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Abstract 

Facial biometrics, which enable an efficient and reliable method of person 

recognition, have been growing continuously as an active sub-area of computer vision. 

Automatic face recognition offers a natural and non-intrusive method for recognising 

users from their facial characteristics.  However, facial recognition systems are 

vulnerable to presentation attacks (or spoofing attacks) when an attacker attempts to 

hide their true identity and masquerades as a valid user by misleading the biometric 

system. Thus, Facial Presentation Attack Detection (Facial PAD) (or facial anti-

spoofing) techniques that aim to protect face recognition systems from such attacks, 

have been attracting more research attention in recent years. Various systems and 

algorithms have been proposed and evaluated. This thesis explores and compares some 

novel directions for detecting facial presentation attacks, including traditional features 

as well as approaches based on deep learning. In particular, different features 

encapsulating temporal information are developed and explored for describing the 

dynamic characteristics in presentation attacks. Hand-crafted features, deep neural 

architectures and their possible extensions are explored for their application in PAD. 

The proposed novel traditional features address the problem of modelling 

distinct representations of presentation attacks in the temporal domain and consider 

two possible branches: behaviour-level and texture-level temporal information.  The 

behaviour-level feature is developed from a symbolic system that was widely used in 

psychological studies and automated emotion analysis. Other proposed traditional 

features aim to capture the distinct differences in image quality, shadings and skin 

reflections by using dynamic texture descriptors.  

This thesis then explores deep learning approaches using different pre-trained 

neural architectures with the aim of improving detection performance. In doing so, this 

thesis also explores visualisations of the internal representation of the networks to 

inform the further development of such approaches for improving performance and 

suggest possible new directions for future research. These directions include 

interpretable capability of deep learning approaches for PAD and a fully automatic 

system design capability in which the network architecture and parameters are 
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determined by the available data. The interpretable capability can produce 

justifications for PAD decisions through both natural language and saliency map 

formats. Such systems can lead to further performance improvement through the use 

of an attention sub-network by learning from the justifications.  

Designing optimum deep neural architectures for PAD is still a complex problem 

that requires substantial effort from human experts. For this reason, the necessity of 

producing a system that can automatically design the neural architecture for a 

particular task is clear. A gradient-based neural architecture search algorithm is 

explored and extended through the development of different optimisation functions for 

designing the neural architectures for PAD automatically. These possible extensions 

of the deep learning approaches for PAD were evaluated using challenging benchmark 

datasets and the potential of the proposed approaches were demonstrated by comparing 

with the state-of-the-art techniques and published results.  

The proposed methods were evaluated and analysed using publicly available 

datasets. Results from the experiments demonstrate the usefulness of temporal 

information and the potential benefits of applying deep learning techniques for 

presentation attack detection. In particular, the use of explanations for improving 

usability and performance of deep learning PAD techniques and automatic techniques 

for the design of PAD neural architectures show considerable promise for future 

development. 
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Chapter 1: Introduction 

This chapter states the objectives of the program of research, includes definitions 

of the key concepts and variables, and gives a brief outline of the background and 

research approach. The aim of the introduction is to contextualise the proposed 

research. 

In this chapter, section 1.1 will outline the background information and the 

keywords of the research. Then, section 1.2 will provide the purposes and the 

significance of this research. Finally, section 1.3 will includes an outline of the 

remaining chapters of the thesis. 

1.1 BACKGROUND 

Biometric technology deeply changes people’s daily lives and stimulates the 

developments of large-scale identity management solutions. Protecting private 

information, securing financial activities, and other possible applications rely on a 

trustworthy authentication system which should also be non-invasive, user friendly, 

and process efficiently with low costs.  

Biometric authentication systems, which aim to recognise personal identity by 

analysing and measuring biological characteristics (such as fingerprints, irises, facial 

patterns, etc.) or behaviours (such as voice, etc.), are becoming increasingly common 

using personal characteristics that are universal and easy to acquire.  

Biometric systems overcome some weaknesses of conventional authentication 

systems (e.g. knowledge-based system using password, token-based system using ID 

cards) that stem from inappropriate usage. For instance, selecting a complex password 

may be hard to attack but also hard to remember. Furthermore, some users tend to use 

the same password for several applications. The token-based systems are vulnerable 

to the loss of the token and to the token being shared.  

Automatic facial recognition systems, on the other hand, overcome most of these 

weaknesses. Facial biometric systems offer an increasingly effective and accurate 

authentication experience for users using the latest progress in machine learning and 

computer vision. Since Sun, et al [1] published ‘DeepID’ in 2014, the reported 
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accuracy of published facial recognition systems dramatically increased when tested 

on published datasets such as LFW (Labeled Faces in the Wild) [2] that incorporate 

different environmental conditions such as various illuminations, poses, and image 

quality.  

The progress of facial recognition has also stimulated the development of 

consumable electronic devices, which incorporate facial biometric authentication 

system.  For instance, Apple[3] announced their first device that included a facial 

biometric authentication system on September 12, 2017. AliPay [4]announced their 

facial biometric payment system named ‘Smile To Pay’ in 2017. These developments, 

which previously were only available for large organisations, bring the benefits of 

biometric systems to the average citizen.  

Alongside the increasing adoption of biometric technologies, the potential threat 

of sensor-level spoofing or presentation attacks has also increased rapidly. Current 

facial biometric authentication systems are vulnerable to presentation attacks in which 

the attackers aim to masquerade as another user and mislead the biometric systems by 

presenting fake facial biometric information in front of the sensors. Facial presentation 

attacks are relatively easy to create and hard to detect. The popularity of social 

networks such as Facebook[5] make high-quality identity-bearing facial information 

easily available and biometric information can be shared at almost no cost. The 

developments of low-cost 3D printing technology further decease the cost of creating 

an attack artefact. For these reasons, facial spoofing detection research has attracted 

much attention in recent years. 

Techniques for protecting biometric systems from presentation attacks are 

referred to as Presentation Attack Detection (PAD) or anti-spoofing methods[6]. The 

range and quality of possible artefacts and application environments create particular 

challenges for PAD. For facial recognition systems, presentation attacks can be 

categorized by the type of the attack artefacts, including printed papers (paper attack), 

display screens (video replay attack), and 3D masks (mask attack) [6]. In this thesis, 

genuine biometric samples from valid users are also referred to as bona-fide class.  For 

developing and evaluating robust PAD algorithms, various public datasets, including 

various attack types and environmental conditions, are used. 

In general, presentation attacks can be recognised by human observers via the 

material differences between genuine faces and attack artefacts; the different 
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representations between the non-rigid facial movements and rigid movements for 

artefacts, and the texture differences between the recaptured images and original 

images. Thus, some researchers in this area aim to build software-based methods that 

can detect attacks without costly additional hardware. This research direction is known 

as software-based PAD or feature-based PAD. One of the key assumptions of current 

feature-based PAD research is that attacks can be detected by the distorted information 

that is injected into the sensor data during the spoofing attack by the material of attack 

artefacts, changing both the spatial and temporal appearance of the data when 

compared with a bona-fide presentation.  PAD research, therefore, has explored both 

static and dynamic feature-based methods, in which the static methods  only aim at 

detecting the traces of artefacts in the spatial domain and the dynamic methods also 

aim at such detection in the temporal domain. Dynamic feature-based methods have 

also been explored in the past, such as using texture differences, motion differences 

and image quality differences for PAD. 

More recent research using Deep Neural Networks (DNNs) has presented new 

possibilities for PAD without the need for using ‘hand-crafted’ features. One of the 

popular ways of using deep learning for PAD is the use of pre-trained DNN features 

which demonstrate some promising results when evaluated on widely used datasets. 

However, the opacity of these approaches may be considered as a significant weakness 

in biometric applications in which particular decisions to deny or grant access to 

individuals must be justified. 

Presentation attacks remain one of the main problems for the existing facial 

biometric authentication systems, and there is a need for developing better PAD 

systems that can detect presentation attacks efficiently and can be robust when facing 

various attack types. 

Here is a small glimpse of the next generation of the PAD system from my 

imagination. The PAD system in the future should be robust for various presentation 

attacks. It should also be computationally efficient on the mobile platforms (such as 

mobile phone, AR/VR devices, etc.). It should be trustworthy for different users who 

have different backgrounds. It should continuously learn from data, which only include 

a limited number of samples and lake of labels. The research target of this thesis is to 

push the boundary of current research and try to find a possible route to the better PAD 

system in the future.  
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The main objectives of this thesis are as follows: 

(a) Explore different features to improve the performance of PAD systems.   

(b) Dynamic (time-varying) biometric data provide a greater ability for humans 

to distinguish whether they come from genuine face presentations [19]. This 

thesis aims to find some efficient way to use temporal information for PAD.  

(c) Deep learning stimulates significant performance improvements in PAD, but 

it also has some significant disadvantages. This thesis also aims to overcome 

the “black-box” nature of Deep neural networks. Meanwhile, this thesis aims 

to build efficient neural networks for PAD without requiring extensive works 

of designing neural architectures.  

 

1.2 CONTRIBUTIONS OF THE THESIS 

An extensive literature review of software-based spoof detection schemes is 

presented as the first step in this thesis, and the details of the experimental framework 

used for the evaluation of presentation attack systems are provided. 

The main focus of this thesis is the exploration of new features for presentation 

attack detection to improve performance and initiate new directions for research. The 

proposed methods, which consider short video frame sequences captured with 

consumable cameras as input data, can be roughly divided into traditional features and 

features based on deep learning.  

There are four novel traditional features explored in this thesis thatexplore 

distinct temporal information. Detecting presentation attacks by using temporal 

information is an intuitive idea in some early research. However, using temporal 

information requires more computational resources, and high-quality video attacks can 

still mislead biometric systems in some cases. The proposed methods focus on 

overcoming the disadvantages of the existing methods. One of the proposed methods 

considers a symbolic system for facial movements to represent unconscious facial 

motions.  

Other proposed traditional features aim to focus on the temporal texture patterns 

that are distinct to PAD. These methods aim to provide computationally efficient 

features for temporal information. First, the Motion-History Patterns are used to 
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compress the temporal texture changes into one frame and different texture feature 

descriptors provide final feature vectors. The proposed spatio-temporal template of the 

Motion-History Patterns can be considered as a novel framework to produce temporal 

information for PAD which is different from the existing methods using temporal 

orthogonal planes. Secondly, the temporal texture co-occurrence is observed to be 

distinct for some presentation attacks. The proposed feature combines the co-

occurrence matrix and a widely used local texture descriptor to get feature 

representations for PA. The third traditional feature uses dynamic textures inspired by 

a widely used pre-processing method. The proposed feature firstly generates a set of 

clustered pixels as an intermediate representation of the raw input. The local texture 

descriptors are then generated for each pixel grid. The final feature is generated from 

these local texture descriptors by following the bag-of-words approach. These 

proposed traditional features are evaluated by using some benchmark datasets.  

The proposed features based on deep learning are based on two widely used 

research paradigms in the deep learning area. First, a novel neural architecture is 

designed and trained with benchmark datasets for presentation attack detection. Deep 

learning can be considered a representation-learning algorithm based on large-scale 

data. The limited volume of training datasets in some applications has led to the feature 

extraction part of some proposed deep neural networks being trained using large-scale 

datasets for different tasks. The proposed PAD experiments also explore this paradigm 

and provide some new results by using different datasets and different feature 

extraction components of some existing deep neural networks.This thesis provides 

some visualisation experiments to analyse and understand the behaviour of deep neural 

networks. . 

Some ideas from the proposed traditional features have also inspired some of the 

novel deep learning based approaches proposed in this thesis. The symbolic system, 

which is considered by a traditional feature, is also modelled with recurrent neural 

networks, and the performance is improved when evaluated using different datasets. 

The feature representation for temporal local texture patterns and the discriminative 

cues for spoofing attacks are explored by using a novel patch-based 3D convolutional 

neural network, which efficiently extracts the spatio-temporal information. The 

effectiveness of these proposed deep learning methods is demonstrated by the results 
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when they are evaluated using benchmark datasets and compared with existing 

methods. 

The rise of deep learning approaches also offers some new possible research 

directions for PAD. The proposed methods, which extend the current research 

boundaries, focus on adding some new functionality to PAD systems. First, a PAD 

system is proposed that can not only detect presentation attacks, but also provide the 

justification for its decisions using both natural language descriptions and saliency 

maps. The proposed system can answer questions such as “Why did the system make 

this decision?”. Furthermore, an attention mechanism is proposed for this system that 

improves performance by learning from these justifications. Second, a Neural 

Architecture Search (NAS) method is used to automatically propose a neural 

architecture to suit the training data. This circumvents the need for designing a novel 

neural architecture for PAD ‘by hand’ and the experiments for the searched neural 

architectures provide some encouraging results for benchmarking datasets.  

All of the proposed methods are evaluated using benchmarking datasets and 

compared with state-of-the-art methods. Possible directions for future work are also 

discussed. 

1.3 THESIS OUTLINE 

The outline of this thesis is as follows: 

Chapter 1 is an introduction to the thesis and presents the general background 

of the topic, the contribution of the thesis, and a brief summary of the chapter contents.  

Chapter 2 first introduces the basic concepts for biometric system and 

presentation attacks using definitions from the research literature and international 

standards. A literature survey is then provided to present a review of existing 

algorithms. 

Chapter 3 provides the experimental framework for the thesis, which includes 

experimental design, pre-processing algorithms, related datasets and evaluation 

metrics, and a brief view of a workflow for presentation attack detection systems. 

Chapter 4, as a main contribution chapter, provides four different novel features 

for anti-spoofing, and the effectiveness of the proposed features is demonstrated by 

comparing them with the state-of-the-art methods in the same categories. 
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Chapter 5, as the second contribution chapter, introduces three novel deep 

learning presentation attack detection methods that follow different directions and 

provide new results for the widely used transfer learning paradigm.  

Chapter 6, as the third contribution chapter, attempts to extend the current 

research boundaries by integrating an interpretable capability for a deep learning based 

anti-spoofing system, and introduces the neural architecture search paradigm to 

discover an efficient deep neural architecture automatically.  

Chapter 7 concludes the thesis with a summary of its findings and contributions. 

An outline of possible directions for future work is also provided.  
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Chapter 2: Literature Review 

This chapter provides a general introduction to the research literature related to 

biometric systems and presentation attack detection for facial recognition systems. 

Basic concepts and definitions from international standards for  biometric and facial 

anti-spoofing are provided in Section 2.1, in which research gaps in this area are also 

identified to guide the following chapters and highlight the contributions of proposed 

works. The potential threat of presentation attacks that is accompanies the widely used 

biometric-based authorization has recently attracted more attention. To detect this kind 

of attack, researchers have explored various methods, including the use of dedicated 

hardware and software, aiming to improve detection performance. These techniques 

are covered in Section 2.2 which after a broad overview focuses on software-based 

facial anti-spoofing (using data input with Red Green Blue channels (RGB)). Finally, 

Section 2.3 provides some suggestions as to what kind of methods may be helpful to 

push the boundary of PAD performance.   

2.1 Problem definition and introduction  

2.1.1 Biometric and facial biometric systems 

Biometrics as an active research area aims to recognise users’ identity by 

detecting biological features (for instance vein patterns , fingerprints, and faces) and 

behavioural characteristics (such as gait, etc.) [6]. The etymology of the term 

‘biometric’ is ‘bios’ and ‘metric’ which mean ‘life’ and ‘to measure’ in ancient Greek 

[7]. Biometrics offers an attractive solution for ‘problem of lost and forget’ in the 

traditional security research. In the new paradigm offered by biometrics, “forget about 

cards and passwords, you are your own key”[8]. Biometrics as a sub-area of Pattern 

Recognition (PR) and Machine Learning (ML) have been attracting substantial interest 

from researchers in the security area. Researchers explored various techniques from 

other related areas (such as image processing, computer vision, speech recognition, 

etc.) for different applications of biometrics (such as automatic voice and facial 

recognitions) to provide reliable and efficient methods based on extracting physical 

and behavioural characteristics from users. Table 2.1 demonstrates the advantages of 

the biometrics-based authentication systems in comparison to traditional methods.  
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Table 2.1 Comparison of existing authorization systems 

Name Methods based on Examples Properties 

Knowledge Something users know 

User ID, 

Passwords or 

PIN, etc. 

It can be shared 

with others 

Many passwords 

are easy to guess 

It can be forgotten 

Possessions Something users have Cards, Keys etc. 

It can be shared 

with others 

It can be 

duplicated 

It can be stolen 

Knowledge and 

Possessions 

Something users know 

and something users 

have 

Card and PIN 

pair, etc. 

It can be shared 

with others 

Many PINs are 

written on the card 

Biometrics 
Something unique 

about users 
Face, Iris, etc. 

Cannot be shared 

Cannot be stolen 

Can hardly change 

 

Biometric systems aim to recognise personal identities by using the features 

automatically generated from users’ physical traits or behavioural characteristics. In 

these systems, one or more biometric characteristics can be fused for better 

performances, For example, faces or fingerprints can be  fused with other biometric 

characteristics. Before using a biometric system, there is an enrolment stage to collect 

biometric samples from valid users and generate templates for authentication.  

There are two different modes of using a biometric system: Verification and 

Identification. Verification means matching the associated personal identity with the 

claimed template and verifying whether a person has same as the identity that they 

claimed to process. Typically, the Verification is a one-to-one matching process, which 

only accepts the users who have same personal identity as they claim. Identification is 

a one-to-many matching process. In this mode, users do not need to claim who they 

are, the biometric system will automatically generate a result. Both of these two modes 

of operation are widely used for different purposes. 
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Key features of a biometric system, which are important for the robustness and 

reliability of the system, are based on the following five points[9]:  

(1) Universality: the proposed biometric characteristic is present for all users.  

(2) Uniqueness: the proposed biometric characteristic should include unique 

representations for different users.  

(3) Permanence: the proposed physical and/or behavioural traits are stable with 

the passage of time.   

(4) Collectability: the proposed physical and/or behavioural traits should be 

measurable.   

(5) Acceptability: the major users and public should not strongly resist the 

biometric measuring process.  

Based on these considerations, facial recognition is considered an effective 

biometric technology, because: (a) facial traits can be collected in a non-intrusive way; 

(b) the collection process can be done at a distance, even without the need for  users to 

cooperate with the system; (c)although some facial characteristics may change with 

the passage of time, some distinct facial traits still appear to be persistent over long 

periods of time to make identity recognition possible. Some papers report that facial 

biometric systems had the second largest market share after fingerprint recognition in 

2007 [10]. The Security Systems Market Trends predicted that the biometric market 

will theoretically surpass $51.98 billion in 2023 and the facial biometric systems are 

considered as a significant growth point due to dramatic increases in the number of 

consumer products, such as Face ID for iPhone and iPad[11].   

The rapid development of processors, portable cameras, and batteries stimulates 

the growth of consumable devices and creates various scenarios for biometric systems 

such as boarding control, mobile account authentication, forensics, and intelligent 

surveillance cameras.  Furthermore, the popularity of mobile apps and social networks 

significantly enlarge the potential demands of biometric authentication systems.  

The widespread use of electronic passports[12] in the last 15 years demonstrates 

the effectiveness of facial biometric systems[13]. However, the facial biometric 

systems are currently under threat from Presentation Attacks (PA). 
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2.1.2 Presentation Attacks and Presentation Attack Detection 

Facial anti-spoofing is an active research area that aims to protect facial-based 

biometric systems from a possible type of attack called presentation attack. Attacks 

threatening biometric systems can be broadly categorised into two types [14]: direct 

attacks (PAs) and indirect attacks. PA is classified as a direct attack by[14]: 

“Presentation to the biometric data capture subsystem with the goal of interfering 

with the operation of the biometric system.” 

Figure 2.1 [14]: illustrates possible attack points for a facial biometric system. 

In this type of system, there are several modules and points that could be the target of 

an attack (arrows 1 to 8). Presentation attacks are performed at sensor level (arrow 1) 

without needing to  access to the interior of the system. Indirect attacks (arrows 2 to 8) 

can be performed in areas such as the databases, the matchers, or the communication 

channels; in this type of attack the attacker needs access to the interior of the system. 

In this figure, the grey boxes represent the main modules of a facial biometric system, 

the black arrows indicate the dataflow, and the red arrows indicate the possible attack 

points. The red arrows 2 to 8 represent indirect attacks that can be prevented by 

changing the inner processing functions of the biometric system. For instance, the 

changes of communication channels between modules, different sensors and 

infrastructures involved in the system, can easily block the indirect attacks which 

require the attackers to have a detailed understanding of the system. However, 

presentation attacks do not require substantial knowledge of the system, and it is 

difficult for the system to detect them.  

 

 

Figure 2.1 Vulnerability of a biometric system. [14] 
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The advantages of presentation attacks can be summarised as follows [9]: (a) 

they only need to present fake facial biometric information in front of the sensors; (b) 

the artefact for the presentation attack is easy to produce at low cost; (c) no extra 

knowledge about the operational biometric system is required to produce a successful 

attack; (d) the inner changes to the biometric systems, such as protecting the 

communication channels or encrypting the biometric templates, will not protect the 

system from presentation attacks.  

Real attack cases have been reported in the past 10 years and demonstrate the 

potential risk of using facial biometric systems. At the Black Hat Conference in 2009 

[15], presentation attacks were simulated for existing facial recognition systems that 

were widely used on laptops from different manufacturers[16] . The security and 

vulnerability research team from University of Hanoi showed that spoofing attack can 

simply subvert different manufacturers’ systems (Lenovo's Veriface III, Asus’ 

SmartLogon V1.0.0005, and Toshiba's Face Recognition 2.0.2.32 – each set to its 

highest security level) by only using some fake images thatincluded facial information 

from legitimate users.  

 

Figure 2.2 The 3D printed mask that fooled an iPhone X. Image: Bkav [17] 

 

FaceID from Apple, which was claimed to be “ultra-secure” was hacked using a 

3D printed mask that cost less than $150 only a week after its release [17]. Researchers 

from the Vietnamese cybersecurity firm Bkav built a 3D mask, which included facial 

information from valid users, by using a 3D printer (Figure 2.2). According to their 

report, this was not a sophisticated 3D mask, and some areas in the mask were not even 
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coloured as human skin. These examples show the threat posed by presentation attacks, 

and the popularity of social networks increases this threat by decreasing the cost of 

acquiring high-quality biometric information from valid users. 

The process and detailed information about creating attack artefacts can be easily 

found on various web pages. The price of 3D printers is decreasing to an affordable 

level for personal usage which also decreases the cost of producing a 3D mask.  

Attackers may use such facial information without their victims’ awareness. These 

developments have stimulated research in PAD to protect existing and future biometric 

systems. 

Detecting presentation attacks is not as well explored as facial recognition. The 

term Presentation Attack Detection or liveness detection are  also used in some papers 

in relation to detecting eye blinks or facial movements. This thesis is more focused on 

the general area of PAD, and the terms PAD and Facial Anti-Spoofing are used in the 

following chapters. [14] 

In facial biometric research, the main focus of previous research has been given 

to improve the performance of the verification and identification tasks. Improving the 

performance of recognition systems in the presence of various environmental factors 

(such as occlusions, low-resolution, different viewpoints, lighting, etc.) is currently an 

active area in facial recognition research. In contrast, the security vulnerabilities of 

facial recognition systems have been studied much less.Furthermore, among the new 

issues and challenges that have emerged around biometrics, resilience against external 

threats has drawn a significant level of attention lately.  

Presentation attacks arebroadly classified into two types by ISO [14] : 

(1) “Biometric imposter, where the subversive biometric capture subject intends 

to be recognized as an individual other than him/herself.” 

(2) “Biometric concealer, where the subversive biometric capture subject intends 

to evade being recognized as any individual known to the system.” 

By following these definitions, the presentation attack is reported in different 

ways. Normally, a presentation attack for an authentication system means that, 

attackers present a biometric artefact of a legitimate user, who has been enrolled in the 

biometric system. Conversely, a presentation attack for an identification system (in an 

open set application) means the attacker can conceal his or her identity by presenting 
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disguised or altered biometric characteristics [18].Using the methods proposed in this 

thesis, the presentation attack should be detected in both cases.  

2.2 Face attack types and artefacts 

 
Figure 2.3 General classification of face spoofing (Presentation Attack) 

techniques studied in the literature. Grey arrows indicate the face recognition 

technology for which each attack represents a potential threat.[19] 

 

An artefact, which is used for PA, is defined in ISO/IEC JTC1 SC37 documents 

[14]: as an artificial object for presenting “a copy of biometric characteristics” or 

“synthetic biometric patterns”. The term for the biometric characteristic or object used 

in a presentation attack is the Presentation Attack Instrument (PAI) [14]. By following 

this definition, the photo, for example, which includes the biometric information from 

a valid user, and which is presented in front of a biometric system to mislead the 

biometric system, could be considered as PAI. From the research literature, the 

progress of research is constrained by the limited availability of data. 
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From the literatures, the existing presentation attacks may be classified in one of 

two groups, as shown in Figure. 2.3.  

a) 2D instrument (e.g., photo, video) which may successful mislead the 2D 

face recognition systems without a PAD subsystem. 

b) 3D instrument (e.g., masks) which may successfully attack 2D, 2.5D and 

3D face recognition systems.  

In some literatures, researchers also classify the attacks into three main types: 

(1) Photo Attacks (the PA instrument is a photo print with a laser jet printer), (2) Video 

Attacks( the PA instrument is an electronic display of a photo or video of a face) (3) 

Mask Attacks (the PA instrument is a 3D face mask). 

(a)                    (b)                        (c)                      (d)                (e) 

 

Figure 2.4  (a) Bona fide facial image and examples of face artefacts: (b) laser print 

face artefact; (c) display face photo artefact using an iPad; (d) inkjet print face 

artefact; (e) 3D face mask.[20]  

(a)                               (b)                      (c)                       (d) 

 

Figure 2.5 Illustration of face artefacts generated using the legitimate user photo 

obtained from a social website: (a) photo from the social website, (b) inkjet print, (c) 

electronic display, and (d) laser print. [20] 

 

Figures 2.4 and 2.5 show examples of PAIs which are described before.  Figure 

2.4 shows the attacks and bona fide subjects at an indoor environment, and Figure 2.4 

shows the attacks at an outdoor environment. Especially, Figure 2.4 (e) demonstrates 

examples of 3D face masks produced by ThatMyFace company [21].  

The photo attack means that the biometric samples for a fraudulent access 

attempts are presented by using a photograph. The biometric samples (photograph) 

may have been taken by the attacker using a digital camera. Sometimes, attackers can 

get the high-quality biometric sample even from the internet. Especially, the high-
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quality facial images can be found at the social networks such as Facebook.[22] . The 

facial images can then be printed on a paper and displayed in front of the camera. Some 

recent works also consider to display a static image by using a screen and this attack 

is named as digital-photo attack [22].  

Some researchers explore different sub-categories of the paper attacks[23] which 

may cut out the eye-position or mouth-position at the paper. Some face movements, 

such as eye blinking, will still be detected at these sub-categories of the paper attacks. 

Video attacks are also named as replay attacks. Attackers use videos in this 

attack type instead of static face image. This attack category is difficult to detect by 

using the facial movements such as eye blinking.  Different screens from different 

devices, such as mobile phone, tablet or laptop, are used to show the video in front of 

the camera. Some particular texture patterns may appear at this attack type and 

researchers can use these characteristics for detection. 

Mask attack uses a 3D mask of the genuine client’s face as the PA instruments. 

The depth cue of facial structures, which was used as a solution of preventing 

presentation attacks that carried with flat surfaces, became inefficient for detecting 

presentation attacks. Producing a high-quality 3D face mask is still difficult and 

relatively expensive now.  However, the developments of 3D printing technology may 

significantly decrease the price of producing a 3D mask. 

2.3 REVIEW ON PRESENTATION ATTACK DETECTION  

Following a review published in 2015 [19]  the existing anti-spoofing algorithms 

can be categorised as follows (cf. Figure. 2.6): (1) Hardware-based methods, (2) 

Software-based methods, (3) Score-level approaches.  

There is another survey published in 2018 [20]  which provided a detailed 

classification of hardware-based and software-based methods in Figure 2.7. In this 

work, the hardware-based methods are defined as methods using specially designed 

hardware; and they considered three sub-categories of hardware-based methods. The 

software category is slightly complicate which includes static feature-based 

approaches and dynamic feature-based approaches.  
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Figure 2.6 Classification of face PAD algorithms. [19] 

 

Figure 2.7  Classification of face presentation attack detection algorithms [20] 

 

The advantage of hardware-based approaches includes their lower-

computational complexity and higher robustness for different attack types. However, 

specifically designed hardware implies higher costs. For instance, Apple released 

iPhone X, which includes a 3D structured light sensor for face recognition. They 

claimed that iPhoneX is immune to the video attack and paper attack. However, the 

price of iPhoneX is $999 where the iPhone 8, which only includes an RGB camera, 

with $699 at 2017. The price difference may be largely due to hardware costs and the 

necessity of developing robust feature-based approaches for PAD. The proposed 

works mainly focused on the software-based approaches. 

2.3.1 Software-based approaches for PAD 

Software-based approaches, which are developed to detect PA, demonstrate their 

effectiveness with high detection accuracy and low costs. Moreover, these schemes do 

not necessarily need the cooperation from users and also exclude the need for 
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specialized hardware. Face images captured from printed photos may visually look 

very similar to the images captured from live faces. Therefore, a suitable feature space 

is needed for separating the two classes (live vs. fake face images). The main issue is 

how to derive such a feature space. The existing methods in this family can be further 

divided into two main types: (1) static methods and (2) dynamic methods. 

2.3.2 Static feature-based approaches for PAD 

The static feature based approaches, which are also named as static approaches 

in the following descriptions, are designed for a single facial image, and, sometimes,  

are applied to each frame of the video input independently to increase the performance 

[19], [20]. Generally, the advantages of static approaches could be listed as: good 

performance, low computation, low cost, etc. The review from Ramachandra et al [20] 

suggested to further divide the static feature based approaches into three main groups, 

(1) texture-based approaches, (2) frequency-based approaches, and (3) other 

approaches. The following descriptions follow their suggestions to demonstrate the 

traditional feature based methods for the static input.  

Texture-based methods for PAD 

Texture-based approaches generally analyse the texture differences between 

human faces and printed faces. These approaches are based on analysing textural 

patterns in the face image sample. This kind of approaches, which can efficiently 

discriminate between artefact characteristics such as the presence of pigments (due to 

printing defects), specular reflection, and shades (due to a display attack), give good 

results for detecting photo and display artefacts.  

The basic observations and assumptions about texture-based approaches can be 

summarised as modelling small texture differences between real faces and attack 

artefacts. Also, the difference between these 3D structures may cause different 

specular reflections and shades. When using 2D cameras to capture faces, the different 

representation of reflections and shades are represented as different textures. The 

surface properties of real faces and prints, e.g. pigments, are also represented as 

different textures. In addition, face prints usually contain printing quality defects that 

may be detected from texture.  
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The micro-texture-based methods, which may be inspired by the observations 

about image quality assessment, can be summarized as emphasizing the texture 

differences between attacks and genuine faces in the feature space. 

 

Figure 2.8 Examples of two images (a live face and a face print) in the original space 

and the corresponding LBP images using LBP as a feature space [5] 

 

 

Figure 2.9  Examples of two images (a live face and a 3D mask) in the original space 

and the corresponding LBP images using basic LBP as a feature space. [20] 

 

The Local Binary Pattern (LBP) [24] is a texture feature which is robust and 

computationally efficient, and is widely used for PAD. It is a powerful means of 

texture description and among its properties in real-world applications are its 

discriminative power, computational simplicity and tolerance against monotonic gray-

scale changes[25]. The LBP method was first explored in Maatta et al. [26] for photo 

print attacks and was then extended successfully to address replay video attacks [27] 

on face recognition systems. Local primitives, which are codified by each LBP binary 
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code, include different types of local texture patterns such as curved edges, spots, flat 

areas etc. Normally, the occurrences of the LBP codes in the image are collected into 

a histogram, and the similarity of this histogram can be used for classification.  

From the results in [27] , facial images are divided into several local regions 

from which LBP histograms are extracted and concatenated into an enhanced feature 

histogram. Also, Chingovska, I et al. [27] demonstrated the importance of using multi-

scale LBP, overlapping blocks, and combination of local and holistic descriptions. 

From their work, the importance of modelling printing quality defects using micro-

texture patterns is emphasized.  

Ramachandra et al [20] showed some visualisation results for the genuine face 

and the mask attack.(Figure 2.9)  From their results, the 3D mask exhibits different 

local texture representations as compared to real skin. And, the LBP features are quite 

successful in capturing these differences. It may be the results behind the success of 

using LBP for PAD. 

Table 2.2 Texture descriptors for PAD 

References Texture descriptors Attacks 

Maatta et al. [26] LBP, LPQ, Gabor Photo attack 

Chingovska et al. [27] LBP, tLBP, dLBP, and mLBP Video Attack 

Nesli and Marce [28] LBP 3D Mask Attack 

Kose and Dugelay[29]  LBPV Photo attack 

Raghavendra et al [30] BRSIF, CSLBP, Constrast LBP Photo attack 

Waris et al[31] GLCM Video Attack 

Boulkenafet Z, et al. [32] Colour LBP Photo and Video Attack 

  

The table 2.2 includes some static approaches using different local texture 

descriptors. Maatta et al. [26] use LBP for PAD and concatenate the histograms from 

different LBP variants (namely LBPu2 8,1, LBPu2 8,2, and LBPu2 16,2) to get a single 

feature vector for classification. This work inspired a lot of local texture-based 

methods for PAD in the following years. Table 2.2 provide a brief review for local 

texture-based methods for PAD which select some works that aims to introduce 

different local texture descriptors and get some good results. Selecting a good texture 

descriptor plays a substantial role in this category and combining multiple good texture 

descriptors will further improve the reliability of these methods.  
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Frequency-based methods for PAD 

Texture-based anti-spoofing methods are based on the analysis of the properties 

such as skin reflectance. Frequency-based algorithms can also be used for this purpose. 

For instance, Li et al.[33] designed a PAD method, which uses 2D Fourier spectra and 

show some encouraging results in their private dataset. Their method assumes that PAI 

may contain fewer high frequency components than the real faces. Figure 2.10 shows 

the examples derived for a client image (top row) and an imposter image (bottom row).  

After their work, researchers explored different algorithms to quantify the frequency 

domain(Discrete Cosine Transforms (DCTs) [34], Difference of Gaussian (DoG) 

filters [35], and high-frequency components[36]). However, these works are tested at 

private datasets, which cannot be compared with other methods. 

 

Figure 2.10  Illustration of latent samples for frequency based methods [33]. 

 

Tan, et al. [37] tested their frequency-based method at NUAA database, which 

is a benchmark dataset and includes paper attacks for 15 subjects. In their work, the 

Lambertian reflectance is used to discriminate the differences between printed faces 

and real faces. The variational retinex-based method and difference-of-Gaussians 

(DoG) are used in their method to extract latent reflectance features for PAD.  

 

Other methods for PAD 

Also, there are some methods trying to combine texture based static approaches 

and frequency analysis-based approaches. For instance, Wen et al.[38] provided a 

feature, which is named as image distortion analysis as shown in Figure 2.11, to 
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combine four different characteristics for PAD (specular reflection, blurriness, 

chromatic moment,  

 

Figure 2.11 Face spoof detection algorithm based on Image Distortion Analysis [38]. 

 

and colour diversity). They summarized some disadvantages of the texture-based 

methods and frequency analysis-based methods: For existing texture-based methods, 

the facial details, which can differentiate one subject from the other (for the purpose 

of face recognition), may also be captured by using the local texture descriptors(such 

as LBP). As a result, genuine faces may be wrongly classified as presentation attacks 

due to the redundant information from facial details. Some researchers claimed that 

the features from local texture descriptors may be too person specific[38]. Meanwhile, 

existing frequency analysis-based methods are highly relying on the selection of 

camera, photo and screen display. These disadvantages stimulate the development of 

the dynamic features for PAD. 

2.3.3 Dynamic Features for PAD 

Dynamic approaches use temporal information, which may also be 

discriminative for PAD, and usually take more computational effort for the sequence 

of biometric samples. Existing dynamic approaches can be broadly classified into two 

types: (1) motion based-approaches, (2) texture-based approaches [19]  

Motion-based methods for PAD 

The motion-based methods consider the muscles movements in the face or the 

head movements as the discriminative feature for detecting PAs. The existing methods 

are effective for various print attacks by exploring the facial movements over video 
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sequences. In general, they are based on the trajectory analysis of specific face 

segments. Some researchers[39] involved challenge-response strategies which ask 

users’ cooperation to demonstrate specified facial movements (such as eye blinking, 

smiling and moving the head/eyes in some directions) in front of the camera. Some 

researchers claimed that the methods using challenge-response strategy shows a 

performance decrease when facing the replay attacks[39]. Also, the challenge-

response strategies request cooperation from users, which is also considered as a 

disadvantage for the early motion-based methods.  

 

Figure 2.12  A comparison of recovered sparse 3D facial structures between genuine 

and photo face. There are significant differences between structures recovered from 

genuine and photo face [40]. 

 

Some dynamic feature based methods [40], [41] are designed to detect video- 

attack without cooperation from users. 3D facial structures have been to reconstruct 

through the analysis of several 2D image sequences to detect PAs. As Figure 2.12, 

Wang, et al. [40] built a sparse 3D facial structure, which is generated by using facial 

landmarks from key frames, to demonstrate the difference between real faces and 

presentation attacks. They used SVM as the classifier and showd some encouraging 

results at benchmark datasets. The constant evolution of mobile technology and the 

smartphone market has brought new possibilities for the 3D facial structure-based 

PAD methods[41].  

With the development of 3D model generation algorithms, creating realistic, 

textured, 3D facial models that can undermine the security of widely used face 

authentication solutions has become possible [42]. Accurate 3D facial models can be 

created by using some publicly accessible photos, which may be easily collected from, 
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for example, Facebook or Twitter. And by using these high-quality 3D facial models, 

attackers can easily subvert commercial facial biometric system; even if these apply a 

challenge-response strategy. These new attack methods raise new requirements for 

facial PAD. (Figure 2.13) 

 

 

Figure 2.13  Overview of a 3D structure reconstruction based attack method [42]. 

 

Dynamic Texture for PAD    

Another category for the dynamic features explores the dynamic texture changes 

across the captured video. Early work in this direction is based on Local Binary 

Patterns from three orthogonal planes (LBP-TOP) [43] and has demonstrated a 

reasonable performance on the Replay-Attack database. As illustrated in Figure 2.14, 

both the spatial domain and the time domain for the entire video sequence are explored 

in “local texture descriptor-TOP” style. Local texture descriptors from three 

orthogonal planes are extracted as detection features. 

 

Figure 2.14 Overview of LDP-TOP workflow [44] 

 

Other dynamic texture-based methods have been proposed to improve the 

detection performance, such as binarized statistical image features on three orthogonal 
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planes (BSIF-TOP), local phase quantization on three orthogonal planes [45](MLPQ-

TOP) and local derivative pattern from three orthogonal planes (LDP-TOP)[44]. These 

methods use a similar protocol for temporal information. In the first step (face 

detection and normalization), each video frame is transformed to a grey-scale image 

and passed through a face detector. The detected faces are then geometrically 

normalized. In the second step (histograms extraction) local texture operators are 

applied on three orthogonal planes intersecting at the centre of the XY, XT, and YT 

direction, where T is the time axis (the frame sequence). The feature vectors from 

different orthogonal planes are concatenated and fed into SVM for PAD. This spatial-

temporal analysis protocol can explore the information of the whole video sequence 

and show some encouraging results in their experiments.  

2.3.4 Deep learning for PAD 

Deep Learning offers new research opportunities for the PAD area including new 

feature extractors based on deep learning and a new learning paradigm. The basic 

learning paradigm of using deep learning for PAD is designing a novel neural 

architecture for PAD and training this novel neural architecture with PAD datasets. 

This learning paradigm is named as “learning from scratch” or “training from the 

scratch” in this thesis. Researchers have explored several DNN methods for PAD such 

as convolutional neural network (CNN), recurrent neural networks (RNN), generative 

adversarial networks (GAN), etc. An alternative approach, based on the transfer 

learning paradigm (or the network-based transfer learning), uses the feature extraction 

part of a trained DNN which is designed for other computer vision tasks. 

“Hand-crafted” Neural Architectures  

Designing a network from scratch is an active area in recent years. Since the 

success of AlexNet [46],  the performance of deep neural networks has been 

significantly improved (e.g. VGGNet [47] , GoogleNet [48] and ResNet [49] ). Some 

researchers focused on optimising the convolutional operator and developed various 

convolution operators such as transposed convolution[50],  dilated convolution [51], 

etc. Others focused on developing better activation functions to improve the 

performance of the neural architectures, (e.g. Rectified Linear Unit (ReLU) [52] and 

Exponential Linear Unit (ELU) [53]).  
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Since the success of the VGG16 network[47], many researchers aim to optimize 

the structure of these successful networks to reach the same performance level but with 

a smaller size. Before the development of Neural Architecture Search (NAS), some 

commonly-used approaches included quantizing the weights and/or activations of a 

baseline CNN model into lower-bit representations[54] or pruning less important 

filters [55] during or after training. These methods are focused on reducing the 

computational effort. However, they are tied to a baseline model which they tried to 

optimize and do not aim to learn novel compositions of CNN operations. 

Designing efficient operations and neural cells (or neural blocks in some 

literatures) by human experts is a popular research direction for deep learning. The 

task of designing efficiently neural architectures by human experts aims to use deep 

neural networks on mobile platforms such as the iPhone. This direction has led to some 

efficient designs: SqueezeNet [56]  provides a low-cost convolutional operator that 

can reduce the number of parameters and computational costs; MobileNet [57]  

extensively employs depth-wise separable convolutions to minimize computation 

density; ShuffleNet [58] use pointwise group convolutions and channel shuffle method 

to decrease the computational cost; MobileNetV2[59] shows the performance with 

state-of-the-art performance level but only uses mobile-size models by introducing 

resource-efficient inverted residuals connections and linear bottlenecks into their 

work. Unfortunately, these hand-crafted models usually take quite significant human 

efforts to design. 

Alotaibi et al.[60] used a non-linear diffusion operator in their pre-processing 

step and processed images by applying a custom six layers CNN. They tested their 

proposed method using the Replay-Attack database and provided some results (Half-

Total-Error-Rate (HTER)=10%) to demonstrate the potential of using deep learning 

methods. 

Some researchers[61] assumed that using the whole facial area may mislead deep 

learning models by focusing on the facial structures rather than the texture features 

which may be more distinct for anti-spoofing. Patch-based methods were used based 

on this assumption. Y. Atoum et al [61]  proposed a patch-based deep convolutional 

architecture, which models different distinct visual patterns from each facial region to 

detect spoofing(As Figure 2.15). In order to train this network, they re-organised the 

training data by using data augmentation methods and a cropping function to generate  
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Figure 2.15  Overview of patch-based CNN workflow[61]. 

 

facial patches. They assumed that the texture patterns of spoofing attack may appear 

over the whole facial area and the patch-based method can significantly reduce the 

computational complexity.  

From the analysis in [61], the backpropagation algorithm is easily misled by the 

texture representation of the facial elements, such as the shape of the eyes or the size 

of the nose.  Their work [61]  claimed that the small DNN does not need as much 

training data as that needed for very deep neural architectures. However, the small 

network still needs the training data with various conditions and this may still be very 

hard to achieve with the currently available training datasets. And overfitting is still a 

problem for their neural networks. Also, the patch-based method may only help the 

deep neural networks focusing on the globally appearing texture patterns, which means 

the non-related texture patterns will be ignored, such as the strange eye shape in the 

paper cut attacks. 

Deep learning also extends the possible research directions for PAD. For 

instance, Liu et al.[62] push the performance boundary for PAD by integrating remote 

photo-plethysmography and 3D facial model extraction. Their methods are shown in  
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Figure 2.16  Overview of CNN-RNN architecture for rPPG signal. The number of 

filters are shown on top of each layer, the size of all filters is 3 × 3 with stride 1 for 

convolutional and 2 for pooling layers. Colour code used: orange=convolution, 

green=pooling, purple=response map. [62] 

 

Figure 2.16. Remote photo-plethysmography (rPPG) means that the vital signals (such 

as heart rate) are tracked by using the features extracted from RGB data. This process 

does not need any physical contact with human skins. Liu et al [62] noticed that: the 

rPPG signal is detectable by using a deep learning method for PAD. In order to further 

decrease the effect of facial movements and illumination changes, Liu et al. firstly 

extracted the dense 3D facial masks for each frame by using the DeFA algorithm [62]. 

The convolutional blocks proposed by their work consist of 3 convolutional layers, 

one pooling and one resizing layer. They integrated one exponential linear layer and 

batch normalization layer after each convolutional block to decrease the risk of 

overfitting. They also considered the bypass connections structure which is similar 

with the ResNet [49] structure to help the network to fuse the inner representation and 

generate robust features. After that, they used non-rigid registration to further decrease 

the effects of facial movements and different head gestures to get the rPPG signal by 

using the recurrent neural network. In other words, their model can only learn the 

selected temporal signals from the activations of the feature maps but ignore the micro 

facial movements and head gesture difference which may also be distinct in temporal 

for PAD. 

Transfer learning for PAD 

Normally, PAD is approached as a typical supervised learning task which 

assumes that the training and the testing data are in the same feature space or 

distribution. However, transfer learning does not need learning algorithm to train the 

model from scratch, even the targeted task is not in the same feature space or 

distribution.  
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Some researchers [63] noticed that the training data from similar domains can 

be used for training PAD systems. For this reason, the transfer learning approach has 

become popular in deep learning-based PAD research where the selection of a good 

pre-trained feature extraction network is a key factor. 

 

Figure 2.17 Network-based deep transfer learning 

 

Fig. 2.17 demonstrates the basic idea of network-based deep transfer learning. 

The network can be divided into two parts; the front part is the feature encoder sub-

network and the back layers form the classifier. The front-layers which are trained 

using large datasets such as ImageNet[64] are normally reused to compute 

intermediate image representations for images in other datasets. The features from 

CNN can be efficiently transferred for other visual recognition tasks with limited 

amount of training data.  

The transfer learning paradigm normally includes two training stages: Firstly, 

the parameters from the pre-trained encoder network is trained with a small learning 

rate and the classifier network is trained with a normal learning rate. Then, the whole 

network is fine-tuned with a small learning rate during the second training stage.    

The learning rate is one of the most important hyper-parameters for deep 

learning. Bengio, Y.[65] discussed the reasonable ranges for learning rates in their 

work. The proposed network-based deep transfer learning experiments follow the 
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suggestions of [65] [66] and set different learning rates during the first training stage 

for the encoder network and the classifier network. The pre-trained feature encoder 

network includes some latent knowledge which is learned from the source domain. A 

lower learning rate can help the network keep the latent knowledge from the source 

domain. The higher learning rate for the classifier network aims to optimise the 

randomly initialised parameters. At the second stage, the whole network is fine-tuned 

with a lower learning rate for a better performance. It has been suggested that this fine-

tuning stage can help the neural network escape from local optima [63]. 

Yang et al. [67] first used CNN for feature extraction in the PAD workflow. 

They used AlexNet [46] for feature extraction and SVM for classification. They 

deployed various methods for pre-processing images to vary the bounding boxes sizes, 

and image qualities used for the CNN. They reported HTER=2.81% for the REPLAY-

ATTACK database. However, they only considered the transfer learning for the 

feature extraction sub-network. The fine-tuning stage for the whole network was 

excluded in their work.  

There are some two-stage transfer learning that has also been used for PAD[68] . 

They explored a VGGFace network [69]as the feature extraction part in their work 

which was originally designed for large-scale face recognition applications and trained 

on a dataset consisting of 2.6 million images from 2622 different individuals. The 

VGGFace Network is a benchmark CNN architecture and they obtained some good 

results for some challenging datasets. [68]  

Long Short-Term Memory networks (LSTMs)[69], [70] are a development of 

Recurrent Neural Network (RNN)[71] which is designed to model temporal 

information and other sequence learning tasks (such as sequence generation, speech 

recognition and video description). A typical method of using LSTM for video data is 

to consider a CNN architecture as a feature encoder and connect the CNN to the LSTM 

layers.   

Xu et al. [72] was first to introduce LSTMs for PAD and followed the commonly 

used method to combine CNNs and LSTMs. They claimed that the CNNs can learn 

the local texture patterns and the temporal relations between these patterns can be 

learned by the hidden state of the LSTM unit. However, the LSTMs in Xu et al.’s 

work[72]  discards the spatial locations of the features generated by the CNNs with a 
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fully connected layer. The spatial location information is important for PAD especially 

when the model needs to capture the motion cues and the distinct dynamic textures. 

 

Figure 2.18  Overview of multiscale CNN workflow.[73] 

  

Tu, et al. [74] attempted to overcome these disadvantages by adding a confusion 

loss layer based on the loss function in LSTM and the loss function in CNN to balance 

the learning rate of CNN and LSTM. However, their model also has the computational 

efficiency problem when using LSTM for temporal information.  The inner structure 

of LSTM may need to be optimised for the PAD problem.  

Some ideas from research into traditional hand-crafted features may also be used 

in the development of deep learning approaches for PAD. For instance, the scale 

difference between genuine and fake faces can be used to increase the performance of 

PAD models(as Figure 2.18) [73]. Information fusion is an important aspect of multi-

scale PAD methods where the LSTM model can be used to provide efficient fusion of 

multi-scale models. Luo et al. [73] followed this idea and considered the features from 

different scales as a sequence of input for the LSTM. They assumed that the LSTM 

can model the inner connections between different scales. Their model can be 

considered as imitating of “take a closer look for better understanding”. The good 

performance they report may demonstrate that LSTM can adaptively fuse the features 

from multiple scales. However, single directional LSTM may highly rely on the 

sequence orders. The bi-directional LSTM may offer better performance as they 

suggested in their future work. 
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Figure 2.19 Visualisation of Asim et al.’s work using CNN and LSTM (a) shows the 

video of fixed photos in XY view, (b) and (c) are the corresponding images in XT view 

without and with magnification, respectively. (d) is the video with dynamic facial 

expressions in XY view, (e) and (f) represent the corresponding images in XT view 

without and with magnification, respectively. [75] 

 

Some researchers have attempted to combine traditional features and deep neural 

networks together. Asim et al.[75] aimed to combine the LBP-TOP and CNN together 

for better performance. Firstly, a temporal ontological plan was generated from each 

video for further processing by following the ontological plan generation part of the 

LBP-TOP algorithm. They then extracted the deep features for PAD by using a typical 

convolutional neural network (CNNs) for the input data. Then, their method collected 

the intermediate feature map calculated by the CNNs and used the LBP algorithm to 

calculate the histograms for the feature maps generated by the 3rd, 4th, 5th convolutional 

blocks. The generated histograms were concatenated together which is very similar to 

the LBP-TOP. They also applied a magnification approach, which can enhance facial 

movements such as eye blinks, to help the liveness signals in the temporal domain to 

be significant. Their methods were reported to slightly improve on the performance of 

the traditional features. However, they only used the deep neural network as a new 

feature encoder and ignored the new learning paradigm offered by these deep 

architectures. The popularity of the DNNs relies on an assumption that the 
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intermediate feature before the last classifier layer learns a good feature which can 

help the model to classify the spoofing attacks. In other words, the DNN learns what 

are good features directly from the training data. This property may offer a possibility, 

which can improve the performance without human experts, for future works. The 

deep learning approach may best focus on this direction rather than simply provide 

other features for fusion with traditional features. 

Neural Architecture Search 

Neural Architecture Search is considered as the next step for automating 

machine learning when researchers and engineers have struggled with the complexity 

of designing an effective neural network. It has increasingly attracted researchers’ 

attention by outperforming the human-designed neural architectures on some 

computer vision tasks such as object classification[76].  

NASNet[77] started the wave of automated neural architecture search using 

reinforcement learning in 2016. More recently, with the successful project named 

AutoML[78], designing neural network automatically instead of relying heavily on 

human experts attract researchers’ attention. Importantly, NASNet has successfully 

identified architectures that reach performance levels comparable to state-of-the-art 

human designed architectures for large-scale image classification problems. 

Considering NAS as a reinforcement learning (RL) problem, the generation of a neural 

architecture can be treated as the action of intelligent agents, with the action space 

identical to the search space[77]. The reward function of the RL paradigm is based on 

the estimation of the performance of designed architectures on unseen data.  

As suggested by Elsken, T. et.al.[79],  NAS research can be divided into two 

categories: macro search and micro search. The macro search category aims to find an 

algorithm to generate the entire neural architecture directly where the micro search 

strategy arrives at the overall network by stacking together optimum micro neural 

architecture blocks (also known as cells). 

The methods which optimize the entire neural network directly can produce 

neural architectures automatically but the output of these methods is generally 

“shallower” than the other DNNs[80].  One of the typical approaches is applying RL 

algorithm to optimize the policy of searching neural architectures. Some widely-used 

RL methods (such as Q-learning[81]) is used to train the neural networks, which can 
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select the connections and configurations of convolutional layers sequentially. These 

algorithms will build the entire network from the first layer and then generate the next 

layer until the end of the network.  The LSTM is used for selecting the filter shape and 

number of filters and optimized by using the RL method [82]. Evolutionary algorithms 

are also considered for NAS [14] where they are used to guide the mutation and 

recombination of candidate architectures to arrive at optimum architectures. The 

computational complexity of exploring the search space to generate candidate 

networks directly is one of the main disadvantages of these approaches. Some 

researchers have analysed the magnitude of this problem by using a simple 

approximate calculation method: the volume of the potential search space can be 

approximated by using the exponent of the total depth in the proposed network. For 

instance, searching a shallow network with only 12 layers has a search space with 1029 

possible networks[81].  

Researchers, therefore, limit the depth of the proposed neural architecture to 

constrain the search problem within the limits of feasibility. Another important 

disadvantage of the Macro search strategy is accuracy limitations due to the necessity 

to use shallow networks. In contrast, the micro search strategy can achieve better 

performance with less computational resources by stacking multiple neural cells. 

Zoph. et al.[83] proposed a small search space (NASNet search space) for the 

reusable micro neural architecture. By following this idea, an evolution algorithm was 

applied by Real et al [84] to search for the optimum architecture for cells with a simple 

regularization technique. A progressive method was also used to search the micro 

neural architecture for cells[85]. Wu, et al. [86] tried to improve the efficiency in 

architecture search by generating the architecture from shallow to complex 

architecture. This method can reduce the computational effort and time required.  

The “differentiable” method[87], which relaxes the discrete architecture space 

to a continuous one by utilizing gradient-based optimization, is computationally 

efficient. However, these methods proposed for micro search still take more than one 

GPU days [87] for searching and the memory cost of the searched neural architecture 

is not considered as a constraint condition. 
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Explainable Artificial Intelligence and Generative methods 

Explainable Artificial Intelligence (XAI) has attracted significant attention in 

recent years as a new branch of Machine Learning (ML) research, which aims to 

improve the transparency of current ML algorithms and decrease the opacity of each 

decision made by a ML system, [88]. Transparency is especially necessary for PAD 

due to the need for biometric decisions to be trusted and effectively managed. The 

explanations for the decisions that are made by a PAD system can justify any 

unexpected decisions and build trust with users. Also, these explanations can guide the 

development of a PAD system to improve its performance [89]. Therefore, further 

research is needed to address the interpretability of the behaviour of current automated 

biometric systems.  

The explanations produced by the interpretable PAD systems can help with 

enhancing trust, improving performance and helping to detect new patterns of security 

threats. Also, future biometric systems may be required to provide explanations in 

order to abide by the law[89]. Interpretable biometric systems have various potential 

users. For instance, In the event of erroneous decisions, system-generated explanations 

will help the operators to identify where the responsibility may lie (similar to flight 

black-box recorders used for investigations). In some applications, such explanations 

can avoid mistakes by helping human experts rapidly identify and rectify errors to 

lower the risk of wrong decisions. Finally, the explanations for the wrong decisions 

from the current biometric systems can inform researchers to design better systems   

Different researchers have different understandings of what is meant by 

explainable artificial intelligence. Visualization of the filters in a CNN are the most 

direct way to explore patterns hidden within the neural units. The Up-convolutional 

network [90] was developed to reverse the feature map into an image. In contrast, 

gradient-based visualization[91]  provides a means for understanding the knowledge 

hidden within the parameters of a CNN. In addition, Ribeiro, et al.[92] defined and 

analysed the interpretability of each filter. 

Modelling the inner connections between the filters in CNNs by using semantic 

trees or graph models is another possible direction for interpretable capability. Many 

statistical methods [90] have been proposed to analyse the semantic relation between 

CNNs’ features. In particular, Chattopadhay, et al. [93] have demonstrated that in spite 
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of their good classification performance, CNNs may encode biased knowledge 

representations due to dataset bias. However, currently there is no commonly used 

evaluation methodology to quantitatively measure the effectiveness and accuracy of 

the explanations produced by such systems.  

 

 

Figure 2.20  Visualisation of spoof signal in De-spoofing paradigm. Left: live face and 

its local regions. Right: Two registered spoofing faces from print attack and replay 

attack. The local region, intensity difference, magnitude of 2D FFT, and the local 

peaks in the frequency domain that indicates the spoof noise pattern is shown. [94] 

 

The latest developments of Generative Adversarial Network (GAN) can also be 

used for detecting PA and the GAN network can be used to visualise the distribution 

of spoofing patterns. Amin et al [94] defined a de-spoofing problem by considering 

the distinct features for the spoofing attacks as the particular texture representation 

which can be learned by using a deep generative model: The deep generative model is 

an active sub-area of deep learning. Amin et al.’s work was inspired by the classic 

image de-X problem (for instance, image denoising and de-blurring) and aimed to 

learn a mapping function which can transfer the genuine faces into the spoofing face 

by adding the learned texture representations. The deep generative model is 

increasingly applied in the de-X areas due to its significant learning capability for the 

local texture patterns and the impressive generative capability.  

Amin et al [94] assumed that deep generative models can transfer a frame with 

the genuine face into a frame from spoofing attack by using the generative function 

learned from the training data. They assumed the decomposed noising pattern, which 

is learned by their model, is the key feature for detecting the PAs. Their processing 

pipeline is very similar to image de-noising and they named their work as Face De-
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spoofing. One of the main contributions is that they visualise the spoofing patterned 

learned from their model. However, their visualisation experiment can hardly be used 

as the additional information for training. They argued that the frequency response of 

their model and the spoofing pattern generated by their model represent the distinct 

texture patterns of various spoofing attacks. But their visualisation cannot be directly 

used to optimise their classification model. Furthermore, their network structure is 

very complicated consisting of a Discriminative Quality Net (DQ Net) and a Visual 

Quality Net (VQ Net). Training this complex deep architecture directly is not easy due 

to the gradient vanishing and local optima problems, which are considered as some 

common disadvantages of such deep generative models. 

 

2.4 SUMMARY 

This chapter introduced the basic concepts of Biometrics, Presentation Attacks 

and PAD. It then gave an overview of various types of presentation attacks including 

paper attack, video attack and mask attack. After that, a classification of various anti-

spoofing techniques was presented according to the biometric system modules in 

which they are integrated. As this thesis is focused on software-based methods, key 

previous research on static and dynamic methods were briefly described covering 

texture-based, frequency-based, motion- based and other approaches. Finally, the rise 

of deep learning methods as applied to PAD is reviewed and two potential areas for 

further development, including NAS and explainable Artificial Intelligence (XAI), are 

highlighted. The datasets and experiments protocols used in the literature are described 

in Chapter 3 as part of the experimental framework that underpins the thesis.  
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Chapter 3: Experimental Framework   

This chapter outlines the experimental framework that is used in the subsequent 

chapters such as experiment workflow design, pre-processing algorithms, and related 

datasets used for the evaluation of facial anti-spoofing techniques. The structure of this 

chapter is shown as follows: Section 3.1 will discuss the experimental infrastructure 

used for facial anti-spoofing (or presentation attack detection) algorithms in the 

following chapters.  Section 3.2 will present the usual pre-processing steps (including 

face detection, face alignment, and facial area segmentation), in which the pre-

processing, as an essential part of a PAD system, can help the PAD algorithm to ignore 

the irrelevant information in the input data. Moreover, the quality of the pre-processing 

steps, can profoundly affect the final performance of a PAD system. Feature encoding 

and classification methods are briefly described in Section 3.3. Then, the datasets and 

evaluation metrics, which are widely concerned in the state-of-the-art approaches, are 

investigated in Section 3.4.  Some of these datasets and evaluation metrics are used in 

the following contribution chapters for performance comparison.  Section 3.5 will 

conclude this chapter. 

3.1 FACIAL ANTI-SPOOFING DETECTION WORKFLOW 

The International Organization for Standardization (ISO) provided a standard 

pipeline for presentation attack detection in2017 that is  found in Figure 3.1 [2]. 

According to this figure, a standard PAD system consists of three important parts: (1)a 

PAD Feature Extractor (2)a PAD Comparator and (3) a Stored PAD Criteria. In this 

pipeline, the captured data is fed into the PAD Feature Extractor to get the feature 

representation; and the PAD Comparator, which follows the Stored PAD Criteria, 

generates the result by using the extracted features. According to BS ISO/IEC 

30107‑3:2017 [14], the PAD comparator and the Stored PAD Criteria are considered 

as the fundamental parts in the system. By following the definition from the BS 

ISO/IEC 30107‑3:2017 documents, this thesis mainly focused on the PAD Feature 

extractor and the PAD comparator part. However, this pipeline only provides a rough 

description for a PAD system and excludes the recent developments of deep learning 

and computer vision methods.   
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Figure 3.1 Components in a general presentation attack detection subsystem from 

ISO/IEC 30107 [14] 

 

Figure 3.2 Components in the proposed presentation attack detection system. The 

Feature extractor has been extended to the Data pre-processing and Feature extraction. 

The PAD comparator has been extended to the Classification and Fusion steps. 

 

In order to make the subsequent description clear, this thesis extends the original 

pipeline from BS ISO/IEC 30107‑3:2017 documents[14], and visualises the proposed 

pipeline in Figure 3.2. The proposed pipeline of a Facial PAD system can be divided 

into five fundamental parts: (1) PAD dataset (2) Data pre-processing (3) Feature 

extraction (4) Classification (5) Fusion. In the following chapters, a PAD system that 

consists of these five fundamental parts, is expected to provide a detection result for 

the biometric system by accessing the captured data.  

Data Capturing, which potentially uses multiple sensors and collects biometric 

samples, is closely related to the selection of the hardware platform and very sensitive 

to environmental changes. Different image qualities will highly affect the local feature 

representations that are used to represent the distinct differences between genuine face 

and attacks [32]. Low-resolution cameras that were used in some early studies can only 

record facial characters with lower image quality. The low image quality biometric 

samples influenced some facial details (e.g., skin textures) that became blurry and 

ineffective for PAD. For this reason, published datasets normally state detailed 
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information on the hardware used to acquire facial biometric information. This thesis 

considers various benchmark PAD datasets but only used RGB data as the raw input 

for the proposed methods. The input of a PAD system is the captured data and the 

output is the decisions generated by the PAD system in the proposed pipeline. The 

proposed works are all categorised as the feature-based PAD methods. Thus, the 

proposed pipeline will not include the possible hardware differences for the data 

capturing process.  

The PAD dataset is used to replace the stored PAD Criteria in Figure 3.2. The 

proposed pipeline uses the term “PAD Dataset” for two reasons: (a) the feature-based 

PAD research is following the supervised learning paradigm, and the Criteria is 

represented by the label of the dataset; and (b) the performance of the deep learning-

based PAD methods highly relies on the quality of their training data. The word 

“Criteria” may not express the meaning of “dataset” clearly when applying deep 

learning methods. This thesis considers data and the “criteria” (named as label) as two 

fundamental parts of a dataset, and consider the Data Collection as an independent 

step to emphasize the importance of datasets. By following this analysis, data 

augmentation become an important Data pre-processing step for the proposed deep 

learning-based PAD methods which can decrease the risk of overfitting and improve 

the performance of the proposed methods. 

The PAD Feature Extractor is extended into two parts: Data pre-processing 

and Feature Extraction. The Data pre-processing step aims to minimise the effect 

of environmental changes and the possible noise signals from sensors. This step is also 

sometimes selected and tuned to maximise the performance score for the proposed 

algorithms in some literature[32]. A typical pre-processing step may include multiple 

data pre-processing methods (such as face normalisation, colour space transfer, etc.), 

and selecting different pre-processing  methods follows some basic considerations: (1) 

the requirements of the feature extraction algorithms, (2) the requirement of decreasing 

the effect of irrelevant information and (3) the requirement of decreasing the data 

volume.  

In PAD researches, the requirements of the feature extraction algorithm are a 

significant reason to include the Data pre-processing step. Some feature extraction 

algorithms cannot be used directly for PAD or result in good performance without 

suitable pre-processing steps. For instance, the traditional Local Binary Patterns (LBP) 
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feature can only work for one-channel images and needs a pre-processing step to 

convert RGB images to grey images. Moreover, in this case, a single grey channel 

discards much information that may be useful for PAD. Some literature [32] suggests 

the experimental pipeline includes the colour transformations as an important pre-

processing step; and claims that the concatenation of the feature vectors from multiple 

colour spaces may be sensitive to the colour difference between genuine face and 

spoofing attacks.   

Another example of the importance of considering data pre-processing is related 

to background information. Some researchers [95] claimed that background regions in 

the frame might include some irrelevant information for PAD. This information does 

not include any biometric information, but includes some materials that may be similar 

to the attack artefacts. For instance, the low-quality scenario of the CASIA-FA dataset 

includes some screen flashing in the background, which may highly affect the 

robustness of the features as it relies on the temporal frequency difference. For this 

reason, some algorithms only apply feature extraction on the facial area. Thus, facial 

detection and facial area cropping are widely considered as an important pre-

processing step in the literature.  Section 3.2 will produce a detailed description of 

some commonly considered algorithms such as colour space transformation, image 

cropping, affine transformation, face detection, face normalisation, facial area 

cropping, and facial landmark detection.  Some proposed works in the following 

chapters select these pre-processing methods carefully due to the considerable 

influence of these methods. 

After the Data pre-processing, the Feature Extraction step, which transforms 

the raw data to a low-dimensional representation (or a feature vector), regularly 

consumes the most computational resources and produces some distinct characteristics 

of the biometric samples. Normally, this low-dimensional representation, which is 

shown as a feature vector, is fed into the classifier to produce the final decision. 

Creating a distinct feature representation for PAD is the main target for the software-

based PAD research. The proposed works in the following chapters, which are 

motivated by some observations of the PA samples and assumptions from literature, 

will focus on designing efficient feature extraction methods as the main contribution 

of this thesis.  
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The proposed workflow in Figure 3.2 adds a connection between the PAD 

dataset and the Feature Extraction part that is different from the BS ISO/IEC 

30107‑3:2017 document[14]. This connection emphasizes the feature extraction part 

that is trained by using the PAD dataset. From the emergent rising of deep learning, 

researchers are aware  that good features can be learned from the data automatically. 

Some of the paradigms that comes with deep learning are different from the traditional 

paradigm that is widely considered for the conventional feature-based PAD 

approaches. Generally, the Classification step is used to generate a judgment about 

whether a biometric system is under spoofing attack by using the feature vectors from 

the Feature Extraction step. After the feature extraction step, the dimension of the 

data should be greatly reduced. Some learning algorithms (e.g., kernel-SVM, decision 

tree, or neural networks) are applied to get a classification result in the conventional 

feature-based approaches. Moreover, the decision fusion step, as a commonly 

considered method for the system that includes multiple preliminary classifiers, may 

be used to further improve the performance in some literature [38]. PAD can be 

considered a classification task under the supervised learning paradigm; and different 

scenarios can be defined as different types of the classification problem. For instance, 

if a PAD system only includes two possible outcomes (genuine access or spoofing 

attack), PAD is considered to be a binary classification task. Otherwise, the PAD 

system may attempt to not only detect a spoofing attack, but also classify the specific 

attack type.  

Galbally, et al. [19] suggest a Fusion step for the PAD system to further optimise 

the performance when many different features (or sub-classifiers) are applied in one 

biometric system. Normally, the performance of a PAD algorithm can be improved by 

adding a weight for different classifiers or different confidence scoring. Some of these 

scoring algorithms can improve system performance through training. Different 

features for PAD may aim for the different distinct characteristics for PAD. A fusion 

step can help the system avoid the possible overfitting risk. By following their 

suggestions, the proposed pipeline also consider a fusion step. However, fusing 

multiple features are a difficult problem. This thesis will not include an independent 

fusion section; but fusion experiments are considered in some proposed traditional 

features to demonstrate the effectiveness of the proposed method and the possibility 

of using fusion step.     
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The proposed pipeline only considers PAD as a typical supervised classification 

problem. However, some recent developments [96] and the proposed work in Chapter 

6 point out the limitations of this learning paradigm. Zhao, C. et al. [97] claimed that 

the limited data volume causes the previous PAD system always face the risk of 

overfitting. The distinct representation for a presentation attack may also be 

unpredictable when facing different scenarios (such as different screen for replay 

attack). Some novel presentation attacks, such as the mask attack, evolve rapidly. The 

desired learning paradigm should help the system produce a robust classifier from a 

limited number of training samples. 

3.2 PRE-PROCESSING ALGORITHMS 

In this section some commonly used pre-processing algorithms are described in 

detail: (1) frame colour space transformation, (2) image cropping, (3) image affine 

transformation, and (4) face area segmentation and normalisation. These algorithms 

are also used in the experimental work reported in this thesis. 

3.2.1 Colour space transformation 

Colour space transformation is widely used as a pre-processing step. Some 

researchers claimed that the colour difference between the attack video and real face 

can be distinguished using their naked eyes [32]. However, human eyes are not very 

sensitive to colour difference [98] . This observation shows the potential benefits of 

applying various colour model transformation as a pre-processing algorithm. 

Multiple local texture features are combined with the colour space 

transformation in recently proposed PAD algorithms[32]. In some deep learning based 

PAD approaches, colour model transformation is still considered an important pre-

processing step to improve performance[61]. Different material reflectivity between 

human skins and the PA instruments may be more significant at some colour channels 

(such as hue, saturation, and lightness) other than the RGB channels. Boulkenafet, et 

al.[32] attempted to discuss the effect of colour space and the effect of the 

concatenation of the same feature from different colour spaces. They applied multiple 

combinations of colour spaces in their work, and concatenating features from different 

colour channels significantly increased the performance. The proposed methods also 

consider colour space by following the suggestions of literature [32], [99]. 
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Figure 3.3 Visible colour difference range visualisation [98] 

 

In some proposed experiments in this thesis, the raw input data with RGB 

channel are transformed to the HSL colour space. 𝑟, 𝑔, 𝑏 represent red, green, and blue 

coordinates of the colour representation at a pixel; those values are real numbers 

between 0 and 1.  In the HSL representation system,  ℎ, 𝑠, 𝑙 means Hue, saturation, and 

lightness.  Hue, denoted by h, is the measurement to  describe a colour that is similar 

to the three primary colours.[100] :  

 

ℎ =

{
 
 
 
 

 
 
 
 
0°                                                             𝑖𝑓 𝑚𝑎𝑥 = 𝑚𝑖𝑛

60° ×
𝑔 − 𝑏

𝑚𝑎𝑥 −𝑚𝑖𝑛 + 0
°            𝑖𝑓 𝑚𝑎𝑥 = 𝑟 𝑎𝑛𝑑 𝑔 ≥ 𝑏

60° ×
𝑔 − 𝑏

𝑚𝑎𝑥 −𝑚𝑖𝑛 + 360
°        𝑖𝑓 𝑚𝑎𝑥 = 𝑟 𝑎𝑛𝑑 𝑔 < 𝑏

60° ×
𝑔 − 𝑏

𝑚𝑎𝑥 −𝑚𝑖𝑛 + 120
°                            𝑖𝑓 𝑚𝑎𝑥 = 𝑔

60° ×
𝑔 − 𝑏

𝑚𝑎𝑥 −𝑚𝑖𝑛 + 240
°                            𝑖𝑓 𝑚𝑎𝑥 = 𝑏

 

 

 

             

(3.1) 

In the following proposed works, the numerical representation of colours is 

always normalised from the range [0,255] to [0,1].  In formula (3.1), max denotes the 

largest pixel value of r, g and b channels and min is used to represent the smallest pixel 

value of these different colour channels. In HSL space, h ∈ [0, 360) is also named as 

hue angle, and s, l ∈ [0,1] can be calculated by using formula (3.2) and (3.3) [100] 

 
𝑙 =  

1

2
(𝑚𝑎𝑥 +𝑚𝑖𝑛) 

          

(3.2) 
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𝑠 =

{
 
 

 
 
0                                                    𝑖𝑓 𝑙 = 0 𝑜𝑟 𝑚𝑎𝑥 = 𝑚𝑖𝑛
𝑚𝑎𝑥 −𝑚𝑖𝑛

𝑚𝑎𝑥 +𝑚𝑖𝑛
=  
𝑚𝑎𝑥 −𝑚𝑖𝑛

2𝑙
                              𝑖𝑓 0 < 𝑙 <

1

2
𝑚𝑎𝑥 −𝑚𝑖𝑛

2 − (𝑚𝑎𝑥 +min )
=  
𝑚𝑎𝑥 −𝑚𝑖𝑛

2 − 2𝑙
                      𝑖𝑓 

1

2
< 𝑙

 

           

(3.3) 

 

The value of h is usually normalized to between 0° and 360° and h = 0 is used 

for max = min. [100] 

3.2.2 Image cropping and affine transformation 

Image cropping and affine transformations are used differently in the traditional 

feature workflow and the deep learning workflow. For instance, some traditional facial 

anti-spoofing algorithms [32] claimed that cropping the facial area is considered as the 

pre-processing step. By applying this pre-processing step, traditional features may be 

less affected by the non-related information from the background region in the frame. 

In deep learning, however, researchers considered the cropping algorithms as an 

efficient way to enlarge the data volume of their training dataset. In this section will 

introduce both of these usages in detail.   

 Image cropping and affine transformations, as the essential pre-processing steps 

in the traditional features for PAD, are widely considered to enhance the proposed 

feature by reducing noise, or eliminating information from non-related backgrounds.  

Some researchers have proposed two cropping steps in their pre-processing stage: (1) 

facial area cropping and (2) cropping facial area into patches (or blocks)[61]. Cropping 

facial area for PAD can be considered as implementing a “hard attention” method for 

conventional features to help the method focus on the facial region. Meanwhile, 

dividing the facial region into n × n patches of same size is another popular way to 

produce feature vectors in PAD research [61]. Conventional features are applied on 

these patches, and the final feature vector is the concatenation for the feature vectors 

from different patches[101].  

Dividing the facial area into patches as a pre-processing step, which has been 

shown to improve the performance of many traditional local features [27], is not an 

intuitive move. The possible reason for dividing the facial area into patches is that the 

patches exclude the spatial structure of faces, and help the traditional features focus on 

the global appeared local texture patterns. Some researchers [102] suggested that the 

facial structure information makes the classifier focus on the distinct facial 
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information, which may be more useful for face recognition rather than PAD. By 

following their suggestions, cropping facial regions into patches helps traditional local 

features focus on the spoofing texture differences, rather than the facial spatial 

structures. The classifier can then identify more relevant feature patterns of the 

presentation attack.  

Affine transformations are used to resize the detected facial region into same 

scale for feature extraction to eliminate effects such as image resolution differences. 

Sometimes the affine transformation in the traditional feature-based PAD is considered 

part of facial normalisation. 

The cropping and affine transformation, as a part of pre-processing, are used for 

data argumentation in the deep learning workflow to increase the number of training 

samples. For instance, Li, et al.[103] enlarged the volume of their training datasets four 

times by moving the cropping area to four different directions as shown in Figure. 3.4.  

 
Figure 3.4 Example of data argumentation [103] 

 

Data argumentation may be a fundamental step for deep neural networks, 

because: (1) Deep neural network is a data dependency algorithm and (2) The PAD 

datasets include imbalanced classes.  

Deep learning is reported as a data dependency algorithm, and the successful 

application of deep learning algorithms usually requires large training datasets [104]. 

Most of these have collected of their raw training data from the Internet with relative 

ease. For instance, Imagenet [64] includes more than 14 million images and the size 

of this dataset was around 1TB at 2017. Only images are included in that database. 
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Youtube-8M [105], as one of the famous video datasets that is widely used in 

the video recognition area, includes 5.6 million videos for 3,862 different classes; and 

the total length of this dataset is more than 350,000 hours. However, it is difficult to 

obtain large volume training datasets for biometric facial PAD from publicly available 

datasets. The privacy considerations associated with biometric data restrict the volume 

of benchmark datasets. Additionally, each attack type requires a different data 

collection effort and each data collection efforts requires the involvement of human 

participants.   

The imbalanced data for PAD is another problem, that causes a high risk of bias 

o for the deep leaning model. For instance, CASIA-FASD[27] includes 50 subjects, 

and each subject is provided with three genuine records and nine attacks. If researchers 

consider PAD as a binary classification problem and train their DNN without 

organising data batches carefully, the training data will be imbalanced and the trained 

DNN will tend to classify any input data as the presentation attack.  This is not an 

isolated occurrence. Various presentation attack datasets include imbalanced number 

of samples for each class and insufficient dataset volumes. In this case, the data 

augmentation step is very necessary for applying deep learning algorithms in the field 

of PAD. 

To overcome the drawback of the limited volume of training data, data 

augmentation methods are widely considered in literatures[106], [107]. The input 

frames or images can be cropped, rotated, zoomed in and zoomed out to generate new 

samples that have same labels as the original data.  For instance, an input image size 

is 256×256 pixels and the desired input size of the neural network is 224×224 pixels. 

If researchers apply a cropping process as data augmentation step, each original image 

can generate up to (256-224)×(256-224)=1024 additional samples by cropping a 

224×224 from the original frame. This means that the volume of the original dataset 

can be increased 1,024 times.  Not all of this additional data can provide new 

information to train the neural network. However, the data augmentation still provides 

a possible way to expand the volume of available training data when the original 

dataset is limited. 

There are many other data augmentation methods in deep learning; but , those 

methods are not suitable for the facial anti-spoofing study. For instance, adding noise 

to the original frames is widely applied in many recognition problems. Adding noise 
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will change the image quality of the raw data[108], and some researchers believe that 

image quality differences may be considered as a distinct  characteristic for some PAs. 

Ojala, T. el al. [24]  suggested that high-quality biometric data may help the biometric 

system to detect presentation attacks. Adding noise will confuse the deep learning-

based PAD methods and mislead the model in the training phase. Meanwhile, data 

augmentation methods such as random erasure of some part of the original data may 

obscure important texture differences between genuine and attack presentations. Thus, 

the proposed experiments in this thesis only consider cropping and affine 

transformation for data augmentation. 

 In the proposed experiments, the following methods are applied for data 

augmentation: (1) rotating the original image within a certain angle range (0-20 

degrees), (2) cropping the original images into different sub-images ( normally one 

original frame can be used to generate 50 training samples, which also include the 

facial area ), (3) scaling the original image by applying bilinear interpolation. All of 

these augmented data included facial areas (but the face was not necessarily centred).  

These data augmentation steps can be applied together. For instance, an augmented 

data sample could be rotated 10 degrees, enlarged 20% and cropped around the facial 

area at the same time. 

The angles for rotation and the shear mapping for data augmentation should be 

selected carefully [40]. Large angles for rotation and shear mapping may change the 

2D representation of the 3D facial structures which is not consistent with the real 

world. For instance, paper and video presentation attacks display the biometric sample 

on flat attack artefacts, and there are some works that detect PA by estimating the 3D 

structures from 2D input data [109].  However, rotations with large angles and shear 

mapping processes, which may both change the 2D representation of the input data, 

will increase the difficulties of 3D estimation. For this reason, the data augmentation 

method should be carefully selected for the proposed methods. 

In this thesis, the following experiments which use deep transfer learning 

protocol only applied rotation and cropping to generate training samples. The total 

number of augmented training samples should not be more than the 1/5 of the total 

number of training samples. Other experiments, which use deep neural architectures 

but train the neural network from scratch, should apply all three methods to get a bigger 



 

62  

training set. The total number of augmented training samples should be more than the 

1/3 of the total number of training samples. 

  

3.2.3 Face detection and normalisation 

Some researchers only consider the facial region in the raw data, as the input to 

decrease the computational complexity, and avoid the non-related information from 

the background [32]. There are some more reasons to emphasize the facial region in 

the input data. First, the facial region will include some important characteristics for 

PAD. The ISO document [14] considers the behaviour of occluding and misleading 

the biometric recognition system as a kind of attack that means that: some artefacts of 

PA will only appear at the facial region [96]. Second, the facial region can be 

considered as additional label for the learning models. Some recent work[110] 

provided pixel level labels that emphasized the importance of the facial region in PAD.  

 

Figure 3.5 Example of Haar-based face detection [111] 

 

Face detection and normalisation emphasize the information from the facial 

region and filter out non-related information from the background. Considering face 

detection and normalisation as a pre-processing step can greatly reduce data volume. 

The computational complexity and the processing speed of a PAD system, therefore, 

can be improved by processing the facial area only. In a possible workflow from the 

literature [9] (1) Face detector should be applied at the first step to detect the facial 

region in the input data. (2) Some facial landmark should be detected to confirm the 
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head gesture, (3) A normalised facial region should be calculated by using the head 

gestures; and (4) Some affine transformation method should be applied to get the 

normalised facial region.  

In this pipeline, the face detectors should match the requirements of different 

feature extractors. There is a commonly used face detection method that is based on 

the Viola Jones face detector and implemented by OpenCV[112] (The example of 

applying this face detector can be found at Figure 3.5.). Some proposed novel methods 

in Chapter 4 use this face detector in the proposed experiments. The Viola Jones face 

detector has a good recognition rate for frontal faces in a brighter indoor environment 

and low computational complexity. Unless otherwise stated, the proposed methods in 

the contribution chapters will use Viola Jones face detector from OpenCV[112]. 

Moreover, some algorithms for PAD need the selected face detector to provide 

stable facial region detection in a frame sequence. In the proposed methods, detecting 

facial action units need the detected facial area to be very stable for different head 

positions in a continuous frame sequence to generate smooth facial action unit signal. 

Also, Liu, et al.[62] suggested the use of a face detection method that can extract facial 

regions precisely between the neighbouring frames in their implementation details. 

They claimed that the stable facial regions can help their method provide a “pseudo 

depth mask” for facial region and improve the performance of their PAD system. The 

proposed experiments in this thesis consider both Viola Jones Face detector and the 

DNN based face detector to demonstrate the performance of the proposed works. 

 

Figure 3.6 Example of face normalisation by using the position of eyes [113] 

 

Once the facial area has been successfully detected, the facial region can be 

normalised to help the feature extractor produce consistent results. A good face 

normalisation step can improve the performance of a PAD system by reducing the 

effect of environmental condition changes (e.g. the effect of head motion and camera 

shaking). Two different facial normalisation methods have been applied in the 
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proposed experiments. The first method is based on affine transformations and the 

positions of eyes. When the face is detected, the eye detector, which is based on the 

Haar cascades pre-training model implemented by OpenCV[112], is used to detect the 

left and right eyes in the facial area. The rotation angle is calculated by measuring the 

angle between the line connecting the eyes and the facial bounding box. After this 

facial normalisation process, the rotated image is resized to the desired scale. Fig 3.6 

shows the processing step for this facial normalisation step.  

An alternative facial normalisation method [114] for face normalisation relies on 

detecting 3D facial landmarks. And this method normally has high computational 

costs. After determining the facial area, a 3D facial pose estimation and a 3D facial 

landmark detection step are performed by following an end-to-end neural architecture. 

In [114], researchers introduce the Local Neural Field (LNF) as descriptors for patches, 

and integrate the non-linearity of Conditional Neural Fields [115] together with the 

output of Continuous Conditional Random Fields [116] to represent the relationships 

in both temporal and spatial information. Here, the alternative facial normalisation 

method [114] can capture complex non-linear relationships between pixel values and 

extract accurate 3D facial landmark from the 2D raw input data. The proposed 

experiments can provide better normalisation results by using these facial landmarks. 

 

Figure 3.7 Example of facial landmark detection [114] 

 

The proposed experiments tend to choose the pre-processing step with less 

computational complexity. In the following contribution chapters, only two proposed 
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methods, which extract facial action unit signals as the intermediate feature for PA, 

request to calculate 3D facial landmarks for face normalisation. The rest of the 

proposed methods only need a simple face normalisation step using the position of 

eyes. Perhaps a precisely normalised facial area could improve the performance of the 

proposed methods, but a complicated pre-processing step would significantly increase 

the difficulty of re-implementation. 

3.2.4 Summary for Pre-processing 

Applying a set of pre-processing steps can further improve the performance of a 

PAD system. However, too many pre-processing steps will also increase the system 

complexity. Each pre-processing step will bring new challenges for fine-tuning their 

parameters; and multiple pre-processing steps may make optimising all of the 

parameters virtually impossible. For this reason, each pre-processing method should 

be selected carefully to balance the performance improvements and the difficulty of 

optimizing the parameters.  The challenge of optimizing such parameters for pre-

processing and feature extraction is one reason for exploring the deep learning 

structures in Chapters 5 and 6.   

3.3 FEATURE ENCODING AND CLASSIFICATION  

Extracting useful information from data and encoding this information as a 

feature vector are two important parts of the feature extraction step. After this step, 

classifiers can be applied to obtain a decision about whether the input data is from a 

genuine user or an attack attempt. How to design a robust feature encoder and how to 

improve the performance in detecting PA are the main contributions of this thesis. A 

good feature encoder can produce a feature vector which is robust to multiple 

environment changes. Also, different PAI types can be classified using an effective 

feature space. Evaluating the performance of a feature encoder or a complete PAD 

system is essential for deploying such systems.  Depending on the selection of datasets, 

there are some evaluation metrics which can be selected in different situations for 

performance evaluation and comparison. The following sub-sections will describe 

these issues in detail. 
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3.3.1 Feature Encoder 

In this thesis, the term “feature encoder” is used to describe some algorithm or 

sub-neural network which can map the raw data to a feature vector. As the description 

in the introduction part, some proposed methods in this thesis are focusing on 

developing a novel feature or workflow which can detect PA precisely.  

The proposed works are normally described by following a storyline: (1) 

Providing a distinct characteristic for PAD which can be observed and visualized by 

human experts or the machine itself. This distinct characteristic may follow other 

researchers’ work (such as the dynamic texture changes), or it follows the observation 

by some proposed experiments. (2) Generating an assumption from this observation 

or the visualization results. For instance, the proposed Facial Action Coding Histogram 

(FACH) assumes that the intensity value of the facial action unit may be a distinct 

difference between genuine face and spoofing attacks.   (3) Providing an algorithm 

which follows the observation and the assumption generated above. Testing the 

proposed method by using the widely used datasets and producing a comparison for 

the proposed with the state-of-the-art methods to demonstrate the effectiveness of the 

proposed methods. 

In the deep learning paradigm, researchers can train their DNN from scratch with 

PAD dataset and consider the feature extraction part from various pre-trained neural 

networks which are trained for other tasks (such as image recognition). This thesis also 

attempts to explore novel DNN methods in Chapters 5 and 6. 

3.3.2 Classifier  

In general, the problem of facial spoofing detection is defined as a supervised 

learning problem. As described earlier, two sub-categories are identified for this 

supervised problem: (1) binarized classification problem, and (2) multi-classification 

problem. The mission of a classifier is making predictions about the category to which 

the input data belongs. The multi-classification problem aims to classify the type of 

attack as well. Moreover, the multi-classification problem can be solved by cascading 

multiple binarized classifiers. When a PAD system implements multiple features, the 

results about features or even classifiers can be fused by weighting, voting, etc., to 

achieve the final performance improvement. 
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Here, we briefly introduce two widely used classifiers (SVM[117] and NN[118]) 

which can be used for both binarized and multi-categorised classifications. As a 

supervised learning problem, the i-th sample from dataset is denoted by 𝑥𝑖and the label 

of this sample is 𝑦𝑖 and 𝑖 ∈ [1, 𝑛], where 𝑛 is the total volume of this dataset. Support 

Vector Machine (SVM) is a discriminative classifier formally defined by a separating 

hyper-plane[117]. Being a supervised learning algorithm, the output model of SVM is 

an optimal hyper-plane which can categorize new samples. The original SVM cannot 

be applied to high-dimensional data. For this reason, the kernel trick[119] is applied 

to the original SVM. Here, SVM can be optimised by applying next formula[119]:  

 
[
1

𝑛
∑max (0,1 − 𝑦𝑖(𝑤 ∙ 𝑥𝑖 − 𝑏))

𝑛

𝑖=1

] + 𝜆‖𝑤‖2 
(3.4) 

where 𝑥𝑖, 𝑦𝑖 represent the labelled training data and w is the optimised parameter 

and 𝜆 is the hyper parameter for normalisation part.  Here, 𝑛 is the number of data 

points and 𝑤 is the parameter need to be optimised. [119] 

Artificial Neural Networks (ANN) [118] is another widely used classifier in 

PAD. A Neural Network classifier consists of multiple neurons which are arranged as 

layers. It also aims at mapping an input vector into some output. Theoretically, a deep 

enough neural networks can fit any mathematical function[104]. The classifier for 

PAD can be considered as a special function, and Neural Networks are used to learn 

this function from the training data. Here, ANN is different from DNN. The ANN can 

only learn how to classify the genuine and attack presentation by using Error Back 

Propagation algorithm[104]. It is not deep enough to learn the feature representation 

from the training dataset. And the Stochastic Gradient Descent (SGD)[120] or other 

terms for optimisers are used to represent the optimisation algorithm for a DNN. 

3.4 DATASETS AND EVALUATIONS 

There are two important factors to evaluate the PAD algorithms: Datasets and 

Evaluation Metrics. By using these two factors, researchers can compare their works, 

and analyses the advantages and disadvantages of their methods. The following 

subsections provide the widely used evaluation metrics and datasets. The proposed 

works in the following Chapters use these datasets to train the model and demonstrate 

the effectiveness by comparing with the state-of-the-art methods. 
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3.4.1 Evaluation Metrics 

In a biometric system, the achievement of a high recognition rate is a basic 

requirement of the system. In order to understand the distribution of wrong 

classifications and evaluate the performance of a PAD algorithm, researchers have 

developed some evaluation metrics to measure performance. These evaluation metrics 

help the comparison of various methods.  Basically, the performance of the system is 

often measured in terms of rates of these two different errors, False Accept Rate (FAR) 

and False Reject Rate (FRR): 

 
𝐹𝐴𝑅 =

𝐹𝐴

𝑁𝐼
     ,        𝐹𝑅𝑅 =  

𝐹𝑅

𝑁𝐶
 

                                     

(3.5) 

Here, FA is the total number of false acceptances made by the system, FR is the 

total number of false rejections, NC is the number of client/genuine accesses, and NI 

is the number of impostor/attack accesses. The FAR is the false accepted rate and the 

FRR is the false reject rate. An widely used measure metrics combines these two ratios 

into the Half Total Error Rate (HTER), which is represented as follows[14]: 

 
𝐻𝑇𝐸𝑅 = 

𝐹𝐴𝑅 + 𝐹𝑅𝑅

2
 

                                     

(3.6) 

Also, the Equal Error Rate (EER) is another widely used evaluation metric which 

is used to determine a threshold value for its FAR and its FRR. When FAR and FRR 

are equal, the common value is referred to as the Equal Error Rate. The value indicates 

that the proportion of false acceptances is equal to the proportion of false rejections. It 

can represent the performance of a PAD algorithm in one number. In this thesis, EER 

is used for ease of comparison with the state-of-the-art. 

More recently, two new metrics have been proposed for the evaluation of PAD 

systems, namely [14]:(1) Attack Presentation Classification Error Rate (APCER),and 

(2) Bona fide Presentation Classification Error Rate (BPCER). The APCER for a given 

Presentation Attack Instrument Species (PAIS) can be calculated as the formula: [14] 

 

𝐴𝑃𝐶𝐸𝑅𝑃𝐴𝐼𝑆 = 1 − (
1

𝑁𝑃𝐴𝐼𝑆
) ∑ (𝑅𝐸𝑆𝑖)

𝑁𝑃𝐴𝐼𝑆

𝑖=1

 

                                     

(3.7) 

where 𝑁𝑃𝐴𝐼𝑆  is the number of attack presentations for the given presentation 

attack instrument (PAI) species [14]:. 𝑅𝐸𝑆𝑖 takes the value 1 if the i-th presentation is 
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classified as an attack presentation and a value of 0 if classified as bona fide 

presentation. 

The BPCER is defined as follows: [14] 

 
𝐵𝑃𝐶𝐸𝑅 =

∑ (𝑅𝐸𝑆𝑖)
𝑁𝑃𝐴𝐼𝑆
𝑖=1

𝑁𝐵𝐹
 

                                      

(3.8) 

where 𝑁𝐵𝐹 is the number of bona fide samples. 𝑅𝐸𝑆𝑖 takes the value equals to 1 

if the i-th presentation is classified as an attack presentation and value equals to 0 if 

classified as genuine samples. 

However, in the following contribution chapters, the performances of the 

proposed methods are reported by only using HTER or EER. The main reason behind 

this is providing a fair comparison with the state-of-the-art methods. Also, various 

datasets use HETR or EER, which can report performance with a single number, as 

their default evaluation metrics.  The proposed experiments in the contribution 

chapters merely following the requests of datasets. 

3.4.2 Datasets 

The quality and the volume of existing datasets can be considered as an 

important index for the developments of PAD researches. One of the reasons for the 

rapid developments in this area is that high-quality datasets are published. These 

benchmark datasets offer comparison of the performance with the existing baseline 

algorithms to demonstrate the advantages of new algorithms. Also, deep learning-

based PAD algorithms as an emergent rising branch of software-based PAD highly 

rely on the datasets with larger volume and better quality. The importance of datasets 

is repeatedly emphasized by the developing of the Deep learning algorithms. 

Therefore, collecting new datasets will always be an important mission in the future 

research. Here we list some important datasets in the area of PAD. The following 

datasets, which are widely used in the past several years, offer fair comparison with 

various state-of-the-art methods. The proposed works in the following Chapters are 

trained and evaluated by using these datasets. 

Most of the datasets aims to collect various scenarios for the paper attack and 

the video attacks. NUAA Photograph Imposter Database[121] was designed for paper 

attacks which contains three sessions with changing environmental conditions. They 

used the camera with resolution of 640 × 480 pixels at 20 fps to record 15 subjects; 



 

70  

and each subject was recorded with 500 images. In order to make the dataset harder 

for the motion-based algorithms, Tan, et al. [121] requested their subjects try their best 

to keep their face motionless in front of the camera. When capturing the data, their 

subjects minimised the facial movements such as the eye-blinking.  

 

Figure 3.8 Example of Idiap REPLAY-ATTACK database[27] 

 

The REPLAY-ATTACK database [27] is another widely used face spoofing 

dataset which contains various attack behaviours and contains 1300 video clips. There 

are 50 clients recorded for both real access attempts and 3 different attack behaviours. 

Two illumination conditions were considered: controlled and adverse. For each 

condition, three attack categories were included: (1) print attacks, (2) mobile attacks, 

and (3) highdef attacks. The mobile attacks and highdef attacks can both be categorised 

as video attacks but use different sizes of the screen with different resolutions. They 

also considered various conditions about whether the attack device is fixed in front of 

the camera:(1) hand-based attack (the attack devices were held by hand) and (2) fixed-

support attacks (the attack devices were fixed on a stand). The Replay-Attack database 

divides the whole datasets into three subsets, which are: the training set, the 

development set, and the testing set. 
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Figure 3.9 Examples of CASIA-FASD database, from left to right: (a) wrapped paper 

attacks, (b) cut paper attacks, (c) video attack, (d) real face [122] 

 

The CASIA Face Anti-Spoofing database[122] consists of 600 video clips which 

include both real and spoofing access attempts, totally, there are 50 individuals listed 

in the dataset, where the spoofing artefacts were produced from high-quality records 

of genuine faces. Three different attack artefacts are included: warped photo attacks, 

cut photo attacks, and video attacks. All of them were designed to simulate real attack 

attempts. For instance, the cut photo attack is a special photo attack, in which a high-

quality face is printed on paper, but where the area surrounding the eyes is cut to 

subvert eye-motion-based spoofing attack detection methods. Three different image 

resolutions were used in this dataset to simulate different usage conditions, namely 

low resolution, normal resolution, and high resolution. In their evaluation scenarios, 

50 subjects were split into two categories: the training set (20 subjects) and the test set 

(30 subjects). They also designed seven detailed scenarios which are: (1) low-quality, 

(2) normal-quality (3) high-quality, (4) warped photo attacks, (5) cut photo attacks, 

and (6) video attacks. The (1), (2), and (3) scenarios are used to test the robustness at 

different image quality conditions.  The (4), (5), and (6) scenarios are used to simulate 

different attack behaviours. The overall test scenario (7) provides combined 

performance test results for all attack types and qualities. 

The MSU mobile face spoofing database [123], which consists of 280 video 

recordings of real and fake faces, addresses the challenge of using a low quality mobile 

camera. They used a built-in camera of MacBook Air 13-inch laptop ( 640 × 480 pixels ) 

and a front camera of a Google Nexus 5 Android phone ( 720 ×480 pixels ) to capture 

videos with at least nine seconds duration for all 35 subjects. This dataset includes 

both video and paper attacks. The high-quality biometric samples were taken by using 
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a Canon 550D camera and the back camera of an iPhone 5S. There are two screens 

used to generate video attacks which are an iPad Air screen and an iPhone 5S screen. 

For the printed attacks, HD pictures (5184×3456  pixels ) were printed on A3 paper 

using an HP colour Laserjet CP6015xh printer. They require two subject-disjoint 

subsets for training and testing (15 and 20 subjects) in their evaluation protocol. 

The OULU-NPU dataset[125] consists of 4950 samples from both genuine and 

attacks.  Totally, 55 subjects were recorded by 6 different cameras under separate 

conditions. Each condition corresponds to a different combination of illumination and 

background. This dataset includes print attacks (created using two printers) and video-

replay attacks (using two different displays).  

 

Figure 3.10 Example of Rose-Youtu database [124] 

 

The Rose-Youtu [124] dataset consists of a larger number of video clips. This 

dataset includes 3350 videos from 20 subjects which were recorded by 5 different 

cameras. They also include different attack types which consist of printed paper attack, 

video display attack, mask attack and video replay attack.  

 

Figure 3.11 Example of HKBU MARs database [126] 
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On the other hand, it is also worth considering how much the attacker is going 

to spend to attack. With the popularity of 3D printing technology, the price of high-

precision masks that were originally expensive have become affordable. However, this 

price is still relatively expensive for creating a data set. So even in recent years, it is 

still difficult to find a large amount of mask attack data sets. In addition, due to the 

lack of an open flexible mask dataset, it is still difficult for researchers to evaluate the 

performance of high-precision flexible material masks. 

The HKBU MARs [126] is a dataset for high-quality 3D mask attack, which 

includes 2 types of 3D masks (6 from Thatsmyface.com and 2 from REAL-F.) and 

contains 120 videos (36000 frames) recorded from 8 subjects. This dataset uses a  

 

Table 3.1 Datasets for PAD 

Datasets Sensors Resolution  Attacks Subjects 
Released 

date 

NUAA 

Impostor 

Database 

[121] 

Webcam 640×480 Photo Attack 15 2010 

Yale-

Recaptured 

Database 

Kodak C813 

8.2MP  

Omnia i900, 

with 5MP 

64×64 

(following 

their pre-

processing) 

Video Attack 

(LCD) 
10 2011 

Print-Attack 

Database 

Apple 13-inch 

MacBook 
320×240 

Photo Attack 

(printed); 

Video Attack 

50 2011 

Replay-

Attack 

Database [27] 

Apple 13-inch 

MacBook 
320×240 Video Attack 50 2012 

CASIA-

FASD  

[122] 

Sony NEX-5 

camera,  

Two different 

USB Camera 

640×480 

1280× 720 

1920×1050 

Photo Attack 

(wrap and cut) 

Video Attack 

50 2012 

3D Face 

Mask DB 
Kinect 1.0 

640×480 

 

3D Mask 

Attack 
17 2013 

MSU-MFSD 

Database 

[123] 

Google Nexus 

5 

MacBook Air 

13-inch 

640×480 

720×480 

Photo Attack 

Video Attack 
35 2015 

HKBU 

MARs [126] 

Logeitech 

C920 
1280×720 

3D Mask 

Attack 
8 2016 

Oulu-NPU 

Database 

[125] 

Samsung 

Galaxy S6 

edge, etc 

 

1920 ×1080 

(HD front 

camera) 

Print Attack 

Video attacks 
55 2017 

Rose-Youtu 

[124] 

Hasee  

Huawei 

iPad 4 

iPhone 5s, etc. 

640×480 

1280× 720 

 

Print Attack 

Video attacks 
25 2018 
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Logeitech C920 web-camera (1280×720 resolution) to record their subjects and each 

video contains 300 frames with 25fps frame rate. 

Table 3.1 summarises these widely used datasets by using following factors: (1) 

What sensor the dataset used to collect the video? (Sensor category in the table) (2) 

What resolution is used in their dataset? (resolution category in the table) (3) Which 

attack types the dataset is considered in their work? (4) How many subjects are 

considered in their dataset? (5) And the released date for this dataset.  

From the middle of the 2017 to 2018, various datasets for PAD are released 

which include more subjects, various type of cameras, various attack types (such as 

silicon mask attack). However, the proposed works and experiments are nearly 

finished in that moment. The following descriptions are proposed to demonstrate the 

main advantages about these new datasets and to show the possible directions in the 

future. Firstly, the volume of the dataset is significant improved recently. For instance, 

the Unicamp Visual Attack Database (UVAD)[127] consists of 17,076 bona fide and 

attack presentation videos corresponding to 404 identities. However, they only 

consider the video attack in this dataset which is not enough for the robust PAD 

system.  Meanwhile they only consider LBP and Histogram of Oriented Gradients 

(HOG) in their work and use Area Under Curve (AUC) to measure the performance 

which means other researchers can hardly to compare with the state-of-the-art methods 

in their dataset. Secondly, various cameras are considered in one dataset to record 

different attack types under different situations. For instance, HKBU-MARs consider 

seven different cameras under six different illumination conditions. Thirdly, multi-

model data is considered in the dataset. For instance, the CASIA-SURF dataset[128] 

collect RGB, Depth, and IR data together. However, the proposed work only considers 

the RGB data which is easy to get. Finally, some latest dataset considers various attack 

types. For instance, Liu, Y. et al.[96] consider 13 types presentation attacks in their 

dataset which is designed for the few-shot facial PAD. However, they released their 

dataset in 2019, and their definition about few-shot facial PAD protocol is different 

with the proposed work. 

3.5 SUMMARY 

This chapter provided a basic experiment pipeline that will be used in the 

following contribution chapters. The experimental design, benchmark datasets and 
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evaluation metrics, which are considered in the proposed experiments in the following 

chapters, were provided as the materials that make the subsequent descriptions 

understandable and consistent.  

Selecting a set of pre-processing algorithms is an essential task for some 

conventional features; and this chapter also introduced some widely used pre-

processing algorithms such as face detection, face normalisation, and colour space 

transformation. The data augmentation, as an important pre-processing step for the 

deep learning-based methods, was also introduced in this chapter. The proposed 

experiments in the following chapters will follow the description in this chapter to 

select and implement the pre-processing methods.  

This thesis also provides technical details for 10 widely used benchmark datasets 

which were published from 2010 to 2018 and compare these datasets by sensor types, 

resolutions, attack types, and the number of subjects. Some datasets that are not 

considered in this thesis are also briefly reviewed at the analyses part in Section 3.4. 

In the following chapters, some of these datasets and evaluation metrics will be used 

to demonstrate the effectiveness of the proposed novel PAD methods. 
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Chapter 4: Novel Traditional features for 

Presentation Attack Detection   

This chapter introduces some novel conventional features for PAD that produced 

promising performances when evaluated using standard datasets. The motivation for 

developing these features is presented in Section 4.1. Then, a baseline experiment 

section is provided in Section 4.2. A novel feature named Facial Action Unit 

Histogram (FAUH) is described in Section 4.3, based on an encoding system for 

human facial movements. Then, three novel PAD features based on temporal texture 

changes are presented in Section 4.4 (Motion History Patterns (MHP),). Finally, some 

summaries are provided at Section 4.5. Part of this chapter was adapted from the 

published paper in the List of Publications.  

4.1 Motivation  

Despite the rising popularity and success of deep learning techniques in many 

areas of pattern recognition, the interest in developing conventional features for PAD 

has continued. One reason for this is the need to have a better understanding of the 

underlying mechanisms involved so that future threats can be better dealt with.  It is 

also important to note the relative performances of conventional and deep learning 

approaches, especially with limited training data volumes. 

As mentioned in Chapter 3, an important reason for the dramatic growth of deep 

learning in recent years is that DNNs provide feature encoders which have 

significantly advanced the state-of-the-art boundary through the use of large amounts 

of training data. Moreover, a DNN-based feature encoder can be trained with 

commonly available large datasets. And these feature encoder networks are 

transferable between different applications with a relatively short training time and a 

relatively small datasets for some computer vision tasks.  

The challenge of using deep learning approaches in PAD research is the absence 

of published datasets with sufficiently large volumes of data. This situation requires a 

more careful examination of the characteristics of the PAD problem. This thesis 

explores the possibility that deep learning techniques can provide better performance 
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for PAD, but this would require a more sophisticated optimisation and design of the 

PAD system.  

In order to better understand the nature and constraints of PAD, the proposed 

methods began with the exploration of conventional but novel features. This research 

began through observing data characteristics and making some assumptions about the 

nature of data. Then, some novel conventional features were designed and evaluated 

by using published datasets. And the results are compared with baseline algorithms 

and the state-of-the-art methods.  These explorations in turn guided the design of 

DNN-based PAD methods in Chapters 5 and 6. 

For this reason, the following experiment descriptions will follow the traditional 

processing steps: observing characteristics of PAD dataset, proposing conjectures and 

assumptions, designing traditional feature encoder algorithms, and evaluating the 

performance of the designed features to verify the assumptions. 

Dynamic (time-varying) biometric data provide allows humans to distinguish 

whether they come from genuine face presentations with more confidence [19]. 

However, as stated in Chapter 2, some of the best performing features in published 

evaluations are often designed for static biometric samples. For example, Boulkenafet 

et al. [32]   used the combination of colour space transformation and traditional texture 

feature descriptors and achieved a high-performance level on many widely-used 

datasets, by only using static biometric data. While temporal information may be 

useful for PAD; work continues towards finding an efficient way to use this 

information. This thesis presents some new features focused on using temporal 

information efficiently to detect presentation attacks.  

Some researchers believed that Convolutional Neural Networks (CNNs) can 

model texture features (such as edges and texture patterns) in their first two or three 

convolutional layers [50] .  And they can model some object level features (such as 

object parts) in their last two or three convolutional layers[129]. We use texture level 

features to represent such features as it can hardly be described by using human 

language (e.g. various texture patterns). And we use object level features to represent 

those features which are likely to be complete object parts and can be easily described 

using human description.  

Firstly, some baseline experiments are presented in Section 4.2.  
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4.2 Baseline experiments  

Before introducing the novel algorithms proposed in this thesis, a commonly 

used algorithm is presented to establish a performance baseline and to demonstrate the 

experiment workflow using a traditional feature. This will establish some basic 

concepts that will be used in subsequent experiments. Here PAD is formulated as a 

binary classification problem. In subsequent sections, different formulations with more 

classes are used depending on the application. 

There is a long history of using Local Binary Patterns (LBP) as an efficient 

feature descriptor in the PAD area. Here, we follow Boulkenafet et al.’s  [32]   to obtain 

the feature vector by modelling the micro textures using LBP.  

Firstly, one of the common observations in PAD is that texture difference 

between genuine presentations and spoofing attacks is often easily observed by visual 

examination. Although, these face images captured from presentation attacks may look 

very similar to the images captured from live faces, they do include some significant 

differences which can be used to detect attacks. The reason behind this phenomenon 

is the real human faces and attack artefacts reflect light in different ways. And real 

human faces are a complex non-rigid 3D objects whereas a photograph is a planar rigid 

object. This may cause different specular reflections and representations of shades. 

The texture representations for PA instruments may also be considered as some 

significant characteristics for PAD. Furthermore, presentation attack images may have 

different image quality due to different recapture conditions. All of these observations 

can be modelled by a good micro texture detector.    

 

Figure 4.1 Block Diagram of the baseline method 

 

A powerful texture descriptor is selected for this baseline experiment. The LBP 

texture descriptor, introduced by Ojala et al.[24] [8], is defined as a grey-scale 

invariant texture descriptor.  It is derived from a mapping function of local 
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neighbourhoods for each pixel. The relations of local pixel patterns are modelled by a 

binary code; and a histogram of these binary code is generated as the feature vector. 

LBP is a powerful texture descriptor and is widely used for various applications due 

to its computational efficiency.  

The original LBP operator [24] forms labels for the image pixels by thresholding 

the 3×3 neighbourhood of each pixel with the centre value and considering the result 

as a binary number. The histogram of these 28 = 256 different labels can then be used 

as a texture descriptor. 

The LBP has been extended to use different sizes of neighbourhoods set by using 

a circular neighbourhood and bilinearly interpolating values at non-integer pixel 

coordinates. [24]. This method allows any radius and number of pixels in the 

neighbourhood set. The notation (P, R) is generally used for pixel neighbourhoods to 

refer to P sampling points on a circle of radius R. The calculation of the LBP codes 

can be formulated as follows: 

 𝐿𝐵𝑃𝑃,𝑅 = Σ𝑝=0 
𝑃−1𝑆𝑖𝑔(𝑔𝑝 − 𝑔𝑐) ∗ 2

𝑝 (4.1) 

 𝑆𝑖𝑔(𝑍) = {
1                   𝑖𝑓 𝑍 > 0
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.2) 

where 𝑔𝑐 corresponds to the gray value of the central pixel (𝑥𝑐, 𝑦𝑐), 𝑔𝑝 refers to 

gray values of P equally spaced pixels on a circle of radius R, and Sig() defines a 

thresholding function as (4.2). 

Two pre-processing algorithms are considered in these experiments: facial 

cropping and facial normalisation. The implementation follows the descriptions in 

Chapter 3. Once the feature vector is computed by 𝐿𝐵𝑃8,1, we use a nonlinear SVM 

classifier with a radial basis function kernel for determining whether the input image 

corresponds to a genuine face presentation or not. The SVM classifier is first trained 

using a set of positive (genuine presentations) and negative (attack) samples. The 

performance of this baseline algorithm is reported by EER for comparison. LibSVM 

Library [9]  is used for SVM implementation in all experiments. The spoofing 

detection module takes only about 10.5ms in average to process an image on a 

MacBook pro (2012) using un-optimized MATLAB code. 
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Table 4.1 Performance of The LBP As Baseline Feature For Multiple Dataset 

 

Datasets 
NUAA 

[121] 

REPLAY-

ATTACK 

database 

[27] 

CASIA-

FASD 

[122] 

MSU-

MFSD 

[123]  

HKBU 

MARs 

[126] 

Rose-

Youtu 

[124] 

EER (%) 12.90% 16.10% 24.80% 14.70% 55.8% 27.7% 

 

Performance results for various datasets are reported in Table 4.1. The following 

observations can be made from these results: (1) The worst result at HKBU MARs 

demonstrate that high-quality masks cannot be easily detected by using static texture 

descriptors. As mentioned in Chapter 2, temporal information can easily overcome this 

problem. The temporal features may be computationally complex and not represent 

competitive performance for paper and video attacks. But they have a good potential 

for mask attack detection. Also, there may be room for improvement for temporal 

features for paper and video attacks. (2) The performance differences at different 

datasets also demonstrate that the type of camera used for image capture may highly 

affect the performance of the baseline algorithm. Thus, it is important to evaluate any 

novel feature using multiple datasets. This principle will be adopted in the evaluations 

reported in the following chapters. 

4.3 OBJECT LEVEL TEMPORAL FEATURE: FACIAL ACTION UNIT 

HISTOGRAM (FAUH) 

The idea about designing an object level feature was inspired by some challenge 

response algorithms and some PAD algorithms detecting unconscious facial 

movements in the literature. Some researchers in this area observed that paper 

attackers and mask attackers cannot easily follow the request of the facial anti-spoofing 

system to complete some basic facial movements. For instance, the attackers using 

original paper attack method cannot respond to the request of biometric system to 

“blink eyes”. And some other researchers focused on detecting additional facial 

movements to detect presentation attacks. In some early work, researchers, also using 

challenge response approaches, asked users to give a smile, turn their face etc. Such 

techniques are especially effective for detecting artefacts such as photographs on 

printed-paper. [122]  
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However, such simple challenge-response techniques may experience a 

significant performance drop with video playback attacks. And the problem of 

usability may also be an issue for some challenge-response techniques, as these 

techniques may take more time and require more effort from users.  

Facial movements can be categorised into conscious movements and 

unconscious movements [19]. As described in Chapter 2, there are multiple 

unconscious facial movements that can be detected within the face area, such as lips 

movements, eye blink movements, eye ball movements. The idea of FAUH as PAD 

features starts with modelling the relationship between the facial spoofing attack and 

some unconscious facial movements.  

 

Figure 4.2 Example of AU signal visualization for different attack types. The x-axis 

represents different frame numbers of a video sequence and the y-axis represents the 

intensity value of the AUs at that frame. In this figure, different colours are used to 

distinguish different AU signals. 

 

The key challenges in pursuit of these goals are (1) How to get a reliable 

symbolic representation of the variety of facial movements? (2) How to model the 

relationship of this representation and facial spoofing detection? 
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The Facial Action Coding System (FACS), suggested by the Carl-Herman 

Hjorstjö [130] in 1963, is designed to represent facial muscular activity for emotion 

analysis in psychological research. Ekman, P., et al [131] used this concept in an 

attempt to observe and interpret facial representation for automatic emotion 

recognition. Until now, FACS-based approaches remain popular for facial emotion 

analysis, avatar generation etc. [131]. The facial Action Units (AUs) may be 

categorised as additive or non-additive, depending on whether the triggering of an AU 

implies the triggering of other AUs [132] . Attack behaviour may be easier to classify 

by combining multiple AUs in the additive group as it is more difficult to construct an 

attack that ensures co-activation of multiple AUs.  This is one of the reasons we chose 

groups of AU signals to develop our features.  

Ekman,P et al. [131]  defined 46 AUs through the observation of facial structure 

and muscle movement. Mihai Gavrilescu [132] suggested that not all AUs are effective 

at individual recognition and facial anti-spoofing. Cohn et al 's work [133] suggests 

that 13 AUs are stable over time and distinctive in identification (AU1, AU2, AU4, 

AU5, AU6, AU7, AU10, AU12, AU14, AU15, AU18, AU20, AU24). Here, AU1 

means inner brow raised; AU2 shows outer brow raised; AU4 demonstrate brow 

lowered; AU5 means Upper lid raised; AU6 means cheek raised; AU7 shows lid 

tightened; AU10 shows upper lip raised; AU12 shows lip corner pulled; AU14 means 

dimpled appeared; AU 15 means lip corner depressed; AU18 means lip puckered; 

AU20 shows lip stretched; and AU24 shows lip pressed.  

The facial expression recordings and the individual identification tests of 85 

people show the potential of using facial movements in a person recognition 

system[133]. Mihai Gavrilescu [132] extended Cohn et al.’s study by analysing micro-

expressions and introduced AUs to facial anti-spoofing usage. Gavrilescu suggested 

that a micro-expression-based personal identification system may be harder to subvert 

due to correlations between AUs signal. Using the taxonomy of [134], the system 

in[132] can be categorised as a person-specific face anti-spoofing approach. However, 

the accuracy of a person-specific face anti-spoofing approach is limited by the smaller 

size of the training data available for each person. Also, facial anti-spoofing is a sub-

function of Mihai Gavrilescu 's [132] work, which requires the person recognition 

system to also work with FACS. This work, also requires information regarding the 

vertical distance from eyes (E) to brows (EB) (E–B distance), from mouth peripherals 
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(MP) to eyes (E) (MP–E distance) and from cheek internal extremities (CIE) to mouth 

centre (MC) as part of the feature vector.  

The FAUH algorithm proposed in this thesis is based on the idea of using FACS 

for facial spoofing detection and attempts to provide a more general framework that is 

not person-specific and independent of a facial person recognition system. The second 

key problem identified above is to model the relationship between the facial 

movements’ symbolic representation and the facial spoofing detection. Before we start 

to think how to model this relationship, an initial visualisation experiment is helpful to 

illustrate the potential of FACS for facial spoofing detection.  

Firstly, the proposed visualisation experiment selects a fixed frame length as a 

hyper-parameter to cope with the different video lengths in the different datasets.(In 

this thesis, “parameters” indicate the trainable parameters and “hyper-parameters” 

indicate the pre-defined parameters, which are selected by researchers and can be 

optimised in the experiments.) Then, the proposed visualisation experiment feeds the 

fixed-length frame sets to a Facial Action Unit Detector which includes a pre-trained 

end-to-end model to extract the multiple Facial Action Unit labels from each frame. 

For each Action Unit signal within one frame, the end-to-end model will provide the 

classification results about which Action Unit exists and provide the intensity scores 

about this AU for each frame. Then, the intensity scores for AUs are concatenated and 

we name this temporal representation as the facial action units intensity signal in the 

following descriptions.  

The visualisation experiment is to show the visible differences of the temporal 

intensity signal between spoofing attack and genuine presentations. Figure 4.2 presents 

examples of Facial Action Unit intensity signals and illustrates their potential 

capability to distinguish between genuine presentations and spoofing attack attempts. 

In this figure, the x-axis represents different frames and the y-axis represents the 

intensity values of AUs at that frame. Different colours are used to distinguish different 

AU signals.  It is easy to identify that the intensity level of facial action unit signals 

for a real face are different from that for fake face presentations. For video replay 

attacks, which have the greater potential for subverting facial movement-based 

spoofing detection, there is an indication of some identifiable differences with genuine 

presentations as shown in Figure 4.2. The proposed method is based on the assumption 
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that the distribution of AU intensity signals can represent some significant difference 

between real presentation attempts and spoofing attacks. 

Methodology 

The proposed method can be defined as follows in Figure 4.3. G is defined as 

the index set of all the AUs, which include N elements. S is the selected subset of G 

and j is any element belonging to S. 

 𝑖 ∈ G = {1,2, … , N} (4.3) 

 𝑗 ∈ S ⊆ G, |𝑆| = 𝑛, 𝑛 ∈ [1, 𝑁] (4.4) 

 

 

Figure 4.3 Block Diagram of the FAUH method 

 

The mapping function f represents any AU detector which can extract 𝐴𝑈𝑘
𝑗
  from 

the k-th frame. Here, 𝐴𝑈𝑘
𝑗
  is the intensity value of the j-th AU at the k-th frame, where 

K is total number of frames of input video. 

 𝑓 
𝐴𝑈 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟,𝑗
→         𝐴𝑈𝑘

𝑗
      𝑤ℎ𝑒𝑟𝑒 𝐴𝑈𝑘

𝑗
 ∈ [0,5],    𝑘 ∈ [0, 𝐾] (4.5) 

The hist(A, B) function is then used to calculate a B-bins histogram 𝐻𝐵
𝑗
  from the 

input data array A.   

 𝐻𝐵
𝑗
= ℎ𝑖𝑠𝑡(𝐴𝑈𝑘

𝑗
 , 𝐵) (4.6) 

The proposed feature H is generated by concatenating all the calculated 𝐻𝐵
𝑗
. 

 H = 𝐻𝐵
1 ∥  𝐻𝐵

2 ∥ ⋯  ∥ 𝐻𝐵
𝑗
∥ ⋯ ∥  𝐻𝐵

𝑛 (4.7) 

Where if p, q are column vectors 𝑝𝑇  ∥ 𝑞𝑇 = (𝑝1, … 𝑝𝑚) ∥ (𝑞1, … 𝑞𝑟)  =

(𝑝1, … 𝑝𝑚, 𝑞1, … 𝑞𝑟) . To model the temporal AU signal, we firstly consider the 

histogram function which is widely used in the traditional features such as LBPs. We 

named the proposed novel feature Facial Action Units Histogram (FAUH) to 
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encapsulate this information for the detection of biometric presentation attacks without 

the need for active user cooperation. Here we provide a block diagram to show the 

processing workflow. In Fig. 4.3, video frames I were used to generate Facial Action 

Unit signals by using an AU detector. Then, the AU histogram was calculated by a 

histogram function 𝐻𝐵
𝑗
= ℎ𝑖𝑠𝑡(𝐴𝑈𝑘

𝑗
 , 𝐵) . Finally, the histograms 𝐻𝐵

𝑗
for different AUs 

were concatenated to form a feature vector H. 

Experiments and results for FAUH 

The accuracy of AU signals is important in the proposed approach. Two different 

AU detectors are used to evaluate the influence of this accuracy: OpenFace project 

C++ open source implementation [135] and Temporal-based Action Unit Detection 

(TAUD) [136].  To assess the effectiveness of the proposed facial spoofing detection 

method two presentation attack detection datasets are used: the CASIA-FASD dataset 

[122] and the Replay-Attack dataset[27]. These two datasets are the most widely used 

datasets for presentation attack detection, which contain several recordings of the real 

client accesses and recordings of various spoofing attack attempts.  They offer a fair 

comparison with the state-of-the-art approaches to show the effectiveness of the 

proposed method.  

Table 4.2 CASIA-FASD overall test results with different AU selections 

 

 OpenFace (EER) TAUD (EER) 

G1 42.37% 48.71% 

G2 39.11% 49.25% 

G4 36.77% 44.13% 

G1+G2 37.89% 47.82% 

G1+G2+G3 35.91% N/A 

G1+G4 26.41% 43.39% 

G2+G4 25.56% 41.21% 

G1+G2+G3+G4 21.11% 41.89% 

 

The AU detector from the OpenFace project is used to estimate facial action unit 

signals from the image sequences using the pre-trained Constrained Local Neural Field 

(CLNF) for facial landmark detection[137]. In our experiment, the OpenFace AU 

detector was able to estimate 18 AU active signals and 16 AU intensity signals in real-

time (20-30 fps) without any GPU support. The TAUD Action Unit detector [136] , 
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also uses a pre-trained model which was trained and evaluated using a subset of the 

SEMAINE database[138]. This dataset is much smaller than the one used to train the 

OpenFace AU detector [135]. The TAUD AU detector can only estimate 7 AU signals. 

Both of the implementations can work on a single CPU machine without GPU support 

in real-time.  

In our experiment, we define some AU groups to study the efficiency of different 

AU locations. To make our description clear, we define G1 to represent an AU subset 

which includes AUs around the brow (AU1-4), G2 to represent an AU subset which is 

related to blinks and eye-lid movements (AU5-7, AU41, AU45), G3 to represent an 

AU subset around the nose (AU9) and G4 to describe an AU subset related with the 

lip and the cheek (AU10-28).  

There are more than 50 action units which can be detected in theory and the 

selected subset of Action Units in our experiment includes 18 AU active signals and 

16 AU intensity signals.  When we faced with this situation, some questions naturally 

arise: which FAUs subset is more related with facial spoofing detection? And why 

they are so representative of the spoofing behaviour?  To answer these questions, we 

define different groups of AUs and also run feature selection algorithms in the 

experiments. The definition of groups, based on the location of different facial action 

unit, has potential to make the decision of this facial anti-spoofing system explainable. 

The intensity value of AUs needs to undergo a discretization process to calculate 

histograms for better performance. 

Table 4.3 CASIA-FASD test results in terms of EER (%) at different Scenarios:(1) 

low quality, (2) normal quality and (3) high-quality (4) warped photo attacks, (5) cut 

photo attacks, (6) video attack, and (7)overall test 

 

 1 2 3 4 5 6 7 

LBP [122] 16.5 17.2 23.4 25.1 17.6 26.7 25.0 

FAUH 22.1 20.7 21.4 16.3 17.1 28.5 21.11 

 

Table 4.4 Replay-Attack DB overall test 

 

 Dev (EER) Test (HTER) 

LBP [122] 17.9 13.7 

FAUH 11.6 12.9 
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This section discretises the continuous AU intensity values into B=8 bins. In the 

experiment, a Support Vector Machine (SVM) with the RBF kernel is used as the 

classifier for comparison with other published results using the CASIA-FASD[122] 

and Replay-Attack datasets[27]  offering a fair comparison with the state-of-the-art 

methods. The experiments use a four-fold subject-disjoint cross-validation protocol 

using the CASIA-FASD training set due to the absence of a development subset for 

this dataset[122]. The performance is reported by using the Equal Error Rate (EER) 

on the test set. The evaluation protocols of the Replay-Attack database[27]  require 

producing the EER on the development set and the Half Total Error Rate (HTER) on 

the test set. The usefulness of different facial action units and groupings is evaluated 

by the pre-defined CASIA-FASD overall test[122]. The results of different facial 

action units and groupings are reported in Table 4.2. From this table, the AU features 

using the OpenFace detector are seen to result in better system performance. This 

suggests that the accuracy of AU detector can affect the final performance of spoofing 

detection. In general, AUs around the eye-lid (G2) and the AUs around the lip (G4) 

are more sensitive to spoofing behaviour. Table 4.2 also suggests that performance can 

be improved by combining different AUs into groups. Table 4.3 and Table 4.4 show 

results for the CASIA-FASD dataset[122] and Replay-Attack datasets[27].  

The grey-scale LBP is used as a baseline algorithm for comparison. From Table 

4.3, it is easy to notice that the Action Unit feature represents better results for warped 

photo attacks and cut photo attacks. And the proposed FAUH shows better results at 

overall tests (scenarios 7), which is an encouraging result to demonstrate the potential 

of using facial action unit signals. 

Table 4.5 Comparison with the state-of-the-art at CASIA-FASD and Replay-Attack 

DB overall test 

 CASIA-FASD (EER) Replay-Attack DB 

(HTER) 

LBP-baseline 25.0 13.7 

DMD 21.8 3.8 

Motion-Meg 14.4 0 

FAUH(Proposed) 21.1 12.9 

 

Table 4.5 represents the results of the comparison between the proposed method 

and some state-of-the-art methods, which include the initial results of different 

attempts on the CASIA-FASD [122] and the Replay-Attack datasets[27].  
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Table 4.5 shows the potential capability of AU signals for attack detection by 

comparison with base-line LBP features and other dynamic approaches.  Here, the 

proposed method produces better result than baseline LBP and the Dynamic Mode 

Decomposition (DMD) [139] algorithm for the CASIA-FASD[122] dataset. The 

Motion-Meg algorithm [140] shows better results for both datasets. However, the 

proposed method is only an initial exploration of the potential of AU signals. Further 

refinements and optimisation can be performed that may enhance the accuracy of an 

AU-based approach for presentation attack detection. 

4.4 Texture level temporal feature 

The temporal texture changes may also provide significant information to 

distinguish between genuine presentations and spoofing attacks, despite any 

noise/distortion that may be introduced by signal capture or the nature of attack 

artefacts. Following this basic assumption, many published works have focused on 

using particular texture features (e.g. modelling Moiré patterns) for detecting 

presentation attacks. 

Detecting facial spoofing attacks from static texture patterns is a fast and low-

cost strategy. However, these static anti-spoofing approaches may be less accurate than 

the methods using temporal information for detecting mask attacks as they ignore 

temporal correlations between frames. Dynamic anti-spoofing schemes are designed 

to exploit spatial and temporal information together. However, such approaches 

require the higher computational complexity due to the data volumes associated with 

video processing.  

In the following sections we present some novel PAD features incorporating 

low-level spatio-temporal information. These are motion history and motion energy 

images, super-pixel clustering and spatio-temporal co-occurrence matrices. The 

background literature for each of these are presented in subsequent sub-sections, 

followed by their description and evaluation. 

4.4.1 Motion History Patterns (MHP) 

In this section, the proposed novel time-based PAD algorithm, which is named 

as Motion History Patterns (MHP), combines Motion History Image (MHI) as primary 

features and two local texture descriptors as secondary features for PAD. In general, 
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presentation attacks can be recognised by human observers via the material differences 

between genuine faces and attack artefacts; the different representations between the 

non-rigid facial movements and rigid movements for artefacts; and the texture 

differences between the recaptured images and original images [19]. From the 

literature, PAD related temporal changes can be identified with some local texture 

descriptors by establishing an algorithm which can transfer temporal differences to 

texture patterns. Some previous works (such as LBP-TOP [43] and texture co-

occurrence patterns) have demonstrated the feasibility of this general approach. The 

proposed work develops this idea to model temporal changes but also explores 

different ways to create time-related texture difference patterns. 

Moreover, the proposed method is also focusing on exploring temporal texture 

differences and local texture co-relations between frames. For instance, in [19], the 

moiré pattern is considered as a significant indicator for detecting video attacks. 

However, moiré patterns may not be visible in every frame of the video. Some 

evaluation datasets, even with higher video quality, may still contain frames where 

moiré patterns are not visible. The disappearance of the moiré patterns makes the 

modelling of temporal local textures difficult, especially for shorter presentations 

(video sequences). However, these temporal texture changes (such as the appearance 

and disappearance of moiré patterns) can be easily enhanced and identified by using 

the frame difference method [141]. Furthermore, these temporal texture differences 

for PAD could appear in almost any location within a frame. Inspired by these facts, 

the proposed method is focusing on exploring temporal texture changes and 

transferring these changes into spatial texture patterns. 

The frame difference algorithm as initially concerned by researchers [141] can 

only represent texture changes between two selected frames. However, not all the 

desired dynamic texture changes will appear between two selected frames. And 

applying the frame difference algorithm for each frame will produce a frame difference 

image sequence, thus enlarging the volume of data that needs to be processed. 

Furthermore, the texture changes between two frames may not be significant enough 

for PAD as in many cases the frame difference will not include significant temporal 

texture changes (such as moiré patterns). Also, object movements (such as body 

movements and facial movements) will also represent large pixel value changes that 

are not necessarily significant for PAD. 
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To overcome the limitations of the frame difference algorithm, the Motion 

History Image (MHI) is introduced to provide primary features for PAD-related 

temporal texture changes which are combined with a local texture descriptor (such as 

the LBP) to produce secondary features for PAD. According to Bobick and Davis, 

object movements can be decomposed using MHI by describing where the motion 

appeared and how the object moves. In this way the texture changes caused by object 

movements can be collected for recognition.  One of the advantages of their idea is 

that the desired object movements and texture changes may be compressed and 

encoded into the spatial texture changes within a single frame[142]. 

There are two steps to produce an MHI. In the first step, the binary Motion 

Energy Image (MEI) is created and transformed into a Binary Motion Region (BMR) 

mask to represent the spatial relationship for the motions that have occurred in the 

image sequence. These BMR masks encapsulate temporal texture changes which have 

different characteristics for different presentation attack categories. For instance, paper 

attacks may include significant texture changes caused by different movement 

trajectories between faces and attack artefacts. These trajectories will be represented 

by different spatial locations in the sequence of MEI.  The motion regions in MEI 

include the information about the motion-shapes and the spatial distribution of 

motions. The particular shapes of the motion texture patterns such as moiré pattern 

will be enhanced in the MEI. In the second step, the BMR mask sequence is 

compressed to generate the MHI by calculating a function of motion density at each 

pixel location. The intensity value of each pixel is a function of the motion at that pixel 

position. The original MHI algorithm can only be applied for fixed cameras. The data 

from hand-held cameras would need an  optical flow algorithm as an additional pre-

processing step. [142] 

The proposed spatio-temporal primary feature construction consists of two parts: 

(1) The spatial component of the feature is normally the first image in the frame 

sequence which is used as the first image for calculating the MHI. (2) The temporal 

component of the proposed feature is the MHI itself. Then, the secondary features are 

explored to produce the final feature vectors.  
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Figure 4.4 Experimental workflow for MHP(LBP) and MHP(CNN) 

Methodology for MHP  

The overall workflow of the proposed experiments exploring two different 

secondary feature extractors is presented in Fig. 4.4. For each frame sequence multiple 

colour channels (HSV and grey scale) are extracted and the algorithms will be applied 

on all of these colour channels. Then, the proposed method detects the facial area and 

performs face alignment by using eye positions. After that, the cropped facial area is 

divided into 3x3 blocks. For each of the blocks at each colour channel, a block 

sequence is formed for calculating MHI. This sequence, together with the first frame 

of the video are used as the primary spatio-temporal feature. Then, the local texture 

descriptors for the spatial texture and motion history texture are calculated separately 

for each of the block sequences. The final feature vector is constructed by the 

concatenation of multiple local texture descriptors. The proposed experimental 

workflow considers two secondary feature extractors separately and uses two different 

classifiers for different feature extractors. The system consisting of the LBP as the 

secondary feature extractor and SVM classifier is a traditional classification approach. 

The alternative system consisting of a pre-trained CNN and a FAS Net classifier has 

elements of a deep learning approach. 

Bobick and Davis in [143] first proposed a representation and recognition 

method that decomposed motion-based recognition by first describing where there is 

motion (the spatial pattern) and then describing how the object is moving. They 

presented the construction of a binary MEI or binary motion region (BMR), which 

represents where motion has occurred in an image sequence [143], [144] . The MEI 

describes two things: the motion-shape and the spatial distribution of a motion. Next, 
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an MHI is generated. Intensity of each pixel in the MHI is a function of motion density 

at that location. One of the advantages of the MHI representation is that a range of 

times may been coded in a single frame, and in this way, the MHI spans the time scale 

of movements.  

The MHI [144] can be considered as a temporal template, a vector-valued image 

where each component of each pixel is some function of the motion at that pixel 

position. The MHI, 𝐻𝜏(𝑥, 𝑦, 𝑡) can be computed using an update function Ψ(𝑥, 𝑦, 𝑡) 

[144]: 

 
𝐻𝜏(𝑥, 𝑦, 𝑡) =  {

𝜏                          𝑖𝑓 Ψ(𝑥, 𝑦, 𝑡) = 1 

max(0, 𝐻𝜏(𝑥, 𝑦, 𝑡 − 1) − 𝛿)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.8) 

Where (x, y) represent the spatial location of movement and t shows the time 

point. Ψ(𝑥, 𝑦, 𝑡)  is an indicator function to represent whether important temporal 

texture changes (moiré patterns) or object movements (e.g. head motion) are present 

in the current video frame. The temporal extent of the texture changes and movements 

is represented by the duration 𝜏. The 𝛿 denotes the decay, which is used toreduce the 

influence of earlier texture. Each new video frame will call this update function to 

calculate the correlated Motion History Image as the temporal feature. The indicator 

function Ψ(𝑥, 𝑦, 𝑡)  is calculated from a binarized frame difference image using a 

threshold ξ [144]: 

 Ψ(𝑥, 𝑦, 𝑡) = {
1     𝑖𝑓 𝐷(𝑥, 𝑦, 𝑡) ≥ ξ
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.9) 

Where 𝐷(𝑥, 𝑦, 𝑡) = |𝐼(𝑥, 𝑦, 𝑡) − 𝐼(𝑥, 𝑦, 𝑡 ± ∆)|And 𝐼(𝑥, 𝑦, 𝑡)  is the intensity 

value of pixel location with coordinate (x, y) at the t-th frame of the image sequence. 

When the desired MHI is extracted from a frame sequence, the local texture descriptors 

are calculated for PAD. Then, the MHI and original frame are used together to form 

the spatio-temporal feature as described below. 

In order to show the discriminative capability of the proposed spatio-temporal 

feature, two widely-used algorithms (LBP and CNN) for texture feature processing are 

are considered as the secondary feature in the proposed workflow for PAD. In the 

system using the traditional feature extraction method, the proposed workflow 

considers LBP as the secondary feature to describe texture patterns in the original 

frame and the MHI. The LBPs are widely used [122] for PAD as a highly 

discriminative texture descriptor for the proposed spatio-temporal feature. For each 
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pixel in the proposed feature, LBP can be defined with (4.1) and (4.2). Various unified 

LBP descriptors for different colour channels and blocks are concatenated to construct 

the final feature vector.  

In the alternative system using convolutional neural network to extract the 

secondary feature, the proposed method uses a pre-trained CNN to generate feature 

descriptors. The convolutional neural network is a well-known algorithm for texture 

feature extraction. As shown by Lucena et al. [145], applying a pre-trained CNN using 

the transfer learning paradigm can improve the robustness of features and avoids the 

overfitting problem for PAD. Thus, the proposed workflow also uses the feature 

extraction part of a pre-trained CNN. The full architecture of the selected pre-trained 

DNNs should be designed for large-scale image classification problems. The 

efficiency of such deep neural architectures is demonstrated by the competitive 

performance score for the image classification competitions such as the ImageNet 

competition [64]. The transfer learning paradigm reuses the feature extraction part of 

the pre-trained network and trains a new classifier on the target domain by transferring 

the expressive feature space which is learned by the pre-trained neural network[146]. 

The transfer learning paradigm of a pre-trained deep neural architecture can be 

defined as the following steps: (1) The pre-trained DNNs, which include the deep 

neural architectures and all of the parameters in the networks, should be divided into 

feature extractor parts and classification parts by following [145]. The original 

classification layers should be replaced by a new classification sub-network. This new 

classification sub-network is initialised and trained for presentation attack detection. 

(2) The new network with pre-trained feature extraction part and replaced 

classification part is trained using presentation attack datasets with different learning 

rates. The classification sub-network can follow the suggested learning rate of [145]. 

But the pre-trained feature extraction part should start with the lower learning rate than 

the classification sub-network. (3) The whole network is fine-tuned with a low learning 

rate to get better performance.  

In the proposed alternative system using CNN to produce the secondary feature, 

the initial frame of the video sequence and the related MHI are fed into the feature 

extractor network. Then, the feature vectors from the frame and the related MHI are 

concatenated as the feature descriptor for the proposed spatio-temporal feature. One 

average pooling layer is applied to combine various colour channels and image blocks 
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to generate the feature descriptor. And this final feature vector is then fed into the 

classification sub-network. 

Experiments and results for MHP(LBP) and MHP(CNN) 

To assess the effectiveness of the proposed facial spoofing detection method two 

presentation attack detection datasets are used: the CASIA-FASD dataset [122] and 

the Replay-Attack dataset[27]  . These two datasets are the most widely used datasets 

for presentation attack detection, which contain several recordings of the genuine 

client accesses and recordings of various spoofing attack attempts.  They offer a fair 

comparison with the state-of-the-art approaches to show the effectiveness of the 

proposed method. 

The pre-processing for the proposed workflow is important. The fusion of 

multiple colour spaces is a commonly used approach to enhance performance. The 

proposed method follows Boulkenafet et al’s work [32]  to consider multiple colour 

spaces to explore the colour texture information for PAD. The reason behind this is 

that the character of the artefact may be more visible in the local uniform areas (e.g. 

cheeks) . For this reason, the proposed method crops the facial area into 3×3 patches 

after face alignment and face normalisation. The final feature vector is the 

concatenation of multiple colour channels and all of the cropped patches.  

In the proposed system using LBP to produce secondary feature, a Support 

Vector Machine (SVM) with the RBF kernel is used as the classifier for comparison 

with other works using the CASIA-FASD[122] and Replay-Attack datasets[27]. The 

alternative system using CNN includes two important factors: the pre-trained feature 

extractor network and the classifier network.  

The selection of the pre-trained feature extractor network is important for the 

proposed alternative system using CNN as the secondary feature. In this system, the 

pre-trained VGG16 [47] network is considered as a texture feature extractor network 

in our implementation. The original VGG 16 network, which includes 16 

convolutional layers with 3×3 kernel size, is a 2D convolutional neural network for 

the ImageNet competition[64]. They use ReLU[52] as activation function and 3 dense 

layers (or fully connected layers (FC)) for classification. The original dense layers are 

removed for transfer learning. The classifier network is another important factor for 

the proposed method. The proposed method follows Lucena et al. [145]’s suggestion 
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which uses a new classification sub-network consisting of one flattened layer, one 

dense layer with ReLU activation, one dropout layer [147], and one dense layer with 

a sigmoid activation function. In the training stage, the classification sub-network is 

optimized by using the initial learning rate of 10−4. The pre-trained feature extractor 

network is optimized by using the initial learning rate of 10−6. The last dense layer 

uses a sigmoid activation function. 

These experiments use a four-fold subject-disjoint cross-validation using the 

CASIA-FASD[122] training set due to the absence of a development subset for this 

dataset. The performance is reported by using the Equal Error Rate (EER) on the test 

set. The evaluation protocols of the Replay-Attack database[27]  require producing the 

EER on the development set and the Half Total Error Rate (HTER) on the test set. 

Table 4.6 Effect of different hyper-parameters for MHI-LBP 

 

Hyper-parameters 
Replay-Attack DB 

(HTER) 

𝛕=15 𝛅=30 gray channel 19.4 

𝛕=15  𝛅=10 gray channel 13.1 

𝛕=15 𝛅=10 

conbined with spatial LBP at gray channel 

 

7.4 
𝛕=15 𝛅=10 

spatial LBP with RGB colour space 
4.3 

𝛕=15 𝛅=10 

spatial LBP with RGB_HSV colour space 
3.9 

 

The initial experiment is used to explore the effectiveness of the different hyper-

parameters  𝜏 and 𝛿 in Table 4.6 for the proposed MHP(LBP) feature. Here, the term 

“hyper-parameter” is used to indicate the parameters which is tuned by researchers and 

the “parameter” is used to indicate the trainable parameters. From this table, the 

proposed MHP(LBP) reach the best performance when  𝜏 =  15 and  𝛿 = 10. The 

LBP feature vector from different colour channels are concatenated together and the 

performance is further improved by using this strategy. It is important to notice that 

different colour channels may need different selections of 𝜏  and 

𝛿 for best performance. And different datasets may need different selection of hyper-

parameters to reach the global optimum point. However, the proposed experiment only 

explores the combinations in the Table 4.6 due to the time limitation. 
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Table 4.7 Comparison with the state-of-the-art LBP-based PAD methods on  CASIA-

FASD and Replay-Attack DB overall test 

 

Method 
CASIA-FA  

(EER) 

Replay-Attack DB  

(HTER) 

LBP-baseline[122] 25.0 13.7 

Colour LBP[32] 2.1 3.5 

LBP-TOP[43] 10.6 7.6 

Proposed MHP(LBP) 4.8 3.9 

 

Table 4.8 comparison with the state-of-the-art DNN-based PAD methods on CASIA-

FASD and Replay-Attack DB overall test (The * means the performance score from 

our implementation following the referenced work) 

 

Method 
CASIA-FA 

(EER) 

Replay-Attack DB  

(HTER) 

YangNet[67] 6.2 2.6 

FASNet*[145] 8.6* 3.9* 

CNN+LSTM[72] 5.8* 6.3* 

CNN- LBP-TOP[75] 8.0 4.7 

Proposed MHP(CNN) 6.0 4.5 

 

The proposed method is compared with 7 other approaches which include 

baseline LBP [122], Colour LBP [32], LBP-TOP [43], CNN [67], FASNet [145], 

CNN+LSTM [72], and CNN- LBP-TOP [75]. We firstly compared the LBP-based 

methods in Table 4.7. The implementation detail of baseline LBP has followed the 

CASIA-FASD protocol[122]. Then, Colour LBP [32] can be considered as the 

representative method of static feature-based PAD algorithms. The LBP-TOP [43] is 

also designed for the spatio-temporal texture changes which use LBP as the texture 

descriptor. From Table 4.7, the proposed MHP(LBP) is seen to provide good 

performance scores for both datasets. Although the Colour LBP [32] as a static-texture 

method represents better performance than the proposed method, the proposed 

MHP(LBP) shows a better performance when compared with LBP-TOP using LBP as 

the texture descriptor.  

Then CNN-based methods are compared at Table 4.8. The CNN [67] is the first 

published work using convolutional neural network for PAD. The FASNet [145] also 

uses a pre-trained VGG16[47] as the feature encoder and use the transfer learning 

paradigm to fine-tuning their networks. It demonstrates the effectiveness of the 



 

98  

proposed feature. The original FASNet do not train and test their algorithm on the 

CASIA-FASD dataset[122]. We follow their paper and re-implement their algorithm 

for the CASIA-FASD dataset. The CNN+LSTM [72] method represents the 

effectiveness of the end-to-end neural network for spatio-temporal texture changes. 

We also re-implement their work for the comparison on the Replay-Attack 

Dataset[27]. The CNN-LBP-TOP [75] as a hybrid method which combines traditional 

features and DNNs is also considered for the comparison. 

The proposed MHP(CNN) provides the second best performance for the CASIA-

FASD [122] when compared to the listed CNN-based methods. It demonstrates the 

effectiveness of the proposed spatio-temporal feature. On the Replay Attack Dataset, 

CNN [67] showed the best performance. However, it includes multiple data 

augmentation stages and is trained from scratch. Some have claimed that these are 

overfitting their training data [75]. The proposed method uses the pre-trained CNN 

architecture to overcome the overfitting problem. Moreover, the proposed spatio-

temporal feature outperforms those proposed in [72]   and [75]’s when evaluated on 

the Replay-Attack dataset. [27]. 

4.4.2 Temporal Co-occurrence Local Binary Patterns 

In this subsection, we will briefly describe the literature related with the Local 

Binary Patterns feature and provide details about the proposed novel feature Temporal 

Co-occurrence Adjacent Local Binary Patterns (TCoALBP). Local texture descriptors 

have been used in Feature-Level spoofing attack detection. The Local Binary Patterns 

(LBP) descriptor proposed by Ojala et al. [24] has been used extensively by researchers 

for spoofing attack detection, in part due to its computational efficiency [122].   

Various extensions of the LBP are also introduced to improve its performance. For 

instance, the usability of colour extensions of LBP (CLBP) by modelling the colour 

characteristics of spoofing artefacts is explored in [32] . These extensions are 

categorised as static features due to their direct use of texture descriptors on a single 

biometric sample. Some researchers try to combine LBP with temporal information.  

The main challenge of using LBP directly to extract temporal information is that the 

original LBP can only process 2D texture information.  

However, a 3D extension of the 2D Local Binary Pattern can be envisaged where 

the third dimension is time as represented by the sequence of video frames. There are 
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two challenges in the design of a temporal extension of the LBP feature. Firstly, there 

is the problem of defining a meaningful time-series extension of the LBP descriptor. 

Secondly, there is the problem of coping with the large data volume inherent in video 

processing.  Selecting a set of neighbouring points in 3D can be considered as an 

equidistant sampling problem on a sphere, which may still be difficult to implement.  

Moreover, while it may be easy to design encoding for the sequence of 

neighbouring points, it may still be hard to prove its effectiveness for distinguishing 

between different textures.  Zhao and Pietikainen's proposed the Volume LBP (VLBP), 

in an attempt to extend 2D LBP to 3D volume data [148]. They suggest their approach 

can be used in both video and RGB-D images. An alternative approach proposed in 

[149] encodes 3D local texture in a video sequence by sampling the neighbouring 

points defined on the surface of a ball using the Uniform LBP[122]. However, this 

method may encode different textures with the same binary code. For the data volume 

problem, researchers have considered data selection methods as solutions. The data 

volume of a video cube is related to the video length/duration. de Freitas Pereira et al. 

[43] followed the data selection approach, which selects three orthogonal planes X-Y, 

X-T, and Y-T for a simple implementation named LBP-TOP, which compresses 

temporal-related data by generating X-T and Y-T orthogonal planes. 

 Inspired by LBP-TOP, a number of other three orthogonal planes have been 

investigated. However, the disadvantage of using only three orthogonal planes is that 

some crucial information may be missed. The orthogonal planes are selected at the 

middle of frames and may thus miss some crucial information such as eye blinks. The 

co-occurrence adjacent LBP (CoALBP) [150] was originally designed for texture 

pattern recognition, and was used for facial spoofing attack detection as a colour 

texture descriptor in [32]. 

Methodology 

For any frame 𝐼 in the frame sequence, 𝐼 (𝑥, 𝑦) represents the pixel value located 

at (𝑥, 𝑦). The LBP is defined using (4.1) and (4.2). The Uniform function is defined in 

Ojala et al’s work [24] as (4.10): 

 𝑈(𝐿𝐵𝑃𝑃,𝑅) = Σ𝑝=1 
𝑃−1 |𝑆𝑖𝑔(𝑔𝑝−1 − 𝑔𝑐) −  𝑆𝑖𝑔(𝑔𝑝 − 𝑔𝑐)|

+ |𝑆𝑖𝑔(𝑔𝑃−1 − 𝑔𝑐) − 𝑆𝑖𝑔(𝑔0 − 𝑔𝑐)| 

(4.10) 
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   where 𝑃 is the number of sampling points in a circular neighbourhood set of 

radius R centred at (x, y); and 𝑔𝑝  indicates the pixel value of the 𝑝-th point on this 

neighbourhood. The pixel value of the central points 𝑔𝑐 is used as a threshold for 𝑔𝑝. 

The Uniform LBP 𝐿𝐵𝑃𝑃,𝑅
𝑈2(𝑥, 𝑦) only considers the binary patterns which 𝑈(𝐿𝐵𝑃𝑃,𝑅) <2. 

For instance, the “00001111” and “00111100” are uniform patterns. The Uniform 

function reduces the number of valid LBP codes and therefore reduces the dimension 

of the LBP descriptor.  

The co-occurrence adjacent LBP (CoALBP) is defined using (4.11), (4.12), and 

(4.13) [150]. 

 𝐻(𝑘) =  Σ𝑥=1
𝑀−2Σ𝑦=1

𝑁−2𝛿(𝑔(𝐿𝐵𝑃𝑃,𝑅(𝑥, 𝑦), 𝑎), 𝑘)             

𝑤ℎ𝑒𝑟𝑒 𝑘𝜖[0, 𝑁𝑝 × 𝑁𝑝 − 1] 𝑎𝑛𝑑 𝑎𝜖𝐴 

(4.11) 

 𝛿(𝑢, 𝑣) = {
1                           𝑖𝑓 𝑢 = 𝑣
0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.12) 

 𝐴 = {(0, ∇ )𝑇 , (∇, 0)𝑇 , (∇, ∇)𝑇, (-∇, ∇)𝑇 } (4.13) 

In (4.11),  𝐴  is a transition vector set. Each element of A, a, represents a 

transition/displacement between two locations in space. The parameter ∇ means the 

distance between these two locations and ∇𝑥, ∇𝑦, ∇𝑡 has been used to demonstrate the 

distance at different dimensions. The function  𝑔(𝐿𝐵𝑃𝑃,𝑅(𝑥, 𝑦), 𝑎) returns a binary 

code by concatenating the 𝐿𝐵𝑃𝑃,𝑅(𝑥, 𝑦)  and its adjacent pattern addressed by 𝑎 .  

𝛿(𝑢, 𝑣) function is the function used to generate a histogram as the feature vector. In 

[150] the length of the feature vector is  𝑁𝑝 × 𝑁𝑝 ×4, where 𝑁𝑝 × 𝑁𝑝  is the number 

of all possible combinations of spatially adjacent patterns and there are four elements 

in 𝐴. If an implementation uses the original LBP with 𝑃 =8, 𝑁𝑝 is 256. The feature 

length is then 256×256×4=262144 for one image [24].   

In order to utilise the possible patterns of texture co-occurrence across time as 

well as space, we extend the transition vector set 𝐴 to a 3D space (𝐴3𝐷) by adding the 

temporal dimension.  

Additionally, we calculate the Uniform LBP 𝐿𝐵𝑃𝑃,𝑅
𝑈2(𝑥, 𝑦) instead of using the 

LBP to decrease the dimension of histogram. The function 𝑔(𝐿𝐵𝑃𝑃,𝑅
𝑈2(𝑥, 𝑦), 𝑎3𝐷) 

concatenates the binary codes of 𝐿𝐵𝑃𝑃,𝑅
𝑈2(𝑥, 𝑦)  and updates the histogram. The length 

of the feature vector should be  𝑁𝑝𝑢2 ×𝑁𝑝𝑢2 × ℎ, where h is the number of elements 
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in  𝐴3𝐷  and 𝑁𝑝𝑢2 ×𝑁𝑝𝑢2 is the number of all possible combinations of spatially 

adjacent uniform patterns. The feature vector 𝐻(𝑘)can then be calculated using (4.14) 

and (4.15): 

 𝐻(𝑘) =  Σ𝑥=1
𝑀−2Σ𝑦=1

𝑁−2𝛿(𝑔(𝐿𝐵𝑃𝑃,𝑅
𝑈2(𝑥, 𝑦), 𝑎3𝐷), 𝑘) 

𝑤ℎ𝑒𝑟𝑒 𝑘𝜖[0, 𝑁𝑝𝑢2 ×𝑁𝑝𝑢2 × ℎ − 1]  𝑎𝑛𝑑 𝑎3𝐷 ∈ 𝐴3𝐷 

(4.14) 

 𝐴3𝐷 = {(∇𝑥, ∇𝑦, ∇𝑡)
𝑇|∇𝑥, ∇𝑦, ∇𝑡∈ 𝒁} (4.15) 

 

Implementation details 

 

Figure 4.5 Temporal Co-occurrence Adjacent Local Binary Pattern (TCoALBP) 

workflow 

 

Figure 4.5 is a block-diagram of the proposed system that was evaluated. The 

face areas are detected and normalised using facial landmarks to decrease the effect of 

the background as the description in Chapter 3. Then, the frames are divided into R, G 

and B channels. For each channel, the Uniform LBPs are calculated for each face area. 

Then, the feature histogram is calculated by concatenating histograms. Moreover, the 

number of co-occurrence matrices in our implementation are determined by the 

number of distinct elements in A. A different selection of A will cause a different 

feature size, which is fixed to 7 in the evaluated implementation to balance the speed 

and the performance of the proposed feature. For the TCoALBP (RGB) in our 

experiment, the final feature vector Η is generated by formula (4.16), where𝐻𝑅, 𝐻𝐺 , 
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and 𝐻𝐵 are TCoALBP feature vectors for red, green and blue channels of the input 

videos respectively.  

 Η = {𝐻𝑅 , 𝐻𝐺 , 𝐻𝐵}   (4.16) 

The classifier is a Support Vector Machine (SVM) with an RBF Kernel which 

has also been used by other researchers with whom results are compared. 

Datasets and performance metrics 

There are three widely used anti-spoofing benchmarking datasets which were 

used to evaluate the effectiveness of the proposed anti-spoofing algorithm: the CASIA 

-FASD dataset [122], the Replay-Attack database[27], and MSU MFSD dataset[123]. 

All of these datasets include some recordings of genuine client access attempts and 

various presentation attacks. The pre-defined evaluation protocol for each dataset was 

followed for a fair evaluation and comparison with the state-of-the-art. 

Various environmental conditions can affect performance; i.e., different image 

qualities, different distances between the face and the camera, different face angles, 

and background changes.  The pre-defined scenarios at CASIA-FASD [122]dataset is 

used for a detailed performance test at various conditions and attack types.  

The CASIA-FASD[122] and MSU MFSD datasets[123] do not contain a 

development set for fine-tuning of parameters. Thus, a four-fold subject-disjoint cross-

validation was used on the training set to train the classifier and fine-tune parameters. 

After that, the experiments evaluate the performance by calculating the Equal Error 

Rate (EER) on the test set [15]. The Replay-Attack database[27]  contains a 

development subset for parameter fine-tuning. The experiments follow their protocol 

to produce the EER on the development set and the Half Total Error Rate (HTER) on 

the test set [16]. To make the error trade-off clearly, the True Positive Rate (TPR) were 

reported where False Accept Rates (FAR) are fixed to 0.01 and 0.1. 

The effectiveness and robustness of the proposed system using the TCoALBP 

features have been tested for different attack types and environment conditions using 

the CASIA-FASD[122], Replay-Attack, and MSU-MFSD databases[123] and the 

results are reported in this section and compared with some state-of-the-art techniques. 

Additionally, the selection of different parameters are tested for the different datasets. 
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Parameter optimization 

Three different parameter selection experiments were conducted to improve the 

final result and show some properties of the proposed method. All of them provide 

results using the pre-defined overall test in the protocol for each dataset by 

implementing TCoALBP with different parameters. All tables include three different 

columns of results which are EER for CASIA-FASD overall test[122], HTER for 

Replay-Attack overall test [27], and EER for MSU MFSD overall test[123]. 

Firstly, the neighbourhood location is an important parameter for TCoALBP. 

Table 4.9 includes the result of TCoALBP ((P, R,∇𝑥, ∇𝑦, ∇𝑡)=(4,1,1,1,1)) for grey-

scale video input with 30 frames but with different A sets. The first row of the A set in 

the table only contains spatial correlation with ∇𝑡= 0, which can be considered as 

CoALBP. The second row of set A includes two parts: (1) neighbour sub-set only 

including spatial displacements (2) neighbour sub-set only including temporal 

displacement. The third row of set A includes neighbours with both spatial and 

temporal displacements. Clearly including both spatial and temporal displacements 

improves performance. The following experiments will follow the best results of the 

Table 4.9. 

Table 4.9 Performance for TCoALBP for different A sets (grey-scale video, 30 frames 

and parameters are fixed to (P,R,∇𝑥, ∇𝑦, ∇𝑡)=(4,1,1,1,1)). 

A 
CASIA 

(EER) 

R-A 

(HTER) 

MSU MFSD 

(EER) 

{(1,0,0),(0,1,0),(-1,0,0),(1,1,0), (-1,1,0),     

(1,-1,0),(0,-1,0)} 
12.1% 11.8% 18.7% 

{(1,0,0),(0,1,0),(1,1,0),(-1,1,0),(1,-1,0),          

(-1,0,0),(0,0,1)} 
10.16% 7.01% 20.01% 

{(1,0,1),(0,1,1),(-1,0,1),(1,1,1),(-1,1,1),        

(1,-1,1),(0,-1,1)} 
8.69% 6.07% 16.60% 

 

Secondly, the video duration is considered as a parameter in this paper. Table 

4.9 shows performance at different video durations, where 

TCoALBP((P,R,∇𝑥, ∇𝑦, ∇𝑡)=(4,1,1,1,1)) using grey-scale video as input.  Generally, a 
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longer video duration can improve system performance especially between 30 frames 

and 60 frames.  

Table 4.10 Performance for TCoALBP on different frame numbers and grey-scale 

video (parameters are fixed to ((P,R,∇𝑥 , ∇𝑦 , ∇𝑡)=(4,1,1,1,1)) DFN means different 

frame numbers 

DFN* 
CASIA-FASD 

(EER) 

R-A 

(HTER) 

MSU MFSD 

(EER) 

5 23.33% 18.08% 34.35% 

10 16.67% 15.97% 27.54% 

15 15.42% 11.44% 27.74% 

20 13.53% 9.81% 24.01% 

25 11.15% 7.33% 15.77% 

30 8.69% 6.07% 16.60% 

60 7.96% 5.32% 14.29% 

100 8.02% 5.94% 12.33% 

All frames 7.62% 5.88% 14.97% 

 

The uniform LBP with different parameters (P, R) = {(4,1), (8,1), (4,2)} is 

explored to test the impact of different radius R and the different number of sampling 

points P with different ∇  sets. The magnitude of displacement  ∇𝑥, ∇𝑦, ∇𝑡  can be 

roughly split into three subtypes: (1) ∇>2R, (2) ∇=2R, (3) ∇<2R. From the result of 

these three subtypes, the selection of  ∇𝑥, ∇𝑦, ∇𝑡  does appear to affect system 

performance, ∇𝑡≥ 2R slightly improves the system performance. Also, optimizing the 

(P,R,∇𝑥, ∇𝑦, ∇𝑡) parameter set may not be a convex optimization problem. Thus the 

following experiments will use (P,R,∇𝑥, ∇𝑦, ∇𝑡)=(4,1,1,1,3) as a fixed parameter set. 

Intra-dataset results and comparison 

Table 4.11 CASIA-FA test results in terms of EER (%) at different Scenarios:(1) low 

quality, (2) normal quality and (3) high-quality (4) warped photo attacks, (5) cut photo 

attacks, (6) video attack, and (7) overall test. 

 

             Scenarios 

Features        
1 2 3 4 5 6 7 

LBP-baseline 16.5 17.2 23.4 25.1 17.6 26.7 25.0 

CoALBP(grey) 16 15.2 14.6 13.7 14.6 17.3 14.9 

TCoALBP(grey) 9.7 8.1 8.9 10.3 9.1 8.4 8.69 

TCoALBP(RGB) 5.7 7.3 6.6 8.1 6.9 7.1 6.71 
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Table 4.12 Replay-Attack test result in terms of EER (%) and HTER (%) 

 

 EER (%) HTER (%) 

𝐋𝐁𝐏𝑼𝟐 17.9 13.7 

CoALBP(grey) 12.9 16.7 

CoALBP(RGB) 6.2 8.0 

TCoALBP(grey) 2.4 5.7 

TCoALBP(RGB) 0.1 0.6 

 

Table 4.13 Comparisons with the state-of-the-art. 

 

 
CASIA-FA 

(EER %) 

Replay-Attack  

(HTER %) 

MSU MFSD 

(EER%) 

CoALBP(RGB) 11.1 8.0 17.7 

DMD[139] 21.8 3.8 N/A 

Motion-meg[140] 14.4 0.0 N/A 

LBP-TOP[43] 10.6 N/A N/A 

LDP-TOP 8.9 1.7 N/A 

CNN[67] 1.1 0.8 N/A 

Multi-scale LBP(RGB) 10.7 5.1 11.7 

Proposed method 6.71 0.6 10.07 

 

Tables 4.11 and 4.12 provide the results of the grey-scale TCoALBP descriptor 

(TCoALBP (grey)), the RGB channel concatenated TCoALBP descriptor (TCoALBP 

(RGB)), the grey-scale CoALBP (CoALBP (grey)) [150], and the grey-scale 

LBP[122]. All of these descriptors use fine-tuned parameters for improving 

performance. The grey-scale LBP and CoALBP (grey) are provided as baseline results 

for comparison. For some static local texture descriptors, colour channels are believed 

to provide more information than the grey-scale image [32]. Thus, we design the 

TCoALBP (RGB), which divide the video cube into separate RBG colour channels in 

order to compute TCoALBP on different channels independently and concatenate the 

resulting feature vectors from different colour channels before classification. 

 Table 4.11 also shows the performance results of different scenarios in CASIA-

FASD [122]. Results presented in Table 4.11 and 4.12 suggest that the TCoALBP 

features can significantly improve the system performance by combining temporal 

information and static texture information.  Comparing the results of the original LBP 

[24], [122] and TCoALBP (RGB), the proposed method shows 65.2% performance 

improvements for the CASIA-FASD, and 92.7% improvements by combining 
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temporal information and static texture information.  Also, TCoALBP (RGB) shows 

an improved performance on the CASIA-FASD by 41.6% respectively compared with 

the grey-scale CoALBP. 

Table 4.13 shows the results of the comparison between the proposed method 

and some state-of-the-art methods, which contains the best results for the dynamic 

features attempting to use temporal information: DMD[139], Motion-meg[140], and 

LBP-TOP [43]. The proposed method shows very competitive results on the 

challenging CASIA-FASD [122] and the Replay-Attack database[27]. Some 

approaches included in Table 4.13 report better results than the proposed method for 

some of the datasets. However, the proposed approach outperforms these methods in 

other datasets. For instance, a CNN-based method [67] is reported to have a very 

competitive result for the CASIA-FASD dataset. However, the proposed method 

produces better results than that which is reported in [67] for the Replay-Attack 

dataset[27]. 

The effectiveness of different temporal texture representations was studied by 

extracting TCoALBP features from grey-channel image sequences as well as RGB 

colour channel image sequences. On CASIA-FASD [122], the result of TCoALBP 

(RGB) feature reaches the state-of-the-art level. Furthermore, in the intra-database 

evaluation, TCoALBP (RGB) feature shows very promising generalisation 

capabilities. The TCoALBP algorithm requires the optimisation of several parameters 

for different datasets to reach the best performance. Also, the inclusion of colour 

information did not result in a significant performance improvement in the 

experiments. 

 

4.4.3 Super pixel-LBP for PAD 

This thesis also provides a novel workflow named super-pixel LBP for PAD 

which consists of a super-pixel extractor and a local texture descriptor for detecting 

PA. This proposed method is inspired by a widely used pre-processing method: 

cropping facial area to an n × n sub-area. By following this motivation, the proposed 

workflow combines some existing algorithms to produce a novel feature representation 

for PAD and the effectiveness of this proposed feature is evaluated by using multiple 

benchmark datasets for the comparisons with the-state-of-the-art methods. The good 
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results demonstrate the effectiveness of the proposed method.   In the following sub-

sections, the motivation about the proposed super-pixel LBP algorithm is provided 

firstly. Then, the literature related with the super-pixel algorithm will be explored and 

the details for the proposed super-pixel LBP feature will then be provided.  

 

(a) 

 

(b) 

 

Figure 4.6 Examples of super-pixel segmentation by using SLIC algorithm: (a)The 

image segmentation example with size 64, 256, and 1,024 pixels,(b) video 

segmentation(3D) segmentation example with size 64 [151] 

 

Motivation and a brief review for super-pixel algorithms 

The concept of the super-pixel is a kind of pixel-grid which is firstly introduced 

by Ren, X. and Malik, J. [152] at 2003, which is designed as an computationally 

efficient perceptually meaningful underlying representation for the frame input. The 

super-pixel algorithm can re-organise the raw input frames into various over-

segmented pixel grids (or named as pixel groups) by following the nearest neighbour 

principle. Fig 4.6 provides an example of using super-pixel algorithm to segment the 

input image and videos. Generally, the raw input data will be considered as a group of 
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pixels which include some atomic regions and can be used as meaningful underlying 

representation. The initial super-pixel only considered the neighbours at two 

dimension and then some researchers extended their method for the video data which 

is also named as super-voxels segmentation [151] Fig. 4.6 is an example for the 3D 

super-pixel segmentation from the paper [151].  

(a)                                          (b) 

  

Figure 4.7 Examples of super-pixel segmentation for PAD. (a) is the original frame 

with the segmentation boundary (b) is the super-pixel segmentation and visualised 

with the clustering centre. 

 

As the description in Chapter 3 and previous sections in Chapter 4, researchers 

consider an pre-processing algorithm which crops facial area into 𝑁 ×𝑁 blocks to 

help the feature descriptors focusing on the local texture representation (such as moiré 

pattern) rather than the facial information. By observing the example of video attacks, 

the distinct texture characteristics of artefact will not affect the representation of the 

object boundary where the object boundary can be considered as the representation of 

the non-related information for facial structures. 

Inspired by this pre-processing step, the proposed work needs an algorithm 

which can also divide the facial area into various blocks to abandon the non-related 

facial structure information. The super-pixel method is one of the possible ways to 

reach these requirements which is generally considered as an unsupervised method to 

produce image segmentation. Figure 4.7 shows an example of applying super-pixel 

method to the PAD data. 

Ren, X. and Malik, J. [152] firstly introduced the concept of super-pixel for the 

computer vision research. The existing methods to produce super-pixel can be broadly 

categorized as the graph-based methods and the gradient ascent methods by following 
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the suggestions of Achanta, et al. [151]. The graph-based algorithms consider the 

pixels in the raw data as the nodes of a graph where the similarity score between 

neighbouring pixels is represented as the weight of the edge in the graph. For instance, 

Veksler et al. [153] produced a graph based super pixel algorithm by fusing 

overlapping image patches in the graph model. The compact super pixel generation is 

named as GCa10 in their work. The gradient based methods produce a pixel cluster 

and refine this cluster iteratively. For instance, Achanta, et al. [151] represent each 

pixel as a 5-dimensional position and move the cluster centres to the lowest gradient 

position. By following the guide of the gradient, the cluster will close to the optimum 

position iteratively. There are various algorithms to produce super-pixel in the 

literatures but the proposed work only needs a simple and efficient algorithm to 

produce super-pixels. Thus, the proposed work selects one of the famous super-pixel 

algorithms named Simple Linear Iterative Clustering(SLIC) [151] due to the 

computational efficiency and the robustness at different benchmark datasets. Figure 

4.7 provides an example of applying SLIC algorithm to  an sample of the video attack 

from the OULU dataset[125]. 

Another important part of the proposed method is the Bag-of-Words (BoW) 

model which was successfully applied for various computer vision tasks [154]. The 

basic idea of the BoW algorithm is to produce a visual vocabulary which is generated 

by clustering the local features. The chaotic feature vector set is encoded to an 

intermediate representation and this representation can be fed into classifier such as 

SVM for any classification tasks. Various works are published to improve the 

performance of the BoW method. For instance, different clustering algorithms are 

considered such as mean-shift [155], K-means[156], etc. The proposed work considers 

the BoW model as a simple way to mapping a set of super-pixel LBP descriptors to 

the final feature vector to make the performance better for PAD. 

Methodology  

The proposed super-pixel LBP method consists of 4 important parts: super-pixel 

segmentation, local texture descriptors extraction for each segmented super-pixel, 

codebook for BoW method and classification. Figure 4.8 visualises this proposed 

workflow as a block diagram. There are two steps in the proposed workflow. For the 

first step, the most important part is to produce a codebook for the training dataset. In 

this step, frames selected from the whole training dataset with all possible categories 
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are firstly used to generate a set of super-pixel LBP features. Then, the mean shift 

clustering method is used to generate a codebook for BoW algorithm [157]. At the 

second step, the codebook generator is used to produce the final feature vector for 

classifier. The proposed novel workflow combines different traditional features by 

following the motivation and the details about this workflow are proposed in the 

following paragraphs.  

 

Figure 4.8 Super-pixel Local Binary Pattern for PAD workflow 

  

In order to get the final feature, the proposed method firstly applied a widely 

used super-pixel algorithm named simple linear iterative clustering (SLIC) [151] for 

an efficient super-pixel segmentation. For any input image, SLIC algorithm is 

initialised with 𝑘 cluster centres.  These clusters are updated by using residual error 𝐸 

between the new cluster centre locations and previous cluster centre locations. The 

update step repeats iteratively to reach the converges points and the implementation 

from [151]suggests the iterative number should be no more than 10. The proposed 

work flow considers the maximum iteration number as 5 in the following experiments 

to decrease the computational complexity. 

After the super-pixel segmentation, the raw data will be divided into a set of 

super-pixels. The clustering centre of the super-pixels are considered as the centre of 

rectangle grid which is used to generate LBP feature descriptors. Each rectangle is 

considered as the same length c = 𝑆 − 𝜇. To make it simple, the proposed experiments 

set 𝜇 = 1. The LBP feature extractor is applied for each of these rectangles to get a set 

of feature descriptor for the input data. LBP is widely used for texture description and 

has good performance in texture classification which is robust with illumination 

changes and position changes. Thus, the frame input will be transferred into a set of 
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LBP descriptor with low computational complexity. The proposed workflow can also 

consider the frame sequence as the input data to measure the temporal difference 

between real faces and presentation attacks by simply change 2D SLIC and 2DLBP to 

3D version. For 3D SLIC[151], 𝐷𝑠 = 𝑑𝑙𝑎𝑏 +
𝑚

𝑆
𝑑𝑥𝑦𝑧 where z represents the temporal 

direction. The superpixel center is used to locate a pixel cube with length c = 𝑆 −

𝜇 .And the 3D LBP can be calculated by following the suggestion from [158] to get a 

set of texture descriptors for the next step.  

The combination of super-pixel method and LBP descriptor will generate a set 

of feature representation. Concatenating these feature representations directly will 

cause the curse of dimensionality. For this reason, the proposed method considers the 

BoW method to mapping the feature set to a fixed length feature vector for 

classification. Firstly, the extracted feature sets F for the data samples, which are 

generated from the combination of super-pixel method and LBP algorithm, are 

collected together to get F = {𝐹𝑛} for clustering. The mean shift clustering algorithm 

is then applied for this feature set to get a codebook 𝐶 = {𝐶𝑐𝑙}𝑐𝑙=1
𝑐𝑙_𝑛𝑢𝑚 which consists of 

the most typical features. These typical features are represented as the Cluster centres 

and the number of the cluster centres is noticed by 𝑐𝑙_𝑛𝑢𝑚. The proposed workflow 

considers two colour spaces (RGB and HSV space) to generate two codebooks 𝐶𝑅𝐺𝐵 

and 𝐶𝐻𝑆𝑉  . By using these two codebooks, the distinct colour difference for PA 

artefacts will be emphasized by following the suggestions from[32].  

The BoW feature extraction uses the codebooks generated with clustering 

algorithm to get the proposed feature for classification. When training the classifier, 

the input data will be firstly fed into the super-pixel extraction block. Then, a set of 

LBP descriptors will be calculated for each rectangle which is centred by the super-

pixel clustering centre. The codeword will be generated from the LBP descriptor set 

by using the nearest Euclidean distance and the appearance times of different 

codewords is used to generate a histogram. The classifier is then trained to detect 

spoofing attack by using this histogram as the final feature vector.  

Experiment and evaluation 

To assess the effectiveness of the proposed facial spoofing detection method two 

presentation attack detection datasets are used: the CASIA-FASD dataset [27] and the 

Replay-Attack dataset[27].In the experiment, a SVM with the RBF kernel is used as 



 

112  

the classifier. SLIC algorithm simply use the recommended parameter of [158] and set 

the initial k=30 for 2D super-pixel and k=40 for 3D super-pixel. Also, LBP algorithm 

will set P=8 and R=1 as default parameters. The number of cluster centres 𝑐𝑙_𝑛𝑢𝑚 is 

fixed to 500 to avoid the dimensional curse. These experiments use four-fold subject-

disjoint cross-validation using the CASIA-FASD training set due to the absence of a 

development subset for this dataset. The performance is reported by using the Equal 

Error Rate (EER) on the test set. The evaluation protocols of the Replay-Attack 

database require producing the EER on the development set and the Half Total Error 

Rate (HTER) on the test set[27]  . 

The proposed implementation also considers some implementation detail to 

improve the efficiency and accuracy of the detection. Firstly, the Haar face detector 

and the HoG detection methods are combined to segment the facial area. Two Colour 

spaces (RGB and HSV) are considered in the proposed experiments. The 2D super-

pixel LBP considers the first frame of the input frame sequence as the input data and 

3D super-pixel LBP feature considers the following 20 frames from the first frame as 

the input data.  

Table 4.14 Comparison with the state-of-the-art at CASIA-FASD and Replay-Attack 

DB overall test. 

 
CASIA-FA 

 (EER) 

Replay-Attack DB  

(HTER) 

LBP-baseline [24], [122] 25.0 13.7 

DMD [139] 21.8 3.8 

MotionMeg [140] 14.4 0 

LBP-TOP [43] 10.6 N/A 

Proposed 2D Super-pixel LBP 

 (RGB) 
7.4 5.5 

Proposed 2D Super-pixel LBP  

(RGB+HSV) 
6.6 4.1 

Proposed 3D Super-pixel LBP  

(RGB+HSV) 
5.2 2.7 

 

Table 4.14 shows the results of the comparison between the proposed method 

and some state-of-the-art methods, which contains the best results for the dynamic 

features attempting to use temporal information: DMD[139], Motion-meg[140], and 

LBP-TOP [43]. The proposed comparison considers LBP [24], [122] as the baseline 

of the selected dataset to demonstrate the performance improvements of the proposed 
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workflow. Then, the DMD [139] Motion-meg [140] and LBP-TOP [43] methods are 

considered to demonstrate the effectiveness of the proposed methods as a temporal 

related feature.  

Table 4.14 includes three results for the proposed workflow. The proposed 2D 

super-pixle LBP (RGB) and proposed 2D super-pixle LBP (RGB+ HSV) demonstrate 

the proposed workflow by only considering 2D SLIC and 2D LBP in the feature 

extraction part. The proposed 3D super-pixel LBP consider 3D super-pixel 

segmentation and 3D LBP [158] for code word generation. From this table, the 

proposed method shows very competitive results on the challenging CASIA-FASD 

[122] and the Replay-Attack database[27].  The 3D super-pixel LBP gives better 

performance at both datasets. The performance difference between the proposed 2D 

super-pixel LBP (RGB) and the Proposed 2D super-pixel LBP (RGB+ HSV) 

demonstrate the effect of combining different colour spaces. Thus, the proposed 3D 

super-pixel LBP directly apply two colour channels for better performances. 

4.5 SUMMARY 

In this chapter, we present four features for PAD based on conventional pattern 

recognition approaches and focused on the incorporation of temporal information for 

PAD.  

Table 4.15   Performance of the proposed features for multiple dataset 

Datasets (EER (%)) 
REPLAY 

ATTACK  

CASIA 

FASD 

MSU 

MFSD 

LBP-baseline[24], [122] 16.10 24.80 14.70 

LBP-TOP[43] 7.9* 10.00 N/A 

Colour-LBP [32] 0.40 3.20 3.50 

FAUH 12.90 21.10 N/A 

MHI-LBP 3.90 4.80 N/A 

MHI-CNN 4.50 6.00 N/A 

TCoALBP 0.60 6.71 10.07 

2D super-pixel LBP 4.10 6.60 7.67 

3D super-pixel LBP 6.70 5.20 9.20 
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The performances of the proposed methods are very encouraging when 

following the intra-test protocols on the three benchmark datasets. Table 4.15 provides 

a comparison for the various proposed methods. The performance is represented with 

the Equal Error Rate to make the table clear. The local binary pattern is selected as the 

baseline algorithm at various benchmark datasets, and Table 4.15 also considers this 

algorithm as the baseline method to demonstrate the performance improvements of the 

proposed methods.  

The LBP-TOP [43] is considered a representative traditional feature using 

temporal information for PAD. The original LBP-TOP was only evaluated with 

CASIA-FASD dataset[122], and the proposed experiment provide the evaluation 

results with Replay-Attack dataset[27]  by following the implementation detail of the 

original paper. The Colour LBP[32] was published at the end of 2016 andwhich 

represented the best results with multiple datasets at that time. The proposed traditional 

features were investigated and evaluated the same year. The Colour LBP is a static 

feature and the proposed methods focus on the temporal information for PAD. By 

comparing them with the Colour LBP[32], the table demonstrates that all of the 

proposed traditional methods have some encouraging results when compared with the 

state-of-the-art methods.  

In Table 4.15, the highlighted performance score is the best score when only 

considering the proposed traditional methods. The TCoALBP method as a temporal 

feature represented best results at Replay-Attack dataset[27] while the MHI-LBP 

feature demonstrated the best results with CASIA-FASD[122]. And the 2D super-pixel 

LBP showed the best results with MSU-MFSD[123].   

The contributions in this chapter include the following： 

（1） The novel FAUH feature is constructed based on FACS which provides a 

common symbolic description system for PA. The feature is based on 

high-level semantic information and shows potential as a new type of 

temporal-based feature for PAD. 

（2） The proposed new MHP constructs MHIs as a description for temporal 

texture changes and uses LBP to produce feature vectors. The MHP offers 

a method to consider temporal texture changes with a low computational 

complexity and it can be considered as a new framework for temporal-
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based PAD. This method approaches the performance of state-of-theart 

when evaluated using multiple data sets. 

（3） A novel feature for biometric presentation attack detection is proposed 

using temporal texture co-occurrence in a video sequence of facial 

images. The effectiveness of different temporal texture representations 

was studied by extracting TCoALBP features from grey-channel image 

sequences as well as RGB colour channel image sequences. Extensive 

experiments showed good results on three challenging spoofing detection 

databases. On the CASIA-FASD, the result of TCoALBP (RGB) feature 

reaches the state-of-the-art level. Furthermore, in the intra-database 

evaluation, TCoALBP (RGB) feature shows very promising 

generalisation capabilities. 

（4） A novel feature named super-pixel descriptor, which produces super-pixel 

for spatial information and super-voxel for spatiotemporal information, is 

designed for PAD task. The super-pixel extraction method, or its 3D 

extension named super-voxel, is used as the primary feature in the 

proposed workflow to get the clustered pixel group. LBP and BoW 

algorithm are used as the secondary feature to generate the final feature 

vector for classification. Some encouraging results in the benchmark 

datasets show the potential of the proposed workflow.   
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Chapter 5: Deep Learning Approaches for 

PAD 

In this chapter, some facial spoofing attack detection methods based on deep 

learning approaches are explored. In Chapter 2 and Chapter 4, we covered various 

traditional hand-crafted features for PAD. Some progress has been made by 

introducing novel hand-crafted features and promising results have been obtained. 

However, the performance of such systems, trained with a particular dataset, will 

significantly drop when tested with a different dataset, even when the same attack type 

is used. To overcome such performance limitations, deep learning techniques have 

been gaining ground for PAD. This chapter is concerned with developing new 

approaches that apply deep learning techniques for PAD. 

Section 5.1 introduces the motivations for the set of experiments that follow. 

Section 5.2 introduces a DNN architecture that can process temporal information for 

PAD. Section 5.4 introduces two methods for applying such a DNN architecture for 

PAD. Then Section 5.3 then applies some visualisation techniques to gain more insight 

on the operation of the DNN. The results from these studies are then used for the 

following work in Chapter 6. 

5.1 Motivation  

Deep learning is an emerging and rapidly developing branch of machine learning 

that learns the representation of the target data by stacking multiple processing 

layers.[104]. Traditional machine learning techniques require considerable efforts of 

careful design and complicated engineering for the feature extractor that can transform 

the raw data (such as the pixel values of frames of a video) into an appropriate internal 

representation (the feature vector) for classification or detection. However, these 

human-designed internal representations are seldom fully invariant to the range of 

possible environmental conditions of the input data (such as illumination or camera 

changes). Deep learning offers a possible way to overcome the limitations of such 

traditional approaches to feature extraction. 

Presentation attack detection research has followed the supervised learning 

paradigm by training a learning system that can produce an output as a vector of 
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classification scores by minimising training errors. Traditional PAD algorithms have 

relied on sophisticated hyper-parameter optimisation to maximise their performance 

for particular evaluation datasets. Some drops in performances are therefore expected 

when applying a traditional PAD method to different diatasets without hyper-

parameter tuning. The hyper-parameters would need to be selected to adapt the 

algorithm for different environmental and application conditions. This requirement for 

adapting the algorithms for each application is an impediment to the wider adoption of 

biometric systems.  

The rise of deep learning has dramatically changed the PAD research by learning 

suitable intermediate representations from the training data.  

(1) Deep Learning can learn good features automatically, but designing a good 

deep architecture is difficult.  Researchers can train a novel neural architecture from 

scratch by following a common procedure rather than using specialist domain 

knowledge [67] [104]. But designing such a deep neural architecture requires expertise 

in of deep neural networks.  

(2) Deep Transfer Learning can easily use the implicit knowledge from a source 

domain with insufficient training data in the target domain. But the selection of the 

feature extraction subnetwork from different pre-trained deep neural networks is a 

difficult problem. For instance, VGG16 [47] network, which is trained using the 

ImageNet  dataset[64], could be used for deep transfer learning in PAD.  However, the 

deep transfer learning with VGG16 pre-trained network does not give the best results 

at various datasets, contrary to researchers’ expectations. The reason behind this may 

be that the VGG16 is not a good neural network for deep transfer learning. 

Additionally, the reason may be that the researchers did not find a good way of using 

the pre-trained neural networks for PAD.  

 (3)  DNNs also offer some new ways to process temporal information [72]. 

However, the deep neural network is computationally expensive, and the existing 

methods, which use Recurrent Neural Networks (RNN) for temporal information, may 

not be the best way of processing temporal information. 

 Several recent papers have claimed to produce good performance in PAD using 

DNN based methods. This chapter focuses on exploring the main factors that influence 

the performance of a DNN-based PAD. The deep transfer learning paradigm is first 
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introduced and some widely used pre-trained neural networks are considered as robust 

feature extraction methods to demonstrate the potential of the DNN-based methods. 

The performance scores from experiments using the deep transfer learning paradigm 

are also considered as the baseline for comparison with subsequent proposed methods.  

Section 5.2. presents pre-trained feature extractors which have good performance and 

generalisation capability. These DNN-based PAD algorithms, however, do not provide 

the best performance in all cases and demonstrate that more efforts may be needed to 

improve the design of deep neural architectures for PAD.  

Some visualisation algorithms and justification generation algorithms are 

explored to analyse the inner mechanisms behind the behaviour of PAD systems 

generated by deep transfer learning. Generally, deep learning is a black-box algorithm. 

Here, some basic visualisation examples are first explored in Section 5.3.1. Then, some 

“interpretable visualisation” is provided for analysing the basic principle of design for 

a neural architecture for PAD.  

Some ideas that are used in the conventional features inChapter 4, are also used 

to design deep neural architectures in this chapter. Section 5.4.1 provides a neural 

architecture for the temporal intensity signal from facial action unit system to detect 

PAs. And the motion textures are modelled by using a patch-based CNN, which is 

inspired by a commonly used pre-processing step: dividing the facial area into M×M 

sub-blocks. The 3D CNN is considered for the patches sequence and the small 

temporal texture difference could be recognised by using 3D CNN. 

5.2 Convolutional neural network for PAD 

Deep learning is a popular method for representation learning which has a very 

strong dependence on the large scale of training data. The distinct performance 

improvement by using deep learning methods relies on the capability of learning latent 

patterns. Various widely considered PAD datasets, which are collected for testing and 

evaluating the conventional features, can hardly be used to train a deep neural 

architecture from scratch directly. And the limited training data will significant 

increase the overfitting risk for a deep neural network. This section will provide two 

possible solution for this problem: (1) deep transfer learning and (2) training a neural 

architecture from scratch with less trainable parameters.  
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The deep transfer learning paradigms is explored in literature which 

demonstrated that a pre-trained CNN could be transferred to PAD without much fine-

tuning [146]. The proposed deep transfer learning experiments introduce some latest 

pre-trained neural architectures for transfer learning paradigm and evaluate the 

proposed deep transfer learning methods at various benchmark datasets.  

“Training a neural network from scratch”, which means researchers design and 

train a neural network without transfer learning, is another popular way of using deep 

learning methods. However, the deep neural networks are “data hunger”. The proposed 

architecture should include less trainable parameters than the normal deep neural 

networks to decrease the risk of overfitting. For this reason, the proposed Colour 

Convolutional Presentation Attack Detection Network (CCPADNet) considers the 

network structure of MobileNet [57], which introduces two modified convolutional 

operators to decrease the volume of trainable parameters,  and a Colour sub-network, 

which can be trained independently with PAD dataset. This Colour sub-network aims 

to learn a colour space transfer function for spoofing detection. And the global average 

pooling and residual connections are introduced to increase the performance. 

Some basic concepts of deep learning techniques are introduced in the section in 

order that the details in the following experiments are demonstrated clearly. A novel 

neural architecture for PAD is proposed to achieve better performance. To simplify 

the problem, PAD is considered as a binary classification problem in this section. In 

subsequent sections, this constraint will be relaxed. Both of these proposed methods 

are evaluated at 5 widely used datasets and data argumentation is considered as a pre-

processing step to enlarge the volume of training data.  

5.2.1 Deep Transfer Learning for PAD (DTL-PAD)   

The limited volume of datasets will restrict the performance of the deep neural 

networks[146]. And the insufficient training data is becoming a distinct problem for 

training a deep architecture to detect presentation attacks. However, collecting training 

data for PAD is expensive and complex. Thus, the proposed method follows [159] and 

considers multiple pre-trained neural networks for the deep transfer learning paradigm 

to detect facial presentation attacks. 
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 Deep transfer learning relaxes the independent and identically distributed (iid) 

assumption and allows a pre-trained neural network to be quickly transferred for a 

different task. [146]  .  

To make the description clear, the domain 𝒟, which consists of the probability 

distribution 𝑃(𝑋) and the feature space 𝒳, is defined as a set for a supervised learning 

task 𝒯 = {𝑦, 𝑓(𝑥)}. In this description, X={𝑥1, 𝑥2, … , 𝑥𝑛}∈ 𝒳 denotes a subset of 𝒳 

and 𝒯  aims to learn a mapping function which represent the hidden conditional 

distribution 𝑃(𝑦|𝑥).  

Transfer learning paradigm considers two domains: target domain 𝒟𝑡 and source 

domain 𝒟𝑠 . Given a learning task 𝒯𝑡  on the target domain 𝒟𝑡 , transfer learning 

paradigm aims to achieve a good predictive performance for function 𝑓𝒯(. ) on the 

learning the task 𝒯𝑡 by transferring latent knowledge from 𝒟𝑠.( 𝒟𝑠 ≠ 𝒟𝑡 and/or 𝒯𝑠 ≠

𝒯𝑡 ) In the most case of the deep transfer learning, the size of 𝒟𝑠 is much larger than 

the size of 𝒟𝑡.  

By following these definitions, deep transfer learning can be described as a tuple 

〈𝒟𝑠, 𝒯𝑠, 𝒟𝑡, 𝒯𝑡 , 𝑓𝒯(. )〉  with 5 elements, where 𝑓𝒯(. ) is a non-linear mapping function 

that deep neural networks aims to learn. Tan, C. et al. [146] give a name (Network-

based Deep Transfer Learning) for the paradigm which reuses the partial network that 

has been pre-trained in the source domain and transfer the partial network as a part of 

the DNN that is proposed for the target domain. The network structures and trained 

parameters should be both included in this process. 

In the experiments reported in this chapter, the source task is general image 

classification task 𝒯𝐼𝑀𝐺  for the image classification domain 𝒟𝐼𝑀𝐺 . The presentation 

attack detection is the target domain 𝒟𝑃𝐴𝐷with the target task 𝒯𝑃𝐴𝐷 . The proposed 

experiments follow the definition of the network-based deep transfer learning and 

consider the task as 〈𝒟𝐼𝑀𝐺 , 𝒯𝐼𝑀𝐺 , 𝒟𝑃𝐴𝐷 , 𝒯𝑃𝐴𝐷 , 𝑓𝒯(. )〉.    

The network for deep transfer learning consist of two parts: (1) the front part is 

the feature encoder sub-network (the language-independent feature transform [160] ) 

and (2) the back layers form the classifier. The feature encoder sub-network, which is 

trained using large datasets such as ImageNet[64], is reused to compute intermediate 

feature representation in this paradigm. 
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Generally, the transfer learning paradigm needs a learned mapping function 

𝑓𝑆(. ) which is trained for the task 𝒯𝑠 in source domain 𝒟𝑠 by using a large volume of 

training data. Then, the feature encoder sub-network of 𝑓𝑆(. ) is connected with a new 

classifier network to learn a new mapping function 𝑓𝒯(. ) at the target domain. The 

training time for the new mapping function at the targeted domain is significantly 

decreased due to the latent knowledge in the feature encoder sub-network of 𝑓𝑆(. ).  For 

this reason, the investigation reported in this thesis started with exploring deep transfer 

learning-based PAD. [146] 

The feature encoder sub-network for computer vision tasks consists of 

convolution layers from the pre-trained networks; and sometimes it includes one 

flatten layer [161] to reform the output of convolutional layers as a feature vector. The 

classification network, which sometimes only consists of one or two fully connected 

(FC) layers, is similar with the Neural Network classifier in some papers exploring the 

conventional features. 

Selecting good pre-trained networks is an important mission for the transfer 

learning paradigm especially when applying transfer learning for PAD. Yosinski, J., 

et al. [162] suggest that some weights in the pre-trained neural network may not 

influence in-domain accuracy but influence the transferability. They suggest that 

LeNet, AlexNet, VGG, Inception, ResNet are identified as good choices in network-

based deep transfer learning.  

Some works [163] from model compression area suggest these popular neural 

networks include some “redundant weight” and compress these weights will not affect 

the performance on the testing set. However, Yosinski, J., et al. [162] also point out 

that the redundancy of weights is suitable for the transfer learning. The proposed 

experiments explore the feature encoder sub-network from three widely used deep 

neural network (VGG-16[47], ResNet50[49], and NAS-large networks[10]) by 

following the suggestion from Yosinski, J., et al [162]. The following experiments 

choose VGG-16 network as feature encoder sub-network due to its good 

transferability. 

After loading the pre-trained model, each frame from PAD evaluation dataset is 

fed into the pre-processing pipeline: (1) The facial area in each frame was detected and 

cropped as the first step. (2) The facial landmark data provided by the dataset (if 

file://///files.kent.ac.uk/usersS/sp641/Home/Essential-User-Settings/Desktop/Chapter%205%20v007.docx%23_ENREF_10
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applicable) are used in this step to avoid possible detection errors. (3) Then, the 

cropped facial area is normalised and resized to fit the input size of the pre-trained 

network. For instance, VGG16 pre-trained network requires the form of the input data 

to be 224*224*3 pixels. The resized input data is normalised to be within the range 

[0,1] by following the suggestion of TensorFlow platform [164]. In the PAD dataset, 

different frame sequences may have different number of frames. The proposed 

experiments randomly select some frames from each frame sequence by using the 

random model provided by Python 2.7 to decrease the similarity of training data and 

speed up the feature extraction and classification.  

The Classifier Network have same neural architecture, which include two fully 

connected layers, for the proposed deep transfer learning experiments. However, the 

size of features from different pre-trained neural networks are different. In order to 

provide a useful comparison of these feature encoder networks, the proposed transfer 

learning experiments resize these feature tensors to same shape to fit the input 

configuration of Classifier Network. For instance, the length of the feature vector will 

be different when it is generated by different pre-trained feature encoder networks. 

The proposed method selects a fixed length and uses the additional pooling layer [165] 

to adjust the feature vectors from different encoder networks.  

The proposed DTL-PAD algorithm follows the same experimental setup. The 

whole network is trained for 200 epochs in total. In the first 50 epochs, the trainable 

parameters in the feature extraction network is fixed. The trainable parameters within 

the classification network are optimised by using a SGD algorithm [200], which is 

initialized with an initial learning rate of 0.03. Then, the learning rate will down to 

1 × 10−3 by following a cosine schedule. The following fine-tuning stage takes 150 

epochs with a small learning rate (1 × 10−5). The input data will use Viola-Jones face 

detector from OpenCV [112] in the pre-processing stage. And all of the input data 

should be normalised to range [0,1]. 

Table 5.1 provides the performance about the proposed DTL-PAD and the state-

of-the-art methods of deep learning for PAD. Yang-Net [67] is the first work which 

considers convolutional neural architecture to detect PAD. Lucena. et al. [145] also 

consider transfer learning paradigm and use the feature extraction part of the pre-

trained VGG16 network in their FASNet. The proposed DTL-PAD (VGG16) gives 
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better performance when comparing with FASNet. The reason may be the fine-tuning 

stage, which is suggested by [162], can improve the system performance. The  

Table 5.1 Performance of the Deep Transfer Learning for PAD at multiple datasets 

 
Datasets 

(EER%) 
NUAA 

REPLAY 

ATTACK 

CASIA-

FASD 

MSU-

MFSD 

HKBU 

MARs 

Rose-

Youtu 

FAS-Net [145] N/A 10.0 N/A N/A N/A N/A 

Yang-Net [67] N/A 2.4 5.0 N/A N/A N/A 

DTL-PAD (VGG16) 3.6 8.4 7.1 16.0 39.7 15.4 

DTL-PAD (ResNet) 4.9 5.7 6.3 11.4 33.1 14.8 

DTL-PAD (NAS) 2.5 9.4 8.0 14.3 35.0 18.5 

 

proposed DTL-PAD (ResNet) and DTL-PAD (NAS) demonstrate better performance 

in some dataset. However, the transfer learning based approaches not represent better 

performance than the Yang-Net [67] which is a neural architecture designed for PAD.  

By analysing these results, there are two points, which may be important for the 

following experiments: (1) A neural architecture, which is designed and trained for 

PAD, may represent better performance than only using the transfer learning 

paradigm. (2) Some works may need to be done to transferring a pre-trained neural 

network for PAD with better performance.  

5.2.2 Colour Convolutional Presentation Attack Detection Network (CCPAD-

Net)   

From the previous results, designing some novel neural architectures for PAD is 

attractive for researchers due to the performance improvements and lower 

computational costs. Presentation Attacks have some distinct characteristics which 

may need researchers to design some novel neural architecture (such as colour space 

differences, motion texture differences, etc.). The proposed Colour Convolutional 

Presentation Attack Detection Network (CCPAD-Net) aims to get better performance 

by designing a novel neural architecture for the colour differences. 

Methodology 

The proposed network consists of three main sub-networks: (1) Colour Space 

network (2) Feature Encoder network and (3) Classifier Net.  The Colour Space 

Projection network aims to generate a mapping function which can transfer the input 
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image to a specified colour space. The Feature Encoder network aims to produce a 

feature vector that can represent the distinct texture difference for presentation attack  

 

 
Figure 5.1 The architecture overview of the proposed CCPAD-Net 

 

detection. And the Classifier network is used to generate the final decision. The 

overview of this proposed algorithm can be found at Fig. 5.1. 

In the proposed pipeline, the RGB face image is fed into the Colour Space 

Network which maps the input image into a learned colour space. Then, the output of 

the Colour Space Network is fed into a standard convolutional layer to generate the 

intermediate feature maps. After that, the intermediate feature maps are sent into the 

Feature Encoder Network which consist of 4 convolutional blocks. Each of these 

blocks follows the suggestions of [57] to generate the discriminative feature vector for 

classification. Finally, the feature vector is fed into the Classification Net which 

consists of an average pooling layer [165], and a fully connected layer with Softmax 

activation function [166] to produce the predict label for the current data input. 

The proposed Colour Space network aims to learn a mapping function to project 

the raw input data into a colour space where the spoofing attack will represent distinct 

difference. The input of Colour Space network is the raw data and the output of the 

Colour Space Network is the 3-channel feature map which has the same width and 

height as the original frame. Colour space transformation function should calculate the 

transferred colour representation in pixel wise. Thus, the proposed neural architecture 

considers depth-wise convolution and point-wise convolution [57] rather than the 

original convolutional operator. Both of these convolution methods are visualised in 

Figure 5.2.  
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In the proposed Colour Space Blocks, the point-wise convolution operator [57] 

is firstly applied to merge the pixel value from different colour channels. Then, the 

depth-wise separable convolutions [57] are followed, and use various filters to 

factorize the output of point-wise convolution layer into different channels. The point- 

  

Figure 5.2 Different convolution methods. From top to bottom, (a) illustrates the 

standard convolution method, (b) shows the depth-wise convolution method, and (c) 

shows the point-wise convolution method. [57] 

 

wise convolution layer and depth-wise convolution layer can highly decrease the 

computational complexity and the volume of the trainable parameters. 

A standard convolutional layer takes an input feature map 𝐅  with shape 

𝐷𝐹 × 𝐷𝐹 ×𝑀 and the output feature map 𝐆 of this standard convolutional layer is a 

𝐷𝑮 × 𝐷𝑮 × 𝑁 .  Here, 𝐷𝐹  is the spatial width and height of the filter size and the 

following description only consider the square input feature map to make the 
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description simple and understandable. And 𝐷𝑮 is the size of output feature map. 𝑀 

indicates the number of input channels (input depth) and 𝑁 is used to represent the 

number of output channel (output depth).  

 The standard convolutional layer is parameterized by a convolution kernel K of 

size 𝐷𝐾 × 𝐷𝐾 ×𝑀 × 𝑁 where 𝐷𝐾is the spatial dimension of the kernel assumed to be 

square. The output feature map for standard convolution, assuming stride one pixel for 

input with padding [167] is computed as formula(5.1) [57]: 

 𝑮𝑘,𝑙,𝑛 = ∑ 𝑲𝑖,𝑗,𝑚,𝑛 ∙ 𝐅𝑘+𝑖−1,𝑙+𝑗−1,𝑚
𝑖,𝑗,𝑚

 
(5.1) 

Standard convolutions have the computational cost of: 

 𝐷𝐾 × 𝐷𝐾 ×𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹 (5.2) 

where the computational cost depends multiplicatively on the number of input 

channels 𝑀, the number of output channels 𝑁 the kernel size 𝐷𝐾 × 𝐷𝐾 and the feature 

map size 𝐷𝐹 × 𝐷𝐹.  

Depth-wise separable convolution is considered to break the interaction between 

the number of output channels and the size of the kernel. The original convolution 

operation combines features to produce the representation for next layer. The filtering 

and combination steps in the original convolution operation can be divided into two 

steps by using depth-wise separable convolutions. The computational cost will be 

reduced by following the suggestion of [57].  

Depth-wise separable convolutions consist of two layers: depth-wise 

convolutions and point-wise convolutions. The depth-wise convolutions only consider 

a single filter for each input channel. A simple1×1convolution, which is named as 

Point-wise convolution, is then used to generate a linear combination of the output of 

the depth-wise layer. Depth-wise convolution with one filter per input channel (input 

depth) can be written as 

 �̂�𝑘,𝑙,𝑛 = ∑ �̂�𝑖,𝑗,𝑚,𝑛 ∙ 𝐅𝑘+𝑖−1,𝑙+𝑗−1,𝑚
𝑖,𝑗,𝑚

 
(5.3) 

where �̂� is the depth-wise convolutional kernel of size𝐷𝐾 × 𝐷𝐾 ×𝑀 where the 

m-th filter in �̂� is applied to the m-th channel in F to produce the m-th channel of the 

filtered output feature map �̂� . 
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To decrease the computational cost is another important reason to integrate the 

depth-wise separable convolution. The computational cost of the depth-wise separable 

convolutions can be represented by  

 𝐷𝐾 × 𝐷𝐾 ×𝑀 × 𝐷𝐹 × 𝐷𝐹 (5.4) 

In [57] , they demonstrate between 8 to 9 times less computation than standard 

convolutions for only a small reduction in accuracy. 

The proposed neural architecture, which contains 32 convolution filters with 1×1 

filter size in Colour Space network, uses depth-wise convolution and point wise 

convolution in a different way. The depth-wise convolution operation is used to 

produce non-linear projection for single colour channel and the point-wise convolution 

operation is used to fuse multiple channels. This Colour Space network is firstly 

trained by a generated dataset. 

The generated dataset is designed for learning a function to transfer RGB 

channels into some colour channels that is meaningful for PAD. Z Boulkenafet et al. 

[32]  used Chi-square distance to measure the similarity of texture patterns in different 

colour channels. They suggested that the textures in the Cb channel of the YCbCr 

colour space are discriminative for the video attack and the texture pattern in the Cr 

channel is representative for the printed attack. They also reported that the best 

performance score is achieved by combining the HSV colour space and the YCbCr 

colour space. From their work, the Y channel in the YCbCr colour space has a similar 

meaning to the Value or Brightness channel in the HSV colour space. Thus, the 

proposed workflow generates a separate training set for the Colour Space network. 

This dataset considers the original RGB frames from the training dataset as the input. 

The label of this datasets is the combination of some colour channels generated from 

the original frame. The proposed method selects S channel from HSV colour space; 

Cb and Cr channels from the YCbCr colour space in the following experiments. By 

using this generated dataset, the Colour Space Network can be trained separately.  

The proposed method also considers Convolutional blocks from MobileNet [57] 

to decrease the total number of trainable parameters. The Feature Extraction part of 

the proposed CCPAD-Net method consists of one original convolutional layer and 4 

MobileNet Blocks to extract the feature representation.  
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Each convolution layer is followed by a batch normalisation layer [168] to 

decrease the risk of overfitting. The ReLU[52] nonlinear activation function is used in 

the proposed neural architecture with the exception of the final fully-connected layer 

which uses SoftMax activation function [166] for classification.  

The skip-connections, following ResNet [49], are also used in the Feature 

extraction part in the proposed neural architecture. ResNets add a skip-connection and 

the gradient can flow directly through the skip-connection from later layers to the 

earlier layers. The neural architecture for PAD may also need this feature to bypass 

some layers and feed the discriminative texture representations from low level layers 

directly into the high-level layers. The visualisation experiments in section 5.3.2 also 

show this phenomenon.  

Experiment  

Data augmentation methods are applied in this experiment by following the 

descriptions in Chapter 3. The quality and volume of the training data determine the 

performance of the DNN-based methods. In the absence of sufficient training data, 

data augmentation may be necessary for training a deep neural network from scratch 

to detect presentation attacks. The extra training dataset ,which is generated for 

training the Colour Space Network, can also be considered as a part of data 

argumentation processing.  

Extensive experiments were conducted on 6 challenging datasets and the results 

for the proposed CCPAD-Net is listed in the Table 5.2.  Three methods are compared 

with the proposed methods: (1)Colour LBP [32]  also considers colour space and uses 

a widely used conventional texture feature descriptor as the secondary feature to 

generate the detection results. (2) Yang, et al. [67] and Li,  et al. [103] design novel 

neural architectures and train their neural network from scratch by using PAD dataset. 

The proposed experiment also explores a hybrid architecture which combine the 

proposed Colour Space Net and the feature extraction part of the VGG16 pre-trained 

neural network[47].  

Table 5.2 Performance of the CNN as baseline feature for multiple datasets 
Datasets 

(EER%) 
NUAA 

REPLAY-

ATTACK 

CASIA-

FASD 

MSU-

MFSD 

HKBU 

MARs 

Rose-

Youtu 

Colour 

LBP[32] 
N/A 0.0 3.2 3.5 N/A N/A 
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Yang-Net [67] N/A 4.32 6.25 N/A N/A N/A 

3DCNN [103] N/A 0.3 1.4 0.0 N/A 7.0 

Colour Space 

Net (VGG16) 
0.3 0.6 1.5 3.2 19.7 7.9 

CCPAD-Net 0.1 0.8 1.1 2.7 20.5 8.3 

 

From this table, the proposed Colour Space Net(VGG16) and CCPAD-Net 

demonstrate better performance than the Colour LBP method[32] which shows the 

effectiveness of the deep learning based methods.  The proposed experiments represent 

better results than Yang, J. et al. [67]’s work which also explores 2D CNN and train 

their neural network from scratch by using PAD dataset. These results demonstrate the 

effectiveness of the proposed neural architectures. Some results from Li, et al. 

[103]’work shows better results in some datasets. However, their work consider 

temporal information by using 3D CNN and a complicate “model generalisation” step 

to improve their performance. This suggests that future work for applying DNN to 

detect PA needs to pay more attention on design of the network, which can fit the 

special needs of presentation attack detection, rather than simply use the transfer 

learning paradigm.   

5.3 VISUALISATION AND ANALYSIS OF DNN-BASED PAD 

After exploring the DTL-PAD and CCPAD-Net methods, there are two 

questions naturally comes out: (1) What latent knowledge, that is learned from the 

training data, can be considered as the distinct difference between genuine and attacks?  

(2) Which region in the input raw data is important for the current decision? To answer 

these two questions, this section firstly provides some visualisation for the deep 

learning based PAD architecture. Then, some interpretable algorithms from 

explainable artificial intelligence (XAI) are explored to provide deeper understanding 

for the inner mechanism of the deep learning based PAD methods.   The proposed 

experiments visualise the intermediate representation within CNN structures to explain 

the spatial or temporal correlations behind the decisions. The study in this chapter will 

guide the development of the new systems presented in Chapter 6.  

5.3.1 Basic visualisation 

The proposed visualisation experiments start with simple visualisation methods: 

visualise the activation of different convolutional blocks in DTL-PAD(VGG16). The 
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visualisation results are presented as visual images in Fig. 5.3. By following the 

suggestions in [50] , the initial visualisation experiment is to visualise the intermediate 

output from each convolutional block.  

Fig. 5.3 shows the results of visualisations for different convolutional blocks. 

The feature extraction subnetwork for VGG16 architecture[47] consists of 5 

convolutional blocks. The initial visualisation experiment selects block 3 to 

demonstrate the difference between genuine face and attacks in the perspective of 

VGG16. Block 3 in the VGG16 network is the middle convolutional block. Some 

researchers[169] claimed that  the lower level of neural layers will focus on the texture 

level features and the higher level will focus on the object level.  Selecting the middle 
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Figure 5.3 Visualization of DNN layer’s response map for different spoofing attack 

types.(From top to bottom, the visualisation of Block 3 convolutional 3 layer at VGG 

16 for real access, the paper attack, and the video attack visualisations.) 

 

convolutional block for visualisation aims to show the activation difference in the 

texture level, which is represented as different pixel intensity value in activation image, 

and to show the visible difference in the object level for human eyes. Fig 5.3 considers 

the output from real face, paper attack, and video attack. And the same position, which 

is represented as row x and column y, at (a), (b) and (c), indicate the output for different 

attack types from same filter.  

From Fig 5.3, it can be easily noticed that even lower-level convolutional filters 

have some significant response areas where the spoofing artefacts are different from 

real faces. It means some texture difference is very significant for detecting 

presentation attacks. Some filters will represent high activation value (high pixel 

intensity value in the image) in some region. For instance, the results from the filter 

(row 1, column 2 at (a) (b) and (c)) shows some regions with high activation values 

for real face texture but relatively low activation values for paper attack and video 

attack. These outputs from convolutional layers represent some semantic meaning for 

PAD. They also illustrate the potential of DNN for spoofing detection. 

However, this simple visualising is not enough for the deep learning based 

methods. By exploring the literature of interpretable artificial intelligence, we realised 

that the interpretation of existing neural network may be very important for developing 

new and better deep architectures. From the explanations provided by some 

interpretable algorithms, researchers can understand the problem in a new way: based 

on perspectives of neural networks which are learned from large datasets. Deep 
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learning methods learns the latent model from large volumes of data which may not 

accessible for human beings. The new insights bring from these explanations could 

inform and support future research. 

The interpretation capability may be much more important for biometric 

research and application than other areas. Generally, people need some reasons when 

the decision can highly affect their life. For example, explanations of treatment 

decisions between patients and doctors are often considered necessary; however the 

treatment decisions produced by using deep learning system can hardly be explained 

[170]. 

As a security technology, a biometric system may need not only to provide the 

decision but also the reason behind this decision to convince its users. When the wrong 

rejection or wrong acceptance has occurred, system managers need the reason behind 

this failure to optimise the system.  It may indeed be necessary to know not only the 

decision made regarding genuine and fake presentations from the system but also the 

reason behind it. For instance, E-payment applications, based on facial biometric 

technologies are now widely used. Each wrong accept decision may lead to a 

significant property loss to the user. The explanations of the system can help people to 

identify who have the responsibility to compensate this property loss as the “black 

box” in the airplane.  

Moreover, in some security scenarios, an explainable algorithm can improve 

their performance immediately by simply introducing human experts into the 

processing loop to make the final decision [171]. It can further decrease the risk of 

false acceptance and false rejection. When the system can provide some reasons for 

generating each important decision, the human experts involved in the daily 

maintenance of the system can quickly provide a decision based on their knowledge 

about trusting the system or not. Thus, the wrong decision from the system can easily 

be corrected by human experts. A black-box system cannot do this. In the proposed 

architecture, a natural language generator was added to provide more understandable 

explanations. 

5.3.2 Interpretable visualisation 

From the initial visualisation experiment, some regions with high pixel intensity 

value may have semantic meaning which are reported as conventional features (such 
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as gamut, texture, foreground-background, and so on). These visualised activation map 

from the intermediate convolutional blocks could partially explain the relatively good 

generalisation capability of deep neural networks. However, the initial visualisation 

experiment still cannot answer the question like: Which region in the input raw data is 

important for the current decision? 

One of the important reasons is that researchers cannot locate areas that are 

significant for PAD at the pixel level. For instance, researchers cannot connect  the 

final results to a low-level texture pattern and/or high-level object parts. For these 

reasons, two visual explanation algorithms are explored and applied for the PAD 

problem in the proposed experiment to visually highlight the reason behind decisions 

made by deep-learning based PAD systems. Some analysis will also be provided to 

answer the question such as:  whether the deep learning based PAD system correctly 

identify the location of the PAD artefacts or signatures in the image. 

Partial Oculus Sensitivity Map 

Partial Oculus Sensitivity Map [172] show the spatial importance of the input 

data for the current decision by systematically occluding different portions of the input 

image, and monitoring the difference for the decision output. It is a simple but efficient 

method which can clearly demonstrate the spatial importance for a particular region 

model. Especially, the output probability score will drops significantly when the 

important object is occluded.  

 

 
Figure 5.4 Workflow for the partial occluded sensitivity map 

 

Fig 5.4 visualises the workflow of producing a Partial Oculus Sensitivity Map. 

For an input image ,the model will provide a probability prediction 𝑌. The partially 

occluding process is then used to generate the partially occluded images {�̌�}. The 
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difference between the probability output for 𝑋 and {�̌�} will then be calculated by 

using {𝑌�̌�- 𝑌} where 𝑌�̌� indicates the probability output for{�̌�} generated by the model. 

Then, a normalisation function is applied to normalise the probability difference to the 

range [0,1] as the Partial Oculus Sensitivity Map.  

The partial oculus process firstly divides each frame into an A×A blocks. Then, 

the algorithm selects a block and use a grey block to replace the original image in this 

region. This replaced image can be named as partially occluded image. The partially 

occluded images {�̌�}  can be calculated by enumerating all possible blocks. The 

example of the partial oculus processing and the example of the Partial Oculus 

Sensitivity Map can be found at Fig 5.5. 

 
Figure 5.5 Visualization of partial occluded and heatmap example 

 

GRAD-CAM 

Another visualisation algorithm, which is explored to provide the visual 

explanation for the current decision from the deep learning based PAD system, is 

named as Gradient-weighted Class Activation Mapping (Grad-CAM) [173]. Grad-

CAM also aims to provide a spatial importance visualisation map but uses the gradient 

from the deep neural network to calculate. The Grad-CAM is a “class discriminative 

localization map” which is calculated for one category each time. Normally, 

researchers only calculate Grad-CAM for the ground truth category. For a Grad-CAM 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 ∈ ℝ𝑢×𝑣 of width 𝑢 and height 𝑣, the prediction of the score for class 𝑐,  𝑦𝑐,  
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and the feature maps 𝐴𝑘 of a convolutional layer are used to calculate the gradient flow 

𝜕𝑦𝑐

𝜕𝐴𝑘
.   

 
Figure 5.6 Workflow for the Grad-CAM saliency map 

 

This gradient flow can be calculated by using the global average-pooling [165]to 

obtain the neuron importance weights 𝛼𝑘
𝑐=
1

𝑍
∑

𝜕𝑦𝑐

𝜕𝐴𝑖,𝑗
𝑘𝑖,𝑗  by following the suggestion of 

[174]. This neural importance weight 𝛼𝑘
𝑐  can be understood as the partial linearization 

of the deep network in Selvaraju, R. R., et al [173]’s work to get the “importance” of 

the feature map 𝑘 for the ground truth category. The weighted combination of forward  

 

Figure 5.7 The Grad-CAM saliency map for object detection and for PAD 

 

activation map which is followed by a ReLU activation function[52] to obtain the 

Grad-CAM map as 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘

𝑐  𝐴𝑘𝑘 ). The result of this algorithm is a 

coarse heat-map of the same size as the convolutional feature maps (14 × 14 in the 

case of last convolutional layers of VGG). The proposed experiments only interested 

in the features that have positive influence on the ground truth. And the input frames 

in the following visualisation experiment are selected from CASIA-FASD [122].  

Visualisation Results 

Figure 5.8 shows the results of using two visualisation approaches for the 

different categories on the examples from CASIA-FASD [122]. In the proposed 
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experiment, the feature extraction part of the VGG16 network[47], which consists of 

5 convolutional blocks, is selected as the pre-trained feature extraction sub-network. 

In the proposed saliency maps, the brighter colour demonstrates the importance of the 

spatial location. The generated saliency maps are enlarged by using linear interpolation 

method [175] to fit the size of the original input image. Some open source codes for 

Grad-CAM are used in the proposed visualisation experiments, which are released by 

Selvaraju, R. R., et al. [173] on the torch platform [176]. The original source code for 

Grad-CAM requires a separate training stage and this training stage can be replaced 

by simply calculating the gradient for the additional global average pooling layer at 

the classifier network[174]. The proposed experiment follows the suggestions of 

Chattopadhay, et al. [174] to accelerate the Grad-CAM method. To generate the 

masked frame, a generated saliency map is firstly normalised to range [0,1] by divide 

the maximum value within this saliency map. Then, the normalised saliency map is 

zoomed to [0,255] to fit the valid pixel intensity value. The proposed experiment uses 

applyColorMap() function from OpenCV[177] to transfer the generated saliency maps 

into 3 channels and the masked image is visualised by using the default function 

provided by Keras [178].  
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Figure 5.8 Visualization of grad-CAM salience map and partial oculus  salience map. 

Each row of this figure is two masked visualisation and two salience map 

visualisations for different attack types of the CASIA-FA dataset. (From top to bottom, 

the category name is real, paper attack, cut paper attack, video attack.) From right to 

left, different columns represent different visualisations (the sequence is original 

frame, grad-CAM soft masked frame, partial occluded soft masked frame, grad-CAM 

salience map, partial occluded salience map). 

 

From Figure 5.8, the numerical difference makes the saliency maps generated 

by different algorithms looks different. Meanwhile, the visualisation for masked image 

demonstrates that different visualisation algorithms may consider the same spatial 

location. It can be considered as the evidence about that the deep neural network 

“focus” on some particular spatial location. And the texture patterns in these particular 

spatial locations may be considered as the most suspicious representation, or the most 

evidential feature representation for presentation attacks. For this reason, the 

justifications generated by grad-CAM algorithm[174] could be used, as some 

additional information from a computational efficiency approach, to train the neural 

network for further improving the performance of the neural networks. 

The hierarchical structure of deep neural networks is believed as a possible 

reason of its efficiency[104]. In VGG16 network[47], some convolutional layers and 
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pooling layers [165]are considered as a “block” of convolutional layers. To 

demonstrate the relationship between the intermediate results of different 

convolutional blocks and final decisions, the proposed experiment visualise the 

important spatial locations generated by different convolutional blocks. In this case, 

the algorithm of generating the Partial Oculus Sensitivity Maps cannot fit the 

requirement, which need the algorithm demonstrate the relationship between the 

intermediate output and the final output. The visualisation results for different 

convolutional blocks by using grad-CAM method[174] is presented at figure 5.8. And 

the results from different categories is listed at different rows. 

The visualisation results at figure 5.9 only show the original frame and the 

saliency maps generated for different convolutional blocks. (From right to left, 

different column represents different layers (the sequence is block1_conv2, 

block2_conv2, block3_conv3, block4_conv3, block5_conv3 in VGG-16)). The 

brightness of the saliency map indicates the importance of the spatial location for the 

ground truth category. The word “focus”, in the following descriptions, will be used 

to demonstrate the spatial location which have high brightness value in the generated 

saliency map. 

From this visualisation, different convolutional blocks may “focus” on different  

spatial locations. This phenomenon may suggest two points: (1) different convolution 

blocks may “focus” on the texture patterns at different semantical levels as the visual 

cortex in human brains[104]. (2) The presentation attacks, as some literatures 

mentioned [20], include different distinct feature representations at both texture level 

and object level.   
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Figure 5.9 Visualization of grad-CAM with different depth of VGG-16. Each row of 

Fig 5 is a grad-CAM heatmap visualisation for different types. (From top to bottom, 

the category name is real (low quality), real(middle quality), paper(low quality), 

paper(middle quality), cut paper, video attack(low quality), video attack(middle 

quality),) From right to left, different column represent different layers (the sequence 

is block1_conv2, block2_conv2, block3_conv3, block4_conv3, block5_conv3 in 

VGG-16) 

 

This visualisation results may partially explained the results shown at Table 5.1. 

The DTL-PAD (ResNet) and DTL-PAD(NAS) both include the residual connections 

[49], which include the Residual learning block, as the shortcut connections with 

gating functions, between two convolutional blocks.  The residual connections in 

DTL-PAD (ResNet) and DTL-PAD(NAS) may help the neural networks use the 

information at both texture level and the object level for PAD.  

Even in the VGG16, the networks may also “focused” on both texture level and 

the object level. The block 5, which is the last convolutional block in VGG16 before 

the classification layers, is considered to “focus” on some interesting regions in the 

proposed experiments. Researchers normally believes that the “focused” region in the 
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last convolutional layer may include some discriminative representation for the 

classification[104]. By visualising the results in figure 5.8 and figure 5.9, the deep 

neural network for PAD not only “focus” on the PA instruments but also consider 

some regions from background. Some examples (such as the saliency map at the 

second column and last row in figure 5.9) are focusing on some area that has pure 

white or grey colour in the background. A possible reason is that the region with pure 

colour may decrease the probability of detecting the texture representations such as the 

moiré pattern.  

Some objects (such as human hands, the black band of iPad, etc) are also 

“focused” by the deep neural network which is similar with some assumptions from 

earlier conventional features[19]. These background-based anti-spoofing research has 

not been actively followed up in recent years and the deep neural networks seems learn 

some similar “knowledge” from the training data automatically[19].  The “focusing” 

regions, that include some significant object parts( such as the black edge of an iPad 

used for photo/video replay) , may be the reason behind the increased robustness for 

the deep neural network when different image qualities are included in the testing 

dataset. 

However, the deep neural network is not perfect. The predicted spoofing 

detection probability score is expected to show a significantly drop when the facial 

area is blocked. The proposed experiment considers φ =

1

𝑀
∑((𝑃𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑃𝑏𝑙𝑜𝑐𝑘𝑒𝑑) 𝑃𝑛𝑜𝑟𝑚𝑎𝑙)⁄  as an index to show the influence for blocking the 

face, where 𝑃𝑛𝑜𝑟𝑚𝑎𝑙  indicates the predicted probability output from deep neural 

network for the original frame; the 𝑃𝑏𝑙𝑜𝑐𝑘𝑒𝑑 means the output for the frames which 

replace the detected facial region with a grey square. M is the total number of the image 

samples. If the original prediction 𝑃𝑛𝑜𝑟𝑚𝑎𝑙 =0.9 for the ground truth category, and the 

𝑃𝑏𝑙𝑜𝑐𝑘𝑒𝑑 =0.1, the probability score should significantly dropped ( φ = 0.89 ).  

However, the φ  is 0.47 at CASIA-FASD[122] and  φ  is 0.53 at Replay-Attack 

dataset[27]. It means the deep neural networks may consider some regions, which is 

not within the region of PA instruments, as the support evidence for the decision. For 

instance, the most important part should be the screen area for the video attack. It may 

be difficult to believe that this kind of deep neural networks is trustworthy for the 

security applications.  
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      Moreover, the disadvantage of using the pre-trained feature extraction sub-

network from VGG16 may also be obvious from the visualisation experiments: the 

convolutional blocks from VGG-16  does not include the Residual learning block to 

help the neural network consider the information from texture level directly.  

5.4 NEURAL NETWORKS FOR TEMPORAL INFORMATION 

PROCESSING  

In this section, two novel deep neural architectures for PAD using temporal 

information as well as spatial information are introduced in detail. Firstly, the neural 

architecture, which uses facial action units to detect PA, is introduced and named as 

Facial Action Signal Analysis Network (FASAN). FASAN improves the way of 

processing temporal facial action unit signals by utilising a recurrent neural network. 

Then, the Facial Temporal Cube Network, which considers a 3D convolutional neural 

network to produce the dynamic textures for detecting PA, is presented and evaluated.  

5.4.1 Facial Action Signal Analysis Network (FASAN)  

In Chapter 4, the idea of using the facial action unit coding system for 

presentation attack detection was introduced and its potential for PAD was explored. 

The proposed FAUH performed well when evaluated using two well-known datasets 

by using a histogram of activation to model the temporal changes. However, the 

histogram approach discards much of the temporal information available from the 

facial action unit intensity signals. To overcome this limitation, we analysed the 

selection of action unit groups to build the FAUH to minimise the effect of loss of 

information. While this remedy works to some extend it still does not fully utilise all 

the available information. 

With the rising of the DNNs, modelling temporal information by using neural 

networks has also become possible. One of the commonly used methods is considering 

the Recurrent Neural Networks (RNNs) which was explored by Hochreiter and 

Schmidhuber in 1997[179]. Currently, RNNs are a family of neural networks for 

processing variable-length sequential data. A RNNs maintains a recurrent hidden state 

matrix, whose activation value at the current time step, is dependent on the previous 

time step.  

Long Short-Term Memory Networks (LSTMs), which is a special kind of RNNs, 

has been introduced by[179] [180] in order to overcome the problem of long-time 
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dependency for the original RNN. In the original RNNs, a long input sequences will 

be difficult to learn due to the problem of vanishing/exploding gradient [181]. The gate 

mechanism is introduced for this problem and the LSTMs is one of the widely used 

replacement versions of RNNs.  

LSTMs is considered for PAD in some recent works. For instance, Xu et al. [72] 

integrated a LSTM sub-network into their deep neural architecture to extract features 

from frame sequence. However, they only considered LSTMs as a simple way to 

generate a feature vector from the intermediate feature outputs that is generated by 

convolutional layers. And their proposed neural architecture is computational 

expensive. The proposed CNN-LSTM architecture also considers LSTM for temporal 

information. However, the facial action unit intensity signal is a low dimensional 

signal which can highly decrease the computational costs of using LSTMs. 

In the following paragraphs, the proposed neural architecture, which jointly use 

CNN and LSTMs, is introduced in detail. Then, the LSTM network and facial action 

unit extractor are briefly introduced. The implementation detail and experimental 

results are presented at last part.  

Methodology  

In the proposed workflow, as shown in Fig. 5.10, the image sequence is firstly 

fed into the Action Unit Detector (AU Detector) to extract the action unit intensity 

signal 𝐴𝑈𝑘
𝑗
 as the descriptions in Chapter 4. Then the action unit intensity signal is fed 

into the Temporal Compress Network (TCN) to generate the temporal feature 𝑓𝐴𝑈. The 

overall sum for the action unit intensity signal is used to select two important frames 

for extracting spatial information by using convolutional neural networks. Finally, a 

classification network is used to generate the final decision about whether the input 

frame sequence includes presentation attacks. 



 

S.Pan Dec-19 143 

 

Figure 5.10 FASAN system block diagram 

 

The action unit intensity signals, which is extracted from the input frame 

sequence, are defined by following the definitions in Chapter 4. Set G is the index set 

of all the AUs, which include N elements. S is the selected subset of G and j is any 

element belonging to S. Here, 𝐴𝑈𝑘
𝑗
  is the intensity value of the j-th AU at the k-th 

frame, where K is the total number of frames of input video. Then, the facial action 

unit detector can be used to extract 𝐴𝑈𝑘
𝑗
  from the k-th frame as following: 

 𝐼𝑘
𝐴𝑈 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟
→        𝐴𝑈𝑘

𝑗
 (5.5) 

Here, Long Short-Term Memory Networks (LSTMs) is used in the FASAN to 

replace the simple histogram method in FAUH, which is mentioned in Chapter 4. In 

FASAN, three fully connected LSTM layers and two dropout layers are used to 

generate the Temporal Compress Network (TCN) for the action unit intensity signal.   

 𝐴𝑈𝑘
𝑗 TCN
→  𝑓𝐴𝑈 

(5.6) 

The TCN used here consists of the input layer, the two sequence-to-sequence 

LSTM layers, two dropout layers with a probability of 0.2 and a many-to-one LSTM 

layer, as shown in Figure 5-11. The dropout layers are used to reduce risk of overfitting. 

The combination of LSTM and dropout layers are used to learn features from action 

unit intensity signals to produce a fixed length feature vector 𝑓𝐴𝑈 for PAD.  
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Figure 5.11 TCN architecture. 

 

There are many reasons for selecting LSTM in the proposed TCN architecture. 

Firstly, LSTM can be optimised by using gradient descent algorithms. The histogram 

method, which is considered in FAUH, is a conventional feature extraction algorithm, 

which cannot be optimised when training the classifier net.  Secondly, the gate 

mechanism of LSTM can help the proposed neural architecture learn the important 

temporal information from facial action unit intensity signals.  

 

Figure 5.12 LSTM cell architecture [182] 
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As mentioned above, the gates mechanism, which decide whether remember the 

current input information in the hidden state matrix, is the most important part of the 

LSTM network. LSTM define a cell state matrix for “remembering” or “forgetting” 

the information at previous time steps by using three gate functions. Fig 5.12 [182] 

used a horizontal line on the top to demonstrate the changes for cell state during time 

step t-1 to t (from 𝐶𝑡−1 to 𝐶𝑡). 

The first gate is a forget gate to decide what information to throw away from the 

cell state, this decision made by a neural layer with sigmoid activation function [180]: 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (5.7) 

The second gate is an input gate which consists of a neural layer with sigmoid 

activation function to decide which values will be updated, and the a neural layer with 

tanh activation function which creates a vector of new updated values as described in 

(5.8) and (5.9) [180]: 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5.8) 

 𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5.9) 

Then the cell state updated from the output of equations (5.7), (5.8), and (5.9) 

by[180]: 

 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶�̃� (5.10) 

Finally, the output of the current state will be calculated based on the updated 

cell state and a neural layer with sigmoid activation function which decides what parts 

of the cell state will be the final output as described in equations (5.11) and (5.12) 

[180]: 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5.11) 

 ℎ𝑡 = 𝑜𝑡 ∙ tanh (𝐶𝑡) (5.12) 

𝜎  indicate the sigmoid activation function which squashes numbers into the 

range (0,1), tanh () is hyperbolic tangent activation function which squashes numbers 

into the range (-1,1), 𝑊𝑓, 𝑊𝑖, 𝑊𝑐, 𝑊𝑜 are the weight matrices, 𝑥𝑡 is the input vector, 

ℎ𝑡−1 denotes the past hidden state and 𝑏𝑓, 𝑏𝑖, 𝑏𝑐, 𝑏𝑜 are bias vectors. [180] 
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The proposed TCN architecture uses the two LSTM layers containing 64 neurons 

with ReLU activation function[52]. ReLU activation function ReLU(x) can decrease 

the computational complexity of LSTM. 

 ReLU(x) = max (0, x) (5.13) 

The third LSTM layer, as the many-to-one layer in TCN, contains 32 neurons 

and also uses the ReLU activation function. By applying the ReLU activation for the 

LSTM cell, the formula (5.12) are replaced as (5.14). The proposed method only 

calculates ℎ𝑡 with ReLU to decrease the risk of gradient exploding[180]. 

 ℎ𝑡 = 𝑜𝑡 ∙ ReLU (𝐶𝑡) (5.14) 

The proposed FASAN also consider the spatial information by using CNN with 

the guide of AU intensity signal. In the proposed FASAN architecture, the neural 

network only considers the spatial textures from two important frames when   

k=𝑆𝐴𝑈𝑚𝑎𝑥or k= 𝑆𝐴𝑈𝑚𝑖𝑛. 

 

𝑆𝐴𝑈𝑚𝑎𝑥 = 𝑘 𝑤ℎ𝑒𝑛 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 = (∑𝐴𝑈𝑘
𝑗

𝑗=𝑛

𝑗=1

) 

 

(5.15) 

 

𝑆𝐴𝑈𝑚𝑖𝑛 = 𝑘 𝑤ℎ𝑒𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑛 𝑣𝑎𝑙𝑢𝑒 = (∑𝐴𝑈𝑘
𝑗

𝑗=𝑛

𝑗=1

) 

(5.16) 

The feature vectors 𝑓spatial  for the selected frames are generated by the feature 

encoder part of the selected pre-trained convolutional neural network.: 

 
𝐼𝑘=𝑆𝐴𝑈𝑚𝑖𝑛 𝑜𝑟 𝑘=𝑆𝐴𝑈𝑚𝑎𝑥

spatial feature encoder network
→                        𝑓spatial 

min𝑜𝑟 𝑚𝑎𝑥 
(5.17) 

 

The proposed feature F is generated by concatenation: 

 𝐹 = 𝑓𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑁𝑒𝑡
𝑚𝑖𝑛 ∥  𝑓𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑁𝑒𝑡

𝑚𝑎𝑥 ∥ 𝑓𝐴𝑈 (5.18) 

Implementation details 

The proposed facial action unit intensity system, which partially include 46 AUs 

in the original FAUS, follows the suggestions in Chapter 4 and suggests 12 AUs, which 

are stable over time, for the proposed FASAN. (AU1, AU2, AU4, AU6, AU7, AU10, 
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AU12, AU14, AU15, AU18, AU20, AU24).  Also, from the analysis of FAUH in 

Chapter 4, the AU5, which does not show a significance for PA classification, is 

excluded in the proposed FASAN.  

The Enhancing and Cropping Net (EAC-Net) structure from Li, Wei et al. 

[183]’s work are used to learn both features-enhancing and region-cropping functions 

effectively, and to detect facial action units. And the pre-trained model available from 

[183] is used. As EAC-Net uses the VGG 16 pre-trained network[47] to extract 

features, the proposed FASAN apply the VGG16 as our spatial feature encoder 

network to decrease the processing time and apply a flatten layer after the VGG16 pre-

trained network to get the feature vector. 

Finally, a classification network with two fully-connect dense layers is used. The 

first dense layer also uses ReLU as activation function. The second dense layer uses a 

sigmoid activation function. 

Experimental Results 

Extensive experiments are conducted on two very challenging datasets: CASIA-

FASD[122] and REPLAY-ATTACK[27]  which are publicly available. Competitive 

detection scores were obtained when the proposed system was compared with other 

state-of-art techniques. In the experiments, the proposed results follow test protocols 

of the two datasets to make fair comparisons with recent works. To report the 

performance, the HTER on the test set and EER on the development set is used for 

Replay-Attack dataset[27]. Since the CAISA-FASD lacks a pre-defined validation set, 

the training dataset is divided into four folds and the results for CASIA-FASD[122] 

are reported in terms of EER. Results are given in terms of EER computed on 

development set and the Half Total Error Rate (HTER) on test dataset.  

Table 5.3 CASIA-FASD test results in terms of EER (%) at different Scenarios:(1) 

low quality, (2) normal quality and (3) high-quality (4) warped photo attacks, (5) cut 

photo attacks, (6) video attack, and (7)overall test 

(EER%) 1 2 3 4 5 6 7 

LBP 16.5 17.2 23.4 25.1 17.6 26.7 25.0 

FAUH 22.1 20.7 21.4 16.3 17.1 28.5 21.11 

DTL-PAD 

(VGG16) 
5.9 5.2 8.5 4.1 6.7 9.3 7.1 

FASAN 6.4 3.8 4.3 2.6 3.2 11.5 4.3 
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Table 5.4 Replay-Attack DB overall test 

 
Dev Set 

(EER%) 

Test Set 

(HTER%) 

LBP 17.9 13.7 

FAUH 11.6 12.9 

DLT-PAD(VGG16) 8.4 7.7 

FASAN 2.0 3.1 

 

Table 5.3 and Table 5.4 provide a performance comparison of the proposed 

FASAN  system with fine-tuned VGG16 , baseline LBP[24], and FAUH. The FASAN 

system is seen to produce better results for the normal-quality scenario, cut paper 

attack scenario, and wrapped attack scenario. Also, the proposed feature resulted in 

better performance with the Replay Attack dataset.  

Table 5.5 represents the results of the comparison between the proposed method 

and some state-of-the-art methods, which include the initial results of different 

attempts on the CASIA-FASD[122] and the Replay-Attack datasets[27]. The FASAN 

system produced better performance than the FAUH in all of these tests. From Table 

5.5, it may be noticed that FASAN produces better performance than DPCNN[68] and 

LSTM + CNN [72] but is worse than 3DCNN [103]. However, 3DCNN[103] includes 

much more trainable parameters in their network. It needs more training time, 

processing time, and computational resource than FASAN.  

 

Table 5.5 Comparison with the state-of-the-art at CASIA-FASD and Replay-Attack 

DB overall test (“*” indicate the performance implemented by ourselves) 

 
CASIA-FA 

(EER%) 

Replay-Attack DB  

(HTER%) 

LBP[122] 25.0 13.7 

DPCNN[68] 5.4 6.1 

LSTM + CNN[72] 7.6* 5.93 

3DCNN[103] 1.4 0.3 

FAUH (Chapter 4) 21.1 12.9 

FASAN(Proposed) 4.3 3.1 
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5.4.2 Temporal Local Texture Network with 3D CNN 

As established in Chapter 4, the temporal texture changes can also possess 

discriminative characteristics for presentation attack detection. In this section, the 

proposed Patch-3DCNN is introduced in detail and demonstrate the potential of using 

3D-CNNs for PAD from the encouraging results.  

Some deep convolutional neural architectures, such as the proposed DTL-PAD 

or CCPAD-Net, consider the static texture representations for detecting PA. However, 

some discriminative cues for spoofing attacks are related to temporal texture changes 

but the standard 2D CNN cannot explore temporal information efficiently. In this 

section, a novel patch-based 3D CNN method is proposed to address the issues and 

some experiments are conducted on two widely used datasets to explore its 

effectiveness.  

From the published literature, the standard 2D convolutional neural networks 

have proven its effectiveness by successfully outperforming other learning algorithms 

in PAD. However, recent datasets for the evaluation of PAD algorithms include video 

clips (or frame sequences) as a source of PAD sensor data. One of the disadvantages 

of applying standard 2D CNN to video sequences is the potential loss of temporal 

information between frames. Such information can provide discriminative cues such 

as unexpected motions etc. The previous work on temporal features for PAD shows 

the necessity of exploring both spatial and temporal dimensions.  

However, extracting spatio-temporal information efficiently for PAD is still a 

challenging problem. Learning temporal features which are distinct for PAD would 

become more difficult, as the data dependency for the larger neural network could be 

even more pronounced. In this section, the proposed experiment explores a 3D CNN 

architecture for PAD due to the effectiveness of 3D CNN at other computer vision 

tasks[184] . The proposed 3D CNN architecture processes the distinct cues for 

presentation attack associated with both spatial and temporal variations. Data 

augmentation is used to decrease the impact of the data dependency problem 

associated with DNNs. 

Meanwhile, a CNN+LSTM architecture as a widely used strategy to process 

spatio-temporal information can hardly explore this temporal correlated information 

efficiently due to the integration of the pooling and dropout layers in the convolutional 
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blocks[72]. The pooling layers [165] and dropout layers are used to decrease the risk 

of overfitting problem and help the network build an “information bottleneck” to filter 

important information. However, some texture representations which may be distinct 

in the temporal dimension are not vary significant in the spatial domain and will also 

be filtered by using this strategy.   

Methodology 

The proposed method consists of two processing flows: random patch flow and 

down sampled facial flow, to get the characteristics for PAD from both texture 

representation level and object part level. The pipeline of the proposed method is 

presented in Fig. 5.13.  

 

Figure 5.13 3D patch based facial anti-spoofing pipeline 

 

After the pre-processing steps, which has been mentioned in Chapter 3, the frame 

sequence is transferred into a facial area sequence where the appeared face is detected 

and normalised by using facial landmarks. Then, the Patch Generator is used to divide 

each normalised frame into M×M patches. Thus, the normalised frame sequence is 

used to generate M×M  cubes. The proposed 3D CNN-patch uses these spatio-

temporal cubes as the input of the network and produces the feature vector as the 

output. 

The input of the 3D CNN-whole face is generated by using the down sampling 

algorithm to fit the scale of the input layer in the 3D CNN architecture. The input of 

the classifier network is the concatenated feature vector consisting of the output of the 

3D CNN for the patches and the 3D CNN for the whole face. The final feature vector 

is calculated using the flatten operator, which is normally considered as a core operator 

on various DNN platforms[178]. 

There are multiple motivations to use patches for training the DNNs. Firstly, the 

patch-based method can significantly increase the volume and the diversity of the 
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training dataset. The existing presentation attack datasets only include a very limited 

number of samples for training. For instance, the CASIA-FASD[122] only include 20 

training subjects and for each subject it includes 12 short video clips. The overfitting 

problem could be a major risk for the DNN models trained by using these data directly. 

Secondly, the resize method, which may lead to the abandonment of some 

discriminative texture changes, is widely used for deep neural networks to fit the input 

scale that is defined by the first convolutional layer of the pre-trained neural networks. 

In contrast, using local patches can maintain the native resolution of the original face 

images, and thus preserve the discriminative ability. The texture difference and the 

colour representation difference which may be distinct for the presentation attack 

detection are believed to appear in the entire facial region. These distinct 

representations may be significant when using patches as the input of proposed neural 

network.  

Adding the sub-network for the whole facial region which is down sampled 

before feeding into the neural network is another important design aspect in the 

proposed pipeline to produce features at “high-semantic level”. The proposed down 

sampling function works in both spatial and temporal dimensions. The normalised 

facial area is resized to the same input size of the 3D-CNN for the entire facial region 

as the down sampling process for the spatial dimension.  And the frames are selected 

at intervals of G frames (The proposed experiments fix G=30 to decrease the 

implementation complexity).  

The 3D CNN offers a possible solution for the difficulty of processing temporal 

information in PAD. In 3D convolution operation, filters (made up of weights) are 

moved spatially as well as temporally, performing dot products at each spatial-

temporal position in the input.   

A standard 2D convolution which is widely used in DNNs can be represented 

[169]as an operator to extract features from local neighbourhood sets. The result of 

convolutional operation, which integrate the additive bias is fed into a non-linear 

activation function.  Thus, the activation value at position (𝑥, 𝑦) in the 𝑗th feature map 

in the 𝑖th layer is denoted as 𝑣𝑖𝑗
𝑥𝑦

 which can be represented as (5.19) [169]: 

 
𝑣𝑖𝑗
𝑥𝑦
= 𝜑(𝑏𝑖𝑗 +∑∑ ∑ 𝑤𝑖𝑗𝑚

𝑝𝑞 𝑣(𝑖−1)𝑚
(𝑥+𝑝)(𝑦+𝑞)

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0
𝑚

) 
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(5.19) 

where 𝜑(. )  is the non-linear activation function, 𝑏𝑖𝑗  denote the bias for the 

feature map. 𝑚 represents the index value over the set of feature maps in the previous 

layer which is connected to the current feature map. 𝑃𝑖 and 𝑄𝑖 are used to represent the 

height and width of the kernel which are normally equal to each other in the 

implementation. And 𝑤𝑖𝑗𝑚
𝑝𝑞

 denotes the value at the position (𝑝, 𝑞) of the kernel that is 

connected to the m-th feature map.  

Thus, the 3D convolution can be extended from the 2D convolution operator by 

following the suggestion of [184] to calculate the feature map from both spatial and 

temporal dimensions. The 3D kernels are used to convolving the spatio-temporal cube 

which is formed by stacking a frame sequence. The 3D convolutional operator is 

represented by the formula (5.20): 

 
𝑣𝑖𝑗
𝑥𝑦𝑧

= 𝜑(𝑏𝑖𝑗 +∑∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟𝑣(𝑖−1)𝑚

(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑟)
𝑅𝑖−1

𝑟=0

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0
𝑚

) 
 

(5.20) 

where 𝑅𝑖  is added to represent the size of the 3D kernel in the temporal 

dimension. 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

 denotes the activation value at position (𝑝, 𝑞, 𝑟) and connected to the 

𝑚-th feature map in the (𝑖 − 1)th layer. Similar with 2D convolutional blocks, a 3D 

pooling layer is subsequently connected to the 3D convolution operator to reduce the 

size of the feature map. Tran, et al.[185] demonstrated that the smaller 3D 

convolutional kernels may improve the performance of the video classification. Also, 

Li, et al. [68] noted a similar phenomenon when adopting a smaller receptive field for 

the 3D convolutional neural networks. Therefore, the proposed 3D CNN architecture 

adopts a spatio-temporal receptive field size of 3 × 3 × 3.  

 Experiential detail and results 

There are three widely used anti-spoofing benchmarking datasets which were 

used to evaluate the effectiveness of the proposed anti-spoofing algorithm: the CASIA-

FASD[122], the Replay-Attack database[27], and MSU MFSD dataset[123]. All of 

these datasets include some recordings of genuine client access attempts and various 

presentation attacks.  

Table 5.6 compares the performance of the proposed method with selected deep 

learning methods for spoofing detection. Here, FASAN [145], which use VGG16 as 
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the pre-trained feature extraction network, can be considered as a typical 2D CNN 

method in this table. Table 5.6 also considers the proposed Yang-Net[67] to 

demonstrate the effectiveness of directly applying 3D CNN for temporal information.  

Table 5.6 Comparison with the state-of-the-art at CASIA-FASD and Replay-Attack 

DB overall test(‘*’ indicates the performance score which follows the reference and 

implemented by ourselves) 

 
CASIA-FA 

(EER%) 

Replay-Attack DB  

(HTER%) 

MSU 

(EER%) 

Yang-Net [67] 9.94* 8.4* 5.8* 

FASAN [145] 4.3 3.1 N/A 

3DCNN[103] 3.02 0.3 0 

3DCNN[186] 6.4 0.0 4.8 

Patch-3DCNN (Proposed) 4.2 0.1 1.7 

 

3DCNN[103] and 3DCNN [186] are two works which also consider 3DCNN as 

the part of their architecture. The proposed Patch-3DCNN is different with their work. 

In summary, Li et al. [103] and Gan et al. [186] only considered the entire face as the 

input of their architecture. Although they selected different kernel size of their 

convolutional operation, their method can be considered as the same approach. The 

proposed method considers a 3DCNN-Patch subnetwork, which considers the divided 

cubes rather than the entire facial region as the input. The final feature vector is 

generated by concatenation the output of the 3DCNN-Patch subnetwork and 3DCNN-

whole face subnetwork. From the table, 3D-CNN[103] reaches the best result for the 

MSU-MFSD dataset[123]. However, the proposed system represent the better 

performance than the results from Le et al. [103]  for the Replay-Attack dataset[27]. 

The results from Gan et al. [186] reach EER=0.0% at Replay-Attack dataset, but the 

proposed Patch-3DCNN shows better performance at both CASIA-FASD[122] and 

MSU-MFSD dataset[123].  

5.5 SUMMARY 

In this chapter, 6 different studies of the application of DNNs for PAD are 

explored. In exploring different pre-trained neural architecture, the potential of DNN-

based methods is demonstrated by the good experiment results. The novel Colour 

Convolutional PAD Network is then designed for the PAD task and trained  using only 

the PAD datasets. Some visualisation experiments are firstly explored and demonstrate 

the inner mechanism of using deep neural architectures for PAD. By analysing the 
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visualisation results from these visual explanation algorithms, ideas and insights about 

how to improve the baseline protocols are generated for further exploration in Chapter 

6. Furthermore, the idea of facial action unit signals and motion texture chances are 

considered to design the novel deep neural architectures in this section.  

Table 5.7 Performance of the DNN based feature for multiple datasets (BPTM* means 

the best performance of the proposed traditional methods) 

Datasets 

EER(%) 
NUAA 

REPLAY-

ATTACK 

database 

CASIA-

FASD 

MSU-

MFSD 

HKBU 

MARs 

Rose-

Youtu 

BPTM* N/A 0.60 4.80 7.67 N/A N/A 

DTL-PAD 

(VGG16)  
3.6 8.4 7.1 16.0 39.7 15.4 

DTL-PAD 

(ResNet) 
4.9 5.7 6.3 11.4 33.1 14.8 

DTL-PAD 

(NAS) 
2.5 9.4 8.0 14.3 35.0 18.5 

Colour Space 

Net(VGG16) 
0.3 0.6 1.5 3.2 19.7 7.9 

CCPAD-Net 0.1 0.8 1.1 2.7 20.5 8.3 

FASAN N/A 2.0 4.3 N/A N/A N/A 

Patch-3DCNN N/A 0.1 4.2 1.7 N/A N/A 

 

Table 5.7 demonstrates the performance comparison for deep learning based 

methods with 7 benchmark datasets. The first row of Table 5.7 is the best results of 

the proposed traditional features in Table 4.15. The DTL-PAD(VGG16) also applies 

the transfer learning paradigm for PAD and considers the feature extraction part of the 

VGG16 pre-trained network[47] as the feature encoder network. As the description in 

the previous chapters, some of the proposed methods use the same pre-trained feature 

encoder network but trained in different ways. By comparing proposed methods with 

the DTL-PAD(VGG16), Table 5.7 can clearly demonstrate the performance 

improvements of the proposed methods.  

The DTL-PAD (VGG16), DTL-PAD (ResNet) and DTL-PAD(NAS) 

demonstrate the performance differences when using transfer learning paradigm but 

with different pre-trained networks for feature extraction. The Colour Space 

Net+VGG16 and CCPAD-Net consider same Colour Space Net but with different 

overall design in the proposed experiment.  



 

S.Pan Dec-19 155 

The Colour Space Net+VGG16 connect the proposed Colour Space Net with a 

pre-trained VGG16 network and the CCPAD-Net is trained from scratch. In table 5.7, 

the highlighted performance score is the best score when consider the proposed 

traditional and deep learning-based methods. The CCPAD-Net represent the best result 

at NUAA dataset[121]. The Patch-3DCNN demonstrate the best performance score at 

REPLAY-ATTACK dataset[27].  

The contributions of the present chapter are listed as follows: 

(1) Multiple pre-trained neural architectures (such as VGG16, ResNet50, DenseNet) 

are explored by using the deep transfer learning paradigm for PAD tasks. The 

experiment results for the different DTL-PAD networks can be used to show the 

better choice of pre-trained backbone network in the future usage. The promising 

results from the DTL-PAD networks demonstrate the effectiveness of using deep 

architectures for industry applications. Additionally, this thesis considers the 

results from DTL-PAD(VGG16) networks as baseline results to demonstrate the 

effectiveness of the proposed methods.  

(2) A novel deep neural architecture named CCPAD-Net is designed for PAD task and 

trained only using PAD datasets. This neural architecture includes a Colour Space 

Network, which is designed to learn a colour transfer function. This Colour Space 

Network, which can be trained separately and decrease the overfitting risk of using 

a small dataset, follows the observations and assumptions in the PAD research area. 

The encouraging results from multiple benchmark datasets demonstrate the 

necessity of designing the neural architectures for PAD rather than only using deep 

transfer learning paradigm.   

(3) Some visualisation experiments are first explored for PAD tasks to show the inner 

mechanism of deep neural networks. From these visualisation experiments, the 

necessity of producing a PAD system, which can justify each decision generated 

by the system, is becoming clear as a key motivation for the following work in 

Chapter 6. Also, the necessity of using high-speed connection between 

convolutional blocks is emphasized in this Chapter. 

(4) A novel neural architecture named FASAN is designed and tested at various 

benchmark datasets. This neural architecture also uses the facial action unit system, 

which is firstly introduced in Chapter 4, but provides better performance by using 

deep neural architectures for temporal information. The encouraging performance 
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at different datasets shows the potential of using facial action intensity signal and 

Recurrent Neural Networks.  

A novel 3D convolutional deep architecture is provided by following the idea of 

dividing facial region into patches. The sequence of these patches is used to generate 

a spatio-temporal cube as the input of 3D CNN-patch subnetwork. The whole face 

region is resized and the sequence of resized facial region is generated as the spatio-

temporal cube for 3D CNN-whole face subnetwork. The proposed 3D convolutional 

deep architecture is designed for both texture level and object level. The results 

compared with other 3D CNN methods show the effectiveness of the proposed 

architectures. 
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Chapter 6: Deep Learning for PAD 

The use of deep learning techniques can not only lead to improved performance 

but also offer new possible research directions for PAD. Based on the results and 

analysis described in Chapter 5, this chapter explores the interpretable capability of 

PAD systems using deep learning techniques and the automatic design of deep 

learning-based PAD systems. The methods for XAI and NAS have been proven to 

have considerable value in other fields of research but their benefits have not yet been 

explored and evaluated in the context of PAD. In this chapter, two novel techniques 

are proposed by integrating the new features into the PAD system. First, the 

motivations for the proposed developments are introduced in Section 6.1. Then, an 

attention guided PAD system, which can justify its decisions and learn from the 

generated justifications is proposed and evaluated in Section 6.2. A novel PAD system, 

which only needs the labelled data to automatically generate deep neural architectures 

is introduced in Section 6.3 and evaluated using commonly used public datasets. 

6.1 Motivation  

Deep learning stimulates significant performance improvements in PAD, and 

brings new concepts and paradigms that offer new directions for future research. The 

proposed methods in this chapter demonstrate the potential benefits of these new 

concepts and paradigms by exploring two possible directions: (1) Explainable 

presentation attack detection (XPAD) and (2) Neural architecture search for 

presentation attack detection (NAS-PAD).  

One of the main debatable topics in deep learning is its “black-box” nature, 

which means it is not clear how the network generates its output. Making the system 

answer the question “What is the reason behind this decision?” is the first possible 

direction to improve PAD systems in the future. In previous studies, a PAD system 

was only designed to detect the presentation attack. The output of the system is its (a) 

decision whether the input data is an attack and (b) determination of the type of the 

attack (such as paper attack, video attack, etc). However, these systems cannot justify 

the decision made from the input data.  
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A novel PAD system, which can explain its behaviour to users, is the first 

contribution of this chapter. In this system, naturally, the interpretation information is 

used to further guide the optimization of the system performance.  The proposed 

method also addresses the research question: can the additional explanation 

information, generated by the proposed interpretation algorithm, be used to make the 

neural network learn a more robust feature encoder? The details about the proposed 

model for this direction are provided in Section 6.2. 

The second part of this chapter is on efficient neural architectures searching for 

PAD. Neural architectures designed by human experts have been widely used for PAD 

in the past years. In this chapter, the proposed novel method goes one step further to 

automatically generate the neural architecture based on the training data. The design 

of a usable architecture for the neural network includes several choices of key 

components, the structure of the CNN layers and the selection of the high-speed 

connections between layers. Optimising the hyper-parameters of a DNN is also a 

challenging task. Given the magnitude of this task, researchers have declared "deep 

learning is new alchemy"[187] .  In order to solve this problem, recently, a new end-

to-end method has been developed which can design deep neural network structures 

using NAS. Human expert input is not needed to design or to fine-tune the structures 

and connections between different layers. Generally, all possible neural architectures 

are considered in the search space, and the NAS model will select the best model for 

any particular application. This idea extends the end-to-end trend promoted by the 

deep learning paradigm. This approach is explored for its application to PAD in 

Section 6.3. 

6.2 Learning from explanations 

Despite the high performance achieved using DNNs for PAD, the inability to 

justify their decisions is a significant drawback given the usability and security 

requirements of many biometric applications. In this section, an attention-guided 

convolutional neural network for spoofing detection is presented, which can learn from 

additional information produced by a visual analysis of DNNs. In particular, the 

proposed approach utilises both spatial and temporal information to detect facial 

spoofing behaviours and provides both visual and natural language explanations for 

each decision to answer the questions such as “How the system makes its decisions?”. 

Furthermore, the proposed framework can learn from such explanations to improve 
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the system performance. This is evaluated with different experimental setups and 

results using the CASIA-FASD[122], Replay Attack, MSU-MFSD[123] and HKBU 

MARs datasets suggest its effectiveness.  

 
Figure 6.1 System block diagram of the proposed Dynamic Attention Convolutional 

Network (DACN). 

 

In the following paragraphs, the term “explanation” is firstly defined to make the 

description clear. Then, the proposed system which uses DNNs to encapsulate both 

temporal and spatial texture changes, will be introduced sequentially (see Figure 6.1): 

(1) Attention generation (Blue line): Firstly, the frame sequence is fed into the Encoder 

Network to get the feature representation of each frames. Then the attention maps will 

be generated by the Attention Network from these original feature representations. (2) 

Decision generation (Back line): the masked frame, which is generated by the Mask 

Function, is fed into the Encoder Network as well. Then the Temporal Network is used 

to encapsulate time-related information. The Dynamic Classifier Network is then used 

to provide the final decision about the input frame sequence. (3) Explanation 

generation (Green line): The Explainer function is used to provide an explanation for 

current decisions. These training stages in the proposed system are designed to 

improve the detection accuracy by using the generated explanations as additional 

information. 

The basic idea of the proposed work is aiming to provide an interpretable 

framework which generates explanations and can learn from these explanations to 

improve its decisions. However, there is no commonly used definition about what is 

the “explanation” for a deep learning system. Some have used the feature relevance 

scores which are calculated by using the gradient flow from each decision to measure 

the influence of spatial importance[174]. Also, terms such as the Class Activation Map 

or the saliency map have been used[90]. The proposed framework partially follows the 
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definition in [174] to calculate the explanation from gradient flow and consider 

multiple forms in the “Explainer” function for different using scenarios: (E1) feature 

relevance score (E2) spatial saliency map (E3) natural language explanations. Here, 

(E1) and (E2) are used to guide the training process in Stage 2 as additional 

information.  Explanations with form (E2) and (E3) can help the human users to 

understand the reason behind each decision. 

6.2.1 DNN-based facial anti-spoofing detection 

The proposed framework is based on the deep learning paradigm (Stage 1 in 

Figure 6.2).  For PAD, the input, denoted by 𝑋 = {𝑋𝑖|𝑖 ∈ [1, 𝑁]}, is a set of video clips 

where each clip is a set of frames 𝑋𝑖 = {𝐼𝑗|𝑗 ∈ [1,𝑀]}, and the desired output, 𝑌 =

{𝑌𝑖|𝑖 ∈ [1, 𝑁]}, is the set of decisions. The number of decision classes is represented 

by C which includes genuine presentations and different attack modalities. 𝑁 is the 

number of video clips in the dataset, and M is the number of frames of each clip. Here 

we use �̌� to represent the predicted output of the model. A deep learning model, with 

𝜃𝑓 , 𝜃𝑐, as trainable parameters, can be represented by equation (6.1): 

 
𝑋
𝐹𝑓(𝑋; 𝜃𝑓)
→      𝐸

𝐹𝑐(𝐸;𝜃𝑐)
→     �̌� 

(6.1) 

where 𝐸 = {𝐸𝑖|𝑖 ∈ (0, 𝑁]}  is the feature representation of the whole dataset 

generated by the feature extraction sub-network Ff(X; θf)  , where  𝐸𝑖 =

{𝑒𝑡|𝑡 ∈ (0,𝑀]}  is used to represent the feature encoding of one video clip. The 

Encoder Network Ff(X; θf) and the Classifier Network Fc(E; θc)can be designed 

specifically for PAD and trained from scratch only using a PAD dataset. Alternatively, 

these two sub-networks can also follow the transfer learning paradigm for better 

generalisation capability.  In the proposed experiment, the feature extraction part of a 

pretrained network based on ImageNet[64] is transferred for PAD by following the 

suggestions of [145] to demonstrate the performance improvements of the proposed 

framework. 

The proposed framework adds the following elements to achieve better 

performance than the basic deep learning paradigm. (1) The Explainer function 

𝐸𝑥𝑝𝑙𝑎𝑛(. ) is added to provide the explanation of each decision. (2) The attention 

network Attention(ej) is introduced to improve performance by learning the location 

of significant regions in the image. It is initially trained by using the explanations 
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calculated by the Explainer function 𝐸𝑥𝑝𝑙𝑎𝑛(. )  (3) The Temporal 

Network𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙(.) is used to model the temporally correlated information and 

generate a feature vector for each video clip. (4) The Dynamic Classifier Network 

(Figure 3) is used to generate the final decision about spoofing attacks. The Dynamic 

Classifier Network is used when the Temporal Network is included in the system. The 

proposed framework with only the (Frame) Attention Network is referred to as the 

Frame Attention Convolutional Network (FACN). And the full framework including 

the Temporal Network is referred to as the Dynamic Attention Convolutional Network 

(DACN). 

The proposed pipeline includes an explanation generator to produce 

explanations for each decision. A natural language explanation is generated by using 

𝜉(�̌�, 𝑒𝑥𝑝, 𝑄, 𝐿) = 𝑙 for the current decision, where Q represents a question set and 𝐿 

represents the most relevant human language answer set. Here, l indicates natural 

language explanations for the decisions made to accompany visual explanations s. A 

set of explanations in the form of questions and answers is provided in Table 6.1. The 

system can provide the readable explanations which include two explanation forms 

(E2) and (E3). 

The proposed framework has three training stages as shown in Figures 6.2 and 

6.3. In Figure 6.2, Stage 1 aims to get a typical DNN architecture for classification. 

The proposed workflow follows the deep transfer learning protocol to train the 

classifier network. The fine-tuning stage will then be applied to train both feature 

extraction network and the classifier network with lower learning rate. Stage 2 has two 

phases: In 2a, the Attention Network is firstly trained with the pair of the encoded 

frame and the spatial explanation from the Explainer function. Then, the Spatial 

Attention Convolutional Network is trained using new data. The green lines indicate 

the explanation generation process. The orange lines indicate the training steps to learn 

with explanations. The yellow line is used to indicate the original frame and the 

features generated from the original frame.  
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Figure 6.2 First two training stages: (Blue boxes indicate the sub-network(s) that will 

be trained in each stage. 

 

The second training stage includes two phases: Stage 2a Training for the 

Attention Network, Attention(ej), and Stage 2b Training for the Spatial Attention 

Convolutional Network (SACN). During this training stage, the Attention Network is 

initialised for faster convergence [188]. The parameters of the Encoder Network and 

the Classification Network are shared from the Stage 1 and fixed in the Stage 2a.  In 

Stage 2a, the Attention Network is trained by a generated dataset which consist of the 

feature encoding 𝑒𝑗 for a randomly selected set of frames Ij from each video. Every 

video clip in the training dataset will provide m randomly selected frames for this 

training where 0 < 𝑚 < 𝑀. 

These encoded features are the input of the Attention Network. Then, the labels 

of these encoded frames 𝑒𝑗   are provided by the Explainer Function as 𝑒𝑥𝑝𝑗  which 
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support the current decision of the Classifier Network.  The Explainer Function in the 

proposed framework is selected to emphasize the important spatial locations for 

predicting presentation attacks. The visual support for the current decisions is the 

saliency map (E2) which is converted from E1 to visualise the significant regions in 

the original frame. The Attention Network 𝑎𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑒𝑗) consists of 2 fully 

connected dense layers, one with the ReLU [52] activation function and the other with 

the Tanh activation function. When the Attention Network is trained, the Stage 2b will 

commence the training of the SACN. The attention mask 𝑎𝑗  will be applied to the 

original frames by using element-wise multiplication to get the masked frame 𝐼𝑗
∗. Then, 

the new encoded features 𝑒𝑗
∗ are calculated to get the prediction 𝑦𝑗

∗. At Stage 2b the 

whole SACN is trained using a lower learning rate compared to that used to train the 

Attention Network for fine-tuning to improved performance.  

 
Figure 6.3 The third training stage: (Blue boxes indicate the sub-network that will be 

trained.) Stage 3 is used to train the Dynamic Attention Convolutional Network 

(DACN). 

 

The third stage (shown in Figure 3) is used to train the Temporal Network. The 

deep architecture in Stage 3 is named as the Dynamic Attention Convolutional 

Network (DACN) to emphasize the usage of temporal information. Each video in the 

training set will be used to train the Temporal Network  𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑎𝑖,  𝑒𝑖) which 

consists of two LSTM layers to obtain a fixed length feature for each video. The 

Temporal Network is used to select the significant information in the video. 
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The original LSTM only considers the temporal relation between frames. 

However, the importance of a frame comes not only from the temporal relationship 

with their neighbours but also from the spatial texture changes. For this reason, we 

change the forget gate function to 𝑓𝑡
1 = 𝜎𝑔(𝑊𝑓𝑒𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑉𝑓

∗𝑎𝑡 + 𝑏𝑓)  (the 

superscript is used to indicate the layer of LSTM.) where the 𝜎𝑔 (.) is a sigmoid 

activation function, 𝑊𝑓 , 𝑈𝑓 , 𝑉𝑓
∗  denote the trainable parameters. ℎ𝑡−1  is the hidden 

state of the last time step and 𝑏𝑓 is the bias.  Here, the attention map 𝑎𝑡, which is the 

output of the Attention Network 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑒𝑗), is included in the control function C 

of the forget gate. And the cell state function is also changed to integrate input features 

𝑒𝑡  from the Encoder Network, spatial attention heatmap 𝑎𝑡  and the hidden state of 

LSTM, ℎ𝑡−1 as: 𝐶𝑡
1 = tanh (𝑊1

𝑡ℎ𝑡−1 + 𝑈1
𝑡𝑒𝑡 + 𝑉1

𝑡𝑎𝑡 + 𝑏). The output of LSTM will 

be fed into a new classifier with two dense layers using the ReLU activation 

function[52]. 

Providing explanations for each decision is the key feature of the proposed 

architecture. The justification provided by the Explainer function consists of two parts: 

spatial importance explanation and temporal importance explanation. The temporal 

importance explanation selects the most important frame in the sequence. And the 

spatial importance explanation emphasizes the important regions in that frame. The 

temporal importance explanation is calculated by the 𝑒𝑥𝑝𝑡 = max ∑(𝑓𝑡
𝑛 + 𝑖𝑡

𝑛)  to 

select the time step in which the cell state of LSTM has been maximally changed. In a 

short frame sequence, the proposed method considers the frame, which changes the 

cell state of LSTM most, as the most important frame in this sequence.  The proposed 

work follows [17] to calculate the spatial importance by using gradient flow of the last 

convolutional layer. This spatial importance explanation is directly used to train the 

Attention Network 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(. ) at Stage 2. For the SACN, the Explainer function 

can be represented as: 𝑒𝑥𝑝𝑗 = 𝐸𝑥𝑝𝑙𝑎𝑛(𝑒𝑗
∗, 𝑦𝑗

∗) where the 𝑒𝑥𝑝𝑗  and related frame is 

also used to generate the saliency map (E2) to provide a transparent justification in the 

proposed architecture. 

6.2.2 Implementation detail and experiments design 

This section describes the experimental design and implementation details used 

to evaluate the proposed framework. The results of the experiments are also presented. 
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Four commonly used face spoofing detection databases were used for 

performance evaluations: (1) Replay-Attack dataset [27]  , (2) CASIA-FASD [122] (3) 

MSU mobile face spoofing database [123], and (4) HKBU MARs Dataset [4]. 

For the proposed DNNs, the feature extraction part of the pre-trained VGG-16 

network is considered as the Encoder Network. The Classifier Network with two fully 

connected layers and ReLU activation function[52] is trained by using transfer 

learning in training Stage 1. The Encoder Network (VGG16) is fixed to start with and 

the Classifier Network is trained with learning rate of 0.001. Then, the Encoder 

Network (VGG16) is fine-tuned but using a lower learning rate of 10−7at Stage 1. In 

the proposed implementation, Lucena, et al.’s work [145] has been followed to fine-

tune the VGG16 network.   

 

 
Figure 6.4 Explanation examples generated by the model for different attack types. 

From top to bottom, the explanation examples are generated for paper attack, cut paper 

attack, video attack and real face. In each case, the system provide saliency map and  
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heat-map (left) as visual justification for the decisions and a short paragraph (right) as 

the natural language explanations 

 

The Grad-CAM[173] algorithm is selected to provide spatial explanation in the 

proposed framework. In the training Stage2, it was also used to provide additional 

training information for the Attention Network. As the PAD datasets used in the 

following experiments do not have pixel-level labels or natural language sentence 

labels to train a neural network-based natural language generator, Marietto et al’s work 

has been considered to develop a natural language generator [189]  in the proposed 

implementation as in this approach no extra-training data is needed for the natural 

language generator. In the proposed implementation, the natural language generator 

selects answers from a pre-defined answer set.  The question set and the example 

answers used can be found in Table 6.1. Four different questions as the question set 

𝑄were included and the natural language generator can generate the result 𝑙  by 

selecting the most relevant answer from result templates 𝐿 and fulfil the information 

from the value of 𝑒𝑥𝑝.  Examples for both visual and natural language explanations 

can be found in Figure 6.4. 

Table 6.1 Example of question answering part 

 Question (𝑸) Answer set (𝑳) 
Answer 

Example (l) 

1 

Is this a 

spoofing 

attack? 

Spoofing attack detected/It’s a real person 
{Spoofing attack 

detected} 

2 

What kind of 

spoofing 

attack? 

Real Face / Paper Attack/ Video Attack/ 

Mask Attack 

This is a {paper 

attack} 

3 

Why you think 

this is a 

spoofing 

attack? 

Face Area/ Top Left Corner/ Top Middle 

Area/ Top Right Corner/ Left Middle Area/ 

Right Middle Area/ Centre Area/ Bottom 

Left Corner/ Bottom Right Corner/ Bottom 

Middle Area 

Because the 

object part at 

{face area} looks 

suspicious 

4 

If I block that 

area, will you 

change your 

mind? 

No, I will not change my mind because{}./ 

Yes I will change my mind if you block the 

area; but I cannot recognize face 

anymore/Yes I will change my mind if you 

block the area; and face area still there. 

{Yes, but I 

cannot recognize 

face anymore}. 

 

The Replay-Attack database [27]  is divided into three sub-sets: training set, 

development set and testing set. The feature encoder network is fine-tuned with 60% 
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of the training set; the attention network is trained using the rest of the training set.  

The Equal Error Rate (EER) for the development set is reported and used to determine 

the threshold to obtain the Half Total Error Rate (HTER) on the test set. For CASIA-

FASD[122], and MSU databases[123], the Feature Encoder Network is fine-tuned 

with 50% of the training set and the Attention Network is trained by the rest of the 

training set. Then EER is evaluated for the test set following the protocols defined in 

[190]. All of the results are listed in the Tables 6.2 and 6.3. 

6.2.3 Experiments results 

Table 6.2 Test results for different VGG-16 depths 

 Replay-Attack DB CASIA-FASD 

 EER (%) EER (%) 

VGG16-blocks 1-3 25.64 28.71 

FACN(block 1-3) 12.42 16.84 

VGG16-block 1-4 14.73 18.01 

FACN(block 1-4) 8.30 9.47 

VGG16-block 1-5 9.73 10.88 

Fine-tuned 8.40 9.94 

FACN 0.20 4.12 

DACN 0. 37 1.00 

Table 6.3 Performance comparison (‘*’ indicates the performance score which 

follows the reference and implemented by ourselves) 

 
CASIA 

(EER %) 

Replay-Attack 

(HTER %) 

MSU 

(EER %) 

HKBU MARs 

(EER %) 

VGG16-CNN[145] 9.94* 8.40* 4.30* 5.80* 28.00* 

VGG-16-AD [191] - - - 6.72* 11.79 

CNN+LSTM [192] 5.17 3.66* 4.87* 7.43* 31.20* 

DPCNN [68] 4.5 2.9 6.1 - - 

LBP-CNN [75] 2.5 0.6 1.3   

3DCNN[103] 1.40 0.30 1.20 0.00 - 

FACN(Proposed) 3.02 0.20 2.07 1.67 23.70 

DACN(Proposed) 1.00 0.37 1.53 0.20 13.51 

 

In Table 6.2, we present the effect of the depth of the Encoder Network using 

the Replay-Attack[27]  and CASIA-FASD [122] in terms of Equal Error Rate (EER). 

There is a clear trend that can be identified: based on the results, the deeper networks 

can provide better results and the inclusion of the Attention Network can improve the 

performance further. This effect of the Attention Network may be similar to facial area 

cropping which is a widely used pre-processing method. Facial cropping can itself be 
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considered as a hard attention method to help features focus on key areas as identified 

by human experts.  

Table 6.3 compares the performance of the proposed method with selected deep 

learning methods in spoofing detection. Lucena, et al.[145]used the same encoder 

network as ours and can be considered as providing the performance baseline of Table 

6.3. Firstly, the proposed workflow uses the same pre-trained feature encoder network 

as the previously published work[145], [191] and DPCNN [68]. The performance 

improvements of the proposed FACN compared with [145] demonstrate the 

effectiveness of using the Attention Network. The VGG-16-AD [191] also 

significantly improves the performance of the pre-trained VGG16 model for the 3D 

mask attack detection by selecting significant areas within frames. However, their 

method is only designed for the 3D mask attack detection and represents worse 

performance than [145] on the MSU dataset[123].   Secondly, Tu, et al.[192] also 

attempt to use both temporal and spatial information in their deep architecture. 

3DCNN [103]reaches the best result for the R-A and MSU-MFSD datasets[123].  

However, the proposed DACN system achieves the best performance for the CASIA-

FASD [122]. Thirdly, a hybrid algorithm is presented in [75] which combines LBP[24] 

and DNNs. This used to be a popular way to use DNNs which only consider DNNs as 

a robust feature extractor. However, the proposed method which consists of only deep 

neural networks shows better performance through learning from explanations. These 

comparisons demonstrate the effectiveness of the proposed approach.  

This section explores an attention-based method which uses the VGG-16 pre-

trained network[47] as the feature encoder, and implements the Grad-CAM 

method[173] to guide the training step of the attention network for presentation attack 

detection in face recognition biometric systems. The proposed framework performs 

well on multiple benchmarking datasets and reaches a performance level similar to the 

state-of-the-art. 

Furthermore, the proposed method, which provides explanations with both 

visual and natural language forms, allows the proposed system to be more transparent 

and trustworthy for users. Additionally, the explanations are incorporated within the 

proposed algorithm for training the spatial attention stage and results in a measurable 

improvements of detection performance. 
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6.3  PAD using neural architecture search 

Neural Architecture Search (NAS), which aims to automatically propose a neural 

architecture to suit the training data, is another important barrier breaking development 

in the field of Deep Learning. As present, designing a deep neural architecture for PAD 

is complicated and time-consuming work, which requires the background knowledge 

of both PAD and DL fields. Moreover, balancing the computational complexity and 

performance manually is more difficult even for deep learning experts. The NAS 

approaches offer a possible solution to these problems, which can design an efficient, 

yet still accurate models by automatically searching deep neural architectures under 

the constraint of the optimisation function. 

From previous works on NAS, some promising results for the image 

classification task showed the effectiveness of the neural architectures produced by 

NAS methods. Some recent works applied NAS for various computer vision tasks and 

the encouraging results from these works inspired the proposed method to extend NAS 

for PAD. In this section, a novel neural architecture for PAD, which is designed using 

NAS method, is introduced to overcome the disadvantages of human-designed neural 

architectures and demonstrate the potential benefits of using NAS approaches. Three 

key factors for the proposed method are introduced in detail: (a) the search space, (b) 

the optimization strategy, and (c) the performance estimation strategy.  

The proposed NAS method reduces the time costs of processing by selecting an 

operator set and relaxing the discrete selection for possible operators to a continuous 

searching space. The computational cost of a PAD method is an important property. 

The proposed work provides a novel optimisation function to constraint the searching 

process and balance the computational cost and the performance needs. 

The experiments on widely used datasets will be provided to demonstrate the 

effectiveness of the neural architecture generated by the proposed NAS methods. And 

these encouraging results demonstrate the potential of using NAS for future 

deployments of PAD systems.   

6.3.1 Methodology 

The proposed work in this section addresses the challenge of searching efficient 

deep neural architectures for facial PAD. It aims to automatically generate a specific 

deep neural network architecture that can detect various facial presentation attacks 
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effectively. In the following paragraphs, the overall workflow of the proposed method 

is introduced and two training stages for the proposed PAD-NAS network are  

provided in detail. Then, the details of the NAS search methods such as the search 

spaces, the search strategy and the modified loss function for the PAD will be 

introduced to show the detail of the proposed method. Finally, some implementation 

details will be introduced in the last part of this sub-section. 

 

Figure 6.5 Workflow of the proposed PAD-NAS network 

 

Briefly, the workflow for the proposed PAD-NAS neural network consists of 

three parts: (a)Data generation, (2) Feature extraction, and (3) Classification. The Data 

generating part starts with recognizing and normalising the facial regions from input 

data by using face alignment method. These facial regions will be divided into 3 × 3 

blocks as the previous descriptions for the Feature Encoder sub-Network (a); and 

the original facial regions will be resized for the Feature Encoder sub-Network (b). 

The outputs of Feature Encoder sub-Network (a) and (b) are concatenated and a 

pooling layer[165] is used to decrease the dimension of the feature vector after 

concatenation. Finally, the Classifier Net provides the final result about whether the 

input data is a presentation attack. 

The proposed PAD-NAS neural network relies on the performance of a feature 

extraction sub-network (a) and (b). The proposed approach, detailed below, does not 

use a transfer learning paradigm as some methods in Chapter 5; but directly searches 

neural cells which will be stacked to produce a neural architecture for feature 

extraction.  

Briefly, two training stages (I and II), which is visualised in Fig. 6.6, is used to 

get the proposed PAD-NAS neural network: The Training stage I is used to search 

efficient neural cells for different inputs generated from Data generating process and 
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the Training stage II is used to train the Classifier Net for the proposed PAD-NAS 

neural network.  

In Training stage I, each facial region and the whole face area, which is 

recognized and cropped in the pre-processing step, will be used to search the best 

neural architecture by using the proposed NAS method. Same NAS algorithm is 

considered, but Dataset for Blocks is used to search the neural cells for blocks; and 

Dataset for Whole Faces is considered to search the neural cells for Feature Encoder 

sub-network(b). The Training stage II is used for training the Classifier Net to provide 

the final PAD results. The Classifier Net for Blocks, Classifier Net for Faces, and the 

Classifier Net in the second training stage use same neural architectures, but trained 

with different dataset. The Classifier Net for Blocks and Classifier Net for Faces will 

not be used in the proposed PAD-NAS neural network.  

(Training stage I) 

 
 (Training stage II) 

 

Figure 6.6 Two training stages for the proposed PAD-NAS network 

 

Searching neural architectures from candidate for PAD 

The NAS process can be summarised as Figure 6.7. The search strategy selects 

some operators from an operator candidate set and produces a neural cell which can 
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be considered as a directed acyclic graph. Then, N searched neural cells will be stacked 

and a Classifier Net is added to the end of the stacked neural cells to get the generated 

neural architecture. After testing the performance of this generated neural architecture, 

the performance estimation strategy will be used to produce a performance estimation 

for current neural architecture. And the search strategy will be optimized by following 

the guidience of the performance estimation.  

 

 

Figure 6.7 Workflow of searching neural architectures 

 

Motivated by hand-crafted architectures consisting of repeated structures [47], 

the proposed NAS method search neural cells rather than searching entire architectures 

directly. Each learned cell is a directed acyclic graph consisting of an ordered sequence 

of N nodes. Each node is selected from a set of operators. The learned neural cell could 

be stacked to generate a deep neural network. The proposed method follows the design 

of the high-level structure of well-known manually designed architecture [49] and uses 

cells within such architectures.  

The reason for searching cells rather than entire architectures is that training a 

macro NAS could take more than 1000 GPU hours[77]. To decrease the computational 

cost of the searching process, the proposed method follows the idea of [77] which 
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assumes that the final architecture consists of  the sub-networks with the same 

structure. 

The proposed method uses 𝒞 = {𝑒𝑖,𝑗|1 ≤ 𝑖 < 𝑗 ≤ 𝑛} to indicate a cell with n 

nodes. A directed edge is denoted as 𝑒𝑖,𝑗 which is from the i-th node to the j-th node. 

The k-th candidate operator o𝑘  comes from a pre-defined operator set 𝒪 =

{𝑜1, … , 𝑜𝐾|1 ≤ 𝑘 ≤ 𝐾}} . Thus, the output of the j-th node and the i-th node is 

represented by 𝐼𝑗  and 𝐼𝑖. If the j-th node only has one input edge from the i-th node, 

the output can be defined as[193]: 

 𝐼𝑗 = ∑𝑜𝑖,𝑗(𝐼𝑖)

𝑖<𝑗

 
(6.2) 

 

The operation calculated from the i-th node to the j-th node is represented by 

𝑜𝑖,𝑗 (. ) which is a linear combination of all of the elements of the selected operator set 

𝒪. It can be denoted as Eq (6.3) by following[193]. 

 

𝑜𝑖,𝑗(𝐼𝑖) =  ∑𝛼𝑘
𝑖,𝑗
∙  𝑜𝑘(𝐼𝑖)

𝐾

𝑘=1

 

s. t. 𝛼𝑘
𝑖,𝑗
 ∈ {0.1} 

(6.3) 

 

The 𝛼𝑘
𝑖,𝑗

 are used to represent binary parameters to select whether an operator 

will be used in a particular edge. And, s. t. stand for “subject to” to represent the 

formula under the constraint of 𝛼𝑘
𝑖,𝑗
 ∈ {0.1}. Then, the neural architecture can be 

represented by a binary set by following[193]: 

 𝒜 = {𝛼𝑘
𝑖,𝑗
|1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} (6.4) 

 

In the proposed work, each neural architecture consisting of some candidate 

operators will be transferred to an unique architecture code 𝒜  and the proposed NAS 

will also consider ∑ 𝛼𝑘
𝑖,𝑗𝐾

𝑘=1 = 1 as a constraint to confirm that only one operator will 

be chosen on each edge. The operator selection problem for each edge can be 

considered as a classification problem [194]. Thus, the NAS can be formulated as  
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 min
𝛼∈𝒜

min
𝑤𝑎
ℒ(𝑎,𝑤𝑎) (6.5) 

For the various architectures 𝛼 ∈ 𝒜  with trainable parameter 𝑤𝑎 , the neural 

architecture search is selecting an optimal architecture that can achieve the minimal 

loss ℒ(𝑎, 𝑤𝑎). [193] 

Operator candidate set for PAD 

The scale of a search space for neural cells, which includes the number of the 

possible configurations, is related to (1) The number of nodes for the directed acyclic 

graph (2) the number of candidate operators (e.g. different type of convolution layers, 

different pooling layers, etc.).  

By considering a neural cell as a directed acyclic graph, the selection of a fixed 

node number for the neural cell is considered as a hyper-parameter in the proposed 

method to limit the scale of the searching space. The selection of candidate operators 

will affect the computational complexity for the generated neural architectures. In the 

proposed NAS for PAD experiments, each neural cell will include two input nodes, 

one output node, and 4 normal nodes. Meanwhile, the proposed method considers the 

point-wise convolution operator and depth-wise separate convolution operator as the 

candidate convolution operator to replace the original convolution operation.  

Various convolutional operators can be considered in the operator set in the 

literature. However, the proposed NAS process aims to balance the computational cost 

and the performance in the generated neural architectures. Selecting two modified 

convolution operators from some recent work (MobileNet [57]) can decrease the 

computational cost for the generated neural architecture. Also, the dilated convolution 

operator [59] is considered as the operator candidate to decrease the model size and 

allow the generated neural architecture can learn a generalizable expressive feature 

space. To further decrease the size of the operator set, the ReLU activation function[52] 

is integrated into the depth-wise convolution operator and the dilated convolution 

operator. The kernel size of the convolution operators are fixed to 3×3 and 5×5 pixels 

as suggested in [195].  

Two pooling operators (3x3 average pooling and 3x3 max pooling) are used in 

the candidate operator set by following the suggestion of Barret Zoph et al.’s work[77]. 

After selecting the candidate operator set, the possible structure of a cell can be 

represented by the directed acyclic graphs. 
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Continuous Search Space 

The continues search space, which allows the search strategy optimized by using 

gradient information, is important for the proposed NAS method. Selecting an operator 

for each edge of the neural cell is a discrete problem that cannot produce gradient flow 

to optimise the search strategy. The proposed NAS process follows the method of 

[193] to convert the discrete neural architecture searching problem into a continuous 

optimisation problem. Assuming there is an optimal neural architecture �̌� for the PAD 

task, the proposed NAS method aims to approximating this optimal model by relaxing 

the categorical choice of an operator to a continuous probability representation. Thus, 

the choice of a set of operators can be formulated as (6.6) [196]: 

 

�̃�𝑖,𝑗(𝐼𝑖) =  ∑𝑓(𝑝𝑘
𝑖,𝑗
) ∙  𝑜𝑘(𝐼𝑖)

𝐾

𝑘=1

 

𝑠. 𝑡.    ∑𝑝𝑘
𝑖,𝑗
= 1

𝐾

𝑘=1

 

                           𝑝𝑘
𝑖,𝑗
≥ 0, ∀1 ≤ 𝑘 ≤ 𝐾 

                                    𝑓(𝑝𝑘
𝑖,𝑗
) ∈ {0.1}, ∀1 ≤ 𝑘 ≤ 𝐾 

 

 

 

(6.6) 

 

Formula (6.6) considers 𝑝𝑘
𝑖,𝑗

 to denote the probability score of selecting the k-th 

operator in 𝒪 on the edge 𝑒𝑖,𝑗. Then 𝑓(. ) is used for mapping this probability score to 

a binary code. However, formula (6.6) still not differentiable.   

The proposed method follows the suggestion in [197] and uses the Gumbel-

Max[198]  trick to re-formulate the estimation of 𝛼𝑘
𝑖,𝑗

. This process aims to enable the 

gradient information comes from back-propagation to optimise the search strategy. 

The standard Gumbel random variables can be sampled from the Gumbel distribution: 

 𝐺 =  −log (−log (𝑋))  (6.7) 

 

where X is used to represent the independent variable 𝑋~𝑈[0,1]. Then, the 

discrete variable �̃�𝑘
𝑖,𝑗

 can be sampled by (6.8): 
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 �̃�𝑘
𝑖,𝑗
≈ ℒ = arg max

𝑘∈{1,…,𝐾}
log (𝑝𝑘

𝑖,𝑗
)+𝐺𝑘 (6.8) 

where {𝐺𝑘}𝑘<𝐾 is a sequence of standard Gumbel random variables. To make 

argmax operation continuous, the estimation function can be re-formulated as the 

Gumbel-Softmax (GS) estimation[199]: 

 
�̃�𝑘
𝑖,𝑗
≈ ℒ̃𝑘 =

exp ((log(𝑝𝑘
𝑖,𝑗
) + 𝐺𝑘)/𝜏)

∑ exp ((log(𝑝𝑘
𝑖,𝑗
) + 𝐺𝑘)/𝜏)) 

𝐾
𝑘=1

 
(6.9) 

where 𝜏 is used to denote a temperature parameter to control [ℒ̃1, … , ℒ̃𝑘 , … . , ℒ̃𝐾] 

set and make this set approaching to a one-hot vector (𝜏 → 0 ) or a discrete uniform 

distribution (𝜏 → +∞). ℒ̃𝑘 indicates that the probability score for the k-th operator  𝑝𝑘
𝑖,𝑗

 

is the maximal value in the vector. By using Gumbel-Softmax estimation, the search 

strategy is relaxed to a differentiable function.   

Optimisation function 

For PAD, the desired neural architecture should not only be accurate and 

effective for detecting presentation attacks but also achieve this with a minimum 

computation effort for widest deployment potential. In order to achieve this goal, the 

proposed method provides a modified lose function as following: 

 ℒ(𝑎, 𝑤𝑎) = 𝐶𝐸(𝑎,𝑤𝑎) + λ ∙∑𝑐
𝑖,𝑗

 
(6.10) 

 

where 𝐶𝐸(𝑎,𝑤𝑎)is used to represent the cross-entropy for the searched neural 

architecture and 𝑐
𝑖,𝑗

 is used to represent the computational complexity for the selected 

operator from node i to node j. λ is a parameter to balance these two parts and for the 

proposed method it is fixed at λ = 0.5. The effectiveness is represented by the gradient. 

Here, the computational complexity of an operator is represented by adding the 

number of trainable parameters in this layer and the floating-point operations per 

second (FLOPs) for the forward propagation. For instance, a convolutional layer with 

3 × 3@10 convolutional kernels for an image which includes 5 × 5 pixels as input 

data, the number of trainable parameters is 3 × 3 × 10 = 90. Meanwhile, doing the 

convolution operation once requires 3 × 3=9 times multiplication operations and 

3 × 3-1 times add operation. And the input data needs the convolution operation to be 

performed  (5 − 3 + 1) × (5 − 3 + 1) = 9  times for each kernel. The 𝑐
𝑖,𝑗
= ζ ∙
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(parameter number + operation times) = 0.001 × 180 = 0.18 when ζ is fixed to 

0.001 in the proposed experiment to map the proposed score within range [0,1]. Thus, 

the proposed method will optimize the computational costs and cell architectures 

simultaneously by using the formula (6.10).  

Reduction cell to accelerate the NAS 

Some researchers claimed that there are two kind of cells that need to be 

searched in NAS process[197]:  normal cell and reduction cell. Some deep neural 

networks designed by human experts show that the reduction layers, such as the max 

pooling layer in VGG net[47] and the stride connection layer in ResNet [49], can 

improve the generalization capability of DNNs.  The normal cell generally consists 

of convolution layers to extract information from raw input. The reduction cell is 

designed to reduce the spatial dimension and makes the whole network efficient. By 

following the suggestion of[197], the proposed NAS also considers these two 

different cells to improve the performance and generalization capability for the 

generated neural architecture.  

 
Figure 6.8 The reduction cell designed for the proposed neural architecture search 

method. 1x3 conv 1x2 stride indicates a convolutional layer with 1 by 3 kernel and 1 

by 2 stride; 1x5 conv 1x2 stride indicates a convolutional layer with 1 by 5 kernel and 

1 by 2 stride 

 

However, searching two different cells are difficult with computational 

cost[197].  The proposed method follows the suggestion of [197] and introduces a 

simple reduce cell which is designed by human expert. This simple reduced cell also 

selects operators from the candidate operator set and the Fig 6.8 shows this reduced 

cell. In the proposed Model for Blocks and Model for Faces in Figure 6.6, the 
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generated neural architecture is designed as Figure 6.9, where the reduction cell will 

be added after Normal cell blocks. 

6.3.2 Implementation for PAD 

Data augmentation techniques are introduced here for the NAS to further 

improve the volume of the training set. In the training stage I, the proposed Model for 

Blocks and Model for Faces follows the neural architecture in Fig.6.9 with N=4 and 

uses a fixed 3X3 convolution operator as the input layer. The simple reduction cells 

designed via human hand are stacked after each normal cell blocks to reduce the 

dimension of the feature vector. The Classifier Net consists of a dense layer and a 

SoftMax layer[166]. As mentioned before, the Classifier Net for Blocks, Classifier Net 

for Faces, and the Classifier Net in the second training stage share the same neural 

architecture but trained for different data. Since CASIA-FASD[122] and Replay-

Attack [27] are video datasets, the proposed experiment consider 10 random frames 

from each video to extract facial region and train the model for faces. Each facial 

region can provide 9 face blocks and the proposed experiment randomly select 4 

blocks to generate the dataset for blocks. For the images in MSU-MFSD[123], we 

extract 64 blocks from each live face region, and eight blocks are randomly selected 

from each face region. 

 
Figure 6.9 The generated neural architecture where the normal cell block includes N 

cells. 

 

In the training stage II, the Feature Encoder Sub-network (a) and (b) is not 

trainable. The proposed experiment only allows the Classifier Net learn from gradient 

which is different from the previous transfer learning paradigm.  

The candidate operator set  has 8 different functions as (1) identity, (2) zeroize, 

(3) 3x3 depth-wise separate conv, (4) 3x3 dilated depth-wise separate conv, (5) 5x5 

depth-wise separate conv, (6) 5x5 dilated depth-wise separate conv, (7) 3x3 average 

pooling, (8) 3x3 max pooling.  
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The NAS is trained for 200 epochs in total. The parameter within the neural 

network is optimised by using a SGD algorithm [200], which is initialized with an 

initial learning rate of 0.03. Then, the learning rate will down to 1 × 10−3 by following 

a cosine schedule. The momentum is set as 0.9 and the weight decay of 3 × 10−4. The 

neural structure is searched with the Adam optimization algorithm [201] with the same 

learning rate with SGD and the weight decay of 1 × 10−3.τ is initialized as 10 and is 

linearly reduced to 1. Following[193], the proposed method runs the NAS algorithm 

10 times with different random seeds and considers the best cell for the following 

experiments. 

(a) 

 
 

 

(b) 

 

Figure 6.10 Cell discovery by the proposed neural architecture search method. Each 

neural cell will have two inputs: one from the previous cell, and another from the 

residual connection. The green blocks are used to demonstrate the start and the end 

point of a neural cell. Each connection between two nodes is an operator selected from 

the operator set.  
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6.3.3 Experiments 

In this section, we describe the experimental design and implementation details 

used to evaluate the proposed NAS framework. The results of the experiments are also 

presented. 

Three face spoofing detection databases were used for performance evaluations: 

(1) REPLAY-ATTACK dataset[27]  , (2) CASIA-FASD[122], (3) MSU mobile face 

spoofing database[123]. The proposed experiments follow the protocol associated with 

each of the three databases. For each database, we use the training set to learn the CNN 

models and the testing set for evaluation in terms of EER and HTER. The Replay-

Attack database [27] provides a development set which is only used as a validation set 

during training to ensure convergence of the network.  

The process for discovering computational cells is presented in Figure 6.10. The 

automatically discovered cells are complex but can achieve better performance than 

the human-designed networks. The PAD-NAS network provides some encouraging 

results at three benchmark datasets which can be found at Table 6.4.  

There are three baseline results which are considered in this table: (1) LBP 

baseline[24] which is widely considered as the baseline method in multiple datasets  

(2)The BPT represent the best performance score provided by the proposed traditional 

features in this thesis, and (3) the DTL-PAD(VGG16) is a neural architecture which 

follows the transfer learning paradigm and use the pre-trained feature extraction part 

of the VGG16 network. The proposed PAD-NAS network shows better the 

performance at all three datasets when comparing with the baseline methods. This 

suggests the NAS is a possible direction for future PAD research. 

Table 6.4 Performance Comparison For PAD-NAS (BPT* indicate the best 

performance of the proposed traditional features) 

 
CASIA 

(EER %) 

Replay-Attack 

(EER %) 

MSU 

(EER %) 

LBP(baseline) [24] 24.8 16.1 14.7 

BPT* 4.8 0.6 7.6 

DTL-PAD(VGG16) (baseline) 7.1 8.4 16.0 

P&D-CNN[61] 2.6 0.7 0.35 

Patch-3DCNN(Chapter 5) 4.2 0.1 1.7 

DTL-PAD(NAS) (Chapter 5) 8.0 9.4 14.3 

PAD-NAS (proposed) 2.3 0.4 1.9 
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The Patch-3DCNN and P&D-CNN[61] also consider both facial area and facial 

blocks as the proposed PAD-NAS network. The proposed PAD-NAS network get the 

best results at CASIA-FASD [122]when comparing with these two methods. P&D-

CNN[61] shows better performance score at Replay-Attack dataset[27]  and MSU 

dataset[123]. However, P&D-CNN needs to train a network to estimate 3D facial 

structure from the raw data which highly increase the computational cost of their 

method.  

The DTL-PAD(NAS) is a neural architecture which follows the transfer learning 

paradigm and considers the pre-trained feature extraction part from NASNet [77]. 

NASNet also use neural architecture search method to design neural architecture. 

However, their neural architecture is searched for image classification task. The 

proposed PAD-NAS network shows better performance when comparing with DTL-

PAD(NAS) method.  

Table 6.4 summarizes the test errors of PAD-NAS compared with other 

approaches. As can be seen from the table, NAS-based encoder network successfully 

found architectures that outperformed other models for the same dataset. The 

performance scores demonstrate the effectiveness of the proposed PAD-NAS method. 

6.4 SUMMARY 

In this chapter, two different extensions for DNN-based PAD were introduced. 

First part of the chapter presented the experiments and results on interpretable PAD 

and the second part of the chapter presents automatic network design for PAD. These 

ideas were implemented and evaluated using frequently used public datasets.  

The main contributions of this chapter are listed as follows: 

(1) The traditional PAD approach may be extended to provide explainable 

decisions for presentation attack detection.  An attention-based method 

which uses the VGG-16 pre-trained network as the feature encoder has been 

shown to be effective in this regard. This attention network is trained by 

using the explanations generated by the Grad-CAM method to show an 

improvement in performance. A natural language generation approach for 

explainable PAD was also explored which can help non-expert users to 

understand the decisions of a PAD system.  
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(2) An approach for the automatic design of deep neural structures for PAD tasks 

was presented and explored. NAS is firstly introduced to discover neural 

architectures for PAD. The learned architecture is quite flexible as it may be 

scaled in terms of computational cost and parameters to easily address a 

variety of applications. The performance of the resulting model is as good as 

the human-designed models in the proposed experiments. 

Table 6.5 demonstrates the performance comparison for deep learning based 

methods at 4 benchmark datasets. The first column of the table 6.5 is the best results 

of the proposed traditional features. The DTL-PAD(VGG16) in the second row also 

applies transfer learning paradigm for PAD and consider the feature extraction part of 

the VGG16 pre-trained network as the feature encoder network. The BPT gives the 

best performance score provided by the proposed traditional features in this thesis 

Table 6.5 Performance of the DNN based feature for multiple datasets (BPT* indicate 

the best performance of the proposed traditional features) 
Datasets 

EER(%) 

REPLAY-

ATTACK  

CASIA-

FASD 

MSU-

MFSD 

HKBU 

MARs 

BPT 0.60 4.80 7.67 N/A 

DTL-PAD(VGG16) 

(baseline) 
8.4 7.1 16.0 39.7 

FACN 0.2 3.02 1.67 23.70 

DACN 0.37 1.0 0.2 13.51 

NAS-PAD 0.4 2.3 1.9 16.10 

 

As described in the previous chapters, some of the proposed methods use the 

same pre-trained feature encoder network but trained in different ways. By comparing 

the proposed methods with the DTP-PAD(VGG16), Table 6.4 can clearly demonstrate 

the performance improvements of the proposed methods. The attention mechanism 

and the “learning from explanation” pipeline highly improved the performance in this 

table. And the PAD-NAS network also shows encouraging results in these benchmark 

datasets. 

In Table 6.5, the highlighted performance score is the best score when consider 

the proposed traditional and deep learning-based methods. The DACN method shows 

the best results at HKBU MARs dataset, CASIA-FASD[122] and MSU-MFSD[123]. 

Although the NAS-PAD does not reach the best performance when comparing with 
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the proposed methods, the searched architecture still demonstrates the effectiveness 

and the potential of the neural architecture search. 
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Chapter 7: Conclusions and Further Work 

The objective of this thesis is to address the facial presentation attack detection 

task by exploring both conventional and deep neural network based methods.   In this 

chapter, the proposed methods, conclusions and the possible directions for future 

works will be presented to summarise the contributions of the proposed works. In 

Section 7.1, the contributions of the proposed work and experiments are demonstrated. 

Then, the future work based on the existing results is suggested in Section 7.2 

7.1 CONTRIBUTIONS  

The main contributions of this thesis have been the development and evaluation 

of novel features for facial presentation attack detection. In order to have a clear 

understanding of PAD, existing methods and evaluation protocols, a comprehensive 

survey for software-based facial presentation attack detection, which includes both 

traditional features and deep learning features, is provided. After a brief analysis of the 

existing methods, an experimental framework is presented in detail where the 

benchmarking datasets and the evaluation metrics are also presented.   

After the descriptions of the experimental framework, three main chapters are 

provided to demonstrate the contributions of this thesis. The details of the proposed 

methods are also listed in these chapters. Distinct differences between genuine faces 

and presentation attacks have been detected using temporal information such as facial 

motion patterns, moiré patterns, shading differences and specular reflections, as 

reported in the research literature. The initial point of the proposed methods is 

providing a feature which can efficiently explore temporal differences for presentation 

attack detection. To achieve this goal, the thesis explores traditional features along two 

directions: (1) Unconscious facial movements are distinct for various presentation 

attacks and the proposed FAUH method uses the facial action coding system, which is 

a symbolic system for possible facial motions, and extracts a temporal-related feature 

for detecting PAs. (2) Temporal texture changes also contain useful information for 

presentation attack detection but processing temporal information is computationally 

expensive. Three traditional methods are proposed to achieve a balance between 

performance and computational costs. The Motion History Patterns combine the 
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Motion History Image (MHI) as primary features and two local texture descriptors as 

secondary features to detect presentation attacks.  The TCoALBP extends the original 

LBP algorithm as a spatio-temporal texture descriptor for video data. This novel 

algorithm captures and summarises dynamic textural characteristics of a video 

sequence by encoding the co-occurrence of local texture features both in space and 

across time, as contained in a sequence of video frames. The Super-pixel texture 

pattern segments the raw input as a set of super-pixels by using the clustering 

algorithm and generates the final feature vector from the codebook representation of 

the local texture representations for each super-pixel. All of these three proposed 

methods are focusing on the temporal texture patterns which are discriminative for 

different presentation attacks. 

The emergence of deep learning techniques offers some new opportunities for 

PAD research. One of these is the possibility of obtaining robust features for the 

classification of presentation attacks. Here two widely used learning paradigms in deep 

learning are explored:  

(1) Transfer learning paradigm uses the feature extraction part of various pre-

trained deep neural networks and trains a new classifier sub-network that follows the 

feature extraction network. Then, a fine-tuning stage is applied to further improve the 

performance of the overall deep neural network. The pre-trained feature extraction 

networks are normally trained with large datasets for other computer vision tasks such 

as object recognition.  

(2) Learning from scratch paradigm only uses PA datasets as the training data 

and design some novel neural architectures for the facial anti-spoofing task. The 

proposed CCPAD-Net provides a novel neural architecture, which can detect 

presentation attacks efficiently, and a Colour Space Net is designed, which can be 

trained separately, to decrease the risk of overfitting.  

The spatio-temporal information is also considered to guide the designing of the 

proposed neural architectures: (a) FASAN follows the assumptions and analysis of 

FAUH but employs a novel neural architecture, which combines the LSTMs and CNNs 

for the proposed FAU temporal intensity signals. The proposed FASAN shows a clear 

performances improvement when compared with the FAUH and demonstrates the 

effectiveness of DNN-based methods for processing temporal information. (b) The 3D 

Temporal Local Texture Network uses the distinct motion cues for presentation attacks 
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associated with both spatial and temporal variations and explores a novel 3D 

convolutional neural architecture that is used to model the distinct texture correlations 

between frames.  

Other significant contributions of this thesis are concerned with improving the 

performance of the PAD system as well as making the system (1) have the capability 

to justify its decisions and (2) have the capability to automatically select the neural 

architectures for PAD without the need for human design.  Despite the high 

performance achieved using DNNs, the inability to justify decisions is a significant 

drawback given the usability and security requirements of many biometric 

applications. The proposed learning from explanations approach utilises both spatial 

and temporal information to detect facial spoofing behaviours and provides both visual 

and natural language explanations for each decision to answer the questions such as 

“Why the system makes this decision?”. An attention-guided subnetwork is designed 

in the proposed work to learn from justifications provided by the system as an 

additional information to further improve performance. The proposed NAS-PAD is 

considered as a logical next step for automating PAD when researchers and engineers 

are struggling with the complexity of designing an effective neural network. This 

proposed method can learn an efficient neural architecture by searching the structures 

of the neural cells. The full network for PAD is created by stacking the searched cells.  

As the description in the introduction chapter, this thesis aims to push the 

boundary of existed PAD researches and to find a possible route to the next generation 

of the PAD system in my imagination. For this reason, both conventional and neural 

architectures are explored to improve the performance of PAD systems. Some neural 

architectures are trained by using additional information, which is extracted by using 

domain knowledge. Some neural architectures are designed or searched for the 

platform with low computational capabilities. Moreover, some contributions 

demonstrate the potential and the possibilities of the explainable PAD system. I hope 

these works can help people to build better PAD system in the future. In summary, 

contribution chapters explored various conventional and neural architectures to 

improve the performance of PAD systems in this thesis. Temporal information was 

used efficiently in multiple experiments (such as Motion History Patterns, FASAN, 

etc.) and showed the potential benefits of using Temporal information.  Meanwhile, 

the explainable-PAD system was designed to open the black-box of DNNs, and the 
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NAS-PAD system offers a possible way to design a deep neural network for PAD 

without human experts. 

7.2 FUTURE WORK 

Developing traditional features using temporal information for PAD may still be 

a very interesting topic in the near feature due to their computational efficiency 

property. Especially for the biometric systems within the robotic system, such as 

Quadrone[202] and other possible robot platforms, the restricted computational 

resources and limited battery capacity justifies the use of traditional features in some 

scenarios.  

For the traditional features explored in this thesis, more experiments may be 

needed to optimise the parameters such as different colour channels. For future work, 

the effect of different temporal and spatial displacements for the proposed traditional 

features will be studied using larger and more challenging datasets. Also, heuristic 

search algorithms may be explored for optimizing parameter sets of the proposed 

methods. The proposed FAUH feature can be optimised by selecting different 

combinations of action units, different temporal durations, and different facial action 

unit recognisers with better performance. The Motion History Pattern can be tested 

with different secondary features or some secondary features can even be fused for 

better performance. The optimum temporal duration for each MHI, the type of colour 

channels and the parameters such as the threshold for each MHI can also be optimised 

for different attack types. More experiments are needed to optimise TCoALBP feature 

by selecting better combinations of different colour channels, choosing better hyper-

parameters for LBP descriptors, and choosing different 3D local texture descriptors.  

Recent developments of edge computing and tensor processing units (TPU) will 

accelerate the developments of deep learning based methods for mobile devices. The 

deep learning computational methods are becoming more sophisticated and powerful 

at the same time. The data dependence characteristics of these techniques will push 

researchers to collect more data. Some recent work [97] has started to use meta-

learning approaches for PAD to achieve good performance with very limited training 

data.    

The future direction for the methods based on deep learning may include the 

exploration of small networks for mobile platforms and large networks for server 
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platforms. For the mobile platforms the deep learning models should be smaller and 

incorporate efficient operations designed for the mobile computing. The proposed 

optimisation function in NAS-PAD can provide a better way to balance performance 

and computational complexity.  

Designing a neural architecture to detect particular characteristics, such as moiré 

pattern or skin reflections, may also be a possible research direction in the future. This 

direction may affect both small networks for mobile platforms and large networks for 

server platforms. Neural architectures may include multiple sub-networks, which can 

be trained separately with additional information. 

Interpretability of detection decisions will be important for the next generation PAD 

system, especially, for large neural networks running at server platforms. “Learning 

from explanation” may need a better explanation generation approach. The learning 

process of the “learning from explanation” can also be optimised, such as through 

exploring different optimisation functions, to help the proposed system achieve better 

performance.  



 

 191 

References 

[1] Y. Sun, Y. Chen, X. Wang, and X. Tang. "Deep learning face representation by 

joint identification-verification," in Advances in Neural Information Processing 

Systems, vol. 2, pp.1988-1996, 2014. 

[2] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller "Labeled faces in the wild: 

A database forstudying face recognition in unconstrained environments," in Workshop 

on Faces in "Real-life" images: Detection, Alignment and Recognition, Marseille, 

France, Oct 2008. 

[3] A. Etzioni, "Apple: Good business, poor citizen?" J. Bus. Ethics, vol. 151, issue 1, 

pp. 1-11, 2018.  

[4] H. Ortiz, "An anthropology of chinese digital payment systems, wechat pay and 

alipay," in 2019, [Online]. Available: https://hal.archives-ouvertes.fr/hal-02194865/. 

[Accessed: 28-Nov-2019]. 

[5] N. B. Ellison, C. Steinfield and C. Lampe, "The benefits of Facebook “friends:” 

Social capital and college students’ use of online social network sites," Journal of 

Computer-Mediated Communication, vol. 12, No.4, pp. 1143-1168, 2007.  

[6] A. K. Jain, P. Flynn and A. A. Ross, Handbook of Biometrics. Springer Science & 

Business Media, 2007. 

[7] D. Maltoni, M. S. Nixon and S.Z. Li, Handbook of Fingerprint Recognition. 

Springer Science & Business Media, 2009. 

[8] A. K. Jain, A. Ross and S. Pankanti. "Biometrics: a tool for information security," 

IEEE Transactions on Information Forensics and Security, vol. 1, (2), pp. 125-143, 

2006.  

[9] S. Marcel, M. S. Nixon and S. Z. Li, Handbook of Biometric Anti-Spoofing. New 

York: Springer. vol 1, 2014. 

[10] G. Költzsch. "Biometrics–market segments and applications," Journal of Business 

Economics and Management, Vol. VIII, No. 2, pp. 119-122, 2007.  

[11] T. Caldwell. "Market report: border biometrics," Biometric Technology Today, 

vol. 2015, No. 5, pp. 5-11, 2015.  

[12] G. M. Ezovski and S. E. Watkins. "The electronic passport and the future of 

government-issued RFID-based identification," in 2007 IEEE International 

Conference on RFID, Grapevine, Texas, USA, March, 2007. 

[13] H. Siringoringo and H. M. Valentine. "Electronic passport system acceptance: an 

empirical study from Indonesia," International Journal of Electronic Governance, vol. 

10, No.3, pp. 261-275, 2018.  



 

192  

[14] International Organization for Standardization, "Information Technology – 

Biometric presentation attack detection – Part 3: Testing and reporting," JTC 1/SC 37, 

Geneva, Switzerland, vol. ISO/IEC FDIS 30107-3:2017, 2017.  

[15] N. M. Duc and B. Q. Minh. "Your face is not your password face authentication 

bypassing lenovo–asus–toshiba," Black Hat Briefings, vol. 4, pp. 158, 2009.  

[16] D. J. Bernstein, C. Tung, C. Chitchanok, H. Andreas, L. Tanja, N. Ruben and V. 

Christine. "How to manipulate curve standards: A white paper for the black hat. " in 

International Conference on Research in Security Standardisation, Toyko, Japan, 

Springer, Cham, pp 109-139, 2015. 

[17] A. Greenberg. "Hackers just broke the iPhone X’s face ID using a 3D-printed 

mask," Wired, 2017.  

[18] Z. Akhtar, et al., "Biometrics: In search of identity and security (Q & A)," IEEE 

Multimedia, pp 1-1, 2017.  

[19] J. Galbally, S. Marcel and J. Fierrez, "Biometric antispoofing methods: A survey 

in face recognition," IEEE Access, vol. 2, pp. 1530-1552, 2014.  

[20] R. Ramachandra and C. Busch, "Presentation attack detection methods for face 

recognition systems: A comprehensive survey," ACM Computing Surveys (CSUR), 

vol. 50, No.1, pp.1-37, 2017.  

[21] ThatsMyFace.in 2018. [Online] Available: https://www.thatsmyface.com. 

[Accessed: 20-Dec-2018] 

[22] N. Evans. Handbook of Biometric Anti-Spoofing: Presentation Attack Detection. 

Springer, 2019. 

[23] Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi and S.Z. Li. "A face antispoofing database 

with diverse attacks," in 2012 5th IAPR International Conference on Biometrics (ICB), 

New Delhi, India pp. 26-31, 2012. 

[24] T. Ojala, M. Pietikäinen and T. Mäenpää, "Multiresolution gray-scale and rotation 

invariant texture classification with local binary patterns," IEEE Transactions on 

Pattern Analysis & Machine Intelligence, Vol. 24, No.7, pp. 971-987, 2002.  

[25] T. Ahonen, A. Hadid and M. Pietikainen, "Face description with local binary 

patterns: Application to face recognition," IEEE Transactions on Pattern Analysis & 

Machine Intelligence, Vol. 28, No. 12, pp. 2037-2041, 2006.  

[26] J. Määttä, A. Hadid and M. Pietikäinen, "Face spoofing detection from single 

images using texture and local shape analysis," IET Biometrics, Vol. 1, Issue 1, pp. 3-

10, 2012.  

[27] I. Chingovska, A. Anjos and S. Marcel, "On the effectiveness of local binary 

patterns in face anti-spoofing," in 2012 BIOSIG-Proceedings of the International 

Conference of Biometrics Special Interest Group (BIOSIG), pp. 1-7, Sep, 2012. 



 

 193 

[28] N. Erdogmus and S. Marcel, "Spoofing face recognition with 3D masks," IEEE 

Transactions on Information Forensics and Security, vol. 9, No. 7, pp. 1084-1097, Jul 

2014.  

[29] N. Kose and J. Dugelay, "Classification of captured and recaptured images to 

detect photograph spoofing," in 2012 International Conference on Informatics, 

Electronics & Vision (ICIEV) Dhaka, Bangladesh, May 2012, pp. 1027-1032. 

[30] R. Raghavendra, K.B. Raja, S. Venkatesh, F.A. Cheikh and C. Busch. "On the 

vulnerability of extended multispectral face recognition systems towards presentation 

attacks," in 2017 IEEE International Conference on Identity, Security and Behavior 

Analysis (ISBA), New Delhi, India, Feb, 2017, pp.1-8. 

[31] M. Waris, H. Zhang, I. Ahmad, S. Kiranyaz and M. Gabbouj. "Analysis of textural 

features for face biometric anti-spoofing," in 21st European Signal Processing 

Conference (EUSIPCO 2013), Marrakech, Morocco, Sep, 2013, pp. 1-5. 

[32] Z. Boulkenafet, J. Komulainen and A. Hadid, "Face spoofing detection using 

colour texture analysis," IEEE Transactions on Information Forensics and Security, 

vol. 11, No. 8, pp. 1818-1830, Aug, 2016.  

[33] J. Li, Y. Wang, T. Tan, and A. K. Jain. "Live face detection based on the analysis 

of fourier spectra," in Biometric Technology for Human Identification, Proc of SPIE, 

Vol 5404, pp296-303, 2004. 

[34] M. H. Teja. "Real-time live face detection using face template matching and DCT 

energy analysis," in 2011 International Conference of Soft Computing and Pattern 

Recognition (SoCPaR), Dalian, China, Oct, 2011, pp. 342-346. 

[35] Z. Zhang, D. Yi, Z. Lei, and S.Z. Li. "Face liveness detection by learning 

multispectral reflectance distributions." in International Conference on Face and 

Gestures, Santa Barbara, USA,  Mar, 2011, pp. 436-441. 

[36] J. Peng and P. P. Chan. "Face liveness detection for combating the spoofing attack 

in face recognition," in 2014 International Conference on Wavelet Analysis and 

Pattern Recognition, Lanzhou, China, Jul, 2014, pp. 176-181. 

[37] X. Tan, et al., "Face liveness detection from a single image with sparse low rank 

bilinear discriminative model," in European Conference on Computer Vision, Crete, 

Greece, 2010, pp. 504-517. 

[38] D. Wen, H. Han and A. K. Jain, "Face spoof detection with image distortion 

analysis," IEEE Transactions on Information Forensics and Security, vol. 10, Issue 4, 

pp. 746-761, Apr, 2015.  

[39] J. Komulainen, Z. Boulkenafet and Z. Akhtar, "Review of face presentation attack 

detection competitions," in Handbook of Biometric Anti-Spoofing Springer, Cham, pp. 

291-317, 2019. 



 

194  

[40] T. Wang, J. Yang, Z. Lei, S. Liao, and S. Z. Li. "Face liveness detection using 3D 

structure recovered from a single camera," in 2013 International Conference on 

Biometrics (ICB), Madrid, Spain, Jun, 2013, pp. 1-6. 

[41] K. T. Nguyen, C. Zitzmann, F. Retraint, A. Delahaies, F. Morain-Nicolier, and 

H.P. Nguyen. "Face spoofing detection for smartphones using a 3D reconstruction and 

the motion sensors." in International Conference on Systems Security and Privacy 

ICISSP, Funchal, Madeira, Portugal,  2018, pp. 286-291. 

[42] Y. Xu, T. Price, J.M. Frahm, and F. Monrose. "Virtual u: Defeating face liveness 

detection by building virtual models from your public photos," in 25th Security 

Symposium (Security 16), Austin, TX, USA, 2016, pp. 497-512. 

[43] T. de Freitas Pereira, A. Anjos, J.M. De Martino, and S, Marcel. "LBP− TOP 

based countermeasure against face spoofing attacks," in Workshop of 2012 Asian 

Conference on Computer Vision, Daejeon, Korea, Nov, 2012, pp.121-132. 

[44] Q. Phan, D. T. Dang-Nguyen, G. Boato, and F.G. De Natale. "Face spoofing 

detection using LDP-TOP," in 2016 IEEE International Conference on Image 

Processing (ICIP), Phoenix, Arizona, Sep, 2016, p404-408. 

[45] S. R. Arashloo, J. Kittler and W. Christmas, "Face spoofing detection based on 

multiple descriptor fusion using multiscale dynamic binarized statistical image 

features," IEEE Transactions on Information Forensics and Security, vol. 10, Issue 11 

, pp. 2396-2407, Nov, 2015.  

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, and A.C. Berg. 

"Imagenet large scale visual recognition challenge," International Journal of 

Computer Vision, vol. 115, Issue 3, pp. 211-252, Dec, 2015.  

[47] K. Simonyan and A. Zisserman. "Very deep convolutional networks for large-

scale image recognition," arXiv Preprint arXiv:1409.1556, 2014.  

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, and A, 

Rabinovich. "Going deeper with convolutions," in 2015 7th International Conference 

on Games & Virtual Worlds for Serious Applications (VS-Games), Skovde, Sweden, 

2015, pp.1-5. 

[49] K. He, X. Zhang, S. Ren, and J. Sun. "Deep residual learning for image 

recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), Las Vegas, Nevada, USA, Jun, 2016, pp.779-778,. 

[50] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional 

networks," in European Conference on Computer Vision, Zürich, Switzerland, 2014, 

pp. 818-833. 

[51] F. Yu and V. Koltun. "Multi-scale context aggregation by dilated convolutions," 

arXiv Preprint arXiv:1511.07122, 2015.  



 

 195 

[52] V. Nair and G. E. Hinton. "Rectified linear units improve restricted boltzmann 

machines," in Proceedings of the 27th International Conference on Machine Learning 

(ICML-10), Haifa, Israel, 2010, pp.807-814. 

[53] D. Clevert, T. Unterthiner and S. Hochreiter, "Fast and accurate deep network 

learning by exponential linear units (elus)," arXiv Preprint arXiv:1511.07289, 2015.  

[54] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. "Xnor-net: Imagenet 

classification using binary convolutional neural networks," in European Conference 

on Computer Vision, Amsterdam, Netherlands, Oct, 2016, pp. 525-542. 

[55] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang and B. Zhang. "Accelerating convolutional 

networks via global & dynamic filter pruning." in International Joint Conference on 

Artificial Intelligence (IJCAI), Stockholm, Sweden, Jul, 2018, pp. 2425-2432. 

[56] F. N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally and K. Keutzer. 

"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model 

size," arXiv Preprint arXiv:1602.07360, 2016.  

[57] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand and H. 

Adam. "Mobilenets: Efficient convolutional neural networks for mobile vision 

applications," arXiv Preprint arXiv:1704.04861, 2017.  

[58] X. Zhang, X. Zhou, M. Lin and J. Sun. "Shufflenet: An extremely efficient 

convolutional neural network for mobile devices," in the IEEE Conference on 

Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA, Jun,2018, 

pp.6848-6856. 

[59] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.C. Chen. "Mobilenetv2: 

Inverted residuals and linear bottlenecks," in the IEEE Conference on Computer Vision 

and Pattern Recognition, Salt Lake City, Utah, USA, Jun, 2018, pp. 4510-4520. 

[60] A. Alotaibi and A. Mahmood. "Deep face liveness detection based on nonlinear 

diffusion using convolution neural network," Signal, Image and Video Processing, vol. 

11, Issue 4, pp. 713-720, May, 2017.  

[61] Y. Atoum., Y. Liu, A. Jourabloo and X. Liu. "Face anti-spoofing using patch and 

depth-based CNNs," in 2017 IEEE International Joint Conference on Biometrics 

(IJCB), Denver, Colorado, USA, Oct,2017, pp. 319-328. 

[62] Y. Liu, A. Jourabloo and X. Liu, "Learning deep models for face anti-spoofing: 

Binary or auxiliary supervision," in the IEEE Conference on Computer Vision and 

Pattern Recognition, Salt Lake City, Utah, USA, Jun, 2018, pp. 389-398. 

[63] K. Weiss, T. M. Khoshgoftaar and D. Wang, "A survey of transfer learning," 

Journal of Big Data, vol. 3, issue 1, pp. 9, 2016.  

[64] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li and Fei-Fei Li. "Imagenet: A large-

scale hierarchical image database," in 2009 IEEE Conference on Computer Vision and 

Pattern Recognition, Miami, Florida, USA, Jun, 2009, pp.248-255. 



 

196  

[65] Y. Bengio. "Practical recommendations for gradient-based training of deep 

architectures," in Neural Networks: Tricks of the Trade, Springer Verlag, p437-478, 

2012. 

[66] T. M. Breuel. "The effects of hyperparameters on SGD training of neural 

networks," arXiv Preprint arXiv:1508.02788, 2015.  

[67] J. Yang, Z. Lei and S. Z. Li, "Learn convolutional neural network for face anti-

spoofing," arXiv Preprint arXiv:1408.5601, 2014.  

[68] L. Li, X. Feng, Z. Boulkenafet, Z. Xia, M. Li and A. Hadid. "An original face 

anti-spoofing approach using partial convolutional neural network," in 2016 Sixth 

International Conference on Image Processing Theory, Tools and Applications 

(IPTA), Oulu, Finland, Dec, 2016, pp.1-6. 

[69] O. M. Parkhi, A. Vedaldi and A. Zisserman, "Deep face recognition." in British 

Machine Vision Conference (BMVC), Swansea, UK, Sep,2015, Vol 1, No. 3, pp.6. 

[70] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., 

vol. 9, Issue 8, pp. 1735-1780, 1997.  

[71] H. Yu, J. Wang, Z. Huang, Y. Yang and W. Xu. "Video paragraph captioning 

using hierarchical recurrent neural networks," in Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, Las Vegas, Nevada. USA, pp. 4584-

4593 Jun, 2016. 

[72] Z. Xu, S. Li and W. Deng, "Learning temporal features using LSTM-CNN 

architecture for face anti-spoofing," in 2015 3rd IAPR Asian Conference on Pattern 

Recognition (ACPR), Kuala Lumpur, Malaysia, 2015, pp.141-145. 

[73] S. Luo, M. Kan, S. Wu, X. Chen and S. Shan. "Face anti-spoofing with multi-

scale information," in 2018 24th International Conference on Pattern Recognition 

(ICPR), Beijing, China, Aug, 2018, pp. 3402-3407. 

[74] X. Tu et al, "Enhance the Motion Cues for Face Anti-Spoofing using CNN-LSTM 

Architecture," arXiv Preprint arXiv:1901.05635, 2019.  

[75] M. Asim, Z. Ming and M. Y. Javed, "CNN based spatio-temporal feature 

extraction for face anti-spoofing," in 2017 2nd International Conference on Image, 

Vision and Computing (ICIVC), Chengdu, China, Jun, 2017, pp. 234-238. 

[76] R. Shin, C. Packer and D. Song. "Differentiable neural network architecture 

search," in ICLR Workshop, Vancouver, Canada, 2018.  

[77] B. Zoph, V. Vasudevan, J. Shlens and Q. V. Le. "Learning transferable 

architectures for scalable image recognition," in Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA, 2018, 

pp.8697-8710. 



 

 197 

[78] I. Guyon, K. Bennett, G. Cawley, H. J, Escalante, S. Escalera, T.K. Ho and E, 

Viegas. "Design of the 2015 chalearn automl challenge," in 2015 International Joint 

Conference on Neural Networks (IJCNN), Killarney, Ireland, Jul, 2015, pp.1-8. 

[79] T. Elsken, J. H. Metzen and F. Hutter, "Neural Architecture Search: A Survey." 

Journal of Machine Learning Research, vol. 20(55), pp. 1-21, 2019.  

[80] H. Cai. T, Chen., W, Zhang., Y, Yu., and J, Wang., "Efficient architecture search 

by network transformation," in Thirty-Second AAAI Conference on Artificial 

Intelligence, Palo Alto, California USA, 2018. 

[81] B. Baker et al, "Designing neural network architectures using reinforcement 

learning," arXiv Preprint arXiv:1611.02167, 2016.  

[82] B. Zoph and Q. V. Le, "Neural architecture search with reinforcement learning," 

arXiv Preprint arXiv:1611.01578, 2016.  

[83] B. Zoph, V. Vasudevan, J. Shlens and Q. V. Le. "Learning transferable 

architectures for scalable image recognition," in Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, Salt Lake City, Utah. USA, 2018, pp. 

8697-8710. 

[84] E. Real, A. Aggarwal, Y. Huang and Q.V.  Le. "Regularized evolution for image 

classifier architecture search," in the AAAI Conference on Artificial Intelligence, Palo 

Alto, California USA, 2019, Vol. 33, pp. 4780-4789. 

[85] C. Liu, et al, "Progressive neural architecture search," in Proceedings of the 

European Conference on Computer Vision (ECCV), Munich, Germany,  2018, pp. 19-

34. 

[86] B. Wu, et al, "Fbnet: Hardware-aware efficient convnet design via differentiable 

neural architecture search," in Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, Long Beach, California, USA, pp. 10734-10742 

2019. 

[87] H. Liu, K. Simonyan and Y. Yang, "Darts: Differentiable architecture search," 

arXiv Preprint arXiv:1806.09055, 2018.  

[88] D. Gunning, "Explainable artificial intelligence (xai): Technical report defense 

advanced research projects agency darpa-baa-16-53," DARPA, Arlington, USA, 2016.  

[89] A. Adadi and M. Berrada, "Peeking inside the black-box: A survey on Explainable 

Artificial Intelligence (XAI)," IEEE Access, vol. 6, pp. 52138-52160, 2018.  

[90] C. Xu et al, "UP-CNN: Un-pooling augmented convolutional neural network," 

Pattern Recognition. Letter. Vol. 119, p34-40Mar, 2019.  

[91] R. R. Selvaraju et al, "Grad-cam: Visual explanations from deep networks via 

gradient-based localization," in Proceedings of the IEEE International Conference on 

Computer Vision, Venice, Italy, pp. 618-626, 2017. 



 

198  

[92] M. T. Ribeiro, S. Singh and C. Guestrin, "Why should i trust you?: Explaining the 

predictions of any classifier," in Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, San Francisco, USA, Aug, 

2016, pp. 1135-1144. 

[93] A. Chattopadhay, A. Sarkar, P. Howlader and V.N. Balasubramanian. "Grad-cam: 

Generalized gradient-based visual explanations for deep convolutional networks," in 

2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake 

Tahoe, USA, Mar, 2018, pp. 839-847. 

[94] A. Jourabloo, Y. Liu and X. Liu, "Face de-spoofing: Anti-spoofing via noise 

modeling," in Proceedings of the European Conference on Computer Vision (ECCV), 

Munich, Germany, 2018, pp. 290-306. 

[95] L. Li, P. L. Correia and A. Hadid, "Face recognition under spoofing attacks: 

countermeasures and research directions," IET Biometrics, vol. 7, (1), pp. 3-14, 2017.  

[96] Y. Liu, J. Stehouwer, A. Jourabloo and X. Liu.  "Deep tree learning for zero-shot 

face anti-spoofing," in Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, Long Beach, California, USA, 2019, pp. 4680-4689. 

[97] C. Zhao et al, "Meta Anti-spoofing: Learning to Learn in Face Anti-spoofing," 

arXiv Preprint arXiv:1904.12490, 2019.  

[98] D. L. MacAdam, "Color Measurement: Theme and Variations".Vol. 15(4), 

pp.321-321, Springer 2013. 

[99] F. Chen et al, "Face liveness detection: fusing colour texture feature and deep 

feature," IET Biometrics, Vol 8(6), pp. 369-377, 2019.  

[100] M. Fairchild, "Color appearance models: CIECAM02 and beyond," in Tutorial 

Notes, IS&T/SID, Tekstilec; Vol. 60 Issue 2, p97-106, 2004. 

[101] A. Agarwal, R. Singh and M. Vatsa, "Face anti-spoofing using haralick 

features," in 2016 IEEE 8th International Conference on Biometrics Theory, 

Applications and Systems (BTAS), Buffalo, New York, USA,  2016, pp.1-6. 

[102] S. Bhattacharjee et al, "Recent advances in face presentation attack detection," 

in Handbook of Biometric Anti-Spoofing Anonymous, pp. 207-228, 2019. 

[103] H. Li et al, "Learning generalized deep feature representation for face anti-

spoofing," IEEE Transactions on Information Forensics and Security, vol. 13(10), pp. 

2639-2652, 2018.  

[104] Y. LeCun, Y. Bengio and G. Hinton. "Deep learning," Nature, vol. 521(7553), 

pp. 436, 2015.  

[105] S. Abu-El-Haija et al., "Youtube-8m: A large-scale video classification 

benchmark," arXiv Preprint arXiv:1609.08675, 2016.  



 

 199 

[106] K. Patel, H. Han and A. K. Jain, "Cross-database face antispoofing with robust 

feature representation," in Chinese Conference on Biometric Recognition, Chengdu 

China,  Oct, 2016, pp. 611-619. 

[107] M. Frid-Adar et al, "Synthetic data augmentation using GAN for improved liver 

lesion classification," in 2018 IEEE 15th International Symposium on Biomedical 

Imaging (ISBI 2018), Washington DC, USA, 2018, pp. 289-293. 

[108] Q. Xie, Z. Dai, E. Hovy, M. T. Luong, and Q.V. Le. "Unsupervised data 

augmentation," arXiv Preprint arXiv:1904.12848, 2019.  

[109] Y. Liu, A. Jourabloo and X. Liu, "Learning deep models for face anti-spoofing: 

Binary or auxiliary supervision," in the IEEE Conference on Computer Vision and 

Pattern Recognition, Salt Lake City, Utah. USA, 2018, pp.389-398. 

[110] A. George and S. Marcel, "Deep pixel-wise binary supervision for face 

presentation attack detection," in International Conference on Biometrics, Crete, 

Greece, 2019, pp. 1-8. 

[111] T. Mita, T. Kaneko and O. Hori, "Joint haar-like features for face detection," in 

Tenth IEEE International Conference on Computer Vision (ICCV'05) Beijing, China, 

2005, Volume 1, pp.1619-1626. 

[112] G. Bradski and A. Kaehler, "OpenCV," Dr.Dobb’s Journal of Software Tools, 

vol. 3, 2000.  

[113] H. Jee, S. Jung and J. Yoo, "Liveness detection for embedded face recognition 

system," International Journal of Biological and Medical Sciences, vol. 1(4), pp. 235-

238, 2006.  

[114] T. Baltrusaitis, P. Robinson and L. Morency, "Constrained local neural fields for 

robust facial landmark detection in the wild," in Proceedings of the IEEE International 

Conference on Computer Vision Workshops, Sydney, Australia, 2013. 

[115] J. Peng, L. Bo and J. Xu, "Conditional neural fields," in Advances in Neural 

Information Processing Systems, Vancouver B.C., Canada, 2009, pp. 1419-1427. 

[116] T. Qin et al, "Global ranking using continuous conditional random fields," in 

Advances in Neural Information Processing Systems, Vancouver B.C., Canada, 2009, 

pp. 1281-1288. 

[117] C. Chang and C. Lin, "LIBSVM: A library for support vector machines," ACM 

Transactions on Intelligent Systems and Technology (TIST), vol. 2(3), pp. 27, 2011.  

[118] M. D. Richard and R. P. Lippmann, "Neural network classifiers estimate 

Bayesian a posteriori probabilities," Neural Comput., vol. 3(4), pp. 461-483, 1991.  

[119] M. Hu, Y. Chen and J. T. Kwok, "Building sparse multiple-kernel SVM 

classifiers," IEEE Trans. Neural Networks, vol. 20(5), pp. 827-839, 2009.  



 

200  

[120] L. Bottou, "Large-scale machine learning with stochastic gradient descent," in 

Proceedings of COMPSTAT'2010, Limassol, Cyprus, Anonymous, 2010, pp. 177-186. 

[121] X. Tan, Y. Li, J. Liu and L. Jiang. "Face liveness detection from a single image 

with sparse low rank bilinear discriminative model," in European Conference on 

Computer Vision, Crete, Greece, pp. 504-517, Berlin, Heidelberg, 2010. 

[122] Z. Zhang et al, "A face antispoofing database with diverse attacks," in 2012 5th 

IAPR International Conference on Biometrics (ICB), New Delhi, India, 2012, pp. 26-

31. 

[123] K. Patel, H. Han and A. K. Jain, "Secure face unlock: Spoof detection on 

smartphones," IEEE Transactions on Information Forensics and Security, vol. 11 (10), 

pp. 2268-2283, 2016.  

[124] H. Li et al, "Unsupervised domain adaptation for face anti-spoofing," IEEE 

Transactions on Information Forensics and Security, vol. 13(7), pp. 1794-1809, 2018.  

[125] Z. Boulkenafet, J. Komulainen, L. Li, X. Feng and A. Hadid. "OULU-NPU: A 

mobile face presentation attack database with real-world variations," in 2017 12th 

IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), 

Washington DC, USA, 2017, pp. 612-618. 

[126] S. Liu et al, "A 3D mask face anti-spoofing database with real world variations," 

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

Workshops, Las Vegas, Nevada, USA, pp. 100-106, 2016. 

[127] A. Pinto et al, "Using visual rhythms for detecting video-based facial spoof 

attacks," IEEE Transactions on Information Forensics and Security, vol. 10(5), pp. 

1025-1038, 2015.  

[128] S. Zhang et al, "A dataset and benchmark for large-scale multi-modal face anti-

spoofing," arXiv preprint arXiv:1812.00408. 

[129] A. Mordvintsev, C. Olah and M. Tyka, "Inceptionism: Going deeper into neural 

networks," 2015, [online] Available: http://googleresearch.blogspot.com/2015/06/ 

inceptionism-going-deeper-into-neural.html. [Accessed: 2019-12-04]..  

[130] C. Hjortsjö, Man's Face and Mimic Language. Sweden:Studentlitteratur, 1969. 

[131] P. Ekman and W. V. Friesen, Facial Action Coding System: Investigator's 

Guide. 1978. 

[132] M. Gavrilescu, "Study on using individual differences in facial expressions for 

a face recognition system immune to spoofing attacks," IET Biometrics, vol. 5(3), pp. 

236-242, 2016.  

[133] J. F. Cohn, K. Schmidt, R. Gross and P. Ekman. "Individual differences in facial 

expression: Stability over time, relation to self-reported emotion, and ability to inform 



 

 201 

person identification," in Proceedings of the 4th IEEE International Conference on 

Multimodal Interfaces, Pittsburgh, USA, 2002, pp. 491-499. 

[134] J. Yang et al, "Person-specific face antispoofing with subject domain 

adaptation," IEEE Transactions on Information Forensics and Security, vol. 10(4), pp. 

797-809, 2015.  

[135] T. Baltrušaitis, M. Mahmoud and P. Robinson, "Cross-dataset learning and 

person-specific normalisation for automatic action unit detection," in 2015 11th IEEE 

International Conference and Workshops on Automatic Face and Gesture Recognition 

(FG), Ljubljana, Slovenia, 2015, Vol. 6, pp. 1-6. 

[136] B. Jiang, M. F. Valstar and M. Pantic, "Action unit detection using sparse 

appearance descriptors in space-time video volumes," in Face and Gesture, Santa 

Barbara, California, USA, 2011, pp. 314-321. 

[137] A. Zadeh et al., "Convolutional experts constrained local model for 3d facial 

landmark detection," in Proceedings of the IEEE International Conference on 

Computer Vision, Venice, Italy, 2017, pp. 2519-2528. 

[138] G. McKeown et al., "The semaine database: Annotated multimodal records of 

emotionally colored conversations between a person and a limited agent," IEEE 

Transactions on Affective Computing, vol. 3(1), pp. 5-17, 2011.  

[139] S. Tirunagari et al., "Detection of face spoofing using visual dynamics," IEEE 

Transactions on Information Forensics and Security, vol. 10(4), pp. 762-777, 2015.  

[140] S. Bharadwaj et al., "Computationally efficient face spoofing detection with 

motion magnification," in Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition Workshops, Oregon, Portland, 2013, pp. 105-110. 

[141] N. Singla, "Motion detection based on frame difference method," International 

Journal of Information & Computation Technology, vol. 4(15), pp. 1559-1565, 2014.  

[142] M. A. R. Ahad, et al., "Motion history image: its variants and applications," 

Mach Vision Appl, vol. 23 (2), pp. 255-281, 2012.  

[143] A. Bobick and J. Davis, "An appearance-based representation of action," in 

Proceedings of 13th International Conference on Pattern Recognition, Gold Coast in 

Australia, 1996, Vol. 1, pp. 307-312. 

[144] A. F. Bobick and J. W. Davis, "The recognition of human movement using 

temporal templates," IEEE Transactions on Pattern Analysis & Machine Intelligence, 

Vol 1(3), pp. 257-267, 2001.  

[145] O. Lucena and R, Lotufo. "Transfer learning using convolutional neural 

networks for face anti-spoofing," in International Conference Image Analysis and 

Recognition, Montreal, QC, Canada, 2017, pp. 27-34. 



 

202  

[146] C. Tan et al, "A survey on deep transfer learning," in International Conference 

on Artificial Neural Networks, Rhodes, Greece, Oct, 2018, pp. 270-279. 

[147] P. Baldi and P. J. Sadowski, "Understanding dropout," in Advances in Neural 

Information Processing Systems, Lake Tahoe, Nevada, 2013, pp. 2814-2822. 

[148] G. Zhao and M. Pietikäinen, "Dynamic texture recognition using volume local 

binary patterns," in Dynamical Vision, Beijing, China, 2006, pp. 165-177. 

[149] D. Tiwari and V. Tyagi, "Dynamic texture recognition based on completed 

volume local binary pattern," Multidimension. Syst. Signal Process., vol. 27(2), pp. 

563-575, 2016.  

[150] R. Nosaka, C. H. Suryanto and K. Fukui, "Rotation invariant co-occurrence 

among adjacent LBPs," in Asian Conference on Computer Vision, Daejeon, Korea, 

2012, pp. 15-25. 

[151] R. Achanta et al, "SLIC superpixels compared to state-of-the-art superpixel 

methods," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34(11), pp. 2274-2282, 2012.  

[152] X. Ren and J. Malik, "Learning a classification model for segmentation," in 

ICCV-2003, Nice, France, 2003, Vol 1, pp. 10-17. 

[153] O. Veksler, Y. Boykov and P. Mehrani, "Superpixels and supervoxels in an 

energy optimization framework," in European Conference on Computer Vision, Crete, 

Greece, 2010, pp. 211-224. 

[154] T. Li et al, "Contextual bag-of-words for visual categorization," IEEE 

Transactions on Circuits and Systems for Video Technology, vol. 21(4), pp. 381-392, 

2010.  

[155] B. Leibe, A. Leonardis and B. Schiele, "Robust object detection with interleaved 

categorization and segmentation," International Journal of Computer Vision, vol. 

77(1-3), pp. 259-289, 2008.  

[156] D. Nister and H. Stewenius, "Scalable recognition with a vocabulary tree," in 

2006 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition (CVPR'06), New York, USA, 2006, Vol. 2, pp. 2161-2168. 

[157] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space 

analysis," IEEE Transactions on Pattern Analysis & Machine Intelligence, Vol 5, pp. 

603-619, 2002.  

[158] J. Banerjee et al, "3D LBP-based rotationally invariant region description," in 

Asian Conference on Computer Vision, Daejeon, Korea, 2012, pp. 26-37. 

[159] R. Raghavendra et al, "Transferable deep-CNN features for detecting digital and 

print-scanned morphed face images," in 2017 IEEE Conference on Computer Vision 

and Pattern Recognition Workshops (CVPRW), Honolulu, Hawaii, USA, 2017, pp. 

1822-1830. 



 

 203 

[160] J. Huang et al, "Cross-language knowledge transfer using multilingual deep 

neural network with shared hidden layers," in 2013 IEEE International Conference on 

Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013, pp. 7304-7308. 

[161] C. Chen et al, "Vehicle type recognition based on multi-branch and multi-layer 

features," in 2017 IEEE 2nd Advanced Information Technology, Electronic and 

Automation Control Conference (IAEAC), Chongqing, China, 2017, pp. 2038-2041. 

[162] J. Yosinski et al, "How transferable are features in deep neural networks?" in 

Advances in Neural Information Processing Systems, Montreal, Canada, 2014, Vol 1, 

pp. 3320-3328. 

[163] Y. He et al, "Amc: Automl for model compression and acceleration on mobile 

devices," in the European Conference on Computer Vision (ECCV), Munich, 

Germany, 2018, pp. 784-800. 

[164] M. Abadi et al, "Tensorflow: A system for large-scale machine learning," in 12th 

Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, 

GA, USA, 2016, Vol 1, pp. 265-283. 

[165] Y. Boureau, J. Ponce and Y. LeCun, "A theoretical analysis of feature pooling 

in visual recognition," in Proceedings of the 27th International Conference on 

Machine Learning (ICML-10), Haifa, Israel, 2010, Vol 1, pp. 111-118. 

[166] K. Janocha and W. M. Czarnecki, "On loss functions for deep neural networks 

in classification," arXiv Preprint arXiv:1702.05659, 2017.  

[167] H. A. Al-Barazanchi, H. Qassim and A. Verma, "Novel CNN architecture with 

residual learning and deep supervision for large-scale scene image categorization," in 

2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication 

Conference (UEMCON), New York, USA,  2016, Vol 1,pp. 1-7. 

[168] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network 

training by reducing internal covariate shift," arXiv Preprint arXiv:1502.03167, 2015.  

[169] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep 

convolutional neural networks," in Advances in Neural Information Processing 

Systems, Lake Tahoe, Nevada, 2012, Vol 1, pp. 1097-1105. 

[170] C. Olah et al., "The building blocks of interpretability," Distill, vol. 3(3), pp. 

e10, 2018.  

[171] A. Holzinger, "Interactive machine learning for health informatics: when do we 

need the human-in-the-loop?" Brain Informatics, vol. 3(2), pp. 119-131, 2016.  

[172] R. Henderson and R. Rothe, "Picasso: A modular framework for visualizing the 

learning process of neural network image classifiers," arXiv Preprint 

arXiv:1705.05627, 2017.  



 

204  

[173] R. R. Selvaraju, et al, "Grad-cam: Visual explanations from deep networks via 

gradient-based localization," in Proceedings of the IEEE International Conference on 

Computer Vision, Venice, Italy, 2017, pp. 618-626. 

[174] A. Chattopadhay, et al., "Grad-cam: Generalized gradient-based visual 

explanations for deep convolutional networks," in 2018 IEEE Winter Conference on 

Applications of Computer Vision (WACV), Lake Tahoe, USA, Mar, 2018, pp. 839-847. 

[175] Y. Wang, et al., "Optimized scale-and-stretch for image resizing," in ACM 

Transactions on Graphics (TOG), ACM, Vol. 27, No. 5, pp. 118. 2008. 

[176] Paszke, Adam, et al. "PyTorch: An imperative style, high-performance deep 

learning library." Advances in Neural Information Processing Systems. Vancouver, 

Canada, 2019, pp. 8024-8035.  

[177] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the 

OpenCV Library. O'Reilly Media, Inc. 2008. 

[178] A. Gulli and S. Pal, Deep Learning with Keras. Packt Publishing Ltd, 2017. 

[179] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., 

vol. 9(8), pp. 1735-1780, 1997.  

[180] H. Sak, A. Senior and F. Beaufays, "Long short-term memory recurrent neural 

network architectures for large scale acoustic modeling," arXiv preprint 

arXiv:1402.1128. 

[181] T. N. Sainath et al, "Convolutional, long short-term memory, fully connected 

deep neural networks," in 2015 IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICASSP), Queensland, Australia, 2015, Vol 1, pp. 4580-4584. 

[182] A. A. Ismail, T. Wood and H. C. Bravo, "Improving Long-Horizon Forecasts 

with Expectation-Biased LSTM Networks," arXiv Preprint arXiv:1804.06776, 2018.  

[183] W. Li et al, "Eac-net: Deep nets with enhancing and cropping for facial action 

unit detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 40(11), pp. 2583-2596, 

2018.  

[184] G. Varol, I. Laptev and C. Schmid, "Long-term temporal convolutions for action 

recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 40(6), pp. 1510-1517, 

2017.  

[185] D. Tran et al., "Learning spatiotemporal features with 3d convolutional 

networks," arXiv Preprint: arXiv:1412.0767. 

[186] J. Gan et al., "3d convolutional neural network based on face anti-spoofing," in 

2017 2nd International Conference on Multimedia and Image Processing (ICMIP), 

Wuhan, China, March, 2017, Vol 1, pp. 1-5. 



 

 205 

[187] Hutson, M. AI researchers allege that machine learning is alchemy. Science 

(May.3,2018);[Online].https://www.sciencemag.org/news/2018/05/ai-

researchersallege-machine-learning-alchemy [Accessed: 28-Nov-2019] 

  

[188] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep 

feedforward neural networks," in Proceedings of the Thirteenth International 

Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 2010, Vol 1, pp. 

249-256. 

[189] M. S. Satu and M. H. Parvez, "Review of integrated applications with aiml based 

chatbot," in 2015 International Conference on Computer and Information Engineering 

(ICCIE), 2015, pp. 87-90,. 

[190] L. Viganò and D. Magazzeni, "Explainable security," arXiv Preprint 

arXiv:1807.04178, 2018.  

[191] R. Shao, X. Lan and P. C. Yuen, "Deep convolutional dynamic texture learning 

with adaptive channel-discriminability for 3D mask face anti-spoofing," in 2017 IEEE 

International Joint Conference on Biometrics (IJCB), Denver, Colorado, USA, 2017, 

pp. 748-755. 

[192] X. Tu and Y. Fang, "Ultra-deep neural network for face anti-spoofing," in 

International Conference on Neural Information Processing, Guangzhou, China, pp. 

686-695, 2017. 

[193] H. Liu, K. Simonyan and Y. Yang, "Darts: Differentiable architecture search," 

arXiv Preprint arXiv:1806.09055, 2018.  

[194] S. Xie et al, "SNAS: stochastic neural architecture search," arXiv Preprint 

arXiv:1812.09926, 2018.  

[195] C. Liu et al, "Progressive neural architecture search," in Proceedings of the 

European Conference on Computer Vision (ECCV), Munich, Germany, 2018, Vol 1, 

pp. 19-34. 

[196] R. Shin, C. Packer and D. Song, "Differentiable neural network architecture 

search," In ICLR Workshop, Vancouver, BC, Canada, 2018.  

[197] B. Wu et al, "Fbnet: Hardware-aware efficient convnet design via differentiable 

neural architecture search," in Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, Long Beach, California, USA, 2019, pp. 10734-

10742. 

[198] E. J. Gumbel, "Statistical theory of extreme values and some practical 

applications," NBS Applied Mathematics Series, vol. 33, 1954.  

[199] C. J. Maddison, A. Mnih and Y. W. Teh, "The concrete distribution: A 

continuous relaxation of discrete random variables," arXiv Preprint 

arXiv:1611.00712, 2016.  



 

206  

[200] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv 

Preprint arXiv:1609.04747, 2016.  

[201] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv 

Preprint arXiv:1412.6980, 2014.  

[202] V. Thai et al, "Detection, tracking and classification of aircraft and drones in 

digital towers using machine learning on motion patterns," in 2019 Integrated 

Communications, Navigation and Surveillance Conference (ICNS), Athens, Greece, 

2019, pp. 1-8. 

  

 

 

 



 

Appendix: Papers Published 207 

Appendix: Papers Published  

Conference Paper 

Pan, S. and Deravi, F., 2019, spatio-temporal texture feature for presentation attack 

detection in biometric systems In 2019 Eighth International Conference on Emerging 

Security Technologies (EST) . IEEE 

Pan, S. and Deravi, F., 2018, January. Facial biometric presentation attack detection 

using temporal texture co-occurrence. In 2018 IEEE 4th International Conference on 

Identity, Security, and Behavior Analysis (ISBA) (pp. 1-7). IEEE. 

Pan, S. and Deravi, F., 2017, September. Facial action units for presentation attack 

detection. In 2017 Seventh International Conference on Emerging Security 

Technologies (EST) (pp. 62-67). IEEE. 

 

 


