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Abstract 

The epidemiology and treatment of mild traumatic brain injury (mTBI), along with its co-morbid 

symptoms, has previously received little attention in UK military samples. In US military veterans, mTBI 

is among the most frequently seen and challenging of conditions to arise as a consequence of the conflicts 

in Iraq and Afghanistan. mTBI has been shown to represent a complicated and particularly harmful 

polymorbid condition when accompanied by PTSD and depression, resulting in poor life outcomes. 

Symptoms of dizziness are one of the most common comorbid symptoms of mTBI and PTSD. In fact, the 

symptomology of mTBI and PTSD share many distinct features that can also be seen in patients with 

vestibular disorders. This is perhaps unsurprising given the diffuse nature of the ascending vestibular 

pathways. Despite this anatomical feature, vestibular influences in mTBI have yet to be explored in UK 

military veterans. To this end, this thesis first aimed to determine if vestibular disturbance influenced the 

neurobehavioural and affective symptoms of mTBI. A further line of investigation examined if the 

vestibular pathways can be artificially modulated using galvanic vestibular stimulation (GVS) to ameliorate 

some of these symptoms.  

 

Chapter 1 of this thesis describes the main features of mTBI in both the UK and US military, outlining the 

classification/current diagnostic criteria, mechanisms of injury and co-occurring cognitive, psychiatric 

symptoms of mTBI. It will be argued that mTBI commonly occurs in military samples as a result of blast 

exposure, and is particularly difficult to diagnose and treat. Chapter 2 will illustrate that both blunt and blast 

mTBI frequently result’s in damage to the vestibular system and thereon assesses the potential contributions 

of vestibular dysfunction to the chronic symptoms of mTBI. Drawing on previous intervention studies from 

civilian samples, it will illustrate how the vestibular system may provide a novel pathway to treat mTBI. 

Chapter 3 reports results from an epidemiological study of 162 UK military veterans which show that 72% 

of the sample reported one or more mTBI in their lifetime. Vestibular disturbance affected 69% of these 

individuals and was most frequently seen in those who had sustained both blunt and blast injuries. 

Mediation analysis indicated that when PTSD, depression and anxiety were accounted for, vestibular 
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disturbance was directly associated with increased neurobehavioural symptoms and functional disability. 

These findings indicate that vestibular disturbance is common particularly after combined blunt and blast 

head injuries and is singularly predictive of poor long-term mental health and functional disability.  

 

In light of the newfound association between vestibular disturbance and mTBI, the remaining chapters 

sought to establish if and how artificial vestibular stimulation can remediate aspects of mTBI. To help 

determine whether to target positive or negative symptoms, in Chapter 4 I sought to determine if GVS could 

induce either long-term potentiation (LTP) or depression (LTD) type effects, in neurologically healthy 

individuals up to 24hours post stimulation. The results showed that in participants who demonstrated 

cortical hyperexcitability at baseline, GVS induced a significant LTD type effect at 24hours post-

stimulation. This indicated that conditions such as anxiety and PTSD, which are associated with cortical 

hyperexcitability, should be targeted. In Chapter 5 a small proof of concept study evaluated the efficacy of 

GVS in treating current symptoms of anxiety in 5 UK military veterans. The results showed that state 

symptoms of anxiety were exacerbated at 24hours post active GVS, which although further introduces a 

link between the vestibular system and anxiety in mTBI, did not support therapeutic application of GVS. 

In Chapter 6, the general discussion concludes that, vestibular disturbance is predictive of poor long-term 

mental health and therefore needs to be routinely screened and treated. Further studies are also needed to 

establish how to yoke the novel effects of GVS on cortical excitability observed here for treatment of mTBI 

symptoms. 
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 Chapter 1 

The Epidemiology and Chronic Sequelae of Mild Traumatic Brain Injury in Military 

Personnel  

Epidemiology of mTBI in the UK and US Military  

Between the periods of 2001 to 2014 the Ministry of Defence (MOD) deployed 281,990 British 

military personnel to the Iraq and Afghanistan conflicts (Ministry of Defence, 2014). Traumatic 

brain injury (TBI) was a major contributor to fatalities accounting for 42% of British casualties 

killed in combat between 2006 and 2007 (Hodgetts et al., 2007). These fatalities may represent 

the tip of the iceberg because, historically, 15 to 20% of combat related injuries have been 

shown to occur above the clavicles (Champion et al., 2003). mTBI has been characterised as a 

signature injury of US troops in the recent Iraq and Afghanistan conflicts. Eighty-five per cent 

of deployment related TBIs in US troops were mild in severity (MacGregor et al., 2010), with 

an estimated prevalence ranging between 15% (Hoge et al., 2008) and 23% (Terrio et al., 2009). 

However, the prevalence of mTBI is not uniform between countries. In the UK, armed forces 

estimated incidence rates fall between 3.2% and 13.5% (Hawley et al., 2014; Jones et al., 2011; 

Rona et al., 2012). Several factors may help explain this discrepancy between US and UK 

estimates, such as the greater reliance on self-report rather than medical records in the US, and 

the shorter deployment periods of UK soldiers (6 months compared to 12-18 months for US 

personnel). Nonetheless, the narrow time widow of deployment may not capture the effects of 

mTBI and might be better understood by evaluating mTBI within the context of lifetime 

exposure. 
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Classification and definition of mTBI 

TBI has been described as having two phases. The first involves neuronal injury as a direct result 

of the traumatic event; this has been defined as the ‘primary (immediate) injury’. The primary 

injury is a result of the energy transfer to the brain at the moment of injury, and its severity partly 

reflects the amount of energy transferred. The second later phase is defined as secondary (delayed) 

and can be caused by multiple neuropathologic processes that can continue for weeks post insult 

(Gentleman, 2008; Granacher, 2015).   

 

Classification of TBI severity is determined by levels of consciousness, typically this is measured 

using the Glasgow Coma Scale (GCS) which provides a global index of brain function (see Table 

1.1). Brain injury is classified as severe when the GCS score is  < 3-8, moderate 9-12, or mild 13-

15 (Teasdale, 1979). Although the GCS is internationally accepted as a global index of brain 

function, its efficacy in predicting severity is greater for moderate and severe TBI than mTBI, as 

the vast majority of mTBI patients can present with normal to near normal GCS scores within 

hours of injury (Granacher, 2015).  A more sensitive case definition and severity index of brain 

injury for mTBI has been developed by the US Department Defense and Department of Veterans 

Affairs screening programs (DOD/VA) which is consistent with national surveillance definitions 

(Faul, Wald & Coronado, 2010; Management of Concussion/mTBI Working Group, 2009) (See 

Table 1.2; Table 1.3). It should be noted that this definition criteria also defines the events of TBI. 

The American Congress of Rehabilitative Medicine (ACRM) also include duration of 

posttraumatic amnesia (PTA) as a marker of TBI severity and short-term prognosis. (Feinstein et 

al., 2002). However, duration of PTA frequently goes unobserved in a combat arena, and this 

measure (when potential observers may be fighting for their own lives or be injured) has not been 

a reliable marker for predicting severity of impairment in mTBI cases (Borg et al., 2004).  
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Table 1.1.  GCS Classification Criteria 

 

Type of response                                    Score Description 

Eye opening           Spontaneous 4 Open with blinking at baseline 

 To speech 3 Opens to verbal command, speech or shout                                                                          

 To pain                               2 Opens to pain not applied to face 

 None 1 No response 

Motor Obeys commands               6 Can process instructions and respond 

 Localises pain 5 Powerful movement to pain stimulus 

 Withdrawal 4 Withdraws from pain stimulus 

 Abnormal flexion               3 Abnormal (spastic) flexion, decoriticate  

posture                                                                                  

 Extension 2 Extensor (ridged) response, decerebrate 

posture                                                                                       

 None 1 No response 

Verbal Oriented 5 Oriented to person (knows identity), to place  

(knows where he or she is)                                                                                          

 Confused 4 Confused but able to answer questions 

 Inappropriate 3 Intelligible speech (shouting swearing) 

 incoherent conversation                                                                                            

 Incomprehensible 2 Moaning and groaning; no recognisable 

words                                                                                                

 None 1 No response 

(Teasdale, Murray, Parker & Jennett,  1979). 

 

Concussion, a term used often to describe mild head injury, refers to the specific event that may 

or may not be associated with persistent symptoms or structural brain injury. Predominantly, 

concussion/mTBI results in a full recovery (Ponsford et al 2002). However, 15% to 20% of patients 

who sustain a mTBI can present with symptoms that persist beyond the typical recovery period of 

three months, a chronic condition known as post concussion syndrome (PCS) (Bazarian et al., 



The Vestibular System in mTBI 

 

 

 

14  

2001; Marshall et al., 2012; Ryan et al., 2003). However, the DSM-5 no longer recognises PCS as 

a diagnostic label as the eitiology of PCS is poorly understood and instead suggests neurocognitive 

disorder as a result of TBI (American Psychiatric Association, 2013). 

 

Table 1.2. DOD/VA Definition of Traumatic Brain Injury 

 

DOD/VA Definition of Traumatic Brain Injury 

A traumatically induced structural injury and/or physiological disruption of brain function 

as a result of an external force that is indicated by new onset or worsening of at least one of 

the following clinical signs, immediately following the event: 

• Any period of loss of or a decreased level of consciousness (LOC)  

• Any loss of memory for events immediately before or after the injury (post-

traumatic amnesia [PTA])  

• Any alteration in mental state at the time of the injury (confusion, 

disorientation, slowed thinking, etc.) (Alteration of consciousness/mental state 

[AOC])  

• Neurological deficits (weakness, loss of balance, change in vision, praxis, 

paresis/plegia, sensory loss, aphasia, etc.) that may or may not be transient  

• Intracranial lesion. 

(Management of Concussion/mTBI Working Group, 2009) 

 

 

Defining the neuropathology associated with persistent cognitive deficits in mTBI is 

problematic. Frequently, no abnormalities are apparent from MRI scans (Hughes et al., 2004). 

Clinical screening of mTBI months or weeks after concussive events is also particularly 

difficult in military populations, not least because acute signs of concussion might overlap with 

symptoms of disassociation which can result from acute stress (Hodge et al., 2008). Frequently 
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mTBI can go undiagnosed particularly when there is an absence of blast exposure, PTSD, 

depression and substance abuse. 

 

Table 1.3 DOD/VA Severity of brain injury stratification 

 

Criteria    Con/mTBI      Moderate          Severe 

Structural imaging Normal  Normal/abnormal  Normal/abnormal 

Loss of consciousness 0-30 Minutes         >30 mins, <24 hrs  >24 hrs 

Alteration of consciousness 

/Mental state 

A moment up to 24 hrs >24hrs  Severity based on  

other criteria 

Posttraumatic amnesia  ≤1 Day > 1 And 7 days  > 7 Days 

GCS (best available score 

in first 24 hrs) 

13-15 9-12  3-8 

(Management of Concussion/mTBI Working Group, 2009) 

 

Blast and Blunt Brain Trauma 

Injuries sustained from blast munitions are not a new phenomenon. Previously, the symptoms from 

blast exposure were referred to as “shell shock”, a term used to describe soldiers who were 

rendered incapable of fighting for some period following blasts. Historically, there was 

considerable debate as to whether this was due to a physical or psychological reaction to multiple 

explosions (King & Hattendorf, 1997; Kinch et al., 2018). Along similar lines, an individual killed 

without evidence of bodily injury might have been described as suffering from the “wind” of the 

injury. Death due to blast is well documented yet research of closed brain injury survivors is 

limited (Warden, 2006). The reasons for this are not clear, however, factors such as life-threatening 

wounds during mass casualty events may cause a potential overlook of blast mTBI as all available 

medical assets are required to save lives.  
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In present day battlefields, the use of improvised explosive devices (IEDs) has increased the risk 

of TBI. Repeated deployments and high rates of blast exposure have made a significant 

contribution to high prevalence rates of mTBI and PTSD. Potentially hundreds of thousands (at 

least 30% of US troops) have suffered a mTBI as a result of IED blast waves in Afghanistan and 

Iraq (Glasser, 2007; Hodge et al., 2007; Hodge et al., 2008). The US DOD (2017) reported that 

since 2001 more than 2 million service personnel have been deployed in operational theatres and 

approximately 400,00 have reported TBI, the vast majority of which were mild in nature. Blast 

exposure was the most common mechanism of injury in this population (Hodge et al., 2008, Masel 

& DeWitt, 2010). During Operation Herrick the MOD reported that injuries to the head and neck 

equated to just under a fifth of the injuries sustained by UK armed forces in Afghanistan. However, 

the most frequent mechanism of battle injury was explosive munitions, which accounted for 52% 

of 2,201 of these injuries (Ministry of Defense, 2014). 

 

Chen et al., (2013) suggests that the exposure of blast kinetic energy to the human body from IEDs 

can be transferred into hydraulic energy in the cardiovascular system, which in turn can cause 

rapid physical movement and volumetric blood surge. This can move through the blood vessels 

from the ‘high-pressure body cavity’ to the ‘low-pressure cranial cavity’ and result in damage to 

the cerebral blood vessels in the blood brain barrier (BBB). Blast injuries like this have been 

suggested to cause large-scale cerebrovascular insults and BBB damage, and might be the cause 

of non-impact blast induced brain injury including TBI and post-traumatic stress disorder (PTSD).  

 

The repercussions of blast overpressure trauma are significant and it has been suggested that blast 

TBI is unique from other forms of TBI because the nature of diffuse interaction of the pressure 

wave with the brain leads to a complex cascade of events that effects neuronal cell bodies, axons, 
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glial cells and blood vessels (Duckworth et al., 2013; Granacher, 2015). This is a result of the 

initial, rapid up-rise from the blast, followed by a longer delay in the shock wave that reaches a 

negative inflection point before returning to baseline. This process is a specific profile pressure-

time curve known as the “Freidlander curve”. 

 

A great deal of controversy surrounds the aetiology, course and treatment of persistent somatic, 

cognitive and behavioural symptoms that can result from blast induced mTBI (Hodge et al., 2009; 

Peskind et al., 2009; Sigford et al., 2009). It is important to acknowledge that blasts can cause both 

physical and psychological trauma; it is also accepted that blast exposed personnel frequently meet 

the acute mTBI criteria set by the ACRM (Key et al., 1993). The term mTBI is associated with 

subtle cognitive deficits, headaches, dizziness, tinnitus, sleep disruption, daytime fatigue, 

irritability and other symptoms that can persist for months or years post blast-induced acute mTBI 

(Peskind et al., 2009). It is not yet clear if the chronic symptoms seen in acute mTBI are due to 

structural or functional brain damage as many of these symptoms except for headache are 

correlated to PTSD and depression (Fear et al., 2008; Schneiderman et al., 2008; Turgoose & 

Murphy, 2018).  The aforementioned data would argue against a neurobiological basis for blast 

related acute mTBI symptoms because psychological and motivational factors are also thought to 

play an important role in the persistence of these symptoms (Armistead-Jehle et al., 2018; McCrea, 

2008). Yet, many clinicians are convinced that acute mTBI is real, albeit subtle brain damage (Ruff 

et al., 2008; Sigford et al., 2009; Schneiderman et al., 2008). Moreover, veterans with a diagnosis 

of mTBI, PTSD and depression have been shown to be more likely to have multisensory 

impairment if they had deployment related mTBI and both blast and non-blast mTBI (Pogoda et 

al., 2012). 
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Current diagnostic tests involving CT or MRI scans are neither sensitive nor specific enough to 

identify individuals who have sustained mTBI (Belanger et al., 2007; Dash et al., 2010). However, 

evidence is beginning to emerge that suggests blast induced mTBI might have a neurobiological 

basis for persistent mTBI symptoms. It is possible that in vivo characterisation of traumatic axonal 

injury using diffusion tensor imaging (DTI) may shed light on the neuropathology associated with 

mTBI (Miller et al., 2016). DTI can identify microscopic tissue damage and examine the white 

matter tracts. MacDonald et al., (2010) utilised DTI to investigate the neuropathology of blast 

related injury within 90 days of insult in 63 US military personnel diagnosed with mTBI. 

Compared to 21 controls, abnormalities in this group were consistent with traumatic axonal 

injuries. None of the 63 subjects with blast related mTBI had detectable intracranial injury from 

CT scans. Yet, there were marked DTI abnormalities in this group in the middle cerebellar 

peduncles (p < .001) the cingulum bundles (p = .002), and in the right orbitofrontal white matter 

(p = .007). Follow-up DTI scans 6 to 12 months post enrolment were performed on 47 subjects 

with mTBI and revealed persistent abnormalities that were consistent with evolving injuries. Blast-

related mTBI also represents a neuropsychiatric spectrum disorder that clinically overlaps with 

chronic traumatic encephalopathy (CTE) a condition associated with repetitive concussion injury 

in athletes (Collins et al., 2013). 

 

CTE was originally reported by pathologist Harrison Martland (1928), who described the 

condition as ‘punch drunk’ as it occurs in boxers after repetitive blunt mild brain injuries. CTE is 

a progressive neurodegenerative disorder that is characterised by the accumulation of 

hyperphosphorylated tau protein that begins focally and then spreads to involve most of the central 

nervous system (Mckee et al., 2009). CTE is clinically associated with symptoms of irritability, 

impulsivity, aggression, depression, progressive affective lability, executive dysfunction, memory 
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disturbances and suicidal ideation. The onset of CTE typically occurs 8 to 10 years after 

experiencing repetitive mTBIs (Collins et al., 2013; Mckee et al., 2012). With advance cases, more 

severe neurological changes occur to include dementia, gait and speech abnormalities and 

Parkinsonism. In the late stages of disease, the condition is often mistaken for Alzheimer’s or 

frontotemporal dementia (Gavett et al., 2010).   

 

There is a great deal of controversy surrounding the diagnosis of CTE because it is unclear whether 

CTE reflects a progressive neurodegenerative disease or whether it reflects the aging process 

superimposed by neurological injury (or both) (Iverson et al., 2015). The disease is characterised 

by both McKee et al., (2013) and Omalu et al., (2011) as tau pathology uniquely situated in the 

sulci and superficial cortical layers which is unlike tau pathology in age related Alzheimer’s 

disease. However, the microscopic neuropathology evidenced in these samples is diverse and non-

specific. Mc Kee et al., (2013) suggest that p-tau immunoreactive astrocytic tangles are a defining 

feature of the disease yet other seminal research from Omalu et al., (2011) reported that these 

features were not present. It should also be noted that the criteria for CTE are particularly 

encompassing in that any localized phosphorylated tau can constitute CTE. A critical review by 

Iverson et al., (2015) suggests that this would explain why all subjects who have been examined 

to date demonstrate the stigmata of CTE. Furthermore, the clinical features of CTE are not 

evidenced in how these small amounts of tau pathology can cause complex changes in behaviour 

(Solomon, 2018). Closer scrutiny to determine the extent of which neuropathology is causally 

related to these clinical features is required, nonetheless, concussion in sports has been of 

international concern since at least 2001 (Granacher, 2015).  
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Despite the aforementioned controversy, it is now widely accepted that athletes who have a history 

of sustaining repeated concussion such as American football players are at risk of long-term 

changes to brain structure and or function, slower recovery, increased risk of future seizures and 

CTE (Bailes et al., 2013). Participating in sports is seen as important to the welfare and operational 

effectiveness of personnel serving in the UK Armed Services (www.Army.MOD.UK, 2016). 

Sports form a large part of the military lifestyle and may also contribute to an increased risk of 

sustaining more than one concussion; particularly in those who play contact or collision sports 

such as boxing or rugby. Currently, there are no statistics available on the prevalence rates of sports 

related concussion or proportions of blunt versus blast mTBIs in the UK or US military. However, 

post-mortem brains obtained from a case series of US military veterans who had committed suicide 

and were known to have blast exposure and mTBI showed the same neuropathology that has been 

observed in young American football players who had sustained repeated mTBIs and also 

committed suicide (Goldstien et al., 2012). The repeated nature of mTBI may constitute a 

significant risk for military personnel not only from blast exposure, but from blunt force trauma. 

Sports, combat training and road traffic accidents are likely to be commonly seen mechanisms of 

injury. In civilian populations blunt TBI accounts for a significant burden of healthcare worldwide. 

In the US (2002-2006) approximately 1.7 million TBI-related hospitalizations, emergency 

department (ED) visits, and deaths were recorded each year, with 1.4 million treated and released 

after ED care, 275,000 hospitalised and discharged alive, and 52,000 deceased (Faul et al, 2010). 

The proportionate prevalence of TBI is likely to be greater in military compared to civilian settings. 

Further exploration of the incidence of blunt/blast mTBI over lifetime is required to determine the 

influence of mTBI over the course of aging. Many military personnel may be at greater risk of 

neurodegenerative conditions as a result of repeated mTBI. 
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Long-term Symptoms of mTBI  

Long-term post concussive symptoms following mTBI can include a combination of somatic, 

sensory, affective and cognitive symptom clusters (King et al., 2012). However, these symptoms 

are not specific to mTBI, and overlap with several other disorders such as depression, generalised 

anxiety disorder, PTSD, substance use disorders and everyday complaints like headache (Carlson 

et al., 2011; Cooper et al., 2015). Moreover, analysis of mTBI patients has found that a previous 

history of affective or anxiety disorders (including PTSD), being female, a higher IQ and pain is a 

significant predictor of acute mTBI (Bryant & Harvey, 1998). PTSD, in particular, has been widely 

suggested as more strongly related to persistent mTBI symptom reporting than the severity or 

mechanism of neurological insult (Hodge et al., 2008; Schneiderman et al., 2008; Lange et al., 

2013; Polusny et al., 2011) Although neurobehavioural disorders such as depression and PTSD 

commonly occur after combat, the presentation of such disorders in those with head injury may 

result in the enduring symptoms of mTBI being left undiagnosed. Therefore, a multidimensional 

approach should be applied for diagnosis (Halbauer et al., 2009).    

 

Somatic and Sensory Symptoms  

Axonal shearing as a result of mTBI can result in several types of sensory deficits, which should 

be independently evaluated (Halbauer et al., 2009). Symptoms of dizziness are almost universally 

present in mTBI; hearing loss is also frequently present due to blast exposure (these factors will 

be outlined in detail in Chapter 2) (Szczupak et al., 2016; Fausti et al., 2009).  Olfactory 

dysfunction and disorders of taste are common and often arise as a result of blunt force injury 

causing damage to the nasal epithelium, the cribriform plate and the olfactory bulb (de Kruijk et 

al, 2002). Among combat veterans with mTBI, severity of PTSD and olfaction impairment has 

been linked to increased number of LOC episodes (Ruff et al., 2012). Olfactory dysfunction not 
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only cause changes to smell and taste, but can also affect motivation, emotion and memory as the 

three branches of the olfactory bulb project to the basil forebrain and medial temporal lobe limbic 

areas.  

 

Visual disturbances are also quite common in mTBI. Alteration in visual function in individuals 

with blast related mTBI has been frequently reported (Brahm et al., 2009; Goodrich et al., 2013; 

Magone et al., 2013). For example, Magone et al., (2014) reported that 68% of patients who 

reported a history of blast induce mTBI still suffered from visual complaints when assessed at 16 

to 91 months post injury. Symptoms can include abnormal saccades, pursuit and fixation issues 

that can impact on reading and spatial perceptual deficits. Additionally, anomalies of light 

sensitivity such as photosensitivity and photophobia can occur (Kapoor & Ciuffreda, 2002). Blast 

related TBI may be accompanied by involvement of the visual system through optic nerve injury 

or cerebral injury (Armstrong 2018; Gilmor et al., 2016; Taber et al., 2006). Eye movement 

dysfunction is reported in approximately 90% of patients suffering a concussion or blast injury 

(Armstrong 2017).  

 

Headache is one of the most common symptoms following mTBI affecting between 32% to 91% 

of individuals (Hodge et al., 2008; Hoffman et al., 2011). Fatigue has been shown to be a 

significant independent predictor of headache severity (Bomyea et al., 2016) and whilst PTSD 

may mediate some TBI physical health symptoms, brain injury has been shown to correlate 

independent of psychological disorders with chronic pain (Nampiaparampil, 2008). Furthermore, 

Ruff et al., (2008) showed that veterans with neurological impairment as a result of mTBI were 

more likely to suffer from headaches, features of migraine, more severe pain and more frequent 

headaches when they have been exposed to more explosions. 
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Affective Symptoms 

PTSD is caused from physical and/or emotional trauma, and has many symptoms that overlap with 

those of mTBI (DSM-5, 2013). Much like mTBI, PTSD can result in grey and white matter damage 

via stress related pathologies of neuroinflammation, oxidative damage and excitotoxicity (Kaplan 

et al., 2018). The association between mTBI and PTSD is strong, with 43% of US soldiers whom 

experienced a mTBI with loss of consciousness (LOC) meeting the criteria for PTSD diagnosis 

(Hodge et al., 2008). However, 9.1% of soldiers with no mTBI met the criteria for PTSD. 

Frequently, the symptoms of PTSD can have a delayed onset and many soldiers are more likely to 

develop symptoms after their return home.  

 

As classified by the DSM-5, PTSD is induced by a hypersensitive response to threat and includes 

intrusive symptoms such as reoccurring memories, nightmares, dissociation, persistent distress, 

numbing, impulsivity, aggression and avoidance (DSM-5, 2013). PTSD is also considered a 

disorder of memory organisation and may involve intrinsic, non-declarative amygdala-based 

memory processing systems and extrinsic, declarative, hippocampal-based memory processing 

systems. Typically, patients present with intrusive memories, fragmented autobiographical and 

trauma related memories, deficits in declarative memory and a presence of traumatic related 

amnesia (Elzinga & Bremner, 2002). The association between PTSD, anxiety and memory is not 

necessarily a conflict, but an indication of the involvement of several interrelated brain systems. 

PTSD is thought to arise from malfunctioning within the ventromedial prefrontal cortex (VMPFC) 

and this malfunctioning is suggested to increase vulnerability and fear sensations as the VMPC 

modulates the amygdala, a brain region known for processing fear of anxiety (Delgado et al., 

2008). 
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PTSD has been identified as a risk factor to violent behaviour and is linked to a range of negative 

outcomes including an increased risk of anti-social conduct (Elbogen et al., 2012). MacManus et 

al., (2013) conducted a study based on criminal records that showed 11% UK military personnel 

who had been deployed to the Iraq and Afghanistan conflicts have a criminal record for violent 

conduct. Violent conduct was particularly prevalent in men aged 30 years or younger accounting 

for 20% of 521 service personnel. Negative affect is seen frequently in veterans with PTSD anger 

and irritability, alcohol and substance abuse are common placed and often related to committing 

crime also (Elbogen et al., 2012).  

 

Veterans with PTSD are also at greater risk neurodegenerative conditions such as Alzheimer’s 

disease and vascular dementia in later life (Greenberg et al., 2014). TBI can cause 

neurodegeneration in many brain structures, notably the hippocampus, cortex, and thalamus.  

PTSD has also been linked to decreased hippocampal volume (Hall et al., 2008; Mooney & Haas, 

1993); and there has been much debate as to whether PTSD can damage the hippocampus via 

stress effects or whether some individuals with a small hippocampus are more likely to develop 

PTSD (Bremner et al., 2008). It has also been argued that mTBI may damage hippocampal 

connections sufficiently to prime the system for PTSD. On a related note, LOC following mTBI 

is a known risk factor for the future development of PTSD (Mayou, Black & Bryant, 2000).  

 

Depression is an especially debilitating problem in veterans and post-mTBI. Prevalence rates range 

from 18.5% to 61% (Jorge et al., 1993; Jorge et al., 1993; Jorge et al., 2004; Kreutzer et al., 2001; 

Seel & Kreutzer, 2001). This large range has been attributed to the overlap of depression with 

other mTBI symptoms such as poor concentration, irritability, fatigue and sleep disturbances. It is 
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important to elucidate whether the symptoms of depression are the emergence of a major 

depressive disorder or are especially related to mTBI, as suicide can be an outcome of psychiatric 

illness particularly depression (Halbauer et al., 2009). It has been suggested that TBI is likely to 

put individuals at even greater risk of suicide; individuals with TBI have a three- to four-fold 

increase in committing suicide, an increase in suicide attempts of 18%, and increased suicidal 

ideation of 21% to 22% (Simpson & Tate, 2007). Furthermore, research from the US Army has 

shown an increasing trend of suicide related events; 67 suicides were reported in 2004, 87 in 2005 

and 99 during 2006 (Simpson & Tate, 2007). In contrast, a cohort study of UK Armed service 

veterans investigating suicide rates between 1996 and 2005 found that 233,803 individuals had 

left the Armed services and 244 died by suicide. This is comparable to that of the general 

population. However, men who left the Armed services ages 24 years or younger were found to 

be two to three times at greater risk of suicide than the same age group in the general population 

(Kapur et al., 2009). That said, research that has explored the association between TBI and suicide 

attempt has often yielded conflicting results. One of the more definitive studies from Fonda et al., 

(2016) utilised data evaluations from 273,591 US veterans to quantify the impact of deployment 

related TBI and psychiatric diagnosis on attempted suicide. Veterans with TBI were shown to be 

more likely to attempt suicide than those without. Furthermore, the association of TBI with 

attempted suicide when mediated with psychiatric conditions and PTSD showed an even greater 

impact and risk of attempted suicide. This indicates that veterans with these co-occurring 

conditions should be closely monitored.  

 

Cognitive Symptoms 

Executive function is heavily reliant on the frontal lobes of the brain and involves complex goal 

directed behaviours such as decision making, abstract thinking, planning, task switching and 
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inhibition. These directed behaviours are essential for the organisation of ideas, time management, 

concept formation, categorisation, insight and judgement (Halbauer et al., 2009). The symptoms 

that arise from mTBI, PTSD and depression can overlap with deficits seen from executive 

dysfunction making it difficult to distinguish the underlying drivers of executive dysfunction. 

Whilst cognitive dysfunction is common complaint in mTBI patients, its nature and prevalence are 

far from clear due to the inherent difficulties in designing schema for classifying such conditions 

(Warden et al., 2006). Cognition is neither a single entity nor ability, which makes the 

measurement and quantification problematic. Cognitive functions are constructs and as such, 

rigidly constrained by the tools utilized to measure them. This can cause problems as trauma to 

the central nervous system can be diffuse and does not respect functional boundaries or system 

classifications which adds complexity to the evaluation process. The degree to which patients may 

suffer from cognitive deficits following TBI will vary according to the intensity and impact site of 

injury, the premorbid intellectual status and other factors such as the nature of subsequent 

treatment and rehabilitation (Linder et al., 1998).  

 

Problems with memory are among the most frequently seen cognitive dysfunction following TBI 

(Warden et al., 2006). Acute dysfunction is described as post-traumatic amnesia and is generally 

time limited, with most impairments resolving without intervention within 10 days post-

concussion (Sim et al., 2008). Chronic memory impairment following TBI has not been labelled 

diagnostically. Deficits can persist for years and impact on implicit or nondeclarative memory 

(which is responsible for automatic priming) and explicit or declarative memory (Halbauer et al., 

2009).  
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If attention is significantly impaired then there can be a direct impact on memory (Chun & Turk-

Browne, 2007). Impaired cognition may at first appear to be a disorder of memory, when in fact 

attention is the primary impairment because if information cannot be encoded then it cannot be 

stored. Deficits in information processing and attention are considered principal features of mTBI 

(Frencham et al., 2005). But clinicians often fail to detect attention deficits due to insufficient 

cognitive loading during clinical examination to make the defects salient (Toyokura et al., 2012).  

In many patients divided attention deficits do not become apparent until they return to work or 

ordinary daily function. It has been suggested that a pathophysiological relationship exists between 

mTBI and attention deficit hyperactivity disorder (ADHD). mTBI symptoms can mimic those of 

ADHD, however, ADHD cannot be diagnosed in the presence of mTBI as it is primarily 

recognised as a childhood or developmental condition (Doyle, 2004). Accordingly, a diagnosis of 

mild neurocognitive impairment is used to capture the symptoms of inattention (Halbauer et al., 

2009). Patients typically present with complaints of concentration difficulties, distractibility, 

difficulty multitasking, and decreased processing speed. 

 

Assessing the cognitive effects of mTBI in combat veterans is challenging due to the multiple 

factors involved in cognitive impairment and the reliance of self-report measures. The cognitive 

and physical complaints associated with a history of mTBI are not specific to head injury; 

symptoms are associated with other psychiatric and medical disorders (Spencer et al, 2010). For 

instance, the symptoms of chronic pain, depression, and PTSD can impair cognitive functioning 

independently of the aftereffects of head injury (Vasterling et al., 2005). An investigation on 

individuals with a history of mild to severe closed head injuries by Gas and Apple (1997) found 

that self-report of cognitive function was strongly associated with emotional distress on select 

neuropsychological tasks. Furthermore, Green (1996; 2003) revealed that individuals who had 
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suffered mild head injury demonstrated substantially higher failure rates on symptom validity tests 

(SVT) than those with severe head injury. Notably, from this sample of 1,300 patients 30% 

demonstrated inadequate effort in performance validity test (PVT) as measured by the Word 

Memory Test.  

 

Veterans who have demonstrated performance below that of normative expectations in self-report 

neuropsychological assessments and poor effort on SVT tend to be more prevalent in a mTBI 

sample, particularly when litigation or other compensation is involved (Green et al., 2001). At 

present, TBI is among the 10 most prevalent US service-connected disabilities for veterans 

receiving compensation (Department of Veterans Affairs, Veterans Benefits Administration, 

2010). Dikmen et al., (2010) showed that symptom reporting following TBI was significantly 

related to age, gender, pre-injury alcohol abuse, pre-injury psychiatric history and severity of TBI. 

There is also some evidence that poor PVT performance is more prevalent in individuals with a 

dual diagnosis of mTBI and PTSD who are seeking compensation (Greiffenstein & Baker, 2008; 

Mittenberg et al., 2002). A medical symptom validity test (MSVT) failure rate of 58% was 

observed in a sample in which PTSD was at 91% and depression 69% (Armistead-Jehle, 2010). In 

contrast, a much lower failure rate of 20% was observed in veterans with mTBI who had lower 

rates of PTSD 44% and depression 15% (Armistead-Jehle & Hansen, 2011). In other samples of 

veterans with mTBI, higher rates of poor performance validity have been observed in those who 

have co-morbid psychiatric diagnosis in comparison to those without (Lange et al., 2012). 

Therefore, it is imperative to note that the diagnosis of mTBI, PTSD and various clinical diagnoses 

based on self-reported symptoms and history could be susceptible to potential exaggeration of 

symptoms.  
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On a more positive note, PVT failure has been shown to occur in a relatively small percentage of 

Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) 

veterans when tested in research settings. Base rate performance in this sample of veterans showed 

a rate of poor effort 5.6% which is significantly lower than previous reports in clinical or forensic 

settings (Clark et al., 2014). This highlights the importance of context in which evaluations are 

carried out when considering the prevalence of malingering.  

 

Treatment 

Given the vast array of symptoms that accompany mTBI, treatment is currently approached on a 

predominantly individual basis, with various pharmacological and neuropsychological  

interventions. There are currently no specific treatments available for mTBI symptoms 

recommended by the Cochrane review. Research interventions to treat the enduring symptoms of 

mTBI have produced mixed results often using poor methodology and there is no professional 

consensus to support an effective treatment (Prince & Bruhns, 2017). Early intervention in the 

acute phase of mTBI typically involves education of PCS, reassurance and education on the 

expectation of a full recovery and guidance on rest and gradual resumption of typical activities 

(Prince & Bruhns, 2017). The National Institute for Health and Care Excellence (NICE) guidelines 

have suggested that there is some suggestion of patient education approaches being beneficial in 

the early stages of injury (Snell et al., 2018).  

 

Drug treatments for chronic cognitive impairments in TBI have been reviewed by Cochrane 

(Dougall & Agrawal, 2015). However, results showed that there were no differences between 

drugs modafinil, the experimental drug (-) OSU6162, atomoxetine, rivastigmine and placebo on 

cognitive function. The hormone progesterone has been suggested to reduce brain damage if given 
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shortly after TBI and is typically used for more severe brain injuries (Wright et al., 2007;2014; 

Xiao et al., 2008). Nonetheless, the Cochrane review found no evidence of progesterone reducing 

mortality or disability in patients who have sustained a TBI (Ma et al., 2016). Cognitive 

rehabilitation for attentional deficits or cognitive behavioural therapy (CBT) for the symptoms of 

depression and anxiety along with psychotherapeutic support are frequently integrated treatment 

options (Prince & Bruhns, 2017).   

 

The treatment approaches for PTSD recognize that this disorder is a complex, dynamic entity 

rather than a unidimensional set of symptoms. It is, therefore, often the case that a combination of 

cognitive behavioural therapy (CBT), psychotherapy and psychopharmacotherapy are utilized to 

suit the patient’s individual needs (Wilson, Freidman & Lindy, 2012). According to the Cochrane 

review (2009), no single treatment has however proven effective as a cure for veterans with PTSD. 

The review instead suggests that the risk of suicide, drug and alcohol abuse is in fact increased  

(Bisson & Andrew, 2007; Hyman et al., 2012).  

 

Fatigue is also a common symptom in patients with TBI and whilst fatigue and lethargy may be 

symptoms of depression, they may exist as separate entities and be directly related to the brain 

injury (Cantor et al., 2008). The neurobiology of depression remains unclear. However, there is a 

relationship that exists between serotonin and norepinephrine systems and selective serotonergic 

reuptake inhibitor (SSRIs) medications, that have been shown to benefit patients with depression. 

However, few studies have evaluated the efficacy of SSRIs in treating TBI related depression. 

Statistically, sertaline has been shown to significantly reduce psychological distress, anger and 

aggression, which are also symptomatic of mTBI (Fan, Uomoto & Katon, 2000).  
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The management of persistent mTBI symptoms and its accompanying comorbid disorders is a 

challenge to health care providers. These individuals represent a complicated poly-morbid 

population that are not suited to typical NHS standard of care models that target one diagnosis at 

a time. Enduring symptoms in one domain can thwart rehabilitative progress in other domains 

(Vanderploeg, Belanger & Curtiss, 2000). There is, therefore, a pressing need to understand the 

factors that influence mTBI symptoms so that appropriately targeted care can be provided. 

 

In summary, the neuropsychiatric and cognitive symptoms that can accompany mTBI are 

multifaceted and the underlying drivers of symptoms remain unclear.  Understanding the factors 

that influence these symptoms and the functional outcome for veterans is of real importance to 

provide targeted care and assessment. The combination of current depressive disorder, PTSD and 

military mTBI has been suggested to represent a significant clinical phenotype (deployment 

trauma factor) that increases the risk of not only disability but also other clinical issues such as 

substance abuse (Lippa et al., 2015). In the next chapter I propose that the ambiguity of mTBI can 

be partly addressed by looking at the relationship between mTBI and the vestibular system, I will 

later suggest that rehabilitation may be enhanced by utilizing the vestibular system as a novel 

treatment pathway.   
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Chapter 2 

The Vestibular System and mTBI 

 

“It is easy to underrate the importance of a sensory system whose receptors are buried deep with the 

skull and of whose performance we are not usually aware” (Wilson and Melvill Jones, 1979. p1) 

 

Introduction 

In Chapter 1 mTBI was described as a clinal phenotype that causes significant disability to military 

veterans (Lippa et al., 2015). However, the drivers of long-term disability are far from clear. Here 

I suggest that one possible driver of mTBI symptoms is vestibular pathology.  Exposure to blast 

can be a significant risk factor in sustaining damage to the inner ear. In line with this, auditory 

dysfunction has become the most prevalent individual US service-connected disability, with 

compensation payments of more than 1 billion dollars per year (Fausti et al., 2009). In fact, 

explosive munitions accounted for 74.4% of US military wounded in action cases in the Iraq and 

Afghanistan conflicts (Belmont et al., 2012). Rupture of the tympanic membrane has been 

considered as an indicator of blast intensity and potential underlying primary blast injury (Elder & 

Cristian, 2009). Perhaps unsurprisingly, accumulating evidence suggests that blast wave trauma 

and secondary head injury can cause damage to the peripheral (and central) vestibular system (Lien 

and Dickman 2018; Szczupak et al., 2016).  The long-term impact of blast injuries are still not 

fully appreciated and the late sequelae from repeated blast exposure often goes unrecognised, 

frequently because vestibular assessments are not routinely performed. But the likely prevalence 

of inner ear injury, coupled with the wide behavioural impairment that we know from civilian 

studies accompanies vestibular damage, raises the possibility that some sequelae of mTBI are 

vestibular in origin. 
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Vestibular Pathology as a Driver of mTBI Symptoms 

The cognitive and psychiatric symptoms that result from mTBI reflect likely damage to both 

cortical and sub-cortical structures within the brain (Scherer & Schubert, 2009). But specific 

mechanisms are elusive, and one that has received little attention is the vestibular system. 

Individuals with mTBI commonly report changes in their ability to maintain balance, posture and 

gait. In the acute phase of mTBI, symptoms of dizziness have been shown to be the second most 

commonly reported symptom with 11.5% of soldiers developing persistent problems post 

deployment (Terrio et al., 2009).  Concurrent injuries to the auditory system as a result of acute 

blast trauma and TBI accounted for one-quarter of all injuries among US marines during OIF 

through 2004, and were the most common type of injury (Fausti et al., 2009). Exposure to blast 

waves can affect both gas and fluid filled structures of the middle/inner ear and has resulted in 

significantly greater rates of vestibular injury, hearing loss and tinnitus than non-blast related TBI, 

affecting 60% of these patients (Lew & Guillory, 2007; Fausti et al., 2009). Secondary, blunt 

trauma from blast can be sustained by way of impact to the back of the head after falling or being 

hit by a projectile which can also induce vestibulopathy. In addition to inner ear damage, white 

matter abnormalities and defuse axonal injury have been observed in the cerebellum, thalamus and 

ventral posterior cerebral cortex in mTBI patients presenting with vestibulopathy (Furman et al., 

2000). In a long-term study of untreated patients with mTBI, vertigo was shown to persist in 59% 

of patients five years post injury (Berman & Fredricson, 1978). Patients with mTBI who present 

with symptoms of dizziness and imbalance often experience a slower recovery and are less likely 

to return to work than patients without dizziness (Chamelian & Feinstein, 2004). 
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Meta-analysis of individuals with non-complicated mTBI (which can be defined as having no 

intercranial abnormality) (Iverson et al., 2012), has shown that sensorimotor and physiological 

changes in balance can last beyond the typical recovery time of concussion effecting gait, motion 

and oculomotor tasks (Galea et al., 2018). Moreover, persistent postural instability has been 

observed up to 7 years post injury in US veterans (Pan et al., 2015). A considerable number of 

blast-trauma patients with vestibular injury may have been misdiagnosed due to the lack of 

assessment criteria for this population and logistical testing difficulties with polytrauma patients.  

 

Disorders of imbalance following mTBI can result from peripheral vestibular disturbance such as 

benign paroxysmal positional vertigo (BPPV), perilymph fistula syndrome (PFS), central nervous 

system trauma to the brain stem and or cerebellum, post-traumatic vestibular migraine and spatial 

disorientation.  BPPV spells typically last for less than a minute at a time and cause a sensation of 

falling or light-headedness that is provoked by movement of the head. Frequently, patients with 

traumatic BPPV present with lateral canal deficits. However, the posterior semi-circular canal is 

the most commonly affected by the stray otoliths which cause BPPV (Szczupak et al., 2016). PFS 

arises as a result of an abnormal opening (most commonly at the round or oval window) or by 

rupture of the fluid-filled membranous labyrinth (Glasscock et al., 1992; Szczupak et al., 2016). 

Fluid leaks from the inner ear to the middle ear cavity. PFS occurs frequently from blast wave 

trauma or scuba diving depressurization with difficult to diagnose dizziness and is frequently 

accompanied by sensorineuronal hearing loss and tinnitus. Direct trauma to the brain stem and/or 

cerebellum causes complaints of imbalance with standing and walking, and occasionally true 

complaints of vertigo (Shepard et al., 2013). Post-traumatic vestibular migraine can cause 50% of 

migraine headaches and individuals often report episodic vertigo with periods of unsteadiness 

(Lempert et al., 2012). The most common and difficult balance disorder seen after head injury is 



The Vestibular System in mTBI 

 

 

 

35  

spatial disorientation which results in individuals feeling continually unsteady (Hoffer et al., 

2004). 

 

Central vestibular disorders are more likely than peripheral disorders to cause chronic imbalance 

and are frequently associated with other neurologic symptoms (Miedaner et al., 2005). Lesions 

along the vestibular pathways extend from the vestibular nuclei in the medulla oblongata to the 

ocular motor nuclei and integration centres in the pons and rostral midbrain, and thereon the 

thalamus, and multisensory vestibular cortex areas in the temporal cortex (Dieterich, 2006). The 

vertigo symptoms that arise from central vestibular damage can present in various syndromes that 

typically present with ocular motor, perceptual and postural manifestations (Dieterich, 2006). 

There is however a large overlap in the duration of episodes between central and peripheral 

disorders and a detrimental association with quality of life measures (Grimby & Rosenhall, 1995). 

Dizziness can be accompanied by postural instability and the fear of falling has been shown to 

have a direct link to low self-esteem (Tinetti & Powel, 1993). Patients with uncompensated 

vestibular hypofunction can have functional limitations such as the inability to walk in the dark, 

cross streets rapidly, or stand on a moving bus.  

 

The relationship between blast exposure, mTBI and damage to the vestibular system is relatively 

well established and persistent dizziness, vertigo, clumsiness and imbalance symptoms have 

frequently been shown to occur (Hodge et al., 2008; Pogoda et al., 2012; Terrio et al., 2009). 

Additionally, 50% of blast exposed soldiers experiencing symptoms of dizziness have been 

observed to have abnormal nystagmus (Scherer et al., 2011). Diffuse axonal injury occurs when 

shearing, stretching or traction on small nerves leads to impaired axonal transport, focal axonal 

swelling and possible axonal disconnection (Hurley et al., 2004; Mendez et al., 2005). This 
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pathophysiologic process can be evident from blast, blunt and mixed mTBI and may further 

contribute to comorbid dizziness and vestibular pathology in cases of secondary and tertiary effects 

of blast. Furthermore, BPPV, PFS, and vascular or central lesions are commonly implicated as 

causes of vestibular pathology after head trauma (Scherer & Schubert, 2009). Although the 

diagnosis of mTBI alludes to a mild deficit, the reality for many patients who suffer from this 

condition has been shown to be debilitating particularly when accompanied by PTSD and 

depression (Lippa et al., 2015). However, the effects of imbalance in mTBI, cognition, affect, 

functional status and long-term outcome have not been properly examined (Pogoda et al., 2012).  

 

The Anatomy and Function of the Vestibular System 

The vestibular system constitutes our sixth sense and plays an important role in our everyday life, 

contributing to a range of functions from motor reflexes to the highest levels of perception and 

consciousness.  Otherwise known as the balance organs of the inner ear, the vestibular sensory 

organs are located in the petrous part of the temporal bone in close proximity to the cochlea. The 

vestibular system is comprised of two types of sensors. The two oltolith organs (the saccule and 

utrical) which provide information about linear acceleration and gravitational pull, and the three 

roughly orthogonal semicircular canals, which sense angular acceleration and rotational movement 

of the head (see Figure 2.1) (Angelaki and Cullen, 2008). These sensory organs send signals to the 

vestibular nerves which concurrently send signals to the neural structures that control eye 

movements and posture. The vestibular system is primarily proprioceptive in nature, concerned 

with the maintenance of equilibrium and orientation of the body in space.  

 

Hair cells are a common element in the vestibular semicircular canals, otolithic organs and the 

cochlea (Highstien, Fay & Popper, 2004). They transform mechanic displacement into electric 
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energy (Kingma & Van De Berg; 2016) and are comprised of stereocilia and a kinocilium which 

are embedded within a glutinous mass (see Figure 2.2), overlaid by small calcium carbonate 

crystals in the otoliths. When the head undergoes either vertical or horizontal acceleration, these 

crystals move and activate the hair cells transmitting information to the brain stem via the 

vestibular nerves for perception of motion or tilt.   

 

Figure 2.1. The Peripheral Vestibular System 

(http://utahhearingandbalance.com/dizziness/balance-and-the-vestibular-system/). 
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Figure 2.2. Anatomy of Hair Cells within the Otolith Organs:  

a) during rest or constant movement; b) the cilia are perpendicular to the cell surface however, 

move when horizontal acceleration c) is applied (http://droualb.faculty.mjc.edu).  

In a similar fashion, the ampullae, the stereocilia and the kinocillum of the hair cells are immersed 

in a gelatinous mass called the ‘cupula’.  This is distorted by currents within the endolymph 

induced by movement in the fluid that fills the canals and ampullae. Accelerations in the cupula 

bend the cilia causing these hair cells to increase their firing rate (vestibular afferents continuously 

fire even when the body and head are at rest and motionless). Signals from the semicircular canals 

and the otolith organs are complementary, such that their combined activation is necessary to 

encode the vast range or physical motions experienced in day to day life (Angelaki and Cullen, 

2008).  
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At the central level, the vestibular system is highly convergent and multimodal.  Visual/vestibular 

and proprioceptive/vestibular interactions occur throughout the central vestibular pathways 

sending signals that are vital for gaze and postural control. The influence of angular and linear 

forces is pervasive and a continuous flow of vestibular signals extends throughout the central 

nervous system. These signals are integrated with processes related to arousal, wakefulness, vision, 

audition, somatosensation, movement, digestion, cognition, learning and memory (Highstein, Fay 

& Popper, 2004).  

 

The diversity of vestibular anatomy is evidenced by its widespread connectivity. The vestibular 

system is unique in that many second-order sensory neurons in the brain stem are also premotor 

neurons; the same neurons that receive afferent inputs send direct projections to motoneurons (see 

Figure 2.3). This streamlined circuitry is advantageous in eliciting short reaction times. For 

example, the latency period for the vestibular ocular reflex, in which head movement is 

compensated by an eye rotation to keep retinal images stable, occurs in 5-6ms (Highstein, Fay & 

Popper, 2004).  

 

As seen in Figure 2.3 the 1st order sensory neurons of the vestibular pathways project from the 

hair cells in the vestibule and the semicircular canals to the cell bodies of the vestibular ganglion 

and then to the vestibular branch of the vestibulaocochlear (VIII) nerve.  The vestibular nerve 

projects to the ipsilateral complex of four major vestibular nuclei in the dorsal part of the pons and 

medulla. The vestibular nuclei is where the 1st order sensory neurons synapse with 2nd order 

sensory neurons ‘interneurons’.  

 

 



The Vestibular System in mTBI 

 

 

 

40  

Figure 2.3. Ascending and Descending Pathways of the Vestibular System 

(http://theimgpic.pw/Vestibular-tracts-Vestibular-Disorders-t-Neuroscience.html) 

 
 

 

 

The 2nd order sensory neurons in the vestibular nuclei integrate signals from the vestibular organs 

with those from the spinal cord, cerebellum and visual system. Projections then continue on to the 

3rd order sensory neurons in the ventral nuclei of the thalamus, the oculomotor nuclei, the reticular 

centres occupied with skeletal movement, spinal centres occupied with skeletal movement and the 

vestibulocerebellum. The 3rd order sensory neurons in the ventral thalamus send axons to synapse 

with neurons in Broadmann’s area 2V and 3a of the primary somatosensory cortex and the cortex.  
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A Relationship between the Vestibular System, Cognition and Affect 

A growing number of studies indicate that damage to the vestibular system can not only affect 

neuropsychiatric function, but present in a manner that is much like PTSD and mTBI (Fausti et 

al., 2009). Since the first century, medical literature has linked vestibular disorders to psychiatric 

symptoms such as panic disorder, anxiety and depression (Asmund et al., 1998; Balaban, 2001; 

2011; Eagger et al., 1992; Best et al., 2008; Preuss et al., 2014; Yardley et al., 1998). More recently, 

a study conducted by Harber et al., (2016) showed that PTSD severity was positively associated 

with dizziness severity in 50 US military veterans with a PTSD diagnosis. Dizziness handicap 

scores were three times worse in veterans with PTSD compared to those of the control group.  

Patients with vestibular disorders also report higher rates of depersonalisation derealisation 

symptoms which include difficulty focusing attention, thoughts seeming blurred and 

disassociation (Sang et al., 2006 Cheyne and Girard, 2009); Agoraphobia is also particularly 

common in patients with vestibular disorders (Eagger et al., 1992; Gazzola et al., 2009; Guidetti 

et al., 2008).  

 

In many cases, these psychiatric complaints are accompanied by cognitive disorder. In a large-

scale survey of 20,950 adults from the US population, Bigelow et al., (2015) reported that 8.4% of 

participants self-reported symptoms of vestibular vertigo. These individuals were eight times more 

likely than those without vestibular disorders to have serious difficulty in concentrating or 

remembering; and were four times more likely to have activity limitations as a result. These 

individuals were also three times more likely to suffer from depression, anxiety and panic disorder. 

Interestingly, patients with PTSD frequently describe symptoms such as dizziness, disorientation 

and/or extreme discomfort in environments such as supermarkets, shopping malls and stadiums. 

Typically, these individuals comment on trying to avoid being in such environments. These 
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manifestations are classified as an anxiety disorder, but they are also characteristic of patients with 

visual vertigo or space motion discomfort (Jacob et al., 2009). More recently Smith et al., (2018) 

provided further support for this cognitive/psychiatric association from 101 patients with a 

neurotological diagnosis. 50% suffered from reduced visuospatial short-term memory, 60% and 

37% exceeded cut-off on the Beck Anxiety and Depression Inventories and fatigue was also shown 

as particularly problematic affecting 78% of the sample. Research from Lahmann et al., (2017) 

echoes these findings, with approximately 50% of 547 vestibular patients also meeting a 

psychiatric diagnosis. To add to this, there is also a growing body of evidence to demonstrate a 

broad range of cognitive impairments that result from vestibular dysfunction including: learning 

disability, deficits in memory, executive function, attention, apraxia, motivation and visuo-spatial 

ability (Black et al., 2004; Byl, Byl & Rosenthal, 1989; Candidi et al., 2013; Grimm et al., 1989; 

Grabher et al., 2011; Guidetti et al., 2008; Mast et al., 2014;  Risey et al., 1990).  It is feasible and 

quite probable that the association between vestibular dysfunction and affective symptoms has a 

connection with observed cognitive deficits that accompany vestibular disorders (Balaban et al., 

2001; 2002; Staab, 2006). Indeed Smith et al., (2018) has demonstrated that memory loss is not 

mediated by affective symptoms, but is instead directly associated to vestibular injury. Together, 

and most importantly, these studies illustrate that affective and cognitive symptoms attributed to 

mTBI and allied psychiatric disorders may be partly vestibular in nature.  

 

Could Treating the Symptoms of Imbalance help relieve symptoms of mTBI and PTSD? 

In the UK, treatment for balance and dizziness disorders currently requires referral to an neuro-

otologist. Evaluation of balance and gait is often made using the Dizziness Handicap Inventory, 

caloric irrigation of the of the external auditory canal, optokinetic testing, administration of the 

Dix-Hallpike test, posturography, and/or centre of mass movement testing (Basford et al., 2003). 
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Attaining the neuro-otological history is imperative to determine the correct course and 

management of the specific balance and dizziness disorder.  For example, the treatment of PFS 

frequently requires surgery to repair labyrinth rupture and to prevent fluid leaks from the inner ear 

to the middle ear (Grimm et al., 1985).  The Epley repositioning manoeuvre is commonly used to 

treat BPPV which moves calcium carbonate crystals from the semicircular canals in to the utricle. 

Individuals who have stable vestibular function yet continue to present with symptoms when 

provoked by head motion, in the absence of visual or altered somatosensory cues, may benefit 

from vestibular rehabilitation therapy (Shepard et al., 2013). Therapeutic vestibular exercise which 

is designed to restore a normal vestibular ocular reflex may be effective in treating a unilateral 

vestibular deficit. By contrast, individuals that have bilateral vestibular loss are typically the 

hardest to rehabilitate.  Nonetheless, the symptoms of many forms of imbalance are to some degree 

treatable (Balaban, Jacob and Furman, 2011).  

 

Preliminary evidence has started to emerge to suggest that treatments traditionally used to treat 

imbalance disorders may hold therapeutic value in treating the broader symptoms of mTBI and 

PTSD. Carrick et al., (2015) investigated the efficacy of a novel brain and vestibular rehabilitation 

(VR) treatment that aimed at treating PTSD. In this sample, all 75 subjects had suffered combat 

related TBIs and fell in the severe category of the Clinician Administered PTSD Scale (CAPS). 

The VR treatment involved gaze stabilization exercise, off axis whole body rotation, visual pursuit 

and visual saccadic eye movements to novel targets. Each subject received three sessions of VR 

treatment five days a week for two weeks. Pre vs. post treatment CAPS scores revealed a 36% 

improvement of PTSD symptoms. Similarly, in a series of four case studies by Keffelgaard et al., 

(2015), patients with mTBI received eight weeks of individually modified VR exercises. Here 

three out of the four patients showed reduced self-perceived disability, improved quality of life 
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reduced psychological destress and improved performance-based balance. This reduction in 

symptoms was still evident at three months follow-up. Although promising, it should be noted that 

these studies were underpowered and lacked formal trials methodology.  

 

Could Artificial Stimulation of the Vestibular System using Galvanic Vestibular Stimulation 

Provide a Practical Treatment Approach for mTBI? 

Artificial stimulation of the vestibular nerves via thermal current, using a procedure known as 

caloric vestibular stimulation (CVS), or electric current using galvanic vestibular stimulation 

(GVS) has been shown to remediate a number of cognitive and affective symptoms; including, 

pain, episodic migraine, schizophrenia, bipolar disorder, Parkinson’s disease, prosopagnosia, 

aphasic syndrome, minimally conscious state, and hemi-spatial neglect (Black et al., 2016; Dodson 

2004; Ramachadran et al., 2007; Vanzan et al., 2017; Wilkinson et al., 2013; 2014; 2016). This 

suggests there is significant potential to modulate cognitive and affective functions seen in mTBI 

(Stephan et al., 2005; 2009; Bense et al., 2001), from a stimulation process that has been described 

as similar to the stimulation that arises from natural head movement. Some of these studies indicate 

that the effects can be long-term, Wilkinson et al., (2014) demonstrated that as little as one 25min 

session of GVS with ~1mA Direct Current (DC) could elicit an amelioration of inattention 

symptoms in patients with hemi-spatial neglect for up to four weeks. Of particular note, one active 

session of GVS was enough to show a carry-over of comparable efficacy to ten. Producing a 

median improvement of 20% on Barthel Index scores most notably in continence, bathing and 

transfer subscales. In an unpublished follow-up study, I re-assessed 28 of the 52 participants at 1 

to 3 years post GVS, and found that the ameliorating effects of GVS were still evident (Denby & 

Wilkinson, 2014[unpublished]). Along similar lines, Schmidt et al., (2013) showed lasting 

improvements in tactile extinction using GVS at 84 days post stimulation on 12 patients with right 
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hemisphere lesions; and Wilkinson, Podlewska & Sakel, (2016) revealed carry over effects at five 

months post CVS in a patient with Parkinson’s disease, who showed clinically relevant 

improvements in motor symptoms, cognition, depression and fatigue.  

 

GVS is a technique that was traditionally used to probe the role of the vestibular system in 

autonomic motor control (Fitzpatrick & Day, 2004). The procedure activates the vestibular nerves 

via low amplitude electrical currents that are delivered to the mastoid processes using self-

adhesive, rubber electrodes. A subsequent change in the vestibular nerve afferent firing rates 

occurs upon stimulation, which via basil forebrain/brainstem projections throughout the central 

thalamus and hypothalamus (Lopez, Blanke & Mast, 2012), elicits a variety of compensatory 

responses in distal frontal-parietal and striatal networks associated with arousal and goal-directed 

behaviour (Philips, Ladoucer & Drevets, 2008). GVS has been shown to be safe, easy to administer 

and has less side effects than the traditional method of stimulating the vestibular system using 

caloric irrigation. Caloric irrigation involves injecting cold water into the ear canal and is known 

to cause side effects of pain, vertigo, nausea and nystagmus during irrigation making it a messy 

and unpleasant procedure (Utz, et al., 2011; Wilkinson et al., 2010; Wilkinson et al., 2014; Zubko 

et al., 2013). 

 

The mechanisms of GVS promoting clinically relevant change are still unclear. However, GVS 

has been associated with the release of a number of neurotransmitters including serotonin (Ma et 

al., 2007), histamine (Horii et al., 1993), acetylcholine (Ma et al., 2007; Goldstien et al., 2007) and 

GABA (Samoudi et al., 2012; Sailesh & Mukkadan, 2013). Early studies have illustrated that both 

place cell and theta rhythm could be modulated by vestibular stimulation (Gavrilov. 1995; Wiener 

et al., 1995). The pathways through which vestibular signals reach the hippocampus is yet to be 
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fully elucidated. Nonetheless, electrical stimulation of one labyrinth has been shown to evoke field 

potentials and single unit activity in both the unilateral and contralateral CA1 region (Hicks 2004; 

Horri et al., 2004). Both CVS and GVS have been shown to enhance short-term memory 

(Batchtold et al., 2001) and a reduction of mean reaction times to recall of faces (Wilkinson et al., 

2008). DC GVS has also been shown to promote the release of GABA in the substantia nigra 

(Samoudi et al., 2012) and GABAergic inhibition controls the activity of the hypothalamic-

pituitary-adrenal (HPA) axis, which mediates the bodies response to stress (Sailesh & Mukkadan, 

2013). Reciprocally, this involves regulating the production of corticotropin releasing hormone 

(CRH) neurons in the hypothalamus which sends signals to release adrenocorticotropic hormone 

(ACTH), then triggering the release of cortisol from the adrenal gland (Mody and Maguire, 2012). 

Most notably, CVS in vestibular dysfunction has been shown to activate hippocampal formation 

which inhibits the stress axis (Vitte et al., 1996). Furthermore, controlled swaying evoked 

vestibular stimulation has been shown to decrease salivary cortisol levels in elephants (Markia et 

al., (2008), new born infants (White-Traut, 2009) and (N = 240) neurologically healthy adults who 

also showed a reduction in stress levels, blood pressure and pulse rate (Archana et al., 2016).  

 

Brain imaging research indicates that GVS can induce diffuse cortical and subcortical activations 

to the hippocampus, basil ganglia, thalamus and motor cortex (see Chapter 4, Bense et al., 2001; 

Bucheret al., 1998; Deutschlander et al., 2002; Dieterich et al., 2003; de Waele et al., 2001; Fasold 

et al., 2002; Lobel et al1998; Stephan et al., 2005; Suzuki et al., 2001). For example, Stephan et 

al., (2005; 2009) utilised functional magnetic resonance imaging (fMRI) to determine if DC or 

alternating current (AC) GVS would mediate different activation sites within the vestibular cortex 

and to identify an optimal waveform with respect to perception. As can be seen in (Figure 2.4) 

there was haemodynamic evidence of both DC and AC GVS evoking wide spread activation 
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changes in blood oxygenation level-dependent (BOLD) responses. AC GVS was shown to induce 

greater BOLD responses than DC (Stephen et al., 2005; 2009).  

 

Figure 2.4. Activation Maps Indicating the Effects of DC and AC GVS (Stephan et al., 2005; 

2009) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 (A) Effects of persistent response to DC-GVS (model 1). (B) Effects of persistent 

response to DC-GVS (model 2) indicate the same response as pattern of activation as model 1. (C) 

Effects of transient responses to switching DC-GVS on and off. (D) The effects of AC GVS.  

 

The link between GVS and GABA noted above is particularly interesting because GABA uptake 

has been shown to regulate cortical excitability via cell type-specific tonic inhibition which is 

linked to long-term potentiation (LTP) and long-term depression (LTD) (Semyanov, Walker and 

Kullmann, 2003). LTP is the enduring enhancement of synaptic connection, while the 
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complementary process LTD causes reduced transmission of synaptic connections. Both of these 

processes can cause structural modification of neuronal connectivity which are important 

underlying mechanism of learning and memory process (Bliss & Cooke, 2011; Hebb, 1949; Monte 

–Silva et al., 2013) and are therefore relevant to neuro-rehabilitation. 

 

Different forms of LTP/LTD have been defined as dependent on the duration of the excitability 

enhancements. Early LTP/LTD is discerned from late by excitability alterations lasting for more 

than three hours, and showing an increase or decrease in synaptic weight and strength of 

postsynaptic potentials (Monte-Silva et al., 2013; Rioult-Pedotti et al., 2000).  In the present 

context the effects of GVS on GABA coupled with its lasting clinical and strong effects on BOLD 

response, may imply that GVS can manipulate synaptic strength and potentially a powerful 

neuromodulator in mTBI. 

 

Chapter 2 Summary and Research Questions 

Inner ear injury and the symptoms of imbalance are common sequelae of mTBI in military 

personnel (Fausti et al., 2009; Terrio et al., 2009). Damage to the inner ear as a result of blast 

waves or by way of secondary head injury has been shown to negatively impact vestibular function 

(Fausti et al., 2009). In this Chapter it has been suggested that sensory, cognitive and affective 

symptoms that can arise from mTBI closely resemble symptoms of common vestibular pathology. 

This may imply that some of the symptoms of mTBI are vestibular in origin. Yet while the 

symptoms of imbalance are often noted, the presence of an underlying vestibular diagnosis is often 

missed because screening is not carried out.  
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This thesis aims to develop understanding of how the vestibular system interacts with the long-

term symptoms of mTBI, both as a driver of symptoms and a novel treatment modality. The extent 

to which symptoms of imbalance influence mTBI is still unclear and further exploration of this 

relationship is required if we are to develop potential treatments for mTBI and provide appropriate 

care pathways for military personnel and veterans in the future.   

 

To explore the relationship between the vestibular system and mTBI, Chapter 3 examines the 

lifetime prevalence of mTBI and the neuropsychiatric outcomes of 162 UK military veterans. 

Mediation analysis was also used to assess the direct impact of vestibular disorder in 

neurobehavioral function and general disability; independent of co-morbid psychiatric symptoms. 

A further aim was to for the first time determine if vestibular disturbance was more frequently 

seen in blunt, blast or blunt + blast injuries.   

 

In Chapter 4 I assess if GVS can affect cortical excitability up to 24hours post stimulation which 

is a precursor of long-term synaptic change. The neurological sequela of mTBI that are targeted 

will depend on the pattern of excitability observed. If GVS can be shown to reduce cortical 

excitability then I will target anxiety symptoms which are associated with cortical hyper-

excitability (Bunse et al., 2014; Centonze et al., 2005). However, if GVS increases motor cortex 

excitability then symptoms of information slowing and reduced arousal would seem a better target 

(Heart & Kwentus, 1987; Monte-Silva et al, 2013; Wilkinson et al., 2008). The results from this 

Chapter informed Chapter 5 in which 6 UK military veterans were recruited to establish if 

excitability changes seen in Chapter 4 modulated their behavioural symptoms as predicted.  
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Chapter 3 

Vestibular Disturbance as an Influence on the Chronic Symptoms of Mild Traumatic Brain 

Injury in UK Military Veterans  

 

Introduction 

During the conflict in Iraq and Afghanistan, the proportion of head and neck wounds in US soldiers 

were higher than those experienced in World War II most (75%) were due to blast munitions 

(Owens et al., 2008). Explosive munitions were also the most frequent mechanism of battle injury 

for UK service personnel during Operation Herrick and accounted for 52% of 2,201 injuries 

sustained. Just under a fifth of these reported injuries were to the head and neck (Ministry of 

Defence, 2014). The dynamics of blast waves are characterized by shock displacement waves that 

can cause implosion and pressure changes in the inner ear. This coupled with noise levels that 

exceed 185dB can rupture the tympanic membrane in approximately 50% of adults (Chandler & 

Edmond, 1997). Tympanic membrane perforation has been identified as a marker of concussive 

brain injury and should raise a high index of suspicion for concomitant neurologic injury (Xydkis 

et al., 2007).  Given the proximity of the vestibular and hearing organs, it is likely that many 

veterans with hearing loss will also have vestibular loss. However, the role of the vestibular system 

in mTBI has previously received little attention. This Chapter aims to address this issue and further 

develop the evidence presented in Chapter 2 that suggests the vestibular system may be an 

influence on the affective, cognitive and sensory symptoms experienced from chronic mTBI.  

 

Of particular interest, is the distinct overlap in neurobehavioural and psychiatric symptoms that 

accompany vestibular disfunction, mTBI and PTSD. Previous research on UK military personnel 
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deployed to Iraq has indicated that the symptoms of post-concussion syndrome (PCS) are difficult 

to distinguish from those of psychological trauma. It has been suggested by Fear et al., (2011) that 

the symptoms of PCS are not specific and that trying to distinguish between physical and 

psychological trauma being the cause of PCS, could be fraught with hazards. Predominantly this 

is because individuals who demonstrate PCS symptoms frequently have not suffered neurological 

insult, but have experienced psychological trauma. This, coupled with the fact that vestibular 

disturbance is not routinely assessed in military personnel, raises the possibility that symptoms of 

vestibular origin may wrongly be attributed to mTBI or psychiatric disturbance. Furthermore, as 

mTBI is not routinely screened during deployment in the UK armed forces, it is likely that the 

prevalence of mTBI is much higher than current estimates suggest.  

 

There is an emerging consensus that the effects of mTBI sustained during deployment might be 

better understood by evaluating mTBI within the context of lifetime exposure. Research from 

McGlinchy et al., (2016) provided a comprehensive evaluation of lifetime incidence of TBI in US 

military veterans. This revealed that 72% of 294 US veterans had sustained one or more TBI in 

their lifetime. 40% had sustained more than one TBI and almost half 48% had suffered a military 

related TBI. Of these individuals who reported military TBI, 42% experienced one or more blast 

related TBI and 31% were mild grade injuries. Military TBI by blunt force mechanism was seen 

in 35% of the sample. Furthermore, almost two thirds 64% of these veterans had a current PTSD 

diagnosis, 28% had depressive disorder and 16% had substance abuse/dependence issues. Sleep 

disturbance was particularly problematic affecting 79% of veterans and in general terms the sample 

were shown to suffer from multiple psychical and psychiatric conditions that required a 

comprehensive approach to characterize. A less comprehensive study of 123 UK military veterans 

seeking psychiatric support for mental health difficulties revealed a prevalence rate for TBI of 63% 
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(Murphy et al., 2015). However, this study reported no relationship between TBI and PCS, but 

significant associations between reporting TBI, depression, problems with anger and an increased 

risk of experiencing mental health difficulties. This relationship is supported by research from 

Orlovska et al., (2014) who reviewed the medical records of 113,906 civilians with head injuries 

and showed that individuals were four times more likely to develop a mental health illness 

following TBI.  

 

Following mTBI, 15 to 20% of individuals present with neurobehavioual symptoms that are 

enduring (Bazarian et al., 2001; Marshall et al., 2012; Ryan et al., 2003). Soldiers often report 

physical sensory, cognitive and behavioural emotional changes (Pogoda et al., 2012). As 

evidenced in Chapters 1 and 2 symptoms such as headache, fatigue, sleep disorder, dizziness, 

amnesia, slowed information processing, executive dysfunction, depression and anxiety are 

commonly seen in mTBI and PTSD (Cassidy et al., 2017; Herbert et al., 2018; Harber et al., 2016). 

Furthermore, recent research has started to indicate that vestibular pathology affects 

neuropsychiatric function in a manner that is akin with on-going mTBI symptoms (Bigelow & 

Agrawal, 2015; Smith & Zheng, 2013; Hitier et al., 2014). Sustained-in-combat mTBI is frequently 

accompanied with bodily trauma and PTSD, which makes the drivers of neuropsychiatric 

impairment unclear.   

 

Dizziness is one of the most commonly seen symptoms of mTBI, yet, information on balance 

deficits in military veterans is sparse. Symptoms of dizziness and imbalance are the second most 

commonly reported in acute concussion (Hodge et al., 2008; Terrio et al., 2009). Post deployment, 

11.5% of soldiers report vestibular symptoms that are persistent (Pogoda et al., 2012) that also 

have a greater likelihood worsening at three months post injury, than other mTBI symptoms 
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(Laborey et al., 2014). Frequently, symptoms that effect balance can go undetected in a seminal 

paper from Grimm et al., (1985), he postulates that of 102 patients suffering with perilymph fistula 

syndrome, all cases were as a result of TBI or whiplash and these individuals had been injured 

months if not years before their diagnosis.  

 

There is a strong relationship between balance disorders, cognitive and affective symptoms and 

many of which share a distinct overlap with those symptoms seen in mTBI and PTSD (Herbert et 

al., 2018; Harber et al., 2016). This may be partly attributed to the shared neurochemical features 

of the ascending vestibular afferents and limbic arousal systems (Balaban et al., 2011) a network 

which is also associated with migraine headache (Balaban et al., 2011). Combined these findings 

indicate the complexity of vestibular disorder influencing gravitational and head-centred frames 

of reference that can compromise many brain processes. This may provide indication of vestibular 

function independently influencing neurobehavioural and functional outcomes of military mTBI 

and PTSD. Either way, it is probable that military veterans are at substantial risk of vestibular 

dysfunction.  

 

To investigate the influence of vestibular disturbance in mTBI this study first needed to establish 

the lifetime prevalence of mTBI in UK military veterans and the relative presence of chronic 

vestibular disturbance in relation to blunt, blast or blunt+blast mTBI. Whilst all of these 

mechanisms can lead to vestibular pathology it is not yet clear which if any mechanism constitutes 

the greatest risk of vestibular disturbance. Comparatively, auditory dysfunction in US military TBI 

shows a strong association with blast TBI (Lew & Guillory, 2007). Hearing loss affected 62% of 

veterans with blast mTBI and tinnitus 38%; while in the non-blast group only 44% suffered hearing 

loss and 18% suffered tinnitus (Lew & Guillory, 2007).  A second key aim of the current study 
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was to establish the impact of vestibular disturbance on neurobehavioural symptoms and general 

disability which is commonly seen in both mTBI and vestibular disorders. To do this mediation 

analysis was employed to determine if vestibular disturbance could independently influence these 

outcomes irrespective of the psychiatric mediators of PTSD, depression and anxiety symptoms.  

 

Methods 

Participants  

162 participants were recruited for study - see Table 3.1 for their demography and military 

background. Of this sample 137 participants were recruited from a 6week programme of in-patient 

psychiatric treatment at one of three Combat Stress treatment centres in the UK, and the remaining 

25 participants were recruited from drop-in counselling sessions at the Portsmouth Veterans 

Outreach Centre. Veterans seeking psychiatric support were recruited due to their poor life 

outcomes and greater likelihood of vestibular dysfunction that can accompany psychiatric 

disturbance. Individuals were eligible if over 18 years old, retired from the UK armed forces, and 

willing to consent to study participation. Potentially eligible participants were approached shortly 

after their treatment/counselling session and asked if they would be willing to conduct a survey 

aimed at assessing the frequency and nature of head injury in military veterans. They were advised 

that the survey was would take approximately 40minutes to complete and involved answering 

questions on a hand-held iPad. Favourable ethical opinions from the University of Kent School of 

Psychology and Combat Stress research ethics review panels were given prior to study 

commencement.  
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Procedure 

Following written informed consent, participants completed the survey in a quiet corner room 

accompanied by the experimenter. The survey comprised a number of validated, standardised self-

report assessments presented serially using the on-line survey software Qualtrics. These 

assessments were administered using iPads in the order in which they appear below and were 

preceded by questions about demographic background and military service. Participants were told 

that they could take breaks throughout the survey as needed. 

 

Self-Report Measures 

Demographics and Military Background 

Demographics were attained relating to military service branch, length of service, number of 

deployments to a war zone (this included deployments to Northern Ireland during conflict). 

Information relating to experience of active service, current vocational/relationship status, gender 

and age were obtained. Additionally, questions related to alcohol and drug consumption were 

included. All demographic questions were self-reported and not verified measures.  

 

Traumatic Brain Injury assessment  

To determine participants lifetime history of TBI, The Ohio State TBI Identification Method 

(OSTIM) was administered (Corrigan & Bogner, 2007). This is a gold standard self-report 

assessment that probes hospitalisation as a result of TBI, method of injury via blunt or blast 

mechanisms and age at the time of injury.  Additional questions were added to the test battery from 

the Boston Assessment of TBI-lifetime (BAT-L) that determined proximity of individuals to blast 

TBI (Fortier et al., 2014).  
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Classification of TBI 

Classification of TBI severity was determined by the US Department of Defense and Department 

of Veterans Affairs screening definitions (Management of Concussion/mTBI Working Group, 

2009). mTBI classification included a loss of consciousness (LOC) of 0 to 30minutes and/or an 

alteration of consciousness or mental state for a moment up-to 24hours post injury, and/or a 

presence of post-traumatic amnesia lasting less than one day. Moderate TBI was defined by a LOC 

for more than 30minutes and less than 24hours. Severe TBI was categorized as a LOC lasting more 

than 24hours.   

 

Neurobehavioural Symptoms  

The Neurobehavioral Symptom Inventory (NSI) (Cicerone and Kalmer, 1995) was administered 

to access current severity of postconcussive symptoms. This 22-item self-report questionnaire is 

validated to quantify the severity of commonly seen neurobehavioural symptoms and is comprised 

of three subscales that probe affective, somatic sensory and cognitive complaints (King et al., 

2012). Affective symptoms comprise of fatigue, sleep, anxiety, depression and irritability. Somatic 

sensory symptoms include dizziness, balance, hearing, vision, changes in taste/smell, appetite and 

numbness. Cognitive symptoms comprise memory, decision making and slowed thinking.  These 

three subscales have been shown to hold a high degree of internal consistency for affective (r = 

0.91), somatic sensory (r = 0.88) and affective (r = 0.91) symptoms. The internal consistency of 

total NSI scores (r = 0.95) is excellent, and the NSI has also been shown to have good external 

validity relative to probable TBI (r = 0.41), PTSD (r = 0.67), depression (r = 0.64) and generalized 

anxiety disorder (r = 0.65).  
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Vestibular Disorder 

The Vertigo Symptom Scale Long form (VSSL) is a 22-item self-report questionnaire that can be 

used to quantify vertigo severity and somatic anxiety symptoms. The VSSL has been shown to be 

a good pre. vs. post therapy measure with both subscale scores showing excellent test-retest 

reliability (a = >.90), excellent internal consistency (a = >0.8) and moderate to excellent construct 

validity (r = 0.45 to 0.97) (Yardley et al.,1992).  

 

PTSD 

PTSD symptoms were assessed using the PTSD Checklist for DSM-5 (PCL-5) (Weathers et al., 

2013). This 20-item self-report questionnaire probes the 20 DSM-5 symptoms of PTSD and is 

used for monitoring symptom change, making a provisional diagnosis and as a screening tool. The 

PCL-5 has demonstrated good internal consistency (a = .96), and test-retest reliability (r =.84) in 

US military veterans (Bovin et al., 2016).  

 

Depression and Anxiety 

The Kessler Psychological Distress Scale (K10) was administered to determine symptoms of 

depression and anxiety (Kessler & Mroczek, 1992). This validated measure has been shown to be 

sensitive in detecting depression (a = 0.69), PTSD (a = 0.69) and panic disorder (a = 0.71) (Spies 

et al., 2009).  

 

Daytime Sleepiness 

The Epworth Sleepiness Scale (ESS) was utilized to measure the propensity for subjects to sleep 

during the daytime (Johns, 1991). This is a well validated measure with good internal consistency 
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(a = 0.73 and 0.86) (Kendzerska et al., 2014). This measure is able to distinguish control subjects 

from patients with sleep disorders (Johns, 1992), and is widely used in the field of sleep medicine. 

 

Headaches 

The Headache Impact Test (HIT-6) is a six-item questionnaire that rates the severity of pain and 

the impact of headaches on functional outcomes (Yang et al., 2011). HIT-6 has good internal 

consistency (a = 0.89), test retest reliability (a = 0.80), and high relative validity coefficients 

discriminating across diagnostic and headache severity groups (a = 0.82 and 1.00) (Kosinski et 

al.,2003).  

 

Disability 

The World Health Organisation Disability Assessment Schedule II short version (WHODAS 2.0) 

was used to determine levels of functional disability (Üstün, 2010). The WHODAS 2.0 is 

comprised of six subdomains, understanding and communicating, getting around, self-care, getting 

along with people, life activities and participation in society. This is a well validated measure 

shown to have good test re-test reliability and stable factor structure in TBI (Soberg et al., 2012) 

and non-TBI samples (Strauss et al., 2006). It has also been suggested by DSM-5 that the 

WHODAS 2.0 is a suitable tool for disability assessment in clinical settings (American Psychiatric 

Association, 2013).  

 

Symptom Validity 

To examine possible symptom exaggeration on self-report measures we employed the Memory 

Complaints Inventory (MCI) (Green, 2004).  The MCI is a computerised inventory of memory 

problems that compares a person’s subjective everyday memory problems objectively with those 
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from diagnostic comparison groups. The measure is a 58-item questionnaire that has been shown 

to have excellent reliability (a = 0.92) (Green, 2004).   

 

Statistical Analysis 

Summary statistics were calculated for the demographic, TBI and co-morbid characteristics of the 

sample. Participants with missing data were excluded from analysis (see Table 3.3). Chi-square 

analyses were then applied to compare the relative frequency of vestibular disturbance reported by 

participants with blunt, blast, or blunt+blast (i.e. both blunt and blast) who self-endorsed mTBI. 

For the purpose of the chi-square analysis, participants who reported dizziness symptoms more 

than 3 times per year in VSSL scores were classified as suffering from a vestibular disturbance (or 

dysfunction) while those who reported symptoms either never or only 1-3 times per year were 

classified as not suffering from a vestibular disturbance these group differences were later 

confirmed via independent sample t-tests. As vestibular function can deteriorate with age, I first 

utilized linear regression to determine if age was associated with vestibular disorder. Mediation 

analyses (Hayes, 2013) were then conducted on scores provided by those who endorsed mTBI to 

determine if the severity of their vestibular symptoms (as measured by the VSSL total score) 

independently contributed to the broad profile of postconcussive symptoms (as measured by the 

NSI), disability (WHO-DAS 2.0) and headaches (HIT-6) when depression, anxiety and PTSD 

were taken into account as mediators. The mediation analysis was also used to interrogate the 

relationship between vestibular symptoms and each of these mediators, and between these 

mediators and each of the outcome variables (NSI, HIT-6 and WHO-DAS 2.0). Finally, the 

analysis allowed me to assess the combined association (i.e. total effect) of the predictor and 

mediator variables on the outcome measures.  
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Post hoc exploratory analysis helped clarify the outcomes of the main NSI mediation analysis. A 

sensitivity analysis was conducted in which the mediation analysis was re-run on the adjusted NSI 

total score scores after the 3 items on the NSI that relate to imbalance/unsteadiness were removed. 

This was carried out to determine if the observed association partly reflected the fact that both 

questionnaires probe several common balance symptoms. To estimate the extent to which the 

observed relationship between VSSL and NSI scores reflect vertigo and balance factors as opposed 

to autonomic and anxiety-related factors, two other modified versions of the original NSI 

mediation analysis were run; the first replaced the VSSL total score with the VSSL vertigo-balance 

subdomain score while the second replaced the VSSL total score with the autonomic-anxiety 

subdomain score. Participants with missing data were excluded from analysis. All inferential 

analyses were computed using SPSS 24.  

 

Results 

Overview of Sample Characteristics  

Please see Table 3.1 for the sample demographic and clinical characteristics, Table 3.2 for the 

lifetime history and prevalence of mTBI and Table 3.3 for the co-morbid neuropsychiatric 

symptoms. The mean age of the group was 46.6 years (standard deviation =9.3) which was mostly 

male and had been deployed to a war zone an average of  4 times. Seventy two percent of the 

sample reported a lifetime history of one or more mTBIs (M age = 24.4, SD = 10.52) of these 74% 

of injuries resulted in visiting an A&E department or acute military medical facility. 49% reported 

that they had periods in their lives where they had sustained repeated mTBIs. As shown in Table 

3.3, the majority reported neuro-behavioural and neuro-psychiatric symptoms including vestibular 

impairment, headache, daytime sleepiness, PTSD, and depression/anxiety. The average WHODAS 

score was 20.49 (SD = 10.70), which is worse than approximately 90% of the general international 
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population (Andrews et al., 2009). Seventy-three participants (50%) indicated that they drank 

alcohol regularly, consuming a weekly average of 20.91 units (SD = 20.37) (alcohol units defined 

by the UK Department of Health). Most of the sample had never used recreational drugs (n = 118). 

Evidence of symptom exaggeration measured by the MCI was evident in 51% of the mTBI sample; 

(n = 110) participants with one or more mTBI completed the MCI, (n = 56) failed to meet our cut 

off score of <40%. The mean MCI score was 39.59 (SD = 19.82).  

 

Table 3.1 Sample Demographic (n = 162).  

Parenthesised values show standard deviation. M = mean.  

 

 n  n or 

M (SD) 

Males 151 Part-time student 2 

Females 11 Unemployed 53 

Relationship Status   Retired 32 

Married 92 Military Service Branch  

Divorced 39 Royal Navy 23 

Single 29 Army 123 

Widowed   2 Royal Airforce 11 

Vocational Status   Royal Marines 6 

Full-time employment 55 Armed Service History  

Part-time employment 19 Mean length of Service (years) 12.8 (7.2) 

Full-time student  1 Mean deployments to a war zone 3.7 (1.8) 
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Table 3.2 Lifetime History and Prevalence of mTBI (n=117) 

 

     n      n 

Lifetime history ≥1mTBI 117 Blunt & Blast 41 

  Blast only 17 

Hospitalised due to mTBI 82 Blunt only 59 

mTBI with LOC 69 Blast Proximity  

  0-10 meters 38 

Sustained >1 TBI 112 11-25 meters 15 

Periods of repeated mTBI 57 26-100 meters 5 

  Method of blunt injury  

History of moderate TBI 23 Road traffic  57 

History of severe TBI 12 Sports-related  73 

No TBI 10 Assault 54 

 

Blast & Blunt mTBI 

Sports related mTBI (62%) was the most common method of blunt injury although injuries 

sustained via road traffic accidents (49%) were also prevalent. The majority of the mTBI sample 

(81%) indicated that they had been exposed to blast during their military career. 50% sustained  

one or more blast mTBIs, and 53% of this sub-group reported 3 or more blast mTBIs. Of these 

blast mTBIs, 38 were sustained within a proximity of 0-10meters, 15 within 11-25 meters and 5 

within 26-100 meters. 47% (n=8) of participants in the blast only category reported vestibular 

disturbance, 59% (n=35) reported vestibular disturbance in the blunt only category, and 83% 

(n=34) reported vestibular disturbance in the blunt and blast category. Chi-square analysis 

indicated a significant association between mechanism of injury and the presence of vestibular 

disturbance 2(2) = 9.70, p =.008. Interpretation of the 2x2 contingency tables (using a bonferonni 

corrected alpha =0.017) indicated no significant difference between the observed frequencies of 

vestibular disturbance following blunt or blast (2(1) = 1.46, p =.223).  However, the frequency of 



The Vestibular System in mTBI 

 

 

 

63  

vestibular disturbance was significantly greater for blunt+blast compared to blast (2(1) = 9.19, p 

=.006) and marginally greater for blunt+blast compared to blunt (2(1) = 5.61, p =.018). Group 

differences in VSSL scores between the presence or absence of vestibular disturbance were later 

confirmed via an independent sample t-test which indicated significantly t(111) = -7.812, p = <.001 

higher mean VSSL scores in the presence group (M = 48.08, SD = 19.91) than absence group (M 

= 18.63, SD = 11.13).   

 

Table 3.3 Frequency of Comorbid Symptoms in mTBI Sample 

Comorbid Symptoms          n    % missing 

cases 

PCS (NSI) 89 77.4 2 

Vestibular (VSSL) 78 69.0 4 

PTSD (PCL-5) 100 88.5 4 

Depression/anxiety (K10) 104 92.9 5 

Daytime sleepiness (ESS) 59 52.7 5 

Headaches (HIT-6) 79 70.5 5 

 

 

Mediation analyses 

Multiple linear regression was first conducted to identify which test variables were statistically 

associated with vestibular impairment and could therefore be included in the mediation analysis 

(see Tables 3.4.a/3.4.b/3.4.c). This showed significant associations (p<0.01) between vestibular 

disturbance and all variables (coefficient scores ranged from 0.5 to 0.8) except sleep. Age was also 

added to this regression but did not show a statistically significant association so was not carried 

forward. Mediation analysis were then conducted using Hayes (2013) PROCESS macro for SPSS, 

which bias-corrects the sample by bootstrapping a sample of 10,000 using 95% confidence 
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intervals. Coefficients were considered statistically significant at p <.05. Three mediation analysis 

were applied to determine if the severity of vestibular impairment, as defined by the VSSL, 

imposed a direct effect on neurobehavioural symptoms (NSI), headache (HIT6) and disability 

(WHODAS) independent of mediators PTSD (PCL-5), depression and anxiety (K10).  

 

Table 3.4.A Correlation Matrix for Model 1 Multiple Linear Regression Analysis  

(Outcome Variable NSI) (N=113) 

Table 3.4.B Correlation Matrix for Model 1 Multiple Linear Regression Analysis  

(Outcome Variable HIT6) (N=112) 

 

 

Table 3.4.C Correlation Matrix for Model 1 Multiple Linear Regression Analysis  

(Outcome Variable WHODAS) (N=111) 

 

As can be seen in Figures 3.1, 3.2 and 3.3, the VSSL scores exerted a direct effect on the NSI, 

HIT-6 and WHO-DAS 2.0 scores independently of the psychiatric mediators in all three 

 NSI VSSL PCL-5 K10 

NSI  r = .69       p = <.001 r = .65       p = <.001 r = .66       p = <.001 

VSSL r = .69       p = <.001  r = .54       p = <.001 r = .44       p = <.001 
PCL-5 r = .65       p = <.001 r = .54       p = <.001  r = .79       p = <.001 

K10 r = .66       p = <.001 r = .44       p = <.001 r = .79       p = <.001  

 

 HIT6 VSSL PCL-5 K10 

HIT6  r = .51       p = <.001 r = .49       p = <.001 r = .54       p = <.001 

VSSL r = .51       p = <.001  r = .55       p = <.001 r = .45       p = <.001 
PCL-5 r = .49       p = <.001 r = .55       p = <.001  r = .78       p = <.001 

K10 r = .54       p = <.001 r = .45       p = <.001 r = .78       p = <.001  

 

 WHODAS VSSL PCL-5 K10 

WHODAS  r = .60       p = <.001 r = .63       p = <.001 r = .68       p = <.001 

VSSL r = .60       p = <.001  r = .55       p = <.001 r = .45       p = <.001 
PCL-5 r = .63       p = <.001 r = .55       p = <.001  r = .78       p = <.001 

K10 r = .68       p = <.001 r = .45       p = <.001 r = .78       p = <.001  
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mediation models. There was also a significant association between VSSL score and the 

psychiatric mediators of depression, anxiety (K10) and PTSD (PCL-5) (see a1 and a2 pathways 

in figures 3.1, 3.2 and 3.3). As expected, depression and anxiety was strongly associated with 

outcome in all three mediation models (see b2 in figures), although PTSD symptoms showed 

no significant influence (see b1 in figures). While VSSL scores directly affect NSI scores, they 

showed no effect when combined with PTSD scores within the indirect pathway a1*b1. In 

contrast, when combined with PTSD scores within the indirect a2*b2 pathway, VSSL scores 

were significantly associated with NSI scores. Finally, there was a significant total effect across 

all three mediation analyses, indicating that vestibular symptoms are significantly associated 

with outcome both independently and in conjunction with the psychiatric mediators.  

 

Figure 3.1 Mediation analysis NSI (n=113) 

 

 

 

 

 

 

 

 

 

 

 

 

VSSL (X)
(Vestibular symptoms)

NSI (Y)
(Neurobehavioural

symptoms)

PCL-5 (M1)
(PTSD)

Kessler (M2)
(Depression/anxiety)

Total effects  (c)
B = .577 p = <.001

Direct effects (c')
B = .390 p = <.001

(b1) B = .099 p = .294

(b2) B = .702 p = <.001

(a1) B = .486 p = <.001

(a2) B = .196 p = <.001

Indirect effects a1*b1 B = .048 BootULLCI = -.0369 BootULCI = .1335

Indirect effects a2*b2 B = .138 BootULLCI = .0549 BootULCI = .2569 
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Figure 3.2 Mediation analysis HIT 6 (n = 112) 

 

 

 

 

 

 

 

 

 

Figure 3.3 Mediation analysis WHODAS (n = 111) 

 

 

 

 

 

 

 

 

Exploratory Analysis 

Sensitivity analysis indicated that both the direct and indirect effects of VSSL scores on the 

NSI remained significant after the 3 dizziness-related items on the NSI were removed (see Table 

3.5a.) Likewise, the pattern of statistical significance remained unchanged when the mediation 

VSSL (X)
(Vestibular symptoms)

HIT6 (Y)
(Headaches)

PCL-5 (M1)
(PTSD)

Kessler (M2)
(Depression/anxiety)

Total effects (c)
B = .265 p = <.001

Direct effects (c')
B = .173 p = <.001

(b2) B = .445 p = .002(a2) B = .198 p = <.001

(b1) B = .007 p = .922(a1) B = .490 p = <.001

Indirect effects a1*b1 B = .003 BootULLCI = -.0657 BootULCI = .0899

Indirect effects a2*b2 B = .088 BootULLCI = .0287 BootULCI = .1738 

VSSL (X)
(Vestibular symptoms)

WHODAS (Y)
(Disability)

PCL-5 (M1)
(PTSD)

Kessler (M2)
(Depression/anxiety)

Total effects (c)
B = .006 p = <.001

Direct effects (c')
B = .003 p = <.001

(b2) B = .010 p = <.001(a2) B = .198 p = <.001

(b1) B = .000 p = .519(a1) B = .491 p = <.001

Indirect effects a1*b1 B = .000 BootULLCI = -.0007 BootULCI = .0017

Indirect effects a2*b2 B = .002 BootULLCI = .0009 BootULCI = .0039 



The Vestibular System in mTBI 

 

 

 

67  

analysis was re-run after replacing the VSSL total scores with first the VSSL vertigo subdomain 

scores and then the VSSL anxiety-related scores (see Table 3.5b). 

Table 3.5.A Exploratory mediation analysis (Outcome variable: NSI dizziness questions 

removed) 

 

 Total Effects Direct Effects Mediator Indirect Effects LCI UCI 

VSSL B = .50 B = .311 PCL-5 B = .055  -.016 .130 

 P = < .001 P = < .001 Kessler B = .134   .055 .245 

 

 

Table 3.5.B Exploratory mediation analysis (Outcome variable: NSI) 

 

 Total Effects Direct Effects Mediator Indirect Effects LCI UCI 

VSSL(vestibular) B = .773 B = .540 PCL-5 B = .092  .017 .222 

 P = < .001 P = < .001 Kessler B = .139  .015 .343 

VSSL (anxiety) B = 1.129 B = .767 PCL-5 B = .100 -.109 .287 

 P = < .001 P = < .001 Kessler B = .268  .038 .496 

 

Discussion 

This study provided a systematic evaluation of how vestibular disturbance can both directly and 

in conjunction with co-occurring psychiatric symptoms, influence neurobehavioural symptoms 

and general disability. It is the first study of its kind to retrospectively assess the lifetime history 

of mTBI in help seeking UK military veterans and to evaluate their current comorbid symptoms 

and levels of disability. The findings revealed that more than two thirds of the sample 72% had 

sustained one or more mTBIs in their lifetime which is a much higher than previous estimates of 

mTBI in UK soldiers on deployment or studies that used less detailed lifetime assessments. This 

estimate is, however, in line with that of US military veterans, where 71.7% of (n =274) had a 

lifetime history of mTBI (McGlinchey et al., 2016). 58% of mTBIs in this sample involved a LOC 

and 49% reported periods in their life where they had sustained repeated mTBIs. Many veterans 

70% reported that their head injuries resulted in visits to A&E departments or military medical 

facilities. Most commonly blunt injuries were due to sports and road traffic accidents. Both of 
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these mechanisms were reported by over half of the mTBI sample, with individuals reporting they 

sustained one or both of these types of injury.  

Much like veterans in the US, exposure to blast constituted significant health problems for UK 

military veterans; 81% of the current study sample reported exposure to blast, 50% of who reported 

concussion and 53% of this subgroup reported blast mTBI on three or more occasions. The 

repeated nature of blast mTBI seen here could pose a substantial potential risk factor for 

neurodegenerative disease and chronic traumatic encephalopathy (Khachaturian et al., 2014; 

Goldstein et al., 2012; Omalu et al., 2011). The majority of blast injuries 80% were within the 

proximity of 10 meters, which has been associated with decreased connectivity of the bilateral 

primary somatosensory and motor cortices (Robinson et al., 2015). Both of these brain regions 

receive vestibular input and play a role in differentiating self from object motion (Hitier et al., 

2014). Improper functioning across any of these systems can lead to a loss of balance and/or 

postural instabilities, gait abnormalities, vertigo and dizziness (Basford et al., 2003; Brandt et al., 

2014; Hillier et al., 1997).  Cerebellar diffusion-tensor imaging abnormalities have also been 

observed in individuals who present with vestibular symptoms following mTBI, which is 

indicative of injury to the central vestibular system (Alhilali et al., 2014). Research into blast 

trauma is complicated by other coexisting conditions. Blasts not only increase the risk of secondary 

blunt head injuries but can also incur psychological consequences such as PTSD; which can also 

independently affect brain structure and function (DePalma et al., 2005).  

 

Consistent with the high prevalence reported in other military samples, 69% reported symptoms 

consistent with a chronic vestibular disturbance. A presence of vestibular disturbance was highly 

prevalent across the all categories of blunt 59%, blast 47% or blunt+blast 83% mTBI. Chi-square 

analysis confirmed that vestibular impairment was more frequently seen in the blunt+blast mTBI 
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category. Recently, research from Walker et al., (2018) has revealed that repetitive mTBI is more 

strongly associated with balance disturbances. Notably, these US veterans who had combat 

exposure showed no significant difference in imbalance between blast versus non-blast 

comparisons. This coupled with our own findings may indicate that it is repeated nature of mTBI 

rather than blast mTBI alone, that is most harmful in terms of vestibular impairment.  

 

Over the longer-term, more than three quarters of those who sustained mTBI 77% reported 

persistent post-concussive neurobehavioural symptoms, headaches affected 70% and daytime 

sleepiness 52% of the sample. Depression and anxiety symptoms were severe effecting 93% of 

veterans and respectively PTSD 88%. Alcohol consumption exceeded current UK government 

guidelines of 14 units per week (Department of Health, 2016), and WHODAS scores indicated 

that general disability fell within the bottom 10% of the general international population (Andrews 

et al., 2009). Together these data highlight significant, long-term care needs in help-seeking UK 

military veterans with a self-reported history of mTBI. 

 

Comorbid psychiatric symptoms of depression, anxiety and PTSD cannot only exacerbate the 

symptoms of mTBI (Lippa et al., 2015; Porter, Stien & Martis, 2018), but particularly in the case 

of PTSD make diagnosis difficult. Partly this is due to the symptoms of mTBI often not being 

specifically related to neurological insult but psychiatric disturbance (Fear et al., 2014; Green et 

al., 2001). This is the first study to endorse these detrimental effects in a UK military sample and 

demonstrate via mediation analysis that the symptoms of dizziness independently contributed to 

disability and neurobehavioral status. Mediation analysis also showed indirect influences of 

depression and anxiety symptoms on those of mTBI but failed to do so for PTSD. This is perhaps 

surprising as most participants reported severe PTSD symptoms and therefore produced too little 
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variability for the correlation to reach statistical significance. Given the overlap between PTSD 

and vestibular symptoms, correlations between these two factors were unsurprisingly strong. 

However, it would be unwise to postulate that the vestibular system provides causality for mTBI 

symptoms partly because the relationship between psychiatric and vestibular disturbance is 

reciprocal. Nonetheless, exploratory analysis revealed the direct effects of vestibular disturbance 

in mTBI symptoms held when mediation analysis included only the vertigo subdomain scores from 

the VSSL and not the anxiety-related symptoms. This provides support for symptoms of an 

underlying vestibular deficit influencing mTBI, rather than vestibular induced psychiatric deficits, 

which are difficult to differentiate from primary psychiatric deficits. That said, the predictive 

strength of balance dysfunction in mTBI seen here could comprise a particularly harmful 

combination along with PTSD, depression and anxiety when considering the significant total 

effects of mediation analysis and it would be reasonable to assume that vestibular dysfunction 

play’s a key role in influencing the neurobehavioural symptoms of mTBI.  

 

The clinical presentation of the current sample reflects a striking comparison to civilians diagnosed 

with vestibular impairment who present with similar cognitive and affective symptoms (Smith et 

al., 2018). This study demonstrates the pervasive influence of the vestibular system on cognition 

and affect rather than only influencing low level autonomic motor control as was traditionally 

thought. The findings from this study highlight a need to more closely examine vestibular disorder 

and provide appropriate treatment interventions.  

 

There are a number of methodical considerations that limit the current study conclusions. As mTBI 

and vestibular disorder are not routinely screened for in the UK military, our data needed to be 

collected via self-report measures rather than clinical examination. All veterans were help seeking 
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and receiving psychiatric support so whilst high in clinical need they may not be representative of 

the broader veteran community.  The psychiatric profile of these veterans may go some way to 

explaining the high number of MCI failures. In particular, depressed mood has been shown to 

significantly effect decreased performance on measures of memory (Gervais et al., 2008). It is 

plausible to assume that psychiatric symptoms distorted perception of actual memory impairment. 

There is also a growing body of research that demonstrates within the confines of neurological 

testing, that effort accounts for more variance in memory test scores, than neurological insult 

(Green et al., 2001; Armistead- Jehle et al., 2012). Furthermore, symptom exaggeration in one 

modality can infer exaggeration in other modalities such as cognition and balance (Armistead- 

Jehle et al., 2017). This sample was representative of veterans receiving help for combat related 

psychiatric complaints. This therapeutic process causes veterans to revisit painful memories which 

can cause significant distress and exacerbate symptomology, this could be a potential cause of 

symptom exaggeration. The MCI results from this study however, should be considered cautiously, 

as the study design does not allow the underlying motivations for malingering and psychological 

dissociation to be separated. Moreover, the statistical outcomes from mediations analysis were 

consistently significant even when separate analysis was run between pass and fail MCI groups.  

 

In conclusion, the long-term mental health of UK military veterans with a history of mTBI has 

been shown to be directly influenced by vestibular disturbance. Although the symptoms of 

dizziness are common in this population, vestibular function is not routinely assessed so veterans 

are often not referred to a neuro-otologist. Future research should aim to investigate the benefits 

of mandatory vestibular screening. Secondly, given the pervasive influence of the vestibular 

system, efforts should be directed into testing if the vestibular system can be harnessed for 

therapeutic effect.  In the next Chapter I will evaluate the potential contribution of GVS as a 
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treatment modality and will later assess the potential benefits of GVS as a treatment for veterans 

with mTBI in Chapter 5.  
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Chapter 4 

The Effects of Galvanic Vestibular Stimulation on Cortical Excitability 

 

Introduction 

Artificial stimulation of the vestibular system has been shown to ameliorate a number of 

neurological conditions such as Parkinsonism (Wilkinson et al., 2016; Yamamoto et al., 2005), 

prosopagnosia (Wilkinson, Kilduff, McGlinchey & Milberg, 2005), episodic migraine (Wilkinson 

et al., 2017) and hemi-spatial neglect (Wilkinson et al., 2014). A randomised control trial (RCT) 

by Wilkinson et al (2014) applied galvanic vestibular stimulation (GVS) to 52 patients with hemi-

spatial neglect which resulted in the lasting amelioration of symptoms at four weeks post 

stimulation. A 28% mean improvement in the behavioural inattention test (BIT) and an increase 

of 20% in in median Bartel Index scores (functional capacity) were observed. These clinically 

relevant improvements were evident regardless of whether participants received one, five or ten 

sessions of GVS and contrast to results of other neuromodulation techniques such as transcranial 

magnetic stimulation (TMS) for which even repeated sessions of stimulation do not seem to induce 

lasting therapeutic effects from neglect (Brighina et al., 2003; Fregni et al., 2006). Interestingly, a 

follow-up study of the Wilkinson et al., (2014) trial showed that remediation of neglect symptoms 

was still evident up to three-years post-stimulation in the 28 participants that I was able to re-assess 

(Denby & Wilkinson, 2014[unpublished]). Only 12 out 28 participants still had evidence of 

residual neglect, but their improvements in neglect symptoms post GVS were still evident after 

three-years, demonstrating long-term therapeutic gain.  

 

Currently, the underlying therapeutic mechanism of effect for GVS is unknown. However, one 

possible hypothesis, derived from the lasting effects described above is the induction of long-term 
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neuroplastic change. Further evidence of the effects of GVS can be found in neuroimaging 

literature. Haemodynamic evidence from functional magnetic resonance imaging (fMRI) research 

has shown perfuse cortical and subcortical activations as a result of GVS. Activation changes in 

blood oxygenation level-dependent (BOLD) responses have been observed in the posterior insula 

and retroinsular regions, anterior insula and inferior/middle frontal gyrus, superior temporal gyrus, 

tempro-parietal cortex, precentral gyrus (frontal eye field), basil ganglia, thalamus, anterior 

cingulate gyrus, parahippocampal gyrus and hippocampus, the supplementary motor area and 

cerebellar crus I (superior semilunar lobe), and vermal lobule VII (folium and tuber of vermis) 

(Bense et al., 2001;Bucheret al., 1998; Deutschlander et al., 2002; Dieterich et al., 2003; de Waele 

et al., 2001; Fasold et al., 2002; Lobel et al1998; Stephan et al., 2005; Suzuki et al., 2001). 

Deactivations during vestibular stimulation have been seen in the central sulcus and postcentral 

gyrus, the occipital and fusiform gyri and the praecuneus (Besnse 2001; Stephan et al., 2005). 

Evidence from these studies is reliant on BOLD signal changes in blood flow, which is limiting as 

it is still unclear how these hemodynamic changes relate to the functional role of activations 

(Crosson et al., 2010).  Nonetheless, the aforementioned data do suggest that GVS is causing 

widespread activations which as mentioned is a pre-marker of synaptic plasticity in human brain 

in vivo (Badawy, Loetscher, Macdonell & Brodtmann, 2012).  

 

One simple way to indirectly probe for neuroplastic change is to measure motor cortex excitability 

which has been identified as a necessary pre-requisite for neuroplacticity. Neuroplastic change is 

prompted by long term potentiation (LTP) or long-term depression (LTD). Both processes cause 

an enduring change in the quality and quantity of synaptic connections, and are candidate 

mechanisms that occur during Hebbian learning (Hebb, 1961; Bliss & Cooke, 2011). LTP is a 

form of activity-dependent plasticity defined as an enduring enhancement of synaptic transmission 
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that outlasts a stimulation period (Bear, 1995). Conversely, LTD demonstrates a reduction in 

synaptic efficiency that continues post stimulation. High-frequency stimulation protocols have 

been used to induce LTP in vivo whereas, low frequency trains of electrical stimulation (1Hz) have 

been shown to induce LTD (Kemp & Manahan-Vaughn, 2004; Heynen, Bear and Abraham, 1995), 

with effects shown to last for a year in rats (Bliss & Gardner-Medwin, 1973). A number of 

molecular mechanisms that occur at the synapse underlie LTP and LTD. LTP and LTD are most 

often induced in Glutamatergnic synapses on the postsynaptic neuron. Hippocampal LTP and LTD 

both involve N-methyl-D-aspartate (NMDA) receptors (Nowak et al., 1984). However, LTD in the 

cerebellar cortex may be induced by activation of gamma-aminobutyric acid (GABA) receptors at 

Purkinje cell synapses (Ito & Kano, 1982).  

 

Indirect evidence of changes in cortical excitability in humans that reflect LTP-and LTD-like 

plasticity have also been observed as a result of non-invasive brain stimulation. Both transcranial 

direct stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) have been 

shown to change cortical excitability beyond the period of stimulation protocols (Berardelli et al., 

1998; Fritsch et al., 2010). Low frequency (<1 Hz) rTMS can reduce cortical excitability in a 

manner suggestive of LTD (Chen et al., 1997; Ziemman, 2004) whereas, high frequency rTMS 

(>5Hz) can increase cortical excitability (Di Lazzaro et al., 2012; Ridding & Rothwell, 2007). 

Likewise, 1mA of continuous tDCS for 13minutes has been shown to induce LTP for up to 24hours 

post stimulation (Monte-Silva et al, 2013).  

 

LTP and LTD have a potentially important role in clinical neuroscience because a variety of 

neurological conditions arise from reduced or excessive synaptic drive. In the present context, it is 

possible that GVS might induce LTP which may affect negative symptoms, or instead induce LTD, 
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in which positive symptoms might be affected. Evidence of excessive synaptic drive can be seen 

in individuals with PTSD and anxiety disorders who have been shown to exhibit cortical 

hyperexcitability (Centonze et al., 2005; Machado et al., 2011). Other neuromodulation techniques 

such as slow wave rTMS have been shown to influence excessive synaptic drive in a manner 

suggestive of LTD (Chen et al., 1997; Ziemman, 2004). In patients with PTSD rTMS has reduced 

right-side cerebral metabolism up to one-month post post-stimulation (McCann et al., 1998), 

reduce activity in the hypothalamic pituitary-adrenocortical system (Post & Keck 2001) and 

remediate PTSD and anxiety symptoms (Hoffman & Cavus, 2002; McCann et al., 1998). It is 

difficult to determine if GVS has induced either LTP or LTD type effects in the neglect patients 

from the Wilkinson (2014) RCT as these patients demonstrated improvements in both positive and 

negative symptomology. However, by understanding more about either forms of induction in GVS 

it might be possible to target specific neurological symptoms in mTBI. 

 

The Current Investigation of the effects of GVS on LTP/LTD induction 

I used two different methods to determine if GVS can be associated with LTP or LTD. The first 

method examined involuntary finger movements via measurement of motor evoked potentials 

(MEP) which are induced via single pulse transcranial magnetic stimulation (TMS) to the motor 

cortex. In contrast, the second method I utilised examined the effects of GVS on motor related 

cortical potentials (MRCP) as measured by the Bereitschaftspotential (BP). These measurements 

of motor cortex excitability are based on voluntary finger movements (Shibasaki & Hallet, 2006). 

Both the MRCP and MEP experiments employed an experimental paradigm that probed motor 

cortex excitability at five time points up to one-hour post-stimulation and at 24hours post 

stimulation to detect enduring change.  
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Unfortunately, and despite considerable effort to learning new technical skills in EEG, in 

Experiment 3 I found no effects of GVS on the BP at any time point up to 24hours post GVS in 

40 neurologically health participants. As a result, I was not able to utilise the BP as a marker of 

neuroplastic change. For brevity, the results from this experiment have therefore not been included 

in this thesis. Instead, I only report the effects of GVS on TMS induced MEPs which did provide 

useful insight. A brief summary of Experiment 3 is provided later in this Chapter to outline the 

technical issues that I experienced.  

 

Experiment 1: The Effects of Subsensory GVS on Motor Evoked Potentials 

The measurement of cortical plasticity via MEPs provides a novel opportunity to identify a 

potential mechanism of effect in GVS. Previous research has demonstrated that 10mins of low 

amplitude ~ .35mA subsensory alternating current (AC) GVS is well tolerated and can influence 

cognitive processes involved in audio-motor synchronisation and beat perception (Scmidt-

Kassow, Wilkinson, Denby & Ferguson, 2016). I therefore chose to use this amplitude in 

Experiment 1. If effective this may lend itself to a low power portable GVS device that individuals 

could use at home. As is convention I employed the use of TMS to induce an MEP. MEPs arise as 

a result of single pulse TMS activating motor cortical output cells and evoking a descending volley 

in the cortical spinal tract (Vallence & Ridding, 2013). Changes in MEP amplitudes can be 

compared pre and post GVS between both active and sham stimulation groups to determine if an 

excitability change has occurred and the conditions for LTP/LTD induction have been established.  

 

 

 

 



The Vestibular System in mTBI 

 

 

 

78  

Methods 

Participants 

Seventy participants were recruited via the University of Kent research participation scheme in 

exchange for course credits. Prior to participation each participant completed the TMS screening 

process for eligibility. Participants could only receive TMS if they were not under the effects of 

any acute or chronic and potentially interfering pharmacological treatments (i.e. antianxiety 

medication), alcohol or substance use. All individuals were free of any self-reported neurological 

or psychiatric conditions, metal plates or surgical clips in the skull and had no skin abrasions 

behind the ears. Participants provided informed consent and were fully debriefed at the end of the 

study. Full ethical approval was obtained from the University of Kent school of Psychology 

research ethics committee.  

 

Design 

The experiment employed a within-subjects design with pre-post measures repeated over time. 

The dependent variable (DV) was MEP amplitude and the independent variable (IV) of Time 

comprised six levels, which measured 25MEPs at baseline and 0, 5, 10, 15 and 30 minutes post-

stimulation. The between-subjects factor IV Stimulation comprised Active or Sham GVS.  

 

 

Galvanic Vestibular Stimulation 

A Neuroconn DC stimulator was used to deliver 0.35mA of subsensory alternating current (AC) 

at a frequency of 1000Hz for 10minutes to the mastoid processes via 5.1cm x 10.2cm rubber self-

adhesive electrodes with the anode left and cathode over the right mastoid. The skin was prepared 

prior electrode placement using surgical wipes and Nuprep gel to ensure low impedance. Sham 
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stimulation involved the same preparation however, the stimulation device remained out of sight 

and turned off. Participants were informed that they might receive either active or sham stimulation 

and asked at the end of the experiment if they noticed and sensations from the stimulation or side 

effects such as, induced yaw, pitch or roll.  

 

Monitoring of Motor-Cortical Excitability 

TMS-elicited MEPs were recorded to measure excitability changes of the representational area of 

the left abductor digiti minimi (ADM). I employed a Brain Products Power MAG Stimulator with 

a (diameter of one winding = 90mm, peak magnetic field = 2T) figure of eight coil to deliver single 

pulse stimulation. The coil was placed at a 45° angle from the skull midline with the handle 

pointing backwards. Surface EMG from the left ADM was recorded with (28mm x 20mm) self-

adhesive Ag/AgCl duck foot electrodes (Ambu® Neuroline 710), placed in a belly-tendon 

montage. Participants were asked to rest their left arm on an arm rest and to allow their hand to be 

flaccid in a resting state.  I employed a BrainAmp EMG amplifier (Brain Products, GmbH, 

Gilching, Germany) for the EMG recordings. To determine the representational hot spot for the 

ADM on the scalp, I utilised a segmentation window on Brain Vision recording software. This 

allowed us to observe the largest MEP measurement of the ADM when a TMS pulse was fired. 

When the hot spot had been located, I marked the cap worn by participants with a sticker to allow 

some precision when locating the ADM throughout each of the experimental blocks.  

 

Two Psychopy version 2 (Peirce, 2007) scripts were developed for baseline and post GVS. The 

scripts sent binary code triggers to control the firing of TMS pulses at 0.25 Hz on 25 separate 

occasions in each experimental block. The binary code triggers were also used to time lock MEPs 

in EMG recordings to later facilitate accurate analysis.  
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Procedure 

Participants were first administered the TMS screening protocol and informed written consent. 

Following this, the representational area of the ADM was located and individual motor thresholds 

were attained to establish the necessary TMS intensity that would elicit and average peak-to-peak 

amplitude of 1mV in 10 trial pulses over four test blocks. Baseline EMG recordings of 25 single 

pulse MEPs were then attained followed by 10minutes of ~ .35mA AC GVS at a frequency of 

1000Hz or 10minutes of sham GVS. Immediately after this, post stimulation MEP recordings 

proceeded and were repeated at 5, 10, 15 and 30 minutes post stimulation (see Figure 4.1). 

Participants in both the active and sham stimulation conditions were asked if they noticed any 

sensations from GVS at the end of the session. If a participant did notice any sensations from 

stimulation, they were asked if they experienced any symptoms of dizziness. If they answered yes 

then I would then administer a standardised questionnaire to determine if they experienced 

rotational effects of role, pitch or yaw. If participants endorsed these effects their data were 

removed from analysis. 

Figure 4.1. Experimental Protocol 
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Data Analysis and Statistics 

Thirty-two participants were excluded from the data analysis; seven participants failed to meet the 

TMS screening criteria, a further 25 participants were not included in the main experiment due to 

failure in reliably eliciting MEPs with an average amplitude of 1mA during threshold testing. This 

resulted in a final sample size of 38 participants, which consisted of 30 females and 8 males (M 

age = 20.42, SD = 3.56) comprising 19 in the Active condition and 19 Sham. 

 

Analysis of EMG data included the application of a 50Hz notch filter. Data was then segmented, 

baseline corrected, peak-to-peak minimum/maximum waveform values obtained and MEP means 

then calculated using Brain Vision Analyser software (Brain Products, GmbH, Gilching, 

Germany). Standardised post-stimulation MEPs were computed by normalising MEP amplitudes 

to baseline intra-individually to measure change from baseline. This process was applied to raw 

EMG recordings over all time epochs. 

 

All statistical analysis was performed on SPSS version 24. Statistical analysis included a 2x6 

repeated measures analysis of variance (ANOVA) 2 (Stimulation: Active vs. Sham ) x  6 (Time: 

Baseline, 0minutes, 5minutes, 10minutes, 15minutes, 30minutes) conducted on mean MEP 

amplitudes. Subsequent exploratory analysis was also conducted to determine if TMS intensities 

effected MEP amplitudes, as previous research has shown slow wave rTMS to induce LTD type 

effects (Chen et al., 1997; Ziemman, 2004), if this took place in the current study it would confound 

the results. This analysis involved a median split between High and Low TMS intensity in both 

the Active and Sham groups. The cut offs for this in the Active condition with Low TMS intensity 

was < 61% and High TMS intensity was > 63%. In the Sham condition a Low TMS intensity was 

< 67% and High TMS intensity was > 68%. After this median split of High vs. Low TMS intensity 
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a repeated measures 2x2x6 ANOVA 2 (TMS Intensity: High vs. Low) x 2(Stimulation: Active vs. 

Sham) x 6 (Time: Baseline, 0minutes, 5minutes, 10minutes, 15minutes, 30minutes). Post hoc 

comparisons were also examined, all t-tests were Bonferroni corrected (α = .01). 

 

Results 

 

None of the participants reported noticing the effects of ‘subsensory’ GVS. The mean intensity of 

TMS stimulation used in both active and sham conditions was 62.5% (see Table 4.1 for breakdown 

of mean TMS intensity across groups). The 2x6 repeated measures analysis of variance (ANOVA) 

2 (Stimulation: Active vs. Sham ) x  6 (Time: Baseline, 0minutes, 5minutes, 10minutes, 15minutes, 

30minutes) showed a significant main effect of Time F(5,3.54) = 7.06, p < .001, n2=.164. Post hoc 

pairwise t-tests revealed a significant difference between baseline and 0minutes (p < .01); baseline 

and 5minutes (p < .01); baseline and 10minutes (p < .001); and baseline and 30minutes (p < .001). 

There were no significant differences between baseline and 15minutes (p = .035). The mean MEP 

values and standard error from pairwise post hoc evaluations over Time can be seen in Table 4.2 

which show a trend of increased MEP amplitude from baseline. There was no significant main 

effect of Stimulation on MEPs F(1,36) = 1.531, p= .224, n2=.041 and no significant interactions 

between Stimulation and Time F(5,3.538) = .444, p= .729, n2=.012. 

 

 

Table 4.1 Mean TMS Intensity for Stimulation  

 

Stimulation conditions Mean TMS intensity % 

Active 61.8 

Sham 63.9 
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Exploratory Analysis 

To examine if GVS had a different effect in participants with high versus low TMS intensities a 

median split was implemented. However, the 2x2x6 repeated measures ANOVA 2 (TMS Intensity: 

High vs. Low) x 2(Stimulation: Active vs. Sham) x 6 (Time: Baseline, 0minutes, 5minutes, 

10minutes, 15minutes, 30minutes) failed to reach significance F(3.41,518140.89) = 2.18, p = .087, 

n2=.060.  

 

Table 4.2. Mean MEP and Standard Error (N =38) over Time 

Time Mean MEPs Standard Error 

Baseline 936.19 77.39 

0Minutes 1139.58 89.35 

5Minutes 1231.37 125.01 

10Minutes 1401.56 150.34 

15Minutes 1160.83 131.91 

30Minutes 1420.8 157.66 

 

 

 

 

Discussion 

 

 

My prediction that 10minutes of subsensory GVS would induce change in levels of cortical 

excitability post stimulation, was not supported. A general trend for increased MEP amplitude 

from baseline was however evident in both the active and sham stimulation groups. This may be 

explained by the fact that the mean intensity of TMS in both active 62% and sham groups 64% 

was high which on the basis of previous rTMS research may reflect increased corticospinal 
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excitability (Pellicciari, Miniussi, Ferrari, Koch & Bortoletto, 2016; Julkunen, Säisänen, 

Hukkanen, Danner & Könönen, 2012; Vaseghi et al., 2015). Most importantly, the standard error 

rates were extremely high, indicating a large variation in MEP amplitudes both within and between 

participants.  In moving forward to Experiment 2 the noise in this data coupled with other 

methodological issues needed to be assessed before a null hypothesis could be performed.  

 

A key methodological problem in Experiment 1 was that the MEP threshold of 1mA in the ADM 

was difficult to elicit in a number of participants, which resulted frequently in the need to use high 

intensities of TMS. For many participants it was not possible to achieve a MEP of 1mA during 

threshold testing which led to 25 participants being excluded from the main experiment. One of 

the reasons it was difficult to elicit a response in the ADM was due to it being the smallest muscle 

in the hand to locate. This made it difficult to accurately ascertain the exact representational hotspot 

on the cortex with low intensities of TMS. A further difficulty that arose was the large variability 

in MEP amplitude between single pulse trials, and time blocks. Evidence of this problem can be 

seen in the high standard error rates, and this may be partially attributed to the high TMS 

intensities. Another factor responsible for the large variances in MEPs may be due to movement 

from the participants. This can affect TMS coil positioning which is known to cause large variances 

in MEP amplitudes (Thickbroom, Byrnes & Mastaglia, 1999; Amassian, Cracco & Maccabee, 

1989). As a result of these limitations, the methodological protocol for Experiment 2 needed to be 

changed. Firstly, to facilitate a reduction in the large variances seen in MEP amplitudes in 

Experiment 1. Additionally, to increase the period of time that MEP amplitudes were measured so 

that potential LTP or LTD type effects could be better more accurately evaluated.   
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Experiment 2: The Effects of 1mA Direct Current GVS on Motor Evoked Potentials 

 

 

As a result of the methodological issues in Experiment 1, I implemented a number of changes to 

the methodology of Experiment 2. Rather than stimulating the ADM, I instead targeted the 

abductor polics brevis (APB) which is the largest muscle in the hand and therefore should be easier 

to locate in threshold testing. I also utilised a large reclining chair, to allow participants to rest their 

head and keep their feet raised. This along with the use of a vacuum cushion which was placed 

around the back of participants necks enabled me to keep them completely still.  

 

The threshold amplitude for MEP was also lowered to 50µV to facilitate use of lower TMS 

intensities (Yahagi et al., 2003). Additionally, I increased the time line of post GVS MEP 

measurements to 60minutes post stimulation on day one of testing and included a 24hour post 

GVS flow-up session. Experiment 1 only probed the first 30minutes of cortical activity post GVS 

which may have concealed effect; previous studies of animal slice preparations distinguish 

between early and late phase LTP and LTD with late phase changes appearing only after four hours 

post-stimulation, and subsequently lasting for days/weeks (Abraham, 2003; Linden, 1998).  

 

Lastly, I increased the amplitude of GVS to ~1mA and utilised direct current (DC). This amplitude 

and waveform has been shown to have lasting clinical effect (Wilkinson et al., 2014) so hopefully 

increase the likelihood of inducing and excitability change.  
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Methods 

Participants 

Fifty-eight neurologically healthy participants 41 females, 17 males aged 18-52 (M= 21.69, SD = 

5.62) were recruited via the University of Kent research participation scheme in exchange for 

course credits or via Jobshop where they received a cash payment for participation. Participants 

were again screened prior to receiving TMS as in Experiment 1.  Full ethical approval was obtained 

from the University of Kent School of Psychology research ethics committee. All participants 

provided informed consent and were fully debriefed at the end of the study.  

 

Design 

As in Experiment 1 a within-subjects pre-post stimulation design was utilised to measure changes 

in the DV of  MEP amplitudes over Time. However, the IV of Time was changed for the current 

study so that it comprised six levels, that measured 25MEPs at baseline and five subsequent blocks 

up to 24hours post-stimulation (see Figure 4.4). Again, the between subjects IV of Stimulation, 

was utilized to compare between Active or Sham GVS conditions.  

 

Galvanic Vestibular Stimulation 

We utilised a Neuroconn DC stimulator to deliver 25minutes of Gaussian noise bipolar current. 

Stimulus intensity varied randomly from ~ 0.5-1.5mA with a mean intensity of ~1mA at a 

frequency of 1000Hz and was delivered to the mastoid processes via 5.1cm x 10.2cm rubber self-

adhesive electrodes. As before this bipolar current was delivered with the anode placed on the left 

mastoid and the cathode on the right. The reduction of GVS electrode impedance levels and 

protocol for Sham stimulation were carried out as in Experiment 1.   
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Monitoring of motor-cortical excitability 

TMS elicited MEPs were recorded to attain excitability changes of the representational area of the 

left APB. We employed a Brain Products Power MAG Stimulator with a (diameter of one winding 

= 90mm, peak magnetic field = 2T) figure of eight coil, to deliver single pulse stimulation. The 

coil was placed at a 45° angle from the skull midline with the handle pointing backwards. Surface 

EMG from the left APB was recorded with (28mm x 20mm) self-adhesive Ag/AgCl duck foot 

electrodes (Ambu® Neuroline 710), placed in a belly-tendon montage. Participants were asked to 

rest their left arm on an arm rest and allow their hand to be flaccid in a resting state.  I utilised a 

BrainAmp EMG amplifier (Brain Products, GmbH, Gilching, Germany) for the EMG recordings. 

To determine the representational hot spot for the APB on the scalp, we utilised a segmentation 

window on Brain Vision recording software. This allowed us to observe the largest MEP 

measurement of the APB when a TMS pulse was fired. When the hot spot had been located, we 

marked the cap worn by participants with a sticker to allow us some precision when locating the 

APB throughout each of the experimental session. Two Psychopy version 2 (Peirce, 2007) scripts 

were developed for main experiment and follow up session. The scripts sent binary code triggers 

to control the firing of TMS pulses at 0.25 Hz 25 times in each experimental block. The binary 

code triggers were also used to time lock MEPs in EMG recordings to later facilitate accurate 

analysis. All participants were seated in a standard fowlers position slightly tilted back by 45° with 

their legs supported in a horizontal position by the chair. This was done to help limit movement 

from participants whilst using TMS so that we could reduce the variability of MEP amplitude 

between trials. A MAG&More vacuum cushion was also used to limit movement of the head during 

TMS.  
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Procedure 

Participants were first administered the TMS screening protocol and informed written consent. 

After locating the representational area of the APB, individual motor thresholds were determined 

by identifying the lowest TMS intensity needed to elicit MEPs with a peak-to-peak amplitude 

>50µV in three out of five trials. A baseline recording of 25 single pulse MEP was then obtained 

followed by 25 minutes of 1mA Noise GVS or Sham stimulation. Immediately after GVS, a post-

stimulation MEP recording was obtained proceeded by repeated recordings at 15, 30 and 60 

minutes post stimulation (see Figure 4.2). A follow-up MEP recording was also conducted at 

24hours post Active or Sham GVS. Participants in both stimulation conditions were asked if they 

noticed any sensations from GVS at the end of the session.  

 

Figure 4.2. Experimental Protocol 

 

 

 

 

 

 

 

 

Data Analysis and Statistics 

 

Eighteen participants were excluded from the data analysis. Four participants failed to pass the 

TMS safety screening process because they either suffered from episodic migraine or had 

consumed prescribed neuroactive medication. The subsequent 14 participants were excluded due 

to insufficient MEP amplitudes during motor threshold testing. Analysis was conducted on the 40 

remaining participants 29 females, 11 males aged 18-52 (M= 21.55, SD = 5.93). The sample 
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comprised 20 participants in both the Active and Sham conditions. Analysis of EMG data 

comprised the same protocol and equipment as in Experiment 1.  

 

As before statistical analysis included a 2x5 repeated measure ANOVA 2 (Stimulation: Active vs. 

Sham) x 5 (Time: 0 minutes, 15 minutes, 30 minutes, 60 minutes, 24 hours) with the dependent 

variable MEP amplitude to investigate changes in cortical excitability post-stimulation. 

Subsequent exploratory analysis comprised subdividing the sample to High and Low MEPs at 

baseline groups via a median split to examine differences between participants with prior cortical 

hyperexcitability and hypoexcitability. This resulted in four groups of 10 participants Active High 

with a mean baseline MEP amplitude of > 144.200 µV;  Active Low with a mean MEP amplitude 

of < 140.56 µV; Sham High mean MEP amplitude of > 152.78 µV  and Sham Low with a mean 

MEP amplitude of < 138.14 µV. These four factors were then subjected to further analysis which 

utilised a 2x2x6 repeated measures ANOVA 2 (Stimulation: Active vs. Sham) x 2 (Baseline: High 

vs Low MEP) x 6 (Time: baseline, 0 minutes, 15 minutes, 30 minutes, 60 minutes, 24 hours). 

Interaction effects were explored using a two and then one-way ANOVAs with Bonferroni 

corrected pairwise comparisons applied. Omnibus analysis was considered statistically significant 

with a p value of <.05. If Mauchly’s test of sphericity was significant then Huynh-Feldt figures 

were utilised. All statistical analysis was performed on SPSS version 24. 

 

 

Results 

The mean stimulation intensity for TMS across both Active and Sham Stimulation groups was 

54.4% (see Table 4.3). Change from baseline mean MEP amplitudes can be seen in Figure 4.5 for 

both Active and Sham conditions. The repeated measures 2x5 ANOVA examined changes in MEP 
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amplitude post stimulation and was comprised of 2 (Stimulation: Active vs. Sham) x 5 (Time: 0 

minutes, 15 minutes, 30 minutes, 60 minutes, 24 hours) and showed a significant main effect of 

Time F(5, 64336.71) = 3.01, p = <.05, n2=.073, however, there was no significant interaction 

between Stimulation and Time F(5, 90520.58) = 0.78, p = .496, n2=.027.  

 

Table 4.3 Mean TMS Intensity for Stimulation Conditions  

 

Stimulation conditions Mean TMS intensity % 

Active 52.7 

Sham 56.1 

 

To explore the main effect of Time a one-way repeated measures ANOVA was conducted and 

showed a significant effect F(5, 308712.34) = 3.53, p < .05, n2=.083. Pairwise comparisons 

between baseline and post stimulation time points (Baseline, 0 minutes, 15 minutes, 30 minutes, 

60 minutes, 24 hours) indicated a significant reduction in MEP amplitude from baseline at 24hours 

post stimulation t(39) = 3.52, p < .01. All other pairwise comparisons to baseline failed to reach 

significance at 0minutes p =.361, 15 minutes p= 1.00, 30minutes p= 1.00 and 60minutes p= 1.00. 
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Figure 4.3 Mean Change in MEP Amplitude Over Time in Active and Sham Condition.  

(with standard error) 

Exploratory analyses 

To examine if GVS had a different effect between participants with High versus Low baseline 

MEP amplitude the omnibus ANOVA was re-run after a median split was implemented. Mean 

MEP amplitudes for all groups across time can be seen in Figure 4.4. Here a significant main effect 

of Time was evident F(4, 51519.37) = 3.28, p < .05, n2=.083 and a three-way interaction between 

Baseline MEP, Stimulation and Time  F(4, 51519.37) = 3.14, p < .05, n2=.080, was observed. 

Two-way interactions between Time and Stimulation F(4, 51519.37) = 1.13, p= .346, n2=.030 

along with  Time and High/Low MEPS F(4, 51519.37) = 2.16, p= .0.76, n2=.057  failed to reach 

significance.  
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Figure 4.4 Mean Change in MEP Amplitude Over Time in all Groups.  (with standard error)  

 

 

 

 

To investigate these effects further, separate 2x5 ANOVAs were conducted on the Active and 

Sham groups. These 2x5 ANOVAs comprised 2 (Baseline MEP: High vs. Low) x 5 (Time: 0 

minutes, 15 minutes, 30 minutes, 60 minutes, 24 hours). The Sham Stimulation group 2x5 

ANOVA failed to produce a significant effect for Time F(4, 32263.07) = 0.81, p = .49, n2=.043 or 

a significant interaction between Baseline MEP and Time F(4, 14857.29) = 0.37, p = .77, n2=.020. 

Conversely, in the Active group there was a significant main effect of Time F(4, 194211.39) = 

3.03, p < .05, n2=.144 and an interaction between High versus Low MEPs and Time , F(4, 

256724.91) = 4.01, p < .05, n2=.182.  
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To determine the source of this interaction, two separate one-way repeated measures ANOVA 

were conducted on Active High and Low MEP groups over six levels of Time. The ANOVA for 

the Active Low baseline MEP group failed to reach significance F(5, 94627.28) = 1.06, p = .35, 

n2=.105. However, in the Active High baseline MEP group there was a significant effect of Time 

F(5, 783479.40) = 3.22, p = .05, n2=.263. Post- hoc tests revealed a significant reduction in MEP 

amplitude at 24 hours post stimulation t(9) = 3.42, p < .01 compared to baseline. 

 

Lastly, to determine if this effect was driven by higher TMS intensities in the High MEP at baseline 

group compared to the other groups, a one-way ANOVA with 4 levels (Group: Active High, Active 

Low, Sham High, Sham Low) was conducted.  No significant effects were evident  F(3, 51.867) 

= 0.80, p = .50, n2=.063 indicating that all groups received a comparable TMS intensity (see Table 

4.4).  

 

 

Table 4.4 Mean TMS Intensities for all Groups 

 

Stimulation Groups Mean TMS intensity %                

Active High MEP at baseline 53.7 

Active Low MEP at baseline 55.1 

Sham High MEP at baseline 51.7 

Sham Low MEP at baseline 57.1 

 

Discussion 

The aim of Experiment 2 was to test if 25minutes of ~1mA of DC GVS would induce lasting 

changes in cortical activity. The results initially showed no significant differences in MEP 

amplitudes between the active group and sham control group. However, subsequent exploratory 
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analysis, revealed that individuals exhibiting high levels of cortical excitability at baseline showed 

a significant reduction in cortical excitability 24hours post ‘active’ GVS. By contrast, low MEPs 

did not. These reductions are indicative of GVS inducing an inhibitory effect on cortical 

excitability which is seen as a precursor to LTD-like plasticity in the motor cortex (Vallance & 

Ridding, 2014). This is the first time that a physiological effect of GVS has been shown to induce 

such effect.  

 

A potential limitation of the current experiment was the high variability of TMS-elicited MEPs. 

That said, whilst error margins were still large (see Figure 3.5) they were reduced comparatively 

from those in Experiment 1 (see Figure 3.2) due to changing the experimental protocol. This 

limitation is a well reported property of MEPs that can affect the reliability of the technique (Kiers, 

Cros, Chiappa & Fang, 1993; Ellaway et al., 1998; Darling, Wolf & Butler, 2006). Measures were 

taken to improve spatial accuracy such as targeting the APB muscle rather than the ADM. 

However, even the use of functional imaging techniques to guide TMS location have failed to 

decrease MEP variability, yeilding similar results to that of non-navigated methods (Gugino et al., 

2001; Jung et al., 2010). Potentially, MEP variability may be due to less controllable factors in 

natural excitability fluctuations pertaining to the cortico-spinal tract (Magistris, Rosler, Truffert & 

Myers, 1998). A further imitation of delivering ~1mA of GVS was that for many participants in 

the active group a prickling sensation on the scalp was noted over the mastoid processes during 

stimulation. However, this did not appear to confound the results as as the inhibitory effects of 

GVS were not evident at 24hours post stimulation, in the sham group with cortical hyper-

excitability at baseline.  
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Experiment 3: The Effects of 1mA GVS on Motor Related Cortical Potentials 

 

In the current experiment I aimed to corroborate the findings of Experiment 2 but employed an 

alternative method of examining motor cortical excitability by using the Bereitschaftpotential 

(Shibasaki & Hallet, 2006).  I chose this method in the hope that a voluntary hand movement 

would show less trial variability than the noisy involuntary MEPs evoked by using TMS. The  

same research design as in Experiment 2 was therefore utilized to hopefully show that the 

amplitude of the BP would decrease at 24hours post GVS in individuals with cortical 

hyperexcitability at baseline. As can be seen in the brief experimental summary below, I was 

however unable to accurately record the BP on sufficient occasions let alone determine if it was 

modulated by GVS. Two attempts were made to measure it; in the first I utilised passive cup 

electrodes and was unable to detect a BP at baseline in any of the 12 participants. I suspect that the 

reason for this was partly due to the misplacement of cup electrodes on the scalp which need to 

overlie the relevant area of the motor cortex. To address this problem, I made a second attempt in 

28 participants to measure the BP by utilising an Easy Cap which makes electrode placement 

easier.  

 

Methods 

Participants 

Forty participants were recruited via the University of Kent research participation scheme in 

exchange for course credits. All individuals were right-handed (confirmed by the Edinburgh 

Handedness Inventory), free of self-reported neurological conditions, metal plates or surgical clips 

in the skull and had no skin abrasions behind the ears. Participants provided informed consent 
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prior to participation and were fully debriefed at the end of the experiment. Full ethical approval 

was obtained from the University of Kent School of Psychology research ethics committee.  

 

Design 

As in Experiment 2 a within-subject’s pre-post stimulation design was employed to measure DV 

changes in MRCPs at baseline and at four subsequent time blocks up to 24 hours post stimulation 

(see Figure 4.4 in Experiment 2). The between-subjects IV ‘Stimulation’ incorporated the active 

and sham conditions.  

 

Galvanic Vestibular Stimulation 

Both Active and Sham stimulation were carried out in the same way as in Experiment 2;  

25miuntes of Gaussian noise, frequency 1000Hz, applied to the mastoid processes in a bipolar, 

binaural configuration with the anode placed on the left mastoid and the cathode on the right. 

 

Recording Movement-related Cortical Potentials 

After preparation of the scalp using sterilization wipes, eight passive cup electrodes were attached 

using Elefix paste to EEG placements Fz, Cz, Cpz, Pz, C1, C2, C3, C4, using the International 10-

20 system with electrodes A1 and A2 linked as references. Disposable (28mm x 20mm) Ag/AgCl 

duck foot electrodes (Ambu® Neuroline 710) were placed in a bipolar montage over the extensor 

digitorum muscle of the left forearm to record EMG in the first 12 participants. Subsequent EEG 

and EMG recordings in the remaining 28 participants utilized the same electrode montage but 

instead used Easy Cap electrodes to record EEG. Brain Vision Recorder software and a BrainAmp 

amplifier (Brain Products, GmbH, Gilching, Germany) recorded both EEG and EMG artifacts 

simultaneously using a band pass filter of 0.05-70Hz for EEG recordings and 20-70Hz for EMG. 
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Care was taken to inform participants that they should try to avoid unnecessary movement or 

chewing during EEG/EMG recording to prevent unwanted artifacts.  

 

All analysis was undertaken using Brain Vision Analyser 2.0 (Brain Products, GmbH, Gilching, 

Germany). Unwanted EEG artifacts were removed off-line upon visual inspection. Averaged, 

rectified EMG signals were used to trigger back-averaging of EEG epochs set to four seconds 

(three seconds prior to EMG onset and one second after the EMG signal). The first 500miliseconds 

of each epoch was baseline corrected and EEG data from 80 trials in each block were averaged to 

obtain BPs. BPs were quantified using the area under the slope obtained two seconds prior to the 

EMG onset.  

 

Procedure 

After providing informed consent all participants completed the Edinburgh Handedness inventory 

Oldfield (1971) to confirm that they were right-handed. Participants skin was then prepared with 

sterilizing wipes to reduce impedance levels and EEG/EMG electrodes were attached. When using 

the Easy Cap, impedance levels were reduced to below 5kΩ by using a cotton wool stick and 

abrasive gel.    

 

Participants were then given oral instructions for the motor task which was to make voluntary  left 

middle finger extensions at intervals of approximately five seconds. Participants made these 

movements at their own pace (no external time cues were provided). A practice session was 

undertaken for approximately five minutes so that I could monitor their EMG traces for artifacts, 

ensure that the finger movements were abrupt, and check that complete muscular relaxation 

occurred between movements to allow later off-line placement of EMG signal markers. 
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Following practice, the participants were instructed to make 80 finger extensions at 5second 

intervals during the baseline recordings and then during the later sessions. Participants were fully 

debriefed upon completion of the testing session at 24hours post-stimulation.  

Figure 4.5. Experimental Protocol 

  

 

 

 

 

Results & Discussion 

Despite considerable effort I was unable to produce any data from the first 12 participants that 

were suitable for statistical analysis. This is because I was unable to attain a BP at baseline when 

using the passive cup electrodes. After switching to the Easycap, I was able to attain at least some 

measurement of the BP in 15 of the 28 participants subsequently tested. However, these data were 

still of a poor quality; of  the 80 finger movements made to elicit the BP during each time block, 

over 25% of trials failed to elicit a BP. As a consequence the data were nosiy and potentially under-

powered (see also Luck & Kappenman., 2011). Perhaps unsurprisingly, the ANOVAs performed 

on these data failed to show any statistically significant effects. As this experiment was conducted 

towards the end of my PhD, I did not have the time to continue refining the protocol to resolve the 

technical issues that I faced which, on reflection, partly reflected my lack of experience and the 

lack of local academic expertise in combining EMG and EEG.  For example, it is possible that the 

8-electrode montage, whilst appropriate for bedside EEG in a hospital setting, was not adequate 

4 (8-10min) Blocks of 80 finger movements 

 

0mins        30mins      60mins                       24hrs  

GVS 

1mA Noise 

DC or Sham 

 

25mins 

Baseline  

EEG/EMG 

recording 

80 finger 

movements 

(8-10mins) 



The Vestibular System in mTBI 

 

 

 

99  

for the refined experimental needs of my laboratory study. In future experiments I would aim to 

use a 32 electrode montage to reduce the signal to noise ratio (Usakli, 2010). Additionally, I would 

increase the finger movement trials to 160; it has been suggested that a minimum of 80 trials are 

required for a reliable average measurement so increasing the number of trials would allow for the 

data loss associated with this methodology (Shibasaki & Hallet, 2006).  

 

General Discussion 

This set of experiments sought to provide evidence that GVS can induce neuroplastic change and 

thereon justify and constrain its application to the symptoms of mTBI in UK military veterans. In 

Experiment 1, 10minutes of ~ 0.35mA AC GVS was shown to have no significant effects on MEP 

amplitudes. However, there were methodological problems that raised the possibility of a Type II 

error. The median split methodology that was used in Experiments 1 and 2 to separate High from 

Low TMS intensities can sometimes cause a loss of individual variability and statistical power 

thus increasing the possibility of a Type II error (Iacobucci et al., 2014). Typically, this might 

mean that the observed outcomes are overly conservative, as is arguably the case in Experiment 1. 

However, it has been argued by Iacobucci et al., (2014) that as the null hypothesis is never accepted 

and whilst median splits are suboptimal from the perspective of power, there is no material risk to 

science posed by median splits unless they produce a Type I error with the use of dichotomization 

which was not the case in the current study. An additional limitation was the short time window 

of post-stimulation recordings in Experiment 1 which may not have been long enough to capture 

potential effects of late phase LTP/LTD induction that can take place up to 4 hours and days later 

(Abraham, 2003; Linden, 1998). This limitation was therefore addressed in Experiment 2 by 

changing the experimental protocol and increasing the post stimulation measurement time window 

from 60minutes up to 24hours post stimulation. These changes revealed significant late phase LTD 
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type effects in participants who had cortical hyperexcitability at baseline and received 25minutes 

of ~1mA DC GVS. 

 

Further albeit indirect evidence of vestibular stimulation providing a reduction in cortical activity 

can be seen in research by Kantner et al., (1982). Who showed that vestibular stimulation induced 

a significant reduction of proximal activity post-stimulation in seizure prone children. Also, hyper-

excitability in the motor cortex is strongly correlated with attentional problems and mood 

disturbances in neurologically healthy participants (Bolden, et al., 2017). Indeed, dysfunctional 

homeostatic plasticity has been linked to a number of neuropsychiatric disorders such as PTSD, 

anxiety, attention-deficit/hyperactivity disorder (ADHD), epilepsy, Tourette’s syndrome and 

schizophrenia (Centonze et al., 2005; Machado et al., 2011; Badawy et al., 2012; Hasan et al., 

2013; Bolden et al., 2017). In light of these current findings GVS may hold potential therapeutic 

value in remediating a number of neuropsychiatric conditions in military veterans that are related 

to cortical hyperexcitability such as anxiety. The next chapter will test this hypothesis.  
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Chapter 5 

The Effects of Galvanic Vestibular Stimulation on Anxiety Symptoms: A Case Study of 5 

UK Military Veterans  

 

Introduction 

The aim of this Chapter is to determine whether the reduced motor excitability seen in the last 

Chapter translates into reduced positive symptoms in UK military veterans with mTBI and PTSD. 

To this end, I chose to target the effects of GVS on anxiety for the following reasons. Firstly, 

pathological anxiety disorders such as PTSD can induce emotional responses that are chronically 

dysfunctional. Fear responses can become maladaptive resulting in autonomic, cognitive and 

somatic reactions that can cause exaggerated emotional responses, defensive, freezing or avoidant 

behaviours (Rosen & Schulkin, 1998). Pathological anxiety can also induce a sense of 

uncontrollability that is characterized by hypervigilance (Eysenck, 2013). This psychological 

distress causes fear circuits to become hyperexcitable and more readily activated. In line with this, 

patients with PTSD demonstrate widespread impairment in GABA function and right lateralized 

dysfunction with increased cortical excitability (Rossi et al., 2009). Furthermore, patients suffering 

from PTSD and mTBI have shown lower MEP inhibition and significantly higher MEP amplitudes 

than controls, which is also indicative of cortical hyperexcitability (Centonze et al., 2005). These 

physiological factors coupled with the high prevalence of anxiety lends anxiety as a useful indirect 

marker of excitability change.  

 

Vestibular disorders and anxiety are functionally related via both somatopsychic and 

psychosomatic mechanisms (Jacob and Furman, 2001). Symptoms of dizziness and imbalance are 

synonymous with comorbid anxiety and evidence suggests that the vestibular system exerts a 
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significant influence on the ascending pathways that are integral to anxiety symptoms (Balaban & 

Porter, 1998; Balaban & Thayer, 2001). Somatopsychic symptoms involve the integrated activity 

of three neural networks; the vestibulo-parabrachial nucleus (PBN) network, coeruleo-vestibular 

network and raphe nuclear-vestibular network (Balaban, 2002). There are dense ascending 

projections from the vestibular nuclei to the PBN which have reciprocal connections with the 

amygdaloid nucleus, infralimbic cortex and hypothalamus regions involved in conditioned fear 

and anxiety responses, which may mediate panic and anxiety disorders (Charney & Deutsch, 1996; 

Ressler & Nemeroff, 2000). These excitatory networks are activated in states of fear or vigilance 

and alter vestibular evoked ocular and motor responses (Balaban, 2002). In fact, abnormal 

nystagmus has been observed in 50% of US soldiers with blast mTBI along with symptoms of 

dizziness (Scherer et al., 2011). 

 

Psychosomatic mechanisms such as fear and anxiety are also known to affect balance control 

(Kalueff et al., 2008) along with autonomic malfunctioning which may be a probable cause of 

vertigo (Furman, Jacob & Redfern, 1998). Support for this idea can be seen in veterans with PTSD, 

where greater severity of PTSD is associated with worse symptoms of dizziness (Harber et al., 

2016). mTBI is also associated with greater incidence of anxiety disorders and is known to share 

neurobiological links (Moore et al., 2006; Meyer et al., 2012). A single impact to the skull in rats 

that mimics mTBI, has been shown to produce discrete alterations in neuronal numbers within the 

limbic system and specific emotional deficits that links mTBI to a number of anxiety disorders 

(Meyer et al., 2012).  

 

It is important to understand how emotional deficits can manifest and affect cognition so that 

appropriate pre and post GVS measures can be harnessed to detect potential change. Anger, 
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impulsivity and aggressive behaviours are common and associated with anatomical structures such 

as the brain stem, hypothalamus, limbic system, orbitofrontal cortex and neocortex (Boke et al., 

1992; Blair, 2001). It is suggested that impulsive and aggressive behaviours emerge due to 

impairment in inhibitory control when processing threat response. This can arise by failure of the 

limbic system (hippocampus, amygdala) to comply with regulatory functions and failure of 

inhibitory functions within the frontal cortex (Bolu et al., 2015). Fear responses can become 

dysregulated and hyperresponsive leading to attentional bias in the detection of potential threat 

and an inability to disengage from perceived trauma reminders (Hayes, VanElzakker & Shin, 

2012). As a consequence of this, the availability of cognitive resource to engage in non-threat goals 

and task demands is decreased (Hayes, VanElzakker & Shin, 2012; Jovanovic & Norrholm, 2011), 

and executive function declines. 

 

The emotional Stroop task (EST) can assess attentional biases and allied executive dysfunction in 

PTSD and mTBI (Buckley, Blanchard & Neill, 2000; Cisler et al., 2011; Constans et al., 2004; 

Stroop, 1935; Varna, Roodman & Beckham, 1995). In military veterans deficits in attention and 

executive control have been linked to both neutral (Vasterling & Verfaellie, 2009; Vasterling et 

al., 2009; Qureshi et al., 2011); and emotional Stroop stimuli related to combat trauma (Ashley et 

al., 2013; McNally et al., 1990; 1993; Mogg et al., 1989). Ashley et al., (2013) demonstrated that 

US veterans with PTSD were disproportionately slower responding to combat related words in an 

EST compared to controls. Those individuals with greater depression and PTSD generally 

produeced larger interference effects. This specificity in detecting attentional biases to combat 

related words in the EST, may provide a useful pre- and post-intervention measure for the current 

study. Arguably, hyperexcitability and anxiety may not only manifest in slower reaction times but 

delays in colour naming combat words.  
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Hyperarousal symptoms and aggressive behaviours have been hypothesised by Bolu et al., (2015) 

to be linked to motor cortex hyperexcitability that is frequently seen in individuals with PTSD. 

However, vestibular influences are also known to effect motor cortex excitability, this is hardly 

surprising given the vestibular systems role in muscle sympathetic nerve activity and limbic 

regulation (Balaban, 2002). Evidence of this can be seen in patients suffering from Mal de 

debarquement syndrome a condition which occurs when habituation to passive ground movement 

becomes resistant to preadaptation of stable conditions, resulting in a phantom perception of self-

motion. Like PTSD, this vestibular disorder has also been associated with hyperexcitability of the 

motor cortex compared to healthy controls (Clark & Quick, 2011).  Further evidence of the 

vestibular system directly influencing motor responses can also be seen from using GVS which 

has been shown to improve performance in motor execution tasks and elicit shorter reaction times 

(Yamamoto et al., 2005). Combined these factors and the results from Chapter 4 highlight the need 

to introduce a secondary task that can indirectly measure motor cortex excitability. A simple 

reaction time task (SRT) would provide a good pre and post GVS measure that unlike the EST, is 

free of inducing anxiety symptoms. Given the extensive networks between the vestibular, limbic 

systems, reciprocal ocular/motor responses and the inhibitory effects of GVS seen in Chapter 4, it 

is likely that vestibular stimulation may influence emotion, motor responses and cause 

hypoexcitability eliciting the opposite effects.  

 

The Current Study 

Given the findings in Chapter 4 that GVS can reduce cortical hyperexcitability at 24hours post 

stimulation, this study will assess if a common symptom such as anxiety associated with 

hyperexcitability can be reduced by GVS.  If this is shown to be the case then a tentative link will 

have been made between a psychological effect of GVS and its clinical impact. Hyperexcitability 
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was measured in several ways. The State-Trait Anxiety Inventory for adults was employed to 

measure change in current anxiety levels. This measure was deemed an appropriate metric due to 

the time constraints of testing over a three-day period. Measuring current anxiety was more 

practical than measuring PTSD symptomology, which would require a much longer time period. 

The SRT was also utilised as a behavioural correlate of motor cortical hyperexcitability. The EST 

was used to measure anxiety related attentional bias and inhibition. Changes in current anxiety, 

SRT and the EST were measured at five time points over three consecutive days in an ABAB 

design which allowed each case study to serve as their own control.  

 

Methods 

Participants 

Eligible participants from the previous epidemiological study in Chapter 3 were offered the chance 

to participate in the current study if they fully met the inclusion criteria (prior consent had been 

granted by all participants in the previous epidemiological study to be contacted and offered the 

opportunity to participate in the current study if eligible). The inclusion criteria comprised a 

lifetime history of one or more mTBI, a PTSD score of  >38 (PCL-5), and an anxiety score of  >12 

(K10) indicating severe symptom severity. Participants also needed to show no evidence of colour-

blindness when tested by the Ishihara’s Tests for Colour-blindness so that they could perform the 

emotional Stroop task (Ishihara, 1985). Six UK military veterans were selected from the previous 

sample and invited to participate. Data from participant 002 were excluded from the study due to 

an electrode failure during active GVS which meant that a full dose of stimulation was not 

received. All participants provided written informed consent prior to participation and were fully 

debriefed when data collection was complete. A favourable ethical opinion was granted prior to 

study commencement from the University of Kent School of Psychology research ethics 
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committee.  

Participant Psychiatric and Medical History 

Participant 001 

Participant 001 was a 56-year-old Caucasian male who served as medical support officer (Rank: 

Squadron Leader) in the Royal Airforce for 26years. He had a history of being abused during 

adolescence and had been exposed to multiple traumatic events over six tours of combat duty 

during his military career. Patient 001 had been diagnosed as suffering from PTSD, depression, 

had a history of alcohol abuse and suicidal ideation. Over the course of his lifetime, he frequently 

exhibited aggressive behaviour and reported involvement in several physical altercations that 

along with boxing and rugby resulted in him sustaining repeated mTBIs. He reported suffering 

from an impaired sense of smell, memory and attention problems. His PTSD symptoms had a 

delayed onset from adolescence only manifesting 2years before leaving the armed services, 

triggered by another traumatic event. He was physically abusive towards his first wife with whom 

he had two children. The marriage dissolved and he has since remarried. His home life and 

relationship with his current wife is unremarkable. He described his premorbid personality as 

outgoing “life and soul of the party”. However, he now avoids participating in social events as he 

struggles to manage his anger, he finds this along with symptoms of anxiety and depression to be 

particularly debilitating as it also affects him at work. He currently works in a senior management 

role within the National Health Service. One year prior to participating in this study he received 

six weeks of psychological therapy as an in-patient at Combat Stress. He was medicated on 50mg 

of Sertraline per day.   

 

Participant 003 

A 53-year-old Caucasian male who served in the British Army as a Coldstream guardsman (Rank: 
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Corporal) for 24years. During his military career he had three deployments to a war zone and was 

exposed to multiple combat related traumatic events. He was diagnosed with PTSD and depression 

before leaving the army. He also has a history of alcohol abuse, self-harm and has previously 

attempted suicide. Participant 003 reported a history of repeated mTBIs due to blast exposure and 

blunt force injuries due to banging his head during his military career. He described these blunt 

force injuries as an occupational hazard, due to being 6ft 8inches tall. During 2012 participant 003 

received treatment for Mantle cell lymphoma, which is in remission. He also suffers with chronic 

pain due to a spinal disc herniation. His marriage failed after seven years due to his PTSD 

symptoms. He has lived with his current partner for the past 10years and describes his behaviour 

at home as frequently volatile. Participant 003’s mother suffers from Alzheimer’s and is cared for 

in a retirement home, which causes him considerable distress.  Since leaving the army six years 

ago he has worked as a security guard. He described his premorbid personality as “fun” but also 

reported to “always being emotionally closed”. Controlling emotions of anger has been particularly 

difficult for him since the onset of his PTSD. This along with severe anxiety and hypervigilance 

cause him considerable distress. He received six weeks of psychological therapy as an inpatient at 

Combat Stress 12 months ago. As a result, he now practices mindfulness meditation, yoga and 

Buddhism as he finds this helps him to cope.  His prescribed medication included, 20mg of 

fluoxetine daily and when needed Sildenafil, Omeprazole, Tramadol, Naproxen, Matrifen and 

Diazepam.   

 

Participant 004 

A 45-year-old Caucasian male who served in the British Army as an infantryman (Rank: Lance 

corporal) for nine years. Participant 004 suffered the bereavement of a sibling during childhood 

which had a profound effect on him. Behavioural problems were evident prior to him joining the 



The Vestibular System in mTBI 

 

 

 

108  

army, as he attained a criminal record for actual bodily harm and burglary. He had one deployment 

to a war zone where he was subjected to psychological trauma and has been diagnosed with PTSD, 

depression, and attention deficit hyperactivity disorder (ADHD). He had a history of 

alcohol/substance abuse and suffers with chronic pain due to a spinal disc herniation. A history of 

repeated mTBIs mechanisms included blast, road traffic accidents, ruby and fighting. He has been 

married to his wife for 23years and explained that he is now a full-time carer to her as she is unwell. 

His four children are all adults and no longer live with him and their relationship is unremarkable. 

Patient 004 is very troubled by agoraphobia and particularly anxious when in a crowd, as he 

becomes disorientated. Generally, he will not leave his home unless it is essential and as a 

consequence he has been unemployed for the past 15years. He described his premorbid personality 

as “not very pleasant, antagonistic and difficult” and said that “I am easier to get along with now 

and try to avoid trouble”.  Participant 004 received six weeks psychological therapy as an inpatient 

at Combat Stress 6 months prior to participation in this study. His daily medication includes 200mg 

Serterline, 15mg Ozlanzapine, 54mg Concerta and when needed 2mg of Diazepam.  

 

Participant 005 

A 32-year-old Caucasian male who served as an infantryman in the British Army (Rank: Private) 

for 6years. Participant 005 was subjected to abuse during childhood and was deployed to a war 

zone on three occasions where he was exposed to extreme psychological trauma. After returning 

from a deployment in Afghanistan, participant 005 was absent without leave for 3months which 

resulted in him being incarcerated for 90days and discharged from the army. He was diagnosed 

with PTSD before leaving the army and has a history of repeated mTBI. Mechanisms of injury 

include blast, participating in extreme sports and fighting. Sensory problems include extreme 

dizziness, imbalance, tinnitus and impaired hearing. He previously suffered from substance and 
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alcohol abuse and has caused significant self-harm, attempting suicide twice. Difficulties with 

attention and concentration are particularly debilitating for him, along with issues controlling his 

anger. He was married for 3years and has two children from this marriage which has dissolved due 

to domestic abuse towards his wife. He has occasional contact with his children. Since leaving the 

army he has been arrested several times for violent conduct but has no convictions. At the time of 

testing he had been suspended from his role as a prison warden, whilst an investigation was carried 

out over him using excessive force when restraining a prisoner. He currently lives with his 

girlfriend who is pregnant and mentioned that he is dissatisfied with their relationship. Participant 

005 received six weeks psychological therapy as an inpatient at combat stress 8 months prior to 

participation and is medicated on 100mg of Sertraline per day. 

 

Participant 006  

A 45-year-old Caucasian male who served three years as an infantryman (Rank: Private) in the 

British Army. Participant 006 suffered the loss of his father at 13years of age and brother in early 

adulthood. He said that he was bullied at school and excluded. This led to his involvement in gang 

culture, where he became leader of a football hooliganism gang. He attained a criminal record for 

serious assault and was arrested for attempted murder but not convicted prior to joining the armed 

services. Other psychological trauma involved one deployment to a war zone where he also 

sustained a blunt force mTBI. He has been diagnosed with ADHD, PTSD, depression and has a 

history of substance/alcohol abuse. Participant 006 also suffers from fatty liver disease but has 

been abstinent for the past 3years. He has extreme agoraphobia and tries not to leave his house, he 

has planned his suicide on a number of occasions.  Estranged from most of his family, participant 

006 no longer has contact with his mother or other siblings. He has a son from a previous 

relationship although he has never met him. Currently, he lives with his girlfriend of 10years. His 
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home life was unremarkable. He described his premorbid personality as “loving and caring, closer 

to his family, well liked and helpful”. Three months prior to participating in this study participant 

006 received 6weeks of psychological therapy at Combat Stress. He was unable to provide 

evidence of his medication, but indicated that he is prescribed drugs for PTSD.   

 

Design 

Testing for each of the six case studies took place over three consecutive days and comprised five 

repeated experimental blocks. Measures were presented in a pre and post stimulation design, with 

a follow-up session at 24hours post stimulation to ensure that the effects of delayed change in 

excitability seen in Chapter 4 were captured. All participants received both active and sham GVS.  

I employed an A,B,A,B design to counter balance active and sham stimulation on either day 1 or 

day 2 of testing (see figure 5.1). Two words sets A and B were used for the Emotional Stroop test 

and counterbalanced between active and sham and across participants (see figure 5.1).  
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Figure 5.1 Protocol A,B,A,B Experimental Design 

 

 

 

 

 

 

 

 

 

 

 

 

Note. SRT = simple reaction time task, EST = emotional Stroop task, STAI = State-Trait Anxiety 

Inventory for adults which comprised of two-word sets = (A) and (B). GVS= galvanic vestibular 

stimulation in either active (A) or sham (B) conditions.  

 

Materials 

Self-report Current Anxiety Symptoms 

Section Y-1 of the State-Trait Anxiety Inventory for adults (STAI) was administered to measure 

current anxiety symptoms. Section Y-1 was designed to measure mood in the moment of ‘State’. 

Participants indicate the severity of current anxiety symptoms on a four-point Likert scale, ranging 

from 1 ‘not at all’ to 4 ‘very much so’. Calculating participant total anxiety scores involves the use 

of a template that inverts scores of 1’not at all’ and 4 ‘very much so’ to 4 and 1 in 10 out of the 

Day 1 
 

Participant    Task      Treatment        Task 

 

002                SRT      GVS (A) Active      SRT  

                      EST (A)                                EST(B)  

                      STAI                                     STAI 

 

001               SRT       GVS (B) Sham        SRT  

                     EST (B)                                 EST(A)  

                     STAI                                      STAI 

 

005               SRT        GVS (A) Active      SRT  

                     EST (B)                                  

EST(A)        STAI                                       STAI 

 

003               SRT        GVS (B) Sham       SRT  

                     EST (A)                                 EST(B)  

                     STAI                                      STAI 

 

004               SRT       GVS (A) Active      SRT  

                     EST (A)                                 EST(B)  

                     STAI                                      STAI 

 

006               SRT        GVS (B) Sham       SRT  

                     EST (B)                                 EST(A)  

                     STAI                                      STAI 

 

 

 

  

Day 2 
 

Task            Treatment          Task 

 

SRT           GVS (B) Sham      SRT  

EST (A)                                   EST(B)  

STAI                                        STAI 

 

SRT           GVS (A) Active    SRT  

EST (B)                                   EST(A)  

STAI                                        STAI 

 

SRT           GVS (B) Sham      SRT  

EST (B)                                   EST(A)  

STAI                                        STAI 

 

SRT           GVS (A) Active    SRT 

EST (A)                                   EST(B)  

STAI                                        STAI 

 

SRT           GVS (B) Sham      SRT  

EST (A)                                   EST(B)  

STAI                                        STAI 

 

SRT           GVS (A) Active    SRT  

EST (B)                                   EST(A)  

STAI                                        STAI 

 

 

 

 

 

 

  

Day 3 
 

Task 

 

SRT            

EST (A)                                    

STAI    

 

SRT            

EST (B)                                    

STAI     

 

SRT            

EST (B)                                    

STAI  

 

SRT            

EST (A)                                    

STAI   

 

SRT            

EST (A)                                    

STAI  

 

SRT            

EST (B)                                    

STAI  
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total 20 responses. Higher total STAI scores are indicative of greater severity in current anxiety 

symptoms. This measure has excellent internal consistency (average as > .89) and excellent test 

re-test reliability (average r =.88) (Barnes, Harp & Jung, 2002).  

 

Simple Reaction Time Task 

Based on a simple reaction time (SRT) task designed by Deary et al., (2010), one white square 

with a black cross was positioned in the centre of a computer screen against a blue background. 

Each time a cross appeared on the screen, participants needed to press the space bar on a computer 

keyboard as quickly as possible. Each cross remained on the screen until the key was pressed. The 

inter-stimulus interval (time between each response and when the next cross appeared) was 

randomly set to between 1 and 3 seconds. Stimulus triggers were programmed using a psychopy 

script and RT responses were automatically recorded on .csv spreadsheets. A practice session was 

provided with eight trials and the main experiment script was programmed to deliver 40 trials. 

Participants viewed an instruction screen prior to trials starting.  

 

Colour Blindness 

To ensure that participants were able to complete the EST, the Ishihara Test for Colour-blindness 

was administered. This test involves a series of test plates designed to detect colour deficiency of 

congenital origin (Ishihara, 1985). If the reading of 17 or more plates are read normally, colour 

vision is regarded as normal.  

 

Emotional Stroop Task 

The emotional Stroop task required participants to name the font colour of emotional and neutral 

words whilst ignoring the meaning of those words. In the classic Stroop task, incongruent words 
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and colours (i.e. yellow colour font, word green) interfere with the task responses and slow colour 

naming (Golden & Freshwater, 1978). In the current experiment the name of the colour was 

replaced with neutral and emotionally negative, positive and combat words that appeared in  one 

of four font colours (red, green, yellow or blue). Previous evidence from Ashley et al., (2013) 

suggests that the emotional Stroop can be used to examine cognitive alterations in PTSD, as 

veterans with PTSD were shown to be proportionally slower at responding to combat words 

compared to controls.  Two word sets A and B, in 48pt Times font using only capital letters were 

prepared. Each set contained 320 different words that consisted of four target word types; 1) 

positive, 2) negative, 3) neutral and 4) combat words and 5) matched neutral words. All colours 

were presented the same number of times for each word type but in random order. Throughout 

trials comprised 80 red, blue, green and yellow words that were presented on a black background.  

 

The matched neutral words provided a controlled comparison against paired combat words. These 

matched neutral words equated the following lexical features with paired combat words: length, 

frequency, ortographic and phonological neighbourhood size. All positive, negative neutral and 

matched neutral words were taken from the Affective Norms for English Words (ANEW) data 

base which provided emotional normative ratings of pleasure, arousal and dominance. Combat 

words described common aspects of traumatic war experiences such as: exposure to IED blasts, 

suicide bombers, seeing human remains, engagement in killing, violent deaths and injuries. A list 

of modified combat words was compiled with the help of four UK veterans who were deployed to 

the Falklands, Iraq, Afghanistan and Northern Ireland during conflict and who did not participate 

in this study. This is because the list of combat words used in the Ashley et al., (2013) study was 

only relevant to US troops and not to the UK armed forces. These replacement words contained 

the same lexical features as the words they replaced and were comprised of four types of combat 
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words which included 1). Combat events (i.e. insurgent), 2). Places (i.e. Helmand), 3). Military 

abbreviations (i.e. AK47) and 4). General war trauma words (i.e. morphine).  All combat and 

matched neutral word pairs were presented in randomised order in the four different colours.  

 

Participants were shown an instruction screen informing them to clearly speak into a microphone 

when naming the colour of the word that appeared. After completing a practice trial of 15neutral 

words on day one of testing, participants started the main experiment. Each word in the EST was 

presented for 500ms with an inter-stimulus interval of 1500ms making a total trial time of 2000ms.  

Each experimental block used either word set A or B containing 320 words. Experimental trial 

scripts were written using Psychopy and voice reaction times were recorded on .csv files. 

Participants were informed that we were recoding their responses by video camera to enable us to 

check their accuracy in naming the correct colour of word stimuli. Participants were able to take a 

one-minute break after 100 and 200 trials. 

 

Galvanic Vestibular Stimulation 

A Neuroconn DC stimulator was utilised to deliver the same waveform used in Chapter 4. This 

waveform comprised 25minutes of Gaussian noise bipolar direct current. Stimulus intensity varied 

randomly from 0.5-1.5mA with a mean intensity of 1mA at a frequency of 1000Hz and was 

delivered to the mastoid processes via 5.1cm x 10.2cm rubber self-adhesive electrodes. This 

bipolar current was delivered with the anode placed on the left mastoid and the cathode on the 

right. Skin over the mastoids was prepared prior to electrode placement using surgical wipes and 

Nuprep gel, to ensure low impedance. Sham stimulation involved the same preparation however, 

the stimulation device remained out of sight and turned off. Due to GVS electrode failure during 

active stimulation on participant 002, his data was withdrawn from the study, leaving (N=5) 
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remaining participants. There were no reports of prickling or dizziness sensations after active GVS 

in the remaining participants, indicating that participants remained blinded to the active and sham 

stimulation conditions.  

 

Procedure 

Testing took place over three consecutive days. On Day 1, participant gave informed consent and 

a full medical and psychiatric history. The main experimental protocol can be seen in Figure 5.1. 

At baseline participants first completed the SRT followed by the EST and then the STAI. This 

process was repeated in either active or sham conditions immediately after GVS and at 24hours 

post-stimulation on day three. 

 

Statistical Approach 

Descriptive statistics were employed to examine the effects of GVS on STAI scores over time. 

Inferential statistics were not employed for further analysis of the STAI, due to the small sample 

size and the fixed nature of STAI scores which do not provide a variance measure.  

 

The SRT responses were analysed via one-way ANOVA with Time as the independent variable 

comprising of three levels (Baseline, Post-stimulation, 24hours post-stimulation). Separate 

ANOVAs were used for the Active and Sham conditions as the use of 24hour post-stimulation on 

Day 2 also was used as a baseline for the next session, which prevented a symmetrical design.   

 

Before conducting colour-naming latency analysis for the EST, standard data trimming 

procedures were performed. This involved the removal of incorrect trials (see Table 5.1.). Only 

correct responses were included in the statistical analysis. It was predicted that participant 
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responses would be slower to emotionally salient combat words compared to neutral, negative 

and positive words. However, this Stroop effect was not predicted in the analysis of matched 

neutral words that form a comparison. To examine if GVS reduced reaction times to combat or 

matched neutral words in the EST, four within-subjects 3x4 repeated measures ANOVAs were 

performed, and consisted of 3 (Time: Baseline, Post-stimulation, 24hrs Post-stimulation) x 4 

(Target words: Combat, negative, neutral, positive) or 4 (Matched Neutral words: Combat, 

Negative, Neutral, Positive) factors. Two of these ANOVAS were employed in the Active 

stimulation condition to examine changes in RT to either Target or Matched Neutral words over 

Time. The same two ANOVAs were also conducted in the Sham condition. Significant main 

effects were explored via t-tests with Bonferroni corrections. All statistical analysis was 

conducted on SPSS version 24. 
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Results 

Table 5.1. EST Incorrect Response Percentages 

Participant Session Condition Word Set Incorrect % Total Mean % 

001 1 Baseline 1 B 13 10.6 

 2 Post Sham A 7.5  

 3 Baseline 2 B 7.5  

 4 Post GVS A 15  

 5 24hrs Post GVS B 10  

003 1 Baseline 1 A 2.5 6.4 

 2 Post Sham B 6.2  

 3 Baseline 2 A 8.2  

 4 Post GVS B 10  

 5 24hrs Post GVS A 5  

004 1 Baseline 1 A 13.7 14.2 

 2 Post GVS B 11.2  

 3 Baseline 2 A 13.7  

 4 Post sham B 16.2  

 5 24hrs Post sham A 16.2  

005 1 Baseline 1 B 1.25 2.2 

 2 Post GVS A 1.25  

 3 Baseline 2 B 0  

 4 Post sham A 5  

 5 24hrs Post sham B 3.7  

006 1 Baseline 1 B 36.2 27.9 

 2 Post Sham A 25.0  

 3 Baseline 2 B 26.2  

 4 Post GVS A 28.7  

 5 24hrs Post GVS B 23.7  

 

Participant 001 

STAI 

At baseline participant 001’s STAI score was 33, and increased slightly to 35 post Sham GVS.  At 

24hours post Sham GVS his STAI dropped to 29 which indicated a reduction in current anxiety. 

On day 2 his anxiety levels rose from 29 at baseline to 35 post Active GVS and elevated further to 

43 at 24hours post-stimulation on day three. Graphical representation of STAI scores for all 

participants in both active and Sham conditions can be seen in Figures 5.2 and 5.3.  
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Figure 5.2 STAI Scores in Active GVS Protocol 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 STAI Scores in Sham GVS Protocol 
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SRT 

The two one-way ANOVAs revealed no significant effects in either Active F(2, 78) = .332, p = 

.718, n2= .081or Sham F(2, 78) = .362, p = .697, n2= .009 conditions.  

 

EST ANOVAs for Target words 

Analysis of the EST in the Active stimulation condition first examined RTs for Target words. This 

involved a within subjects repeated measures 3 (Time: Baseline, Post-stimulation, 24hrs Post-

stimulation) x 4 (Target words: Combat, Negative, Neutral, Positive) ANOVA. This revealed a 

significant main effect of Time F(2,58)=9.438, p =<.001, n2= .246. Consistent with my prediction, 

paired t-tests revealed significantly shorter RT p =<.001 between baseline (M=.700sec, SE =.030) 

and 24hrs post-stimulation (M=.522sec, SE =.022). This effect was not evident between baseline 

and post stimulation or post-stimulation and 24hrs post-stimulation. There was also a significant 

main effect of Target words F(3,87)=2.938, p =.038, n2= .092. Contrary to my prediction that RTs 

to Combat words would be slower given participants high anxiety; pairwise comparisons indicated 

that RT were significantly shorter p =.025 for negative words (M =.518sec, SE=.033) compared to 

positive words (M= .642sec, SE=.024). There were no significant interactions between Time and 

Target Words F(6, 174) = 1.204, p = .306, n2= .040. The same analysis conducted in the Sham 

stimulation condition failed to reach significance F(2, 58) = 2.933, p = .061, n2= .092.  

 

EST ANOVAs for Matched Neutral words 

The next ANOVA examined RTs to Matched Neutral words over Time in the Active stimulation 

condition. Again there was a marginally significant effect of Time F(2,31)=3.265, p =.059, n2= 

.095 in the Active condition. Pairwise comparisons showed a significant reduction in RTs p =.001 
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between Baseline (M=.653, SE=.025) and 24hrs Post-stimulation (M=.548, SE=.024). No 

significant differences in RTs between baseline and post-stimulation were evident. There were 

also no significant main effects of Matched Neutral words F(3, 93) = 1.982, p= .132, n2= .060 or 

interactions with Matched Neutral words and Time F(6, 186) = 2.640, p = .497, n2= .078. The 

same ANOVA was repeated for the Sham stimulation condition and again revealed no significant 

effects F(2, 62) = 2.500, p = .090, n2= .075.  

 

Participant 003 

STAI 

Participant 003 presented with a Baseline STAI score of 35 which increased to 41 Post Sham GVS. 

On day two at 24hours post Sham, his STAI score reduced to 31. From this baseline score an 

increase STAI score of 36 was evident post Active GVS and unfortunately elevated further to 40 

at 24-hours post Active stimulation (See Figures 5.2 & 5.3).  

 

SRT 

A one-way ANOVA of the SRT in the Active GVS condition revealed a significant effect F(2, 78) 

= 5.078, p < .05, . n2= .115 Pairwise comparisons revealed significantly slower RTs p =.043 

between Baseline (M=.247sec, SE=.010) and Post-stimulation (M=.280sec, SE=.009). This 

analysis was repeated for the Sham stimulation condition and also uncovered a significant effect 

F(2,78)=9.752, p =<.001, n2= .200. Paired t-tests showed significantly shorter p =.006 RT between 

Baseline (M =.297, SE = .013) and Post-stimulation (M = .250, SE = .006). RTs were also 

significantly shorter p =.001 between Baseline (M =.297, SE = .013) and 24hrs Post-stimulation 

(M =.247, SE = .010).  
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EST ANOVAs for Target words 

The repeated measures ANOVA for Target words in the EST revealed a significant main effect of 

Time F(2,42)=16.484, p =.<001, n2= .440 in the Active GVS condition. Paired t-tests revealed  

significantly longer RTs p =<.001 between Baseline (M=.526sec, SE=.027) and Post-stimulation 

(M=.922sec, SE=.067) which was in contrast to the prediction of shorter RTs. Significantly longer 

RTs p =.<001 were also evident in comparisons between Baseline (M=.526sec, SE=.027) and 

24hrs Post-stimulation (M=.886sec, SE=.054). There were no significant differences in Time 

between Post-stimulation and 24hrs Post-stimulation, and no main effects of Target words F(3, 

63) = 1.817, p = .153, n2= .080 or interactions between Time and Target words F(6, 126) = .689, 

p = .659, n2=032.  

 

In the Sham stimulation condition a significant main effect of Time F(2,32)=7.2622, p =.002, n2= 

.323 was evident. Paired t-tests revealed no significant differences in RTs between Baseline and 

Post-stimulation. However, RTs became significantly shorter p =.049 between Baseline (M= 

.761sec, SE=.078) and 24hrs Post-stimulation (M= .519sec, SE=.033). RTs were also significantly 

shorter p =.001 between Post-stimulation (M= .827sec, SE=.061) and 24hrs Post stimulation (M= 

.519sec, SE=.033). Target words also showed a significant main effect F(3,48)=6.595, p =.001, 

n2= .292. Paired t-tests showed shorter RTs p =.005 for Combat (M=.578sec, SE=.045) compared 

to Negative words (M=.867sec, SE=.064). RTs were also significantly shorter p =.031 on positive 

words (M=.618sec, SD=.397) compared to negative (M=.867sec, SD=.400). There was also 

significant interaction between Time and Target words F (6,96)=5.228, p =<.001, n2= .246.  

 

 



The Vestibular System in mTBI 

 

 

 

122  

EST ANOVAs for Matched Neutral words 

In the Active stimulation condition a significant main effect of Time F(2,46)=30.061, p =.<001, 

n2= .567 was evident. t-tests showed a significantly longer RTs p =.<001 between Baseline 

(M=.516sec, SE=.028) and Post-stimulation (M=.937sec, SE=.049). Significantly longer RTs  p 

=.<001  were also evident between Baseline a (M=.516sec, SE=.028) and 24hrs Post-stimulation 

(M=.887sec, SE=.072). There were no significant differences between Post-stimulation and 24hrs 

Post-stimulation. Matched Neutral words F(3, 69) = 1.424, p = .243, n2= .058 and the interaction 

between Time and Matched Neutral words F(6, 138) = 1.001, p = .427, n2= .042 failed to reach 

significance.  

 

In the Sham stimulation condition, RTs to Matched Neutral words showed a significant main effect 

of Time F(2,32)=9.837, p =<.001, n2= .381. Paired t-tests revealed no significant difference in RT 

between Baseline and Post-stimulation. However, RTS were significantly shorter p =.029 between 

Baseline (M=.800sec, SE=.080) and 24hrs Post-stimulation (M=.500sec, SE=.035) and between 

Post-stimulation p =.001 (M=.897sec, SE=.064) and 24hrs Post-stimulation (M=.500sec, 

SE=.036). There were no significant main effects of Matched Neutral words F(3, 28) = .498, p = 

.68, n2= .030 or interactions with Time and Matched Neutral words F(6, 96) = .390, p = .884, n2= 

.024. 

 

Participant 004 

STAI 

Participant 004’s baseline STAI score was 50. Post Active GVS his anxiety score reduced to 37, 

and at 24hours post Active GVS on day 2 his STAI score was slightly reduced from baseline to 
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47. From this score a further reduction in STAI scores was observed post Sham to 35 and at 

24hours post Sham scores were further reduced to 34. (see Figures 5.1 & 5.2).  

 

SRT  

The one-way ANOVAs for the SRT failed to reach significance in the Active GVS condition F(2, 

78) = .472, p = .625, n2= 012 . In Sham there was a significant effect F(2, 78) = 3.452, p = .037, 

n2= 081. Paired T-tests failed to reach significant values between any Time points. However, there 

was an apparent trend towards shorter RTs post Sham (M=.249 SD=.036) and at 24hours post 

Sham (M=.246 S =.060) compared to baseline (M=.297 SD=.082).  

 

EST ANOVAs for Target words 

The EST ANOVA in the Active GVS condition showed no significant main effect of Time  

F(1.722, 63.779) = 2.347, p = .110, n2= 061. However, in the Sham condition a significant main 

effect of Time F(2,70)=4.270, p =.018, n2= .109 was evident. Paired t-tests showed significantly 

longer RTs p =.041 from Baseline (M=.609sec, SE=.028) to Post-stimulation (M=.698sec, 

SE=.025). There were no significant differences between Baseline and 24hrs Post-stimulation p= 

1.00. Yet, significantly shorter RTs p =.022 were evident between Post-stimulation (M=.689sec, 

SE=.025) and 24hrs Post-stimulation (M=.610sec, SE=.028). There were no significant main 

effects of Target words F(3, 105) = 1.467, p = .228, n2= 040 and the interaction between Target 

words and Time F(6, 210) = .565, p = .758, n2= 016 failed to reach significance. 

 

EST ANOVAs for Matched Neutral words 

The ANOVAs for RTs to Matched Neutral words in Active showed no main effect of Time  F(2, 

72) = .934, p = .398, n2= .025. Main effects of Matched Neutral words  F(3, 108) = .942, p = .423, 
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n2= .025 and interactions between Time and Matched Neutral words F(5.33, 192.003) = 1.019,  p 

= .410, n2= .028 also failed to reach significance. In the Sham condition there were also no 

significant  F(62, 72) = 1.127 p = .330, n2= .030 effects of Matched Neutral words F(3, 108) = 

.528, p = .664, n2= .014 or interactions between Matched Neutral words and Time evident F(6, 

216) = .760, p = .602, n2= .021. 

 

Participant 005 

STAI 

Participant 005 had a baseline STAI score of 35, post Active GVS his score increased to 36 and 

24hours post Active stimulation his STAI score elevated further to 49. From this score on day 2 

his STAI score reduced post Sham to 40. At 24hours post Sham a STAI score of 41 was evident 

(see Figures 5.1 & 5.2). 

 

SRT 

One-way ANOVAS for the SRT failed to reach significance in both Active F(2, 78) = .332, p = 

.718, n2=.008 and Sham F(2, 78) = 2.638, p = .078, n2= .063 GVS conditions.  

 

EST ANOVAs for Target words 

In the Active stimulation condition a significant main effect of Time F(2,52)=6.616, p =.003, n2= 

.203 was evident. Paired t-tests showed no significant differences in RT between Baseline and 

Post-stimulation. However, RTs between Baseline (M=.873sec, SE=.045) and 24hrs Post-

stimulation (M=.600sec, SE=.060)  were significantly shorter p =.008. Significantly shorter RTs p 

=.008 were also evident between Post-stimulation (M=.871sec, SE=.061) and 24hrs Post-

stimulation (M=.600sec, SE=.060). There were no significant main effects of Target words F(3, 
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78) = .534, p = .661, n2= .020 or interactions between Target words and Time F(6, 144) = .558, p 

= .763, n2= .040.  

 

In the Sham GVS condition there was also a significant main effect of Time F(2,60)=9.239, p = 

<.001, n2= .235. Paired t-tests showed a significantly longer in RTs  p = .024 between baseline 

(M=.593sec, SE=.053) and post-stimulation (M=.784sec, SE=.039). RTs were also significantly 

longer p = .006 between Baseline (M=.593sec, SE=.053) and 24hrs Post-stimulation (M=.935sec, 

SE=.073). There were no significant differences between Post-stimulation and 24hrs post 

Stimulation. Target words F(3, 90) = 1.042, p = .378, n2= .034 and interactions between Target 

words and Time F(6, 180) = .311, p = .931, n2= .010 also failed to reach significance.  

 

EST ANOVAs for Matched Neutral words 

In the Active stimulation condition a significant main effect of Time F(2,48)=12.443, p =.001, n2= 

.341 was evident. Paired t-tests showed no significant differences between Baseline and Post-

stimulation. However, a significantly shorter RTs p =.001 between Baseline (M=.927sec, SE=.054) 

and 24hrs Post-stimulation (M=.604sec, SE=.061); also between Post-stimulation (M=.881sec, 

SE=.044) and 24hrs Post-stimulation (M=.604sec, SE=.061). There was no significant main effect 

of Matched Neutral words F(3, 72) = 1.059, p = .372, n2= .042 or interactions between Matched 

Neutral words and Time F(6, 144) = .558, p = .763, n2= .023.  

 

In the Sham GVS condition RTs to Matched Neutral words showed a significant main effect of 

Time F(2,50)=8.988, p =.001, n2= .264. Paired t-tests revealed significantly longer RTs p =.010 

between Baseline (M=.602sec, SE=.059) and 24hours Post-stimulation (M=.973sec, SE=.079), 

also between Post-stimulation (M=.751sec, SE=.050) and 24hrs Post-stimulation (M=.973sec, 
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SE=.079). There were no significant main effects of Matched Neutral words F(3, 75) = 1.013, p = 

.392, n2= .039 and no significant interactions between Matched Neutral words and Time F(4.430, 

110.761) = .945, p = .447, n2= .036.  

 

Participant 006 

STAI 

Participant 006 showed a Baseline STAI score of 57. Post Sham GVS his STAI scores decreased 

to 51. On day two of testing 24hours post Sham his STAI score was reduced from baseline to 52. 

Post Active GVS on day two, his STAI score increased to 54 and 24 hours post Active GVS a 

further increase to 57 was observed (see Figures 5.1 & 5.2).  

 

SRT 

ANOVAs for the SRT in both Active and Sham stimulation showed no significant effects in either 

Active F(1.503, 58.625) = 1.296, p = .275, n2= .032 or Sham F(2, 78) = .552, p = .578, n2= .014 

GVS conditions.  

 

EST ANOVAs for Target words 

In the Active stimulation condition a significant main effect of Time F(2,62)=13.799, p = <.001, 

n2= .308 was evident. Paired t-tests indicated no significant differences in RTs between Baseline 

and Post-stimulation. However, significantly longer RTs were evident p = <.001 between Baseline 

(M=.497sec, SE=.033) and 24hrs Post-stimulation (M=.743sec, SE=.043). There were also 

significantly longer RTs p =.006 between Post-stimulation (M=.583sec, SE=.030) and 24hrs Post-

stimulation (M=.743sec, SE=.043). Target words showed no significant main effect F(3, 93) = 

.468, p = .705, n2= .015  and there was no significant interaction between Target words and Time 
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F(4.064, 125.988) = .330, p = .860, n2= .015. In the Sham stimulation condition ANOVAs for the 

Target words RTs failed to reach significance F(1.674, 48.542) = 3.064, p = .064, n2= .096.  

 

EST ANOVAs for Matched Neutral words 

In the Active GVS condition a significant main effect of Time F(2,48)=11.544, p = <.001, n2= 

.325 was evident. Paired t-tests indicated no significant differences in RTs between Baseline and 

Post-stimulation p =.111. However, significantly longer RTs p =.001 were apparent between 

Baseline (M=.474sec, SE=.042) and 24hrs Post-stimulation (M=.767sec, SE=.059). RTs were also 

significantly longer p =.025 between Post-stimulation (M=.576sec, SE=.034) and 24hrs Post-

stimulation (M=.767sec, SE=.059). There was no significant main effect for Matched Neutral 

words F(3, 72) = 2.349, p = .080, n2= .089  or significant interactions between  Matched Neutral 

words and Time F(6, 144) = .503, p = .805, n2= .021 evident.  

 

The ANOVA for Sham GVS  F(1.477, 42.847) = 3.835, p = .043, n2= .117 showed a significant 

main effect of Time. Paired t-tests revealed no significant differences in Time between Baseline 

and Post-stimulation p = .100 or Baseline and 24hours Post-stimulation p = .127. However, 

significantly p = .009 shorter RTs between Post-stimulation (M =.605 SE =.057) and 24 hours 

Post-stimulation (M = .485, SE=.049). There were no significant main effects of Matched Neutral 

words F(3, 87) = .490, p = .690, n2= .017 or interactions with Matched Neutral words and Time 

F(4.428, 128.420) = 1.447, p = .218, n2= .048. 
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Discussion 

In Chapter 4 GVS was shown to reduce cortical hyperexcitability of the motor cortex at 24hours 

post-stimulation. In the current study I therefore predicted that firstly, GVS would have an 

inhibitory effect on the symptoms of anxiety and lower STAI scores. Secondly, I predicted that 

GVS would shorten reaction times to the EST by reducing attentional bias to emotionally relevant 

words; and thirdly reduce reaction times in the SRT at 24hours post GVS. These predictions were 

not met. Four out of the five veterans showed an increase in current anxiety symptoms 24hours 

post active stimulation. Additionally, the SRT indicated that GVS was not effective in reducing 

RTs at 24 hours post active stimulation. There was some evidence that GVS shortened RTs in the 

EST, but only in participants 001 and 005. By contrast, in participants 003 and 006 GVS 

lengthened RTs in the EST at 24hours post-stimulation compared to sham condition.  

 

One explanation for the increase in anxiety seen in the STAI scores is that although GVS induced 

an inhibitory effect on the motor cortex at 24hours post stimulation, an excitatory effect may have 

occurred in the frontal lobes. This idea is based on an fMRI study by Kilinger et al., (2012), that 

shows hemodynamic evidence of caloric vestibular stimulation (CVS) in neurologically healthy 

individuals deactivating BOLD signals to the pre and post central gyrus, and yet activating BOLD 

responses to the frontal, pre-hippocampal and temporal gyrus; temporoparietal cortex and 

hippocampus. This upregulation from CVS was evident in areas associated with response 

inhibition, executive function and mood disturbance (Hoffmann, 2013; Kilinger et al., 2012). This 

type of upregulation or cortical hyperexcitability is known to exert a great influence on mood state 

and is associated with greater mood disturbance as well as GABA network dysfunction (Bolden et 

al., 2019). On a cautionary note, the fMRI evidence from Kilinger et al., (2012) was attained 

immediately after CVS and not at 24hours post-stimulation. It is therefore not known if same 
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patterns of activation would have occurred from GVS at 24hours post-stimulation. Nonetheless, 

this may provide a tentative explanation for why anxiety increased in all of the participants.   

 

The effects of GVS in the EST were mixed, only two participants showed a reduction in RTs to 

negative versus positive words. Additionally, the predicted Stroop effects were not evident as 

combat words showed no significant differences in RTs compared to any other word group before 

or after GVS. This was surprising, as anecdotally all participants described the combat words used 

as “unnerving” and contributory to sleep disturbance. However, a review of 12 studies using the 

modified Stroop effect from Kimble, Fruech & Marks, (2009) revealed that using trauma related 

words had only resulted in delayed reaction times in 8% of participants with PTSD. They conclude 

that whilst these ratios are much lower than those of other peer reviewed literature, only 44% of 

controlled studies have shown a modified Stroop effect and propose a re-evaluation of the test is 

warranted in the case of PTSD. A further limitation of the EST in this study was the lack of a 

trauma control group to allow separation. Compared to controls there may well have been a 

significant difference in reaction times specifically to combat words.  

 

In the SRT shorter reaction times were observed in one participant at 24hours post sham and in 

contrast slower responses were observed at 24hours post active GVS. There was no evidence of 

GVS affecting the SRT in any other participants. This investigation into the effects of GVS on 

motor cortex excitability is novel, and it is therefore unknown what level of motor cortex inhibition 

is needed to drive clinical change. It is plausible that more sessions of stimulation may be required 

to induce clinical effect. Evidence to support this idea has come to light via personal 

communication from Wilkinson (2019) whereby several sessions of vestibular stimulation have 

been shown to affect mood. Here thirty-three patients with Parkinson’s disease received 25minutes 
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of twice daily CVS over eight weeks. All showed improvements in the Hospital Anxiety and 

Depression Scale (Zigmond & Snaith, 1983) and the Non-motor Symptom Scale, which measures 

mood, sleep, fatigue, and cognition (Chauduri et al., 2007). All improvements exceeded minimal 

clinically important differences, and the most noticeable improvements from baseline were evident 

at one-month follow-up. The increase of current anxiety symptoms as a result of GVS seen in the 

current study and evidence from Wilkinson (2019), highlights an intrinsic relationship between the 

vestibular system and affect on mood. Vestibular dysfunction is well known is closely associated 

with both anxiety disorders and depression (Smith et al., 2018) but this relationship is reciprocal 

as its also known that anxiety can drive vestibular disturbance (Yardley, 1995). The defuse cortical 

connections from the vestibular nuclei to the HPA axis may well provide an appropriate pathway 

that can be modulated to affect autonomic function and mood (Dodson, 2004, Pettigrew & Miller, 

1998; Preuss; Hasler &Mast, 2014). The mood changes seen in the present study were specifically 

related to GVS. As the increase in anxiety symptoms was only present at 24hour post-GVS 

compared to lower STAI scores 24hours post-sham, which illustrates a modulated influence via 

the vestibular pathways.   

 

There were a number of limitations in the current study. The short window for data collection 

limited the use of available psychiatric assessments forcing the focus only on current anxiety. This 

also prevented the use of several sessions of GVS; which in light of Wilkinson (2019) where 

psychiatric symptoms were reduced after daily stimulation for two months highlight a need to 

extend the testing protocol.  This would allow for a more comprehensive test battery that can detect 

change in symptomology when individuals have returned to their everyday life and home 

environment. All participants reported that they were fatigued and suffered from sleep disturbance 

during participation of the study. The nature of their PTSD symptoms had a large impact on their 
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participation, which caused significant stress to all five veterans. This stress was attributed to four 

factors: 1) travel, 2) crowds of people on the university campus, 3) using hotel accommodation 

and 4) combat related words from the EST. Combat related words were reported by all participants 

to have caused some distress, for some a consequence this was the induction of flashbacks and 

nightmares. One participant also needed to use public transport to reach the university and suffered 

two severe panic attacks. All of these factors combined may well have had adverse effects on the 

study results. 

 

 

In conclusion, this study showed that GVS induced an increase in current anxiety symptoms at 

24hours post stimulation. At the very least, this evidence reaffirms the intrinsic relationship 

between the vestibular and limbic systems, even if the therapeutic value is not yet clear.  Future 

research should aim to reduce environmental stress for participants and introduce several sessions 

of GVS to promote stronger physiological change and accommodate a broader psychiatric and 

wellbeing test battery that is sensitive to change over a longer period of time. 
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Chapter 6 

General Discussion 

“All actions have a physical origin” (Baize, 2011. p55) 

 

Currently, the impact of mTBI on long-term mental wellbeing in UK military veterans is poorly 

understood. Previous estimates of mTBI in UK military personnel on deployment are between 

3.2% and 13.5% (Hawley et al., 2014; Jones et al., 2011; Rona et al., 2012), compared to 15% and 

23% in the US (Hoge et al., 2008; Terrio et al., 2009). Symptoms of dizziness have frequently 

been reported however, the effect of vestibular disorder on the neuropsychiatric sequalae of mTBI 

have been overlooked (Harber et al., 2016; Terrio et al., 2009). This thesis has examined the impact 

of vestibular injury on the neuropsychiatric symptoms of mTBI, and also examined the utility of 

the vestibular system as a therapeutic pathway for treatment of mTBI.  

 

Summary of the Findings 

In Chapter 3, 162 UK military veterans receiving treatment for PTSD at Combat Stress completed 

a broad range of validated self-report questionnaires that probed lifetime history of mTBI, 

neuropsychiatric symptoms and general disability. The results revealed that the prevalence of 

mTBI in these UK military veterans was much higher than previous estimates suggest, with 72% 

reporting one or more mTBI in their lifetime. Repeated mTBI affected 49% of these UK veterans 

who indicated periods in their life when they had sustained repeated concussions. Exposure to blast 

also constituted a significant potential health risk, such that 81% of veterans who participated in 

the study had been exposed to blast. 50% of these exposures resulted in mTBI and 53% of this 

subgroup reported three or more blast mTBIs in their lifetime.  
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Vestibular disturbance was seen frequently in UK veterans with a history of mTBI. Chi-square 

analyses indicated that vestibular disturbance affected 69% of the sample that had sustained one 

or more mTBI. Here vestibular disturbance was equally prevalent following blunt (59%) and blast 

(47%) injuries, but was even more frequent in blunt and blast injuries combined (83%). The 

neurobehavioural impact of vestibular dysfunction was clearly evident in the mediation analysis 

conducted on this samples data. This revealed that vestibular disturbance was singularly predictive 

of the chronic neurobehavioral symptoms of mTBI and disability independent of its influence on 

psychiatric symptoms. The interplay between vestibular disturbance and psychiatric symptoms 

also showed that the vestibular system exerts a strong influence on PTSD, depression and anxiety. 

In fact, the symptoms of dizziness combined with those of mTBI, PTSD, depression and anxiety 

comprised a particularly harmful combination within this sample of UK veterans who were more 

debilitated than 90% of the general international population. Together these scores highlight the 

need to introduce mandatory vestibular screening for veterans and to innovate more effective 

treatment interventions for mTBI. 

 

In Chapters 4 and 5 I sought to identify a means by which vestibular links to cognition and emotion 

could be therapeutically harnessed. GVS had been previously shown to induce lasting amelioration 

of hemi-spatial neglect (Wilkinson, 2014), this combined with the findings of neuroimaging 

studies which show wide spread activation patterns may indicate that GVS is inducing neuroplastic 

change (Stephan et al., 2005; 2009). To this end, in Chapter 4 I sought evidence that GVS can 

induce an LTP or LTD type effect (as measured by recording MEP up to 24hours post-stimulation). 

If a marker of LTP or LTD could be found, this would then inform an attempt to remediate either 

the positive or negative symptoms of mTBI in Chapter 5. The evidence presented in Chapter 4 

suggested that individuals who demonstrate cortical hyperexcitability at baseline, show an LTD-
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type effect at 24hours post-stimulation after one session of ~1mA DC GVS. As a consequence, 

this waveform was then utilised in Chapter 5 to determine via a series of case studies if GVS might 

provide therapeutic remediation of anxiety. I chose to target symptoms of current anxiety as a main 

outcome measure, firstly, because it is a commonly seen symptom in veterans with mTBI and is 

associated with cortical hyperexcitability, but also because it was possible to measure changes in 

mood in a short time frame (Centonze et al., 2005). The results revealed that GVS did influence 

mood. However, this influence did not reduce current symptoms of anxiety, but instead 

exacerbated them. This experiment confirmed the intrinsic relationship between the vestibular and 

limbic systems. But it also showed that while GVS might have inhibitory effects on the motor 

cortex it may well have an excitatory effect in other brain regions (Kilinger et al., 2012). Further 

study is required to provide a clearer mechanistic account.  

 

The Theoretical and Clinical Implications of Vestibular Influences in mTBI and PTSD 

Psychological combat trauma and exposure to blast are known to pose a substantial risk of 

sustaining a mTBI and developing PTSD (Kamnaksh et al., 2011). The symptoms of mTBI, PTSD 

and vestibular dysfunction share many distinct clinical features (Rosenfeld et al., 2013; Smith et 

al., 2018) and the substantial overlap in symptomology has made it difficult to distinguish between 

the conditions. Previous research on UK military personnel has suggested that the symptoms of 

PCS are not specific which may have resulted in vestibular and neurological deficits being 

attributed to psychiatric disturbance (Fear et al., 2014). This misattribution is particularly worrying 

because the repercussions of blast overpressure trauma are significant and can lead to large scale 

cerebrovascular pathology in adults (Chen et al., 2013). Blasts also frequently result in secondary 

blunt head injuries and tympanic membrane perforation in approximately 50% of adults (Chandler 

& Edmond, 1997). Damage to the inner ear resulting from blast exposure is commonly seen (Fausti 
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et al., 2009) and this raised the possibility that vestibular pathology may be partly driving the 

symptoms of mTBI and exacerbating the symptoms of PTSD. Evidence for this possibility can be 

seen in the mediation analysis of this thesis which shows a directional direct association between 

vestibular disturbance and neurobehavioural outcomes in mTBI and indirectly on PTSD. Further 

albeit unwelcome evidence seen in Chapter 5 where GVS was shown to exacerbate mood also 

demonstrates how the vestibular system exerts a significant influence on the ascending pathways 

that are integral to psychiatric disturbance (Balaban & Porter, 1998; Balaban & Thayer, 2001).  

 

The means by which frequently seen psychiatric disturbance occurs relates to a reciprocal 

relationship between somatopsychic and psychosomatic mechanisms that involve both the 

vestibular system and HPA axis (Jacob and Furman, 2001). Symptoms of dizziness can cause 

autonomic hyperarousal and severe disequilibrium which evoke a sense of fear, losing control and 

panic (Balaban & Porter, 1998; Balaban & Thayer, 2001).  The role of stress in human vestibular 

disorders is complex and lacks definitive evidence. Stress responses evoked by vestibular 

symptoms can promote synaptic and neuronal plasticity in the vestibular system. However, 

evidence for this is mainly reliant on animal models where both electrical and caloric stimulation 

of the vestibular pathways has resulted in a response in the PVN of the hypothalamus (Azzena et 

al., 1993; Liu et al., 1997; Horii et al., 2001; Markia et al., 2008). Stress responses mediated by 

the HPA axis involves the release of corticotrophin releasing hormone (CRH) and arginine 

vasopressin (AVP) hormones from the PVN and the release of adrenocorticotropic hormone 

(ACTH) from the pituitary gland which then causes the release of glucocorticoids from the adrenal 

cortex (Herman et al., 2003). This response may well regulate the function of ion transporters and 

ionic homeostasis of the inner ear (Hamid et al., 2009) and demonstrates a bidirectional 

relationship between the vestibular system and the HPA axis. This idea is further supported by 
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evidence from Haber et al., (2016) where veterans with worse dizziness handicap and VSSL scores 

showed greater severity of PTSD symptoms. Furthermore, the symptoms of dizziness have been 

suggested by Staab et al., (2003) to precipitate anxiety and phobic avoidance resulting in a vicious 

cycle that causes chronic disability. An idea that is also supported by the significant levels of long-

term disability and the direct influence of the vestibular system on disability irrespective of 

psychiatric symptoms seen in the mediation analysis of Chapter 3. The distinct overlap between 

mTBI, PTSD and vestibular pathology has previously muddied the waters when trying to 

differentiate between this set of non-specific symptoms (Fear et al., 2014). What is clear, is that 

there is an intrinsic bio-directional link between the vestibular system and HPA axis (Mazurek et 

al., 2010; Paterson et al., 2004; Seemungal et al., 2001; Straka et al., 2005).  

 

The significant long-term levels of disability, high prevalence rates of mTBI and the pervasive 

influence of the vestibular system seen in the UK military veterans of this thesis, highlights that 

mTBI and vestibular dysfunction should be taken more seriously in the UK and that veterans’ 

symptoms should not just be attributed to PTSD. Not only was the prevalence of mTBI in line with 

estimates of US veterans at 72% (McGlinchey et al., 2016). But approximately half of the veterans 

in Chapter 3 reported periods in their life where they had sustained repeated mTBI. This highlights 

a need to evaluate mTBI in a lifetime context, as the repeated nature of blunt and blast mTBI has 

been posited to increase the subsequent incidence of chronic cognitive decline and 

neurodegenerative conditions through the course of aging (Faden & Loane, 2015). Cognitive 

decline can also be seen in the symptoms of vestibular dysfunction that can cause difficulties with 

concentration and memory (Smith et al., 2018), which can significantly impact on functional 

status, quality of life and the ability of individuals to return to work (Chamelian et al., 2004; Hillier, 

Sharpe & Metzer, 1997). Recently, evidence has emerged from a large-scale study of 2318 UK 



The Vestibular System in mTBI 

 

 

 

137  

military personnel who were deployed to the conflicts in Iraq and Afghanistan; and shows at a 

seven-year follow-up individuals who sustained a mTBI were more likely to suffer from dizziness 

and loss of concentration, than personnel who sustained other injuries or no injury at baseline 

(Rona et al., 2019). This potentially demonstrates the pervasive nature of vestibular dysfunction 

which can frequently result in devastating consequences in terms disability. Interestingly, of the 

original 4601 eligible participants at baseline, individuals who had suffered a mTBI or had alcohol 

misuse problems, were considered as less likely to complete the follow-up study survey which 

potentially may indicate that they have ongoing problems that have also not received treatment.  

 

Social and Clinical Barriers to Vestibular Assessment and Treatment  

Currently, the UK armed forces do not screen for mTBI, PTSD or vestibular symptoms on 

deployment. However, monitoring head injury in an operational combat arena is problematic. 

Sometimes the acute symptoms of concussion are brushed off or overshadowed by the combat 

situation. Symptoms can also be concealed by emotional distress (Hodge et al., 2008).  The ability 

to display psychological resilience when faced with extreme adversity is highly valued in military 

communities. On deployment higher levels of PTSD and/or greater combat exposure has been 

associated with UK soldiers endorsing higher rates of stigma, which can cause barriers to help 

seeking behaviour (Osorio et al., 2012). UK service personnel have been shown to view suffering 

from physical illness as more legitimate than having mental health problems (Greenberg et al., 

2003), even reporting stress has been viewed as potentially having adverse effects on promotional 

prospects, and a fear of peers holding negative attitudes (Langston et al., 2010). Research from 

Combat Stress suggests that it takes veterans an average of 14years after leaving the armed services 

before they seek help for PTSD (Murphy & Busutti, 2014). These factors coupled with front line 

medicine needing to prioritise treatment for life-threatening injuries can frequently result in mTBI 
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going unreported. It has been estimated by Farmer et al., (2014) that of the 220,550 British troops 

who were deployed to Iraq and Afghanistan between 2001-14 as many as 75,000 may have been 

left sick or psychologically harmed as a result of the conflict and many will never seek help. More 

recently, 17% of veterans who served in a combat role during the Iraq and Afghanistan conflicts 

have endorsed symptoms of PTSD, a significant rise from the figures of 2004 where military PTSD 

was at 4% which highlights a growing concern for our veterans (Greenberg et al., 2008; Stevelink 

et a., 2018).  

 

During mass casualty events the priority of treatment must be to save lives. However, Scott et al., 

(2006) suggest that polytrauma patients with blast related injuries in mass casualty events have 

sensory impairments such as hearing loss, tinnitus, vision changes and vestibular problems that 

get frequently overlooked. Estimates suggest that dual sensory impairment has been sustained in 

35% of US soldiers with blast TBI (Lew et al., 2001). Furthermore, computerised dynamic post-

urography testing of 322 US veterans by Walker et al., (2018), suggests that veterans with a 

lifetime history of three or more mTBI show worse symptoms of imbalance than those who 

suffered 1-2 mTBI.  

 

The results of this thesis suggest that veterans presenting with disequilibrium at a GP level should 

be screened for vestibular dysfunction. Fife and Fitzgerald (2005) suggest that in the case of 

conditions such as BPPV (which has a long association with blast exposure), it can take an average 

of 93 weeks for a first specialist referral appointment to receive a diagnosis and then subsequent 

treatment within the NHS. More recently Smith et al., (2018) suggested that this problem has 

worsened as referral to a neuro-otologist with East Kent NHS can now take up to two years.  This 

is particularly worrying as it means that veterans with vestibular disorder could be going 
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undiagnosed. But Fife and Fitzgerald (2005) suggest that 85% of the patients that presented with 

classical BPPV symptoms, could have been diagnosed by their GP if adequate awareness was in 

place. All too frequently a diagnosis relating to vestibular dysfunction is missed. Research from 

Polensek et al., (2008) supports this idea as only 11% of health care providers were shown to 

evaluate patients with the appropriate diagnostic tests. Polensek et al., (2008) suggests that when 

patients report symptoms of dizziness/light-headedness or complain of nonspecific “spells”, 

family practitioners and emergency physicians look to cardiovascular testing. While this is an 

appropriate approach for disequilibrium, it misses a diagnosis such as BPPV. Similarly, referral to 

a neurologist can result in CT or MRI scans which are expensive and have no diagnostic value in 

patients with isolated BPPV (Belanger et al., 2007; Dash et al., 2010; Polensek et al., 2009).  

Frustratingly, symptoms of dizziness are frequently present in chronic mTBI and can be diagnosed 

relatively easily with the Dix-Hallpike manoeuvre at a primary care level if physicians have 

received the appropriate training (Polensek et al., 2008; 2009).  

 

The Next Steps for Treatment of mTBI, PTSD and Vestibular disorder 

The next steps towards helping veterans with mTBI and PTSD should be to introduce vestibular 

and mTBI screening at a GP level. The results of this thesis suggest that GPs should consider a 

vestibular diagnosis when patients with dizziness, depression, anxiety, memory loss and headache 

present. These symptoms may have arisen as a result of mTBI and this should be taken into account 

by attaining a lifetime history of mTBI. Currently, measures such as the OSTIM, dizziness 

handicap inventory and the vertigo symptom scale provide a reliable metric to assess a lifetime 

history of mTBI and to detect potential vestibular pathology (Corrigan & Bogner, 2007; Jacobson 

& Newman, 1990; Yardley et al., 1992). However, these measures are time consuming to 

administer and whilst reliable may not be practical for GPs who only have a few minutes to spend 
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with each patient. To this end, it is suggested that a new screening measure should be developed 

that can briefly screen for mTBI history, blast exposure, dizziness, psychiatric symptoms, 

headaches, sleep disturbance and memory problems that can be administered in just a few minutes. 

This would also help to facilitate a new standardised care pathway where referral to a neuro-

otologist can be made and the appropriate treatments could be administered. Given the 

interconnectability of the vestibular system shown in this thesis, one can assume that if you treat 

the symptoms of imbalance, improvements will be seen across a broad range of symptoms that 

accompany mTBI and PTSD. As mentioned in Chapter 2 the use of vestibular rehabilitation (VR) 

therapy, in 75 US veterans with mTBI and PTSD resulted in improvements of Clinician 

Administered DSMIV PTSD Scale (CAPS) scores (Carrick et al., 2015). VR therapy has also 

showed improvements in balance, PCS symptoms, quality of life, anxiety and depression in a series 

of four case studies of US veterans with mTBI and not PTSD (Kleffelgaard et al., 2016). Future 

research should further investigate the efficacy of VR therapy in mTBI as it is already available 

with the NHS for the treatment of imbalance, but may also prove beneficial in treating mTBI 

sequalae.  

 

The Mechanistic Basis of GVS 

In Chapter 4 of this thesis, I examined the mechanistic basis of GVS by measuring its effect on 

motor cortex excitability. Identifying a mechanism of effect enabled me to target either positive or 

negative symptomology in Chapter 5. Two different doses of GVS were employed.  The first 

involved 10minutes of .35mA AC. This dose had previously been shown in neurologically healthy 

individuals to influence audio-motor synchronisation and thereon enhance beat perception 

(Scmidt-Kassow, Wilkinson, Denby & Ferguson, 2016). In the present study this low amplitude 

of current, showed no significant difference in MEP amplitude between the active and sham 
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stimulation conditions at up to 30min post-stimulation. It is possible that such a narrow time 

window for post-stimulation MEP measurements prevented me from detecting change. The second 

dose consisted of 25 minutes 1mA DC GVS which had previously been shown to be clinically 

efficacious in ameliorating hemi-spatial neglect (Wilkinson et al., 2014). The initial statistical 

analysis showed no significant changes in MEP amplitudes between the active and sham control 

group. However, subsequent exploratory analysis revealed that individuals in the active 

stimulation condition with high levels of cortical excitability at baseline showed a significant 

reduction in cortical excitability at 24hours post stimulation compared to controls.  

 

This late phase inhibitory effect is indicative of LTD which is typically mediated via the release 

of GABA (Vallance & Ridding, 2014), a finding that lends itself to normalizing dysfunctional 

homeostatic plasticity in PTSD (Centonze et al., 2005; Machado et al., 2011). The means by which 

this inhibitory effect occurred might be explained by the vestibulosympathetic reflex this type of 

homeostatic response is autonomic and regionally selective (Balaban, 1999). Here, vestibular 

stimulation activates the midbrain and pons; and Halberstadt and Balaban (2006) report that the 

same neurons involved in serotonin release in the dorsal raphe nucleus (DRN) send projections to 

the brain stem and vestibular nucleus. The projections from the DRN are widespread and many 

transmitters are secreted here including cortico- releasing factor (CRF) and GABA (Gervasoni et 

al., 2000; Michelsen et al., 2008; Samoudi et al., 2012). The DRN plays a major role in the 

regulation of neuroplasticity and is known to be involved in learning, memory and affect. 

Definitive evidence is still lacking however, it is plausible that GVS may have elicited these 

inhibitory responses in light of the reduced amplitudes of MEP. The late phase alterations seen in 

Chapter 4 share physiological similarities to LTD obtained from animal slice preparation 

experiments. However, excitability monitoring via MEP amplitudes does not uncover all aspects 
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of LTD as it only accounts for the motor cortex, it is possible that GVS may also induce LTP in 

alternative brain regions (Kilinger et al., 2012).  

 

As evidenced throughout this thesis, the vestibular system exerts a significant influence on the 

ascending pathways that are integral to anxiety (Balaban, 2002; Balaban & Porter, 1998; Balaban 

& Thayer, 2001). These excitatory networks are intrinsically linked to the HPA axis and yet the 

inhibitory effects of GVS seen in the motor cortex at 24hours post stimulation did not cause a 

reduction in anxiety symptoms as predicted. Instead, GVS increased STAI scores. Although 

counter to my prediction, this does suggest that GVS interacted with the HPA axis. As stated in 

the discussion of Chapter 5, one reason for this might be that there was an inhibitory effect to the 

motor cortex and excitatory effects to frontal, hippocampal and temporal regions (Kilinger et al., 

2012), which are associated with executive function and mood disturbance (Hoffmann, 2013; 

Kilinger et al., 2012). Against this explanation, these effects were evident immediately after 

stimulation and I was unable to find evidence of hemodynamic change 24hours later. The 

exacerbation of anxiety observed may well have influenced the slowing of responses to the SRT 

task in one participant, but with no detectable effects in the other case studies it is difficult at this 

stage to link the type and level of inhibition with a clear clinical correlate.  

 

Further investigation in to the therapeutic effects of GVS is nevertheless still warranted. As in 

contrast to the findings of this thesis, recent research has shown a single session of 1mA GVS 

lasting 38 minutes can reduce current anxiety symptoms immediately after stimulation, in 22 

neurologically healthy adults (Pasquier et al., 2019). Whilst the amplitude used in this study was 

the same as that used on the veterans in Chapter 5, the duration of stimulation was longer which 

highlights the need for further dose manipulations to better understand the utility of GVS as a 
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therapeutic tool. Further support for this idea can be drawn from evidence of GVS reducing the 

symptoms of imbalance using low amplitude optimal intensities of DC GVS.  Improvements in 

postural stability have been noted in healthy subjects and in patients with bilateral peripheral 

vestibular dysfunction using low amplitude mean optimal intensities of 281 μA DC GVS (Iwaski 

et al., 2014). Here 76% of 21 healthy subjects and 91% of the 11 patients showed significant 

improvements in postural stability in three two-legged stance tasks, that were performed with eyes 

closed. Support for this was also evident in 13 patients with bilateral peripheral vestibular 

dysfunction up to six hours post stimulation using a mean optimal intensity of 455 μA DC GVS 

for 30minutes in two sessions of stimulation day one and 14 days later (Fujimoto et al., 2018).  

GVS has also been shown to improve body balance in elderly adults (Fujimoto et al., 2016), with 

a mean optimal intensity of 178 μA DC GVS in two sessions lasting thirty minutes and 3hours. 

 

Clearly, GVS can induce a range of effects that are dependent on dose manipulation. For instance, 

Wilkinson et al., (2017) used 25minutes of CVS twice daily over eight weeks using pre-

programmed devices resulting in an immediate and steady decline in episodic migraine frequency, 

compared to (placebo) controls. It should be noted that this was the same dose that correspondence 

from Wilkinson (2019) reported had reduced symptoms of anxiety and depression in patients with 

Parkinson’s disease at one-month follow-up. Providing vestibular stimulation over longer periods 

of time may well be beneficial not only because it provides a larger time window to examine the 

effects of GVS but potentially it would facilitate detecting change in mTBI and PTSD 

symptomology. It is suggested that future research should aim to provide pre-programmed GVS 

devices, allowing treatment to take place in the patient’s home over a longer period of time.  This 

would accommodate a research design that would examine various dose manipulations and enable 

the use of a broader cognitive test battery, monitoring of PTSD, mTBI, headaches, depression and 
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anxiety symptoms over time. A test battery conducted over three months with a one-month follow-

up, would provide a more sensitive and practical method of treatment for individuals with mTBI 

and PTSD. 

 

Taking the approach to treatment that GVS offers, could potentially tackle the underlying 

mechanisms of injury and may well be advantageous for many reasons. Firstly, GVS is a simple 

and cost-effective procedure. Unlike VR therapy which requires lengthy treatment sessions three 

times a day for two weeks (Carrick et al., 2015), GVS could be delivered in pre-programmed 

portable devices can be delivered to patients in their homes. Secondly, it is well known that the 

stigma associated with neuropsychiatric disorders in the Armed Forces can deter individuals from 

seeking much needed help (Greenberg, Langston & Jones, 2008). Therefore, treating brain injuries 

and PTSD in this modality may lessen perceived stigma and enhance potential treatment outcomes 

that will be of benefit for both the patients and their families. 

 

Limitations 

The insights attained from this thesis are subject to several limitations, many of which have been 

highlighted in the previous empirical chapters. One overriding concern is in relation to the distinct 

overlap of mTBI, PTSD and vestibular symptomology. The data acquired for this thesis contrasts 

with previous research on serving UK military personnel which suggests the symptoms of PCS are 

not specific and instead PCS is attributed to psychiatric disturbance (Fear et al., 2009). 

Associations here were shown between blast, depleted uranium exposure, aiding the wounded and 

PCS symptomology. It should also be noted that the research from Fear et al., (2009) did not use 

validated self-report questionnaires and the regression analysis employed did not provide causal 

pathways to mediate for psychiatric disturbance influencing PCS, unlike the research of this thesis. 
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This overlap in symptomology is nonetheless undeniable and clearly the sample of veterans in this 

thesis were suffering from significant psychiatric problems.  

 

The reliance on self-report questionnaires was also a considerable limitation of this thesis. Indeed, 

the results of the MCI confirm this, as approximately half of the sample demonstrated symptom 

exaggeration. However, it should be noted that vestibular dysfunction causes severe disequilibrium 

and is associated with high rates of depersonalization/derealization, difficulty focussing attention, 

memory problems and blurred thoughts (Smith & Darlington, 2013). Accordingly, it is therefore 

possible that veteran’s perception of actual memory impairment is at odds with measures that 

examine malingering.  Nonetheless, the use of self-report questionnaires did limit the findings as 

they cannot determine a diagnosis, are subject to responder bias and only provide an initial limited 

evaluation. Arguably responses may have been narrow and it is possible that veterans only 

indorsed the most obvious or noticeable symptoms. Equally, self-report measures are known to be 

inherently biased by the participants mental state at the time of participation (Kampmann, 

Emmelkamp and Morina, 2018). As this sample of veterans were undergoing therapy it is plausible 

to assume that many individuals were in a particularly negative mindset which may have biased 

their responses. Using clinician-rated scales in a structured psychiatric interview may have gleaned 

more insight into symptomology when veterans are in their typical home or work environments; 

and not faced with revisiting emotionally traumatic experiences in therapy. Conducting psychiatric 

interviews might have offered a more objective perspective and would have also provided an 

opportunity for me to attain training and greater expertise in neuropsychiatric assessment.  

 

The results seen in Chapters 4 and 5 indicate that artificial stimulation of the vestibular system 

induced inhibitory effects on cortical hyperexcitability and an increase in anxiety symptoms at 
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24hours post-stimulation. A significant limitation of this data is that TMS evoked MEPs  measured 

via peripheral muscles, arguably provide a very narrow view of cortical responses and fail to 

account for excitatory processes occurring elsewhere.  One way this problem could be tackled is 

to employ the use of the electroencephalograph (EEG). This would enable an accurate 

measurement of brain wide cortical reactivity via oscillatory processes (Saari et al., 2017) and shed 

more light onto the mechanistic effects of GVS, currently there is a distinct lack of convergent 

evidence for this. There is also a need for replication of this research to better understand the 

mechanisms of GVS and define the efficacy of dose manipulations. This research should be pre-

registered with journals to eliminate bias reporting and the likelihood of type 1 errors so that we 

can be confident that the results exist (Chambers, 2014). Another, limitation of the research in 

Chapter 4 was that it was conducted by a single researcher with newly acquired self-taught 

technical skills. This may explain why I was unable to utilise the Bereitschaftspoetntial effectively 

as a marker of neuroplastic change, having access to training and receiving support from an 

experienced physiological engineer would have been extremely advantageous to me.   Lastly, the 

small sample size and short periods of testing limited the utility of GVS, as I was only able to 

uncover transient symptoms and effects. Furthermore, it prevented comparative group analysis 

with only five case studies.  

 

Conclusion 

This thesis has demonstrated an intrinsic relationship between the symptoms of mTBI, PTSD and 

vestibular dysfunction in UK military veterans. The role of the vestibular system in mTBI had 

previously been overlooked. However, the research conducted in this thesis has shown that the 

vestibular system is relevant to the healthcare of those with mTBI, especially veterans. Coupled 

with the effects on cortical excitability and albeit unexpected effects on anxiety, the data point to 
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the idea that the vestibular system is somehow foundational in nature exerting profound domain 

general effects across many brain networks. This foundational nature is seemingly evident in the 

developing foetus, for which the vestibular system is the first to mature, the child for who gentle 

rocking is soothing and relaxing and the adult for who vestibular disorder is functionally 

devastating. The concept of vestibular cognition is still emerging but it is becoming increasingly 

clear that the ‘silent sense’ is perhaps the most pervasive of all.  
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Appendix 

 

EST Combat and Matched Neutral words 

 

 

Combat Words 
Matched Neutral 

Words 
Combat Words 

Matched Neutral 

Words 

 ABDUCT  OBSESS WAR  NET  

BLINDFOLD  BLUEPRINT  EXPLODE  CONSUME 

MEDIC  TENOR BOMB  WEEK 

AMPUTATE  RENOVATE  CONCUSSION  COMPLEXION  

ARSENAL  MATADOR RPG  DVD  

GUN  ODD TRIAGE PICKET 

EXECUTE  EXAMINE MILITANT  PARTISAN  

BODY  CITY WMD  NBA  

CHECKPOINT  PAINTBRUSH  HOSTAGE  SENIORS 

HV UV RECCE NOISY 

APACHE  ATHENA CONVOY  PASTRY 

EVACUATE  UNIFYING MILITIA  ANTENNA  

VCP PDA TOURNIQUET DISHWASHER 

GUNFIRE  BISCUIT  APC  AKA 

EIDER DRYER JANKERS SUBJECT 

COMBAT  BOTTLE GUNNER  JURORS 

INFIDEL  PURITAN  TOUR  RIDE 

DECAPITATE  REDECORATE  BELTER RATTLE 

IED  DNA EXPLOSIVE  UNDEFINED 

TORPEDO SOCIETY TORTURE  THUNDER 

GUNMEN  SITTER AK-47 BLVD 

KILL  MOVE PATROL  SKIING  

KIDNAP  PERUSE CASUALTY  TAPESTRY  

KALASHNIKOV  APPALACHIANS  WARFARE  BOOKLET  

SUICIDE  FACULTY  WINCH TRUNK  

SM-70 RSVP  TERROR  PERMIT  

MORTAR  COMETS FIREFIGHT  FIELDWORK  

PRISONER  OBSERVER WOUNDED  ROUNDED  

TRIGGER  HOUSING  MARTYR  DINING  

VEST  VINE  HK417 SCUBA 

AMBUSH  GOSSIP BAYONET VOLCANO 

CROSSFIRE  STAIRCASE MORPHINE NEWSROOM 

SHELL  QUOTE CAPTOR  CADDIE  

INCOMING HOSPITAL  GUNSHOT ADHERE 

CAPTIVE  REPTILE DETAINEE  DETECTIVE 

 

 

 


