x1(x16 − 26x14 + 210x12 + 150x10 − 6600x8 + 26730x6 − 6930x4 + 34650x2 + 51975)

2 (8, 6, 2, 13) x3(x16 − 22x14 + 74x12 + 1290x10 − 9360x8 + 12870x6 + 3510x4 − 24570x2 − 61425)

3 (9, 5, 3, 2, 13) x6(x16 − 18x14 − 78x12 + 1902x10 − 5400x8 − 8190x6 − 6930x4 + 62370x2 + 218295)

4 (10, 42, 3, 2, 13) x10(x16 − 14x14 − 246x12 + 1698x10 + 8160x8 + 41310x6 + 59670x4 − 656370x2 − 2953665)

Table 2: The polynomials HeΦ((4,1),(3),k)(x) for k = 0, 1, 2, 3, 4. The coefficients are polynomial
in k, see Theorem 4.9.

The rest of this section is dedicated to the rather technical proof of Theorem 4.9. It relies
on Corollary 4.7, which expresses the coefficients of the remainder polynomials in terms of their
constants. In Proposition 4.14 we give explicit expressions for these constants as polynomials
in k. First, we give a useful way of describing the odd hooks of a partition in terms of the two
Maya diagrams that represent the quotient.

Lemma 4.12. Take a pair of partitions (µ, ν) and denote their Maya diagrams by Mµ and Mν .
Let s, s′ ≥ 0 be integers such that `(µ) + s = `(ν) + s′. Then we have

Hodd(Φ(µ, ν, 0)) =

 ∏
m∈Mµ+s

∏
n<m

n6∈Mν+s′

(
2(m− n)− 1

)

×

 ∏
n∈Mν+s′

∏
m≤n

m 6∈Mµ+s

(
2(n−m) + 1

) . (4.9)

This formula is not explicitly in [38], but follows quite directly from the concepts therein.
For the readers’ convenience, we include the idea of the proof. First, note that the hook lengths
of the boxes in a Young diagram can be indicated using the corresponding Maya diagram.
Namely, for any fixed filled box in a Maya diagram, the set of distances between that box and
all empty boxes to the left indicate the hook lengths of a row in the Young diagram, as indicated
for an example in the middle image in Figure 6. We note that it does not matter if we choose
the canonical Maya diagram or an equivalent one, since this choice does not alter the relative
distances.

Transferring this interpretation to the Maya diagrams of the quotient, we see that the hook
lengths naturally split into two classes. The even hook lengths are given by twice the distances
between an empty and a filled box within the same Maya diagram, while the odd hook lengths
are in terms of a filled box in one Maya diagram and an empty box in the other one. This is
visualized in the right image in Figure 6. Writing down this interpretation directly yields the
formula (4.9), which consists of two finite double products.

. . . . . .• • • • • • •

8

6 3
2

7

5
2 1

. . . . . .• • • •

. . . . . .• • • • •

8
6 2

3

2

7
5

1

8 6 3 2

7 5 2 1

4 2

3 1

1

Figure 6: The hook lengths of the first two rows of (42, 22, 1) displayed in its Young diagram,
in its canonical Maya diagram, and in the pair of Maya diagrams associated to the quotient.
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Motivated by Lemma 4.12 we define the following polynomial.

Definition 4.13. For any pair of partitions (µ, ν), with Maya diagrams Mµ and Mν and integers
s, s′ ≥ 0 such that `(µ) + s = `(ν) + s′, we set

Ψµ,ν(z) := (−1)hΦ(µ,ν,0)

 ∏
m∈Mµ+s

∏
n<m

n6∈Mν+s′

(
2(m− n)− 1− 2z

)

×

 ∏
n∈Mν+s′

∏
m≤n

m 6∈Mµ+s

(
2(n−m) + 1 + 2z

) (4.10)

where Φ(µ, ν, 0) represents the partition λ with quotient (µ, ν) and empty core such that |λ| is
even, see (2.7). By definition, we then have hΦ(µ,ν,0) = ht2(λ) + |λ|/2.

By Lemma 4.12 and (3.3) we immediately derive that

Ψµ,ν(0) = (−1)hΦ(µ,ν,0)Hodd(Φ(µ, ν, 0)) = RΦ(µ,ν,0)(0). (4.11)

Moreover, the main reason for introducing the polynomial Ψµ,ν(z) is that (4.11) can be gener-
alized.

Proposition 4.14. For any pair of partitions (µ, ν) and for any k ≥ 0, we have

Ψµ,ν(k) = (−1)hΦ(µ,ν,k)
Hodd(Φ(µ, ν, k))

H((k, k − 1, . . . , 2, 1))
= RΦ(µ,ν,k)(0). (4.12)

Furthermore, Ψµ,ν is a polynomial in k of degree |µ|+ |ν|, with leading coefficient (−1)|ν| 2|µ|+|ν|.

We note that the last equality in (4.12) is precisely (3.3). In particular, (4.12) proves that
RΦ(µ,ν,k)(0) is polynomial in k. A short argument, based on the following lemma, now takes
us from Proposition 4.14 to Theorem 4.9, after which we give the longer argument required to
prove Proposition 4.14.

Lemma 4.15. Suppose that f is a rational function with rational coefficients. If f(n) is an
integer for all integers n ≥ 1, then f is a polynomial.

Proof. Since f is a rational function with rational coefficients, there are two polynomials
p, q ∈ Q[x] such that f = p

q . Then, there exist polynomials r, p̃ ∈ Q[x] such that f = r+ p̃
q and

deg(p̃) < deg(q). Hence, there is an integer N such that N · r(x) ∈ Z[x], whence N · r(n) is an
integer for all integers n ≥ 0. Combining this with the assumption on f , this means that N · p̃q
maps positive integers to integers. We also have that N · p̃q (n)→ 0 as n→∞ and so there are
infinitely many integers n such that p̃(n) = 0. However, p̃ is a polynomial, so it should be that
p̃ ≡ 0. Hence f = r and therefore f is a polynomial.

Proof of Theorem 4.9. Combining (4.12) with (4.8) yields

rΦ(µ,ν,k),j =

(
|µ|+ |ν|

j

) ∑
(µ̃,ν̃)<j(µ,ν)

F
(2)
µ̃,ν̃ F

(2)
(µ,ν)/(µ̃,ν̃)

F
(2)
µ,ν

Ψµ,ν(k)

Ψµ̃,ν̃(k)

and since all Ψµ,ν are polynomials of degree |µ|+ |ν|, the above expression is a rational function
in k of degree at most j. However, we know that for all k, the coefficient rΦ(µ,ν,k),j is an
integer by [7, Corollary 7.1]. By Lemma 4.15 we therefore conclude that rΦ(µ,ν,k),j is in fact a
polynomial in k of degree at most j.
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All that remains to be proven is Proposition 4.14 itself.

Proof of Proposition 4.14. In part 1 we prove identity (4.12), and then in part 2 we derive the
degree and the leading coefficient of Ψµ,ν .

Part 1. Take integers s, s′ ≥ 0 such that `(µ) + s = `(ν) + s′. The odd hooks lengths of the
partition with quotient (µ, ν) and core k > 0 may be found in the same way as in Lemma 4.12.
In fact we simply need to replace s′ by s′ + k to find

Hodd(Φ(µ, ν, k)) =

 ∏
m∈Mµ+s

∏
n<m

n6∈Mν+s′+k

(
2(m− n)− 1

)

×

 ∏
n∈Mν+s′+k

∏
m≤n

m6∈Mµ+s

(
2(n−m) + 1

)
where Φ(µ, ν, k) represents the partition with quotient (µ, ν) and core length k. Replacing all n
with l + k, we obtain

Hodd(Φ(µ, ν, k)) =

 ∏
m∈Mµ+s

∏
l+k<m
l 6∈Mν+s′

(
2(m− (l + k))− 1

)

×

 ∏
l∈Mν+s′

∏
m≤l+k
m6∈Mµ+s

(
2((l + k)−m) + 1

) .
Now we recognize that this expression is similar to Ψµ,ν(k), defined in (4.10), except for certain
factors. Namely,

Hodd(Φ(µ, ν, k)) = (−1)hΦ(µ,ν,0) Ψµ,ν(k) ·

∏
l∈Mν+s′

∏
l<m≤l+k
m 6∈Mµ+s

(
2((l + k)−m) + 1

)
∏
m∈Mµ+s

∏
m−k≤l<m
l 6∈Mν+s′

(
2(m− (l + k))− 1

) . (4.13)

Now note that all the factors in the numerator are positive, whereas all factors in the denomi-
nator are negative. Multiplying the latter factors by −1 then yields

Hodd(Φ(µ, ν, k)) = (−1)β(µ,ν,k) Ψµ,ν(k) ·

∏
l∈Mν+s′

∏
l<m≤l+k
m 6∈Mµ+s

(
2((l + k)−m) + 1

)
∏
m∈Mµ+s

∏
m−k≤l<m
l 6∈Mν+s′

(
2((l + k)−m) + 1

) (4.14)

where

β(µ, ν, k) := hΦ(µ,ν,0) + #
{

(m, l) ∈ Z2 | m ∈Mµ + s, l 6∈Mν + s′, m− k ≤ l < m
}
. (4.15)

We now make the following two claims.

Claim 1: the parity of β(µ, ν, k) and hΦ(µ,ν,k) are the same.

Claim 2: we have∏
l∈Mν+s′

∏
l<m≤l+k
m6∈Mµ+s

(
2((l + k)−m) + 1

)
∏
m∈Mµ+s

∏
m−k≤l<m
l 6∈Mν+s′

(
2((l + k)−m) + 1

) = H((k, k − 1, . . . , 2, 1)).

17



Plugging these two claims into (4.14) yields the following alternative writing of (4.12):

Hodd(Ψ(µ, ν, k)) = (−1)hΦ(µ,ν,0) Ψµ,ν(k)H((k, k − 1, . . . , 2, 1)).

We therefore only have to prove both claims to establish part 1.
Proof of Claim 1. We use induction on |(µ, ν)|. If |(µ, ν)| = 0, we have that (µ, ν) = (∅, ∅),
so Φ(µ, ν, k) = (k, k − 1, . . . , 2, 1) for all k ≥ 0. Hence hΦ(µ,ν,k) = 0 for all k. One also sees that

#
{

(m, l) ∈ Z2
≥0 | m ∈M∅ + s, l 6∈M∅ + s′, m− k ≤ l < m

}
= 0

because s′ − s = k. This establishes the induction basis.
Next take |(µ, ν)| > 0 and fix k ≥ 0. Then there either exists a partition µ̃ such that

(µ̃, ν) l (µ, ν), or there exists a partition ν̃ such that (µ, ν̃) l (µ, ν). As both situations can be
proven similarly, we only give the proof in the first situation. In this case, µ is obtained from µ̃
by moving a dot in the Maya diagram from some position t to t+ 1. We then see that Φ(µ, ν, k)
is obtained from Φ(µ̃, ν, k) by adding a horizontal domino tile if and only if t− k 6∈Mν + s′. In
other words, we have

hΦ(µ,ν,k) ≡ hΦ(µ̃,ν,k) + 1 mod 2 ⇔ t− k 6∈Mν + s′ (4.16)

for all k. Subsequently, define the numbers

N(µ̃,ν) = #
{

(m, l) ∈ Z2 | m ∈Mµ̃ + s, l 6∈Mν + s′, m− k ≤ l < m
}

N(µ,ν) = #
{

(m, l) ∈ Z2 | m ∈Mµ + s, l 6∈Mν + s′, m− k ≤ l < m
}

and observe that

N(µ,ν) ≡ N(µ̃,ν) + 1 mod 2 ⇔ t− k 6∈Mν + s′ or t 6∈Mν + s′ but not both. (4.17)

Next, reconsider (4.15) such that combining (4.16) for k = 0 and (4.17) leads to

β(µ, ν, k) ≡ β(µ̃, ν, k) + 1 mod 2 ⇔ t− k 6∈Mν + s′. (4.18)

Hence, using the induction hypothesis that the parity of hΦ(µ̃,ν,k) and β(µ̃, ν, k) are the same,
we see that hΦ(µ,ν,k) and β(µ, ν, k) have the same parity because of (4.16) and (4.18). This
proves Claim 1. I
Proof of Claim 2. We first need the following observation about counting factors. The
number of boxes in the Young diagram of Φ(µ, ν, k) is equal to k(k+ 1)/2 + 2(|µ|+ |ν|). There
are |µ|+|ν| boxes with an even hook length, while the other hook lengths are odd. By definition,
Ψµ,ν consists of |µ| + |ν| factors because it only runs over the odd hook lengths of a partition
with empty core. The expansion Hodd(Φ(µ, ν, k)) has k(k + 1)/2 + |µ| + |ν| factors. Hence,
combining both results, the fraction∏

l∈Mν+s′
∏
l<m≤l+k
m 6∈Mµ+s

(
2((l + k)−m) + 1

)
∏
m∈Mµ+s

∏
m−k≤l<m
l 6∈Mν+s′

(
2((l + k)−m) + 1

)
must have k(k+1)/2 factors more in the numerator than in the denominator so that the number
of factors in (4.13) is preserved. If we now interchange the products in both the numerator and
denominator, we obtain ∏k

i=1

∏
l∈Mν+s′

l+i 6∈Mµ+s

(
2(k − i) + 1

)
∏k
i=1

∏
m∈Mµ+s

m−i 6∈Mν+s′

(
2(k − i) + 1

) . (4.19)

18



The counting of factors given above implies that for any k, we have that

k∑
i=1

(
#{l ∈Mν + s′ | l + i 6∈Mµ + s} −#{m ∈Mµ + s | m− i 6∈Mν + s′}

)
=
k(k + 1)

2
.

Since all terms in this sum are independent of k and the above identity holds for all k, we
conclude that

#{l ∈Mν + s′ | l + i 6∈Mµ + s} −#{m ∈Mµ + s | m− i 6∈Mν + s′} = i

for all i = 1, 2 . . . , k. Therefore, (4.19) is equal to

k∏
i=1

(2(k − i) + 1)i = H((k, k − 1, . . . , 2, 1))

and we have proven Claim 2.I
Part 2. By construction, the degree of Ψµ,ν is equal to the number of factors that appear in

the double products in (4.10), which in turn is equal to the number of odd hooks in the partition
Φ(µ, ν, 0) by Lemma 4.12. As described in the proof of Claim 2, there are |µ|+ |ν| such terms.
This establish the degree statement. Next, one immediately observes that the leading coefficient
of Ψµ,ν is (−1)γ 2|µ|+|ν|, with

γ = hΦ(µ,ν,0) + #
{

(m,n) ∈ Z2 | m ∈Mµ + s, n 6∈Mν + s′, n < m
}
. (4.20)

Hence it is sufficient to show that γ and |ν| are equal in parity. We prove this in a similar
fashion as we proved Claim 1, that is by induction on |(µ, ν)|.

If (µ, ν) = (∅, ∅), then |ν| = γ = 0 and hence the result certainly holds. Now suppose that
(µ̃, ν) l (µ, ν) and that the claim holds for (µ̃, ν). Then the transition from (µ̃, ν) to (µ, ν)
is represented by a dot moving from a position t to a position t + 1 in the Maya diagram
of µ. It is easy to see that both terms in (4.20) change parity in this transition if and only if
t 6∈Mν + s′. Hence γ does not change in parity. Since |ν| does not change at all, the claim also
holds for (µ, ν).

Now suppose that (µ, ν̃)l(µ, ν) and that the claim holds for (µ, ν̃). Clearly, |ν̃| and |ν| differ
in parity. If the transition from (µ, ν̃) to (µ, ν) is represented by a dot moving from position t
to t+ 1 in the second Maya diagram, then it is easy to see that the first term in (4.20) changes
parity if and only if t+1 6∈Mν+s, and the second term if and only if t+1 ∈Mν+s. Therefore γ
changes parity, so again |ν| and γ are equal in parity.

4.4 The subleading coefficient in terms of the content

By definition Rλ is a monic polynomial of degree |µ| + |ν|. If we set j = 1 in (4.5), we obtain
a formula for the subleading coefficient rλ,1. However, there is another appealing expression
involving partition data. For this, we note that in the standard literature on integer parti-
tions [38], the content of each box (i, j) in the Young diagram of λ is defined as j − i. We
denote the sum of contents over all boxes by

c(λ) =
∑

(i,j)∈λ

(j − i) =
1

2

`(λ)∑
i=1

λi(λi − (2i− 1)) (4.21)

where the last equality follows directly from summing over rows. We have the following result
and visualize some examples in Figure 7.
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λ = (4, 2, 1) λ = (5, 4, 2) λ = (2, 2, 2)

0 1 2 3

-1 0

0 1 2 3 4

-1 0 1 2

-2 -1

0 1

-1 0

-2 -1

r(4,2,1),1 = −5 r(5,4,2),1 = −9 r(2,2,2),1 = 3

Figure 7: Examples of the values rλ,1 where the boxes of the Young diagrams contain the
respective contents.

Proposition 4.16. For any partition λ with non-empty quotient, we have that the subleading
coefficient of the polynomial Rλ, defined in (3.2) and (4.1), is given by

rλ,1 = −c(λ) (4.22)

where c(λ) is the sum of contents defined in (4.21).

Proof. Setting j = 1 in (4.2), dividing both sides by Fλ and using rλ̃,0 = 1 yields

rλ,1 = −|λ|(|λ| − 1)

2

∑
λ̃

(−1)ht2(λ/λ̃)Fλ̃
Fλ

(4.23)

where the sum runs over all partitions λ̃ that are obtained by removing a domino tile from
λ = (λ1, λ2, . . . , λ`(λ)). The main idea of the proof is to expand the fraction Fλ̃/Fλ using the
hook formulae in (2.1) written using the degree vector nλ = (n1, n2, . . . , n`(λ)).

If λm ≥ λm+1 + 2, then a horizontal domino can be removed from row m of λ. In this case

Fλ̃
Fλ

=
1

|λ|(|λ| − 1)
nm(nm − 1)

`(λ)∏
i=1
i 6=m

nm − ni − 2

nm − ni
(4.24)

and we note that (−1)ht(λ/λ̃) = 1. If λm = λm+1 > λm+2, then a vertical domino can be removed
from row m and m+ 1 of λ. We then find

Fλ̃
Fλ

=
−1

|λ|(|λ| − 1)
nm(nm − 1)

`(λ)∏
i=1
i 6=m

nm − ni − 2

nm − ni
(4.25)

and (−1)ht(λ/λ̃) = −1. Hence if we plug (4.24) and (4.25) into (4.23), we get

rλ,1 = −1

2

`(λ)∑
m=1

nm(nm − 1)

`(λ)∏
i=1
i 6=m

nm − ni − 2

nm − ni
(4.26)

where it is possible to sum from m = 1 until `(λ) because we can either remove a horizontal
domino in row m, or we can remove a vertical domino in rows m and m+ 1, or the term in the
sum vanishes because it is not possible to remove any dominoes.

Finally, we argue that (4.26) equals −c(λ). To show this, we use the last expression for c(λ)
in (4.21) and write it in terms of the degree vector via λi = ni − `(λ) + i for i = 1, 2, . . . , `(λ).
We find

− c(λ) = −1

2

`(λ)∑
i=1

(ni − `(λ) + i)(ni − `(λ)− i+ 1). (4.27)
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We now use the combinatorial identity in Lemma A.1 from the appendix, setting (x1, x2, . . . , xn)
equal to the degree vector of λ. We therefore find that the expression for rλ,1 in (4.26) equals
the expression −c(λ) in (4.27).

Remark 4.17. An alternative way to derive the result rλ,1 = −c(λ) is via the expression (4.3).
We set j = 1 to obtain

Fλrλ,1 = −
(
|λ|
2

)
a(λ, 1)

where a(λ, 1) represent the character value of the conjugacy class of the cycle type (2, 1|λ|−2).
This character value can be expressed explicitly in terms of the partition entries (see, for exam-
ple, [38, I.7, Ex. 7]). Combining that result with [38, I.1, Ex. 3] yields the expression

a(λ, 1) =

(
|λ|
2

)−1

Fλ c(λ)

and so we again obtain rλ,1 = −c(λ).

Remark 4.18. Box (i, j) belongs to the Young diagram of λ if and only if box (j, i) belongs to
the Young diagram of the conjugate partition λ′. Therefore, (4.22) trivially shows that if λ = λ′,
then rλ,1 = 0, in agreement with Corollary 3.6. The converse is not true: there are partitions λ
that are not self-conjugate but the corresponding Wronskian Hermite polynomial has rλ,1 = 0.
The smallest examples of such partitions are of size 15, one of which is λ = (52, 2, 13).

We now rewrite Proposition 4.16 in terms of the core and quotient of the partition.

Proposition 4.19. For any partition λ with non-empty quotient (µ, ν) and core equal to
(k, k− 1, . . . , 2, 1), we have that the subleading coefficient of the polynomial Rλ, defined in (3.2)
and (4.1), is given by

rλ,1 = (|µ| − |ν|)(2k + 1) + 4(c(µ) + c(ν)) (4.28)

where c(µ) and c(ν) are the sum of the contents of the quotient partitions respectively.

Proof. Proposition 4.16 states that rλ,1 = −c(λ). We express −c(λ) in terms of the degree
vector, see (4.27), and then expand to obtain

rλ,1 = −1

2

`(λ)∑
i=1

n2
i +

(
`(λ)− 1

2

) `(λ)∑
i=1

ni −
`(λ)(`(λ)− 1)(2`(λ)− 1)

6
. (4.29)

By the definition of the core and quotient as given in Section 2.2, one can easily write the
elements of the degree vector nλ explicitly in terms of k and the elements in the degree vectors nµ
and nν . Doing this for all ni in (4.29) yields an expression for rλ,1 in terms of the quotient
(µ, ν) and the integer k. If one also uses (4.27) to expand c(µ) and c(ν) in the right-hand side
of (4.28), then the result follows from elementary rewriting.

Remark 4.20. Note that identity (4.28) is invariant under replacing (µ, ν, k) with (ν, µ,−k−1).
This is a direct consequence of the construction of the core and quotient in Section 2.2. Also
observe that the coefficient rλ,1 is linear in k and is constant if |µ| = |ν|. This agrees with
Theorem 4.9. Moreover, numerical calculations suggest that if |µ| = |ν|, then rλ,|µ|+|ν|−1 = 0
for all k.

Remark 4.21. The result of Proposition 4.16 can be extended to the Wronskian Appell poly-
nomials introduced in [7]. The details are given in Appendix A.2.
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5 Asymptotic behaviour for a fixed quotient

If one fixes the quotient (µ, ν) and writes Φ(µ, ν, k) for the partition with quotient (µ, ν) and
core (k, k−1, . . . , 2, 1), then Theorem 4.9 states that the coefficients of the remainder polynomial
RΦ(µ,ν,k) are polynomials in k. In Section 5.1 this allows us to deduce the asymptotic behaviour
of the remainder polynomial. In turn, this leads to the investigation of the asymptotic behaviour
of the zeros given in Section 5.2.

5.1 Asymptotic behaviour of the remainder polynomial

If one fixes the quotient of a partition and lets the size of the core grow, one has the following
asymptotic behaviour of the associated remainder polynomial.

Theorem 5.1. Fix a pair of partitions (µ, ν) and let Φ(µ, ν, k) denote the partition with quotient
(µ, ν) and core (k, k − 1, . . . , 2, 1). Then

lim
k→+∞

RΦ(µ,ν,k)(2kx)

(2k)|µ|+|ν|
= (x+ 1)|µ| (x− 1)|ν| (5.1)

uniformly for x in compact subsets of the complex plane, where the speed of convergence is O(k−1).

The main ingredient required for the proof of this asymptotic result is the following lemma.
For this, recall from Theorem 4.9 that the coefficient rΦ(µ,ν,k),j is a polynomial in k of degree
at most j.

Lemma 5.2. Take a pair of partitions (µ, ν) and let 0 ≤ j ≤ |µ| + |ν|. Then the coefficient
of kj in rΦ(µ,ν,k),j is equal to

2j
j∑
l=0

(−1)l
(
|µ|
j − l

)(
|ν|
l

)
. (5.2)

Proof. If we combine (4.8) with (4.12), we obtain that

rΦ(µ,ν,k),j =

(
|µ|+ |ν|

j

) ∑
(µ̃,ν̃)<j(µ,ν)

F
(2)
µ̃,ν̃F

(2)
µ/µ̃,ν/ν̃

F
(2)
µ,ν

Ψµ,ν(k)

Ψµ̃,ν̃(k)
. (5.3)

Since Ψµ,ν is a polynomial of degree |µ|+ |ν| with leading coefficient (−1)|ν|2|µ|+|ν|, see Propo-
sition 4.14, we conclude that if (µ̃, ν̃) <j (µ, ν), then

Ψµ,ν(k)

Ψµ̃,ν̃(k)
= (−1)|ν|−|ν̃|(2k)j +O(kj−1). (5.4)

Note that when (µ̃, ν̃) <j (µ, ν), there is an 0 ≤ l ≤ j such that µ̃ <j−l µ and ν̃ <l ν. Combining
this with (5.4), we expand (5.3) as

rΦ(µ,ν,k),j =

(
|µ|+ |ν|

j

) j∑
l=0

∑
µ̃<j−lµ

∑
ν̃<lν

(|µ̃|+|ν̃|
|µ̃|

)(
j
l

)(|µ|+|ν|
|µ|

) Fµ̃Fν̃Fµ/µ̃Fν/ν̃

FµFν

(
(−1)l(2k)j +O(kj−1)

)
,

=

j∑
l=0

 ∑
µ̃<j−lµ

Fµ̃Fµ/µ̃

Fµ

∑
ν̃<lν

Fν̃Fν/ν̃

Fν

( |µ|
j − l

)(
|ν|
l

)(
(−1)l(2k)j +O(kj−1)

)
,

=

j∑
l=0

(
|µ|
j − l

)(
|ν|
l

)(
(−1)l(2k)j +O(kj−1)

)
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Figure 8: Zeros of the polynomials RΦ(µ,ν,k)(2kx) with µ = (22), ν = (2) on the left and
µ = (4, 3, 1), ν = (22, 1) on the right for various core sizes. The core sizes k are indicated in the
legends.

where in the first equality we have used (2.2) three times, in the second equality we have
rearranged factors and combined the four binomial coefficients into two, and in the last equality
we observed that the sums over µ̃ and ν̃ are both trivially equal to one. Now using the fact that
rΦ(µ,ν,k),j is a polynomial in k by Theorem 4.9, we find that the coefficient of kj in rΦ(µ,ν,k),j is
indeed given by (5.2).

We now come to the proof of the asymptotic result.

Proof of Theorem 5.1. Expanding the remainder polynomial using (4.1) gives

RΦ(µ,ν,k)(2kx)

(2k)|µ|+|ν|
=

|µ|+|ν|∑
j=0

rΦ(µ,ν,k),j

(2k)j
x|µ|+|ν|−j . (5.5)

By Theorem 4.9 we know that rΦ(µ,ν,k),j is a polynomial in k of degree at most j, and Lemma 5.2
established that the coefficient of kj is given by (5.2). Plugging this into (5.5) yields

RΦ(µ,ν,k)(2kx)

(2k)|µ|+|ν|
=

|µ|+|ν|∑
j=0

(
j∑
l=0

(−1)l
(
|µ|
j − l

)(
|ν|
l

))
x|µ|+|ν|−j +O(k−1).

Hence

lim
k→∞

RΦ(µ,ν,k)(2kx)

(2k)|µ|+|ν|
=

|µ|+|ν|∑
j=0

(
j∑
l=0

(−1)l
(
|µ|
j − l

)(
|ν|
l

))
x|µ|+|ν|−j

uniformly for x in compact subsets of the complex plane. The required results follows from
noting that the right-hand side is the expansion of the polynomial (x+ 1)|µ|(x− 1)|ν|.

Remark 5.3. Recall that the map Φ is defined for all tuples (µ, ν, k) ∈ Y × Y × Z in (2.3)
including negative values of k. This gives a way to consider ‘negative core lengths’, which is
best understood in terms of the relation Φ(µ, ν, k) = Φ(ν, µ,−k − 1). This also provides an
asymptotic result for k → −∞, via Theorem 5.1.
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Figure 9: Zeros of the polynomials HeΦ(µ,ν,10)(x) with µ = (22), ν = (2) on the left and
µ = (4, 3, 1), ν = (22, 1) on the right.

5.2 Asymptotic behaviour of the zeros

The asymptotic behaviour (5.1) implies that there are |µ| zeros attracted to −1 and |ν| zeros
attracted to 1 as the size of the core tends to infinity. In Figure 8 we see the zeros of the
rescaled remainder polynomial approaching −1 and 1 as k grows for two fixed quotients. Also
for fixed finite (but large enough) k, we observe that the zeros exhibit a suprisingly-simple
structure. Namely, if we take a quotient (µ, ν) and fix k ≥ `(µ′) + `(ν) − 1, then the |µ| + |ν|
zeros of RΦ(µ,ν,k) can be grouped in ‘vertical strings’, which is best explained by considering
an example. Take µ = (4, 3, 1) and ν = (22, 1) such that µ′ = (3, 22, 1) and ν ′ = (3, 2). Then,
if k ≥ `(µ′) + `(ν) − 1 = 6, we observe that the zeros in the left half-plane come in `(µ) = 3
vertical strings; groups that roughly have the same real part. The numbers of zeros within these
strings are precisely 4, 3, and 1, i.e., the parts of µ, see Figure 8 on the right where the zeros are
plotted for several large enough values of k. Similarly, in the right half-plane, we see `(ν ′) = 2
such vertical strings. One of these strings contains 3 zeros, the other 2; these are precisely the
parts of ν ′.

We conjecture that for a general quotient (µ, ν) and k ≥ `(µ′)+`(ν)−1, the zeros of RΦ(µ,ν,k)

exhibit the same behaviour, i.e., there are `(µ) vertical strings of zeros that are attracted to −1,
with the ith string containing µi zeros for 1 ≤ i ≤ `(µ), and `(ν ′) vertical strings of zeros that
are attracted to 1, with the ith string containing ν ′i zeros for 1 ≤ i ≤ `(ν ′). We observe that the
ordering of the strings may not match the ordering of the parts in the partitions.

Our trade-off value k = `(µ′) + `(ν)−1 is found by examining several examples and we offer
the following heuristic justification. If one fixes a quotient (µ, ν), then the Maya diagrams Mµ

and Mν are fixed. However, if k increases, then this corresponds to shifting the Maya diagram
of ν to the right. For the specific value k = `(µ′) + `(ν) − 1, the first empty box of Mν is
precisely below the last filled box of Mµ. From this point onwards, the contributions of the
quotient (µ, ν) to the partition seem to become ‘independent’. We do not have a rigorous proof
for this justification, but the checked examples do confirm this trade-off value.

The above conjecture translates to a conjecture about the zeros of Wronskian Hermite poly-
nomials by the relation in Theorem 3.1. Figure 9 shows the unscaled zeros of the Wronskian
Hermite polynomials corresponding to the examples in Figure 8 where k = 10. By Theorem 3.1,
the number of zeros doubles with respect to Figure 8, but the behaviour is similar. The ze-
ros near the positive imaginary axes form `(µ) ‘horizontal’ strings with each string having µi
approximately-equal imaginary parts, while the zeros near the positive real axis form vertical
strings with ν ′i parts. We intend to explore this curious ‘physical’ appearance of the Young
diagrams of the quotient partitions in such zero plots in future work.
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We also note that a different qualitative relationship between the Young diagram of spe-
cific even partitions and the zero distributions of Heλ was noted in [24, Section 3]. The au-
thors considered Wronskian Hermite polynomials associated to even partitions of the form
λ = ((2λ1)2, (2λ2)2, . . . , (2λr)

2). However, such partitions have empty core (k = 0), so our
asymptotic result and large-k observations do not add further insight.

The question of the location of the zeros of the Wronskian Hermite polynomials is both inter-
esting in its own right, as well as for applications, and dates back to at least the 1960s [35]. More
recently, the asymptotic behaviour of the zeros of the exceptional Hermite polynomials has been
studied in [37]. A further motivation for studying the locations of the zeros is that the rational
solutions of the fourth Painlevé equation are written as ratios of certain Wronskian Hermite
polynomials [2, 3, 42, 45, 49]. The zeros in the generalized Okamoto and generalized Hermite
cases, which feature in the Painlevé IV rational solutions, were shown by Clarkson [12, 14] to
form highly-regular patterns in the complex plane. Some rigorous results on the distribution
of the zeros of the generalized Hermite polynomials and the generalized Okamoto polynomi-
als in various asymptotic regimes have appeared recently [10, 40, 41, 46], complementing the
asymptotic results for small-length Wronskians obtained in [24, 25].

Felder et al. [24] conjectured the Wronskian Hermite polynomials have no real zeros if and
only if the associated partition is even, and made a similar statement about the number of
purely imaginary zeros. The result about the real zeros was (already) proven in a more general
context independently by Krein [36] and Adler [1], and recently generalized in [25]. In addition,
from the latter paper it follows that if we assume that the Hermite setting is semi-degenerate,
specifically that common zeros between certain Wronskian polynomials only occur at the origin,
then the number of real zeros can be explicitly stated in terms of the associated partition.

6 Connection with Laguerre polynomials

In this section we explain how Wronskian Hermite polynomials can be seen as discrete versions
of Wronskians involving Laguerre polynomials, generalizing the well-known relation between
Hermite and Laguerre polynomials. For all n ≥ 0, we note from (1.2) that

Hen(x) := 2−
n
2Hn

(
x√
2

)
where Hn denotes the classical definition for Hermite polynomials, as, for example, given in [55].

Likewise, we use modified Laguerre polynomials L̂
(α)
n , which we define as

L̂(α)
n (x) := (−1)n n!L(α)

n (x) (6.1)

for all n ≥ 0 and where L
(α)
n denotes the classical definition of the Laguerre polynomial [55]. In

this way, both Hen and L̂
(α)
n are monic polynomials of degree n, and they are related according

to

He2n(x) = 2n L̂
(− 1

2
)

n

(
x2

2

)
He2n+1(x) = 2n x L̂

( 1
2

)
n

(
x2

2

)
(6.2)

for all n ≥ 0; see [55, Formula (5.6.1)] for the identities in terms of the classical definitions.
We now introduce Wronskians involving Laguerre polynomials following [8, 22, 23, 29]. For

any two partitions µ and ν with degree vectors nµ and mν , and for any parameter α ∈ R such
that the values

n1, n2, . . . , n`(µ),m1 − α,m2 − α, . . . ,m`(ν) − α (6.3)

are pairwise different, we define the polynomial

L̂(α)
µ,ν :=

1

∆(nµ,mν − α)
x(`(µ)+α)`(ν) Wr[f1, f2, . . . , f`(µ), g1, g2, . . . , g`(ν)] (6.4)
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where

fj(x) = L̂(α)
nj (x), j = 1, 2, . . . , `(µ),

gj(x) = x−αL̂(−α)
mj (x), j = 1, 2, . . . , `(ν).

Here ∆(nµ,mν − α) denotes the Vandermonde determinant of the elements given in (6.3). We

have that L̂
(α)
µ,ν is a monic polynomial of degree |µ|+ |ν| by [6, Proposition 3.1]. The polynomial

L̂
(α)
µ,ν may be defined at each of the points disallowed by (6.3) by taking a relevant limit as a

function of α.
The relations in (6.2) extend to Wronskian polynomials, and it is now natural to express

such identities in terms of cores and quotients. In particular, if λ = (n) then using its core and
quotient as stated in Lemma 2.4, we find (6.6) reduces to (6.2).

Proposition 6.1. Let λ be a partition with core (k, k − 1, . . . , 2, 1) and quotient (µ, ν). Then

Rλ(x) = 2|µ|+|ν| L̂(αk)
µ,ν

(x
2

)
(6.5)

with αk := −1/2− `(µ) + `(ν)− k. In other words, we have

Heλ(x) = 2|µ|+|ν|x
k(k+1)

2 L̂(αk)
µ,ν

(
x2

2

)
. (6.6)

Proof. It is sufficient to prove (6.6), since (6.5) then immediately follows from (3.2).
From the definition of (µ, ν) as the quotient of λ, there exist t1 ≥ 0 and t2 ≥ 0 such that

the Maya diagram Mλ is equivalent to the 2-modular decomposition of the Maya diagrams M̃µ

and M̃ν , where M̃µ = Mµ + t1 and M̃ν = Mν + t2 are equivalent to Mµ and Mν , respectively.
From (2.4) we have

`(ν) + t2 − `(µ)− t1 = k.

This implies that αk = −1/2 + t1 − t2. By Theorem 1 in [8], we then have that (up to the

normalization constant) L̂
(αk)
µ,ν (x) is equal to

x(`(µ)+t1− 1
2

)(`(ν)+t2) Wr[f̃1, f̃2, . . . , f̃`(µ)+t1 , g̃1, g̃2, . . . , g̃`(ν)+t2 ] (6.7)

where

f̃j(x) = L̂
(− 1

2
)

nj+t1
(x), j = 1, 2, . . . , `(µ),

f̃j(x) = L̂
(− 1

2
)

`(µ)+t1−j(x), j = `(µ) + 1, `(µ) + 2, . . . , `(µ) + t1,

g̃j(x) = x
1
2 L̂

( 1
2

)
mj+t2

(x), j = 1, 2, . . . , `(ν),

g̃j(x) = x
1
2 L̂

( 1
2

)

`(ν)+t2−j(x), j = `(ν) + 1, `(ν) + 2, . . . , `(ν) + t2.

Note that the degrees that appear for the functions f̃j and g̃j are precisely the non-negative

locations of the dots in the Maya diagrams M̃µ and M̃ν , respectively. In this way, Theorem 1
in [8] tells us precisely how to account for shifting the origin of Maya diagrams when working
with Wronskians involving Laguerre polynomials. If we evaluate the functions f̃j and g̃j at x2/2
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and use (6.2), we obtain

f̃j

(
x2

2

)
= 2−nj−t1 He2(nj+t1)(x), j = 1, 2, . . . , `(µ),

f̃j

(
x2

2

)
= 2−`(µ)−t1+j He2(`(µ)+t1−j)(x), j = `(µ) + 1, `(µ) + 2, . . . , `(µ) + t1,

g̃j

(
x2

2

)
= 2−mj−t2−

1
2 He2(mj+t2)+1(x), j = 1, 2, . . . , `(ν),

g̃j

(
x2

2

)
= 2−`(ν)−t2+j− 1

2 He2(`(ν)+t2−j)+1(x), j = `(ν) + 1, `(ν) + 2, . . . , `(ν) + t2.

This evaluation turns (6.7) evaluated at x2/2 into a Wronskian of Hermite polynomials evaluated
in x. In fact, the degrees that appear are precisely all the dots at non-negative locations of a
Maya diagram M̃λ, which is equivalent to the canonical Maya diagram Mλ. Moreover, it is well-
known that shifting the origin of a Maya diagram does not change the corresponding Wronskian
Hermite polynomial [9, 26]. Then, using the standard Wronskian identity

Wr[y1, y2, . . . , yr](h(x)) =
(
h′(x)

)− r(r−1)
2 Wr[y1 ◦ h, y2 ◦ h, . . . , yr ◦ h](x) (6.8)

for h(x) = x2/2, and keeping careful track of the factors of x and 2, we obtain (6.6).

The Wronskian involving Laguerre polynomials (6.4) appears in the setting of exceptional

Laguerre polynomials [8, 22, 23, 29]. In both papers, polynomials Ω
(α)
µ,ν of degree |µ|+ |ν| were

introduced. Likewise, we define their monic variant as

Ω̂(α)
µ,ν :=

(−1)
∑
j mj

∆(nµ)∆(mν)
e−`(ν)x Wr[f1, f2, . . . , f`(µ), h1, h2, . . . , h`(ν)] (6.9)

for any parameter α with

fj(x) = L̂(α)
nj (x), j = 1, 2, . . . , `(µ),

hj(x) = exL̂(α)
mj (−x), j = 1, 2, . . . , `(ν).

Proposition 1 in [8] states that Ω̂
(α)
µ,ν is a monic polynomial of degree |µ| + |ν| and applying

Theorem 1 in [8] yields the identity

L̂(α)
µ,ν(x) = Ω̂

(α−`(ν)−`(ν′))
µ,ν′ (x) (6.10)

for any partitions µ and ν such that the elements in (6.3) are pairwise different. More identities
between Wronskians involving Laguerre polynomials may be found in [29].

Translating the identity in Proposition 6.1 using (6.10) gives the following result.

Corollary 6.2. Let λ be a partition with core (k, k − 1, . . . , 2, 1) and quotient (µ, ν). Then

Rλ(x) = 2|µ|+|ν| Ω̂
(αk)
µ,ν′

(x
2

)
(6.11)

where αk := −1/2− `(µ)− `(ν ′)− k and ν ′ denotes the conjugate partition to ν. Similarly,

Heλ(x) = 2|µ|+|ν|x
k(k+1)

2 Ω̂
(αk)
µ,ν′

(
x2

2

)
. (6.12)
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The Wronskian polynomials (6.4) and (6.9) involving Laguerre polynomials were defined
above for almost-all values of α and may be obtained for all α by analytical continuation. Hence
Proposition 6.1 and Corollary 6.2 connect the discrete parameter k in the Hermite setting to
the continuous parameter α in the Laguerre setting.

The following limits involving Laguerre polynomials are well-known:

lim
α→±∞

L
(α)
n (αx)

L
(α)
n (0)

= (1− x)n or equivalently lim
α→±∞

L̂
(α)
n (αx)

αn
= (x− 1)n. (6.13)

The first limit can be derived from (5.1.6) in [55], and the equivalent statement follows from (6.1)

and L
(α)
n (0) = (α + 1)(α + 2) · · · (α + n)/n!. The asymptotic behaviour of the Laguerre poly-

nomials can be generalized to the following asymptotic behaviour of the Wronskian Laguerre
polynomials.

Proposition 6.3. For any pair of partitions µ and ν we have

lim
α→±∞

L̂
(α)
µ,ν(αx)

α|µ|+|ν|
= (x− 1)|µ| (x+ 1)|ν|, (6.14)

lim
α→±∞

Ω̂
(α)
µ,ν(αx)

α|µ|+|ν|
= (x− 1)|µ| (x+ 1)|ν|. (6.15)

An heuristic argument for this result can be obtained by combining the asymptotic re-
sult (5.1) for the remainder polynomial and the identities (6.5) and (6.11). However, one should
be careful in how the continuous parameter α tends to infinity since only discrete values for k
are permitted. We therefore give a proof of Proposition 6.3 that holds for all values of α,
without using the connection to Wronskian Hermite polynomials. It is based on the classical
result (6.13) and a careful analysis of determinants. For this, we need the following elementary
result for Laguerre polynomials.

Lemma 6.4. Take an integer m ≥ 0 and fix the parameter α. Then, for any integer i ≥ 1 we
have

di−1

dxi−1
L̂(α)
m (x) =

i−1∑
l=0

(−1)l
(
i− 1

l

)
L̂(α+l)
m (x).

Proof. By induction on i. When i = 1, both sides trivially coincide. Now suppose the claim has
been proven for i; we prove it for i+ 1. Combining (5.1.13) and (5.1.14) in [55] and translating
it via (6.1) yields the identity

d

dx

(
L̂(α)
m (x)

)
= L̂(α)

m (x)− L̂(α+1)
m (x). (6.16)

Taking the (i − 1)st derivative on both sides of (6.16), applying the induction hypothesis for
both terms on the right-hand side, as well as some elementary calculations, yields the result for
i+ 1.

Proof of Proposition 6.3. It is sufficient to prove (6.15) because then (6.14) follows directly
from (6.10). Moreover, we only consider α → ∞ since replacing α by −α and x by −x then
gives the result for α→ −∞.

The proof consists of two parts. Firstly, we rewrite the polynomial as a constant times the
determinant of a matrix. Secondly, we derive the asymptotic behavior of all entries in this
matrix to obtain the limiting behavior of the determinant.

Consider the Wronskian involving Laguerre polynomials defined in (6.9). Using the Wron-
skian property (6.8) for h(x) = αx we have

Ω̂
(α)
µ,ν(αx)

α|µ|+|ν|
=

κ

αN
e−`(ν)αx Wr[L̂(α)

n1
(αx), . . . , L̂(α)

n`(µ)
(αx), eαxL̂(α)

m1
(−αx), . . . , eαxL̂(α)

m`(ν)
(−αx)]

(6.17)
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where

κ =
(−1)

`(ν)∑
i=1

mi

∆(nµ)∆(mν)
, N =

`(µ)∑
i=1

ni +

`(ν)∑
i=1

mi + `(µ)`(ν).

Next, we distribute the prefactor α−N over the Wronskian entries to write the right-hand side
of (6.17) as

κ e−`(ν)αx Wr

[
L̂

(α)
n1 (αx)

αn1
, . . . ,

L̂
(α)
n`(µ)

(αx)

αn`(µ)
,
eαxL̂

(α)
m1 (−αx)

αm1+`(µ)
, . . . ,

eαxL̂
(α)
m`(ν)

(−αx)

αm`(ν)+`(µ)

]
.

We can therefore write
Ω̂

(α)
µ,ν(αx)

α|µ|+|ν|
= κ ·

∣∣∣∣ A B
C D

∣∣∣∣
where A is a `(µ) × `(µ) square matrix and D is a `(ν) × `(ν) square matrix and where the
prefactor e−`(ν)αx is equally distributed over the last `(ν) columns. Explicitly, the entries of the
four matrices are given by

Aij =
di−1

dxi−1

L̂
(α)
nj (αx)

αnj
, 1 ≤ i, j ≤ `(µ),

Bi,j = e−αx
di−1

dxi−1

(
eαxL̂

(α)
mj (−αx)

αmj+`(µ)

)
, 1 ≤ i ≤ `(µ), 1 ≤ j ≤ `(ν),

Cij =
d`(µ)+i−1

dx`(µ)+i−1

L̂
(α)
nj (αx)

αnj
, 1 ≤ i ≤ `(ν), 1 ≤ j ≤ `(µ),

Di,j = e−αx
d`(µ)+i−1

dx`(µ)+i−1

(
eαxL̂

(α)
mj (−αx)

αmj+`(µ)

)
, 1 ≤ i, j ≤ `(ν).

We rewrite the entries Bij and Dij in a more convenient form. Namely, using (6.16), we have
that for all m ≥ 0

d

dx

(
eαx L̂(α)

m (−αx)
)

= α eαx L̂(α+1)
m (−αx)

and using this repeatedly yields

Bij =
L̂

(α+i−1)
mj (−αx)

αmj+`(µ)−i+1
, Dij =

L̂
(α+`(µ)+i−1)
mj (−αx)

αmj−i+1
.

We now intend to apply (6.13) to the individual matrix entries to find the asymptotic behaviour
of the determinant as α tends to infinity. The entries of A, B and C converge, namely

lim
α→∞

Aij =
di−1

dxi−1

(
(x− 1)nj

)
, (6.18)

lim
α→∞

Bij = 0, (6.19)

lim
α→∞

Cij =
d`(µ)+i−1

dx`(µ)+i−1

(
(x− 1)nj

)
. (6.20)

However, for i ≥ 2, one sees that the entries of Dij diverge as α → ∞. To counter this, we
perform row operations on the rows corresponding to the matrices C and D. Namely, we replace
row (i) in these matrices with

i−1∑
l=0

(−1)l
(
i− 1

l

)
αl row (i− l).
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This yields two new matrices C̃ and D̃; for C̃ it is only important that the entries are still
convergent as α → ∞, since they are linear combinations of the (convergent) entries of C, see
(6.20). Furthermore, we have

Ω̂
(α)
µ,ν(αx)

α|µ|+|ν|
= κ ·

∣∣∣∣ A B

C̃ D̃

∣∣∣∣ (6.21)

because row operations do not change a determinant. By Lemma 6.4 we obtain that the entries
of D̃ are given by

D̃i,j =
di−1

dxi−1

(
L̂

(α+`(µ))
mj (−αx)

αmj

)
and hence

lim
α→∞

D̃i,j =
di−1

dxi−1
((−x− 1)mj ) (6.22)

for 1 ≤ i, j ≤ `(ν). Now, by (6.19) and the fact that the entries of C̃ are convergent, we conclude
using (6.21) that

lim
α→∞

Ω̂
(α)
µ,ν(αx)

α|µ|+|ν|
=

(−1)

`(ν)∑
i=1

mi

∆(nµ)∆(mν)

(
lim
α→∞

det(A)
)(

lim
α→∞

det(D̃)
)
.

By (6.18) and (6.22) we have

lim
α→∞

det(A) = ∆(nµ)(x− 1)|µ|

lim
α→∞

det(D̃) = (−1)
∑
j mj∆(mν)(x+ 1)|ν|

which then directly implies (6.15), as desired.

Remark 6.5. As stated before, we have that Heλ has no real zeros if and only if λ is an
even partition, i.e., `(λ) is even and λ2i = λ2i−1 for all i = 1, 2 . . . , `(λ)/2. Similarly, for the
Wronskian involving Laguerre polynomials, see (6.4) or (6.10), it is proven in [22, 23] that there
are no zeros on the positive real line if and only if the parameter α and partitions µ and ν satisfy
an admissibility condition. Via (6.12) and (6.6), we can link both polynomials and therefore
both conditions should be comparable. Hence a combinatorial interpretation of the admissibility
condition in [22, 23] in terms of quotients seems reasonable, but is omitted here as it does not
fit in the scope of this paper.

7 Generalization to p-cores and p-quotients

The Hermite polynomials are characterized by the recurrence relation (1.2), or by the exponen-
tial generating function

∞∑
n=0

Hen(x)
tn

n!
= exp

(
tx− t2

2

)
.

In the previous sections we showed that the coefficients of Wronskian Hermite polynomials
can be understood in terms of the 2-core and 2-quotient of the associated partition. This
section is dedicated to showing how these results generalize if one considers the general family
of polynomials (qn)∞n=0 that have exponential generating function

∞∑
n=0

qn(x)
tn

n!
= exp

(
tx− tp

p

)
(7.1)
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for an integer p ≥ 2. Note that we omit the label p in the notation for clarity. These polynomials
satisfy the recurrence

qn(x) = xqn−1(x)− (n− 1)!

(n− p)!
qn−p(x) (7.2)

for n ≥ p, with initial conditions qn(x) = xn for all n < p, and have explicit expansion

qn(x) =

bn/pc∑
j=0

(−1)j
n!

j!(n− pj)! pj
xn−pj (7.3)

for any n ≥ 0. They are studied in the literature for various reasons. For p odd, the polynomials
play a role in the analysis of the rational solutions of the second and higher order Painlevé
equations [13, Section 2.7]. For any p ≥ 2, the polynomials are also known to be (p − 1)-
orthogonal polynomials [4] on the p-star

p−1⋃
l=0

[0,∞)× ωlp

where ωp is the pth root of unity. Note that in the case that p = 2, the 2-star is the union of the
positive and negative real line, that is the real line itself, which is the domain of orthogonality of
the Hermite polynomials. It is well-known that for arbitrary p the zeros of the polynomials qn
lie on the p-star. In fact, the polynomials qn have the symmetry qn(ωp x) = ωnp qn(x), which
can either be seen inductively from (7.2) or directly from (7.3).

Due to the specific form of the exponential generating function (7.1), we know that the
sequence (qn)∞n=0 is an Appell sequence, that is q′n(x) = nqn−1(x) for all n ≥ 1. In that context,
these polynomial sequences were studied in [7, Section 7.2]. In particular, the polynomials

qλ :=
Wr[qn1 , qn2 , . . . , qn`(λ)

]

∆(nλ)
(7.4)

were of interest, analogous to the Wronskian Hermite polynomials (1.1). Amongst others, the
specific form of the exponential generating function in (7.1) ensures that every qλ has integer
coefficients.

The remainder of this section is dedicated to showing how some of the results from the
previous sections for p = 2 can be generalized to arbitrary p ≥ 2. We give the necessary notions
in Section 7.1 and the results in Section 7.2.

7.1 p-cores and p-quotients

For our purposes, it is important that the notion of removing domino tiles for the p = 2 case
should be replaced by removing border strips of size p; these are skew Young diagrams that
have size p, are connected and do not contain any 2× 2 squares [38, 54]. We write γ ∈ Rp−(λ)
if γ is obtained by removing such a border strip of size p from the Young diagram of λ. For
any such border strip, let the height of the border strip ht(λ/γ) be the number of rows of
the skew Young diagram λ/γ minus one. More generally, if λ̄ is obtained from λ by removing
several border strips of size p consecutively, then htp(λ/λ̄) denotes the sum of the heights of the
removed border strips. Even if λ̄ can be obtained in multiple ways from λ by removing border
strips, htp(λ/λ̄) is well-defined in this way.

The p-core associated to partition λ is the partition λ̄ that is obtained after removing as many
border strips of size p as possible; this uniquely defines the p-core of a partition. Equivalently,
one can define the p-cores as all partitions whose hook lengths in the Young diagram are all not
divisible by p.
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On the other hand, the p-quotient is an ordered tuple µ = (µ0, µ1, . . . , µp−1) of partitions.
The set of all p-quotients forms the p-fold product lattice Yp with natural ordering ≤ inherited
from the product. The size of the p-quotient is naturally defined as |µ| =

∑
i|µi|, and for any

tuples µ, µ̃ ∈ Yp and integer j ≥ 0, we write µ̃ <j µ if and only if µ̃ ≤ µ and |µ̃| + j = |µ|; if
j = 1, we sometimes write µ̃l µ instead of <1.

For µ, ν ∈ Yp, the number of lattice paths from ν to µ is denoted by F
(p)
µ/ν and this number

is equal to

F
(p)
µ/ν =

(
|µ| − |ν|

|µ0| − |ν0|, |µ1| − |ν1|, . . . , |µp−1| − |νp−1|

) p−1∏
i=0

Fµi/νi .

We write F
(p)
µ instead of F

(p)
µ/∅ when ν = ∅ is the tuple of empty partitions.

The essential link between the notion of border strips and the p-quotient is the fact that λ̃
is obtained by removing a border strip of size p from λ if and only if the p-quotient µ̃ of λ̃ and
the p-quotient µ of λ satisfy µ̃ l µ. For the precise definitions of p-cores and p-quotients we
refer to [38, I.1 Ex. 8]. We note that the ordering of the partitions in a p-quotient is defined
up to cyclic transformations. For the case p = 2 we required that k ≥ 0, which uniquely defines
the precise order in the quotient. For a full-fledged generalization of the results in this paper to
the case of general p ≥ 2, one similarly needs to fix the ordering of the quotient. Nevertheless,
in this section we only generalize a subset of the results and the ordering is unimportant for
these results. Moreover, we note that just as for the construction of the 2-quotient described
in Section 2.2 when p = 2, the construction of the p-quotient is equivalent to the p-modular
decomposition of Maya diagrams given in [17].

Remark 7.1. The rational solutions of the fourth Painlevé equation are defined in terms of
Wronskian Hermite polynomials. The partitions that label these polynomials belong to two
separate classes. On the one hand one has the rectangular partitions (mn), which give rise to
the so-called generalized Hermite polynomials [10, 12, 41]. On the other hand one has the class
of partitions that give rise to the generalized Okamoto polynomials [14, 34, 46, 45, 40]; these
partitions are of the form

λ = (m+ 2n,m+ 2n− 2, . . . ,m+ 2,m,m,m− 1,m− 1, . . . , 1, 1) or

λ = (m+ 2n− 1,m+ 2n− 3, . . . ,m+ 1,m,m,m− 1,m− 1, . . . , 1, 1).

These partitions are precisely the 3-cores [44]. This observation can also be drawn when inter-
preting the results in [17] in terms of partitions.

7.2 Generalized results

Most of the results from the main section for the Hermite p = 2 case generalize to arbitrary
p ≥ 2. We omit the proofs of these results, since they follow directly from generalizing the
proofs in the previous sections. This is all based on the fact that the Wronskian polynomials
defined in (7.4) satisfy the generating recurrence

Fλqλ =
x

|λ|
Fλq

′
λ +

(|λ| − 1)!

(|λ| − r)!
∑
µ̃lµ

(−1)ht(λ/λ̃)Fλ̃qλ̃ (7.5)

with µ ∈ Yp being the p-quotient of λ and µ̃ ∈ Yp the p-quotient of λ̃. This result follows from
interpreting the generating recurrence from [7, Section 7.2] in terms of cores and quotients. In
particular, this implies that one has a similar factorization as that given in Theorem 3.1. For
this, we generalize the notion of Hodd(λ) when p = 2, which is the product of all odd hook
lengths in the Young diagram of λ, to the notion of Hnon-p-fold(λ), which is the product of all
hook lengths that are not a multiple of p.
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Theorem 7.2. For any p ≥ 2 and any partition λ with p-core λ̄ and p-quotient µ ∈ Yp we have

qλ(x) = x|λ̄|Rλ(xp) (7.6)

where Rλ is a monic polynomial of degree |µ| with non-vanishing constant coefficient

Rλ(0) = (−1)hλ
Hnon-p-fold(λ)

H(λ̄)

where hλ = htp(λ/λ̄) + (|λ| − |λ̄|)/p.

Again, we call Rλ the remainder polynomial and we omit the dependency on p from
the notation. As in Section 3, we have the following two corollaries. The first one uses
the fact that qλ(x) ∈ Z[x] for any partition λ, while the other one is based on the identity

qλ(x) = ω
|λ|
p qλ′(ω

−1
p x) for ωp = − exp(iπ/p); see [7, Section 7.2].

Corollary 7.3. For any integer p ≥ 2 and for any partition λ with p-core λ̄ we have

Hnon-p-fold(λ)

H(λ̄)
∈ Z.

Corollary 7.4. For any p ≥ 2 and any partition λ with p-quotient µ ∈ Yp we have

Rλ(x) = (−1)(p−1)|µ|Rλ′
(
(−1)p−1x

)
where λ′ denotes the conjugate partition to λ.

We expand the remainder polynomial as

Rλ(x) =

|µ|∑
j=0

rλ,j x
|µ|−j (7.7)

and, by (7.5), the recurrence for the coefficients becomes

Fλrλ,j = − |λ|!
pj(|λ| − p)!

∑
µ̃lµ

(−1)htp(λ/λ̃)Fλ̃ rλ̃,j−1 (7.8)

where again µ̃ ∈ Yp and µ ∈ Yp are the p-quotients of λ̃ and λ, respectively, and j = 0, 1, . . . , |µ|.
The relation (7.8) generates all coefficients of the remainder polynomial if one takes into account
that rλ,0 = 1 for all λ. In fact, applying (7.8) recursively j times yields the explicit expansion
for the Wronskian polynomials stated in the following theorem. It should be compared to (7.3)
and it naturally generalizes Theorem 4.2 using the character values of cycle type (pj , 1|λ|−pj).

Theorem 7.5. For any partition λ we have

Fλqλ(x) =

b|λ|/pc∑
j=0

(−1)j
|λ|!

j!(|λ| − pj)!pj
ap(λ, j)x

|λ|−pj (7.9)

with ap(λ, j) being the character of the conjugacy class of the cycle type (pj , 1|λ|−pj) of the
irreducible representation associated to the partition λ of the symmetric group S|λ|.

Remark 7.6. In [7], it was shown that the average of the Wronskian polynomials with respect
to the Plancherel measure is simply the monomial; that is∑

λ`n

F 2
λ

n!
qλ(x) = xn.

As in Remark 4.3, this result is also equivalent to the orthogonality of characters, but now those
evaluated in cycle types (pj , 1n−pj).
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Theorem 4.4 also has an analogue for general p ≥ 2.

Theorem 7.7. Let λ be a partition with p-quotient µ ∈ Yp. Then the coefficients of the
remainder polynomial Rλ, defined in (7.6) and (7.7), are given by

rλ,j = (−1)j
(
|µ|
j

) ∑
µ̃<jµ

(−1)htp(λ/λ̃)
F

(p)
µ̃,ν̃ F

(p)
(µ,ν)/(µ̃,ν̃)

F
(p)
µ,ν

Hnon-p-fold(λ)

Hnon-p-fold(λ̃)
(7.10)

for j = 0, 1, . . . , |µ|, and where the partition λ̃ has p-quotient µ̃ ∈ Yp and the same p-core as λ.

Remark 7.8. In this section, we have shown how the results from the previous section extend
from p = 2 to p ≥ 2. However, for p = 1, all the results trivialize. Namely, if p = 1, the
exponential generating function (7.1) defines qn(x) = (x− 1)n for all n ≥ 0. This then leads to
the fact that qλ(x) = (x−1)|λ| for all λ. Everything trivializes since the 1-core of every partition
is the empty partition, and the 1-quotient is the partition itself. For example, the coefficients
in (7.10) are the coefficients of the binomial expansion of (x− 1)|λ| when p = 1.

8 Conclusion and further research

In this paper we have given a combinatorial interpretation for the coefficients of Wronskian
Hermite polynomials with the core and quotient representation of a partition as the main
ingredient. The framework elaborates the fact that the polynomial properties are directly
related to aspects of the associated partition. We believe that this is further evidence that the
use of partitions is the most convenient and elegant way to treat these polynomials, and their
natural generalizations.

An open problem for Wronskian Hermite polynomials concerns the multiplicity of the zeros.
Veselov conjectured that all zeros not at the origin must be simple [24], and it was known that
the multiplicity at the origin is a triangular number. The latter statement is now proven by
Theorem 3.1. Moreover, Veselov’s conjecture is now equivalent to stating that the remainder
polynomial Rλ has simple zeros. A possible way of approaching the conjecture is by showing
that the discriminant of Rλ is always non-zero. We believe that it is natural to study this
question in terms of cores and quotients. According to Theorem 4.9, we have that for a fixed
quotient (µ, ν), the coefficients of HeΦ(µ,ν,k) are polynomials in k, where k is the length of the
core. This means that for a fixed quotient, the discriminant of RΦ(µ,ν,k) is also polynomial in k,
and therefore has finitely many zeros. Numerical evidence suggests that the values of k where
the discriminant of RΦ(µ,ν,k) is zero are non-integer values, and so the truth of this statement
for every quotient (µ, ν) would prove Veselov’s conjecture. In fact, we believe that the values
of k where the discriminant of RΦ(µ,ν,k) is zero precisely coincide with the values of k where the
Wronskian involving Laguerre polynomial (6.4) has non-simple zeros, based on Proposition 6.1
and Corollary 6.2. A possible starting point is the work of [51] where the author derived
explicit expressions for the discriminant of Yablonskii-Vorobiev and other polynomials related
to rational solutions of Painlevé equations. However, these solutions are always associated to
specific choices of partitions and the method in [51] does not naively extend to all Wronskian
Hermite polynomials.

In Section 7, we showed that many of the results that hold for Wronskian Hermite polyno-
mial extend to the Wronskian polynomials associated to polynomial sequences satisfying (7.1).
However, we have not generalized all results available for the Hermite p = 2 case. In principle,
this is due to the fact that a description of a partition in terms of a 2-core and a 2-quotient is
significantly easier than the description in terms of a p-core and a p-quotient. First of all, a 2-
core is described by the one parameter k that we used throughout this article; a p-core depends
on p−1 parameters, that one might suitably label k1, k2, . . . , kp−1. At this moment, it is unclear
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how to do this precisely. Secondly, as mentioned in Section 7, the ordering of the quotient is
usually only defined up to cyclic transformation. For p = 2, we fixed the ordering by requiring
that k ≥ 0. Many of the results we have for Wronskian Hermite polynomials depend on the
specific ordering of the 2-quotient (µ, ν); for example, the asymptotic result in Theorem 5.1 is
not symmetric in interchanging µ and ν. Therefore, it is expected that generalizations of these
results also depend on the way the ordering is fixed. Writing down the natural way of doing
this in this context is part of our future work.

Another related research problem is to describe the exact location of the zeros of the
Wronksian Hermite polynomials. In Section 5.2, we observed that when the size of the core is
sufficiently large, then the location of the zeros of the remainder polynomial are related to the
quotient partitions in the way shown in Figure 9. More detailed studies should help us to gain
an understanding of how the zeros behave as the core size increases. Again, we anticipate that
cores, quotients and Maya diagrams of partitions will play a key rôle in this aspect of the story.

According to Theorem 4.2, the coefficients of Wronskian Hermite polynomials are connected
to the characters of irreducible representations of the symmetric group. Specifically, one needs
the characters evaluated in cycle types of the form (2j , 1n−2j). In Theorem 7.5 we showed how
the characters evaluated in the cycle types (pj , 1n−pj) appear in Wronskian Appell polynomials.
A natural question to ask is whether Wronskians of other polynomials give information about
the characters evaluated in the remaining cycle types.

A Appendix

A.1 Combinatorial identity

The following identity is used in the proof of Property 4.16.

Lemma A.1. Let x1, x2, . . . , xn be n pairwise different complex numbers, then

n∑
j=1

xj(xj − 1)
∏
i 6=j

xj − xi − 2

xj − xi
=

n∑
j=1

(xj − n+ j)(xj − n− j + 1). (A.1)

Proof. As a preliminary step we find that expanding the right-hand side of (A.1) gives

n∑
j=1

(xj − n+ j)(xj − n− j + 1) =

n∑
j=1

(
x2
j + (1− 2n)xj

)
+

2

3
n3 − n2 +

1

3
n. (A.2)

We approach by induction on n and show that the left-hand side of (A.1) equals the right-hand
side of (A.2). For n = 1 the equality is trivial and so we take n > 1. We claim that the left-hand
side of (A.1) equals

x2
n + (1− 2n)xn + 2(n− 1)2 − 2

n−1∑
i=1

xi +
n−1∑
j=1

xj(xj − 1)
n−1∏
i=1
i 6=j

xj − xi − 2

xj − xi
(A.3)

such that the required result follows if we apply the induction hypothesis to the last term
of (A.3). So we only need to prove this claim.

Extracting the last term of the sum in the left-hand side of (A.1) gives

n−1∑
j=1

xj(xj − 1)

n∏
i=1
i 6=j

xj − xi − 2

xj − xi
+ xn(xn − 1)

n−1∏
i=1

xn − xi − 2

xn − xi
. (A.4)
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We now consider xn as a variable and derive the partial fractal decomposition of the last term
in (A.4) in the form

xn(xn − 1)
n−1∏
i=1

xn − xi − 2

xn − xi
= Bx2

n + Cxn +D +
n−1∑
j=1

Aj
xn − xj

(A.5)

for some constants B,C and D, where

Aj = xj(xj − 1)

n−1∏
i=1

xj − xi − 2

n−1∏
i=1
i 6=j

xj − xi
= −2xj(xj − 1)

n−1∏
i=1
i 6=j

xj − xi − 2

xj − xi
(A.6)

for j = 1, 2, . . . , n−1. Adding the term i = n to the last product of (A.6) and using the equality

−2

xj − xn − 2
= 1− xj − xn

xj − xn − 2

yields

Aj = (xj − xn)xj(xj − 1)

 n∏
i=1
i 6=j

xj − xi − 2

xj − xi
−
n−1∏
i=1
i 6=j

xj − xi − 2

xj − xi


for j = 1, 2, . . . , n− 1. To derive the constants B,C and D in (A.5), we expand the product

n−1∏
i=1

xn − xi − 2

xn − xi
= 1− 2

n−1∑
i=1

1

xn − xi
+ 4

∑
1≤i<j≤n−1

1

(xn − xi)(xn − xj)
+O

(
x−3
n

)
such that after some elementary calculations we find that

B = 1, C = 1− 2n, D = 2(n− 1)2 − 2
n−1∑
i=1

xi.

Therefore we have that the partial fraction decomposition is given by

xn(xn − 1)
n−1∏
i=1

xn − xi − 2

xn − xi
= x2

n + (1− 2n)xn + 2(n− 1)2 − 2
n−1∑
i=1

xi

+
n−1∑
j=1

xj(xj − 1)
n−1∏
i=1
i 6=j

xj − xi − 2

xj − xi
−
n−1∑
j=1

xj(xj − 1)

n∏
i=1
i 6=j

xj − xi − 2

xj − xi
. (A.7)

Hence the claim follows from plugging (A.7) into (A.4) to obtain (A.3).

A.2 Leading coefficients of Wronskian Appell polynomials

In this section we extend the result of Proposition 4.16 to Wronskian Appell polynomials [7].
An Appell sequence (An)∞n=0 is a polynomial sequence satisfying A′n = nAn for all n ≥ 1 and
A0 ≡ 1. From this definition it immediately follows that there is a set of constants (zj)

∞
j=0 with

z0 = 1 such that

An(x) =

n∑
j=0

(
n

j

)
zj x

n−j
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for all n ≥ 0. In particular, An(0) = zn. Wronskian Appell polynomials are then defined by

Aλ(x) :=
Wr[An1 , An2 , . . . , An`(λ)

]

∆(nλ)

for any partition λ. This is in line with the definition of Wronskian Hermite polynomials (1.1).
In the Hermite setting we have z1 = 0 and z2 = −1. We give an explicit expression for the first
three coefficients of Wronskian Appell polynomials in terms of the above constants z1 and z2,
which agree with the results for Wronskian Hermite polynomials in Section 4 when we set z1 = 0
and z2 = −1.

Proposition A.2. For any partition λ ` n we have

Aλ(x) = xn +

(
n

1

)
z1x

n−1 +

(
c(λ)(z2 − z2

1) +

(
n

2

)
z2

1

)
xn−2 +O(xn−3) (A.8)

where the content c(λ) is defined in (4.21).

Proof. For any partition λ ` n we denote the subleading and subsubleading coefficients of Aλ
by aλ,1 and aλ,2, respectively. In other words, we have

Aλ(x) := xn + aλ,1x
n−1 + aλ,2x

n−2 +O(xn−3) (A.9)

and we recall that Aλ is a monic polynomial by definition. Trivially, the derivative is

A′λ(x) = nxn−1 + (n− 1)aλ,1x
n−2 + (n− 2)aλ,2x

n−3 +O(xn−4). (A.10)

We now prove (A.8) by induction on n := |λ|. A simple calculation from the definition gives

A∅(x) = 1 A(1)(x) = x+ z1

A(2)(x) = x2 + 2z1x+ z2 A(1,1)(x) = x2 + 2z1x+ 2z2
1 − z2

and so (A.8) holds for n ≤ 2. Therefore take n > 2, assume that the identity is true for
all partitions µ such that |µ| < n, and let λ ` n. The derivative of the Wronskian Appell
polynomial is given by

FλA
′
λ(x) = n

∑
µlλ

FµAµ(x) (A.11)

for all λ, see [7, Theorem 5.1]. We plug (A.10) into the left-hand side of (A.11) and (A.9) for
every µ on the right-hand side of (A.11), then match the coefficients of the leading terms to
obtain

Fλ(n− 1) aλ,1 = n
∑
µlλ

Fµ aµ,1, Fλ(n− 2) aλ,2 = n
∑
µlλ

Fµ aµ,2.

We now apply the induction hypothesis, which says that for every µl λ we have

aµ,1 = (n− 1)z1 aµ,2 = c(µ)(z2 − z2
1) +

(
n− 1

2

)
z2

1

to obtain

Fλaλ,1 = nz1

∑
µlλ

Fµ, Fλaλ,2 =
n

n− 2
(z2 − z2

1)
∑
µlλ

Fµ c(µ) +

(
n

2

)
z2

1

∑
µlλ

Fµ.

The result follows immediately from the combinatorial identities∑
µlλ

Fµ = Fλ,
∑
µlλ

Fµ c(µ) =
n− 2

n
Fλ c(λ). (A.12)

The first identity is trivial while the second one is proven in Corollary A.4.
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All that is now left to prove is the second identity in (A.12). This identity follows from the
following result.

Lemma A.3. For any partition λ we have

Fλ c(λ) =

(
|λ|
2

)
(Fλ/(2) − Fλ/(1,1)) (A.13)

where c(λ) is defined in (4.21).

Proof. For any partition λ, the associated Wronskian Appell polynomial is given by

FλAλ(x) =

|λ|∑
j=0

(
|λ|
j

)∑
µ`j

Fµ Fλ/µ zµ x
|λ|−j

where zµ := Aµ(0), see [7, Section 5.1]. For Hermite polynomials we have z1 = 0 and z2 = −1. If
we therefore specify to Wronskian Hermite polynomials, the coefficient corresponding to x|λ|−2

equals (
|λ|
2

)(
−Fλ/(2) + Fλ/(1,1)

)
because z(2) = −1 and z(1,1) = 1. In terms of the remainder polynomial, this coefficient is by
definition equal to Fλrλ,1. However, by Proposition 4.16 we know that rλ,1 = −c(λ). Combining
both expressions yields the result.

Corollary A.4. For any partition λ we have

|λ|
∑
µlλ

Fµ c(µ) = (|λ| − 2)Fλ c(λ)

where c(λ) is defined in (4.21).

Proof. Applying (A.13) to all partitions µl λ yields

|λ|
∑
µlλ

Fµ c(µ) = |λ|
(
|λ| − 1

2

)∑
µlλ

(Fµ/(2) − Fµ/(1,1)).

Since trivially
∑

µlλ Fµ/ν = Fλ/ν for any ν, we therefore obtain

|λ|
∑
µlλ

Fµ c(µ) = |λ|
(
|λ| − 1

2

)
(Fλ/(2) − Fλ/(1,1)) = (|λ| − 2)Fλ c(λ)

where to obtain the last equality we again used (A.13).
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[1] Adler V.É., A modification of Crum’s method, Theoretical and Mathematical Physics 101 (1994), 1381–
1386.
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ory and Numerical Analysis, number 39, CRM Proceedings & Lecture Notes, pages 103–118, American
Mathematical Society, 2005.

[13] Clarkson P.A., Special polynomials associated with rational solutions of the Painlevé equations and appli-
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