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Abstract  
Over the past twenty years, GPS collars have emerged as powerful tools for the study of 

nonhuman primate (hereafter, "primate") movement ecology. As the size and cost of GPS collars 

have decreased and performance has improved, it is timely to review the use and success of GPS 

collar deployments on primates to date. Here we compile data on deployments and performance 

of GPS collars by brand and examine how these relate to characteristics of the primate species 

and field contexts in which they were deployed. The compiled results of 179 GPS collar 

deployments across 17 species by 16 research teams show these technologies can provide 

advantages, particularly in adding to the quality, quantity, and temporal span of data collection. 

However, aspects of this technology still require substantial improvement in order to make 

deployment on many primate species pragmatic economically. In particular, current limitations 

regarding battery lifespan relative to collar weight, the efficacy of remote drop-off mechanisms, 

and the ability to remotely retrieve data need to be addressed before the technology is likely to be 

widely adopted. Moreover, despite the increasing utility of GPS collars in the field, they remain 

substantially more expensive than VHF collars and tracking via handheld GPS units, and cost 

considerations of GPS collars may limit sample sizes and thereby the strength of inferences. Still, 

the overall high quality and quantity of data obtained, combined with the reduced need for on-

the-ground tracking by field personnel, may help defray the high equipment cost. We argue that 

primatologists armed with the information in this review have much to gain from the recent, 

substantial improvements in GPS collar technology. 
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Introduction 

Over the last twenty years, Global Positioning System (GPS) telemetry collars have significantly 

improved the availability and accuracy of animal location data, consequently improving our 

understanding of animal behavior and ecology (Cagnacci et al. 2010; Kays et al. 2015). These 

devices can now often acquire GPS data and establish location of collar position with high 

precision even in challenging field conditions (Moriarty and Epps 2015). In addition, GPS 

collars have become more affordable, lighter, and smaller, making them potentially valuable 

tools for researchers who work with small-bodied, semi-terrestrial, arboreal, cryptic, or nocturnal 

species (Blackie 2010; Recio et al. 2011; Forin-Wiart et al. 2015; Stark et al. 2017). For 

primatologists, these factors have made it possible to extend the use of GPS technology beyond 

large (6.5-25+kg), terrestrial species living in open savanna such as baboons (Markham and 

Altmann 2008; Markham et al. 2013, 2015) to much smaller (2.5-6.5kg), arboreal, or semi-

arboreal species such as long-tailed macaques, vervet monkeys, and ring-tailed lemurs (Parga 

2011; Dore et al. 2015; Klegarth et al. 2017a,b). 

 

Radio tags have been used to facilitate the tracking of animal movements since the 1960s (Lord 

et al. 1962). The use of this technology in primatology grew in popularity in the 1980s and 1990s 

(e.g. Bearder and Martin 1980; Campbell and Sussman 1994; Fedigan et al. 1988), but data from 

this time period are sparse because of the intensive manual labor required to find animals and 

record locations using very high frequency (VHF) devices (Kays et al. 2015). While VHF 

devices continue to be deployed by primatologists due to their cost effectiveness, small size, and 

low weight (e.g. Gursky 2000), GPS telemetry has become an increasingly common technique to 

locate and follow primates. Scholars first used GPS collar technology in the 1970s (e.g. 



 

Craighead et al. 1972), and primatologists specifically began using the technology with larger-

bodied primates in the 2000s (baboons: Henzi et al. 2011; Markham and Altmann 2008; Segal 

2008; chimpanzees: Humle et al. 2010; Japanese macaques: Sprague et al. 2004; Takenoshita et 

al. 2005; and snub-nosed monkeys: Ren et al. 2008). GPS technology has provided researchers 

with advanced research capabilities. With GPS collars, it is now possible to obtain 

spatiotemporal data automatically and in a prescheduled manner, facilitating investigations in 

areas and at times where obtaining animal location data was previously challenging or 

impossible. That is, GPS collars can facilitate the systematic collection of location data that are 

less constrained by topography and surrounding vegetation, which can limit the ability of 

observers to follow animals and record positions directly, providing more reliable data (García-

Toro et al. 2019). Devices are now also able to collect data on variables such as temperature and 

elevation, and data analysis programs can calculate distance between GPS coordinates, which 

can provide information about speed, periods of activity vs. inactivity as well as elucidate 

nocturnal activity in diurnal species (e.g. Isbell et al. 2017). Additionally, with GPS collars, 

animals are free to move without the influence of observer presence, which can affect their 

ranging behavior (although the collars themselves may also influence ranging behavior; see 

Discussion). GPS technology also allows for the collection of high-resolution data at very short 

individuals, tracking animals in areas not possible on foot, the ability to track unhabituated 

animals, the simultaneous collection of high-resolution data from multiple individuals, and the 

ability to obtain data on individual animals’ decision-making processes (e.g. Kays et al. 2015; 

Strandburg-Peshkin et al. 2015). 

 

Because many species of primates are arboreal, GPS units deployed on the body of the animal 



 

(as opposed to being carried by an observer on the ground) can improve satellite reception and 

collect more accurate positional fixes. Fix acquisition and location accuracy is dependent on 

many factors such as canopy cover, terrain, time of day, weather conditions, and vertical 

movement patterns of the study species. Positional dilution of precision (PDOP) values assess fix 

accuracy; values range from 1.0 to 99.9, with lower numbers indicating wider satellite spacing 

and thus improved location accuracy. GPS collars also record horizontal dilution of precision 

(HDOP), which also ranges from 1.0 to 99.9, with lower numbers indicating lower error due to 

satellite height (Moen et al. 1996; Pebsworth et al. 2012a). Researchers often choose to remove 

fixes with high PDOP values to improve fix accuracy; more accurate GPS collars can thus lead 

to significantly more data. Recent advances in GPS collar technology also include activity 

sensors, such as accelerometers. Activity sensors are quite common in human activity studies 

(Huang et al. 2018) but have only recently been incorporated in wildlife GPS collars 

(McClintock and Michelot 2018; Pebsworth et al. 2012a). With advances in activity sensor 

techniques and the development of methods for activity data analysis, our ability to investigate 

certain types of behavior (e.g. ranging, habitat use, activity patterns) remotely will continue to 

increase and thus lead to significantly more usable data, improving our capability to test more 

precise hypotheses.  

 

There are always risks associated with methods that allow GPS collars to be attached to primate 

study subjects. Important factors to consider include harm to animals as a result of darting or 

trapping (de Ruiter 1992), skin lesions or infections from collar wear (Müller and Schildger 

1994; Anderson 2017; Klegarth et al. In press), collar impacts on behavior (e.g. activity patterns, 

ranging, foraging, infants’ nursing) (Coughlin and van Heezik 2015), or the possibility of 



 

rejection from the troop (this is more likely to occur when the animal is removed from the group 

for a period of time, see de Ruiter 1992 and Juarez et al. 2011). Collars also pose an energetic 

cost to the animal, which may not be inconsequential. Fortunately, most VHF and GPS telemetry 

studies on primates report normative behavior and healthy animals post-collaring (e.g. Gursky 

1998; Blakie 2010; Juarez et al. 2011; Pebsworth et al. 2012a; Matthews et al. 2013; Kenyon et 

al. 2015; Evans et al. 2016; Klegarth et al. 2017a,b; Hansen et al. in prep). However, there may 

be a lack of reporting of negative and deleterious effects. 

 

Many investigations of primate behavior now feature the use of GPS technology (e.g. Ren et al. 

2008; Humle et al. 2011; Parga 2011; Klegarth et al. 2017a,b; Koch et al. 2016; Springer et al. 

2016; Springer et al. 2017), yet the focus of these studies is rarely on the functionality of the 

devices themselves (but see Sprague et al. 2004; Pebsworth et al. 2012a; Kenyon et al. 2015; 

Isbell et al. 2019). This leaves primatologists without reliable guidance related to choosing the 

appropriate device, overall device performance, and the benefits and drawbacks of different 

devices with regard to data collection, collar and data retrieval, collar refurbishment, and animal 

welfare. GPS collar field tests on primates only began in the past decade and a half (Sprague et 

al. 2004) and have only recently expanded as the size and cost of GPS collar units have 

decreased. In addition to the fact that many publications only touch on GPS collar performance 

issues, the results of failed field tests largely go unpublished. 

 

In this paper, we review GPS collar deployments and unit performance in studies of primates. 

While GPS collar performance will always be dependent on site- and species-specific variables, 

our compiled dataset will serve as a reference point for primatologists interested in utilizing GPS 



 

collars in their research programs. The dataset includes strepsirrhines, both Old and New World 

monkeys, as well as gibbons and chimpanzees (Pan troglodytes). Deployments occurred in 

research colonies as well as on free-ranging animals across a diverse range of habitats including 

open savannah, Mediterranean scrub, fragmented forested landscapes, rainforests, and heavily 

urban areas. We outline the range of primate taxa on which GPS collars have been deployed, 

provide an overview of GPS collar manufacturers and collar capabilities, and summarize crucial 

performance statistics to compare models as best as possible across this diverse dataset. While 

most relevant to researchers considering GPS collars for use on primates, GPS manufacturers 

and individuals interested in collaring non-primate taxa living in similar ecological conditions 

will also benefit from this comprehensive review. 

 

Methods 

Specific details regarding individual collar deployments can be found within the publications 

referenced and authors cited in Table 1. In addition to published data, we also reviewed 

conference proceedings from 2000-2017 and solicited unpublished information on GPS collar 

deployments by reaching out to individual authors via email. We collected data for this review 

within three primary categories: 1) primate study subject characteristics, 2) collar, programming, 

and deployment specifications, and 3) GPS collar performance. Subject characteristics included 

species, age class, sex class, and weight (kg) for each GPS-collared individual. Collar, 

programming, and deployment specifications included collar manufacturer, collar model, 

locational fix schedule, collar weight (g), drop-off type (if any), deployment length (we define 

deployment length as the time the device was on the animal, which may or may not coincide 

with battery life), and the total number of attempted fixes. GPS collar performance data included 



 

the total number of acquired fixes, the total number of 3D (high quality) fixes, the average time 

to fix (TTF), the mean number of satellites connected per fix, the average horizontal dilution of 

precision (HDOP), drop-off functionality, and battery life. From these data we calculated the 

mean ratio of collar:animal weight by species in addition to an overall fix success rate (FSR) and 

a 3D FSR. 



 

Table 1. Summary of GPS collar deployments on NHPs 1 

Species Brand Model 

Collar:Animal 

Weight (%) ± Stdev* Study 

Habitat Type** 

Type/Season    .     Canopy 

 

Lemur catta 
Telemetry 

Solutions 

Quantum 

4000 Medium 

 

 

3.08 
Parga 2011 

Semi-tropical 

Mixed Forest 

Year-round 

 

Open to Moderate 

Propithecus 

verreauxi 

e-Obs Digital 

Telemetry 
Collar 1A  

 

 

2.38±0.25 

Koch et al. 

2016, Springer 

et al. 2016, 

Springer & 

Kappeler 2017 

Dry Deciduous 

Forest 

Year-round 

 

 Moderate to heavy  

Ateles belzebuth 
Telemetry 

Solutions 

Quantum 

4000 Medium 

 

 

1.50±0.05 

Di Fiore and 

Link 2013 

Tropical 

Rainforest, 

Year-round 

 

Heavy 

Ateles geoffroyi 
e-Obs Digital 

Telemetry 
Collar 1C 

 

 

2 

 

Campbell pers. 

comm.;  

Lowland  

Tropical 

Forest 

Dry season 

 

Moderate to heavy 

Ateles hybridus 
Telemetry 

Solutions 

Quantum 

4000 Medium 

 

2.10±0.29 Di Fiore and 

Link 2013 

Tropical 

Rainforest 

Year-round 

 

Heavy 

Lagothrix 

lagotricha 

Telemetry 

Solutions 

Quantum 

4000 Medium 

 

1.93±0.23 Di Fiore and 

Link 2013 

Tropical 

Rainforest 

Year-round 

 

Heavy 

       



 

Chlorocebus 

sabaeus 
Tellus Ultra-light 

 

5.0 
Dore et al. 

2015 

Mixed 

 

 

Open to heavy 

Macaca fascicularis 

 

Telemetry 

Solutions 

 

Quantum 

4000 Medium 

 

 

1.81±0.23 

 

1.57±0.25 

 

Klegarth et al. 

2017; Stark 

(pers. comm.); 

Tan (pers. 

comm.) 

 

Tropical 

rainforest with 

Riparian Areas 

Dry and Wet 

Season 

 

 

Open to heavy 

Macaca fascicularis Tellus Micro 

 

 

 

1.57±0.25 
     Hansen et 

al. in prep 

 

Tropical Semi-

arid Mixed 

Habitats 

Dry and Wet 

Season 

 

 

 

Open to Moderate 

Macaca fuscata Televilt Porsec 120 

 

3.08 

 
Sprague 2004 

Mixed rural, 

including 

broadleaf 

forest 

Open to Moderate 

Macaca mulatta Tellus Ultra-light 

 

 

3.33 
Anderson et al. 

2017 

Subtropical 

Swamp and 

Forest 

Dec-Feb 

 

Moderate 

Macaca sylvanus 
Telemetry 

Solutions 

Quantum 

4000 Medium 

 

1.50±0.01 Klegarth et al. 

2017 

Subtropical 

Mediterranean 

Dry and Wet 

Season 

Open-light scrub 

coverage with 

extensive cliffs and 

rocky outcroppings 

Nasalis larvatus 
e-Obs Digital 

Telemetry 

Collar 1C-

Light 

 

1.08±0.24 

 

Stark et al. 

2017 

Riparian 

Forest, 

Moderate 



 

Plantation 

Year-round 

Nasalis larvatus Lotek WildCell SD 

 

 

1.81±0.69 

 

 

Stark et al. 

2017 

Riparian 

Forest, 

Plantation 

Year-round 

 

Moderate 

       

Papio 

cyncocephalus 

Advanced 

Telemetry 

Systems 

G2110B 

 

 

1.90±0.44 Markham et al. 

2013 

    Semi-arid 

Savannah and 

Woodlands 

Apr-Aug 

Wet and Dry 

seasons 

 

 

Open to Moderate 

Papio ursinus 

Advanced 

Telemetry 

Systems 

G2110B 

 

 

 

2.28 

Pebsworth, 

Morgan et al. 

2012; 

Pebsworth, 

MacIntosh et 

al. 2012 

 

Afro-Montane 

Forest, 

Fynbos, Mixed 

Forest, 

Agriculture 

Year-round 

 

 

Open to Moderate 

Rhinopithecus 

roxellana 
Lotek 7000SLU 

 

 

2.62±0.44 
Qi et al. 2014 

Semi-humid 

Temperate 

Cold Mixed 

Forest 

Year-round 

 

 

Moderate 

Nomascus 

gabriellae 
Lotek WildCell 

 

3.54 Kenyon et al. 

2015 

Lowland 

Mixed Forest 

Wet season 

 

 

Heavy 



 

Pan troglodytes Telonics 
TWG-4500; 

TWG4580 

- 

Humle et al. 

2011 

Mixed Forest, 

Mixed 

Savannah 

Year-round 

Open to Moderate 

* Depending on age class of animal, see summary of age classes in text. **Canopy cover is characterized as none, open, moderate, 2 

and heavy. 3 

 4 



 

Table 1 also includes information on habitat type as reported by each contributing author on their 

study site. Researchers were queried on habitat type, the season(s) during deployment, as well as 

the degree of canopy cover. This information is meant to contextualize the environmental 

conditions surrounding each deployment. Given the vast range of species and habitats and the 

somewhat subjective nature of this reporting, habitat data are provided primarily as a resource 

for researchers exploring the use of GPS collars on primates in the future. 

 

Ethical Note 

All studies were carried out under each author’s respective Institutional Animal Care and Use 

Committee approved protocols (provided in the Acknowledgements). 

 

Data Accessibility 

We have an included a supplemental file with all of our data. 



 

Results 

Subject Characteristics 

The dataset comprises information on 179 individual GPS collar deployments by 16 research 

groups on 17 primate species between 2004 and 2018 (Figure 1). Study subjects included two 

species of strepsirrhines, five species of New World Monkeys, eight species of Old World 

Monkeys, one species of gibbon, and one great ape (Table 1). Of these, the vast majority (93.3%) 

of devices were deployed on adult animals. Only seven species included GPS collar deployments 

on subadults (6.7%) owing in part to limitations in the collar:animal weight ratios, trade-offs 

between collar weight and battery life, and the need to ensure the animal does not outgrow the 

device in the case of drop-off failure. Dispersal patterns and research questions also limit 

appropriate age groups. Mean collar:animal weight ratios fell well-within the standard 

recommendation ≤5% of total body weight (Sikes 2016), ranging from a low of 1.08% to a high 

of 5.0% by species. 

 
Figure 1: Number of GPS collar deployments by species and age group 
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In terms of sex, there were almost equal numbers of studies that collared more females than 

males (N=8) and more males than females (N=9). One species (Ateles belzebuth), had an equal 

number of males and females collared. Across the entire dataset, GPS collars were more 

commonly deployed on males, with an overall male:female ratio of 1.0:0.6 (Figure 2).  Research 

questions, dispersal patterns, GPS collar availability, and funding all affected the choice of sex 

groups. Older studies (>5y) skew towards males strongly for smaller-bodied species such as 

vervets and long-tailed macaques and for some GPS collar brands owing to size limitations and 

sexual dimorphism where males are larger than females (Fooden 2006; Turner et al. 1997). An 

exception to GPS collar deployments favoring males in smaller bodied primates occurred with 

ring-tailed lemurs, where the ratio favored females (Parga 2011; Parga unpublished data) and 

little sexual dimorphism exists within the species (Kappeler 1991). Newer studies (<5y) have had 

greater GPS collar availability, as brands and models are expanding, and scholars have had 

greater opportunities to choose a device based on their specific research questions (e.g. a newer 

long-tailed macaque study; Hansen et al., in prep). 

 



 

 
Figure 2: Number of GPS collar deployments by species and sex, mean sex ratio (M:F) 1.5:0.6 

 

 

Collar, Programming, and Deployment 

The two collar brands most frequently deployed on primates were e-Obs Digital Telemetry (N = 

42) and Telemetry Solutions (N = 54). Telemetry Solutions were used by four independent 

research groups and e-Obs Digital Telemetry by three. Three independent research groups 

deployed Tellus collars (N=13). Advanced Telemetry Systems (N = 22), and Lotek (N = 26), 

collars were each deployed by two independent research groups. One research group deployed 

Telonics devices (N = 21). Several research groups only deployed a single unit (Televilt, Tellus 

Ultralight, e-Obs Digital Telemetry, Advanced Telemetry Systems, and Lotek). This is not an 

exhaustive review, and so there are collar manufacturers not included in the review. 
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All devices were placed on the necks of the animals (i.e. Figures 3 and 4), with the exception of 

Dore et al. (2015) (Chlorocebus sabaeus) and the Singapore’s National Parks Board (personal 

communication) (Macaca fascicularis) where the devices were placed around the animals’ waist 

like a belt (see Figure 5). This placement is suitable in situations where collars are too bulky to 

be worn comfortably around the neck; however, this style of deployment biases towards the use 

of male primates as subjects because of pregnancy concerns and thus may not be appropriate for 

certain research questions.



 

 1 

 2 
Figure 3: Savannah baboon (Papio cyncocephalus) with Advanced Telemetry Systems G2110B GPS collar attached around neck 3 
(credit Catherine Markham) 4 



 

 5 
Figure 4: Ring-tailed lemur (Lemur catta) with Telemetry Solutions Quantum 4000 Medium GPS collar attached around neck (credit 6 
Joyce Parga) 7 



 

 8 

 9 
Figure 5: Green monkey (Chlorocebus sabaeus) with Tellus Ultralight GPS collar attached around waist (credit Kerry Dore) 10 



 

 

In addition to collar placement, GPS collars varied by: weight, presence/absence of drop-off 

mechanisms, fix rate, amount of time deployed, and overall collar and drop-off unit performance. 

Collar weight ranged from 77-1100g, and drop-off units ranged in weight from 2-150g (Figure 

6). The majority of collars were programmed to take locational fixes at regular intervals either 

over a 24-hour period or split between daytime and nighttime scheduling. The most commonly 

programmed fix intervals were every 10-15 minutes (N = 40), 30 minutes (N = 51), 45 minutes 

(N = 12), 60 minutes (N = 37), and 120-180 minutes (N = 63). Some collars had two different fix 

schedules, alternating between a day and a night schedule. We counted these collars in both of 

their fix schedule intervals. A total of 25 deployments split their collar programming between 

daytime and nighttime fix acquisition schedules, 102 deployments took points over a continuous 

interval (e.g. every x minutes until battery death), and another 52 collars collected points only 

during the daytime period when primates were expected to be most active. Some exceptions to 

more standard fix acquisition programming included a collar programmed to record locations at 

five hour intervals (Kenyon et al. 2015), and collars programmed to take locational fixes and 

standard intervals several days a month and single daily points in between the high-fix days (Di 

Fiore and Link 2013).  

 



 

 
Figure 6: GPS collar weights by brand including drop-off units where applicable, and drop-off 

weights by brand. 

 

 

Regarding length of collar deployments, some lasted less than a single day, with a total of 8 GPS 

collars deployed for a week or less (Parga 2011; Klegarth et al. 2017a,b). The variables that 

contributed to short collar deployments include collar malfunction, fix schedule, and 

environmental conditions (factors that are not mutually exclusive; see Discussion). Some short 

deployments were intentionally short; thus, these data are a simple measure of how long the 

devices were on the animals (i.e., a mix of successes and failures). The longest deployment of a 

functional GPS collar was 89 weeks long (with a fix schedule of every two hours; Qi et al. 2014). 

Average deployment length across all studies (excluding collars that failed to drop-off and 

remained on animals beyond their battery life) was 26 weeks with a median deployment length 

of 20 weeks. The deployment length of 23 collars was undetermined either due to the loss of the 

unit due to early removal (N = 5), disappearance of the animal (N = 7), or loss of unit 
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functionality that prevented the collar from dropping off (N = 11). In the case of units that failed 

to drop-off and where recapture was either not possible or deemed a greater risk to animal safety 

than leaving the collar on, animals have been collared for up to six years with no overt signs of 

distress or injury (Klegarth et al. 2017a,b, In press).  

 

Participants in this study retrieved collar data in a variety of ways, with some research groups 

using more than one technique. Data were retrieved by direct USB download (after physically 

recovering the device; 8 research groups), remote UHF download (requiring the collar be within 

a certain distance of an antennae; 8 research groups), GSM transmission (i.e. text messages sent 

via the local phone network; 4 research groups), and Iridium (satellite) transmission (1 research 

group). Utilizing technology that does not require recovering the physical device (i.e. the latter 

three options) is ideal, as it ensures that the user obtains the data if the collar unintentionally falls 

off and is not able to be found, the drop-off fails, or the animal is unable to be re-trapped. With 

regard to animal welfare, the use of biodegradable weak links (see Discussion) can ensure that 

the device is not left on the animal indefinitely.  

 

GPS Collar Performance  

Of the two primary data quality metrics measured, 1) HDOP and 2) 3D FSR, only four collar 

brands provided data on both metrics; Lotek, Telemetry Solutions, Advanced Telemetry Systems 

(one out of 22 units), and Tellus. Neither Televilt, nor e-Obs Digital Telemetry, nor Telonics 

units calculated or provided HDOP with GPS data from the collars. Among the collar brands that 

did provide HDOP values, Tellus and Advanced Telemetry Systems collars provided fix 

locations with mean HDOPs of 1.1 or 1.8 for Tellus, depending on the collar model, and 1.5 for 



 

Advanced Telemetry Solutions. Telemetry Solutions provided fixes with a mean HDOP of 2.0. 

Lotek collar HDOPs had a mean value of 4.1 between both models, though the Wildcell SD 

model performed better than the 7000SLU units. In terms of the 3D FSR relative to the total 

number of acquired fixes, collars made by e-Obs had a mean a mean 3D FSR of 100%. Tellus 

3D FSRs were 97.1% and Telemetry Solutions collars were 89.5%. Lotek and Advanced 

Telemetry Systems 3D FSRs were 86.3% and 85.9% respectively.  

 

The other major performance metrics measured were 1) TTF (which impacts collar battery life, 

as the collar shuts down between fixes in most collars to save battery) and 2) overall battery life 

of units relative to the expected battery life at deployment based on programming. E-Obs Digital 

Telemetry devices obtained fixes in 22 seconds on average followed by Tellus Micro (47 

seconds), which was followed closely by Advanced Telemetry Systems (50 seconds), Tellus 

Ultra Light and Lotek (54 seconds), and with Telemetry Solutions (77 seconds). These data were 

not available for Telonics devices. Of the four most commonly deployed brands (e-Obs Digital 

Telemetry, Telemetry Solutions, Advanced Telemetry Systems, and Telonics), Telonics and 

Advanced Telemetry Systems experienced the longest battery life. Early battery death was 

somewhat common for Lotek (12.5%), e-Obs Digital Telemetry (29.5%), and Tellus (30.0% for 

Ultra Light and 33.33% for Micro) devices, which reduced the amount of data acquired from 

those deployments. Fix schedule, TTF, and battery size, severely affected battery life and should 

be taken into consideration in the study design. While we are dealing with a relatively small 

sample size, Telemetry Solutions and Tellus Micro were the only brands with malfunctions 

reported that interfered with the ability to perform at least some data collection (11.3% and 

33.3% of deployments, respectively). It should also be noted that the data reported here does not 



 

take into account environmental conditions, which significantly affect collar performance (see 

Discussion). 

 

Drop-off Unit Performance 

Of the 179 GPS collar deployments we evaluated, 91 units were equipped with remote, 

electronic drop-off units, some of which were purchased from separate manufacturers. Four e-

Obs Digital Telemetry collars were equipped with drop-off from separate manufacturers; their 

drop-off functionality was not assessed in this review. Of the 91 units, 16 were lost before the 

scheduled drop-off time (e.g., the animals were killed or disappeared, the battery died, or the 

collar was somehow removed from the animal) and thus their drop-off functionality could not be 

assessed. In our dataset, Advanced Telemetry Systems, Televilt (N=1), and Tellus Ultralight 

units had drop- off performance success over 90% (Table 2). With Lotek WildCell SD, 

Telemetry Solutions, and Tellus Micro, approximately half worked. Lotek 7000SLU drop-off 

functions all failed to perform. Advanced Telemetry Systems and Telemetry Solutions 

deployments all included 10+ attempted drop-offs and 100 day+ mean ‘live’ deployments for 

collars equipped with electronic drop-off units. One unit (Lotek WildCell) was equipped with 

physical weak spots on the GPS collars to function as the sole drop-off mechanism. Several 

studies reported that drop-off function did work, though not as expected, with up to several 

months delay in dropping off.       



 

Table 2. Mean deployment length, and battery performance for GPS collars used in NHP studies* 1 
 2 

Brand Model 
N 

= 

Collar 

Deployment 

Length (days) 

 

 

FSR 
Battery Life Performance (%)**** 

> Expected Maintained < Expected 

 

Drop-off 

Performance 

(%)***** 

Worked Fail 

 

Advanced 

Telemetry 

Systems 

G2110B 22         324±35 

    

  86±11.8 
95.5 - 4.5 

 

100        -     

 

e-Obs Digital 

Telemetry 

 

Collar 1A, 1C, 

1D 

42 172.5±41.5 

 

93.2±7.5 41.4 29.1.0 29.5 

 

NA****** 

 

Lotek 

 

Wildcell SD 

 

7 

 

431±36 

 

82.8±16.8 

 

58.4 

 

16.6 

 

25 

 

50     50 

 

Lotek 

 

7000SLU 

 

19 

 

275±145 

 

91.0±19.6 

 

10.5 

 

84.2 

 

5.2 

 

-      100 

 

Telemetry 

Solutions** 

Quantum 4000  54 140±122 

 

87.8±8.7 41.7 58.3 - 

 

66.7  33.3 

 

Televilt 

 

Porsec 120 

 

1 

 

9 

 

20.0 

 

- 

 

100.0 

 

- 

 

100      -     

 

Tellus 

 

Ultralight 

 

7 

 

67±16 

 

96.1±2 

 

- 

 

91.7 

 

8.3 

 

100     – 

 

Tellus*** 

 

Micro 

 

6 

 

81±21*** 

 

65.9±4.24 

 

- 

 

- 

 

100 

 

50     -     50 

 

Telonics 

TGW-4580; 

4583; 4500 

 

21 

        

     143±77 

  

 13.2±2.1 

 

100 

 

- 

 

- 

 

NA 
*Not all data was available for all collars. FSR is the overall fix success rate based on the total number of programmed. **Five collars malfunctioned. ***Two 3 
collars malfunctioned*. ****Several studies were not able to recover collars and thus the battery life performance of these units is unknown and accounts for the 4 
discrepancy in the reported percent battery life performance not summing to 100% for all collars listed. Sample sizes are indicated for full collar deployments 5 
only, where collar remained through the set study period, and exclude those collars that were removed early by either the NHP or the research team. ***** 6 



 

Several collars were removed by either the NHP or the researchers rather than activating the drop-off unit; sample sizes are reported only for collars with drop-7 
off units that researchers attempted to use. ****** e-Obs Digital Telemetry does not manufacture drop-off units.8 



 

 

Discussion  

GPS collar performance has significantly improved since the technology was first used to 

facilitate our understanding of primate behavior and ecology a decade and a half ago (Sprague et 

al. 2004). Here we have presented the first review of this technology across a diverse array of 

primate species (17 primate species, and 7 GPS collar manufacturers). While our results are 

significant and important, it is essential that researchers recognize that site- and species-specific 

variables will interact in complex ways to affect collar performance at their field sites. The 

interactions between collar manufacturer, environmental conditions, satellite availability, species 

behavior and habitat preferences, and fix schedule in particular will interact differently for every 

user. For example, a collar may perform exceptionally well for TTF and have a long battery life 

in open field conditions, but in high canopy cover areas the same collar performance should not 

be expected. We therefore see this paper as a helpful starting point, but not an exhaustive 

statistical review, of GPS collar performance.  

 

While our review highlights many positive aspects of GPS collar technology for primatology, we 

also want to caution against using GPS collars as a substitute for standard primatological data 

collection techniques. Often, the high cost of GPS collars has a negative impact on sample sizes, 

which may reduce the strength of inference at population levels (Hebblewhite and Haydon 

2010). There are clear limitations in the types of data that can be collected with GPS collars; they 

should therefore be combined with direct field observations of movement and habitat use 

patterns to enable adequate interpretation of data. For example, using one or a few devices to 

assess the movements of an entire troop will miss nuanced sex- or age-specific movements or 

behaviors only detectable through direct observations of group dynamics. In many cases, 



 

questionnaires, interviews, or ethnographic data collected from people sharing space with 

primates can also provide extremely important information that would be lost by relying too 

much on tracking technology. For example, in St. Kitts, while GIS and GPS data has been highly 

informative with regard to green monkeys’ current behaviors and range, only through 

conversations with local people were primatologists able to learn the extent to which the closure 

of the sugar industry in 2005 affected these behaviors and movements (Dore et al., in press). 

 

This dataset, and primate GPS collar deployments broadly, are still biased towards heavier collar 

units (5 of 7 brands had mean collar weights of 175+g) which can have longer battery life 

depending on fix schedule and TTF among other variables. Telonics collars were the largest 

deployed at 1100g. The larger size of units available in the early 2000s limited early primate 

GPS collar work to larger species like baboons, and these units still provide the longest battery 

life. This factor continues to make the cost-benefit calculus (e.g. risk to the animals’ well-being 

relative to the amount and quality of data collected) for using the technology more accessible and 

acceptable for use on larger species.  

 

However, as technology advances, a wider range of collars are becoming commercially available 

that may be suitable for collaring smaller primates. The Tellus Micro (77g) and Telemetry 

Solutions Quantum 4000 (80g) units are the smallest GPS collar units to have been deployed on 

primates to date (i.e. on vervet monkeys, long-tailed macaques, and ring-tailed lemurs). It is 

important to note that for some collar brands, electronic drop-off units added between 2g (Tellus 

Micro) and 150 g (Telemetry Solutions) in weight overall, which can present additional 

limitations for deployment on smaller primates. Researchers are currently developing a new 



 

protocol for great apes, GPS ankle bracelets, getting inspiration from human criminal justice 

systems (personal communication, Shauhin Edward Alavi). These may prove to be useful for 

small bodied primates as well. Some newly available GPS collars are available at a mere 120-

140 g, including Iridium remote data download capability.  

 

GPS collars weighing only 77 g including drop-off, as the Tellus Micro in this study, are too 

small to carry Iridium remote data download, yet a Global System for Mobile Communications 

(GSM) signal is possible. Iridium remote data communication relays GPS locational fix data to 

researchers without the need to directly track and download data via an ultra-high frequency 

(UHF) signal and/or recover store-on-board GPS units, similar to GSM-cell signal systems and 

ARGOS. In many remote areas, GSM download is not a possibility because of lack of cell-

service or network type (i.e. some devices may work on 2G but not 4G); using smaller GPS 

collars without Iridium in these areas leaves remote download impossible. Information cell-

service availability according to area is available online. Here UHF download combined with 

VHF signal is the only way to track animals and download data.  

 

GPS collars manufactured by e-Obs Digital Telemetry and Telemetry Solutions were the most 

commonly deployed units on primates. Both collar brands provided large amounts of high-

quality data. In our dataset, Telemetry Solutions and Tellus Micro collars were the only units 

where malfunctions (apart from early battery death) impacted data acquisition or drop-off 

functionality. Two Tellus Micro collars were tested prior to deployment without any problems, 

yet after deployment they immediately switched off, and only the UHF connection remained. For 

some Telemetry Systems device users, remote download stopped working before GPS, in some 



 

instances months before the end of battery life. These differences in performance may be related 

to several factors including chance, study species’ tolerance of collar units, length of collar 

deployment, and the habitats in which collar units were deployed. Though mean collar:animal 

weight ratios were similar (1.95% Telemetry Solutions vs. 1.9% e-Obs Digital Telemetry), it is 

possible the larger ratio on the somewhat smaller species and the overall bulk (rather than 

weight) of the units led to those study subjects manipulating collars more frequently, which 

could lead to loosened internal connections between the electronic components. Another factor 

that may have resulted in this performance disparity is the overall mean deployment lengths to 

which each collar brand was subjected. Given that most of the Telemetry Solutions collars were 

deployed in high humidity tropical rainforests for three to six months, it is possible the drop-off 

unit mechanisms (which require a pin to fire and separate the collar) may have been negatively 

impacted by long-term exposure to high humidity. 

 

Reducing TTF and thereby enhancing FSR and collar performance can be done through high 

frequency fix scheduling. This is highly efficient because GPS units remain connected to 

satellites (known as a ‘hot’ start) and these high frequency schedules predispose fix acquisition 

to be more rapid and require less battery power (Moriarty and Epps 2015; McGregor et al. 2016). 

TTF across brands was comparable with the exception of the older Televilt Porsec 120, which 

did not calculate this metric, and Telemetry Solutions collars, which had a considerably longer 

mean TTF of 77 seconds (under variable habitat conditions; Table 1). 

 

In terms of battery life performance more broadly, Advanced Telemetry Systems and Telonics 

collars performed best in this study, with almost all units maintaining or exceeding their 



 

anticipated battery life expectations relative to their programmed fix schedules (Table 2). Collars 

manufactured by e-Obs Digital Telemetry, Lotek, and Tellus Micro experienced lower than 

expected battery life for either GPS units and/or the VHF or UHF signals on collars. Early loss of 

VHF or UHF signals impacts both the researchers’ ability to relocate animals for data download 

and collar retrieval as well as prohibiting the ability of researchers to trigger electronic drop-off 

units. To enhance battery life some researchers in this review programmed GPS collars to only 

collect data during daytime for diurnal species. However, this produces several problems for data 

analysis, with some methods requiring continuous data collection at the set intervals, such as 

Hidden Markov Models for assessing circadian rhythm (Huang et al. 2018). Not collecting 

positions at night may reduce the chances of defining sleeping sites (but see Pebsworth et al. 

2012a,b). Fix schedule should mirror the research question. 

 

As many GPS collars now have the ability to connect to satellites and GSM networks and 

transmit locational data in real time, study animals may not need to be re-trapped in order for 

GPS units to be removed via remotely-triggered electronic drop-off (through satellite or GSM 

networks). Upon signal transmission, either pre-programmed or triggered in real-time by the 

researcher (typically via UHF receiver transmission), collar drop-off should engage and release 

for subsequent retrieval of the GPS unit within the timeframe of the extra battery unit signaling 

GPS position for retrieval. Unfortunately, electronic drop-offs remain among the most 

problematic performance aspect of GPS collars (Table 2). We suggest the greatest room for 

improvement in GPS telemetry technology exists here, and we urge manufacturers to enhance 

drop-off performance, and researchers to always use biodegradable weak links in addition to 

remotely triggered drop-off mechanisms. Telonics offers stand-alone, remote, timed drop-off 



 

units for sale but at a large expense ($500 USD). Telemetry Solutions (N=54), and Advanced 

Telemetry Systems (N=22) had the largest sample sizes and reported a high drop-off success rate 

(>66%). However, the Advanced Telemetry Systems drop-off unit is 65g, making it prohibitively 

heavy to add to most GPS collars for deployment on primates. Tellus Ultralight collars had 100% 

success rate on drop-offs, but a very low number of drop-off attempts (N = 3).  

 

Some special considerations have emerged as a result of our own work and in the process of 

conducting this review that must be taken into account with regard to deploying any type of 

collar (but particularly the somewhat heavier GPS collars) on primates. First, as the greatest 

room for improvement across GPS collars lies in drop-off functionality, we argue that it is 

essential that all GPS collars be fitted with biodegradable weak links prior to placing them on 

the animals. Some individuals in this review have used cotton spacers with success; a recent 

paper shows that degradable washers can also be used as a time-release mechanism for telemetry 

collars (Thalmann 2017). Some individuals in this review field tested drop-offs first with success 

and then they failed in the field; weak links will assure that collars will eventually come off the 

animals regardless of drop-off failure or success. This fail-safe mechanism will also aid in high-

risk situations (such as working with highly endangered species or species that require free-

darting to capture) where the risk of recapture may be too high. 

 

Second, investigators should ideally collect ranging data on the individuals under consideration 

for telemetry prior to collar deployment. This may require the use of handheld GPS units. These 

data can ensure that data obtained on range size or other metrics are not a byproduct of the 



 

animal wearing a telemetry device, and enable the researcher to become acquainted with the 

environment and the behavior of the animals (Hebblewhite and Haydon 2010).  

 

Based on the particular individual, species, or environment under investigation, risks of trapping, 

trap habituation, and free-darting (tranquilizing an animal not already sequestered in a trap) may 

be of particular importance as well. In addition, primatologists must negotiate the risks and 

impacts of sedation against how long the collar can be functionally deployed and how much data 

can be derived from that deployment. In some scenarios, habituating animals to traps may be 

unethical, as it leaves the animals vulnerable to human predation. Questions also remain with 

regard to the frequency of injury and subject loss, and scholars must be sure to report these 

incidents so that the risks are fully understood. For example, while not part of our dataset, Isbell 

et al. (2019) found greater mortality (via leopard predation) in collared female vervet monkeys 

compared to uncollared females, which may have been a result of wearing the devices. We 

recommend visiting and updating the IPS safe capture protocols with any injuries or deaths that 

may be a result of wearing GPS collars (IPS, 2019). In situations where animals are lost or 

injuries occur, the potential for public backlash is very real (and has been a significant problem 

for at least one of us). Due to the relatively novel use of this technology, systematic studies on 

these variables have not yet been published. We encourage the explicit consideration and 

investigation of these factors in future primate telemetry work (Hopkins and Milton 2016; 

Klegarth et al. In press; Isbell et al. 2019). In at least one instance, collared monkeys became 

more recognizable within the local community and were targeted by individuals disgruntled with 

having to share the environment with monkeys. Yet some of us have experienced public support 

for and interest in collared individuals; in one study, tourists and local rangers spent much time 



 

paying attention to collared individuals and asking questions. This was used to inform them of 

the ecology of the collared primates (Hansen et al. in prep).  

 

While these collars open up new methodological and analytical possibilities for assessing 

primate ranging patterns and habitat use, they also present a diverse array of technical, structural, 

and ethical concerns with doing so, and these concerns and issues should be at the forefront of 

the design and implementation of projects using them. In evaluating the effectiveness of the 

collars themselves, it is important to keep in mind the basic categories of harm that the 

deployment of externally-borne telemetry units can introduce in primates: potential harms 

associated with capture, collar attachment, and with the recovery and release options. We want to 

stress that the physical and social impact of the device on the animal once it is attached and 

returned to the social group should be monitored as comprehensively as possible (Klegarth et al. 

In press; Pebsworth et al. 2012a).   

 

Conclusion  

Primatologists utilizing satellite telemetry have demonstrated that GPS collars can acquire large 

amounts of accurate location data across a diversity of habitats, including challenging locales 

such as those with heavy canopy cover (Table 1, Klegarth et al. 2017a,b). Our compiled dataset 

shows that GPS collars have now been successfully deployed on at least 179 individual primates 

at sites spread across five continents. While the habitats represented in this dataset varied, collars 

from multiple brands were shown to perform well in even the most challenging habitats 

including areas with obstructive cliff faces (Klegarth et al. 2017a,b; Pebsworth et al. 2012a) and 

heavy rainforest canopies (Klegarth et al. 2017a,b; Di Fiore and Link 2013; Stark et al. 2017). In 



 

addition to drawing attention to the value of GPS telemetry for primatology, our review 

highlights a number of problematic aspects of this technology as well as important 

considerations that are not often addressed in scientific publications. Ultimately, we argue that 

primatologists armed with this information have much to gain from the recent, substantial 

improvements in tracking technology.  
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